Root/
| 1 | /* |
| 2 | * path.c - 2D path operations |
| 3 | * |
| 4 | * Written 2011 by Werner Almesberger |
| 5 | * Copyright 2011 by Werner Almesberger |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License as published by |
| 9 | * the Free Software Foundation; either version 2 of the License, or |
| 10 | * (at your option) any later version. |
| 11 | */ |
| 12 | |
| 13 | #include <stdlib.h> |
| 14 | #include <stdio.h> |
| 15 | #include <string.h> |
| 16 | #include <math.h> |
| 17 | #include <assert.h> |
| 18 | |
| 19 | #include "ptrude.h" |
| 20 | #include "path.h" |
| 21 | |
| 22 | |
| 23 | #define alloc_type(t) ((t *) malloc(sizeof(t))) |
| 24 | #define stralloc(s) strdup(s) |
| 25 | |
| 26 | |
| 27 | static double deg(double rad) |
| 28 | { |
| 29 | return rad/M_PI*180.0; |
| 30 | } |
| 31 | |
| 32 | |
| 33 | static struct path *alloc_path(void) |
| 34 | { |
| 35 | struct path *path; |
| 36 | |
| 37 | path = alloc_type(struct path); |
| 38 | path->vertices = NULL; |
| 39 | path->last = &path->vertices; |
| 40 | return path; |
| 41 | } |
| 42 | |
| 43 | |
| 44 | static struct vertex *alloc_vertex(void) |
| 45 | { |
| 46 | struct vertex *v; |
| 47 | |
| 48 | v = alloc_type(struct vertex); |
| 49 | v->r = 0; |
| 50 | v->d = 0; |
| 51 | v->tag = NULL; |
| 52 | v->next = NULL; |
| 53 | v->len = 0; |
| 54 | return v; |
| 55 | } |
| 56 | |
| 57 | |
| 58 | static void free_vertex(struct vertex *v) |
| 59 | { |
| 60 | free(v); |
| 61 | } |
| 62 | |
| 63 | |
| 64 | void free_path(struct path *path) |
| 65 | { |
| 66 | struct vertex *v, *next; |
| 67 | |
| 68 | for (v = path->vertices; v; v = next) { |
| 69 | next = v->next; |
| 70 | free_vertex(v); |
| 71 | } |
| 72 | free(path); |
| 73 | } |
| 74 | |
| 75 | |
| 76 | static struct vertex *clone_vertex(const struct vertex *v) |
| 77 | { |
| 78 | struct vertex *new; |
| 79 | |
| 80 | new = alloc_type(struct vertex); |
| 81 | *new = *v; |
| 82 | new->next = NULL; |
| 83 | return new; |
| 84 | } |
| 85 | |
| 86 | |
| 87 | static void append_vertex(struct path *path, struct vertex *v) |
| 88 | { |
| 89 | *path->last = v; |
| 90 | path->last = &v->next; |
| 91 | } |
| 92 | |
| 93 | |
| 94 | static struct vertex *add_vertex(struct path *path, double x, double y, |
| 95 | double r, double d, const char *tag) |
| 96 | { |
| 97 | struct vertex *v; |
| 98 | |
| 99 | v = alloc_vertex(); |
| 100 | v->x = x; |
| 101 | v->y = y; |
| 102 | v->r = r; |
| 103 | v->d = d; |
| 104 | v->tag = tag; |
| 105 | append_vertex(path, v); |
| 106 | return v; |
| 107 | } |
| 108 | |
| 109 | |
| 110 | double path_set_length(struct path *path) |
| 111 | { |
| 112 | struct vertex *v; |
| 113 | double sum = 0; |
| 114 | |
| 115 | if (!path->vertices) |
| 116 | return 0; |
| 117 | for (v = path->vertices; v->next; v = v->next) { |
| 118 | v->len = hypot(v->x-v->next->x, v->y-v->next->y); |
| 119 | sum += v->len; |
| 120 | } |
| 121 | v->len = 0; |
| 122 | return sum; |
| 123 | } |
| 124 | |
| 125 | |
| 126 | static void adjust_length(struct vertex *from, struct vertex *to, double len) |
| 127 | { |
| 128 | struct vertex *v; |
| 129 | double sum, f; |
| 130 | |
| 131 | if (from == to) |
| 132 | return; |
| 133 | sum = 0; |
| 134 | for (v = from->next; v != to; v = v->next) { |
| 135 | v->len = hypot(v->x-v->next->x, v->y-v->next->y); |
| 136 | sum += v->len; |
| 137 | } |
| 138 | |
| 139 | f = len/sum; |
| 140 | for (v = from->next; v != to; v = v->next) |
| 141 | v->len *= f; |
| 142 | } |
| 143 | |
| 144 | |
| 145 | /* |
| 146 | * "corner" replaces a corner with a ploygon if the corner is too sharp to be |
| 147 | * within distance "d" of the bend radius. This may change the point from |
| 148 | * where we resume drawing (originally the corner point, "b"). "corner" |
| 149 | * therefore returns the new end of the arc. |
| 150 | */ |
| 151 | |
| 152 | static struct vertex *corner(struct path *path, struct vertex *a, |
| 153 | const struct vertex *b, const struct vertex *c, double r, double d) |
| 154 | { |
| 155 | /* points to vectors */ |
| 156 | double ax = b->x-a->x; |
| 157 | double ay = b->y-a->y; |
| 158 | double bx = c->x-b->x; |
| 159 | double by = c->y-b->y; |
| 160 | |
| 161 | /* vector length */ |
| 162 | double aa = hypot(ax, ay); |
| 163 | double bb = hypot(bx, by); |
| 164 | |
| 165 | /* dot and cross product */ |
| 166 | double dp = ax*bx+ay*by; /* a * b = a*b*cos 2t */ |
| 167 | double cp = ax*by-ay*bx; /* |a x b| = a*b*sin 2t */ |
| 168 | double dir = copysign(1, cp); |
| 169 | |
| 170 | /* see corner.fig */ |
| 171 | double dd; /* "d" of the given vectors */ |
| 172 | double tt; /* tan t */ |
| 173 | double s; /* distance between start of arc and corner */ |
| 174 | double t2; /* angle, t*2 */ |
| 175 | |
| 176 | /* see arc.fig */ |
| 177 | double p; /* half-angle of border side of border segment */ |
| 178 | double q; /* half-angle of connecting segment */ |
| 179 | double u; /* length of border side of border segment */ |
| 180 | double v; /* half-length of connecting segment */ |
| 181 | int n; /* number of connecting segments (0 if none) */ |
| 182 | |
| 183 | double f; /* scale factor; various uses */ |
| 184 | double fa, fb; /* scale factors for first and last vertex */ |
| 185 | double ang; /* current angle, for iteration */ |
| 186 | double x, y; /* current position; for iteration */ |
| 187 | int i; /* segment; for iteration */ |
| 188 | |
| 189 | struct vertex *v0; /* first vertex of arc */ |
| 190 | struct vertex *v1; /* last vertex of arc */ |
| 191 | |
| 192 | |
| 193 | /* |
| 194 | * http://en.wikipedia.org/wiki/Dot_product |
| 195 | * dp = a*b*cos 2t |
| 196 | * |
| 197 | * http://en.wikipedia.org/wiki/Cross_product |
| 198 | * cp = a*b*sin 2t |
| 199 | * |
| 200 | * http://en.wikipedia.org/wiki/Tangent_half-angle_formula |
| 201 | * tan t = sin 2t/(1+cos 2t) |
| 202 | */ |
| 203 | tt = cp/(aa*bb+dp); |
| 204 | |
| 205 | /* |
| 206 | * From s = r*tan t |
| 207 | */ |
| 208 | s = fabs(r*tt); |
| 209 | |
| 210 | /* |
| 211 | * From r^2+s^2 = (r+d)^2 |
| 212 | */ |
| 213 | dd = hypot(r, s)-r; |
| 214 | |
| 215 | if (debug) { |
| 216 | fprintf(stderr, "a = (%g, %g)-(%g, %g) = (%g, %g); |a| = %g\n", |
| 217 | b->x, b->y, a->x, a->y, ax, ay, aa); |
| 218 | fprintf(stderr, "b = (%g, %g)-(%g, %g) = (%g, %g); |b| = %g\n", |
| 219 | c->x, c->y, b->x, b->y, bx, by, bb); |
| 220 | fprintf(stderr, "sin 2t = %g, cos 2t = %g, tan t = %g\n", |
| 221 | cp/aa/bb, dp/aa/bb, tt); |
| 222 | fprintf(stderr, "r = %g, d = %g, s = %g, dd = %g\n", |
| 223 | r, d, s, dd); |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * We only know how to make a rounded corner if two vectors are |
| 228 | * involved. They therefore have to be long enough to accommodate the |
| 229 | * entire arc, from beginning to end. Furthermore, we split the |
| 230 | * available length in half, one for the inbound arc, the other for the |
| 231 | * outbound arc. |
| 232 | */ |
| 233 | |
| 234 | /* |
| 235 | * @@@ Our error checking is a bit overzealous and doesn't provide |
| 236 | * enough information to debug any problems. Turn errors into warnings |
| 237 | * for now. |
| 238 | */ |
| 239 | if (aa/2 < s) { |
| 240 | fprintf(stderr, "first vector is too short (%g/2 < %g)\n", |
| 241 | aa, s); |
| 242 | // exit(1); |
| 243 | } |
| 244 | if (bb/2 < s) { |
| 245 | fprintf(stderr, "second vector is too short (%g/2 < %g)\n", |
| 246 | bb, s); |
| 247 | // exit(1); |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * If the corner is already smooth enough, we just keep what we have. |
| 252 | */ |
| 253 | if (dd <= d) { |
| 254 | v1 = clone_vertex(b); |
| 255 | append_vertex(path, v1); |
| 256 | return v1; |
| 257 | } |
| 258 | |
| 259 | /* Step 1: determine the total angle (2*t) */ |
| 260 | |
| 261 | t2 = acos(dp/aa/bb); |
| 262 | |
| 263 | /* |
| 264 | * Step 2: determine the maximum angle of the first and last segment. |
| 265 | * |
| 266 | * We use |
| 267 | * r*cos p = r-d |
| 268 | * cos p = 1-d/r |
| 269 | */ |
| 270 | |
| 271 | p = acos(1-d/r); |
| 272 | |
| 273 | /* |
| 274 | * Step 3: determine the maximum angle of intermediate segments (if |
| 275 | * there are any). |
| 276 | * |
| 277 | * We use |
| 278 | * (r+d)*cos q = r-d |
| 279 | * cos q = r-q/(r+d) |
| 280 | */ |
| 281 | |
| 282 | q = acos((r-d)/(r+d)); |
| 283 | |
| 284 | if (debug) |
| 285 | fprintf(stderr, "t2 = %g, p(max) = %g, q(max) = %g\n", |
| 286 | deg(t2), deg(p), deg(q)); |
| 287 | |
| 288 | /* |
| 289 | * Step 4: emit the starting point of the arc |
| 290 | */ |
| 291 | |
| 292 | fa = s/aa; |
| 293 | x = b->x-fa*ax; |
| 294 | y = b->y-fa*ay; |
| 295 | v0 = add_vertex(path, x, y, b->r, b->d, b->tag); |
| 296 | v0->len = a->len*(1-fa); |
| 297 | |
| 298 | /* |
| 299 | * Step 5: determine if we need intermediate points. If yes, how many, |
| 300 | * and then proceed to add them. |
| 301 | */ |
| 302 | |
| 303 | if (t2 > 2*p) { |
| 304 | n = (int) ceil((t2-2*(p+q))/(2*q)); |
| 305 | |
| 306 | /* |
| 307 | * We could evenly distribute the slack and try to pick a |
| 308 | * smaller value for d, but that seems difficult. |
| 309 | * |
| 310 | * A drawback of reducing p would be that we may make the |
| 311 | * corner unnecessarily sharp, possibly even turning against |
| 312 | * the general direction of the turn. We'd still respect the |
| 313 | * bend radius and the tolerance, but the result may look weird |
| 314 | * anyway. |
| 315 | * |
| 316 | * For now, we just center the polygon. |
| 317 | */ |
| 318 | q = (t2/2-p)/(n+1); |
| 319 | |
| 320 | if (n) |
| 321 | ang = p+q; |
| 322 | else { |
| 323 | ang = t2/2; |
| 324 | /* |
| 325 | * @@@ To do: adjust the radius such that we always hug |
| 326 | * the r-d circle (see arc.fig) and usually not the |
| 327 | * r+d circle. Right now, it's just the opposite. |
| 328 | */ |
| 329 | } |
| 330 | |
| 331 | u = tan(p)*(r-d); |
| 332 | v = tan(q)*(r-d); |
| 333 | f = (u+v)/aa; |
| 334 | for (i = 0; i <= n; i++) { |
| 335 | x += f*ax*cos(ang-q)-dir*f*ay*sin(ang-q); |
| 336 | y += dir*f*ax*sin(ang-q)+f*ay*cos(ang-q); |
| 337 | if (debug) |
| 338 | fprintf(stderr, " %d/%d: %g %g @ %g\n", i, n, |
| 339 | x, y, deg(ang)); |
| 340 | add_vertex(path, x, y, 0, 0, NULL); |
| 341 | ang += 2*q; |
| 342 | f = (2*v)/aa; |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | /* |
| 347 | * Step 6: emit the finishing point of the arc |
| 348 | */ |
| 349 | |
| 350 | fb = s/bb; |
| 351 | v1 = add_vertex(path, b->x+fb*bx, b->y+fb*by, 0, 0, NULL); |
| 352 | v1->len = b->len*(1-fb); |
| 353 | |
| 354 | /* |
| 355 | * Step 7: adjust the nominal length of the segments |
| 356 | */ |
| 357 | |
| 358 | adjust_length(v0, v1, a->len*fa+b->len*fb); |
| 359 | |
| 360 | |
| 361 | return v1; |
| 362 | } |
| 363 | |
| 364 | |
| 365 | struct path *round_path(const struct path *path, double r, double d) |
| 366 | { |
| 367 | struct path *new; |
| 368 | struct vertex *prev; |
| 369 | const struct vertex *v; |
| 370 | |
| 371 | new = alloc_path(); |
| 372 | if (!path->vertices) |
| 373 | return new; |
| 374 | |
| 375 | prev = clone_vertex(path->vertices); |
| 376 | append_vertex(new, prev); |
| 377 | |
| 378 | if (!path->vertices->next) |
| 379 | return new; |
| 380 | |
| 381 | if (prev->r) |
| 382 | r = prev->r; |
| 383 | if (prev->d) |
| 384 | d = prev->d; |
| 385 | |
| 386 | for (v = path->vertices->next; v->next; v = v->next) { |
| 387 | if (v->r) |
| 388 | r = v->r; |
| 389 | if (v->d) |
| 390 | d = v->d; |
| 391 | prev = corner(new, prev, v, v->next, r, d); |
| 392 | } |
| 393 | append_vertex(new, clone_vertex(v)); |
| 394 | return new; |
| 395 | } |
| 396 | |
| 397 | |
| 398 | static void move_vertex(struct path *path, const struct vertex *v, |
| 399 | double nx, double ny, double dist, double r) |
| 400 | { |
| 401 | struct vertex *new; |
| 402 | |
| 403 | new = clone_vertex(v); |
| 404 | new->x += nx*dist; |
| 405 | new->y += ny*dist; |
| 406 | new->r = r; |
| 407 | append_vertex(path, new); |
| 408 | } |
| 409 | |
| 410 | |
| 411 | struct path *stretch_path(const struct path *path, double dist, double r) |
| 412 | { |
| 413 | struct path *new; /* new path */ |
| 414 | const struct vertex *v; /* current vertex (for iteration) */ |
| 415 | const struct vertex *a, *b, *c; /* previous, current, next vertex */ |
| 416 | double nx, ny; /* 2D normals */ |
| 417 | double f; /* factor for normalization */ |
| 418 | double tx, ty; /* temporary 2D normals */ |
| 419 | |
| 420 | new = alloc_path(); |
| 421 | |
| 422 | a = path->vertices; |
| 423 | b = a->next; |
| 424 | nx = b->y-a->y; |
| 425 | ny = a->x-b->x; |
| 426 | f = hypot(nx, ny); |
| 427 | if (a->r) |
| 428 | r = a->r; |
| 429 | move_vertex(new, a, nx/f, ny/f, dist, r); |
| 430 | |
| 431 | for (v = path->vertices->next; v->next; v = v->next) { |
| 432 | double tmp; |
| 433 | |
| 434 | b = v; |
| 435 | c = v->next; |
| 436 | |
| 437 | tx = b->y-a->y; |
| 438 | ty = a->x-b->x; |
| 439 | f = hypot(tx, ty); |
| 440 | nx = tx/f; |
| 441 | ny = ty/f; |
| 442 | |
| 443 | tmp = f; |
| 444 | |
| 445 | tx = c->y-b->y; |
| 446 | ty = b->x-c->x; |
| 447 | f = hypot(tx, ty); |
| 448 | nx += tx/f; |
| 449 | ny += ty/f; |
| 450 | if (b->r) |
| 451 | r = b->r; |
| 452 | |
| 453 | f = hypot(nx, ny); |
| 454 | nx /= f; |
| 455 | ny /= f; |
| 456 | |
| 457 | /* |
| 458 | * We have this far: |
| 459 | * nx, ny = normal on corner, normalized |
| 460 | * tmp = |a|, length of vector "a" (A -> B) |
| 461 | * dist = the distance by which we stretch |
| 462 | * |
| 463 | * As shown in stretch.fig, we the length we need is |
| 464 | * d' = d/cos(90-t) |
| 465 | * |
| 466 | * With |
| 467 | * http://en.wikipedia.org/wiki/Trigonometric_identities#Symmetry |
| 468 | * cos(90-t) = sin t = (n x a)/(|n|*|a|) |
| 469 | * |
| 470 | * Thus |
| 471 | * d' = d/sin(t) - d*(|n|*|a|)/(n x a) |
| 472 | * = d/sin(t) - d*|a|/(n x a) |
| 473 | */ |
| 474 | tmp = dist*tmp/(nx*(b->y-a->y)-ny*(b->x-a->x)); |
| 475 | |
| 476 | move_vertex(new, b, nx, ny, tmp, r+dist); |
| 477 | |
| 478 | a = v; |
| 479 | } |
| 480 | |
| 481 | nx = v->y-a->y; |
| 482 | ny = a->x-v->x; |
| 483 | f = hypot(nx, ny); |
| 484 | if (v->r) |
| 485 | r = v->r; |
| 486 | move_vertex(new, v, nx/f, ny/f, dist, r); |
| 487 | |
| 488 | return new; |
| 489 | } |
| 490 | |
| 491 | |
| 492 | struct path *load_path(FILE *file) |
| 493 | { |
| 494 | struct path *path; |
| 495 | char buf[1100]; /* plenty :) */ |
| 496 | char buf2[sizeof(buf)]; |
| 497 | char *s; |
| 498 | float x, y, tmp; |
| 499 | float r = 0, d = 0; |
| 500 | const char *tag = NULL; |
| 501 | |
| 502 | path = alloc_path(); |
| 503 | while (fgets(buf, sizeof(buf),file)) { |
| 504 | s = strchr(buf, '\n'); |
| 505 | if (s) |
| 506 | *s = 0; |
| 507 | if (sscanf(buf, "#r=%f", &tmp) == 1) { |
| 508 | r = tmp; |
| 509 | continue; |
| 510 | } |
| 511 | if (sscanf(buf, "#delta=%f", &tmp) == 1) { |
| 512 | d = tmp; |
| 513 | continue; |
| 514 | } |
| 515 | if (sscanf(buf, "#tag=%s", buf2) == 1) { |
| 516 | tag = stralloc(buf2); |
| 517 | continue; |
| 518 | } |
| 519 | if (*buf == '#') |
| 520 | continue; |
| 521 | if (sscanf(buf, "%f %f", &x, &y) != 2) { |
| 522 | fprintf(stderr, "can't parse \"%s\"\n", buf); |
| 523 | exit(1); |
| 524 | } |
| 525 | |
| 526 | add_vertex(path, x, y, r, d, tag); |
| 527 | |
| 528 | r = 0; |
| 529 | d = 0; |
| 530 | tag = NULL; |
| 531 | } |
| 532 | |
| 533 | path_set_length(path); |
| 534 | return path; |
| 535 | } |
| 536 | |
| 537 | |
| 538 | void save_path(FILE *file, const struct path *path) |
| 539 | { |
| 540 | const struct vertex *v; |
| 541 | |
| 542 | for (v = path->vertices; v; v = v->next) { |
| 543 | if (v->r) |
| 544 | fprintf(file, "#r=%f\n", v->r); |
| 545 | if (v->d) |
| 546 | fprintf(file, "#delta=%f\n", v->d); |
| 547 | if (v->tag) |
| 548 | fprintf(file, "#delta=%f\n", v->d); |
| 549 | fprintf(file, "%f %f\n", v->x, v->y); |
| 550 | } |
| 551 | } |
| 552 |
Branches:
master
