Root/
| 1 | /* |
| 2 | * overlap.c - Overlap two parallel faces |
| 3 | * |
| 4 | * Written 2010 by Werner Almesberger |
| 5 | * Copyright 2010 by Werner Almesberger |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License as published by |
| 9 | * the Free Software Foundation; either version 2 of the License, or |
| 10 | * (at your option) any later version. |
| 11 | */ |
| 12 | |
| 13 | |
| 14 | #include <stdlib.h> |
| 15 | #include <stdio.h> |
| 16 | #include <math.h> |
| 17 | #include <limits.h> |
| 18 | #include <gtk/gtk.h> |
| 19 | |
| 20 | #include "face.h" |
| 21 | #include "solid.h" |
| 22 | #include "gui_util.h" |
| 23 | #include "style.h" |
| 24 | #include "overlap.h" |
| 25 | |
| 26 | |
| 27 | #define UNDEF_F HUGE_VAL |
| 28 | |
| 29 | |
| 30 | static int has_osd; |
| 31 | static int edit_top; |
| 32 | |
| 33 | |
| 34 | static int sx(const struct solid *s) |
| 35 | { |
| 36 | return (s->a->sx > s->b->sx ? s->a->sx : s->b->sx)+2*OVERLAP_BORDER; |
| 37 | } |
| 38 | |
| 39 | |
| 40 | static int sy(const struct solid *s) |
| 41 | { |
| 42 | return (s->a->sy > s->b->sy ? s->a->sy : s->b->sy)+2*OVERLAP_BORDER; |
| 43 | } |
| 44 | |
| 45 | |
| 46 | static double r_center(const struct solid *s) |
| 47 | { |
| 48 | return hypot(sx(s), sy(s))/OVERLAP_CENTER_DIV; |
| 49 | } |
| 50 | |
| 51 | |
| 52 | static double ramp(int z0, double w0, int z1, double w1) |
| 53 | { |
| 54 | if (z0 != UNDEF && z1 != UNDEF) |
| 55 | return z0*w0+z1*w1; |
| 56 | if (z0 == UNDEF && z0 == UNDEF) |
| 57 | return UNDEF_F; |
| 58 | if (z0 == UNDEF && w0 < w1) |
| 59 | return z1; |
| 60 | if (z1 == UNDEF && w0 > w1) |
| 61 | return z0; |
| 62 | return UNDEF_F; |
| 63 | } |
| 64 | |
| 65 | |
| 66 | static double zmix(struct face *f, double x, double y) |
| 67 | { |
| 68 | int xa, xb, ya, yb; |
| 69 | double zx0, zx1; |
| 70 | |
| 71 | xa = floor(x); |
| 72 | xb = xa+1; |
| 73 | ya = floor(y); |
| 74 | yb = ya+1; |
| 75 | |
| 76 | zx0 = ramp( |
| 77 | get_bounded(f->a, xa, ya), yb-y, |
| 78 | get_bounded(f->a, xa, yb), y-ya); |
| 79 | zx1 = ramp( |
| 80 | get_bounded(f->a, xb, ya), yb-y, |
| 81 | get_bounded(f->a, xb, yb), y-ya); |
| 82 | |
| 83 | return ramp(zx0, xb-x, zx1, x-xa); |
| 84 | } |
| 85 | |
| 86 | |
| 87 | /* |
| 88 | * Coordinate transformations, on the example of the x coordinate: |
| 89 | * |
| 90 | * - the x coordinate runs from 0 to sx(s)-1 |
| 91 | * - since we work relative to the screen center, this becomes x-sx(s)/2 |
| 92 | * This is what we perform the coordinate transform on. |
| 93 | * - our model runs from min_x to max_x. Its center is at cx. |
| 94 | */ |
| 95 | |
| 96 | static void point(const struct solid *s, int x, int y, guchar *p, |
| 97 | const struct matrix *ma, const struct matrix *mb) |
| 98 | { |
| 99 | double za, zb, z; |
| 100 | double xaf, xbf, yaf, ybf; |
| 101 | |
| 102 | matrix_map(x, y, ma, &xaf, &yaf); |
| 103 | matrix_map(x, y, mb, &xbf, &ybf); |
| 104 | |
| 105 | za = zmix(s->a, xaf, yaf); |
| 106 | zb = zmix(s->b, xbf, ybf); |
| 107 | |
| 108 | if (za == UNDEF_F && zb == UNDEF_F) |
| 109 | return; |
| 110 | |
| 111 | if (za == UNDEF_F) { |
| 112 | z = 128.0*(zb-s->b->a->min_z)/(s->b->a->max_z-s->b->a->min_z); |
| 113 | if (z < 0) |
| 114 | z = 0; |
| 115 | if (z > 255) |
| 116 | z = 255; |
| 117 | p[0] = 255; |
| 118 | p[1] = z; |
| 119 | p[2] = z; |
| 120 | return; |
| 121 | } |
| 122 | if (zb == UNDEF_F) { |
| 123 | z = 128.0*(za-s->a->a->min_z)/(s->a->a->max_z-s->a->a->min_z); |
| 124 | if (z < 0) |
| 125 | z = 0; |
| 126 | if (z > 255) |
| 127 | z = 255; |
| 128 | p[0] = z; |
| 129 | p[1] = 255; |
| 130 | p[2] = z; |
| 131 | return; |
| 132 | } |
| 133 | |
| 134 | z = za; |
| 135 | za -= face_z0(s->a, xaf, yaf); |
| 136 | zb -= face_z0(s->b, xbf, ybf); |
| 137 | |
| 138 | if (za+zb < -s->dist) { |
| 139 | p[0] = 0; |
| 140 | p[1] = 0; |
| 141 | p[2] = 255; |
| 142 | return; |
| 143 | } |
| 144 | |
| 145 | z = 256.0*(z-s->a->a->min_z)/(s->a->a->max_z-s->a->a->min_z); |
| 146 | if (z < 0) |
| 147 | z = 0; |
| 148 | if (z > 255) |
| 149 | z = 255; |
| 150 | p[0] = z; |
| 151 | p[1] = z; |
| 152 | p[2] = z; |
| 153 | } |
| 154 | |
| 155 | |
| 156 | static void merge_matrix(struct matrix *m, const struct solid *s, |
| 157 | const struct face *f) |
| 158 | { |
| 159 | double tm[2][2], tm2[2][2]; |
| 160 | double tv[2]; |
| 161 | double f_x, f_y; |
| 162 | double z0s2 = z0_scale(f)*z0_scale(f); |
| 163 | |
| 164 | /* |
| 165 | * Finally, we convert to model matrix coordinates. |
| 166 | * |
| 167 | * v' = v+c |
| 168 | */ |
| 169 | |
| 170 | m->b[0] += f->cx; |
| 171 | m->b[1] += f->cy; |
| 172 | |
| 173 | /* |
| 174 | * Apply shrinkage caused by rotation out of z0. |
| 175 | * We need to divide by x = cos a. We have f = tan a. |
| 176 | * With sin^2 a + cos^2 a = 1, we get |
| 177 | * |
| 178 | * f = sqrt(1-cos^2 a)/cos a |
| 179 | * = sqrt(1-x^2)/x |
| 180 | * f^2 = 1/x^2-1 |
| 181 | * 1/(f^2+1) = x^2 |
| 182 | * cos a = sqrt(1/(f^2+1)) |
| 183 | */ |
| 184 | |
| 185 | f_x = sqrt(f->fx*f->fx*z0s2+1); |
| 186 | f_y = sqrt(f->fy*f->fy*z0s2+1); |
| 187 | |
| 188 | m->a[0][0] *= f_x; |
| 189 | m->a[0][1] *= f_x; |
| 190 | // m->b[0] *= f_x; |
| 191 | m->a[1][0] *= f_y; |
| 192 | m->a[1][1] *= f_y; |
| 193 | // m->b[1] *= f_y; |
| 194 | |
| 195 | /* |
| 196 | * The transformation matrix f->m describes a transformation of |
| 197 | * (centered) model coordinates. We therefore have to reverse it: |
| 198 | * |
| 199 | * v = v'A+b |
| 200 | * v-b = v'A |
| 201 | * (v-b)A^-1 = v' |
| 202 | * vA^-1-bA^-1 = v' |
| 203 | */ |
| 204 | |
| 205 | matrix_invert(f->m.a, tm); |
| 206 | matrix_multv(f->m.b, tm, tv); |
| 207 | tv[0] = -tv[0]; |
| 208 | tv[1] = -tv[1]; |
| 209 | |
| 210 | /* |
| 211 | * Merge with the transformations we have so far: |
| 212 | * |
| 213 | * v' = vA1+b1 the transformation we have so far |
| 214 | * v'' = v'A2+b2 the transformation we apply |
| 215 | * |
| 216 | * v'' = (vA1+b1)A2+b2 |
| 217 | * v'' = vA1A2+b1A2+b2 |
| 218 | */ |
| 219 | |
| 220 | /* |
| 221 | * So far, the theory. To make it really work, we have to calculate |
| 222 | * v'' = vA1A2+b1+b2 |
| 223 | * duh ?!? |
| 224 | */ |
| 225 | |
| 226 | matrix_mult(m->a, tm, tm2); /* A1A2 */ |
| 227 | matrix_copy(tm2, m->a); |
| 228 | // matrix_multv(m->b, tm, m->b); /* b1A2 */ |
| 229 | m->b[0] += tv[0]; /* b2 */ |
| 230 | m->b[1] += tv[1]; |
| 231 | |
| 232 | /* |
| 233 | * Our input is a screen coordinate, its origin is in a corner so we |
| 234 | * first have to make it center-based: |
| 235 | * |
| 236 | * v' = (v-s/2)A+b |
| 237 | * v' = vA+(b-s/2*A) |
| 238 | */ |
| 239 | |
| 240 | tv[0] = sx(s)/2; |
| 241 | tv[1] = sy(s)/2; |
| 242 | matrix_multv(tv, m->a, tv); |
| 243 | m->b[0] -= tv[0]; |
| 244 | m->b[1] -= tv[1]; |
| 245 | } |
| 246 | |
| 247 | |
| 248 | static void draw_map(GtkWidget *widget, struct solid *s) |
| 249 | { |
| 250 | guchar *rgbbuf, *p; |
| 251 | int x, y; |
| 252 | struct matrix ma = { |
| 253 | .a = { { 1, 0 }, { 0, 1 } }, |
| 254 | .b = { 0, 0 }, |
| 255 | }; |
| 256 | struct matrix mb = { |
| 257 | .a = { { -1, 0 }, { 0, 1 } }, |
| 258 | .b = { 0, 0 }, |
| 259 | }; |
| 260 | |
| 261 | rgbbuf = p = calloc(sx(s)*sy(s), 3); |
| 262 | if (!rgbbuf) { |
| 263 | perror("calloc"); |
| 264 | exit(1); |
| 265 | } |
| 266 | |
| 267 | merge_matrix(&ma, s, s->a); |
| 268 | merge_matrix(&mb, s, s->b); |
| 269 | |
| 270 | for (y = sy(s)-1; y >= 0; y--) |
| 271 | for (x = 0; x != sx(s) ; x++) { |
| 272 | point(s, x, y, p, &ma, &mb); |
| 273 | p += 3; |
| 274 | } |
| 275 | gdk_draw_rgb_image(widget->window, |
| 276 | widget->style->fg_gc[GTK_STATE_NORMAL], |
| 277 | 0, 0, sx(s), sy(s), GDK_RGB_DITHER_MAX, rgbbuf, sx(s)*3); |
| 278 | free(rgbbuf); |
| 279 | } |
| 280 | |
| 281 | |
| 282 | static void draw_image(GtkWidget *widget, struct solid *s, int osd) |
| 283 | { |
| 284 | int cx = sx(s)/2; |
| 285 | int cy = sy(s)/2; |
| 286 | int p; |
| 287 | |
| 288 | draw_map(widget, s); |
| 289 | has_osd = osd; |
| 290 | if (!osd) |
| 291 | return; |
| 292 | draw_circle(widget->window, gc_osd, cx, cy, r_center(s)); |
| 293 | p = r_center(s)/sqrt(2); |
| 294 | gdk_draw_line(widget->window, gc_osd, cx-p, cy-p, cx+p, cy+p); |
| 295 | gdk_draw_line(widget->window, gc_osd, cx-p, cy+p, cx+p, cy-p); |
| 296 | } |
| 297 | |
| 298 | |
| 299 | /* |
| 300 | * Rotate such that a point at distance "r" moves one unit. Rotate |
| 301 | * counter-clockwise for r > 1, clockwise for r < 0. |
| 302 | */ |
| 303 | |
| 304 | static void rotate(struct matrix *m, double r) |
| 305 | { |
| 306 | struct matrix t; |
| 307 | double s, c; |
| 308 | |
| 309 | s = 1/r; |
| 310 | c = sqrt(1-s*s); |
| 311 | t.a[0][0] = m->a[0][0]*c-m->a[1][0]*s; |
| 312 | t.a[0][1] = m->a[0][1]*c-m->a[1][1]*s; |
| 313 | t.a[1][0] = m->a[1][0]*c+m->a[0][0]*s; |
| 314 | t.a[1][1] = m->a[1][1]*c+m->a[0][1]*s; |
| 315 | t.b[0] = m->b[0]*c-m->b[1]*s; |
| 316 | t.b[1] = m->b[0]*s+m->b[1]*c; |
| 317 | *m = t; |
| 318 | } |
| 319 | |
| 320 | |
| 321 | static void do_shift(struct matrix *m, double dx, double dy) |
| 322 | { |
| 323 | m->b[0] += dx; |
| 324 | m->b[1] += dy; |
| 325 | } |
| 326 | |
| 327 | |
| 328 | static void shift(struct matrix *m, int dx, int dy, double dist) |
| 329 | { |
| 330 | /* |
| 331 | * Wheeling "up" in each quadrant shifts in the respective direction, |
| 332 | * wheeling "down" in the opposite direction. |
| 333 | * |
| 334 | * No rule without exception: we treat the "down" quadrant like the |
| 335 | * "up" quadrant, because it would be extremely counter-intuitive to |
| 336 | * wheel "up" to move "down". |
| 337 | */ |
| 338 | |
| 339 | if (dx > 0 && dy < dx && dy > -dx) |
| 340 | do_shift(m, dist, 0); |
| 341 | if (dx < 0 && dy < -dx && dy > dx) |
| 342 | do_shift(m, -dist, 0); |
| 343 | if (dy > 0 && dx < dy && dx > -dy) |
| 344 | do_shift(m, 0, dist); |
| 345 | if (dy < 0 && dx < -dy && dx > dy) |
| 346 | do_shift(m, 0, dist); /* exception ! */ |
| 347 | } |
| 348 | |
| 349 | |
| 350 | static int osd_proximity(const struct solid *s, int dx, int dy) |
| 351 | { |
| 352 | double r = hypot(dx, dy); |
| 353 | double rc = r_center(s); |
| 354 | |
| 355 | if (fabs(r-rc) < OSD_PROXIMITY) |
| 356 | return 1; |
| 357 | if (r > rc) |
| 358 | return 0; |
| 359 | if (abs(abs(dx)-abs(dy)) < OSD_PROXIMITY) |
| 360 | return 1; |
| 361 | return 0; |
| 362 | } |
| 363 | |
| 364 | |
| 365 | static gboolean scroll_event(GtkWidget *widget, GdkEventScroll *event, |
| 366 | gpointer data) |
| 367 | { |
| 368 | GtkWidget *darea = gtk_bin_get_child(GTK_BIN(widget)); |
| 369 | struct solid *s = data; |
| 370 | int dx = event->x-sx(s)/2; |
| 371 | int dy = event->y-sy(s)/2; |
| 372 | double r = hypot(dx, dy); |
| 373 | double rc = r_center(s); |
| 374 | double rs, rot, dist; |
| 375 | int center = r < rc; |
| 376 | int osd = osd_proximity(s, dx, dy); |
| 377 | |
| 378 | if (r < 1) |
| 379 | return TRUE; |
| 380 | |
| 381 | /* |
| 382 | * rot goes exponentially from SLOWEST_ROT*rs to FASTEST_ROT for |
| 383 | * r = rc to rs, with rs being half the canvas diagonal. |
| 384 | * |
| 385 | * The values are picked such that we achieve sufficient precision at |
| 386 | * a reasonably large distance from the circle (for accidently entering |
| 387 | * the circle would change the mode) but can also spin quickly, e.g., |
| 388 | * when a 180 degrees rotation is needed. |
| 389 | * |
| 390 | * First, normalize to 0 ... 1 |
| 391 | * Then, we start at exp(0) and end at |
| 392 | * exp(ln(SLOWEST_ROT*rs/FASTEST_ROT))) |
| 393 | */ |
| 394 | rs = hypot(sx(s), sy(s))/2; |
| 395 | rot = (r-rc)/(rs-rc); |
| 396 | rot = SLOWEST_ROT*rs*exp(-rot*log(SLOWEST_ROT*rs/FASTEST_ROT)); |
| 397 | |
| 398 | /* |
| 399 | * dist stays at 1 from 0...rc/DIST_STEPS, then linearly goes up to |
| 400 | * DIST_STEPS from rc/DIST_STEPS...rc |
| 401 | */ |
| 402 | dist = r/rc*DIST_STEPS; |
| 403 | if (dist < 0) |
| 404 | dist = 1; |
| 405 | |
| 406 | switch (event->direction) { |
| 407 | case GDK_SCROLL_UP: |
| 408 | if (center) |
| 409 | shift(edit_top ? &s->a->m : &s->b->m, |
| 410 | edit_top ? dx : -dx, dy, dist); |
| 411 | else |
| 412 | rotate(edit_top ? &s->a->m : &s->b->m, |
| 413 | dx > 0 ? rot : -rot); |
| 414 | draw_image(darea, s, osd); |
| 415 | break; |
| 416 | case GDK_SCROLL_DOWN: |
| 417 | if (center) |
| 418 | shift(edit_top ? &s->a->m : &s->b->m, |
| 419 | edit_top ? dx : -dx, dy, -dist); |
| 420 | else |
| 421 | rotate(edit_top ? &s->a->m : &s->b->m, |
| 422 | dx > 0 ? -rot : rot); |
| 423 | draw_image(darea, s, osd); |
| 424 | break; |
| 425 | default: |
| 426 | /* ignore */; |
| 427 | } |
| 428 | return TRUE; |
| 429 | } |
| 430 | |
| 431 | |
| 432 | static gboolean expose_event(GtkWidget *widget, GdkEventExpose *event, |
| 433 | gpointer user_data) |
| 434 | { |
| 435 | draw_image(widget, user_data, has_osd); |
| 436 | return TRUE; |
| 437 | } |
| 438 | |
| 439 | |
| 440 | static gboolean motion_notify_event(GtkWidget *widget, GdkEventMotion *event, |
| 441 | gpointer data) |
| 442 | { |
| 443 | struct solid *s = data; |
| 444 | int dx = event->x-sx(s)/2; |
| 445 | int dy = event->y-sy(s)/2; |
| 446 | int osd = osd_proximity(s, dx, dy); |
| 447 | |
| 448 | if (osd != has_osd) |
| 449 | draw_image(widget, s, osd); |
| 450 | return FALSE; |
| 451 | } |
| 452 | |
| 453 | |
| 454 | void overlap_edit(int top) |
| 455 | { |
| 456 | edit_top = top; |
| 457 | } |
| 458 | |
| 459 | |
| 460 | void overlap(GtkWidget *canvas, struct solid *s) |
| 461 | { |
| 462 | GtkWidget *evbox, *darea; |
| 463 | |
| 464 | evbox = gtk_event_box_new(); |
| 465 | darea = gtk_drawing_area_new(); |
| 466 | |
| 467 | gtk_widget_set_events(darea, |
| 468 | GDK_EXPOSE | GDK_KEY_PRESS_MASK | |
| 469 | GDK_BUTTON_PRESS_MASK | GDK_BUTTON_RELEASE_MASK | |
| 470 | GDK_SCROLL | |
| 471 | GDK_POINTER_MOTION_MASK); |
| 472 | |
| 473 | gtk_widget_set_size_request(darea, sx(s), sy(s)); |
| 474 | gtk_container_add(GTK_CONTAINER(canvas), evbox); |
| 475 | gtk_container_add(GTK_CONTAINER(evbox), darea); |
| 476 | |
| 477 | draw_image(darea, s, 0); |
| 478 | |
| 479 | g_signal_connect(G_OBJECT(evbox), "scroll-event", |
| 480 | G_CALLBACK(scroll_event), s); |
| 481 | g_signal_connect(G_OBJECT(darea), "expose-event", |
| 482 | G_CALLBACK(expose_event), s); |
| 483 | g_signal_connect(G_OBJECT(darea), "motion-notify-event", |
| 484 | G_CALLBACK(motion_notify_event), s); |
| 485 | |
| 486 | if (0) { |
| 487 | int i; |
| 488 | long t0 = time(NULL); |
| 489 | gtk_widget_show_all(canvas); |
| 490 | for (i = 0; i != 1000; i++) { |
| 491 | rotate(&s->a->m, 100); |
| 492 | draw_image(darea, s, 0); |
| 493 | while (gtk_events_pending()) |
| 494 | gtk_main_iteration(); |
| 495 | } |
| 496 | fprintf(stderr, "%lu\n", time(NULL)-t0); |
| 497 | } |
| 498 | |
| 499 | } |
| 500 |
Branches:
master
