Root/target/linux/atheros/patches-2.6.30/110-ar2313_ethernet.patch

1--- a/drivers/net/Kconfig
2+++ b/drivers/net/Kconfig
3@@ -369,6 +369,12 @@ config AX88796_93CX6
4     help
5       Select this if your platform comes with an external 93CX6 eeprom.
6 
7+config AR231X_ETHERNET
8+ tristate "AR231x Ethernet support"
9+ depends on ATHEROS_AR231X
10+ help
11+ Support for the AR231x/531x ethernet controller
12+
13 config MACE
14     tristate "MACE (Power Mac ethernet) support"
15     depends on PPC_PMAC && PPC32
16--- a/drivers/net/Makefile
17+++ b/drivers/net/Makefile
18@@ -203,6 +203,7 @@ obj-$(CONFIG_EQUALIZER) += eql.o
19 obj-$(CONFIG_KORINA) += korina.o
20 obj-$(CONFIG_MIPS_JAZZ_SONIC) += jazzsonic.o
21 obj-$(CONFIG_MIPS_AU1X00_ENET) += au1000_eth.o
22+obj-$(CONFIG_AR231X_ETHERNET) += ar231x.o
23 obj-$(CONFIG_MIPS_SIM_NET) += mipsnet.o
24 obj-$(CONFIG_SGI_IOC3_ETH) += ioc3-eth.o
25 obj-$(CONFIG_DECLANCE) += declance.o
26--- /dev/null
27+++ b/drivers/net/ar231x.c
28@@ -0,0 +1,1263 @@
29+/*
30+ * ar231x.c: Linux driver for the Atheros AR231x Ethernet device.
31+ *
32+ * Copyright (C) 2004 by Sameer Dekate <sdekate@arubanetworks.com>
33+ * Copyright (C) 2006 Imre Kaloz <kaloz@openwrt.org>
34+ * Copyright (C) 2006-2009 Felix Fietkau <nbd@openwrt.org>
35+ *
36+ * Thanks to Atheros for providing hardware and documentation
37+ * enabling me to write this driver.
38+ *
39+ * This program is free software; you can redistribute it and/or modify
40+ * it under the terms of the GNU General Public License as published by
41+ * the Free Software Foundation; either version 2 of the License, or
42+ * (at your option) any later version.
43+ *
44+ * Additional credits:
45+ * This code is taken from John Taylor's Sibyte driver and then
46+ * modified for the AR2313.
47+ */
48+
49+#include <linux/module.h>
50+#include <linux/version.h>
51+#include <linux/types.h>
52+#include <linux/errno.h>
53+#include <linux/ioport.h>
54+#include <linux/pci.h>
55+#include <linux/netdevice.h>
56+#include <linux/etherdevice.h>
57+#include <linux/skbuff.h>
58+#include <linux/init.h>
59+#include <linux/delay.h>
60+#include <linux/mm.h>
61+#include <linux/highmem.h>
62+#include <linux/sockios.h>
63+#include <linux/pkt_sched.h>
64+#include <linux/mii.h>
65+#include <linux/phy.h>
66+#include <linux/ethtool.h>
67+#include <linux/ctype.h>
68+#include <linux/platform_device.h>
69+
70+#include <net/sock.h>
71+#include <net/ip.h>
72+
73+#include <asm/system.h>
74+#include <asm/io.h>
75+#include <asm/irq.h>
76+#include <asm/byteorder.h>
77+#include <asm/uaccess.h>
78+#include <asm/bootinfo.h>
79+
80+#define AR2313_MTU 1692
81+#define AR2313_PRIOS 1
82+#define AR2313_QUEUES (2*AR2313_PRIOS)
83+#define AR2313_DESCR_ENTRIES 64
84+
85+
86+#ifndef min
87+#define min(a,b) (((a)<(b))?(a):(b))
88+#endif
89+
90+#ifndef SMP_CACHE_BYTES
91+#define SMP_CACHE_BYTES L1_CACHE_BYTES
92+#endif
93+
94+#define AR2313_MBOX_SET_BIT 0x8
95+
96+#include "ar231x.h"
97+
98+/*
99+ * New interrupt handler strategy:
100+ *
101+ * An old interrupt handler worked using the traditional method of
102+ * replacing an skbuff with a new one when a packet arrives. However
103+ * the rx rings do not need to contain a static number of buffer
104+ * descriptors, thus it makes sense to move the memory allocation out
105+ * of the main interrupt handler and do it in a bottom half handler
106+ * and only allocate new buffers when the number of buffers in the
107+ * ring is below a certain threshold. In order to avoid starving the
108+ * NIC under heavy load it is however necessary to force allocation
109+ * when hitting a minimum threshold. The strategy for alloction is as
110+ * follows:
111+ *
112+ * RX_LOW_BUF_THRES - allocate buffers in the bottom half
113+ * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
114+ * the buffers in the interrupt handler
115+ * RX_RING_THRES - maximum number of buffers in the rx ring
116+ *
117+ * One advantagous side effect of this allocation approach is that the
118+ * entire rx processing can be done without holding any spin lock
119+ * since the rx rings and registers are totally independent of the tx
120+ * ring and its registers. This of course includes the kmalloc's of
121+ * new skb's. Thus start_xmit can run in parallel with rx processing
122+ * and the memory allocation on SMP systems.
123+ *
124+ * Note that running the skb reallocation in a bottom half opens up
125+ * another can of races which needs to be handled properly. In
126+ * particular it can happen that the interrupt handler tries to run
127+ * the reallocation while the bottom half is either running on another
128+ * CPU or was interrupted on the same CPU. To get around this the
129+ * driver uses bitops to prevent the reallocation routines from being
130+ * reentered.
131+ *
132+ * TX handling can also be done without holding any spin lock, wheee
133+ * this is fun! since tx_csm is only written to by the interrupt
134+ * handler.
135+ */
136+
137+/*
138+ * Threshold values for RX buffer allocation - the low water marks for
139+ * when to start refilling the rings are set to 75% of the ring
140+ * sizes. It seems to make sense to refill the rings entirely from the
141+ * intrrupt handler once it gets below the panic threshold, that way
142+ * we don't risk that the refilling is moved to another CPU when the
143+ * one running the interrupt handler just got the slab code hot in its
144+ * cache.
145+ */
146+#define RX_RING_SIZE AR2313_DESCR_ENTRIES
147+#define RX_PANIC_THRES (RX_RING_SIZE/4)
148+#define RX_LOW_THRES ((3*RX_RING_SIZE)/4)
149+#define CRC_LEN 4
150+#define RX_OFFSET 2
151+
152+#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
153+#define VLAN_HDR 4
154+#else
155+#define VLAN_HDR 0
156+#endif
157+
158+#define AR2313_BUFSIZE (AR2313_MTU + VLAN_HDR + ETH_HLEN + CRC_LEN + RX_OFFSET)
159+
160+#ifdef MODULE
161+MODULE_LICENSE("GPL");
162+MODULE_AUTHOR("Sameer Dekate <sdekate@arubanetworks.com>, Imre Kaloz <kaloz@openwrt.org>, Felix Fietkau <nbd@openwrt.org>");
163+MODULE_DESCRIPTION("AR231x Ethernet driver");
164+#endif
165+
166+#define virt_to_phys(x) ((u32)(x) & 0x1fffffff)
167+
168+// prototypes
169+static void ar231x_halt(struct net_device *dev);
170+static void rx_tasklet_func(unsigned long data);
171+static void rx_tasklet_cleanup(struct net_device *dev);
172+static void ar231x_multicast_list(struct net_device *dev);
173+
174+static int ar231x_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum);
175+static int ar231x_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, u16 value);
176+static int ar231x_mdiobus_reset(struct mii_bus *bus);
177+static int ar231x_mdiobus_probe (struct net_device *dev);
178+static void ar231x_adjust_link(struct net_device *dev);
179+
180+#ifndef ERR
181+#define ERR(fmt, args...) printk("%s: " fmt, __func__, ##args)
182+#endif
183+
184+static const struct net_device_ops ar231x_ops = {
185+ .ndo_open = ar231x_open,
186+ .ndo_stop = ar231x_close,
187+ .ndo_start_xmit = ar231x_start_xmit,
188+ .ndo_set_multicast_list = ar231x_multicast_list,
189+ .ndo_do_ioctl = ar231x_ioctl,
190+};
191+
192+int __init ar231x_probe(struct platform_device *pdev)
193+{
194+ struct net_device *dev;
195+ struct ar231x_private *sp;
196+ struct resource *res;
197+ unsigned long ar_eth_base;
198+ char buf[64];
199+
200+ dev = alloc_etherdev(sizeof(struct ar231x_private));
201+
202+ if (dev == NULL) {
203+ printk(KERN_ERR
204+ "ar231x: Unable to allocate net_device structure!\n");
205+ return -ENOMEM;
206+ }
207+
208+ platform_set_drvdata(pdev, dev);
209+
210+ sp = netdev_priv(dev);
211+ sp->dev = dev;
212+ sp->cfg = pdev->dev.platform_data;
213+
214+ sprintf(buf, "eth%d_membase", pdev->id);
215+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, buf);
216+ if (!res)
217+ return -ENODEV;
218+
219+ sp->link = 0;
220+ ar_eth_base = res->start;
221+
222+ sprintf(buf, "eth%d_irq", pdev->id);
223+ dev->irq = platform_get_irq_byname(pdev, buf);
224+
225+ spin_lock_init(&sp->lock);
226+
227+ dev->features |= NETIF_F_HIGHDMA;
228+ dev->netdev_ops = &ar231x_ops;
229+
230+ tasklet_init(&sp->rx_tasklet, rx_tasklet_func, (unsigned long) dev);
231+ tasklet_disable(&sp->rx_tasklet);
232+
233+ sp->eth_regs =
234+ ioremap_nocache(virt_to_phys(ar_eth_base), sizeof(*sp->eth_regs));
235+ if (!sp->eth_regs) {
236+ printk("Can't remap eth registers\n");
237+ return (-ENXIO);
238+ }
239+
240+ /*
241+ * When there's only one MAC, PHY regs are typically on ENET0,
242+ * even though the MAC might be on ENET1.
243+ * Needto remap PHY regs separately in this case
244+ */
245+ if (virt_to_phys(ar_eth_base) == virt_to_phys(sp->phy_regs))
246+ sp->phy_regs = sp->eth_regs;
247+ else {
248+ sp->phy_regs =
249+ ioremap_nocache(virt_to_phys(sp->cfg->phy_base),
250+ sizeof(*sp->phy_regs));
251+ if (!sp->phy_regs) {
252+ printk("Can't remap phy registers\n");
253+ return (-ENXIO);
254+ }
255+ }
256+
257+ sp->dma_regs =
258+ ioremap_nocache(virt_to_phys(ar_eth_base + 0x1000),
259+ sizeof(*sp->dma_regs));
260+ dev->base_addr = (unsigned int) sp->dma_regs;
261+ if (!sp->dma_regs) {
262+ printk("Can't remap DMA registers\n");
263+ return (-ENXIO);
264+ }
265+
266+ sp->int_regs = ioremap_nocache(virt_to_phys(sp->cfg->reset_base), 4);
267+ if (!sp->int_regs) {
268+ printk("Can't remap INTERRUPT registers\n");
269+ return (-ENXIO);
270+ }
271+
272+ strncpy(sp->name, "Atheros AR231x", sizeof(sp->name) - 1);
273+ sp->name[sizeof(sp->name) - 1] = '\0';
274+ memcpy(dev->dev_addr, sp->cfg->macaddr, 6);
275+
276+ if (ar231x_init(dev)) {
277+ /*
278+ * ar231x_init() calls ar231x_init_cleanup() on error.
279+ */
280+ kfree(dev);
281+ return -ENODEV;
282+ }
283+
284+ if (register_netdev(dev)) {
285+ printk("%s: register_netdev failed\n", __func__);
286+ return -1;
287+ }
288+
289+ printk("%s: %s: %02x:%02x:%02x:%02x:%02x:%02x, irq %d\n",
290+ dev->name, sp->name,
291+ dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
292+ dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], dev->irq);
293+
294+ sp->mii_bus = mdiobus_alloc();
295+ if (sp->mii_bus == NULL)
296+ return -1;
297+
298+ sp->mii_bus->priv = dev;
299+ sp->mii_bus->read = ar231x_mdiobus_read;
300+ sp->mii_bus->write = ar231x_mdiobus_write;
301+ sp->mii_bus->reset = ar231x_mdiobus_reset;
302+ sp->mii_bus->name = "ar231x_eth_mii";
303+ snprintf(sp->mii_bus->id, MII_BUS_ID_SIZE, "%d", pdev->id);
304+ sp->mii_bus->irq = kmalloc(sizeof(int), GFP_KERNEL);
305+ *sp->mii_bus->irq = PHY_POLL;
306+
307+ mdiobus_register(sp->mii_bus);
308+
309+ if (ar231x_mdiobus_probe(dev) != 0) {
310+ printk(KERN_ERR "%s: mdiobus_probe failed\n", dev->name);
311+ rx_tasklet_cleanup(dev);
312+ ar231x_init_cleanup(dev);
313+ unregister_netdev(dev);
314+ kfree(dev);
315+ return -ENODEV;
316+ }
317+
318+ /* start link poll timer */
319+ ar231x_setup_timer(dev);
320+
321+ return 0;
322+}
323+
324+
325+static void ar231x_multicast_list(struct net_device *dev)
326+{
327+ struct ar231x_private *sp = netdev_priv(dev);
328+ unsigned int filter;
329+
330+ filter = sp->eth_regs->mac_control;
331+
332+ if (dev->flags & IFF_PROMISC)
333+ filter |= MAC_CONTROL_PR;
334+ else
335+ filter &= ~MAC_CONTROL_PR;
336+ if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 0))
337+ filter |= MAC_CONTROL_PM;
338+ else
339+ filter &= ~MAC_CONTROL_PM;
340+
341+ sp->eth_regs->mac_control = filter;
342+}
343+
344+static void rx_tasklet_cleanup(struct net_device *dev)
345+{
346+ struct ar231x_private *sp = netdev_priv(dev);
347+
348+ /*
349+ * Tasklet may be scheduled. Need to get it removed from the list
350+ * since we're about to free the struct.
351+ */
352+
353+ sp->unloading = 1;
354+ tasklet_enable(&sp->rx_tasklet);
355+ tasklet_kill(&sp->rx_tasklet);
356+}
357+
358+static int __devexit ar231x_remove(struct platform_device *pdev)
359+{
360+ struct net_device *dev = platform_get_drvdata(pdev);
361+ struct ar231x_private *sp = netdev_priv(dev);
362+ rx_tasklet_cleanup(dev);
363+ ar231x_init_cleanup(dev);
364+ unregister_netdev(dev);
365+ mdiobus_unregister(sp->mii_bus);
366+ mdiobus_free(sp->mii_bus);
367+ kfree(dev);
368+ return 0;
369+}
370+
371+
372+/*
373+ * Restart the AR2313 ethernet controller.
374+ */
375+static int ar231x_restart(struct net_device *dev)
376+{
377+ /* disable interrupts */
378+ disable_irq(dev->irq);
379+
380+ /* stop mac */
381+ ar231x_halt(dev);
382+
383+ /* initialize */
384+ ar231x_init(dev);
385+
386+ /* enable interrupts */
387+ enable_irq(dev->irq);
388+
389+ return 0;
390+}
391+
392+static struct platform_driver ar231x_driver = {
393+ .driver.name = "ar231x-eth",
394+ .probe = ar231x_probe,
395+ .remove = __devexit_p(ar231x_remove),
396+};
397+
398+int __init ar231x_module_init(void)
399+{
400+ return platform_driver_register(&ar231x_driver);
401+}
402+
403+void __exit ar231x_module_cleanup(void)
404+{
405+ platform_driver_unregister(&ar231x_driver);
406+}
407+
408+module_init(ar231x_module_init);
409+module_exit(ar231x_module_cleanup);
410+
411+
412+static void ar231x_free_descriptors(struct net_device *dev)
413+{
414+ struct ar231x_private *sp = netdev_priv(dev);
415+ if (sp->rx_ring != NULL) {
416+ kfree((void *) KSEG0ADDR(sp->rx_ring));
417+ sp->rx_ring = NULL;
418+ sp->tx_ring = NULL;
419+ }
420+}
421+
422+
423+static int ar231x_allocate_descriptors(struct net_device *dev)
424+{
425+ struct ar231x_private *sp = netdev_priv(dev);
426+ int size;
427+ int j;
428+ ar231x_descr_t *space;
429+
430+ if (sp->rx_ring != NULL) {
431+ printk("%s: already done.\n", __FUNCTION__);
432+ return 0;
433+ }
434+
435+ size =
436+ (sizeof(ar231x_descr_t) * (AR2313_DESCR_ENTRIES * AR2313_QUEUES));
437+ space = kmalloc(size, GFP_KERNEL);
438+ if (space == NULL)
439+ return 1;
440+
441+ /* invalidate caches */
442+ dma_cache_inv((unsigned int) space, size);
443+
444+ /* now convert pointer to KSEG1 */
445+ space = (ar231x_descr_t *) KSEG1ADDR(space);
446+
447+ memset((void *) space, 0, size);
448+
449+ sp->rx_ring = space;
450+ space += AR2313_DESCR_ENTRIES;
451+
452+ sp->tx_ring = space;
453+ space += AR2313_DESCR_ENTRIES;
454+
455+ /* Initialize the transmit Descriptors */
456+ for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
457+ ar231x_descr_t *td = &sp->tx_ring[j];
458+ td->status = 0;
459+ td->devcs = DMA_TX1_CHAINED;
460+ td->addr = 0;
461+ td->descr =
462+ virt_to_phys(&sp->
463+ tx_ring[(j + 1) & (AR2313_DESCR_ENTRIES - 1)]);
464+ }
465+
466+ return 0;
467+}
468+
469+
470+/*
471+ * Generic cleanup handling data allocated during init. Used when the
472+ * module is unloaded or if an error occurs during initialization
473+ */
474+static void ar231x_init_cleanup(struct net_device *dev)
475+{
476+ struct ar231x_private *sp = netdev_priv(dev);
477+ struct sk_buff *skb;
478+ int j;
479+
480+ ar231x_free_descriptors(dev);
481+
482+ if (sp->eth_regs)
483+ iounmap((void *) sp->eth_regs);
484+ if (sp->dma_regs)
485+ iounmap((void *) sp->dma_regs);
486+
487+ if (sp->rx_skb) {
488+ for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
489+ skb = sp->rx_skb[j];
490+ if (skb) {
491+ sp->rx_skb[j] = NULL;
492+ dev_kfree_skb(skb);
493+ }
494+ }
495+ kfree(sp->rx_skb);
496+ sp->rx_skb = NULL;
497+ }
498+
499+ if (sp->tx_skb) {
500+ for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
501+ skb = sp->tx_skb[j];
502+ if (skb) {
503+ sp->tx_skb[j] = NULL;
504+ dev_kfree_skb(skb);
505+ }
506+ }
507+ kfree(sp->tx_skb);
508+ sp->tx_skb = NULL;
509+ }
510+}
511+
512+static int ar231x_setup_timer(struct net_device *dev)
513+{
514+ struct ar231x_private *sp = netdev_priv(dev);
515+
516+ init_timer(&sp->link_timer);
517+
518+ sp->link_timer.function = ar231x_link_timer_fn;
519+ sp->link_timer.data = (int) dev;
520+ sp->link_timer.expires = jiffies + HZ;
521+
522+ add_timer(&sp->link_timer);
523+ return 0;
524+
525+}
526+
527+static void ar231x_link_timer_fn(unsigned long data)
528+{
529+ struct net_device *dev = (struct net_device *) data;
530+ struct ar231x_private *sp = netdev_priv(dev);
531+
532+ // see if the link status changed
533+ // This was needed to make sure we set the PHY to the
534+ // autonegotiated value of half or full duplex.
535+ ar231x_check_link(dev);
536+
537+ // Loop faster when we don't have link.
538+ // This was needed to speed up the AP bootstrap time.
539+ if (sp->link == 0) {
540+ mod_timer(&sp->link_timer, jiffies + HZ / 2);
541+ } else {
542+ mod_timer(&sp->link_timer, jiffies + LINK_TIMER);
543+ }
544+}
545+
546+static void ar231x_check_link(struct net_device *dev)
547+{
548+ struct ar231x_private *sp = netdev_priv(dev);
549+ u16 phyData;
550+
551+ phyData = ar231x_mdiobus_read(sp->mii_bus, sp->phy, MII_BMSR);
552+ if (sp->phyData != phyData) {
553+ if (phyData & BMSR_LSTATUS) {
554+ /* link is present, ready link partner ability to deterine
555+ duplexity */
556+ int duplex = 0;
557+ u16 reg;
558+
559+ sp->link = 1;
560+ reg = ar231x_mdiobus_read(sp->mii_bus, sp->phy, MII_BMCR);
561+ if (reg & BMCR_ANENABLE) {
562+ /* auto neg enabled */
563+ reg = ar231x_mdiobus_read(sp->mii_bus, sp->phy, MII_LPA);
564+ duplex = (reg & (LPA_100FULL | LPA_10FULL)) ? 1 : 0;
565+ } else {
566+ /* no auto neg, just read duplex config */
567+ duplex = (reg & BMCR_FULLDPLX) ? 1 : 0;
568+ }
569+
570+ printk(KERN_INFO "%s: Configuring MAC for %s duplex\n",
571+ dev->name, (duplex) ? "full" : "half");
572+
573+ if (duplex) {
574+ /* full duplex */
575+ sp->eth_regs->mac_control =
576+ ((sp->eth_regs->
577+ mac_control | MAC_CONTROL_F) & ~MAC_CONTROL_DRO);
578+ } else {
579+ /* half duplex */
580+ sp->eth_regs->mac_control =
581+ ((sp->eth_regs->
582+ mac_control | MAC_CONTROL_DRO) & ~MAC_CONTROL_F);
583+ }
584+ } else {
585+ /* no link */
586+ sp->link = 0;
587+ }
588+ sp->phyData = phyData;
589+ }
590+}
591+
592+static int ar231x_reset_reg(struct net_device *dev)
593+{
594+ struct ar231x_private *sp = netdev_priv(dev);
595+ unsigned int ethsal, ethsah;
596+ unsigned int flags;
597+
598+ *sp->int_regs |= sp->cfg->reset_mac;
599+ mdelay(10);
600+ *sp->int_regs &= ~sp->cfg->reset_mac;
601+ mdelay(10);
602+ *sp->int_regs |= sp->cfg->reset_phy;
603+ mdelay(10);
604+ *sp->int_regs &= ~sp->cfg->reset_phy;
605+ mdelay(10);
606+
607+ sp->dma_regs->bus_mode = (DMA_BUS_MODE_SWR);
608+ mdelay(10);
609+ sp->dma_regs->bus_mode =
610+ ((32 << DMA_BUS_MODE_PBL_SHIFT) | DMA_BUS_MODE_BLE);
611+
612+ /* enable interrupts */
613+ sp->dma_regs->intr_ena = (DMA_STATUS_AIS |
614+ DMA_STATUS_NIS |
615+ DMA_STATUS_RI |
616+ DMA_STATUS_TI | DMA_STATUS_FBE);
617+ sp->dma_regs->xmt_base = virt_to_phys(sp->tx_ring);
618+ sp->dma_regs->rcv_base = virt_to_phys(sp->rx_ring);
619+ sp->dma_regs->control =
620+ (DMA_CONTROL_SR | DMA_CONTROL_ST | DMA_CONTROL_SF);
621+
622+ sp->eth_regs->flow_control = (FLOW_CONTROL_FCE);
623+ sp->eth_regs->vlan_tag = (0x8100);
624+
625+ /* Enable Ethernet Interface */
626+ flags = (MAC_CONTROL_TE | /* transmit enable */
627+ MAC_CONTROL_PM | /* pass mcast */
628+ MAC_CONTROL_F | /* full duplex */
629+ MAC_CONTROL_HBD); /* heart beat disabled */
630+
631+ if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
632+ flags |= MAC_CONTROL_PR;
633+ }
634+ sp->eth_regs->mac_control = flags;
635+
636+ /* Set all Ethernet station address registers to their initial values */
637+ ethsah = ((((u_int) (dev->dev_addr[5]) << 8) & (u_int) 0x0000FF00) |
638+ (((u_int) (dev->dev_addr[4]) << 0) & (u_int) 0x000000FF));
639+
640+ ethsal = ((((u_int) (dev->dev_addr[3]) << 24) & (u_int) 0xFF000000) |
641+ (((u_int) (dev->dev_addr[2]) << 16) & (u_int) 0x00FF0000) |
642+ (((u_int) (dev->dev_addr[1]) << 8) & (u_int) 0x0000FF00) |
643+ (((u_int) (dev->dev_addr[0]) << 0) & (u_int) 0x000000FF));
644+
645+ sp->eth_regs->mac_addr[0] = ethsah;
646+ sp->eth_regs->mac_addr[1] = ethsal;
647+
648+ mdelay(10);
649+
650+ return (0);
651+}
652+
653+
654+static int ar231x_init(struct net_device *dev)
655+{
656+ struct ar231x_private *sp = netdev_priv(dev);
657+ int ecode = 0;
658+
659+ /*
660+ * Allocate descriptors
661+ */
662+ if (ar231x_allocate_descriptors(dev)) {
663+ printk("%s: %s: ar231x_allocate_descriptors failed\n",
664+ dev->name, __FUNCTION__);
665+ ecode = -EAGAIN;
666+ goto init_error;
667+ }
668+
669+ /*
670+ * Get the memory for the skb rings.
671+ */
672+ if (sp->rx_skb == NULL) {
673+ sp->rx_skb =
674+ kmalloc(sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES,
675+ GFP_KERNEL);
676+ if (!(sp->rx_skb)) {
677+ printk("%s: %s: rx_skb kmalloc failed\n",
678+ dev->name, __FUNCTION__);
679+ ecode = -EAGAIN;
680+ goto init_error;
681+ }
682+ }
683+ memset(sp->rx_skb, 0, sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES);
684+
685+ if (sp->tx_skb == NULL) {
686+ sp->tx_skb =
687+ kmalloc(sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES,
688+ GFP_KERNEL);
689+ if (!(sp->tx_skb)) {
690+ printk("%s: %s: tx_skb kmalloc failed\n",
691+ dev->name, __FUNCTION__);
692+ ecode = -EAGAIN;
693+ goto init_error;
694+ }
695+ }
696+ memset(sp->tx_skb, 0, sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES);
697+
698+ /*
699+ * Set tx_csm before we start receiving interrupts, otherwise
700+ * the interrupt handler might think it is supposed to process
701+ * tx ints before we are up and running, which may cause a null
702+ * pointer access in the int handler.
703+ */
704+ sp->rx_skbprd = 0;
705+ sp->cur_rx = 0;
706+ sp->tx_prd = 0;
707+ sp->tx_csm = 0;
708+
709+ /*
710+ * Zero the stats before starting the interface
711+ */
712+ memset(&dev->stats, 0, sizeof(dev->stats));
713+
714+ /*
715+ * We load the ring here as there seem to be no way to tell the
716+ * firmware to wipe the ring without re-initializing it.
717+ */
718+ ar231x_load_rx_ring(dev, RX_RING_SIZE);
719+
720+ /*
721+ * Init hardware
722+ */
723+ ar231x_reset_reg(dev);
724+
725+ /*
726+ * Get the IRQ
727+ */
728+ ecode =
729+ request_irq(dev->irq, &ar231x_interrupt,
730+ IRQF_DISABLED | IRQF_SAMPLE_RANDOM,
731+ dev->name, dev);
732+ if (ecode) {
733+ printk(KERN_WARNING "%s: %s: Requested IRQ %d is busy\n",
734+ dev->name, __FUNCTION__, dev->irq);
735+ goto init_error;
736+ }
737+
738+
739+ tasklet_enable(&sp->rx_tasklet);
740+
741+ return 0;
742+
743+ init_error:
744+ ar231x_init_cleanup(dev);
745+ return ecode;
746+}
747+
748+/*
749+ * Load the rx ring.
750+ *
751+ * Loading rings is safe without holding the spin lock since this is
752+ * done only before the device is enabled, thus no interrupts are
753+ * generated and by the interrupt handler/tasklet handler.
754+ */
755+static void ar231x_load_rx_ring(struct net_device *dev, int nr_bufs)
756+{
757+
758+ struct ar231x_private *sp = netdev_priv(dev);
759+ short i, idx;
760+
761+ idx = sp->rx_skbprd;
762+
763+ for (i = 0; i < nr_bufs; i++) {
764+ struct sk_buff *skb;
765+ ar231x_descr_t *rd;
766+
767+ if (sp->rx_skb[idx])
768+ break;
769+
770+ skb = netdev_alloc_skb(dev, AR2313_BUFSIZE);
771+ if (!skb) {
772+ printk("\n\n\n\n %s: No memory in system\n\n\n\n",
773+ __FUNCTION__);
774+ break;
775+ }
776+
777+ /*
778+ * Make sure IP header starts on a fresh cache line.
779+ */
780+ skb->dev = dev;
781+ skb_reserve(skb, RX_OFFSET);
782+ sp->rx_skb[idx] = skb;
783+
784+ rd = (ar231x_descr_t *) & sp->rx_ring[idx];
785+
786+ /* initialize dma descriptor */
787+ rd->devcs = ((AR2313_BUFSIZE << DMA_RX1_BSIZE_SHIFT) |
788+ DMA_RX1_CHAINED);
789+ rd->addr = virt_to_phys(skb->data);
790+ rd->descr =
791+ virt_to_phys(&sp->
792+ rx_ring[(idx + 1) & (AR2313_DESCR_ENTRIES - 1)]);
793+ rd->status = DMA_RX_OWN;
794+
795+ idx = DSC_NEXT(idx);
796+ }
797+
798+ if (i)
799+ sp->rx_skbprd = idx;
800+
801+ return;
802+}
803+
804+#define AR2313_MAX_PKTS_PER_CALL 64
805+
806+static int ar231x_rx_int(struct net_device *dev)
807+{
808+ struct ar231x_private *sp = netdev_priv(dev);
809+ struct sk_buff *skb, *skb_new;
810+ ar231x_descr_t *rxdesc;
811+ unsigned int status;
812+ u32 idx;
813+ int pkts = 0;
814+ int rval;
815+
816+ idx = sp->cur_rx;
817+
818+ /* process at most the entire ring and then wait for another interrupt
819+ */
820+ while (1) {
821+
822+ rxdesc = &sp->rx_ring[idx];
823+ status = rxdesc->status;
824+ if (status & DMA_RX_OWN) {
825+ /* SiByte owns descriptor or descr not yet filled in */
826+ rval = 0;
827+ break;
828+ }
829+
830+ if (++pkts > AR2313_MAX_PKTS_PER_CALL) {
831+ rval = 1;
832+ break;
833+ }
834+
835+ if ((status & DMA_RX_ERROR) && !(status & DMA_RX_LONG)) {
836+ dev->stats.rx_errors++;
837+ dev->stats.rx_dropped++;
838+
839+ /* add statistics counters */
840+ if (status & DMA_RX_ERR_CRC)
841+ dev->stats.rx_crc_errors++;
842+ if (status & DMA_RX_ERR_COL)
843+ dev->stats.rx_over_errors++;
844+ if (status & DMA_RX_ERR_LENGTH)
845+ dev->stats.rx_length_errors++;
846+ if (status & DMA_RX_ERR_RUNT)
847+ dev->stats.rx_over_errors++;
848+ if (status & DMA_RX_ERR_DESC)
849+ dev->stats.rx_over_errors++;
850+
851+ } else {
852+ /* alloc new buffer. */
853+ skb_new = netdev_alloc_skb(dev, AR2313_BUFSIZE + RX_OFFSET);
854+ if (skb_new != NULL) {
855+
856+ skb = sp->rx_skb[idx];
857+ /* set skb */
858+ skb_put(skb,
859+ ((status >> DMA_RX_LEN_SHIFT) & 0x3fff) - CRC_LEN);
860+
861+ dev->stats.rx_bytes += skb->len;
862+ skb->protocol = eth_type_trans(skb, dev);
863+ /* pass the packet to upper layers */
864+ netif_rx(skb);
865+
866+ skb_new->dev = dev;
867+ /* 16 bit align */
868+ skb_reserve(skb_new, RX_OFFSET);
869+ /* reset descriptor's curr_addr */
870+ rxdesc->addr = virt_to_phys(skb_new->data);
871+
872+ dev->stats.rx_packets++;
873+ sp->rx_skb[idx] = skb_new;
874+ } else {
875+ dev->stats.rx_dropped++;
876+ }
877+ }
878+
879+ rxdesc->devcs = ((AR2313_BUFSIZE << DMA_RX1_BSIZE_SHIFT) |
880+ DMA_RX1_CHAINED);
881+ rxdesc->status = DMA_RX_OWN;
882+
883+ idx = DSC_NEXT(idx);
884+ }
885+
886+ sp->cur_rx = idx;
887+
888+ return rval;
889+}
890+
891+
892+static void ar231x_tx_int(struct net_device *dev)
893+{
894+ struct ar231x_private *sp = netdev_priv(dev);
895+ u32 idx;
896+ struct sk_buff *skb;
897+ ar231x_descr_t *txdesc;
898+ unsigned int status = 0;
899+
900+ idx = sp->tx_csm;
901+
902+ while (idx != sp->tx_prd) {
903+ txdesc = &sp->tx_ring[idx];
904+
905+ if ((status = txdesc->status) & DMA_TX_OWN) {
906+ /* ar231x dma still owns descr */
907+ break;
908+ }
909+ /* done with this descriptor */
910+ dma_unmap_single(NULL, txdesc->addr,
911+ txdesc->devcs & DMA_TX1_BSIZE_MASK,
912+ DMA_TO_DEVICE);
913+ txdesc->status = 0;
914+
915+ if (status & DMA_TX_ERROR) {
916+ dev->stats.tx_errors++;
917+ dev->stats.tx_dropped++;
918+ if (status & DMA_TX_ERR_UNDER)
919+ dev->stats.tx_fifo_errors++;
920+ if (status & DMA_TX_ERR_HB)
921+ dev->stats.tx_heartbeat_errors++;
922+ if (status & (DMA_TX_ERR_LOSS | DMA_TX_ERR_LINK))
923+ dev->stats.tx_carrier_errors++;
924+ if (status & (DMA_TX_ERR_LATE |
925+ DMA_TX_ERR_COL |
926+ DMA_TX_ERR_JABBER | DMA_TX_ERR_DEFER))
927+ dev->stats.tx_aborted_errors++;
928+ } else {
929+ /* transmit OK */
930+ dev->stats.tx_packets++;
931+ }
932+
933+ skb = sp->tx_skb[idx];
934+ sp->tx_skb[idx] = NULL;
935+ idx = DSC_NEXT(idx);
936+ dev->stats.tx_bytes += skb->len;
937+ dev_kfree_skb_irq(skb);
938+ }
939+
940+ sp->tx_csm = idx;
941+
942+ return;
943+}
944+
945+
946+static void rx_tasklet_func(unsigned long data)
947+{
948+ struct net_device *dev = (struct net_device *) data;
949+ struct ar231x_private *sp = netdev_priv(dev);
950+
951+ if (sp->unloading) {
952+ return;
953+ }
954+
955+ if (ar231x_rx_int(dev)) {
956+ tasklet_hi_schedule(&sp->rx_tasklet);
957+ } else {
958+ unsigned long flags;
959+ spin_lock_irqsave(&sp->lock, flags);
960+ sp->dma_regs->intr_ena |= DMA_STATUS_RI;
961+ spin_unlock_irqrestore(&sp->lock, flags);
962+ }
963+}
964+
965+static void rx_schedule(struct net_device *dev)
966+{
967+ struct ar231x_private *sp = netdev_priv(dev);
968+
969+ sp->dma_regs->intr_ena &= ~DMA_STATUS_RI;
970+
971+ tasklet_hi_schedule(&sp->rx_tasklet);
972+}
973+
974+static irqreturn_t ar231x_interrupt(int irq, void *dev_id)
975+{
976+ struct net_device *dev = (struct net_device *) dev_id;
977+ struct ar231x_private *sp = netdev_priv(dev);
978+ unsigned int status, enabled;
979+
980+ /* clear interrupt */
981+ /*
982+ * Don't clear RI bit if currently disabled.
983+ */
984+ status = sp->dma_regs->status;
985+ enabled = sp->dma_regs->intr_ena;
986+ sp->dma_regs->status = status & enabled;
987+
988+ if (status & DMA_STATUS_NIS) {
989+ /* normal status */
990+ /*
991+ * Don't schedule rx processing if interrupt
992+ * is already disabled.
993+ */
994+ if (status & enabled & DMA_STATUS_RI) {
995+ /* receive interrupt */
996+ rx_schedule(dev);
997+ }
998+ if (status & DMA_STATUS_TI) {
999+ /* transmit interrupt */
1000+ ar231x_tx_int(dev);
1001+ }
1002+ }
1003+
1004+ /* abnormal status */
1005+ if (status & (DMA_STATUS_FBE | DMA_STATUS_TPS)) {
1006+ ar231x_restart(dev);
1007+ }
1008+ return IRQ_HANDLED;
1009+}
1010+
1011+
1012+static int ar231x_open(struct net_device *dev)
1013+{
1014+ struct ar231x_private *sp = netdev_priv(dev);
1015+ unsigned int ethsal, ethsah;
1016+
1017+ /* reset the hardware, in case the MAC address changed */
1018+ ethsah = ((((u_int) (dev->dev_addr[5]) << 8) & (u_int) 0x0000FF00) |
1019+ (((u_int) (dev->dev_addr[4]) << 0) & (u_int) 0x000000FF));
1020+
1021+ ethsal = ((((u_int) (dev->dev_addr[3]) << 24) & (u_int) 0xFF000000) |
1022+ (((u_int) (dev->dev_addr[2]) << 16) & (u_int) 0x00FF0000) |
1023+ (((u_int) (dev->dev_addr[1]) << 8) & (u_int) 0x0000FF00) |
1024+ (((u_int) (dev->dev_addr[0]) << 0) & (u_int) 0x000000FF));
1025+
1026+ sp->eth_regs->mac_addr[0] = ethsah;
1027+ sp->eth_regs->mac_addr[1] = ethsal;
1028+
1029+ mdelay(10);
1030+
1031+ dev->mtu = 1500;
1032+ netif_start_queue(dev);
1033+
1034+ sp->eth_regs->mac_control |= MAC_CONTROL_RE;
1035+
1036+ return 0;
1037+}
1038+
1039+static void ar231x_halt(struct net_device *dev)
1040+{
1041+ struct ar231x_private *sp = netdev_priv(dev);
1042+ int j;
1043+
1044+ tasklet_disable(&sp->rx_tasklet);
1045+
1046+ /* kill the MAC */
1047+ sp->eth_regs->mac_control &= ~(MAC_CONTROL_RE | /* disable Receives */
1048+ MAC_CONTROL_TE); /* disable Transmits */
1049+ /* stop dma */
1050+ sp->dma_regs->control = 0;
1051+ sp->dma_regs->bus_mode = DMA_BUS_MODE_SWR;
1052+
1053+ /* place phy and MAC in reset */
1054+ *sp->int_regs |= (sp->cfg->reset_mac | sp->cfg->reset_phy);
1055+
1056+ /* free buffers on tx ring */
1057+ for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
1058+ struct sk_buff *skb;
1059+ ar231x_descr_t *txdesc;
1060+
1061+ txdesc = &sp->tx_ring[j];
1062+ txdesc->descr = 0;
1063+
1064+ skb = sp->tx_skb[j];
1065+ if (skb) {
1066+ dev_kfree_skb(skb);
1067+ sp->tx_skb[j] = NULL;
1068+ }
1069+ }
1070+}
1071+
1072+/*
1073+ * close should do nothing. Here's why. It's called when
1074+ * 'ifconfig bond0 down' is run. If it calls free_irq then
1075+ * the irq is gone forever ! When bond0 is made 'up' again,
1076+ * the ar231x_open () does not call request_irq (). Worse,
1077+ * the call to ar231x_halt() generates a WDOG reset due to
1078+ * the write to 'sp->int_regs' and the box reboots.
1079+ * Commenting this out is good since it allows the
1080+ * system to resume when bond0 is made up again.
1081+ */
1082+static int ar231x_close(struct net_device *dev)
1083+{
1084+#if 0
1085+ /*
1086+ * Disable interrupts
1087+ */
1088+ disable_irq(dev->irq);
1089+
1090+ /*
1091+ * Without (or before) releasing irq and stopping hardware, this
1092+ * is an absolute non-sense, by the way. It will be reset instantly
1093+ * by the first irq.
1094+ */
1095+ netif_stop_queue(dev);
1096+
1097+ /* stop the MAC and DMA engines */
1098+ ar231x_halt(dev);
1099+
1100+ /* release the interrupt */
1101+ free_irq(dev->irq, dev);
1102+
1103+#endif
1104+ return 0;
1105+}
1106+
1107+static int ar231x_start_xmit(struct sk_buff *skb, struct net_device *dev)
1108+{
1109+ struct ar231x_private *sp = netdev_priv(dev);
1110+ ar231x_descr_t *td;
1111+ u32 idx;
1112+
1113+ idx = sp->tx_prd;
1114+ td = &sp->tx_ring[idx];
1115+
1116+ if (td->status & DMA_TX_OWN) {
1117+ /* free skbuf and lie to the caller that we sent it out */
1118+ dev->stats.tx_dropped++;
1119+ dev_kfree_skb(skb);
1120+
1121+ /* restart transmitter in case locked */
1122+ sp->dma_regs->xmt_poll = 0;
1123+ return 0;
1124+ }
1125+
1126+ /* Setup the transmit descriptor. */
1127+ td->devcs = ((skb->len << DMA_TX1_BSIZE_SHIFT) |
1128+ (DMA_TX1_LS | DMA_TX1_IC | DMA_TX1_CHAINED));
1129+ td->addr = dma_map_single(NULL, skb->data, skb->len, DMA_TO_DEVICE);
1130+ td->status = DMA_TX_OWN;
1131+
1132+ /* kick transmitter last */
1133+ sp->dma_regs->xmt_poll = 0;
1134+
1135+ sp->tx_skb[idx] = skb;
1136+ idx = DSC_NEXT(idx);
1137+ sp->tx_prd = idx;
1138+
1139+ return 0;
1140+}
1141+
1142+static int ar231x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1143+{
1144+ struct mii_ioctl_data *data = (struct mii_ioctl_data *) &ifr->ifr_data;
1145+ struct ar231x_private *sp = netdev_priv(dev);
1146+ int ret;
1147+
1148+ switch (cmd) {
1149+
1150+ case SIOCETHTOOL:
1151+ spin_lock_irq(&sp->lock);
1152+ ret = phy_ethtool_ioctl(sp->phy_dev, (void *) ifr->ifr_data);
1153+ spin_unlock_irq(&sp->lock);
1154+ return ret;
1155+
1156+ case SIOCSIFHWADDR:
1157+ if (copy_from_user
1158+ (dev->dev_addr, ifr->ifr_data, sizeof(dev->dev_addr)))
1159+ return -EFAULT;
1160+ return 0;
1161+
1162+ case SIOCGIFHWADDR:
1163+ if (copy_to_user
1164+ (ifr->ifr_data, dev->dev_addr, sizeof(dev->dev_addr)))
1165+ return -EFAULT;
1166+ return 0;
1167+
1168+ case SIOCGMIIPHY:
1169+ case SIOCGMIIREG:
1170+ case SIOCSMIIREG:
1171+ return phy_mii_ioctl(sp->phy_dev, data, cmd);
1172+
1173+ default:
1174+ break;
1175+ }
1176+
1177+ return -EOPNOTSUPP;
1178+}
1179+
1180+static void ar231x_adjust_link(struct net_device *dev)
1181+{
1182+ struct ar231x_private *sp = netdev_priv(dev);
1183+ unsigned int mc;
1184+
1185+ if (!sp->phy_dev->link)
1186+ return;
1187+
1188+ if (sp->phy_dev->duplex != sp->oldduplex) {
1189+ mc = readl(&sp->eth_regs->mac_control);
1190+ mc &= ~(MAC_CONTROL_F | MAC_CONTROL_DRO);
1191+ if (sp->phy_dev->duplex)
1192+ mc |= MAC_CONTROL_F;
1193+ else
1194+ mc |= MAC_CONTROL_DRO;
1195+ writel(mc, &sp->eth_regs->mac_control);
1196+ sp->oldduplex = sp->phy_dev->duplex;
1197+ }
1198+}
1199+
1200+#define MII_ADDR(phy, reg) \
1201+ ((reg << MII_ADDR_REG_SHIFT) | (phy << MII_ADDR_PHY_SHIFT))
1202+
1203+static int
1204+ar231x_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1205+{
1206+ struct net_device *const dev = bus->priv;
1207+ struct ar231x_private *sp = netdev_priv(dev);
1208+ volatile ETHERNET_STRUCT *ethernet = sp->phy_regs;
1209+
1210+ ethernet->mii_addr = MII_ADDR(phy_addr, regnum);
1211+ while (ethernet->mii_addr & MII_ADDR_BUSY);
1212+ return (ethernet->mii_data >> MII_DATA_SHIFT);
1213+}
1214+
1215+static int
1216+ar231x_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
1217+ u16 value)
1218+{
1219+ struct net_device *const dev = bus->priv;
1220+ struct ar231x_private *sp = netdev_priv(dev);
1221+ volatile ETHERNET_STRUCT *ethernet = sp->phy_regs;
1222+
1223+ while (ethernet->mii_addr & MII_ADDR_BUSY);
1224+ ethernet->mii_data = value << MII_DATA_SHIFT;
1225+ ethernet->mii_addr = MII_ADDR(phy_addr, regnum) | MII_ADDR_WRITE;
1226+
1227+ return 0;
1228+}
1229+
1230+static int ar231x_mdiobus_reset(struct mii_bus *bus)
1231+{
1232+ struct net_device *const dev = bus->priv;
1233+
1234+ ar231x_reset_reg(dev);
1235+
1236+ return 0;
1237+}
1238+
1239+static int ar231x_mdiobus_probe (struct net_device *dev)
1240+{
1241+ struct ar231x_private *const sp = netdev_priv(dev);
1242+ struct phy_device *phydev = NULL;
1243+ int phy_addr;
1244+
1245+ /* find the first (lowest address) PHY on the current MAC's MII bus */
1246+ for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
1247+ if (sp->mii_bus->phy_map[phy_addr]) {
1248+ phydev = sp->mii_bus->phy_map[phy_addr];
1249+ sp->phy = phy_addr;
1250+ break; /* break out with first one found */
1251+ }
1252+
1253+ if (!phydev) {
1254+ printk (KERN_ERR "ar231x: %s: no PHY found\n", dev->name);
1255+ return -1;
1256+ }
1257+
1258+ /* now we are supposed to have a proper phydev, to attach to... */
1259+ BUG_ON(!phydev);
1260+ BUG_ON(phydev->attached_dev);
1261+
1262+ phydev = phy_connect(dev, dev_name(&phydev->dev), &ar231x_adjust_link, 0,
1263+ PHY_INTERFACE_MODE_MII);
1264+
1265+ if (IS_ERR(phydev)) {
1266+ printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
1267+ return PTR_ERR(phydev);
1268+ }
1269+
1270+ /* mask with MAC supported features */
1271+ phydev->supported &= (SUPPORTED_10baseT_Half
1272+ | SUPPORTED_10baseT_Full
1273+ | SUPPORTED_100baseT_Half
1274+ | SUPPORTED_100baseT_Full
1275+ | SUPPORTED_Autoneg
1276+ /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
1277+ | SUPPORTED_MII
1278+ | SUPPORTED_TP);
1279+
1280+ phydev->advertising = phydev->supported;
1281+
1282+ sp->oldduplex = -1;
1283+ sp->phy_dev = phydev;
1284+
1285+ printk(KERN_INFO "%s: attached PHY driver [%s] "
1286+ "(mii_bus:phy_addr=%s)\n",
1287+ dev->name, phydev->drv->name, dev_name(&phydev->dev));
1288+
1289+ return 0;
1290+}
1291+
1292--- /dev/null
1293+++ b/drivers/net/ar231x.h
1294@@ -0,0 +1,302 @@
1295+/*
1296+ * ar231x.h: Linux driver for the Atheros AR231x Ethernet device.
1297+ *
1298+ * Copyright (C) 2004 by Sameer Dekate <sdekate@arubanetworks.com>
1299+ * Copyright (C) 2006 Imre Kaloz <kaloz@openwrt.org>
1300+ * Copyright (C) 2006-2009 Felix Fietkau <nbd@openwrt.org>
1301+ *
1302+ * Thanks to Atheros for providing hardware and documentation
1303+ * enabling me to write this driver.
1304+ *
1305+ * This program is free software; you can redistribute it and/or modify
1306+ * it under the terms of the GNU General Public License as published by
1307+ * the Free Software Foundation; either version 2 of the License, or
1308+ * (at your option) any later version.
1309+ */
1310+
1311+#ifndef _AR2313_H_
1312+#define _AR2313_H_
1313+
1314+#include <linux/autoconf.h>
1315+#include <linux/bitops.h>
1316+#include <asm/bootinfo.h>
1317+#include <ar231x_platform.h>
1318+
1319+/*
1320+ * probe link timer - 5 secs
1321+ */
1322+#define LINK_TIMER (5*HZ)
1323+
1324+#define IS_DMA_TX_INT(X) (((X) & (DMA_STATUS_TI)) != 0)
1325+#define IS_DMA_RX_INT(X) (((X) & (DMA_STATUS_RI)) != 0)
1326+#define IS_DRIVER_OWNED(X) (((X) & (DMA_TX_OWN)) == 0)
1327+
1328+#define AR2313_TX_TIMEOUT (HZ/4)
1329+
1330+/*
1331+ * Rings
1332+ */
1333+#define DSC_RING_ENTRIES_SIZE (AR2313_DESCR_ENTRIES * sizeof(struct desc))
1334+#define DSC_NEXT(idx) ((idx + 1) & (AR2313_DESCR_ENTRIES - 1))
1335+
1336+#define AR2313_MBGET 2
1337+#define AR2313_MBSET 3
1338+#define AR2313_PCI_RECONFIG 4
1339+#define AR2313_PCI_DUMP 5
1340+#define AR2313_TEST_PANIC 6
1341+#define AR2313_TEST_NULLPTR 7
1342+#define AR2313_READ_DATA 8
1343+#define AR2313_WRITE_DATA 9
1344+#define AR2313_GET_VERSION 10
1345+#define AR2313_TEST_HANG 11
1346+#define AR2313_SYNC 12
1347+
1348+#define DMA_RX_ERR_CRC BIT(1)
1349+#define DMA_RX_ERR_DRIB BIT(2)
1350+#define DMA_RX_ERR_MII BIT(3)
1351+#define DMA_RX_EV2 BIT(5)
1352+#define DMA_RX_ERR_COL BIT(6)
1353+#define DMA_RX_LONG BIT(7)
1354+#define DMA_RX_LS BIT(8) /* last descriptor */
1355+#define DMA_RX_FS BIT(9) /* first descriptor */
1356+#define DMA_RX_MF BIT(10) /* multicast frame */
1357+#define DMA_RX_ERR_RUNT BIT(11) /* runt frame */
1358+#define DMA_RX_ERR_LENGTH BIT(12) /* length error */
1359+#define DMA_RX_ERR_DESC BIT(14) /* descriptor error */
1360+#define DMA_RX_ERROR BIT(15) /* error summary */
1361+#define DMA_RX_LEN_MASK 0x3fff0000
1362+#define DMA_RX_LEN_SHIFT 16
1363+#define DMA_RX_FILT BIT(30)
1364+#define DMA_RX_OWN BIT(31) /* desc owned by DMA controller */
1365+
1366+#define DMA_RX1_BSIZE_MASK 0x000007ff
1367+#define DMA_RX1_BSIZE_SHIFT 0
1368+#define DMA_RX1_CHAINED BIT(24)
1369+#define DMA_RX1_RER BIT(25)
1370+
1371+#define DMA_TX_ERR_UNDER BIT(1) /* underflow error */
1372+#define DMA_TX_ERR_DEFER BIT(2) /* excessive deferral */
1373+#define DMA_TX_COL_MASK 0x78
1374+#define DMA_TX_COL_SHIFT 3
1375+#define DMA_TX_ERR_HB BIT(7) /* hearbeat failure */
1376+#define DMA_TX_ERR_COL BIT(8) /* excessive collisions */
1377+#define DMA_TX_ERR_LATE BIT(9) /* late collision */
1378+#define DMA_TX_ERR_LINK BIT(10) /* no carrier */
1379+#define DMA_TX_ERR_LOSS BIT(11) /* loss of carrier */
1380+#define DMA_TX_ERR_JABBER BIT(14) /* transmit jabber timeout */
1381+#define DMA_TX_ERROR BIT(15) /* frame aborted */
1382+#define DMA_TX_OWN BIT(31) /* descr owned by DMA controller */
1383+
1384+#define DMA_TX1_BSIZE_MASK 0x000007ff
1385+#define DMA_TX1_BSIZE_SHIFT 0
1386+#define DMA_TX1_CHAINED BIT(24) /* chained descriptors */
1387+#define DMA_TX1_TER BIT(25) /* transmit end of ring */
1388+#define DMA_TX1_FS BIT(29) /* first segment */
1389+#define DMA_TX1_LS BIT(30) /* last segment */
1390+#define DMA_TX1_IC BIT(31) /* interrupt on completion */
1391+
1392+#define RCVPKT_LENGTH(X) (X >> 16) /* Received pkt Length */
1393+
1394+#define MAC_CONTROL_RE BIT(2) /* receive enable */
1395+#define MAC_CONTROL_TE BIT(3) /* transmit enable */
1396+#define MAC_CONTROL_DC BIT(5) /* Deferral check */
1397+#define MAC_CONTROL_ASTP BIT(8) /* Auto pad strip */
1398+#define MAC_CONTROL_DRTY BIT(10) /* Disable retry */
1399+#define MAC_CONTROL_DBF BIT(11) /* Disable bcast frames */
1400+#define MAC_CONTROL_LCC BIT(12) /* late collision ctrl */
1401+#define MAC_CONTROL_HP BIT(13) /* Hash Perfect filtering */
1402+#define MAC_CONTROL_HASH BIT(14) /* Unicast hash filtering */
1403+#define MAC_CONTROL_HO BIT(15) /* Hash only filtering */
1404+#define MAC_CONTROL_PB BIT(16) /* Pass Bad frames */
1405+#define MAC_CONTROL_IF BIT(17) /* Inverse filtering */
1406+#define MAC_CONTROL_PR BIT(18) /* promiscuous mode (valid frames only) */
1407+#define MAC_CONTROL_PM BIT(19) /* pass multicast */
1408+#define MAC_CONTROL_F BIT(20) /* full-duplex */
1409+#define MAC_CONTROL_DRO BIT(23) /* Disable Receive Own */
1410+#define MAC_CONTROL_HBD BIT(28) /* heart-beat disabled (MUST BE SET) */
1411+#define MAC_CONTROL_BLE BIT(30) /* big endian mode */
1412+#define MAC_CONTROL_RA BIT(31) /* receive all (valid and invalid frames) */
1413+
1414+#define MII_ADDR_BUSY BIT(0)
1415+#define MII_ADDR_WRITE BIT(1)
1416+#define MII_ADDR_REG_SHIFT 6
1417+#define MII_ADDR_PHY_SHIFT 11
1418+#define MII_DATA_SHIFT 0
1419+
1420+#define FLOW_CONTROL_FCE BIT(1)
1421+
1422+#define DMA_BUS_MODE_SWR BIT(0) /* software reset */
1423+#define DMA_BUS_MODE_BLE BIT(7) /* big endian mode */
1424+#define DMA_BUS_MODE_PBL_SHIFT 8 /* programmable burst length 32 */
1425+#define DMA_BUS_MODE_DBO BIT(20) /* big-endian descriptors */
1426+
1427+#define DMA_STATUS_TI BIT(0) /* transmit interrupt */
1428+#define DMA_STATUS_TPS BIT(1) /* transmit process stopped */
1429+#define DMA_STATUS_TU BIT(2) /* transmit buffer unavailable */
1430+#define DMA_STATUS_TJT BIT(3) /* transmit buffer timeout */
1431+#define DMA_STATUS_UNF BIT(5) /* transmit underflow */
1432+#define DMA_STATUS_RI BIT(6) /* receive interrupt */
1433+#define DMA_STATUS_RU BIT(7) /* receive buffer unavailable */
1434+#define DMA_STATUS_RPS BIT(8) /* receive process stopped */
1435+#define DMA_STATUS_ETI BIT(10) /* early transmit interrupt */
1436+#define DMA_STATUS_FBE BIT(13) /* fatal bus interrupt */
1437+#define DMA_STATUS_ERI BIT(14) /* early receive interrupt */
1438+#define DMA_STATUS_AIS BIT(15) /* abnormal interrupt summary */
1439+#define DMA_STATUS_NIS BIT(16) /* normal interrupt summary */
1440+#define DMA_STATUS_RS_SHIFT 17 /* receive process state */
1441+#define DMA_STATUS_TS_SHIFT 20 /* transmit process state */
1442+#define DMA_STATUS_EB_SHIFT 23 /* error bits */
1443+
1444+#define DMA_CONTROL_SR BIT(1) /* start receive */
1445+#define DMA_CONTROL_ST BIT(13) /* start transmit */
1446+#define DMA_CONTROL_SF BIT(21) /* store and forward */
1447+
1448+
1449+typedef struct {
1450+ volatile unsigned int status; // OWN, Device control and status.
1451+ volatile unsigned int devcs; // pkt Control bits + Length
1452+ volatile unsigned int addr; // Current Address.
1453+ volatile unsigned int descr; // Next descriptor in chain.
1454+} ar231x_descr_t;
1455+
1456+
1457+
1458+//
1459+// New Combo structure for Both Eth0 AND eth1
1460+//
1461+typedef struct {
1462+ volatile unsigned int mac_control; /* 0x00 */
1463+ volatile unsigned int mac_addr[2]; /* 0x04 - 0x08 */
1464+ volatile unsigned int mcast_table[2]; /* 0x0c - 0x10 */
1465+ volatile unsigned int mii_addr; /* 0x14 */
1466+ volatile unsigned int mii_data; /* 0x18 */
1467+ volatile unsigned int flow_control; /* 0x1c */
1468+ volatile unsigned int vlan_tag; /* 0x20 */
1469+ volatile unsigned int pad[7]; /* 0x24 - 0x3c */
1470+ volatile unsigned int ucast_table[8]; /* 0x40-0x5c */
1471+
1472+} ETHERNET_STRUCT;
1473+
1474+/********************************************************************
1475+ * Interrupt controller
1476+ ********************************************************************/
1477+
1478+typedef struct {
1479+ volatile unsigned int wdog_control; /* 0x08 */
1480+ volatile unsigned int wdog_timer; /* 0x0c */
1481+ volatile unsigned int misc_status; /* 0x10 */
1482+ volatile unsigned int misc_mask; /* 0x14 */
1483+ volatile unsigned int global_status; /* 0x18 */
1484+ volatile unsigned int reserved; /* 0x1c */
1485+ volatile unsigned int reset_control; /* 0x20 */
1486+} INTERRUPT;
1487+
1488+/********************************************************************
1489+ * DMA controller
1490+ ********************************************************************/
1491+typedef struct {
1492+ volatile unsigned int bus_mode; /* 0x00 (CSR0) */
1493+ volatile unsigned int xmt_poll; /* 0x04 (CSR1) */
1494+ volatile unsigned int rcv_poll; /* 0x08 (CSR2) */
1495+ volatile unsigned int rcv_base; /* 0x0c (CSR3) */
1496+ volatile unsigned int xmt_base; /* 0x10 (CSR4) */
1497+ volatile unsigned int status; /* 0x14 (CSR5) */
1498+ volatile unsigned int control; /* 0x18 (CSR6) */
1499+ volatile unsigned int intr_ena; /* 0x1c (CSR7) */
1500+ volatile unsigned int rcv_missed; /* 0x20 (CSR8) */
1501+ volatile unsigned int reserved[11]; /* 0x24-0x4c (CSR9-19) */
1502+ volatile unsigned int cur_tx_buf_addr; /* 0x50 (CSR20) */
1503+ volatile unsigned int cur_rx_buf_addr; /* 0x50 (CSR21) */
1504+} DMA;
1505+
1506+/*
1507+ * Struct private for the Sibyte.
1508+ *
1509+ * Elements are grouped so variables used by the tx handling goes
1510+ * together, and will go into the same cache lines etc. in order to
1511+ * avoid cache line contention between the rx and tx handling on SMP.
1512+ *
1513+ * Frequently accessed variables are put at the beginning of the
1514+ * struct to help the compiler generate better/shorter code.
1515+ */
1516+struct ar231x_private {
1517+ struct net_device *dev;
1518+ int version;
1519+ u32 mb[2];
1520+
1521+ volatile ETHERNET_STRUCT *phy_regs;
1522+ volatile ETHERNET_STRUCT *eth_regs;
1523+ volatile DMA *dma_regs;
1524+ volatile u32 *int_regs;
1525+ struct ar231x_eth *cfg;
1526+
1527+ spinlock_t lock; /* Serialise access to device */
1528+
1529+ /*
1530+ * RX and TX descriptors, must be adjacent
1531+ */
1532+ ar231x_descr_t *rx_ring;
1533+ ar231x_descr_t *tx_ring;
1534+
1535+
1536+ struct sk_buff **rx_skb;
1537+ struct sk_buff **tx_skb;
1538+
1539+ /*
1540+ * RX elements
1541+ */
1542+ u32 rx_skbprd;
1543+ u32 cur_rx;
1544+
1545+ /*
1546+ * TX elements
1547+ */
1548+ u32 tx_prd;
1549+ u32 tx_csm;
1550+
1551+ /*
1552+ * Misc elements
1553+ */
1554+ char name[48];
1555+ struct {
1556+ u32 address;
1557+ u32 length;
1558+ char *mapping;
1559+ } desc;
1560+
1561+
1562+ struct timer_list link_timer;
1563+ unsigned short phy; /* merlot phy = 1, samsung phy = 0x1f */
1564+ unsigned short mac;
1565+ unsigned short link; /* 0 - link down, 1 - link up */
1566+ u16 phyData;
1567+
1568+ struct tasklet_struct rx_tasklet;
1569+ int unloading;
1570+
1571+ struct phy_device *phy_dev;
1572+ struct mii_bus *mii_bus;
1573+ int oldduplex;
1574+};
1575+
1576+
1577+/*
1578+ * Prototypes
1579+ */
1580+static int ar231x_init(struct net_device *dev);
1581+#ifdef TX_TIMEOUT
1582+static void ar231x_tx_timeout(struct net_device *dev);
1583+#endif
1584+static int ar231x_restart(struct net_device *dev);
1585+static void ar231x_load_rx_ring(struct net_device *dev, int bufs);
1586+static irqreturn_t ar231x_interrupt(int irq, void *dev_id);
1587+static int ar231x_open(struct net_device *dev);
1588+static int ar231x_start_xmit(struct sk_buff *skb, struct net_device *dev);
1589+static int ar231x_close(struct net_device *dev);
1590+static int ar231x_ioctl(struct net_device *dev, struct ifreq *ifr,
1591+ int cmd);
1592+static void ar231x_init_cleanup(struct net_device *dev);
1593+static int ar231x_setup_timer(struct net_device *dev);
1594+static void ar231x_link_timer_fn(unsigned long data);
1595+static void ar231x_check_link(struct net_device *dev);
1596+#endif /* _AR2313_H_ */
1597

Archive Download this file



interactive