Hardware Design: SIE
Sign in or create your account | Project List | Help
Hardware Design: SIE Git Source Tree
Root/
| 1 | --------------------------------------------------------------------- |
| 2 | -- TITLE: Register Bank |
| 3 | -- AUTHOR: Steve Rhoads (rhoadss@yahoo.com) |
| 4 | -- DATE CREATED: 2/2/01 |
| 5 | -- FILENAME: reg_bank.vhd |
| 6 | -- PROJECT: Plasma CPU core |
| 7 | -- COPYRIGHT: Software placed into the public domain by the author. |
| 8 | -- Software 'as is' without warranty. Author liable for nothing. |
| 9 | -- DESCRIPTION: |
| 10 | -- Implements a register bank with 32 registers that are 32-bits wide. |
| 11 | -- There are two read-ports and one write port. |
| 12 | --------------------------------------------------------------------- |
| 13 | library ieee; |
| 14 | use ieee.std_logic_1164.all; |
| 15 | use ieee.std_logic_unsigned.all; |
| 16 | use work.mlite_pack.all; |
| 17 | --library UNISIM; --May need to uncomment for ModelSim |
| 18 | --use UNISIM.vcomponents.all; --May need to uncomment for ModelSim |
| 19 | |
| 20 | entity reg_bank is |
| 21 | generic(memory_type : string := "XILINX_16X"); |
| 22 | port(clk : in std_logic; |
| 23 | reset_in : in std_logic; |
| 24 | pause : in std_logic; |
| 25 | rs_index : in std_logic_vector(5 downto 0); |
| 26 | rt_index : in std_logic_vector(5 downto 0); |
| 27 | rd_index : in std_logic_vector(5 downto 0); |
| 28 | reg_source_out : out std_logic_vector(31 downto 0); |
| 29 | reg_target_out : out std_logic_vector(31 downto 0); |
| 30 | reg_dest_new : in std_logic_vector(31 downto 0); |
| 31 | intr_enable : out std_logic); |
| 32 | end; --entity reg_bank |
| 33 | |
| 34 | |
| 35 | -------------------------------------------------------------------- |
| 36 | -- The ram_block architecture attempts to use TWO dual-port memories. |
| 37 | -- Different FPGAs and ASICs need different implementations. |
| 38 | -- Choose one of the RAM implementations below. |
| 39 | -- I need feedback on this section! |
| 40 | -------------------------------------------------------------------- |
| 41 | architecture ram_block of reg_bank is |
| 42 | signal intr_enable_reg : std_logic; |
| 43 | type ram_type is array(31 downto 0) of std_logic_vector(31 downto 0); |
| 44 | |
| 45 | --controls access to dual-port memories |
| 46 | signal addr_read1, addr_read2 : std_logic_vector(4 downto 0); |
| 47 | signal addr_write : std_logic_vector(4 downto 0); |
| 48 | signal data_out1, data_out2 : std_logic_vector(31 downto 0); |
| 49 | signal write_enable : std_logic; |
| 50 | |
| 51 | begin |
| 52 | |
| 53 | reg_proc: process(clk, rs_index, rt_index, rd_index, reg_dest_new, |
| 54 | intr_enable_reg, data_out1, data_out2, reset_in, pause) |
| 55 | begin |
| 56 | --setup for first dual-port memory |
| 57 | if rs_index = "101110" then --reg_epc CP0 14 |
| 58 | addr_read1 <= "00000"; |
| 59 | else |
| 60 | addr_read1 <= rs_index(4 downto 0); |
| 61 | end if; |
| 62 | case rs_index is |
| 63 | when "000000" => reg_source_out <= ZERO; |
| 64 | when "101100" => reg_source_out <= ZERO(31 downto 1) & intr_enable_reg; |
| 65 | --interrupt vector address = 0x3c |
| 66 | when "111111" => reg_source_out <= ZERO(31 downto 8) & "00111100"; |
| 67 | when others => reg_source_out <= data_out1; |
| 68 | end case; |
| 69 | |
| 70 | --setup for second dual-port memory |
| 71 | addr_read2 <= rt_index(4 downto 0); |
| 72 | case rt_index is |
| 73 | when "000000" => reg_target_out <= ZERO; |
| 74 | when others => reg_target_out <= data_out2; |
| 75 | end case; |
| 76 | |
| 77 | --setup write port for both dual-port memories |
| 78 | if rd_index /= "000000" and rd_index /= "101100" and pause = '0' then |
| 79 | write_enable <= '1'; |
| 80 | else |
| 81 | write_enable <= '0'; |
| 82 | end if; |
| 83 | if rd_index = "101110" then --reg_epc CP0 14 |
| 84 | addr_write <= "00000"; |
| 85 | else |
| 86 | addr_write <= rd_index(4 downto 0); |
| 87 | end if; |
| 88 | |
| 89 | if reset_in = '1' then |
| 90 | intr_enable_reg <= '0'; |
| 91 | elsif rising_edge(clk) then |
| 92 | if rd_index = "101110" then --reg_epc CP0 14 |
| 93 | intr_enable_reg <= '0'; --disable interrupts |
| 94 | elsif rd_index = "101100" then |
| 95 | intr_enable_reg <= reg_dest_new(0); |
| 96 | end if; |
| 97 | end if; |
| 98 | |
| 99 | intr_enable <= intr_enable_reg; |
| 100 | end process; |
| 101 | |
| 102 | |
| 103 | -------------------------------------------------------------- |
| 104 | ---- Pick only ONE of the dual-port RAM implementations below! |
| 105 | -------------------------------------------------------------- |
| 106 | |
| 107 | -- Option #1 |
| 108 | -- One tri-port RAM, two read-ports, one write-port |
| 109 | -- 32 registers 32-bits wide |
| 110 | tri_port_mem: |
| 111 | if memory_type = "TRI_PORT_X" generate |
| 112 | ram_proc: process(clk, addr_read1, addr_read2, |
| 113 | addr_write, reg_dest_new, write_enable) |
| 114 | variable tri_port_ram : ram_type := (others => ZERO); |
| 115 | begin |
| 116 | data_out1 <= tri_port_ram(conv_integer(addr_read1)); |
| 117 | data_out2 <= tri_port_ram(conv_integer(addr_read2)); |
| 118 | if rising_edge(clk) then |
| 119 | if write_enable = '1' then |
| 120 | tri_port_ram(conv_integer(addr_write)) := reg_dest_new; |
| 121 | end if; |
| 122 | end if; |
| 123 | end process; |
| 124 | end generate; --tri_port_mem |
| 125 | |
| 126 | |
| 127 | -- Option #2 |
| 128 | -- Two dual-port RAMs, each with one read-port and one write-port |
| 129 | dual_port_mem: |
| 130 | if memory_type = "DUAL_PORT_" generate |
| 131 | ram_proc2: process(clk, addr_read1, addr_read2, |
| 132 | addr_write, reg_dest_new, write_enable) |
| 133 | variable dual_port_ram1 : ram_type := (others => ZERO); |
| 134 | variable dual_port_ram2 : ram_type := (others => ZERO); |
| 135 | begin |
| 136 | data_out1 <= dual_port_ram1(conv_integer(addr_read1)); |
| 137 | data_out2 <= dual_port_ram2(conv_integer(addr_read2)); |
| 138 | if rising_edge(clk) then |
| 139 | if write_enable = '1' then |
| 140 | dual_port_ram1(conv_integer(addr_write)) := reg_dest_new; |
| 141 | dual_port_ram2(conv_integer(addr_write)) := reg_dest_new; |
| 142 | end if; |
| 143 | end if; |
| 144 | end process; |
| 145 | end generate; --dual_port_mem |
| 146 | |
| 147 | |
| 148 | -- Option #3 |
| 149 | -- RAM16X1D: 16 x 1 positive edge write, asynchronous read dual-port |
| 150 | -- distributed RAM for all Xilinx FPGAs |
| 151 | -- From library UNISIM; use UNISIM.vcomponents.all; |
| 152 | xilinx_16x1d: |
| 153 | if memory_type = "XILINX_16X" generate |
| 154 | signal data_out1A, data_out1B : std_logic_vector(31 downto 0); |
| 155 | signal data_out2A, data_out2B : std_logic_vector(31 downto 0); |
| 156 | signal weA, weB : std_logic; |
| 157 | signal no_connect : std_logic_vector(127 downto 0); |
| 158 | begin |
| 159 | weA <= write_enable and not addr_write(4); --lower 16 registers |
| 160 | weB <= write_enable and addr_write(4); --upper 16 registers |
| 161 | |
| 162 | reg_loop: for i in 0 to 31 generate |
| 163 | begin |
| 164 | --Read port 1 lower 16 registers |
| 165 | reg_bit1a : RAM16X1D |
| 166 | port map ( |
| 167 | WCLK => clk, -- Port A write clock input |
| 168 | WE => weA, -- Port A write enable input |
| 169 | A0 => addr_write(0), -- Port A address[0] input bit |
| 170 | A1 => addr_write(1), -- Port A address[1] input bit |
| 171 | A2 => addr_write(2), -- Port A address[2] input bit |
| 172 | A3 => addr_write(3), -- Port A address[3] input bit |
| 173 | D => reg_dest_new(i), -- Port A 1-bit data input |
| 174 | DPRA0 => addr_read1(0), -- Port B address[0] input bit |
| 175 | DPRA1 => addr_read1(1), -- Port B address[1] input bit |
| 176 | DPRA2 => addr_read1(2), -- Port B address[2] input bit |
| 177 | DPRA3 => addr_read1(3), -- Port B address[3] input bit |
| 178 | DPO => data_out1A(i), -- Port B 1-bit data output |
| 179 | SPO => no_connect(i) -- Port A 1-bit data output |
| 180 | ); |
| 181 | --Read port 1 upper 16 registers |
| 182 | reg_bit1b : RAM16X1D |
| 183 | port map ( |
| 184 | WCLK => clk, -- Port A write clock input |
| 185 | WE => weB, -- Port A write enable input |
| 186 | A0 => addr_write(0), -- Port A address[0] input bit |
| 187 | A1 => addr_write(1), -- Port A address[1] input bit |
| 188 | A2 => addr_write(2), -- Port A address[2] input bit |
| 189 | A3 => addr_write(3), -- Port A address[3] input bit |
| 190 | D => reg_dest_new(i), -- Port A 1-bit data input |
| 191 | DPRA0 => addr_read1(0), -- Port B address[0] input bit |
| 192 | DPRA1 => addr_read1(1), -- Port B address[1] input bit |
| 193 | DPRA2 => addr_read1(2), -- Port B address[2] input bit |
| 194 | DPRA3 => addr_read1(3), -- Port B address[3] input bit |
| 195 | DPO => data_out1B(i), -- Port B 1-bit data output |
| 196 | SPO => no_connect(32+i) -- Port A 1-bit data output |
| 197 | ); |
| 198 | --Read port 2 lower 16 registers |
| 199 | reg_bit2a : RAM16X1D |
| 200 | port map ( |
| 201 | WCLK => clk, -- Port A write clock input |
| 202 | WE => weA, -- Port A write enable input |
| 203 | A0 => addr_write(0), -- Port A address[0] input bit |
| 204 | A1 => addr_write(1), -- Port A address[1] input bit |
| 205 | A2 => addr_write(2), -- Port A address[2] input bit |
| 206 | A3 => addr_write(3), -- Port A address[3] input bit |
| 207 | D => reg_dest_new(i), -- Port A 1-bit data input |
| 208 | DPRA0 => addr_read2(0), -- Port B address[0] input bit |
| 209 | DPRA1 => addr_read2(1), -- Port B address[1] input bit |
| 210 | DPRA2 => addr_read2(2), -- Port B address[2] input bit |
| 211 | DPRA3 => addr_read2(3), -- Port B address[3] input bit |
| 212 | DPO => data_out2A(i), -- Port B 1-bit data output |
| 213 | SPO => no_connect(64+i) -- Port A 1-bit data output |
| 214 | ); |
| 215 | --Read port 2 upper 16 registers |
| 216 | reg_bit2b : RAM16X1D |
| 217 | port map ( |
| 218 | WCLK => clk, -- Port A write clock input |
| 219 | WE => weB, -- Port A write enable input |
| 220 | A0 => addr_write(0), -- Port A address[0] input bit |
| 221 | A1 => addr_write(1), -- Port A address[1] input bit |
| 222 | A2 => addr_write(2), -- Port A address[2] input bit |
| 223 | A3 => addr_write(3), -- Port A address[3] input bit |
| 224 | D => reg_dest_new(i), -- Port A 1-bit data input |
| 225 | DPRA0 => addr_read2(0), -- Port B address[0] input bit |
| 226 | DPRA1 => addr_read2(1), -- Port B address[1] input bit |
| 227 | DPRA2 => addr_read2(2), -- Port B address[2] input bit |
| 228 | DPRA3 => addr_read2(3), -- Port B address[3] input bit |
| 229 | DPO => data_out2B(i), -- Port B 1-bit data output |
| 230 | SPO => no_connect(96+i) -- Port A 1-bit data output |
| 231 | ); |
| 232 | end generate; --reg_loop |
| 233 | |
| 234 | data_out1 <= data_out1A when addr_read1(4)='0' else data_out1B; |
| 235 | data_out2 <= data_out2A when addr_read2(4)='0' else data_out2B; |
| 236 | end generate; --xilinx_16x1d |
| 237 | |
| 238 | |
| 239 | -- Option #4 |
| 240 | -- Altera LPM_RAM_DP |
| 241 | altera_mem: |
| 242 | if memory_type = "ALTERA_LPM" generate |
| 243 | signal clk_delayed : std_logic; |
| 244 | signal addr_reg : std_logic_vector(4 downto 0); |
| 245 | signal data_reg : std_logic_vector(31 downto 0); |
| 246 | signal q1 : std_logic_vector(31 downto 0); |
| 247 | signal q2 : std_logic_vector(31 downto 0); |
| 248 | begin |
| 249 | -- Altera dual port RAMs must have the addresses registered (sampled |
| 250 | -- at the rising edge). This is very unfortunate. |
| 251 | -- Therefore, the dual port RAM read clock must delayed so that |
| 252 | -- the read address signal can be sent from the mem_ctrl block. |
| 253 | -- This solution also delays the how fast the registers are read so the |
| 254 | -- maximum clock speed is cut in half (12.5 MHz instead of 25 MHz). |
| 255 | |
| 256 | clk_delayed <= not clk; --Could be delayed by 1/4 clock cycle instead |
| 257 | dpram_bypass: process(clk, addr_write, reg_dest_new) |
| 258 | begin |
| 259 | if rising_edge(clk) and write_enable = '1' then |
| 260 | addr_reg <= addr_write; |
| 261 | data_reg <= reg_dest_new; |
| 262 | end if; |
| 263 | end process; --dpram_bypass |
| 264 | |
| 265 | -- Bypass dpram if reading what was just written (Altera limitation) |
| 266 | data_out1 <= q1 when addr_read1 /= addr_reg else data_reg; |
| 267 | data_out2 <= q2 when addr_read2 /= addr_reg else data_reg; |
| 268 | |
| 269 | lpm_ram_dp_component1 : lpm_ram_dp |
| 270 | generic map ( |
| 271 | LPM_WIDTH => 32, |
| 272 | LPM_WIDTHAD => 5, |
| 273 | --LPM_NUMWORDS => 0, |
| 274 | LPM_INDATA => "REGISTERED", |
| 275 | LPM_OUTDATA => "UNREGISTERED", |
| 276 | LPM_RDADDRESS_CONTROL => "REGISTERED", |
| 277 | LPM_WRADDRESS_CONTROL => "REGISTERED", |
| 278 | LPM_FILE => "UNUSED", |
| 279 | LPM_TYPE => "LPM_RAM_DP", |
| 280 | USE_EAB => "ON", |
| 281 | INTENDED_DEVICE_FAMILY => "UNUSED", |
| 282 | RDEN_USED => "FALSE", |
| 283 | LPM_HINT => "UNUSED") |
| 284 | port map ( |
| 285 | RDCLOCK => clk_delayed, |
| 286 | RDCLKEN => '1', |
| 287 | RDADDRESS => addr_read1, |
| 288 | RDEN => '1', |
| 289 | DATA => reg_dest_new, |
| 290 | WRADDRESS => addr_write, |
| 291 | WREN => write_enable, |
| 292 | WRCLOCK => clk, |
| 293 | WRCLKEN => '1', |
| 294 | Q => q1); |
| 295 | lpm_ram_dp_component2 : lpm_ram_dp |
| 296 | generic map ( |
| 297 | LPM_WIDTH => 32, |
| 298 | LPM_WIDTHAD => 5, |
| 299 | --LPM_NUMWORDS => 0, |
| 300 | LPM_INDATA => "REGISTERED", |
| 301 | LPM_OUTDATA => "UNREGISTERED", |
| 302 | LPM_RDADDRESS_CONTROL => "REGISTERED", |
| 303 | LPM_WRADDRESS_CONTROL => "REGISTERED", |
| 304 | LPM_FILE => "UNUSED", |
| 305 | LPM_TYPE => "LPM_RAM_DP", |
| 306 | USE_EAB => "ON", |
| 307 | INTENDED_DEVICE_FAMILY => "UNUSED", |
| 308 | RDEN_USED => "FALSE", |
| 309 | LPM_HINT => "UNUSED") |
| 310 | port map ( |
| 311 | RDCLOCK => clk_delayed, |
| 312 | RDCLKEN => '1', |
| 313 | RDADDRESS => addr_read2, |
| 314 | RDEN => '1', |
| 315 | DATA => reg_dest_new, |
| 316 | WRADDRESS => addr_write, |
| 317 | WREN => write_enable, |
| 318 | WRCLOCK => clk, |
| 319 | WRCLKEN => '1', |
| 320 | Q => q2); |
| 321 | end generate; --altera_mem |
| 322 | |
| 323 | end; --architecture ram_block |
| 324 |
Branches:
master
