Hardware Design: SIE
Sign in or create your account | Project List | Help
Hardware Design: SIE Git Source Tree
Root/
| 1 | /*-------------------------------------------------------------------- |
| 2 | * TITLE: Plasma Floating Point Library |
| 3 | * AUTHOR: Steve Rhoads (rhoadss@yahoo.com) |
| 4 | * DATE CREATED: 3/2/06 |
| 5 | * FILENAME: math.c |
| 6 | * PROJECT: Plasma CPU core |
| 7 | * COPYRIGHT: Software placed into the public domain by the author. |
| 8 | * Software 'as is' without warranty. Author liable for nothing. |
| 9 | * DESCRIPTION: |
| 10 | * Plasma Floating Point Library |
| 11 | *-------------------------------------------------------------------- |
| 12 | * IEEE_fp = sign(1) | exponent(8) | fraction(23) |
| 13 | * cos(x)=1-x^2/2!+x^4/4!-x^6/6!+... |
| 14 | * exp(x)=1+x+x^2/2!+x^3/3!+... |
| 15 | * ln(1+x)=x-x^2/2+x^3/3-x^4/4+... |
| 16 | * atan(x)=x-x^3/3+x^5/5-x^7/7+... |
| 17 | * pow(x,y)=exp(y*ln(x)) |
| 18 | * x=tan(a+b)=(tan(a)+tan(b))/(1-tan(a)*tan(b)) |
| 19 | * atan(x)=b+atan((x-atan(b))/(1+x*atan(b))) |
| 20 | * ln(a*x)=ln(a)+ln(x); ln(x^n)=n*ln(x) |
| 21 | *--------------------------------------------------------------------*/ |
| 22 | #include "rtos.h" |
| 23 | |
| 24 | //#define USE_SW_MULT |
| 25 | #if !defined(WIN32) && !defined(USE_SW_MULT) |
| 26 | #define USE_MULT64 |
| 27 | #endif |
| 28 | |
| 29 | #define PI ((float)3.1415926) |
| 30 | #define PI_2 ((float)(PI/2.0)) |
| 31 | #define PI2 ((float)(PI*2.0)) |
| 32 | |
| 33 | #define FtoL(X) (*(unsigned long*)&(X)) |
| 34 | #define LtoF(X) (*(float*)&(X)) |
| 35 | |
| 36 | |
| 37 | float FP_Neg(float a_fp) |
| 38 | { |
| 39 | unsigned long a; |
| 40 | a = FtoL(a_fp); |
| 41 | a ^= 0x80000000; |
| 42 | return LtoF(a); |
| 43 | } |
| 44 | |
| 45 | |
| 46 | float FP_Add(float a_fp, float b_fp) |
| 47 | { |
| 48 | unsigned long a, b, c; |
| 49 | unsigned long as, bs, cs; //sign |
| 50 | long ae, af, be, bf, ce, cf; //exponent and fraction |
| 51 | a = FtoL(a_fp); |
| 52 | b = FtoL(b_fp); |
| 53 | as = a >> 31; //sign |
| 54 | ae = (a >> 23) & 0xff; //exponent |
| 55 | af = 0x00800000 | (a & 0x007fffff); //fraction |
| 56 | bs = b >> 31; |
| 57 | be = (b >> 23) & 0xff; |
| 58 | bf = 0x00800000 | (b & 0x007fffff); |
| 59 | if(ae > be) |
| 60 | { |
| 61 | if(ae - be < 30) |
| 62 | bf >>= ae - be; |
| 63 | else |
| 64 | bf = 0; |
| 65 | ce = ae; |
| 66 | } |
| 67 | else |
| 68 | { |
| 69 | if(be - ae < 30) |
| 70 | af >>= be - ae; |
| 71 | else |
| 72 | af = 0; |
| 73 | ce = be; |
| 74 | } |
| 75 | cf = (as ? -af : af) + (bs ? -bf : bf); |
| 76 | cs = cf < 0; |
| 77 | cf = cf>=0 ? cf : -cf; |
| 78 | if(cf == 0) |
| 79 | return LtoF(cf); |
| 80 | while(cf & 0xff000000) |
| 81 | { |
| 82 | ++ce; |
| 83 | cf >>= 1; |
| 84 | } |
| 85 | while((cf & 0xff800000) == 0) |
| 86 | { |
| 87 | --ce; |
| 88 | cf <<= 1; |
| 89 | } |
| 90 | c = (cs << 31) | (ce << 23) | (cf & 0x007fffff); |
| 91 | if(ce < 1) |
| 92 | c = 0; |
| 93 | return LtoF(c); |
| 94 | } |
| 95 | |
| 96 | |
| 97 | float FP_Sub(float a_fp, float b_fp) |
| 98 | { |
| 99 | return FP_Add(a_fp, FP_Neg(b_fp)); |
| 100 | } |
| 101 | |
| 102 | |
| 103 | float FP_Mult(float a_fp, float b_fp) |
| 104 | { |
| 105 | unsigned long a, b, c; |
| 106 | unsigned long as, af, bs, bf, cs, cf; |
| 107 | long ae, be, ce; |
| 108 | #ifndef USE_MULT64 |
| 109 | unsigned long a2, a1, b2, b1, med1, med2; |
| 110 | #endif |
| 111 | unsigned long hi, lo; |
| 112 | a = FtoL(a_fp); |
| 113 | b = FtoL(b_fp); |
| 114 | as = a >> 31; |
| 115 | ae = (a >> 23) & 0xff; |
| 116 | af = 0x00800000 | (a & 0x007fffff); |
| 117 | bs = b >> 31; |
| 118 | be = (b >> 23) & 0xff; |
| 119 | bf = 0x00800000 | (b & 0x007fffff); |
| 120 | cs = as ^ bs; |
| 121 | #ifndef USE_MULT64 |
| 122 | a1 = af & 0xffff; |
| 123 | a2 = af >> 16; |
| 124 | b1 = bf & 0xffff; |
| 125 | b2 = bf >> 16; |
| 126 | lo = a1 * b1; |
| 127 | med1 = a2 * b1 + (lo >> 16); |
| 128 | med2 = a1 * b2; |
| 129 | hi = a2 * b2 + (med1 >> 16) + (med2 >> 16); |
| 130 | med1 = (med1 & 0xffff) + (med2 & 0xffff); |
| 131 | hi += (med1 >> 16); |
| 132 | lo = (med1 << 16) | (lo & 0xffff); |
| 133 | #else |
| 134 | lo = OS_AsmMult(af, bf, &hi); |
| 135 | #endif |
| 136 | cf = (hi << 9) | (lo >> 23); |
| 137 | ce = ae + be - 0x80 + 1; |
| 138 | if(cf == 0) |
| 139 | return LtoF(cf); |
| 140 | while(cf & 0xff000000) |
| 141 | { |
| 142 | ++ce; |
| 143 | cf >>= 1; |
| 144 | } |
| 145 | c = (cs << 31) | (ce << 23) | (cf & 0x007fffff); |
| 146 | if(ce < 1) |
| 147 | c = 0; |
| 148 | return LtoF(c); |
| 149 | } |
| 150 | |
| 151 | |
| 152 | float FP_Div(float a_fp, float b_fp) |
| 153 | { |
| 154 | unsigned long a, b, c; |
| 155 | unsigned long as, af, bs, bf, cs, cf; |
| 156 | unsigned long a1, b1; |
| 157 | #ifndef USE_MULT64 |
| 158 | unsigned long a2, b2, med1, med2; |
| 159 | #endif |
| 160 | unsigned long hi, lo; |
| 161 | long ae, be, ce, d; |
| 162 | a = FtoL(a_fp); |
| 163 | b = FtoL(b_fp); |
| 164 | as = a >> 31; |
| 165 | ae = (a >> 23) & 0xff; |
| 166 | af = 0x00800000 | (a & 0x007fffff); |
| 167 | bs = b >> 31; |
| 168 | be = (b >> 23) & 0xff; |
| 169 | bf = 0x00800000 | (b & 0x007fffff); |
| 170 | cs = as ^ bs; |
| 171 | ce = ae - (be - 0x80) + 6 - 8; |
| 172 | a1 = af << 4; //8 |
| 173 | b1 = bf >> 8; |
| 174 | cf = a1 / b1; |
| 175 | cf <<= 12; //8 |
| 176 | #if 1 /*non-quick*/ |
| 177 | #ifndef USE_MULT64 |
| 178 | a1 = cf & 0xffff; |
| 179 | a2 = cf >> 16; |
| 180 | b1 = bf & 0xffff; |
| 181 | b2 = bf >> 16; |
| 182 | lo = a1 * b1; |
| 183 | med1 =a2 * b1 + (lo >> 16); |
| 184 | med2 = a1 * b2; |
| 185 | hi = a2 * b2 + (med1 >> 16) + (med2 >> 16); |
| 186 | med1 = (med1 & 0xffff) + (med2 & 0xffff); |
| 187 | hi += (med1 >> 16); |
| 188 | lo = (med1 << 16) | (lo & 0xffff); |
| 189 | #else |
| 190 | lo = OS_AsmMult(cf, bf, &hi); |
| 191 | #endif |
| 192 | lo = (hi << 8) | (lo >> 24); |
| 193 | d = af - lo; //remainder |
| 194 | assert(-0xffff < d && d < 0xffff); |
| 195 | d <<= 16; |
| 196 | b1 = bf >> 8; |
| 197 | d = d / (long)b1; |
| 198 | cf += d; |
| 199 | #endif |
| 200 | if(cf == 0) |
| 201 | return LtoF(cf); |
| 202 | while(cf & 0xff000000) |
| 203 | { |
| 204 | ++ce; |
| 205 | cf >>= 1; |
| 206 | } |
| 207 | if(ce < 0) |
| 208 | ce = 0; |
| 209 | c = (cs << 31) | (ce << 23) | (cf & 0x007fffff); |
| 210 | if(ce < 1) |
| 211 | c = 0; |
| 212 | return LtoF(c); |
| 213 | } |
| 214 | |
| 215 | |
| 216 | long FP_ToLong(float a_fp) |
| 217 | { |
| 218 | unsigned long a; |
| 219 | unsigned long as; |
| 220 | long ae; |
| 221 | long af, shift; |
| 222 | a = FtoL(a_fp); |
| 223 | as = a >> 31; |
| 224 | ae = (a >> 23) & 0xff; |
| 225 | af = 0x00800000 | (a & 0x007fffff); |
| 226 | af <<= 7; |
| 227 | shift = -(ae - 0x80 - 29); |
| 228 | if(shift > 0) |
| 229 | { |
| 230 | if(shift < 31) |
| 231 | af >>= shift; |
| 232 | else |
| 233 | af = 0; |
| 234 | } |
| 235 | af = as ? -af: af; |
| 236 | return af; |
| 237 | } |
| 238 | |
| 239 | |
| 240 | float FP_ToFloat(long af) |
| 241 | { |
| 242 | unsigned long a; |
| 243 | unsigned long as, ae; |
| 244 | as = af>=0 ? 0: 1; |
| 245 | af = af>=0 ? af: -af; |
| 246 | ae = 0x80 + 22; |
| 247 | if(af == 0) |
| 248 | return LtoF(af); |
| 249 | while(af & 0xff000000) |
| 250 | { |
| 251 | ++ae; |
| 252 | af >>= 1; |
| 253 | } |
| 254 | while((af & 0xff800000) == 0) |
| 255 | { |
| 256 | --ae; |
| 257 | af <<= 1; |
| 258 | } |
| 259 | a = (as << 31) | (ae << 23) | (af & 0x007fffff); |
| 260 | return LtoF(a); |
| 261 | } |
| 262 | |
| 263 | |
| 264 | //0 iff a==b; 1 iff a>b; -1 iff a<b |
| 265 | int FP_Cmp(float a_fp, float b_fp) |
| 266 | { |
| 267 | unsigned long a, b; |
| 268 | unsigned long as, ae, af, bs, be, bf; |
| 269 | int gt; |
| 270 | a = FtoL(a_fp); |
| 271 | b = FtoL(b_fp); |
| 272 | if(a == b) |
| 273 | return 0; |
| 274 | as = a >> 31; |
| 275 | bs = b >> 31; |
| 276 | if(as > bs) |
| 277 | return -1; |
| 278 | if(as < bs) |
| 279 | return 1; |
| 280 | gt = as ? -1 : 1; |
| 281 | ae = (a >> 23) & 0xff; |
| 282 | be = (b >> 23) & 0xff; |
| 283 | if(ae > be) |
| 284 | return gt; |
| 285 | if(ae < be) |
| 286 | return -gt; |
| 287 | af = 0x00800000 | (a & 0x007fffff); |
| 288 | bf = 0x00800000 | (b & 0x007fffff); |
| 289 | if(af > bf) |
| 290 | return gt; |
| 291 | return -gt; |
| 292 | } |
| 293 | |
| 294 | |
| 295 | int __ltsf2(float a, float b) |
| 296 | { |
| 297 | return FP_Cmp(a, b); |
| 298 | } |
| 299 | |
| 300 | int __lesf2(float a, float b) |
| 301 | { |
| 302 | return FP_Cmp(a, b); |
| 303 | } |
| 304 | |
| 305 | int __gtsf2(float a, float b) |
| 306 | { |
| 307 | return FP_Cmp(a, b); |
| 308 | } |
| 309 | |
| 310 | int __gesf2(float a, float b) |
| 311 | { |
| 312 | return FP_Cmp(a, b); |
| 313 | } |
| 314 | |
| 315 | int __eqsf2(float a, float b) |
| 316 | { |
| 317 | return FtoL(a) != FtoL(b); |
| 318 | } |
| 319 | |
| 320 | int __nesf2(float a, float b) |
| 321 | { |
| 322 | return FtoL(a) != FtoL(b); |
| 323 | } |
| 324 | |
| 325 | |
| 326 | float FP_Sqrt(float a) |
| 327 | { |
| 328 | float x1, y1, x2, y2, x3; |
| 329 | long i; |
| 330 | x1 = FP_ToFloat(1); |
| 331 | y1 = FP_Sub(FP_Mult(x1, x1), a); //y1=x1*x1-a; |
| 332 | x2 = FP_ToFloat(100); |
| 333 | y2 = FP_Sub(FP_Mult(x2, x2), a); |
| 334 | for(i = 0; i < 10; ++i) |
| 335 | { |
| 336 | if(FtoL(y1) == FtoL(y2)) |
| 337 | return x2; |
| 338 | //x3=x2-(x1-x2)*y2/(y1-y2); |
| 339 | x3 = FP_Sub(x2, FP_Div(FP_Mult(FP_Sub(x1, x2), y2), FP_Sub(y1, y2))); |
| 340 | x1 = x2; |
| 341 | y1 = y2; |
| 342 | x2 = x3; |
| 343 | y2 = FP_Sub(FP_Mult(x2, x2), a); |
| 344 | } |
| 345 | return x2; |
| 346 | } |
| 347 | |
| 348 | |
| 349 | float FP_Cos(float rad) |
| 350 | { |
| 351 | int n; |
| 352 | float answer, x2, top, bottom, sign; |
| 353 | while(FP_Cmp(rad, PI2) > 0) |
| 354 | rad = FP_Sub(rad, PI2); |
| 355 | while(FP_Cmp(rad, (float)0.0) < 0) |
| 356 | rad = FP_Add(rad, PI2); |
| 357 | answer = 1.0; |
| 358 | sign = 1.0; |
| 359 | if(FP_Cmp(rad, PI) >= 0) |
| 360 | { |
| 361 | rad = FP_Sub(rad, PI); |
| 362 | sign = FP_ToFloat(-1); |
| 363 | } |
| 364 | if(FP_Cmp(rad, PI_2) >= 0) |
| 365 | { |
| 366 | rad = FP_Sub(PI, rad); |
| 367 | sign = FP_Neg(sign); |
| 368 | } |
| 369 | x2 = FP_Mult(rad, rad); |
| 370 | top = 1.0; |
| 371 | bottom = 1.0; |
| 372 | for(n = 2; n < 12; n += 2) |
| 373 | { |
| 374 | top = FP_Mult(top, FP_Neg(x2)); |
| 375 | bottom = FP_Mult(bottom, FP_ToFloat((n - 1) * n)); |
| 376 | answer = FP_Add(answer, FP_Div(top, bottom)); |
| 377 | } |
| 378 | return FP_Mult(answer, sign); |
| 379 | } |
| 380 | |
| 381 | |
| 382 | float FP_Sin(float rad) |
| 383 | { |
| 384 | const float pi_2=(float)(PI/2.0); |
| 385 | return FP_Cos(FP_Sub(rad, pi_2)); |
| 386 | } |
| 387 | |
| 388 | |
| 389 | float FP_Atan(float x) |
| 390 | { |
| 391 | const float b=(float)(PI/8.0); |
| 392 | const float atan_b=(float)0.37419668; //atan(b); |
| 393 | int n; |
| 394 | float answer, x2, top; |
| 395 | if(FP_Cmp(x, (float)0.0) >= 0) |
| 396 | { |
| 397 | if(FP_Cmp(x, (float)1.0) > 0) |
| 398 | return FP_Sub(PI_2, FP_Atan(FP_Div((float)1.0, x))); |
| 399 | } |
| 400 | else |
| 401 | { |
| 402 | if(FP_Cmp(x, (float)-1.0) > 0) |
| 403 | return FP_Sub(-PI_2, FP_Atan(FP_Div((float)1.0, x))); |
| 404 | } |
| 405 | if(FP_Cmp(x, (float)0.45) > 0) |
| 406 | { |
| 407 | //answer = (x - atan_b) / (1 + x * atan_b); |
| 408 | answer = FP_Div(FP_Sub(x, atan_b), FP_Add(1.0, FP_Mult(x, atan_b))); |
| 409 | //answer = b + FP_Atan(answer) - (float)0.034633; /*FIXME fudge?*/ |
| 410 | answer = FP_Sub(FP_Add(b, FP_Atan(answer)), (float)0.034633); |
| 411 | return answer; |
| 412 | } |
| 413 | if(FP_Cmp(x, (float)-0.45) < 0) |
| 414 | { |
| 415 | x = FP_Neg(x); |
| 416 | //answer = (x - atan_b) / (1 + x * atan_b); |
| 417 | answer = FP_Div(FP_Sub(x, atan_b), FP_Add(1.0, FP_Mult(x, atan_b))); |
| 418 | //answer = b + FP_Atan(answer) - (float)0.034633; /*FIXME*/ |
| 419 | answer = FP_Sub(FP_Add(b, FP_Atan(answer)), (float)0.034633); |
| 420 | return FP_Neg(answer); |
| 421 | } |
| 422 | answer = x; |
| 423 | x2 = FP_Mult(FP_Neg(x), x); |
| 424 | top = x; |
| 425 | for(n = 3; n < 14; n += 2) |
| 426 | { |
| 427 | top = FP_Mult(top, x2); |
| 428 | answer = FP_Add(answer, FP_Div(top, FP_ToFloat(n))); |
| 429 | } |
| 430 | return answer; |
| 431 | } |
| 432 | |
| 433 | |
| 434 | float FP_Atan2(float y, float x) |
| 435 | { |
| 436 | float answer,r; |
| 437 | r = y / x; |
| 438 | answer = FP_Atan(r); |
| 439 | if(FP_Cmp(x, (float)0.0) < 0) |
| 440 | { |
| 441 | if(FP_Cmp(y, (float)0.0) > 0) |
| 442 | answer = FP_Add(answer, PI); |
| 443 | else |
| 444 | answer = FP_Sub(answer, PI); |
| 445 | } |
| 446 | return answer; |
| 447 | } |
| 448 | |
| 449 | |
| 450 | float FP_Exp(float x) |
| 451 | { |
| 452 | const float e2=(float)7.389056099; |
| 453 | const float inv_e2=(float)0.135335283; |
| 454 | float answer, top, bottom, mult; |
| 455 | int n; |
| 456 | |
| 457 | mult = 1.0; |
| 458 | while(FP_Cmp(x, (float)2.0) > 0) |
| 459 | { |
| 460 | mult = FP_Mult(mult, e2); |
| 461 | x = FP_Add(x, (float)-2.0); |
| 462 | } |
| 463 | while(FP_Cmp(x, (float)-2.0) < 0) |
| 464 | { |
| 465 | mult = FP_Mult(mult, inv_e2); |
| 466 | x = FP_Add(x, (float)2.0); |
| 467 | } |
| 468 | answer = FP_Add((float)1.0, x); |
| 469 | top = x; |
| 470 | bottom = 1.0; |
| 471 | for(n = 2; n < 15; ++n) |
| 472 | { |
| 473 | top = FP_Mult(top, x); |
| 474 | bottom = FP_Mult(bottom, FP_ToFloat(n)); |
| 475 | answer = FP_Add(answer, FP_Div(top, bottom)); |
| 476 | } |
| 477 | return FP_Mult(answer, mult); |
| 478 | } |
| 479 | |
| 480 | |
| 481 | float FP_Log(float x) |
| 482 | { |
| 483 | const float log_2=(float)0.69314718; /*log(2.0)*/ |
| 484 | int n; |
| 485 | float answer, top, add; |
| 486 | add = 0.0; |
| 487 | while(FP_Cmp(x, 16.0) > 0) |
| 488 | { |
| 489 | x = FP_Mult(x, (float)0.0625); |
| 490 | add = FP_Add(add, (float)(log_2 * 4)); |
| 491 | } |
| 492 | while(FP_Cmp(x, 1.5) > 0) |
| 493 | { |
| 494 | x = FP_Mult(x, 0.5); |
| 495 | add = FP_Add(add, log_2); |
| 496 | } |
| 497 | while(FP_Cmp(x, 0.5) < 0) |
| 498 | { |
| 499 | x = FP_Mult(x, 2.0); |
| 500 | add = FP_Sub(add, log_2); |
| 501 | } |
| 502 | x = FP_Sub(x, 1.0); |
| 503 | answer = 0.0; |
| 504 | top = -1.0; |
| 505 | for(n = 1; n < 14; ++n) |
| 506 | { |
| 507 | top = FP_Mult(top, FP_Neg(x)); |
| 508 | answer = FP_Add(answer, FP_Div(top, FP_ToFloat(n))); |
| 509 | } |
| 510 | return FP_Add(answer, add); |
| 511 | } |
| 512 | |
| 513 | |
| 514 | float FP_Pow(float x, float y) |
| 515 | { |
| 516 | return FP_Exp(y * FP_Log(x)); |
| 517 | } |
| 518 | |
| 519 | |
| 520 | /********************************************/ |
| 521 | //These five functions will only be used if the flag "-mno-mul" is enabled |
| 522 | #ifdef USE_SW_MULT |
| 523 | unsigned long __mulsi3(unsigned long a, unsigned long b) |
| 524 | { |
| 525 | unsigned long answer = 0; |
| 526 | while(b) |
| 527 | { |
| 528 | if(b & 1) |
| 529 | answer += a; |
| 530 | a <<= 1; |
| 531 | b >>= 1; |
| 532 | } |
| 533 | return answer; |
| 534 | } |
| 535 | |
| 536 | |
| 537 | static unsigned long DivideMod(unsigned long a, unsigned long b, int doMod) |
| 538 | { |
| 539 | unsigned long upper=a, lower=0; |
| 540 | int i; |
| 541 | a = b << 31; |
| 542 | for(i = 0; i < 32; ++i) |
| 543 | { |
| 544 | lower = lower << 1; |
| 545 | if(upper >= a && a && b < 2) |
| 546 | { |
| 547 | upper = upper - a; |
| 548 | lower |= 1; |
| 549 | } |
| 550 | a = ((b&2) << 30) | (a >> 1); |
| 551 | b = b >> 1; |
| 552 | } |
| 553 | if(!doMod) |
| 554 | return lower; |
| 555 | return upper; |
| 556 | } |
| 557 | |
| 558 | |
| 559 | unsigned long __udivsi3(unsigned long a, unsigned long b) |
| 560 | { |
| 561 | return DivideMod(a, b, 0); |
| 562 | } |
| 563 | |
| 564 | |
| 565 | long __divsi3(long a, long b) |
| 566 | { |
| 567 | long answer, negate=0; |
| 568 | if(a < 0) |
| 569 | { |
| 570 | a = -a; |
| 571 | negate = !negate; |
| 572 | } |
| 573 | if(b < 0) |
| 574 | { |
| 575 | b = -b; |
| 576 | negate = !negate; |
| 577 | } |
| 578 | answer = DivideMod(a, b, 0); |
| 579 | if(negate) |
| 580 | answer = -answer; |
| 581 | return answer; |
| 582 | } |
| 583 | |
| 584 | |
| 585 | unsigned long __umodsi3(unsigned long a, unsigned long b) |
| 586 | { |
| 587 | return DivideMod(a, b, 1); |
| 588 | } |
| 589 | #endif |
| 590 | |
| 591 | |
| 592 | /*************** Test *****************/ |
| 593 | #ifdef WIN32 |
| 594 | #undef _LIBC |
| 595 | #include <math.h> |
| 596 | #undef printf |
| 597 | #undef getch |
| 598 | int printf(const char *, ...); |
| 599 | struct { |
| 600 | char *name; |
| 601 | float low, high; |
| 602 | double (*func1)(double); |
| 603 | float (*func2)(float); |
| 604 | } test_info[]={ |
| 605 | {"cos", -2*PI, 2*PI, cos, FP_Cos}, |
| 606 | {"sin", -2*PI, 2*PI, sin, FP_Sin}, |
| 607 | {"atan", -3.0, 2.0, atan, FP_Atan}, |
| 608 | {"log", (float)0.01, (float)4.0, log, FP_Log}, |
| 609 | {"exp", (float)-5.01, (float)30.0, exp, FP_Exp}, |
| 610 | {"sqrt", (float)0.01, (float)1000.0, sqrt, FP_Sqrt} |
| 611 | }; |
| 612 | |
| 613 | |
| 614 | void TestMathFull(void) |
| 615 | { |
| 616 | float a, b, c, d; |
| 617 | float error1, error2, error3, error4, error5; |
| 618 | int test; |
| 619 | |
| 620 | a = PI * PI; |
| 621 | b = PI; |
| 622 | c = FP_Div(a, b); |
| 623 | printf("%10f %10f %10f %10f %10f\n", |
| 624 | (double)a, (double)b, (double)(a/b), (double)c, (double)(a/b-c)); |
| 625 | a = a * 200; |
| 626 | for(b = -(float)2.718281828*100; b < 300; b += (float)23.678) |
| 627 | { |
| 628 | c = FP_Div(a, b); |
| 629 | d = a / b - c; |
| 630 | printf("%10f %10f %10f %10f %10f\n", |
| 631 | (double)a, (double)b, (double)(a/b), (double)c, (double)(a/b-c)); |
| 632 | } |
| 633 | //getch(); |
| 634 | |
| 635 | for(test = 0; test < 6; ++test) |
| 636 | { |
| 637 | printf("\nTesting %s\n", test_info[test].name); |
| 638 | for(a = test_info[test].low; |
| 639 | a <= test_info[test].high; |
| 640 | a += (test_info[test].high-test_info[test].low)/(float)20.0) |
| 641 | { |
| 642 | b = (float)test_info[test].func1(a); |
| 643 | c = test_info[test].func2(a); |
| 644 | d = b - c; |
| 645 | printf("%s %10f %10f %10f %10f\n", test_info[test].name, a, b, c, d); |
| 646 | } |
| 647 | //getch(); |
| 648 | } |
| 649 | |
| 650 | a = FP_ToFloat((long)6.0); |
| 651 | b = FP_ToFloat((long)2.0); |
| 652 | printf("%f %f\n", (double)a, (double)b); |
| 653 | c = FP_Add(a, b); |
| 654 | printf("add %f %f\n", (double)(a + b), (double)c); |
| 655 | c = FP_Sub(a, b); |
| 656 | printf("sub %f %f\n", (double)(a - b), (double)c); |
| 657 | c = FP_Mult(a, b); |
| 658 | printf("mult %f %f\n", (double)(a * b), (double)c); |
| 659 | c = FP_Div(a, b); |
| 660 | printf("div %f %f\n", (double)(a / b), (double)c); |
| 661 | //getch(); |
| 662 | |
| 663 | for(a = (float)-13756.54; a < (float)17400.0; a += (float)64.45) |
| 664 | { |
| 665 | for(b = (float)-875.36; b < (float)935.8; b += (float)36.7) |
| 666 | { |
| 667 | error1 = (float)1.0 - (a + b) / FP_Add(a, b); |
| 668 | error2 = (float)1.0 - (a * b) / FP_Mult(a, b); |
| 669 | error3 = (float)1.0 - (a / b) / FP_Div(a, b); |
| 670 | error4 = (float)1.0 - a / FP_ToFloat(FP_ToLong(a)); |
| 671 | error5 = error1 + error2 + error3 + error4; |
| 672 | if(error5 < 0.00005) |
| 673 | continue; |
| 674 | printf("ERROR!\n"); |
| 675 | printf("a=%f b=%f\n", (double)a, (double)b); |
| 676 | printf(" a+b=%f %f\n", (double)(a+b), (double)FP_Add(a, b)); |
| 677 | printf(" a*b=%f %f\n", (double)(a*b), (double)FP_Mult(a, b)); |
| 678 | printf(" a/b=%f %f\n", (double)(a/b), (double)FP_Div(a, b)); |
| 679 | printf(" a=%f %ld %f\n", (double)a, FP_ToLong(a), |
| 680 | (double)FP_ToFloat((long)a)); |
| 681 | printf(" %f %f %f %f\n", (double)error1, (double)error2, |
| 682 | (double)error3, (double)error4); |
| 683 | //if(error5 > 0.001) |
| 684 | // getch(); |
| 685 | } |
| 686 | } |
| 687 | printf("done.\n"); |
| 688 | //getch(); |
| 689 | } |
| 690 | #endif |
| 691 | |
| 692 | |
| 693 |
Branches:
master
