| 1 | /* |
| 2 | * Copyright (c) 1997-1999 The Stanford SRP Authentication Project |
| 3 | * All Rights Reserved. |
| 4 | * |
| 5 | * Permission is hereby granted, free of charge, to any person obtaining |
| 6 | * a copy of this software and associated documentation files (the |
| 7 | * "Software"), to deal in the Software without restriction, including |
| 8 | * without limitation the rights to use, copy, modify, merge, publish, |
| 9 | * distribute, sublicense, and/or sell copies of the Software, and to |
| 10 | * permit persons to whom the Software is furnished to do so, subject to |
| 11 | * the following conditions: |
| 12 | * |
| 13 | * The above copyright notice and this permission notice shall be |
| 14 | * included in all copies or substantial portions of the Software. |
| 15 | * |
| 16 | * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, |
| 17 | * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY |
| 18 | * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. |
| 19 | * |
| 20 | * IN NO EVENT SHALL STANFORD BE LIABLE FOR ANY SPECIAL, INCIDENTAL, |
| 21 | * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER |
| 22 | * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF |
| 23 | * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT |
| 24 | * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 25 | * |
| 26 | * In addition, the following conditions apply: |
| 27 | * |
| 28 | * 1. Any software that incorporates the SRP authentication technology |
| 29 | * must display the following acknowlegment: |
| 30 | * "This product uses the 'Secure Remote Password' cryptographic |
| 31 | * authentication system developed by Tom Wu (tjw@CS.Stanford.EDU)." |
| 32 | * |
| 33 | * 2. Any software that incorporates all or part of the SRP distribution |
| 34 | * itself must also display the following acknowledgment: |
| 35 | * "This product includes software developed by Tom Wu and Eugene |
| 36 | * Jhong for the SRP Distribution (http://srp.stanford.edu/srp/)." |
| 37 | * |
| 38 | * 3. Redistributions in source or binary form must retain an intact copy |
| 39 | * of this copyright notice and list of conditions. |
| 40 | */ |
| 41 | |
| 42 | #include "t_defines.h" |
| 43 | |
| 44 | #ifdef HAVE_UNISTD_H |
| 45 | #include <unistd.h> |
| 46 | #endif /* HAVE_UNISTD_H */ |
| 47 | |
| 48 | #include <stdio.h> |
| 49 | #include <sys/types.h> |
| 50 | #include <sys/stat.h> |
| 51 | #include <fcntl.h> |
| 52 | |
| 53 | #include "t_sha.h" |
| 54 | |
| 55 | #ifndef NULL |
| 56 | #define NULL 0 |
| 57 | #endif |
| 58 | |
| 59 | static unsigned char randpool[SHA_DIGESTSIZE], randout[SHA_DIGESTSIZE]; |
| 60 | static unsigned long randcnt = 0; |
| 61 | static unsigned int outpos = 0; |
| 62 | SHA1_CTX randctxt; |
| 63 | |
| 64 | /* |
| 65 | * t_envhash - Generate a 160-bit SHA hash of the environment |
| 66 | * |
| 67 | * This routine performs an SHA hash of all the "name=value" pairs |
| 68 | * in the environment concatenated together and dumps them in the |
| 69 | * output. While it is true that anyone on the system can see |
| 70 | * your environment, someone not on the system will have a very |
| 71 | * difficult time guessing it, especially since some systems play |
| 72 | * tricks with variable ordering and sometimes define quirky |
| 73 | * environment variables like $WINDOWID or $_. |
| 74 | */ |
| 75 | extern char ** environ; |
| 76 | |
| 77 | static void |
| 78 | t_envhash(out) |
| 79 | unsigned char * out; |
| 80 | { |
| 81 | char ** ptr; |
| 82 | char ebuf[256]; |
| 83 | SHA1_CTX ctxt; |
| 84 | |
| 85 | SHA1Init(&ctxt); |
| 86 | for(ptr = environ; *ptr; ++ptr) { |
| 87 | strncpy(ebuf, *ptr, 255); |
| 88 | ebuf[255] = '\0'; |
| 89 | SHA1Update(&ctxt, ebuf, strlen(ebuf)); |
| 90 | } |
| 91 | SHA1Final(out, &ctxt); |
| 92 | } |
| 93 | |
| 94 | /* |
| 95 | * t_fshash - Generate a 160-bit SHA hash from the file system |
| 96 | * |
| 97 | * This routine climbs up the directory tree from the current |
| 98 | * directory, running stat() on each directory until it hits the |
| 99 | * root directory. This information is sensitive to the last |
| 100 | * access/modification times of all the directories above you, |
| 101 | * so someone who lists one of those directories injects some |
| 102 | * entropy into the system. Obviously, this hash is very sensitive |
| 103 | * to your current directory when the program is run. |
| 104 | * |
| 105 | * For good measure, it also performs an fstat on the standard input, |
| 106 | * usually your tty, throws that into the buffer, creates a file in |
| 107 | * /tmp (the inode is unpredictable on a busy system), and runs stat() |
| 108 | * on that before deleting it. |
| 109 | * |
| 110 | * The entire buffer is run once through SHA to obtain the final result. |
| 111 | */ |
| 112 | static void |
| 113 | t_fshash(out) |
| 114 | unsigned char * out; |
| 115 | { |
| 116 | char dotpath[128]; |
| 117 | struct stat st; |
| 118 | SHA1_CTX ctxt; |
| 119 | int i, pinode; |
| 120 | dev_t pdev; |
| 121 | |
| 122 | SHA1Init(&ctxt); |
| 123 | if(stat(".", &st) >= 0) { |
| 124 | SHA1Update(&ctxt, (unsigned char *) &st, sizeof(st)); |
| 125 | pinode = st.st_ino; |
| 126 | pdev = st.st_dev; |
| 127 | strcpy(dotpath, ".."); |
| 128 | for(i = 0; i < 40; ++i) { |
| 129 | if(stat(dotpath, &st) < 0) |
| 130 | break; |
| 131 | if(st.st_ino == pinode && st.st_dev == pdev) |
| 132 | break; |
| 133 | SHA1Update(&ctxt, (unsigned char *) &st, sizeof(st)); |
| 134 | pinode = st.st_ino; |
| 135 | pdev = st.st_dev; |
| 136 | strcat(dotpath, "/.."); |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | if(fstat(0, &st) >= 0) |
| 141 | SHA1Update(&ctxt, (unsigned char *) &st, sizeof(st)); |
| 142 | |
| 143 | sprintf(dotpath, "/tmp/rnd.%d", getpid()); |
| 144 | if(creat(dotpath, 0600) >= 0 && stat(dotpath, &st) >= 0) |
| 145 | SHA1Update(&ctxt, (unsigned char *) &st, sizeof(st)); |
| 146 | unlink(dotpath); |
| 147 | |
| 148 | SHA1Final(out, &ctxt); |
| 149 | } |
| 150 | |
| 151 | /* |
| 152 | * Generate a high-entropy seed for the strong random number generator. |
| 153 | * This uses a wide variety of quickly gathered and somewhat unpredictable |
| 154 | * system information. The 'preseed' structure is assembled from: |
| 155 | * |
| 156 | * The system time in seconds |
| 157 | * The system time in microseconds |
| 158 | * The current process ID |
| 159 | * The parent process ID |
| 160 | * A hash of the user's environment |
| 161 | * A hash gathered from the file system |
| 162 | * Input from a random device, if available |
| 163 | * Timings of system interrupts |
| 164 | * |
| 165 | * The entire structure (60 bytes on most systems) is fed to SHA to produce |
| 166 | * a 160-bit seed for the strong random number generator. It is believed |
| 167 | * that in the worst case (on a quiet system with no random device versus |
| 168 | * an attacker who has access to the system already), the seed contains at |
| 169 | * least about 80 bits of entropy. Versus an attacker who does not have |
| 170 | * access to the system, the entropy should be slightly over 128 bits. |
| 171 | */ |
| 172 | static char initialized = 0; |
| 173 | |
| 174 | static struct { |
| 175 | unsigned int trand1; |
| 176 | time_t sec; |
| 177 | time_t usec; |
| 178 | short pid; |
| 179 | short ppid; |
| 180 | unsigned char envh[SHA_DIGESTSIZE]; |
| 181 | unsigned char fsh[SHA_DIGESTSIZE]; |
| 182 | unsigned char devrand[20]; |
| 183 | unsigned int trand2; |
| 184 | } preseed; |
| 185 | |
| 186 | unsigned long raw_truerand(); |
| 187 | |
| 188 | void |
| 189 | t_initrand() |
| 190 | { |
| 191 | SHA1_CTX ctxt; |
| 192 | #ifdef USE_FTIME |
| 193 | struct timeb t; |
| 194 | #else |
| 195 | struct timeval t; |
| 196 | #endif |
| 197 | int i, r=0; |
| 198 | |
| 199 | if(initialized) |
| 200 | return; |
| 201 | |
| 202 | initialized = 1; |
| 203 | |
| 204 | i = open("/dev/urandom", O_RDONLY); |
| 205 | if(i > 0) { |
| 206 | r += read(i, preseed.devrand, sizeof(preseed.devrand)); |
| 207 | close(i); |
| 208 | } |
| 209 | |
| 210 | /* Resort to truerand only if desperate for some Real entropy */ |
| 211 | if(r == 0) |
| 212 | preseed.trand1 = raw_truerand(); |
| 213 | |
| 214 | #ifdef USE_FTIME |
| 215 | ftime(&t); |
| 216 | #else |
| 217 | gettimeofday(&t, NULL); |
| 218 | #endif |
| 219 | |
| 220 | #ifdef USE_FTIME |
| 221 | preseed.sec = t.time; |
| 222 | preseed.usec = t.millitm; |
| 223 | #else |
| 224 | preseed.sec = t.tv_sec; |
| 225 | preseed.usec = t.tv_usec; |
| 226 | #endif |
| 227 | preseed.pid = getpid(); |
| 228 | preseed.ppid = getppid(); |
| 229 | t_envhash(preseed.envh); |
| 230 | t_fshash(preseed.fsh); |
| 231 | |
| 232 | if(r == 0) |
| 233 | preseed.trand2 = raw_truerand(); |
| 234 | |
| 235 | SHA1Init(&ctxt); |
| 236 | SHA1Update(&ctxt, (unsigned char *) &preseed, sizeof(preseed)); |
| 237 | SHA1Final(randpool, &ctxt); |
| 238 | outpos = 0; |
| 239 | memset((unsigned char *) &preseed, 0, sizeof(preseed)); |
| 240 | memset((unsigned char *) &ctxt, 0, sizeof(ctxt)); |
| 241 | } |
| 242 | |
| 243 | #define NUM_RANDOMS 12 |
| 244 | |
| 245 | /* |
| 246 | * The strong random number generator. This uses a 160-bit seed |
| 247 | * and uses SHA-1 in a feedback configuration to generate successive |
| 248 | * outputs. If S[0] is set to the initial seed, then: |
| 249 | * |
| 250 | * S[i+1] = SHA-1(i || S[i]) |
| 251 | * A[i] = SHA-1(S[i]) |
| 252 | * |
| 253 | * where the A[i] are the output blocks starting with i=0. |
| 254 | * Each cycle generates 20 bytes of new output. |
| 255 | */ |
| 256 | _TYPE( void ) |
| 257 | t_random(data, size) |
| 258 | unsigned char * data; |
| 259 | unsigned size; |
| 260 | { |
| 261 | if(!initialized) |
| 262 | t_initrand(); |
| 263 | |
| 264 | if(size <= 0) /* t_random(NULL, 0) forces seed initialization */ |
| 265 | return; |
| 266 | |
| 267 | while(size > outpos) { |
| 268 | if(outpos > 0) { |
| 269 | memcpy(data, randout + (sizeof(randout) - outpos), outpos); |
| 270 | data += outpos; |
| 271 | size -= outpos; |
| 272 | } |
| 273 | |
| 274 | /* Recycle */ |
| 275 | SHA1Init(&randctxt); |
| 276 | SHA1Update(&randctxt, randpool, sizeof(randpool)); |
| 277 | SHA1Final(randout, &randctxt); |
| 278 | SHA1Init(&randctxt); |
| 279 | SHA1Update(&randctxt, (unsigned char *) &randcnt, sizeof(randcnt)); |
| 280 | SHA1Update(&randctxt, randpool, sizeof(randpool)); |
| 281 | SHA1Final(randpool, &randctxt); |
| 282 | ++randcnt; |
| 283 | outpos = sizeof(randout); |
| 284 | } |
| 285 | |
| 286 | if(size > 0) { |
| 287 | memcpy(data, randout + (sizeof(randout) - outpos), size); |
| 288 | outpos -= size; |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | /* |
| 293 | * The interleaved session-key hash. This separates the even and the odd |
| 294 | * bytes of the input (ignoring the first byte if the input length is odd), |
| 295 | * hashes them separately, and re-interleaves the two outputs to form a |
| 296 | * single 320-bit value. |
| 297 | */ |
| 298 | _TYPE( unsigned char * ) |
| 299 | t_sessionkey(key, sk, sklen) |
| 300 | unsigned char * key; |
| 301 | unsigned char * sk; |
| 302 | unsigned sklen; |
| 303 | { |
| 304 | unsigned i, klen; |
| 305 | unsigned char * hbuf; |
| 306 | unsigned char hout[SHA_DIGESTSIZE]; |
| 307 | SHA1_CTX ctxt; |
| 308 | |
| 309 | while(sklen > 0 && *sk == 0) { /* Skip leading 0's */ |
| 310 | --sklen; |
| 311 | ++sk; |
| 312 | } |
| 313 | |
| 314 | klen = sklen / 2; |
| 315 | if((hbuf = malloc(klen * sizeof(char))) == 0) |
| 316 | return 0; |
| 317 | |
| 318 | for(i = 0; i < klen; ++i) |
| 319 | hbuf[i] = sk[sklen - 2 * i - 1]; |
| 320 | SHA1Init(&ctxt); |
| 321 | SHA1Update(&ctxt, hbuf, klen); |
| 322 | SHA1Final(hout, &ctxt); |
| 323 | for(i = 0; i < sizeof(hout); ++i) |
| 324 | key[2 * i] = hout[i]; |
| 325 | |
| 326 | for(i = 0; i < klen; ++i) |
| 327 | hbuf[i] = sk[sklen - 2 * i - 2]; |
| 328 | SHA1Init(&ctxt); |
| 329 | SHA1Update(&ctxt, hbuf, klen); |
| 330 | SHA1Final(hout, &ctxt); |
| 331 | for(i = 0; i < sizeof(hout); ++i) |
| 332 | key[2 * i + 1] = hout[i]; |
| 333 | |
| 334 | memset(hout, 0, sizeof(hout)); |
| 335 | memset(hbuf, 0, klen); |
| 336 | free(hbuf); |
| 337 | return key; |
| 338 | } |
| 339 | |