OpenWrt packages
Sign in or create your account | Project List | Help
OpenWrt packages Git Source Tree
Root/
| 1 | --[[ $Id: x22.lua 9526 2009-02-13 22:06:13Z smekal $ |
| 2 | |
| 3 | Simple vector plot example |
| 4 | |
| 5 | Copyright (C) 2008 Werner Smekal |
| 6 | |
| 7 | This file is part of PLplot. |
| 8 | |
| 9 | PLplot is free software you can redistribute it and/or modify |
| 10 | it under the terms of the GNU General Library Public License as published |
| 11 | by the Free Software Foundation either version 2 of the License, or |
| 12 | (at your option) any later version. |
| 13 | |
| 14 | PLplot is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | GNU Library General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU Library General Public License |
| 20 | along with PLplot if not, write to the Free Software |
| 21 | Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 22 | --]] |
| 23 | |
| 24 | -- initialise Lua bindings for PLplot examples. |
| 25 | dofile("plplot_examples.lua") |
| 26 | |
| 27 | -- Pairs of points making the line segments used to plot the user defined arrow |
| 28 | arrow_x = { -0.5, 0.5, 0.3, 0.5, 0.3, 0.5 } |
| 29 | arrow_y = { 0, 0, 0.2, 0, -0.2, 0 } |
| 30 | arrow2_x = { -0.5, 0.3, 0.3, 0.5, 0.3, 0.3 } |
| 31 | arrow2_y = { 0, 0, 0.2, 0, -0.2, 0 } |
| 32 | |
| 33 | |
| 34 | -- Vector plot of the circulation about the origin |
| 35 | function circulation() |
| 36 | nx = 20 |
| 37 | ny = 20 |
| 38 | dx = 1 |
| 39 | dy = 1 |
| 40 | |
| 41 | xmin = -nx/2*dx |
| 42 | xmax = nx/2*dx |
| 43 | ymin = -ny/2*dy |
| 44 | ymax = ny/2*dy |
| 45 | |
| 46 | cgrid2 = {} |
| 47 | cgrid2["xg"] = {} |
| 48 | cgrid2["yg"] = {} |
| 49 | cgrid2["nx"] = nx |
| 50 | cgrid2["ny"] = ny |
| 51 | u = {} |
| 52 | v = {} |
| 53 | |
| 54 | -- Create data - circulation around the origin. |
| 55 | for i = 1, nx do |
| 56 | x = (i-1-nx/2+0.5)*dx |
| 57 | cgrid2["xg"][i] = {} |
| 58 | cgrid2["yg"][i] = {} |
| 59 | u[i] = {} |
| 60 | v[i] = {} |
| 61 | for j=1, ny do |
| 62 | y = (j-1-ny/2+0.5)*dy |
| 63 | cgrid2["xg"][i][j] = x |
| 64 | cgrid2["yg"][i][j] = y |
| 65 | u[i][j] = y |
| 66 | v[i][j] = -x |
| 67 | end |
| 68 | end |
| 69 | |
| 70 | -- Plot vectors with default arrows |
| 71 | pl.env(xmin, xmax, ymin, ymax, 0, 0) |
| 72 | pl.lab("(x)", "(y)", "#frPLplot Example 22 - circulation") |
| 73 | pl.col0(2) |
| 74 | pl.vect(u, v, 0, "pltr2", cgrid2 ) |
| 75 | pl.col0(1) |
| 76 | end |
| 77 | |
| 78 | |
| 79 | -- Vector plot of flow through a constricted pipe |
| 80 | function constriction() |
| 81 | nx = 20 |
| 82 | ny = 20 |
| 83 | dx = 1 |
| 84 | dy = 1 |
| 85 | |
| 86 | xmin = -nx/2*dx |
| 87 | xmax = nx/2*dx |
| 88 | ymin = -ny/2*dy |
| 89 | ymax = ny/2*dy |
| 90 | |
| 91 | cgrid2 = {} |
| 92 | cgrid2["xg"] = {} |
| 93 | cgrid2["yg"] = {} |
| 94 | cgrid2["nx"] = nx |
| 95 | cgrid2["ny"] = ny |
| 96 | u = {} |
| 97 | v = {} |
| 98 | |
| 99 | Q = 2 |
| 100 | for i = 1, nx do |
| 101 | x = (i-1-nx/2+0.5)*dx |
| 102 | cgrid2["xg"][i] = {} |
| 103 | cgrid2["yg"][i] = {} |
| 104 | u[i] = {} |
| 105 | v[i] = {} |
| 106 | for j = 1, ny do |
| 107 | y = (j-1-ny/2+0.5)*dy |
| 108 | cgrid2["xg"][i][j] = x |
| 109 | cgrid2["yg"][i][j] = y |
| 110 | b = ymax/4*(3-math.cos(math.pi*x/xmax)) |
| 111 | if math.abs(y)<b then |
| 112 | dbdx = ymax/4*math.sin(math.pi*x/xmax)*y/b |
| 113 | u[i][j] = Q*ymax/b |
| 114 | v[i][j] = dbdx*u[i][j] |
| 115 | else |
| 116 | u[i][j] = 0 |
| 117 | v[i][j] = 0 |
| 118 | end |
| 119 | end |
| 120 | end |
| 121 | |
| 122 | pl.env(xmin, xmax, ymin, ymax, 0, 0) |
| 123 | pl.lab("(x)", "(y)", "#frPLplot Example 22 - constriction") |
| 124 | pl.col0(2) |
| 125 | pl.vect(u, v, -0.5, "pltr2", cgrid2) |
| 126 | pl.col0(1) |
| 127 | end |
| 128 | |
| 129 | |
| 130 | function f2mnmx(f, nx, ny) |
| 131 | fmax = f[1][1] |
| 132 | fmin = fmax |
| 133 | |
| 134 | for i=1, nx do |
| 135 | for j=1, ny do |
| 136 | fmax = math.max(fmax, f[i][j]) |
| 137 | fmin = math.min(fmin, f[i][j]) |
| 138 | end |
| 139 | end |
| 140 | |
| 141 | return fmin, fmax |
| 142 | end |
| 143 | |
| 144 | -- Vector plot of the gradient of a shielded potential (see example 9) |
| 145 | function potential() |
| 146 | nper = 100 |
| 147 | nlevel = 10 |
| 148 | nr = 20 |
| 149 | ntheta = 20 |
| 150 | |
| 151 | u = {} |
| 152 | v = {} |
| 153 | z = {} |
| 154 | clevel = {} |
| 155 | px = {} |
| 156 | py = {} |
| 157 | |
| 158 | cgrid2 = {} |
| 159 | cgrid2["xg"] = {} |
| 160 | cgrid2["yg"] = {} |
| 161 | cgrid2["nx"] = nr |
| 162 | cgrid2["ny"] = ntheta |
| 163 | |
| 164 | -- Potential inside a conducting cylinder (or sphere) by method of images. |
| 165 | -- Charge 1 is placed at (d1, d1), with image charge at (d2, d2). |
| 166 | -- Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2). |
| 167 | -- Also put in smoothing term at small distances. |
| 168 | rmax = nr |
| 169 | |
| 170 | eps = 2 |
| 171 | |
| 172 | q1 = 1 |
| 173 | d1 = rmax/4 |
| 174 | |
| 175 | q1i = -q1*rmax/d1 |
| 176 | d1i = rmax^2/d1 |
| 177 | |
| 178 | q2 = -1 |
| 179 | d2 = rmax/4 |
| 180 | |
| 181 | q2i = -q2*rmax/d2 |
| 182 | d2i = rmax^2/d2 |
| 183 | |
| 184 | for i = 1, nr do |
| 185 | r = i - 0.5 |
| 186 | cgrid2["xg"][i] = {} |
| 187 | cgrid2["yg"][i] = {} |
| 188 | u[i] = {} |
| 189 | v[i] = {} |
| 190 | z[i] = {} |
| 191 | for j = 1, ntheta do |
| 192 | theta = 2*math.pi/(ntheta-1)*(j-0.5) |
| 193 | x = r*math.cos(theta) |
| 194 | y = r*math.sin(theta) |
| 195 | cgrid2["xg"][i][j] = x |
| 196 | cgrid2["yg"][i][j] = y |
| 197 | div1 = math.sqrt((x-d1)^2 + (y-d1)^2 + eps^2) |
| 198 | div1i = math.sqrt((x-d1i)^2 + (y-d1i)^2 + eps^2) |
| 199 | div2 = math.sqrt((x-d2)^2 + (y+d2)^2 + eps^2) |
| 200 | div2i = math.sqrt((x-d2i)^2 + (y+d2i)^2 + eps^2) |
| 201 | z[i][j] = q1/div1 + q1i/div1i + q2/div2 + q2i/div2i |
| 202 | u[i][j] = -q1*(x-d1)/div1^3 - q1i*(x-d1i)/div1i^3 |
| 203 | -q2*(x-d2)/div2^3 - q2i*(x-d2i)/div2i^3 |
| 204 | v[i][j] = -q1*(y-d1)/div1^3 - q1i*(y-d1i)/div1i^3 |
| 205 | -q2*(y+d2)/div2^3 - q2i*(y+d2i)/div2i^3 |
| 206 | end |
| 207 | end |
| 208 | |
| 209 | xmin, xmax = f2mnmx(cgrid2["xg"], nr, ntheta) |
| 210 | ymin, ymax = f2mnmx(cgrid2["yg"], nr, ntheta) |
| 211 | zmin, zmax = f2mnmx(z, nr, ntheta) |
| 212 | |
| 213 | pl.env(xmin, xmax, ymin, ymax, 0, 0) |
| 214 | pl.lab("(x)", "(y)", "#frPLplot Example 22 - potential gradient vector plot") |
| 215 | |
| 216 | -- Plot contours of the potential |
| 217 | dz = (zmax-zmin)/nlevel |
| 218 | for i = 1, nlevel do |
| 219 | clevel[i] = zmin + (i-0.5)*dz |
| 220 | end |
| 221 | |
| 222 | pl.col0(3) |
| 223 | pl.lsty(2) |
| 224 | pl.cont(z, 1, nr, 1, ntheta, clevel, "pltr2", cgrid2) |
| 225 | pl.lsty(1) |
| 226 | pl.col0(1) |
| 227 | |
| 228 | -- Plot the vectors of the gradient of the potential |
| 229 | pl.col0(2) |
| 230 | pl.vect(u, v, 25, "pltr2", cgrid2) |
| 231 | pl.col0(1) |
| 232 | |
| 233 | -- Plot the perimeter of the cylinder |
| 234 | for i=1, nper do |
| 235 | theta = 2*math.pi/(nper-1)*(i-1) |
| 236 | px[i] = rmax*math.cos(theta) |
| 237 | py[i] = rmax*math.sin(theta) |
| 238 | end |
| 239 | |
| 240 | pl.line(px, py) |
| 241 | end |
| 242 | |
| 243 | |
| 244 | ---------------------------------------------------------------------------- |
| 245 | -- main |
| 246 | -- |
| 247 | -- Generates several simple vector plots. |
| 248 | ---------------------------------------------------------------------------- |
| 249 | |
| 250 | -- Parse and process command line arguments |
| 251 | pl.parseopts(arg, pl.PL_PARSE_FULL) |
| 252 | |
| 253 | -- Initialize plplot |
| 254 | pl.init() |
| 255 | |
| 256 | circulation() |
| 257 | |
| 258 | fill = 0 |
| 259 | |
| 260 | -- Set arrow style using arrow_x and arrow_y then |
| 261 | -- plot using these arrows. |
| 262 | pl.svect(arrow_x, arrow_y, fill) |
| 263 | constriction() |
| 264 | |
| 265 | -- Set arrow style using arrow2_x and arrow2_y then |
| 266 | -- plot using these filled arrows. |
| 267 | fill = 1 |
| 268 | pl.svect(arrow2_x, arrow2_y, fill) |
| 269 | constriction() |
| 270 | |
| 271 | potential() |
| 272 | |
| 273 | pl.plend() |
| 274 |
