OpenWrt packages
Sign in or create your account | Project List | Help
OpenWrt packages Git Source Tree
Root/
| 1 | --[[ $Id: x21.lua 9533 2009-02-16 22:18:37Z smekal $ |
| 2 | Grid data demo |
| 3 | |
| 4 | Copyright (C) 200 Werner Smekal |
| 5 | |
| 6 | This file is part of PLplot. |
| 7 | |
| 8 | PLplot is free software you can redistribute it and/or modify |
| 9 | it under the terms of the GNU General Library Public License as published |
| 10 | by the Free Software Foundation either version 2 of the License, or |
| 11 | (at your option) any later version. |
| 12 | |
| 13 | PLplot is distributed in the hope that it will be useful, |
| 14 | but WITHOUT ANY WARRANTY without even the implied warranty of |
| 15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | GNU Library General Public License for more details. |
| 17 | |
| 18 | You should have received a copy of the GNU Library General Public License |
| 19 | along with PLplot if not, write to the Free Software |
| 20 | Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 21 | --]] |
| 22 | |
| 23 | |
| 24 | -- initialise Lua bindings for PLplot examples. |
| 25 | dofile("plplot_examples.lua") |
| 26 | |
| 27 | -- bitwise or operator from http://lua-users.org/wiki/BaseSixtyFour |
| 28 | -- (c) 2006-2008 by Alex Kloss |
| 29 | -- licensed under the terms of the LGPL2 |
| 30 | |
| 31 | -- return single bit (for OR) |
| 32 | function bit(x,b) |
| 33 | return (math.mod(x, 2^b) - math.mod(x,2^(b-1)) > 0) |
| 34 | end |
| 35 | |
| 36 | -- logic OR for number values |
| 37 | function lor(x,y) |
| 38 | result = 0 |
| 39 | for p=1,8 do result = result + (((bit(x,p) or bit(y,p)) == true) and 2^(p-1) or 0) end |
| 40 | return result |
| 41 | end |
| 42 | |
| 43 | -- Options data structure definition. |
| 44 | pts = 500 |
| 45 | xp = 25 |
| 46 | yp = 20 |
| 47 | nl = 16 |
| 48 | knn_order = 20 |
| 49 | threshold = 1.001 |
| 50 | wmin = -1e3 |
| 51 | randn = 0 |
| 52 | rosen = 0 |
| 53 | |
| 54 | |
| 55 | function cmap1_init() |
| 56 | i = { 0, 1 } -- left and right boundary |
| 57 | |
| 58 | h = { 240, 0 } -- blue -> green -> yellow -> red |
| 59 | l = { 0.6, 0.6 } |
| 60 | s = { 0.8, 0.8 } |
| 61 | |
| 62 | pl.scmap1n(256) |
| 63 | pl.scmap1l(0, i, h, l, s) |
| 64 | end |
| 65 | |
| 66 | |
| 67 | function create_grid(px, py) |
| 68 | local x = {} |
| 69 | local y = {} |
| 70 | |
| 71 | for i = 1, px do |
| 72 | x[i] = xm + (xM-xm)*(i-1)/(px-1) |
| 73 | end |
| 74 | |
| 75 | for i = 1, py do |
| 76 | y[i] = ym + (yM-ym)*(i-1)/(py-1) |
| 77 | end |
| 78 | |
| 79 | return x, y |
| 80 | end |
| 81 | |
| 82 | |
| 83 | function create_data(pts) |
| 84 | local x = {} |
| 85 | local y = {} |
| 86 | local z = {} |
| 87 | |
| 88 | for i = 1, pts do |
| 89 | xt = (xM-xm)*pl.randd() |
| 90 | yt = (yM-ym)*pl.randd() |
| 91 | if randn==0 then |
| 92 | x[i] = xt + xm |
| 93 | y[i] = yt + ym |
| 94 | else -- std=1, meaning that many points are outside the plot range |
| 95 | x[i] = math.sqrt(-2*math.log(xt)) * math.cos(2*math.pi*yt) + xm |
| 96 | y[i] = math.sqrt(-2*math.log(xt)) * math.sin(2*math.pi*yt) + ym |
| 97 | end |
| 98 | if rosen==0 then |
| 99 | r = math.sqrt(x[i]^2 + y[i]^2) |
| 100 | z[i] = math.exp(-r^2) * math.cos(2*math.pi*r) |
| 101 | else |
| 102 | z[i] = math.log((1-x[i])^2 + 100*(y[i] - x[i]^2)^2) |
| 103 | end |
| 104 | end |
| 105 | |
| 106 | return x, y, z |
| 107 | end |
| 108 | |
| 109 | |
| 110 | title = { "Cubic Spline Approximation", |
| 111 | "Delaunay Linear Interpolation", |
| 112 | "Natural Neighbors Interpolation", |
| 113 | "KNN Inv. Distance Weighted", |
| 114 | "3NN Linear Interpolation", |
| 115 | "4NN Around Inv. Dist. Weighted" } |
| 116 | |
| 117 | |
| 118 | |
| 119 | xm = -0.2 |
| 120 | ym = -0.2 |
| 121 | xM = 0.6 |
| 122 | yM = 0.6 |
| 123 | |
| 124 | pl.parseopts(arg, pl.PL_PARSE_FULL) |
| 125 | |
| 126 | opt = { 0, 0, wmin, knn_order, threshold, 0 } |
| 127 | |
| 128 | -- Initialize plplot |
| 129 | pl.init() |
| 130 | |
| 131 | -- Initialise random number generator |
| 132 | pl.seed(5489) |
| 133 | |
| 134 | x, y, z = create_data(pts) -- the sampled data |
| 135 | zmin = z[1] |
| 136 | zmax = z[1] |
| 137 | for i=2, pts do |
| 138 | if z[i]>zmax then zmax = z[i] end |
| 139 | if z[i]<zmin then zmin = z[i] end |
| 140 | end |
| 141 | |
| 142 | xg, yg = create_grid(xp, yp) -- grid the data at |
| 143 | clev = {} |
| 144 | |
| 145 | pl.col0(1) |
| 146 | pl.env(xm, xM, ym, yM, 2, 0) |
| 147 | pl.col0(15) |
| 148 | pl.lab("X", "Y", "The original data sampling") |
| 149 | pl.col0(2) |
| 150 | pl.poin(x, y, 5) |
| 151 | pl.adv(0) |
| 152 | |
| 153 | pl.ssub(3, 2) |
| 154 | |
| 155 | for k = 1, 2 do |
| 156 | pl.adv(0) |
| 157 | for alg=1, 6 do |
| 158 | zg = pl.griddata(x, y, z, xg, yg, alg, opt[alg]) |
| 159 | |
| 160 | --[[ |
| 161 | - CSA can generate NaNs (only interpolates?!). |
| 162 | - DTLI and NNI can generate NaNs for points outside the convex hull |
| 163 | of the data points. |
| 164 | - NNLI can generate NaNs if a sufficiently thick triangle is not found |
| 165 | |
| 166 | PLplot should be NaN/Inf aware, but changing it now is quite a job... |
| 167 | so, instead of not plotting the NaN regions, a weighted average over |
| 168 | the neighbors is done. --]] |
| 169 | |
| 170 | |
| 171 | if alg==pl.GRID_CSA or alg==pl.GRID_DTLI or alg==pl.GRID_NNLI or alg==pl.GRID_NNI then |
| 172 | for i = 1, xp do |
| 173 | for j = 1, yp do |
| 174 | if zg[i][j]~=zg[i][j] then -- average (IDW) over the 8 neighbors |
| 175 | zg[i][j] = 0 |
| 176 | dist = 0 |
| 177 | |
| 178 | for ii=i-1, i+1 do |
| 179 | if ii<=xp then |
| 180 | for jj=j-1, j+1 do |
| 181 | if jj<=yp then |
| 182 | if ii>=1 and jj>=1 and zg[ii][jj]==zg[ii][jj] then |
| 183 | if (math.abs(ii-i) + math.abs(jj-j)) == 1 then |
| 184 | d = 1 |
| 185 | else |
| 186 | d = 1.4142 |
| 187 | end |
| 188 | zg[i][j] = zg[i][j] + zg[ii][jj]/(d^2) |
| 189 | dist = dist + d |
| 190 | end |
| 191 | end |
| 192 | end |
| 193 | end |
| 194 | end |
| 195 | if dist~=0 then |
| 196 | zg[i][j] = zg[i][j]/dist |
| 197 | else |
| 198 | zg[i][j] = zmin |
| 199 | end |
| 200 | end |
| 201 | end |
| 202 | end |
| 203 | end |
| 204 | |
| 205 | lzM, lzm = pl.MinMax2dGrid(zg) |
| 206 | |
| 207 | if lzm~=lzm then lzm=zmin else lzm = math.min(lzm, zmin) end |
| 208 | if lzM~=lzM then lzM=zmax else lzM = math.max(lzM, zmax) end |
| 209 | |
| 210 | -- Increase limits slightly to prevent spurious contours |
| 211 | -- due to rounding errors |
| 212 | lzm = lzm-0.01 |
| 213 | lzM = lzM+0.01 |
| 214 | |
| 215 | pl.col0(1) |
| 216 | |
| 217 | pl.adv(alg) |
| 218 | |
| 219 | if k==1 then |
| 220 | for i = 1, nl do |
| 221 | clev[i] = lzm + (lzM-lzm)/(nl-1)*(i-1) |
| 222 | end |
| 223 | |
| 224 | pl.env0(xm, xM, ym, yM, 2, 0) |
| 225 | pl.col0(15) |
| 226 | pl.lab("X", "Y", title[alg]) |
| 227 | pl.shades(zg, xm, xM, ym, yM, clev, 1, 0, 1, 1) |
| 228 | pl.col0(2) |
| 229 | else |
| 230 | for i = 1, nl do |
| 231 | clev[i] = lzm + (lzM-lzm)/(nl-1)*(i-1) |
| 232 | end |
| 233 | |
| 234 | cmap1_init() |
| 235 | pl.vpor(0, 1, 0, 0.9) |
| 236 | pl.wind(-1.1, 0.75, -0.65, 1.20) |
| 237 | |
| 238 | -- For the comparison to be fair, all plots should have the |
| 239 | -- same z values, but to get the max/min of the data generated |
| 240 | -- by all algorithms would imply two passes. Keep it simple. |
| 241 | -- |
| 242 | -- pl.w3d(1, 1, 1, xm, xM, ym, yM, zmin, zmax, 30, -60) |
| 243 | |
| 244 | |
| 245 | pl.w3d(1, 1, 1, xm, xM, ym, yM, lzm, lzM, 30, -40) |
| 246 | pl.box3("bntu", "X", 0, 0, |
| 247 | "bntu", "Y", 0, 0, |
| 248 | "bcdfntu", "Z", 0.5, 0) |
| 249 | pl.col0(15) |
| 250 | pl.lab("", "", title[alg]) |
| 251 | pl.plot3dc(xg, yg, zg, lor(lor(pl.DRAW_LINEXY, pl.MAG_COLOR), pl.BASE_CONT), clev) |
| 252 | end |
| 253 | end |
| 254 | end |
| 255 | |
| 256 | pl.plend() |
| 257 |
