Hardware Design: SIE
Sign in or create your account | Project List | Help
Hardware Design: SIE Git Source Tree
Root/
| 1 | --------------------------------------------------------------------- |
| 2 | -- TITLE: Memory Controller |
| 3 | -- AUTHOR: Steve Rhoads (rhoadss@yahoo.com) |
| 4 | -- DATE CREATED: 1/31/01 |
| 5 | -- FILENAME: mem_ctrl.vhd |
| 6 | -- PROJECT: Plasma CPU core |
| 7 | -- COPYRIGHT: Software placed into the public domain by the author. |
| 8 | -- Software 'as is' without warranty. Author liable for nothing. |
| 9 | -- DESCRIPTION: |
| 10 | -- Memory controller for the Plasma CPU. |
| 11 | -- Supports Big or Little Endian mode. |
| 12 | --------------------------------------------------------------------- |
| 13 | library ieee; |
| 14 | use ieee.std_logic_1164.all; |
| 15 | use work.mlite_pack.all; |
| 16 | |
| 17 | entity mem_ctrl is |
| 18 | port(clk : in std_logic; |
| 19 | reset_in : in std_logic; |
| 20 | pause_in : in std_logic; |
| 21 | nullify_op : in std_logic; |
| 22 | address_pc : in std_logic_vector(31 downto 2); |
| 23 | opcode_out : out std_logic_vector(31 downto 0); |
| 24 | |
| 25 | address_in : in std_logic_vector(31 downto 0); |
| 26 | mem_source : in mem_source_type; |
| 27 | data_write : in std_logic_vector(31 downto 0); |
| 28 | data_read : out std_logic_vector(31 downto 0); |
| 29 | pause_out : out std_logic; |
| 30 | |
| 31 | address_next : out std_logic_vector(31 downto 2); |
| 32 | byte_we_next : out std_logic_vector(3 downto 0); |
| 33 | |
| 34 | address : out std_logic_vector(31 downto 2); |
| 35 | byte_we : out std_logic_vector(3 downto 0); |
| 36 | data_w : out std_logic_vector(31 downto 0); |
| 37 | data_r : in std_logic_vector(31 downto 0)); |
| 38 | end; --entity mem_ctrl |
| 39 | |
| 40 | architecture logic of mem_ctrl is |
| 41 | --"00" = big_endian; "11" = little_endian |
| 42 | constant ENDIAN_MODE : std_logic_vector(1 downto 0) := "00"; |
| 43 | signal opcode_reg : std_logic_vector(31 downto 0); |
| 44 | signal next_opcode_reg : std_logic_vector(31 downto 0); |
| 45 | signal address_reg : std_logic_vector(31 downto 2); |
| 46 | signal byte_we_reg : std_logic_vector(3 downto 0); |
| 47 | |
| 48 | signal mem_state_reg : std_logic; |
| 49 | constant STATE_ADDR : std_logic := '0'; |
| 50 | constant STATE_ACCESS : std_logic := '1'; |
| 51 | |
| 52 | begin |
| 53 | |
| 54 | mem_proc: process(clk, reset_in, pause_in, nullify_op, |
| 55 | address_pc, address_in, mem_source, data_write, |
| 56 | data_r, opcode_reg, next_opcode_reg, mem_state_reg, |
| 57 | address_reg, byte_we_reg) |
| 58 | variable address_var : std_logic_vector(31 downto 2); |
| 59 | variable data_read_var : std_logic_vector(31 downto 0); |
| 60 | variable data_write_var : std_logic_vector(31 downto 0); |
| 61 | variable opcode_next : std_logic_vector(31 downto 0); |
| 62 | variable byte_we_var : std_logic_vector(3 downto 0); |
| 63 | variable mem_state_next : std_logic; |
| 64 | variable pause_var : std_logic; |
| 65 | variable bits : std_logic_vector(1 downto 0); |
| 66 | begin |
| 67 | byte_we_var := "0000"; |
| 68 | pause_var := '0'; |
| 69 | data_read_var := ZERO; |
| 70 | data_write_var := ZERO; |
| 71 | mem_state_next := mem_state_reg; |
| 72 | opcode_next := opcode_reg; |
| 73 | |
| 74 | case mem_source is |
| 75 | when MEM_READ32 => |
| 76 | data_read_var := data_r; |
| 77 | |
| 78 | when MEM_READ16 | MEM_READ16S => |
| 79 | if address_in(1) = ENDIAN_MODE(1) then |
| 80 | data_read_var(15 downto 0) := data_r(31 downto 16); |
| 81 | else |
| 82 | data_read_var(15 downto 0) := data_r(15 downto 0); |
| 83 | end if; |
| 84 | if mem_source = MEM_READ16 or data_read_var(15) = '0' then |
| 85 | data_read_var(31 downto 16) := ZERO(31 downto 16); |
| 86 | else |
| 87 | data_read_var(31 downto 16) := ONES(31 downto 16); |
| 88 | end if; |
| 89 | |
| 90 | when MEM_READ8 | MEM_READ8S => |
| 91 | bits := address_in(1 downto 0) xor ENDIAN_MODE; |
| 92 | case bits is |
| 93 | when "00" => data_read_var(7 downto 0) := data_r(31 downto 24); |
| 94 | when "01" => data_read_var(7 downto 0) := data_r(23 downto 16); |
| 95 | when "10" => data_read_var(7 downto 0) := data_r(15 downto 8); |
| 96 | when others => data_read_var(7 downto 0) := data_r(7 downto 0); |
| 97 | end case; |
| 98 | if mem_source = MEM_READ8 or data_read_var(7) = '0' then |
| 99 | data_read_var(31 downto 8) := ZERO(31 downto 8); |
| 100 | else |
| 101 | data_read_var(31 downto 8) := ONES(31 downto 8); |
| 102 | end if; |
| 103 | |
| 104 | when MEM_WRITE32 => |
| 105 | data_write_var := data_write; |
| 106 | byte_we_var := "1111"; |
| 107 | |
| 108 | when MEM_WRITE16 => |
| 109 | data_write_var := data_write(15 downto 0) & data_write(15 downto 0); |
| 110 | if address_in(1) = ENDIAN_MODE(1) then |
| 111 | byte_we_var := "1100"; |
| 112 | else |
| 113 | byte_we_var := "0011"; |
| 114 | end if; |
| 115 | |
| 116 | when MEM_WRITE8 => |
| 117 | data_write_var := data_write(7 downto 0) & data_write(7 downto 0) & |
| 118 | data_write(7 downto 0) & data_write(7 downto 0); |
| 119 | bits := address_in(1 downto 0) xor ENDIAN_MODE; |
| 120 | case bits is |
| 121 | when "00" => |
| 122 | byte_we_var := "1000"; |
| 123 | when "01" => |
| 124 | byte_we_var := "0100"; |
| 125 | when "10" => |
| 126 | byte_we_var := "0010"; |
| 127 | when others => |
| 128 | byte_we_var := "0001"; |
| 129 | end case; |
| 130 | |
| 131 | when others => |
| 132 | end case; |
| 133 | |
| 134 | if mem_source = MEM_FETCH then --opcode fetch |
| 135 | address_var := address_pc; |
| 136 | opcode_next := data_r; |
| 137 | mem_state_next := STATE_ADDR; |
| 138 | else |
| 139 | if mem_state_reg = STATE_ADDR then |
| 140 | if pause_in = '0' then |
| 141 | address_var := address_in(31 downto 2); |
| 142 | mem_state_next := STATE_ACCESS; |
| 143 | pause_var := '1'; |
| 144 | else |
| 145 | address_var := address_pc; |
| 146 | byte_we_var := "0000"; |
| 147 | end if; |
| 148 | else --STATE_ACCESS |
| 149 | if pause_in = '0' then |
| 150 | address_var := address_pc; |
| 151 | opcode_next := next_opcode_reg; |
| 152 | mem_state_next := STATE_ADDR; |
| 153 | byte_we_var := "0000"; |
| 154 | else |
| 155 | address_var := address_in(31 downto 2); |
| 156 | byte_we_var := "0000"; |
| 157 | end if; |
| 158 | end if; |
| 159 | end if; |
| 160 | |
| 161 | if nullify_op = '1' and pause_in = '0' then |
| 162 | opcode_next := ZERO; --NOP after beql |
| 163 | end if; |
| 164 | |
| 165 | if reset_in = '1' then |
| 166 | mem_state_reg <= STATE_ADDR; |
| 167 | opcode_reg <= ZERO; |
| 168 | next_opcode_reg <= ZERO; |
| 169 | address_reg <= ZERO(31 downto 2); |
| 170 | byte_we_reg <= "0000"; |
| 171 | elsif rising_edge(clk) then |
| 172 | if pause_in = '0' then |
| 173 | address_reg <= address_var; |
| 174 | byte_we_reg <= byte_we_var; |
| 175 | mem_state_reg <= mem_state_next; |
| 176 | opcode_reg <= opcode_next; |
| 177 | if mem_state_reg = STATE_ADDR then |
| 178 | next_opcode_reg <= data_r; |
| 179 | end if; |
| 180 | end if; |
| 181 | end if; |
| 182 | |
| 183 | opcode_out <= opcode_reg; |
| 184 | data_read <= data_read_var; |
| 185 | pause_out <= pause_var; |
| 186 | |
| 187 | address_next <= address_var; |
| 188 | byte_we_next <= byte_we_var; |
| 189 | |
| 190 | address <= address_reg; |
| 191 | byte_we <= byte_we_reg; |
| 192 | data_w <= data_write_var; |
| 193 | |
| 194 | end process; --data_proc |
| 195 | |
| 196 | end; --architecture logic |
| 197 |
Branches:
master
