Root/tools/mtd-utils/patches/130-lzma_jffs2.patch

1--- a/Makefile
2+++ b/Makefile
3@@ -1,7 +1,7 @@
4 
5 # -*- sh -*-
6 
7-CPPFLAGS += -I./include $(ZLIBCPPFLAGS) $(LZOCPPFLAGS)
8+CPPFLAGS += -I./include $(ZLIBCPPFLAGS) $(LZOCPPFLAGS) -I./include/linux/lzma
9 
10 ifeq ($(WITHOUT_XATTR), 1)
11   CPPFLAGS += -DWITHOUT_XATTR
12@@ -45,7 +45,9 @@
13     ln -sf ../fs/jffs2/$@ $@
14 
15 $(BUILDDIR)/mkfs.jffs2: $(addprefix $(BUILDDIR)/,\
16- crc32.o compr_rtime.o mkfs.jffs2.o compr_zlib.o $(if $(NO_LZO),,compr_lzo.o) \
17+ crc32.o compr_rtime.o mkfs.jffs2.o compr_zlib.o \
18+ $(if $(NO_LZO),,compr_lzo.o) \
19+ compr_lzma.o lzma/LzFind.o lzma/LzmaEnc.o lzma/LzmaDec.o\
20     compr.o rbtree.o)
21 
22 LDFLAGS_mkfs.jffs2 := $(ZLIBLDFLAGS)
23--- a/compr.c 2009-06-05 16:59:08.000000000 +0200
24+++ b/compr.c 2010-03-20 23:16:14.556367000 +0100
25@@ -520,6 +520,9 @@
26 #ifdef CONFIG_JFFS2_LZO
27     jffs2_lzo_init();
28 #endif
29+#ifdef CONFIG_JFFS2_LZMA
30+ jffs2_lzma_init();
31+#endif
32     return 0;
33 }
34 
35@@ -534,5 +537,8 @@
36 #ifdef CONFIG_JFFS2_LZO
37     jffs2_lzo_exit();
38 #endif
39+#ifdef CONFIG_JFFS2_LZMA
40+ jffs2_lzma_exit();
41+#endif
42     return 0;
43 }
44--- a/compr.h 2010-03-20 23:08:46.289595000 +0100
45+++ b/compr.h 2010-03-20 23:51:41.953345921 +0100
46@@ -18,12 +18,14 @@
47 
48 #define CONFIG_JFFS2_ZLIB
49 #define CONFIG_JFFS2_RTIME
50+#define CONFIG_JFFS2_LZMA
51 
52 #define JFFS2_RUBINMIPS_PRIORITY 10
53 #define JFFS2_DYNRUBIN_PRIORITY 20
54 #define JFFS2_RTIME_PRIORITY 50
55-#define JFFS2_ZLIB_PRIORITY 60
56-#define JFFS2_LZO_PRIORITY 80
57+#define JFFS2_LZMA_PRIORITY 70
58+#define JFFS2_ZLIB_PRIORITY 80
59+#define JFFS2_LZO_PRIORITY 90
60 
61 #define JFFS2_COMPR_MODE_NONE 0
62 #define JFFS2_COMPR_MODE_PRIORITY 1
63@@ -114,5 +116,10 @@
64 int jffs2_lzo_init(void);
65 void jffs2_lzo_exit(void);
66 #endif
67+#ifdef CONFIG_JFFS2_LZMA
68+int jffs2_lzma_init(void);
69+void jffs2_lzma_exit(void);
70+#endif
71+
72 
73 #endif /* __JFFS2_COMPR_H__ */
74--- a/compr_lzma.c 1970-01-01 01:00:00.000000000 +0100
75+++ b/compr_lzma.c 2010-03-20 23:16:15.048654497 +0100
76@@ -0,0 +1,128 @@
77+/*
78+ * JFFS2 -- Journalling Flash File System, Version 2.
79+ *
80+ * For licensing information, see the file 'LICENCE' in this directory.
81+ *
82+ * JFFS2 wrapper to the LZMA C SDK
83+ *
84+ */
85+
86+#include <linux/lzma.h>
87+#include "compr.h"
88+
89+#ifdef __KERNEL__
90+ static DEFINE_MUTEX(deflate_mutex);
91+#endif
92+
93+CLzmaEncHandle *p;
94+Byte propsEncoded[LZMA_PROPS_SIZE];
95+SizeT propsSize = sizeof(propsEncoded);
96+
97+STATIC void lzma_free_workspace(void)
98+{
99+ LzmaEnc_Destroy(p, &lzma_alloc, &lzma_alloc);
100+}
101+
102+STATIC int INIT lzma_alloc_workspace(CLzmaEncProps *props)
103+{
104+ if ((p = (CLzmaEncHandle *)LzmaEnc_Create(&lzma_alloc)) == NULL)
105+ {
106+ PRINT_ERROR("Failed to allocate lzma deflate workspace\n");
107+ return -ENOMEM;
108+ }
109+
110+ if (LzmaEnc_SetProps(p, props) != SZ_OK)
111+ {
112+ lzma_free_workspace();
113+ return -1;
114+ }
115+
116+ if (LzmaEnc_WriteProperties(p, propsEncoded, &propsSize) != SZ_OK)
117+ {
118+ lzma_free_workspace();
119+ return -1;
120+ }
121+
122+ return 0;
123+}
124+
125+STATIC int jffs2_lzma_compress(unsigned char *data_in, unsigned char *cpage_out,
126+ uint32_t *sourcelen, uint32_t *dstlen, void *model)
127+{
128+ SizeT compress_size = (SizeT)(*dstlen);
129+ int ret;
130+
131+ #ifdef __KERNEL__
132+ mutex_lock(&deflate_mutex);
133+ #endif
134+
135+ ret = LzmaEnc_MemEncode(p, cpage_out, &compress_size, data_in, *sourcelen,
136+ 0, NULL, &lzma_alloc, &lzma_alloc);
137+
138+ #ifdef __KERNEL__
139+ mutex_unlock(&deflate_mutex);
140+ #endif
141+
142+ if (ret != SZ_OK)
143+ return -1;
144+
145+ *dstlen = (uint32_t)compress_size;
146+
147+ return 0;
148+}
149+
150+STATIC int jffs2_lzma_decompress(unsigned char *data_in, unsigned char *cpage_out,
151+ uint32_t srclen, uint32_t destlen, void *model)
152+{
153+ int ret;
154+ SizeT dl = (SizeT)destlen;
155+ SizeT sl = (SizeT)srclen;
156+ ELzmaStatus status;
157+
158+ ret = LzmaDecode(cpage_out, &dl, data_in, &sl, propsEncoded,
159+ propsSize, LZMA_FINISH_ANY, &status, &lzma_alloc);
160+
161+ if (ret != SZ_OK || status == LZMA_STATUS_NOT_FINISHED || dl != (SizeT)destlen)
162+ return -1;
163+
164+ return 0;
165+}
166+
167+static struct jffs2_compressor jffs2_lzma_comp = {
168+ .priority = JFFS2_LZMA_PRIORITY,
169+ .name = "lzma",
170+ .compr = JFFS2_COMPR_LZMA,
171+ .compress = &jffs2_lzma_compress,
172+ .decompress = &jffs2_lzma_decompress,
173+ .disabled = 0,
174+};
175+
176+int INIT jffs2_lzma_init(void)
177+{
178+ int ret;
179+ CLzmaEncProps props;
180+ LzmaEncProps_Init(&props);
181+
182+ props.dictSize = LZMA_BEST_DICT(0x2000);
183+ props.level = LZMA_BEST_LEVEL;
184+ props.lc = LZMA_BEST_LC;
185+ props.lp = LZMA_BEST_LP;
186+ props.pb = LZMA_BEST_PB;
187+ props.fb = LZMA_BEST_FB;
188+
189+ ret = lzma_alloc_workspace(&props);
190+ if (ret < 0)
191+ return ret;
192+
193+ ret = jffs2_register_compressor(&jffs2_lzma_comp);
194+ if (ret)
195+ lzma_free_workspace();
196+
197+ return ret;
198+}
199+
200+void jffs2_lzma_exit(void)
201+{
202+ jffs2_unregister_compressor(&jffs2_lzma_comp);
203+ lzma_free_workspace();
204+}
205--- a/include/linux/jffs2.h 2009-06-05 16:59:08.000000000 +0200
206+++ b/include/linux/jffs2.h 2010-03-20 23:16:15.305246000 +0100
207@@ -47,6 +47,7 @@
208 #define JFFS2_COMPR_DYNRUBIN 0x05
209 #define JFFS2_COMPR_ZLIB 0x06
210 #define JFFS2_COMPR_LZO 0x07
211+#define JFFS2_COMPR_LZMA 0x08
212 /* Compatibility flags. */
213 #define JFFS2_COMPAT_MASK 0xc000 /* What do to if an unknown nodetype is found */
214 #define JFFS2_NODE_ACCURATE 0x2000
215--- a/include/linux/lzma.h 1970-01-01 01:00:00.000000000 +0100
216+++ b/include/linux/lzma.h 2010-03-20 23:16:16.380508712 +0100
217@@ -0,0 +1,61 @@
218+#ifndef __LZMA_H__
219+#define __LZMA_H__
220+
221+#ifdef __KERNEL__
222+ #include <linux/kernel.h>
223+ #include <linux/sched.h>
224+ #include <linux/slab.h>
225+ #include <linux/vmalloc.h>
226+ #include <linux/init.h>
227+ #define LZMA_MALLOC vmalloc
228+ #define LZMA_FREE vfree
229+ #define PRINT_ERROR(msg) printk(KERN_WARNING #msg)
230+ #define INIT __init
231+ #define STATIC static
232+#else
233+ #include <stdint.h>
234+ #include <stdlib.h>
235+ #include <stdio.h>
236+ #include <unistd.h>
237+ #include <string.h>
238+ #include <errno.h>
239+ #include <linux/jffs2.h>
240+ #ifndef PAGE_SIZE
241+ extern int page_size;
242+ #define PAGE_SIZE page_size
243+ #endif
244+ #define LZMA_MALLOC malloc
245+ #define LZMA_FREE free
246+ #define PRINT_ERROR(msg) fprintf(stderr, msg)
247+ #define INIT
248+ #define STATIC
249+#endif
250+
251+#include "lzma/LzmaDec.h"
252+#include "lzma/LzmaEnc.h"
253+
254+#define LZMA_BEST_LEVEL (9)
255+#define LZMA_BEST_LC (0)
256+#define LZMA_BEST_LP (0)
257+#define LZMA_BEST_PB (0)
258+#define LZMA_BEST_FB (273)
259+
260+#define LZMA_BEST_DICT(n) (((int)((n) / 2)) * 2)
261+
262+static void *p_lzma_malloc(void *p, size_t size)
263+{
264+ if (size == 0)
265+ return NULL;
266+
267+ return LZMA_MALLOC(size);
268+}
269+
270+static void p_lzma_free(void *p, void *address)
271+{
272+ if (address != NULL)
273+ LZMA_FREE(address);
274+}
275+
276+static ISzAlloc lzma_alloc = {p_lzma_malloc, p_lzma_free};
277+
278+#endif
279--- a/include/linux/lzma/LzFind.h 1970-01-01 01:00:00.000000000 +0100
280+++ b/include/linux/lzma/LzFind.h 2010-03-20 23:19:44.189059515 +0100
281@@ -0,0 +1,116 @@
282+/* LzFind.h -- Match finder for LZ algorithms
283+2008-04-04
284+Copyright (c) 1999-2008 Igor Pavlov
285+You can use any of the following license options:
286+ 1) GNU Lesser General Public License (GNU LGPL)
287+ 2) Common Public License (CPL)
288+ 3) Common Development and Distribution License (CDDL) Version 1.0
289+ 4) Igor Pavlov, as the author of this code, expressly permits you to
290+ statically or dynamically link your code (or bind by name) to this file,
291+ while you keep this file unmodified.
292+*/
293+
294+#ifndef __LZFIND_H
295+#define __LZFIND_H
296+
297+#include "Types.h"
298+
299+typedef UInt32 CLzRef;
300+
301+typedef struct _CMatchFinder
302+{
303+ Byte *buffer;
304+ UInt32 pos;
305+ UInt32 posLimit;
306+ UInt32 streamPos;
307+ UInt32 lenLimit;
308+
309+ UInt32 cyclicBufferPos;
310+ UInt32 cyclicBufferSize; /* it must be = (historySize + 1) */
311+
312+ UInt32 matchMaxLen;
313+ CLzRef *hash;
314+ CLzRef *son;
315+ UInt32 hashMask;
316+ UInt32 cutValue;
317+
318+ Byte *bufferBase;
319+ ISeqInStream *stream;
320+ int streamEndWasReached;
321+
322+ UInt32 blockSize;
323+ UInt32 keepSizeBefore;
324+ UInt32 keepSizeAfter;
325+
326+ UInt32 numHashBytes;
327+ int directInput;
328+ int btMode;
329+ /* int skipModeBits; */
330+ int bigHash;
331+ UInt32 historySize;
332+ UInt32 fixedHashSize;
333+ UInt32 hashSizeSum;
334+ UInt32 numSons;
335+ SRes result;
336+ UInt32 crc[256];
337+} CMatchFinder;
338+
339+#define Inline_MatchFinder_GetPointerToCurrentPos(p) ((p)->buffer)
340+#define Inline_MatchFinder_GetIndexByte(p, index) ((p)->buffer[(Int32)(index)])
341+
342+#define Inline_MatchFinder_GetNumAvailableBytes(p) ((p)->streamPos - (p)->pos)
343+
344+int MatchFinder_NeedMove(CMatchFinder *p);
345+Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p);
346+void MatchFinder_MoveBlock(CMatchFinder *p);
347+void MatchFinder_ReadIfRequired(CMatchFinder *p);
348+
349+void MatchFinder_Construct(CMatchFinder *p);
350+
351+/* Conditions:
352+ historySize <= 3 GB
353+ keepAddBufferBefore + matchMaxLen + keepAddBufferAfter < 511MB
354+*/
355+int MatchFinder_Create(CMatchFinder *p, UInt32 historySize,
356+ UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter,
357+ ISzAlloc *alloc);
358+void MatchFinder_Free(CMatchFinder *p, ISzAlloc *alloc);
359+void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, UInt32 numItems);
360+void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue);
361+
362+UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *buffer, CLzRef *son,
363+ UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 _cutValue,
364+ UInt32 *distances, UInt32 maxLen);
365+
366+/*
367+Conditions:
368+ Mf_GetNumAvailableBytes_Func must be called before each Mf_GetMatchLen_Func.
369+ Mf_GetPointerToCurrentPos_Func's result must be used only before any other function
370+*/
371+
372+typedef void (*Mf_Init_Func)(void *object);
373+typedef Byte (*Mf_GetIndexByte_Func)(void *object, Int32 index);
374+typedef UInt32 (*Mf_GetNumAvailableBytes_Func)(void *object);
375+typedef const Byte * (*Mf_GetPointerToCurrentPos_Func)(void *object);
376+typedef UInt32 (*Mf_GetMatches_Func)(void *object, UInt32 *distances);
377+typedef void (*Mf_Skip_Func)(void *object, UInt32);
378+
379+typedef struct _IMatchFinder
380+{
381+ Mf_Init_Func Init;
382+ Mf_GetIndexByte_Func GetIndexByte;
383+ Mf_GetNumAvailableBytes_Func GetNumAvailableBytes;
384+ Mf_GetPointerToCurrentPos_Func GetPointerToCurrentPos;
385+ Mf_GetMatches_Func GetMatches;
386+ Mf_Skip_Func Skip;
387+} IMatchFinder;
388+
389+void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable);
390+
391+void MatchFinder_Init(CMatchFinder *p);
392+UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
393+UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
394+void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
395+void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
396+
397+#endif
398--- a/include/linux/lzma/LzHash.h 1970-01-01 01:00:00.000000000 +0100
399+++ b/include/linux/lzma/LzHash.h 2010-03-20 23:19:44.588791287 +0100
400@@ -0,0 +1,56 @@
401+/* LzHash.h -- HASH functions for LZ algorithms
402+2008-03-26
403+Copyright (c) 1999-2008 Igor Pavlov
404+Read LzFind.h for license options */
405+
406+#ifndef __LZHASH_H
407+#define __LZHASH_H
408+
409+#define kHash2Size (1 << 10)
410+#define kHash3Size (1 << 16)
411+#define kHash4Size (1 << 20)
412+
413+#define kFix3HashSize (kHash2Size)
414+#define kFix4HashSize (kHash2Size + kHash3Size)
415+#define kFix5HashSize (kHash2Size + kHash3Size + kHash4Size)
416+
417+#define HASH2_CALC hashValue = cur[0] | ((UInt32)cur[1] << 8);
418+
419+#define HASH3_CALC { \
420+ UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
421+ hash2Value = temp & (kHash2Size - 1); \
422+ hashValue = (temp ^ ((UInt32)cur[2] << 8)) & p->hashMask; }
423+
424+#define HASH4_CALC { \
425+ UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
426+ hash2Value = temp & (kHash2Size - 1); \
427+ hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
428+ hashValue = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)) & p->hashMask; }
429+
430+#define HASH5_CALC { \
431+ UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
432+ hash2Value = temp & (kHash2Size - 1); \
433+ hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
434+ hash4Value = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)); \
435+ hashValue = (hash4Value ^ (p->crc[cur[4]] << 3)) & p->hashMask; \
436+ hash4Value &= (kHash4Size - 1); }
437+
438+/* #define HASH_ZIP_CALC hashValue = ((cur[0] | ((UInt32)cur[1] << 8)) ^ p->crc[cur[2]]) & 0xFFFF; */
439+#define HASH_ZIP_CALC hashValue = ((cur[2] | ((UInt32)cur[0] << 8)) ^ p->crc[cur[1]]) & 0xFFFF;
440+
441+
442+#define MT_HASH2_CALC \
443+ hash2Value = (p->crc[cur[0]] ^ cur[1]) & (kHash2Size - 1);
444+
445+#define MT_HASH3_CALC { \
446+ UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
447+ hash2Value = temp & (kHash2Size - 1); \
448+ hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); }
449+
450+#define MT_HASH4_CALC { \
451+ UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
452+ hash2Value = temp & (kHash2Size - 1); \
453+ hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
454+ hash4Value = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)) & (kHash4Size - 1); }
455+
456+#endif
457--- a/include/linux/lzma/LzmaDec.h 1970-01-01 01:00:00.000000000 +0100
458+++ b/include/linux/lzma/LzmaDec.h 2010-03-20 23:19:43.766328000 +0100
459@@ -0,0 +1,232 @@
460+/* LzmaDec.h -- LZMA Decoder
461+2008-04-29
462+Copyright (c) 1999-2008 Igor Pavlov
463+You can use any of the following license options:
464+ 1) GNU Lesser General Public License (GNU LGPL)
465+ 2) Common Public License (CPL)
466+ 3) Common Development and Distribution License (CDDL) Version 1.0
467+ 4) Igor Pavlov, as the author of this code, expressly permits you to
468+ statically or dynamically link your code (or bind by name) to this file,
469+ while you keep this file unmodified.
470+*/
471+
472+#ifndef __LZMADEC_H
473+#define __LZMADEC_H
474+
475+#include "Types.h"
476+
477+/* #define _LZMA_PROB32 */
478+/* _LZMA_PROB32 can increase the speed on some CPUs,
479+ but memory usage for CLzmaDec::probs will be doubled in that case */
480+
481+#ifdef _LZMA_PROB32
482+#define CLzmaProb UInt32
483+#else
484+#define CLzmaProb UInt16
485+#endif
486+
487+
488+/* ---------- LZMA Properties ---------- */
489+
490+#define LZMA_PROPS_SIZE 5
491+
492+typedef struct _CLzmaProps
493+{
494+ unsigned lc, lp, pb;
495+ UInt32 dicSize;
496+} CLzmaProps;
497+
498+/* LzmaProps_Decode - decodes properties
499+Returns:
500+ SZ_OK
501+ SZ_ERROR_UNSUPPORTED - Unsupported properties
502+*/
503+
504+SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size);
505+
506+
507+/* ---------- LZMA Decoder state ---------- */
508+
509+/* LZMA_REQUIRED_INPUT_MAX = number of required input bytes for worst case.
510+ Num bits = log2((2^11 / 31) ^ 22) + 26 < 134 + 26 = 160; */
511+
512+#define LZMA_REQUIRED_INPUT_MAX 20
513+
514+typedef struct
515+{
516+ CLzmaProps prop;
517+ CLzmaProb *probs;
518+ Byte *dic;
519+ const Byte *buf;
520+ UInt32 range, code;
521+ SizeT dicPos;
522+ SizeT dicBufSize;
523+ UInt32 processedPos;
524+ UInt32 checkDicSize;
525+ unsigned state;
526+ UInt32 reps[4];
527+ unsigned remainLen;
528+ int needFlush;
529+ int needInitState;
530+ UInt32 numProbs;
531+ unsigned tempBufSize;
532+ Byte tempBuf[LZMA_REQUIRED_INPUT_MAX];
533+} CLzmaDec;
534+
535+#define LzmaDec_Construct(p) { (p)->dic = 0; (p)->probs = 0; }
536+
537+void LzmaDec_Init(CLzmaDec *p);
538+
539+/* There are two types of LZMA streams:
540+ 0) Stream with end mark. That end mark adds about 6 bytes to compressed size.
541+ 1) Stream without end mark. You must know exact uncompressed size to decompress such stream. */
542+
543+typedef enum
544+{
545+ LZMA_FINISH_ANY, /* finish at any point */
546+ LZMA_FINISH_END /* block must be finished at the end */
547+} ELzmaFinishMode;
548+
549+/* ELzmaFinishMode has meaning only if the decoding reaches output limit !!!
550+
551+ You must use LZMA_FINISH_END, when you know that current output buffer
552+ covers last bytes of block. In other cases you must use LZMA_FINISH_ANY.
553+
554+ If LZMA decoder sees end marker before reaching output limit, it returns SZ_OK,
555+ and output value of destLen will be less than output buffer size limit.
556+ You can check status result also.
557+
558+ You can use multiple checks to test data integrity after full decompression:
559+ 1) Check Result and "status" variable.
560+ 2) Check that output(destLen) = uncompressedSize, if you know real uncompressedSize.
561+ 3) Check that output(srcLen) = compressedSize, if you know real compressedSize.
562+ You must use correct finish mode in that case. */
563+
564+typedef enum
565+{
566+ LZMA_STATUS_NOT_SPECIFIED, /* use main error code instead */
567+ LZMA_STATUS_FINISHED_WITH_MARK, /* stream was finished with end mark. */
568+ LZMA_STATUS_NOT_FINISHED, /* stream was not finished */
569+ LZMA_STATUS_NEEDS_MORE_INPUT, /* you must provide more input bytes */
570+ LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK /* there is probability that stream was finished without end mark */
571+} ELzmaStatus;
572+
573+/* ELzmaStatus is used only as output value for function call */
574+
575+
576+/* ---------- Interfaces ---------- */
577+
578+/* There are 3 levels of interfaces:
579+ 1) Dictionary Interface
580+ 2) Buffer Interface
581+ 3) One Call Interface
582+ You can select any of these interfaces, but don't mix functions from different
583+ groups for same object. */
584+
585+
586+/* There are two variants to allocate state for Dictionary Interface:
587+ 1) LzmaDec_Allocate / LzmaDec_Free
588+ 2) LzmaDec_AllocateProbs / LzmaDec_FreeProbs
589+ You can use variant 2, if you set dictionary buffer manually.
590+ For Buffer Interface you must always use variant 1.
591+
592+LzmaDec_Allocate* can return:
593+ SZ_OK
594+ SZ_ERROR_MEM - Memory allocation error
595+ SZ_ERROR_UNSUPPORTED - Unsupported properties
596+*/
597+
598+SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc);
599+void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc);
600+
601+SRes LzmaDec_Allocate(CLzmaDec *state, const Byte *prop, unsigned propsSize, ISzAlloc *alloc);
602+void LzmaDec_Free(CLzmaDec *state, ISzAlloc *alloc);
603+
604+/* ---------- Dictionary Interface ---------- */
605+
606+/* You can use it, if you want to eliminate the overhead for data copying from
607+ dictionary to some other external buffer.
608+ You must work with CLzmaDec variables directly in this interface.
609+
610+ STEPS:
611+ LzmaDec_Constr()
612+ LzmaDec_Allocate()
613+ for (each new stream)
614+ {
615+ LzmaDec_Init()
616+ while (it needs more decompression)
617+ {
618+ LzmaDec_DecodeToDic()
619+ use data from CLzmaDec::dic and update CLzmaDec::dicPos
620+ }
621+ }
622+ LzmaDec_Free()
623+*/
624+
625+/* LzmaDec_DecodeToDic
626+
627+ The decoding to internal dictionary buffer (CLzmaDec::dic).
628+ You must manually update CLzmaDec::dicPos, if it reaches CLzmaDec::dicBufSize !!!
629+
630+finishMode:
631+ It has meaning only if the decoding reaches output limit (dicLimit).
632+ LZMA_FINISH_ANY - Decode just dicLimit bytes.
633+ LZMA_FINISH_END - Stream must be finished after dicLimit.
634+
635+Returns:
636+ SZ_OK
637+ status:
638+ LZMA_STATUS_FINISHED_WITH_MARK
639+ LZMA_STATUS_NOT_FINISHED
640+ LZMA_STATUS_NEEDS_MORE_INPUT
641+ LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
642+ SZ_ERROR_DATA - Data error
643+*/
644+
645+SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit,
646+ const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
647+
648+
649+/* ---------- Buffer Interface ---------- */
650+
651+/* It's zlib-like interface.
652+ See LzmaDec_DecodeToDic description for information about STEPS and return results,
653+ but you must use LzmaDec_DecodeToBuf instead of LzmaDec_DecodeToDic and you don't need
654+ to work with CLzmaDec variables manually.
655+
656+finishMode:
657+ It has meaning only if the decoding reaches output limit (*destLen).
658+ LZMA_FINISH_ANY - Decode just destLen bytes.
659+ LZMA_FINISH_END - Stream must be finished after (*destLen).
660+*/
661+
662+SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen,
663+ const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
664+
665+
666+/* ---------- One Call Interface ---------- */
667+
668+/* LzmaDecode
669+
670+finishMode:
671+ It has meaning only if the decoding reaches output limit (*destLen).
672+ LZMA_FINISH_ANY - Decode just destLen bytes.
673+ LZMA_FINISH_END - Stream must be finished after (*destLen).
674+
675+Returns:
676+ SZ_OK
677+ status:
678+ LZMA_STATUS_FINISHED_WITH_MARK
679+ LZMA_STATUS_NOT_FINISHED
680+ LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
681+ SZ_ERROR_DATA - Data error
682+ SZ_ERROR_MEM - Memory allocation error
683+ SZ_ERROR_UNSUPPORTED - Unsupported properties
684+ SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
685+*/
686+
687+SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
688+ const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
689+ ELzmaStatus *status, ISzAlloc *alloc);
690+
691+#endif
692--- a/include/linux/lzma/LzmaEnc.h 1970-01-01 01:00:00.000000000 +0100
693+++ b/include/linux/lzma/LzmaEnc.h 2010-03-20 23:19:47.392642470 +0100
694@@ -0,0 +1,74 @@
695+/* LzmaEnc.h -- LZMA Encoder
696+2008-04-27
697+Copyright (c) 1999-2008 Igor Pavlov
698+Read LzFind.h for license options */
699+
700+#ifndef __LZMAENC_H
701+#define __LZMAENC_H
702+
703+#include "Types.h"
704+
705+#define LZMA_PROPS_SIZE 5
706+
707+typedef struct _CLzmaEncProps
708+{
709+ int level; /* 0 <= level <= 9 */
710+ UInt32 dictSize; /* (1 << 12) <= dictSize <= (1 << 27) for 32-bit version
711+ (1 << 12) <= dictSize <= (1 << 30) for 64-bit version
712+ default = (1 << 24) */
713+ int lc; /* 0 <= lc <= 8, default = 3 */
714+ int lp; /* 0 <= lp <= 4, default = 0 */
715+ int pb; /* 0 <= pb <= 4, default = 2 */
716+ int algo; /* 0 - fast, 1 - normal, default = 1 */
717+ int fb; /* 5 <= fb <= 273, default = 32 */
718+ int btMode; /* 0 - hashChain Mode, 1 - binTree mode - normal, default = 1 */
719+ int numHashBytes; /* 2, 3 or 4, default = 4 */
720+ UInt32 mc; /* 1 <= mc <= (1 << 30), default = 32 */
721+ unsigned writeEndMark; /* 0 - do not write EOPM, 1 - write EOPM, default = 0 */
722+ int numThreads; /* 1 or 2, default = 2 */
723+} CLzmaEncProps;
724+
725+void LzmaEncProps_Init(CLzmaEncProps *p);
726+void LzmaEncProps_Normalize(CLzmaEncProps *p);
727+UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2);
728+
729+
730+/* ---------- CLzmaEncHandle Interface ---------- */
731+
732+/* LzmaEnc_* functions can return the following exit codes:
733+Returns:
734+ SZ_OK - OK
735+ SZ_ERROR_MEM - Memory allocation error
736+ SZ_ERROR_PARAM - Incorrect paramater in props
737+ SZ_ERROR_WRITE - Write callback error.
738+ SZ_ERROR_PROGRESS - some break from progress callback
739+ SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
740+*/
741+
742+typedef void * CLzmaEncHandle;
743+
744+CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc);
745+void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig);
746+SRes LzmaEnc_SetProps(CLzmaEncHandle p, const CLzmaEncProps *props);
747+SRes LzmaEnc_WriteProperties(CLzmaEncHandle p, Byte *properties, SizeT *size);
748+SRes LzmaEnc_Encode(CLzmaEncHandle p, ISeqOutStream *outStream, ISeqInStream *inStream,
749+ ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
750+SRes LzmaEnc_MemEncode(CLzmaEncHandle p, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
751+ int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
752+
753+/* ---------- One Call Interface ---------- */
754+
755+/* LzmaEncode
756+Return code:
757+ SZ_OK - OK
758+ SZ_ERROR_MEM - Memory allocation error
759+ SZ_ERROR_PARAM - Incorrect paramater
760+ SZ_ERROR_OUTPUT_EOF - output buffer overflow
761+ SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
762+*/
763+
764+SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
765+ const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
766+ ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
767+
768+#endif
769--- a/include/linux/lzma/Types.h 1970-01-01 01:00:00.000000000 +0100
770+++ b/include/linux/lzma/Types.h 2010-03-20 23:19:44.013465852 +0100
771@@ -0,0 +1,130 @@
772+/* Types.h -- Basic types
773+2008-04-11
774+Igor Pavlov
775+Public domain */
776+
777+#ifndef __7Z_TYPES_H
778+#define __7Z_TYPES_H
779+
780+#define SZ_OK 0
781+
782+#define SZ_ERROR_DATA 1
783+#define SZ_ERROR_MEM 2
784+#define SZ_ERROR_CRC 3
785+#define SZ_ERROR_UNSUPPORTED 4
786+#define SZ_ERROR_PARAM 5
787+#define SZ_ERROR_INPUT_EOF 6
788+#define SZ_ERROR_OUTPUT_EOF 7
789+#define SZ_ERROR_READ 8
790+#define SZ_ERROR_WRITE 9
791+#define SZ_ERROR_PROGRESS 10
792+#define SZ_ERROR_FAIL 11
793+#define SZ_ERROR_THREAD 12
794+
795+#define SZ_ERROR_ARCHIVE 16
796+#define SZ_ERROR_NO_ARCHIVE 17
797+
798+typedef int SRes;
799+
800+#ifndef RINOK
801+#define RINOK(x) { int __result__ = (x); if (__result__ != 0) return __result__; }
802+#endif
803+
804+typedef unsigned char Byte;
805+typedef short Int16;
806+typedef unsigned short UInt16;
807+
808+#ifdef _LZMA_UINT32_IS_ULONG
809+typedef long Int32;
810+typedef unsigned long UInt32;
811+#else
812+typedef int Int32;
813+typedef unsigned int UInt32;
814+#endif
815+
816+/* #define _SZ_NO_INT_64 */
817+/* define it if your compiler doesn't support 64-bit integers */
818+
819+#ifdef _SZ_NO_INT_64
820+
821+typedef long Int64;
822+typedef unsigned long UInt64;
823+
824+#else
825+
826+#if defined(_MSC_VER) || defined(__BORLANDC__)
827+typedef __int64 Int64;
828+typedef unsigned __int64 UInt64;
829+#else
830+typedef long long int Int64;
831+typedef unsigned long long int UInt64;
832+#endif
833+
834+#endif
835+
836+#ifdef _LZMA_NO_SYSTEM_SIZE_T
837+typedef UInt32 SizeT;
838+#else
839+#include <stddef.h>
840+typedef size_t SizeT;
841+#endif
842+
843+typedef int Bool;
844+#define True 1
845+#define False 0
846+
847+
848+#ifdef _MSC_VER
849+
850+#if _MSC_VER >= 1300
851+#define MY_NO_INLINE __declspec(noinline)
852+#else
853+#define MY_NO_INLINE
854+#endif
855+
856+#define MY_CDECL __cdecl
857+#define MY_STD_CALL __stdcall
858+#define MY_FAST_CALL MY_NO_INLINE __fastcall
859+
860+#else
861+
862+#define MY_CDECL
863+#define MY_STD_CALL
864+#define MY_FAST_CALL
865+
866+#endif
867+
868+
869+/* The following interfaces use first parameter as pointer to structure */
870+
871+typedef struct
872+{
873+ SRes (*Read)(void *p, void *buf, size_t *size);
874+ /* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
875+ (output(*size) < input(*size)) is allowed */
876+} ISeqInStream;
877+
878+typedef struct
879+{
880+ size_t (*Write)(void *p, const void *buf, size_t size);
881+ /* Returns: result - the number of actually written bytes.
882+ (result < size) means error */
883+} ISeqOutStream;
884+
885+typedef struct
886+{
887+ SRes (*Progress)(void *p, UInt64 inSize, UInt64 outSize);
888+ /* Returns: result. (result != SZ_OK) means break.
889+ Value (UInt64)(Int64)-1 for size means unknown value. */
890+} ICompressProgress;
891+
892+typedef struct
893+{
894+ void *(*Alloc)(void *p, size_t size);
895+ void (*Free)(void *p, void *address); /* address can be 0 */
896+} ISzAlloc;
897+
898+#define IAlloc_Alloc(p, size) (p)->Alloc((p), size)
899+#define IAlloc_Free(p, a) (p)->Free((p), a)
900+
901+#endif
902--- a/lzma/LzFind.c 1970-01-01 01:00:00.000000000 +0100
903+++ b/lzma/LzFind.c 2010-03-20 23:19:47.990406000 +0100
904@@ -0,0 +1,753 @@
905+/* LzFind.c -- Match finder for LZ algorithms
906+2008-04-04
907+Copyright (c) 1999-2008 Igor Pavlov
908+Read LzFind.h for license options */
909+
910+#include <string.h>
911+
912+#include "LzFind.h"
913+#include "LzHash.h"
914+
915+#define kEmptyHashValue 0
916+#define kMaxValForNormalize ((UInt32)0xFFFFFFFF)
917+#define kNormalizeStepMin (1 << 10) /* it must be power of 2 */
918+#define kNormalizeMask (~(kNormalizeStepMin - 1))
919+#define kMaxHistorySize ((UInt32)3 << 30)
920+
921+#define kStartMaxLen 3
922+
923+static void LzInWindow_Free(CMatchFinder *p, ISzAlloc *alloc)
924+{
925+ if (!p->directInput)
926+ {
927+ alloc->Free(alloc, p->bufferBase);
928+ p->bufferBase = 0;
929+ }
930+}
931+
932+/* keepSizeBefore + keepSizeAfter + keepSizeReserv must be < 4G) */
933+
934+static int LzInWindow_Create(CMatchFinder *p, UInt32 keepSizeReserv, ISzAlloc *alloc)
935+{
936+ UInt32 blockSize = p->keepSizeBefore + p->keepSizeAfter + keepSizeReserv;
937+ if (p->directInput)
938+ {
939+ p->blockSize = blockSize;
940+ return 1;
941+ }
942+ if (p->bufferBase == 0 || p->blockSize != blockSize)
943+ {
944+ LzInWindow_Free(p, alloc);
945+ p->blockSize = blockSize;
946+ p->bufferBase = (Byte *)alloc->Alloc(alloc, (size_t)blockSize);
947+ }
948+ return (p->bufferBase != 0);
949+}
950+
951+Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p) { return p->buffer; }
952+Byte MatchFinder_GetIndexByte(CMatchFinder *p, Int32 index) { return p->buffer[index]; }
953+
954+UInt32 MatchFinder_GetNumAvailableBytes(CMatchFinder *p) { return p->streamPos - p->pos; }
955+
956+void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue)
957+{
958+ p->posLimit -= subValue;
959+ p->pos -= subValue;
960+ p->streamPos -= subValue;
961+}
962+
963+static void MatchFinder_ReadBlock(CMatchFinder *p)
964+{
965+ if (p->streamEndWasReached || p->result != SZ_OK)
966+ return;
967+ for (;;)
968+ {
969+ Byte *dest = p->buffer + (p->streamPos - p->pos);
970+ size_t size = (p->bufferBase + p->blockSize - dest);
971+ if (size == 0)
972+ return;
973+ p->result = p->stream->Read(p->stream, dest, &size);
974+ if (p->result != SZ_OK)
975+ return;
976+ if (size == 0)
977+ {
978+ p->streamEndWasReached = 1;
979+ return;
980+ }
981+ p->streamPos += (UInt32)size;
982+ if (p->streamPos - p->pos > p->keepSizeAfter)
983+ return;
984+ }
985+}
986+
987+void MatchFinder_MoveBlock(CMatchFinder *p)
988+{
989+ memmove(p->bufferBase,
990+ p->buffer - p->keepSizeBefore,
991+ (size_t)(p->streamPos - p->pos + p->keepSizeBefore));
992+ p->buffer = p->bufferBase + p->keepSizeBefore;
993+}
994+
995+int MatchFinder_NeedMove(CMatchFinder *p)
996+{
997+ /* if (p->streamEndWasReached) return 0; */
998+ return ((size_t)(p->bufferBase + p->blockSize - p->buffer) <= p->keepSizeAfter);
999+}
1000+
1001+void MatchFinder_ReadIfRequired(CMatchFinder *p)
1002+{
1003+ if (p->streamEndWasReached)
1004+ return;
1005+ if (p->keepSizeAfter >= p->streamPos - p->pos)
1006+ MatchFinder_ReadBlock(p);
1007+}
1008+
1009+static void MatchFinder_CheckAndMoveAndRead(CMatchFinder *p)
1010+{
1011+ if (MatchFinder_NeedMove(p))
1012+ MatchFinder_MoveBlock(p);
1013+ MatchFinder_ReadBlock(p);
1014+}
1015+
1016+static void MatchFinder_SetDefaultSettings(CMatchFinder *p)
1017+{
1018+ p->cutValue = 32;
1019+ p->btMode = 1;
1020+ p->numHashBytes = 4;
1021+ /* p->skipModeBits = 0; */
1022+ p->directInput = 0;
1023+ p->bigHash = 0;
1024+}
1025+
1026+#define kCrcPoly 0xEDB88320
1027+
1028+void MatchFinder_Construct(CMatchFinder *p)
1029+{
1030+ UInt32 i;
1031+ p->bufferBase = 0;
1032+ p->directInput = 0;
1033+ p->hash = 0;
1034+ MatchFinder_SetDefaultSettings(p);
1035+
1036+ for (i = 0; i < 256; i++)
1037+ {
1038+ UInt32 r = i;
1039+ int j;
1040+ for (j = 0; j < 8; j++)
1041+ r = (r >> 1) ^ (kCrcPoly & ~((r & 1) - 1));
1042+ p->crc[i] = r;
1043+ }
1044+}
1045+
1046+static void MatchFinder_FreeThisClassMemory(CMatchFinder *p, ISzAlloc *alloc)
1047+{
1048+ alloc->Free(alloc, p->hash);
1049+ p->hash = 0;
1050+}
1051+
1052+void MatchFinder_Free(CMatchFinder *p, ISzAlloc *alloc)
1053+{
1054+ MatchFinder_FreeThisClassMemory(p, alloc);
1055+ LzInWindow_Free(p, alloc);
1056+}
1057+
1058+static CLzRef* AllocRefs(UInt32 num, ISzAlloc *alloc)
1059+{
1060+ size_t sizeInBytes = (size_t)num * sizeof(CLzRef);
1061+ if (sizeInBytes / sizeof(CLzRef) != num)
1062+ return 0;
1063+ return (CLzRef *)alloc->Alloc(alloc, sizeInBytes);
1064+}
1065+
1066+int MatchFinder_Create(CMatchFinder *p, UInt32 historySize,
1067+ UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter,
1068+ ISzAlloc *alloc)
1069+{
1070+ UInt32 sizeReserv;
1071+ if (historySize > kMaxHistorySize)
1072+ {
1073+ MatchFinder_Free(p, alloc);
1074+ return 0;
1075+ }
1076+ sizeReserv = historySize >> 1;
1077+ if (historySize > ((UInt32)2 << 30))
1078+ sizeReserv = historySize >> 2;
1079+ sizeReserv += (keepAddBufferBefore + matchMaxLen + keepAddBufferAfter) / 2 + (1 << 19);
1080+
1081+ p->keepSizeBefore = historySize + keepAddBufferBefore + 1;
1082+ p->keepSizeAfter = matchMaxLen + keepAddBufferAfter;
1083+ /* we need one additional byte, since we use MoveBlock after pos++ and before dictionary using */
1084+ if (LzInWindow_Create(p, sizeReserv, alloc))
1085+ {
1086+ UInt32 newCyclicBufferSize = (historySize /* >> p->skipModeBits */) + 1;
1087+ UInt32 hs;
1088+ p->matchMaxLen = matchMaxLen;
1089+ {
1090+ p->fixedHashSize = 0;
1091+ if (p->numHashBytes == 2)
1092+ hs = (1 << 16) - 1;
1093+ else
1094+ {
1095+ hs = historySize - 1;
1096+ hs |= (hs >> 1);
1097+ hs |= (hs >> 2);
1098+ hs |= (hs >> 4);
1099+ hs |= (hs >> 8);
1100+ hs >>= 1;
1101+ /* hs >>= p->skipModeBits; */
1102+ hs |= 0xFFFF; /* don't change it! It's required for Deflate */
1103+ if (hs > (1 << 24))
1104+ {
1105+ if (p->numHashBytes == 3)
1106+ hs = (1 << 24) - 1;
1107+ else
1108+ hs >>= 1;
1109+ }
1110+ }
1111+ p->hashMask = hs;
1112+ hs++;
1113+ if (p->numHashBytes > 2) p->fixedHashSize += kHash2Size;
1114+ if (p->numHashBytes > 3) p->fixedHashSize += kHash3Size;
1115+ if (p->numHashBytes > 4) p->fixedHashSize += kHash4Size;
1116+ hs += p->fixedHashSize;
1117+ }
1118+
1119+ {
1120+ UInt32 prevSize = p->hashSizeSum + p->numSons;
1121+ UInt32 newSize;
1122+ p->historySize = historySize;
1123+ p->hashSizeSum = hs;
1124+ p->cyclicBufferSize = newCyclicBufferSize;
1125+ p->numSons = (p->btMode ? newCyclicBufferSize * 2 : newCyclicBufferSize);
1126+ newSize = p->hashSizeSum + p->numSons;
1127+ if (p->hash != 0 && prevSize == newSize)
1128+ return 1;
1129+ MatchFinder_FreeThisClassMemory(p, alloc);
1130+ p->hash = AllocRefs(newSize, alloc);
1131+ if (p->hash != 0)
1132+ {
1133+ p->son = p->hash + p->hashSizeSum;
1134+ return 1;
1135+ }
1136+ }
1137+ }
1138+ MatchFinder_Free(p, alloc);
1139+ return 0;
1140+}
1141+
1142+static void MatchFinder_SetLimits(CMatchFinder *p)
1143+{
1144+ UInt32 limit = kMaxValForNormalize - p->pos;
1145+ UInt32 limit2 = p->cyclicBufferSize - p->cyclicBufferPos;
1146+ if (limit2 < limit)
1147+ limit = limit2;
1148+ limit2 = p->streamPos - p->pos;
1149+ if (limit2 <= p->keepSizeAfter)
1150+ {
1151+ if (limit2 > 0)
1152+ limit2 = 1;
1153+ }
1154+ else
1155+ limit2 -= p->keepSizeAfter;
1156+ if (limit2 < limit)
1157+ limit = limit2;
1158+ {
1159+ UInt32 lenLimit = p->streamPos - p->pos;
1160+ if (lenLimit > p->matchMaxLen)
1161+ lenLimit = p->matchMaxLen;
1162+ p->lenLimit = lenLimit;
1163+ }
1164+ p->posLimit = p->pos + limit;
1165+}
1166+
1167+void MatchFinder_Init(CMatchFinder *p)
1168+{
1169+ UInt32 i;
1170+ for(i = 0; i < p->hashSizeSum; i++)
1171+ p->hash[i] = kEmptyHashValue;
1172+ p->cyclicBufferPos = 0;
1173+ p->buffer = p->bufferBase;
1174+ p->pos = p->streamPos = p->cyclicBufferSize;
1175+ p->result = SZ_OK;
1176+ p->streamEndWasReached = 0;
1177+ MatchFinder_ReadBlock(p);
1178+ MatchFinder_SetLimits(p);
1179+}
1180+
1181+static UInt32 MatchFinder_GetSubValue(CMatchFinder *p)
1182+{
1183+ return (p->pos - p->historySize - 1) & kNormalizeMask;
1184+}
1185+
1186+void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, UInt32 numItems)
1187+{
1188+ UInt32 i;
1189+ for (i = 0; i < numItems; i++)
1190+ {
1191+ UInt32 value = items[i];
1192+ if (value <= subValue)
1193+ value = kEmptyHashValue;
1194+ else
1195+ value -= subValue;
1196+ items[i] = value;
1197+ }
1198+}
1199+
1200+static void MatchFinder_Normalize(CMatchFinder *p)
1201+{
1202+ UInt32 subValue = MatchFinder_GetSubValue(p);
1203+ MatchFinder_Normalize3(subValue, p->hash, p->hashSizeSum + p->numSons);
1204+ MatchFinder_ReduceOffsets(p, subValue);
1205+}
1206+
1207+static void MatchFinder_CheckLimits(CMatchFinder *p)
1208+{
1209+ if (p->pos == kMaxValForNormalize)
1210+ MatchFinder_Normalize(p);
1211+ if (!p->streamEndWasReached && p->keepSizeAfter == p->streamPos - p->pos)
1212+ MatchFinder_CheckAndMoveAndRead(p);
1213+ if (p->cyclicBufferPos == p->cyclicBufferSize)
1214+ p->cyclicBufferPos = 0;
1215+ MatchFinder_SetLimits(p);
1216+}
1217+
1218+static UInt32 * Hc_GetMatchesSpec(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
1219+ UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue,
1220+ UInt32 *distances, UInt32 maxLen)
1221+{
1222+ son[_cyclicBufferPos] = curMatch;
1223+ for (;;)
1224+ {
1225+ UInt32 delta = pos - curMatch;
1226+ if (cutValue-- == 0 || delta >= _cyclicBufferSize)
1227+ return distances;
1228+ {
1229+ const Byte *pb = cur - delta;
1230+ curMatch = son[_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)];
1231+ if (pb[maxLen] == cur[maxLen] && *pb == *cur)
1232+ {
1233+ UInt32 len = 0;
1234+ while(++len != lenLimit)
1235+ if (pb[len] != cur[len])
1236+ break;
1237+ if (maxLen < len)
1238+ {
1239+ *distances++ = maxLen = len;
1240+ *distances++ = delta - 1;
1241+ if (len == lenLimit)
1242+ return distances;
1243+ }
1244+ }
1245+ }
1246+ }
1247+}
1248+
1249+UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
1250+ UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue,
1251+ UInt32 *distances, UInt32 maxLen)
1252+{
1253+ CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1;
1254+ CLzRef *ptr1 = son + (_cyclicBufferPos << 1);
1255+ UInt32 len0 = 0, len1 = 0;
1256+ for (;;)
1257+ {
1258+ UInt32 delta = pos - curMatch;
1259+ if (cutValue-- == 0 || delta >= _cyclicBufferSize)
1260+ {
1261+ *ptr0 = *ptr1 = kEmptyHashValue;
1262+ return distances;
1263+ }
1264+ {
1265+ CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1);
1266+ const Byte *pb = cur - delta;
1267+ UInt32 len = (len0 < len1 ? len0 : len1);
1268+ if (pb[len] == cur[len])
1269+ {
1270+ if (++len != lenLimit && pb[len] == cur[len])
1271+ while(++len != lenLimit)
1272+ if (pb[len] != cur[len])
1273+ break;
1274+ if (maxLen < len)
1275+ {
1276+ *distances++ = maxLen = len;
1277+ *distances++ = delta - 1;
1278+ if (len == lenLimit)
1279+ {
1280+ *ptr1 = pair[0];
1281+ *ptr0 = pair[1];
1282+ return distances;
1283+ }
1284+ }
1285+ }
1286+ if (pb[len] < cur[len])
1287+ {
1288+ *ptr1 = curMatch;
1289+ ptr1 = pair + 1;
1290+ curMatch = *ptr1;
1291+ len1 = len;
1292+ }
1293+ else
1294+ {
1295+ *ptr0 = curMatch;
1296+ ptr0 = pair;
1297+ curMatch = *ptr0;
1298+ len0 = len;
1299+ }
1300+ }
1301+ }
1302+}
1303+
1304+static void SkipMatchesSpec(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
1305+ UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue)
1306+{
1307+ CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1;
1308+ CLzRef *ptr1 = son + (_cyclicBufferPos << 1);
1309+ UInt32 len0 = 0, len1 = 0;
1310+ for (;;)
1311+ {
1312+ UInt32 delta = pos - curMatch;
1313+ if (cutValue-- == 0 || delta >= _cyclicBufferSize)
1314+ {
1315+ *ptr0 = *ptr1 = kEmptyHashValue;
1316+ return;
1317+ }
1318+ {
1319+ CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1);
1320+ const Byte *pb = cur - delta;
1321+ UInt32 len = (len0 < len1 ? len0 : len1);
1322+ if (pb[len] == cur[len])
1323+ {
1324+ while(++len != lenLimit)
1325+ if (pb[len] != cur[len])
1326+ break;
1327+ {
1328+ if (len == lenLimit)
1329+ {
1330+ *ptr1 = pair[0];
1331+ *ptr0 = pair[1];
1332+ return;
1333+ }
1334+ }
1335+ }
1336+ if (pb[len] < cur[len])
1337+ {
1338+ *ptr1 = curMatch;
1339+ ptr1 = pair + 1;
1340+ curMatch = *ptr1;
1341+ len1 = len;
1342+ }
1343+ else
1344+ {
1345+ *ptr0 = curMatch;
1346+ ptr0 = pair;
1347+ curMatch = *ptr0;
1348+ len0 = len;
1349+ }
1350+ }
1351+ }
1352+}
1353+
1354+#define MOVE_POS \
1355+ ++p->cyclicBufferPos; \
1356+ p->buffer++; \
1357+ if (++p->pos == p->posLimit) MatchFinder_CheckLimits(p);
1358+
1359+#define MOVE_POS_RET MOVE_POS return offset;
1360+
1361+static void MatchFinder_MovePos(CMatchFinder *p) { MOVE_POS; }
1362+
1363+#define GET_MATCHES_HEADER2(minLen, ret_op) \
1364+ UInt32 lenLimit; UInt32 hashValue; const Byte *cur; UInt32 curMatch; \
1365+ lenLimit = p->lenLimit; { if (lenLimit < minLen) { MatchFinder_MovePos(p); ret_op; }} \
1366+ cur = p->buffer;
1367+
1368+#define GET_MATCHES_HEADER(minLen) GET_MATCHES_HEADER2(minLen, return 0)
1369+#define SKIP_HEADER(minLen) GET_MATCHES_HEADER2(minLen, continue)
1370+
1371+#define MF_PARAMS(p) p->pos, p->buffer, p->son, p->cyclicBufferPos, p->cyclicBufferSize, p->cutValue
1372+
1373+#define GET_MATCHES_FOOTER(offset, maxLen) \
1374+ offset = (UInt32)(GetMatchesSpec1(lenLimit, curMatch, MF_PARAMS(p), \
1375+ distances + offset, maxLen) - distances); MOVE_POS_RET;
1376+
1377+#define SKIP_FOOTER \
1378+ SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p)); MOVE_POS;
1379+
1380+static UInt32 Bt2_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1381+{
1382+ UInt32 offset;
1383+ GET_MATCHES_HEADER(2)
1384+ HASH2_CALC;
1385+ curMatch = p->hash[hashValue];
1386+ p->hash[hashValue] = p->pos;
1387+ offset = 0;
1388+ GET_MATCHES_FOOTER(offset, 1)
1389+}
1390+
1391+UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1392+{
1393+ UInt32 offset;
1394+ GET_MATCHES_HEADER(3)
1395+ HASH_ZIP_CALC;
1396+ curMatch = p->hash[hashValue];
1397+ p->hash[hashValue] = p->pos;
1398+ offset = 0;
1399+ GET_MATCHES_FOOTER(offset, 2)
1400+}
1401+
1402+static UInt32 Bt3_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1403+{
1404+ UInt32 hash2Value, delta2, maxLen, offset;
1405+ GET_MATCHES_HEADER(3)
1406+
1407+ HASH3_CALC;
1408+
1409+ delta2 = p->pos - p->hash[hash2Value];
1410+ curMatch = p->hash[kFix3HashSize + hashValue];
1411+
1412+ p->hash[hash2Value] =
1413+ p->hash[kFix3HashSize + hashValue] = p->pos;
1414+
1415+
1416+ maxLen = 2;
1417+ offset = 0;
1418+ if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
1419+ {
1420+ for (; maxLen != lenLimit; maxLen++)
1421+ if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
1422+ break;
1423+ distances[0] = maxLen;
1424+ distances[1] = delta2 - 1;
1425+ offset = 2;
1426+ if (maxLen == lenLimit)
1427+ {
1428+ SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p));
1429+ MOVE_POS_RET;
1430+ }
1431+ }
1432+ GET_MATCHES_FOOTER(offset, maxLen)
1433+}
1434+
1435+static UInt32 Bt4_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1436+{
1437+ UInt32 hash2Value, hash3Value, delta2, delta3, maxLen, offset;
1438+ GET_MATCHES_HEADER(4)
1439+
1440+ HASH4_CALC;
1441+
1442+ delta2 = p->pos - p->hash[ hash2Value];
1443+ delta3 = p->pos - p->hash[kFix3HashSize + hash3Value];
1444+ curMatch = p->hash[kFix4HashSize + hashValue];
1445+
1446+ p->hash[ hash2Value] =
1447+ p->hash[kFix3HashSize + hash3Value] =
1448+ p->hash[kFix4HashSize + hashValue] = p->pos;
1449+
1450+ maxLen = 1;
1451+ offset = 0;
1452+ if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
1453+ {
1454+ distances[0] = maxLen = 2;
1455+ distances[1] = delta2 - 1;
1456+ offset = 2;
1457+ }
1458+ if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur)
1459+ {
1460+ maxLen = 3;
1461+ distances[offset + 1] = delta3 - 1;
1462+ offset += 2;
1463+ delta2 = delta3;
1464+ }
1465+ if (offset != 0)
1466+ {
1467+ for (; maxLen != lenLimit; maxLen++)
1468+ if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
1469+ break;
1470+ distances[offset - 2] = maxLen;
1471+ if (maxLen == lenLimit)
1472+ {
1473+ SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p));
1474+ MOVE_POS_RET;
1475+ }
1476+ }
1477+ if (maxLen < 3)
1478+ maxLen = 3;
1479+ GET_MATCHES_FOOTER(offset, maxLen)
1480+}
1481+
1482+static UInt32 Hc4_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1483+{
1484+ UInt32 hash2Value, hash3Value, delta2, delta3, maxLen, offset;
1485+ GET_MATCHES_HEADER(4)
1486+
1487+ HASH4_CALC;
1488+
1489+ delta2 = p->pos - p->hash[ hash2Value];
1490+ delta3 = p->pos - p->hash[kFix3HashSize + hash3Value];
1491+ curMatch = p->hash[kFix4HashSize + hashValue];
1492+
1493+ p->hash[ hash2Value] =
1494+ p->hash[kFix3HashSize + hash3Value] =
1495+ p->hash[kFix4HashSize + hashValue] = p->pos;
1496+
1497+ maxLen = 1;
1498+ offset = 0;
1499+ if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
1500+ {
1501+ distances[0] = maxLen = 2;
1502+ distances[1] = delta2 - 1;
1503+ offset = 2;
1504+ }
1505+ if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur)
1506+ {
1507+ maxLen = 3;
1508+ distances[offset + 1] = delta3 - 1;
1509+ offset += 2;
1510+ delta2 = delta3;
1511+ }
1512+ if (offset != 0)
1513+ {
1514+ for (; maxLen != lenLimit; maxLen++)
1515+ if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
1516+ break;
1517+ distances[offset - 2] = maxLen;
1518+ if (maxLen == lenLimit)
1519+ {
1520+ p->son[p->cyclicBufferPos] = curMatch;
1521+ MOVE_POS_RET;
1522+ }
1523+ }
1524+ if (maxLen < 3)
1525+ maxLen = 3;
1526+ offset = (UInt32)(Hc_GetMatchesSpec(lenLimit, curMatch, MF_PARAMS(p),
1527+ distances + offset, maxLen) - (distances));
1528+ MOVE_POS_RET
1529+}
1530+
1531+UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1532+{
1533+ UInt32 offset;
1534+ GET_MATCHES_HEADER(3)
1535+ HASH_ZIP_CALC;
1536+ curMatch = p->hash[hashValue];
1537+ p->hash[hashValue] = p->pos;
1538+ offset = (UInt32)(Hc_GetMatchesSpec(lenLimit, curMatch, MF_PARAMS(p),
1539+ distances, 2) - (distances));
1540+ MOVE_POS_RET
1541+}
1542+
1543+static void Bt2_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1544+{
1545+ do
1546+ {
1547+ SKIP_HEADER(2)
1548+ HASH2_CALC;
1549+ curMatch = p->hash[hashValue];
1550+ p->hash[hashValue] = p->pos;
1551+ SKIP_FOOTER
1552+ }
1553+ while (--num != 0);
1554+}
1555+
1556+void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1557+{
1558+ do
1559+ {
1560+ SKIP_HEADER(3)
1561+ HASH_ZIP_CALC;
1562+ curMatch = p->hash[hashValue];
1563+ p->hash[hashValue] = p->pos;
1564+ SKIP_FOOTER
1565+ }
1566+ while (--num != 0);
1567+}
1568+
1569+static void Bt3_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1570+{
1571+ do
1572+ {
1573+ UInt32 hash2Value;
1574+ SKIP_HEADER(3)
1575+ HASH3_CALC;
1576+ curMatch = p->hash[kFix3HashSize + hashValue];
1577+ p->hash[hash2Value] =
1578+ p->hash[kFix3HashSize + hashValue] = p->pos;
1579+ SKIP_FOOTER
1580+ }
1581+ while (--num != 0);
1582+}
1583+
1584+static void Bt4_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1585+{
1586+ do
1587+ {
1588+ UInt32 hash2Value, hash3Value;
1589+ SKIP_HEADER(4)
1590+ HASH4_CALC;
1591+ curMatch = p->hash[kFix4HashSize + hashValue];
1592+ p->hash[ hash2Value] =
1593+ p->hash[kFix3HashSize + hash3Value] = p->pos;
1594+ p->hash[kFix4HashSize + hashValue] = p->pos;
1595+ SKIP_FOOTER
1596+ }
1597+ while (--num != 0);
1598+}
1599+
1600+static void Hc4_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1601+{
1602+ do
1603+ {
1604+ UInt32 hash2Value, hash3Value;
1605+ SKIP_HEADER(4)
1606+ HASH4_CALC;
1607+ curMatch = p->hash[kFix4HashSize + hashValue];
1608+ p->hash[ hash2Value] =
1609+ p->hash[kFix3HashSize + hash3Value] =
1610+ p->hash[kFix4HashSize + hashValue] = p->pos;
1611+ p->son[p->cyclicBufferPos] = curMatch;
1612+ MOVE_POS
1613+ }
1614+ while (--num != 0);
1615+}
1616+
1617+void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1618+{
1619+ do
1620+ {
1621+ SKIP_HEADER(3)
1622+ HASH_ZIP_CALC;
1623+ curMatch = p->hash[hashValue];
1624+ p->hash[hashValue] = p->pos;
1625+ p->son[p->cyclicBufferPos] = curMatch;
1626+ MOVE_POS
1627+ }
1628+ while (--num != 0);
1629+}
1630+
1631+void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable)
1632+{
1633+ vTable->Init = (Mf_Init_Func)MatchFinder_Init;
1634+ vTable->GetIndexByte = (Mf_GetIndexByte_Func)MatchFinder_GetIndexByte;
1635+ vTable->GetNumAvailableBytes = (Mf_GetNumAvailableBytes_Func)MatchFinder_GetNumAvailableBytes;
1636+ vTable->GetPointerToCurrentPos = (Mf_GetPointerToCurrentPos_Func)MatchFinder_GetPointerToCurrentPos;
1637+ if (!p->btMode)
1638+ {
1639+ vTable->GetMatches = (Mf_GetMatches_Func)Hc4_MatchFinder_GetMatches;
1640+ vTable->Skip = (Mf_Skip_Func)Hc4_MatchFinder_Skip;
1641+ }
1642+ else if (p->numHashBytes == 2)
1643+ {
1644+ vTable->GetMatches = (Mf_GetMatches_Func)Bt2_MatchFinder_GetMatches;
1645+ vTable->Skip = (Mf_Skip_Func)Bt2_MatchFinder_Skip;
1646+ }
1647+ else if (p->numHashBytes == 3)
1648+ {
1649+ vTable->GetMatches = (Mf_GetMatches_Func)Bt3_MatchFinder_GetMatches;
1650+ vTable->Skip = (Mf_Skip_Func)Bt3_MatchFinder_Skip;
1651+ }
1652+ else
1653+ {
1654+ vTable->GetMatches = (Mf_GetMatches_Func)Bt4_MatchFinder_GetMatches;
1655+ vTable->Skip = (Mf_Skip_Func)Bt4_MatchFinder_Skip;
1656+ }
1657+}
1658--- a/lzma/LzmaDec.c 1970-01-01 01:00:00.000000000 +0100
1659+++ b/lzma/LzmaDec.c 2010-03-20 23:19:44.413562000 +0100
1660@@ -0,0 +1,1014 @@
1661+/* LzmaDec.c -- LZMA Decoder
1662+2008-04-29
1663+Copyright (c) 1999-2008 Igor Pavlov
1664+Read LzmaDec.h for license options */
1665+
1666+#include "LzmaDec.h"
1667+
1668+#include <string.h>
1669+
1670+#define kNumTopBits 24
1671+#define kTopValue ((UInt32)1 << kNumTopBits)
1672+
1673+#define kNumBitModelTotalBits 11
1674+#define kBitModelTotal (1 << kNumBitModelTotalBits)
1675+#define kNumMoveBits 5
1676+
1677+#define RC_INIT_SIZE 5
1678+
1679+#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
1680+
1681+#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
1682+#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
1683+#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
1684+#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
1685+ { UPDATE_0(p); i = (i + i); A0; } else \
1686+ { UPDATE_1(p); i = (i + i) + 1; A1; }
1687+#define GET_BIT(p, i) GET_BIT2(p, i, ; , ;)
1688+
1689+#define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); }
1690+#define TREE_DECODE(probs, limit, i) \
1691+ { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
1692+
1693+/* #define _LZMA_SIZE_OPT */
1694+
1695+#ifdef _LZMA_SIZE_OPT
1696+#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
1697+#else
1698+#define TREE_6_DECODE(probs, i) \
1699+ { i = 1; \
1700+ TREE_GET_BIT(probs, i); \
1701+ TREE_GET_BIT(probs, i); \
1702+ TREE_GET_BIT(probs, i); \
1703+ TREE_GET_BIT(probs, i); \
1704+ TREE_GET_BIT(probs, i); \
1705+ TREE_GET_BIT(probs, i); \
1706+ i -= 0x40; }
1707+#endif
1708+
1709+#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
1710+
1711+#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
1712+#define UPDATE_0_CHECK range = bound;
1713+#define UPDATE_1_CHECK range -= bound; code -= bound;
1714+#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
1715+ { UPDATE_0_CHECK; i = (i + i); A0; } else \
1716+ { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
1717+#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
1718+#define TREE_DECODE_CHECK(probs, limit, i) \
1719+ { i = 1; do { GET_BIT_CHECK(probs + i, i) } while(i < limit); i -= limit; }
1720+
1721+
1722+#define kNumPosBitsMax 4
1723+#define kNumPosStatesMax (1 << kNumPosBitsMax)
1724+
1725+#define kLenNumLowBits 3
1726+#define kLenNumLowSymbols (1 << kLenNumLowBits)
1727+#define kLenNumMidBits 3
1728+#define kLenNumMidSymbols (1 << kLenNumMidBits)
1729+#define kLenNumHighBits 8
1730+#define kLenNumHighSymbols (1 << kLenNumHighBits)
1731+
1732+#define LenChoice 0
1733+#define LenChoice2 (LenChoice + 1)
1734+#define LenLow (LenChoice2 + 1)
1735+#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
1736+#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
1737+#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
1738+
1739+
1740+#define kNumStates 12
1741+#define kNumLitStates 7
1742+
1743+#define kStartPosModelIndex 4
1744+#define kEndPosModelIndex 14
1745+#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
1746+
1747+#define kNumPosSlotBits 6
1748+#define kNumLenToPosStates 4
1749+
1750+#define kNumAlignBits 4
1751+#define kAlignTableSize (1 << kNumAlignBits)
1752+
1753+#define kMatchMinLen 2
1754+#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
1755+
1756+#define IsMatch 0
1757+#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
1758+#define IsRepG0 (IsRep + kNumStates)
1759+#define IsRepG1 (IsRepG0 + kNumStates)
1760+#define IsRepG2 (IsRepG1 + kNumStates)
1761+#define IsRep0Long (IsRepG2 + kNumStates)
1762+#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
1763+#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
1764+#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
1765+#define LenCoder (Align + kAlignTableSize)
1766+#define RepLenCoder (LenCoder + kNumLenProbs)
1767+#define Literal (RepLenCoder + kNumLenProbs)
1768+
1769+#define LZMA_BASE_SIZE 1846
1770+#define LZMA_LIT_SIZE 768
1771+
1772+#define LzmaProps_GetNumProbs(p) ((UInt32)LZMA_BASE_SIZE + (LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
1773+
1774+#if Literal != LZMA_BASE_SIZE
1775+StopCompilingDueBUG
1776+#endif
1777+
1778+/*
1779+#define LZMA_STREAM_WAS_FINISHED_ID (-1)
1780+#define LZMA_SPEC_LEN_OFFSET (-3)
1781+*/
1782+
1783+Byte kLiteralNextStates[kNumStates * 2] =
1784+{
1785+ 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5,
1786+ 7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10
1787+};
1788+
1789+#define LZMA_DIC_MIN (1 << 12)
1790+
1791+/* First LZMA-symbol is always decoded.
1792+And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization
1793+Out:
1794+ Result:
1795+ 0 - OK
1796+ 1 - Error
1797+ p->remainLen:
1798+ < kMatchSpecLenStart : normal remain
1799+ = kMatchSpecLenStart : finished
1800+ = kMatchSpecLenStart + 1 : Flush marker
1801+ = kMatchSpecLenStart + 2 : State Init Marker
1802+*/
1803+
1804+static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
1805+{
1806+ CLzmaProb *probs = p->probs;
1807+
1808+ unsigned state = p->state;
1809+ UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
1810+ unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
1811+ unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1;
1812+ unsigned lc = p->prop.lc;
1813+
1814+ Byte *dic = p->dic;
1815+ SizeT dicBufSize = p->dicBufSize;
1816+ SizeT dicPos = p->dicPos;
1817+
1818+ UInt32 processedPos = p->processedPos;
1819+ UInt32 checkDicSize = p->checkDicSize;
1820+ unsigned len = 0;
1821+
1822+ const Byte *buf = p->buf;
1823+ UInt32 range = p->range;
1824+ UInt32 code = p->code;
1825+
1826+ do
1827+ {
1828+ CLzmaProb *prob;
1829+ UInt32 bound;
1830+ unsigned ttt;
1831+ unsigned posState = processedPos & pbMask;
1832+
1833+ prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
1834+ IF_BIT_0(prob)
1835+ {
1836+ unsigned symbol;
1837+ UPDATE_0(prob);
1838+ prob = probs + Literal;
1839+ if (checkDicSize != 0 || processedPos != 0)
1840+ prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) +
1841+ (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc))));
1842+
1843+ if (state < kNumLitStates)
1844+ {
1845+ symbol = 1;
1846+ do { GET_BIT(prob + symbol, symbol) } while (symbol < 0x100);
1847+ }
1848+ else
1849+ {
1850+ unsigned matchByte = p->dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
1851+ unsigned offs = 0x100;
1852+ symbol = 1;
1853+ do
1854+ {
1855+ unsigned bit;
1856+ CLzmaProb *probLit;
1857+ matchByte <<= 1;
1858+ bit = (matchByte & offs);
1859+ probLit = prob + offs + bit + symbol;
1860+ GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit)
1861+ }
1862+ while (symbol < 0x100);
1863+ }
1864+ dic[dicPos++] = (Byte)symbol;
1865+ processedPos++;
1866+
1867+ state = kLiteralNextStates[state];
1868+ /* if (state < 4) state = 0; else if (state < 10) state -= 3; else state -= 6; */
1869+ continue;
1870+ }
1871+ else
1872+ {
1873+ UPDATE_1(prob);
1874+ prob = probs + IsRep + state;
1875+ IF_BIT_0(prob)
1876+ {
1877+ UPDATE_0(prob);
1878+ state += kNumStates;
1879+ prob = probs + LenCoder;
1880+ }
1881+ else
1882+ {
1883+ UPDATE_1(prob);
1884+ if (checkDicSize == 0 && processedPos == 0)
1885+ return SZ_ERROR_DATA;
1886+ prob = probs + IsRepG0 + state;
1887+ IF_BIT_0(prob)
1888+ {
1889+ UPDATE_0(prob);
1890+ prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
1891+ IF_BIT_0(prob)
1892+ {
1893+ UPDATE_0(prob);
1894+ dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
1895+ dicPos++;
1896+ processedPos++;
1897+ state = state < kNumLitStates ? 9 : 11;
1898+ continue;
1899+ }
1900+ UPDATE_1(prob);
1901+ }
1902+ else
1903+ {
1904+ UInt32 distance;
1905+ UPDATE_1(prob);
1906+ prob = probs + IsRepG1 + state;
1907+ IF_BIT_0(prob)
1908+ {
1909+ UPDATE_0(prob);
1910+ distance = rep1;
1911+ }
1912+ else
1913+ {
1914+ UPDATE_1(prob);
1915+ prob = probs + IsRepG2 + state;
1916+ IF_BIT_0(prob)
1917+ {
1918+ UPDATE_0(prob);
1919+ distance = rep2;
1920+ }
1921+ else
1922+ {
1923+ UPDATE_1(prob);
1924+ distance = rep3;
1925+ rep3 = rep2;
1926+ }
1927+ rep2 = rep1;
1928+ }
1929+ rep1 = rep0;
1930+ rep0 = distance;
1931+ }
1932+ state = state < kNumLitStates ? 8 : 11;
1933+ prob = probs + RepLenCoder;
1934+ }
1935+ {
1936+ unsigned limit, offset;
1937+ CLzmaProb *probLen = prob + LenChoice;
1938+ IF_BIT_0(probLen)
1939+ {
1940+ UPDATE_0(probLen);
1941+ probLen = prob + LenLow + (posState << kLenNumLowBits);
1942+ offset = 0;
1943+ limit = (1 << kLenNumLowBits);
1944+ }
1945+ else
1946+ {
1947+ UPDATE_1(probLen);
1948+ probLen = prob + LenChoice2;
1949+ IF_BIT_0(probLen)
1950+ {
1951+ UPDATE_0(probLen);
1952+ probLen = prob + LenMid + (posState << kLenNumMidBits);
1953+ offset = kLenNumLowSymbols;
1954+ limit = (1 << kLenNumMidBits);
1955+ }
1956+ else
1957+ {
1958+ UPDATE_1(probLen);
1959+ probLen = prob + LenHigh;
1960+ offset = kLenNumLowSymbols + kLenNumMidSymbols;
1961+ limit = (1 << kLenNumHighBits);
1962+ }
1963+ }
1964+ TREE_DECODE(probLen, limit, len);
1965+ len += offset;
1966+ }
1967+
1968+ if (state >= kNumStates)
1969+ {
1970+ UInt32 distance;
1971+ prob = probs + PosSlot +
1972+ ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
1973+ TREE_6_DECODE(prob, distance);
1974+ if (distance >= kStartPosModelIndex)
1975+ {
1976+ unsigned posSlot = (unsigned)distance;
1977+ int numDirectBits = (int)(((distance >> 1) - 1));
1978+ distance = (2 | (distance & 1));
1979+ if (posSlot < kEndPosModelIndex)
1980+ {
1981+ distance <<= numDirectBits;
1982+ prob = probs + SpecPos + distance - posSlot - 1;
1983+ {
1984+ UInt32 mask = 1;
1985+ unsigned i = 1;
1986+ do
1987+ {
1988+ GET_BIT2(prob + i, i, ; , distance |= mask);
1989+ mask <<= 1;
1990+ }
1991+ while(--numDirectBits != 0);
1992+ }
1993+ }
1994+ else
1995+ {
1996+ numDirectBits -= kNumAlignBits;
1997+ do
1998+ {
1999+ NORMALIZE
2000+ range >>= 1;
2001+
2002+ {
2003+ UInt32 t;
2004+ code -= range;
2005+ t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
2006+ distance = (distance << 1) + (t + 1);
2007+ code += range & t;
2008+ }
2009+ /*
2010+ distance <<= 1;
2011+ if (code >= range)
2012+ {
2013+ code -= range;
2014+ distance |= 1;
2015+ }
2016+ */
2017+ }
2018+ while (--numDirectBits != 0);
2019+ prob = probs + Align;
2020+ distance <<= kNumAlignBits;
2021+ {
2022+ unsigned i = 1;
2023+ GET_BIT2(prob + i, i, ; , distance |= 1);
2024+ GET_BIT2(prob + i, i, ; , distance |= 2);
2025+ GET_BIT2(prob + i, i, ; , distance |= 4);
2026+ GET_BIT2(prob + i, i, ; , distance |= 8);
2027+ }
2028+ if (distance == (UInt32)0xFFFFFFFF)
2029+ {
2030+ len += kMatchSpecLenStart;
2031+ state -= kNumStates;
2032+ break;
2033+ }
2034+ }
2035+ }
2036+ rep3 = rep2;
2037+ rep2 = rep1;
2038+ rep1 = rep0;
2039+ rep0 = distance + 1;
2040+ if (checkDicSize == 0)
2041+ {
2042+ if (distance >= processedPos)
2043+ return SZ_ERROR_DATA;
2044+ }
2045+ else if (distance >= checkDicSize)
2046+ return SZ_ERROR_DATA;
2047+ state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
2048+ /* state = kLiteralNextStates[state]; */
2049+ }
2050+
2051+ len += kMatchMinLen;
2052+
2053+ {
2054+ SizeT rem = limit - dicPos;
2055+ unsigned curLen = ((rem < len) ? (unsigned)rem : len);
2056+ SizeT pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0);
2057+
2058+ processedPos += curLen;
2059+
2060+ len -= curLen;
2061+ if (pos + curLen <= dicBufSize)
2062+ {
2063+ Byte *dest = dic + dicPos;
2064+ ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
2065+ const Byte *lim = dest + curLen;
2066+ dicPos += curLen;
2067+ do
2068+ *(dest) = (Byte)*(dest + src);
2069+ while (++dest != lim);
2070+ }
2071+ else
2072+ {
2073+ do
2074+ {
2075+ dic[dicPos++] = dic[pos];
2076+ if (++pos == dicBufSize)
2077+ pos = 0;
2078+ }
2079+ while (--curLen != 0);
2080+ }
2081+ }
2082+ }
2083+ }
2084+ while (dicPos < limit && buf < bufLimit);
2085+ NORMALIZE;
2086+ p->buf = buf;
2087+ p->range = range;
2088+ p->code = code;
2089+ p->remainLen = len;
2090+ p->dicPos = dicPos;
2091+ p->processedPos = processedPos;
2092+ p->reps[0] = rep0;
2093+ p->reps[1] = rep1;
2094+ p->reps[2] = rep2;
2095+ p->reps[3] = rep3;
2096+ p->state = state;
2097+
2098+ return SZ_OK;
2099+}
2100+
2101+static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
2102+{
2103+ if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
2104+ {
2105+ Byte *dic = p->dic;
2106+ SizeT dicPos = p->dicPos;
2107+ SizeT dicBufSize = p->dicBufSize;
2108+ unsigned len = p->remainLen;
2109+ UInt32 rep0 = p->reps[0];
2110+ if (limit - dicPos < len)
2111+ len = (unsigned)(limit - dicPos);
2112+
2113+ if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
2114+ p->checkDicSize = p->prop.dicSize;
2115+
2116+ p->processedPos += len;
2117+ p->remainLen -= len;
2118+ while (len-- != 0)
2119+ {
2120+ dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
2121+ dicPos++;
2122+ }
2123+ p->dicPos = dicPos;
2124+ }
2125+}
2126+
2127+/* LzmaDec_DecodeReal2 decodes LZMA-symbols and sets p->needFlush and p->needInit, if required. */
2128+
2129+static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
2130+{
2131+ do
2132+ {
2133+ SizeT limit2 = limit;
2134+ if (p->checkDicSize == 0)
2135+ {
2136+ UInt32 rem = p->prop.dicSize - p->processedPos;
2137+ if (limit - p->dicPos > rem)
2138+ limit2 = p->dicPos + rem;
2139+ }
2140+ RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit));
2141+ if (p->processedPos >= p->prop.dicSize)
2142+ p->checkDicSize = p->prop.dicSize;
2143+ LzmaDec_WriteRem(p, limit);
2144+ }
2145+ while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
2146+
2147+ if (p->remainLen > kMatchSpecLenStart)
2148+ {
2149+ p->remainLen = kMatchSpecLenStart;
2150+ }
2151+ return 0;
2152+}
2153+
2154+typedef enum
2155+{
2156+ DUMMY_ERROR, /* unexpected end of input stream */
2157+ DUMMY_LIT,
2158+ DUMMY_MATCH,
2159+ DUMMY_REP
2160+} ELzmaDummy;
2161+
2162+static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
2163+{
2164+ UInt32 range = p->range;
2165+ UInt32 code = p->code;
2166+ const Byte *bufLimit = buf + inSize;
2167+ CLzmaProb *probs = p->probs;
2168+ unsigned state = p->state;
2169+ ELzmaDummy res;
2170+
2171+ {
2172+ CLzmaProb *prob;
2173+ UInt32 bound;
2174+ unsigned ttt;
2175+ unsigned posState = (p->processedPos) & ((1 << p->prop.pb) - 1);
2176+
2177+ prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
2178+ IF_BIT_0_CHECK(prob)
2179+ {
2180+ UPDATE_0_CHECK
2181+
2182+ /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
2183+
2184+ prob = probs + Literal;
2185+ if (p->checkDicSize != 0 || p->processedPos != 0)
2186+ prob += (LZMA_LIT_SIZE *
2187+ ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
2188+ (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
2189+
2190+ if (state < kNumLitStates)
2191+ {
2192+ unsigned symbol = 1;
2193+ do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
2194+ }
2195+ else
2196+ {
2197+ unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
2198+ ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)];
2199+ unsigned offs = 0x100;
2200+ unsigned symbol = 1;
2201+ do
2202+ {
2203+ unsigned bit;
2204+ CLzmaProb *probLit;
2205+ matchByte <<= 1;
2206+ bit = (matchByte & offs);
2207+ probLit = prob + offs + bit + symbol;
2208+ GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit)
2209+ }
2210+ while (symbol < 0x100);
2211+ }
2212+ res = DUMMY_LIT;
2213+ }
2214+ else
2215+ {
2216+ unsigned len;
2217+ UPDATE_1_CHECK;
2218+
2219+ prob = probs + IsRep + state;
2220+ IF_BIT_0_CHECK(prob)
2221+ {
2222+ UPDATE_0_CHECK;
2223+ state = 0;
2224+ prob = probs + LenCoder;
2225+ res = DUMMY_MATCH;
2226+ }
2227+ else
2228+ {
2229+ UPDATE_1_CHECK;
2230+ res = DUMMY_REP;
2231+ prob = probs + IsRepG0 + state;
2232+ IF_BIT_0_CHECK(prob)
2233+ {
2234+ UPDATE_0_CHECK;
2235+ prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
2236+ IF_BIT_0_CHECK(prob)
2237+ {
2238+ UPDATE_0_CHECK;
2239+ NORMALIZE_CHECK;
2240+ return DUMMY_REP;
2241+ }
2242+ else
2243+ {
2244+ UPDATE_1_CHECK;
2245+ }
2246+ }
2247+ else
2248+ {
2249+ UPDATE_1_CHECK;
2250+ prob = probs + IsRepG1 + state;
2251+ IF_BIT_0_CHECK(prob)
2252+ {
2253+ UPDATE_0_CHECK;
2254+ }
2255+ else
2256+ {
2257+ UPDATE_1_CHECK;
2258+ prob = probs + IsRepG2 + state;
2259+ IF_BIT_0_CHECK(prob)
2260+ {
2261+ UPDATE_0_CHECK;
2262+ }
2263+ else
2264+ {
2265+ UPDATE_1_CHECK;
2266+ }
2267+ }
2268+ }
2269+ state = kNumStates;
2270+ prob = probs + RepLenCoder;
2271+ }
2272+ {
2273+ unsigned limit, offset;
2274+ CLzmaProb *probLen = prob + LenChoice;
2275+ IF_BIT_0_CHECK(probLen)
2276+ {
2277+ UPDATE_0_CHECK;
2278+ probLen = prob + LenLow + (posState << kLenNumLowBits);
2279+ offset = 0;
2280+ limit = 1 << kLenNumLowBits;
2281+ }
2282+ else
2283+ {
2284+ UPDATE_1_CHECK;
2285+ probLen = prob + LenChoice2;
2286+ IF_BIT_0_CHECK(probLen)
2287+ {
2288+ UPDATE_0_CHECK;
2289+ probLen = prob + LenMid + (posState << kLenNumMidBits);
2290+ offset = kLenNumLowSymbols;
2291+ limit = 1 << kLenNumMidBits;
2292+ }
2293+ else
2294+ {
2295+ UPDATE_1_CHECK;
2296+ probLen = prob + LenHigh;
2297+ offset = kLenNumLowSymbols + kLenNumMidSymbols;
2298+ limit = 1 << kLenNumHighBits;
2299+ }
2300+ }
2301+ TREE_DECODE_CHECK(probLen, limit, len);
2302+ len += offset;
2303+ }
2304+
2305+ if (state < 4)
2306+ {
2307+ unsigned posSlot;
2308+ prob = probs + PosSlot +
2309+ ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
2310+ kNumPosSlotBits);
2311+ TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
2312+ if (posSlot >= kStartPosModelIndex)
2313+ {
2314+ int numDirectBits = ((posSlot >> 1) - 1);
2315+
2316+ /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
2317+
2318+ if (posSlot < kEndPosModelIndex)
2319+ {
2320+ prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1;
2321+ }
2322+ else
2323+ {
2324+ numDirectBits -= kNumAlignBits;
2325+ do
2326+ {
2327+ NORMALIZE_CHECK
2328+ range >>= 1;
2329+ code -= range & (((code - range) >> 31) - 1);
2330+ /* if (code >= range) code -= range; */
2331+ }
2332+ while (--numDirectBits != 0);
2333+ prob = probs + Align;
2334+ numDirectBits = kNumAlignBits;
2335+ }
2336+ {
2337+ unsigned i = 1;
2338+ do
2339+ {
2340+ GET_BIT_CHECK(prob + i, i);
2341+ }
2342+ while(--numDirectBits != 0);
2343+ }
2344+ }
2345+ }
2346+ }
2347+ }
2348+ NORMALIZE_CHECK;
2349+ return res;
2350+}
2351+
2352+
2353+static void LzmaDec_InitRc(CLzmaDec *p, const Byte *data)
2354+{
2355+ p->code = ((UInt32)data[1] << 24) | ((UInt32)data[2] << 16) | ((UInt32)data[3] << 8) | ((UInt32)data[4]);
2356+ p->range = 0xFFFFFFFF;
2357+ p->needFlush = 0;
2358+}
2359+
2360+void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
2361+{
2362+ p->needFlush = 1;
2363+ p->remainLen = 0;
2364+ p->tempBufSize = 0;
2365+
2366+ if (initDic)
2367+ {
2368+ p->processedPos = 0;
2369+ p->checkDicSize = 0;
2370+ p->needInitState = 1;
2371+ }
2372+ if (initState)
2373+ p->needInitState = 1;
2374+}
2375+
2376+void LzmaDec_Init(CLzmaDec *p)
2377+{
2378+ p->dicPos = 0;
2379+ LzmaDec_InitDicAndState(p, True, True);
2380+}
2381+
2382+static void LzmaDec_InitStateReal(CLzmaDec *p)
2383+{
2384+ UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (p->prop.lc + p->prop.lp));
2385+ UInt32 i;
2386+ CLzmaProb *probs = p->probs;
2387+ for (i = 0; i < numProbs; i++)
2388+ probs[i] = kBitModelTotal >> 1;
2389+ p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
2390+ p->state = 0;
2391+ p->needInitState = 0;
2392+}
2393+
2394+SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
2395+ ELzmaFinishMode finishMode, ELzmaStatus *status)
2396+{
2397+ SizeT inSize = *srcLen;
2398+ (*srcLen) = 0;
2399+ LzmaDec_WriteRem(p, dicLimit);
2400+
2401+ *status = LZMA_STATUS_NOT_SPECIFIED;
2402+
2403+ while (p->remainLen != kMatchSpecLenStart)
2404+ {
2405+ int checkEndMarkNow;
2406+
2407+ if (p->needFlush != 0)
2408+ {
2409+ for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
2410+ p->tempBuf[p->tempBufSize++] = *src++;
2411+ if (p->tempBufSize < RC_INIT_SIZE)
2412+ {
2413+ *status = LZMA_STATUS_NEEDS_MORE_INPUT;
2414+ return SZ_OK;
2415+ }
2416+ if (p->tempBuf[0] != 0)
2417+ return SZ_ERROR_DATA;
2418+
2419+ LzmaDec_InitRc(p, p->tempBuf);
2420+ p->tempBufSize = 0;
2421+ }
2422+
2423+ checkEndMarkNow = 0;
2424+ if (p->dicPos >= dicLimit)
2425+ {
2426+ if (p->remainLen == 0 && p->code == 0)
2427+ {
2428+ *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
2429+ return SZ_OK;
2430+ }
2431+ if (finishMode == LZMA_FINISH_ANY)
2432+ {
2433+ *status = LZMA_STATUS_NOT_FINISHED;
2434+ return SZ_OK;
2435+ }
2436+ if (p->remainLen != 0)
2437+ {
2438+ *status = LZMA_STATUS_NOT_FINISHED;
2439+ return SZ_ERROR_DATA;
2440+ }
2441+ checkEndMarkNow = 1;
2442+ }
2443+
2444+ if (p->needInitState)
2445+ LzmaDec_InitStateReal(p);
2446+
2447+ if (p->tempBufSize == 0)
2448+ {
2449+ SizeT processed;
2450+ const Byte *bufLimit;
2451+ if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
2452+ {
2453+ int dummyRes = LzmaDec_TryDummy(p, src, inSize);
2454+ if (dummyRes == DUMMY_ERROR)
2455+ {
2456+ memcpy(p->tempBuf, src, inSize);
2457+ p->tempBufSize = (unsigned)inSize;
2458+ (*srcLen) += inSize;
2459+ *status = LZMA_STATUS_NEEDS_MORE_INPUT;
2460+ return SZ_OK;
2461+ }
2462+ if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
2463+ {
2464+ *status = LZMA_STATUS_NOT_FINISHED;
2465+ return SZ_ERROR_DATA;
2466+ }
2467+ bufLimit = src;
2468+ }
2469+ else
2470+ bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
2471+ p->buf = src;
2472+ if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
2473+ return SZ_ERROR_DATA;
2474+ processed = p->buf - src;
2475+ (*srcLen) += processed;
2476+ src += processed;
2477+ inSize -= processed;
2478+ }
2479+ else
2480+ {
2481+ unsigned rem = p->tempBufSize, lookAhead = 0;
2482+ while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
2483+ p->tempBuf[rem++] = src[lookAhead++];
2484+ p->tempBufSize = rem;
2485+ if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
2486+ {
2487+ int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem);
2488+ if (dummyRes == DUMMY_ERROR)
2489+ {
2490+ (*srcLen) += lookAhead;
2491+ *status = LZMA_STATUS_NEEDS_MORE_INPUT;
2492+ return SZ_OK;
2493+ }
2494+ if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
2495+ {
2496+ *status = LZMA_STATUS_NOT_FINISHED;
2497+ return SZ_ERROR_DATA;
2498+ }
2499+ }
2500+ p->buf = p->tempBuf;
2501+ if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
2502+ return SZ_ERROR_DATA;
2503+ lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf));
2504+ (*srcLen) += lookAhead;
2505+ src += lookAhead;
2506+ inSize -= lookAhead;
2507+ p->tempBufSize = 0;
2508+ }
2509+ }
2510+ if (p->code == 0)
2511+ *status = LZMA_STATUS_FINISHED_WITH_MARK;
2512+ return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA;
2513+}
2514+
2515+SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
2516+{
2517+ SizeT outSize = *destLen;
2518+ SizeT inSize = *srcLen;
2519+ *srcLen = *destLen = 0;
2520+ for (;;)
2521+ {
2522+ SizeT inSizeCur = inSize, outSizeCur, dicPos;
2523+ ELzmaFinishMode curFinishMode;
2524+ SRes res;
2525+ if (p->dicPos == p->dicBufSize)
2526+ p->dicPos = 0;
2527+ dicPos = p->dicPos;
2528+ if (outSize > p->dicBufSize - dicPos)
2529+ {
2530+ outSizeCur = p->dicBufSize;
2531+ curFinishMode = LZMA_FINISH_ANY;
2532+ }
2533+ else
2534+ {
2535+ outSizeCur = dicPos + outSize;
2536+ curFinishMode = finishMode;
2537+ }
2538+
2539+ res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
2540+ src += inSizeCur;
2541+ inSize -= inSizeCur;
2542+ *srcLen += inSizeCur;
2543+ outSizeCur = p->dicPos - dicPos;
2544+ memcpy(dest, p->dic + dicPos, outSizeCur);
2545+ dest += outSizeCur;
2546+ outSize -= outSizeCur;
2547+ *destLen += outSizeCur;
2548+ if (res != 0)
2549+ return res;
2550+ if (outSizeCur == 0 || outSize == 0)
2551+ return SZ_OK;
2552+ }
2553+}
2554+
2555+void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc)
2556+{
2557+ alloc->Free(alloc, p->probs);
2558+ p->probs = 0;
2559+}
2560+
2561+static void LzmaDec_FreeDict(CLzmaDec *p, ISzAlloc *alloc)
2562+{
2563+ alloc->Free(alloc, p->dic);
2564+ p->dic = 0;
2565+}
2566+
2567+void LzmaDec_Free(CLzmaDec *p, ISzAlloc *alloc)
2568+{
2569+ LzmaDec_FreeProbs(p, alloc);
2570+ LzmaDec_FreeDict(p, alloc);
2571+}
2572+
2573+SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
2574+{
2575+ UInt32 dicSize;
2576+ Byte d;
2577+
2578+ if (size < LZMA_PROPS_SIZE)
2579+ return SZ_ERROR_UNSUPPORTED;
2580+ else
2581+ dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
2582+
2583+ if (dicSize < LZMA_DIC_MIN)
2584+ dicSize = LZMA_DIC_MIN;
2585+ p->dicSize = dicSize;
2586+
2587+ d = data[0];
2588+ if (d >= (9 * 5 * 5))
2589+ return SZ_ERROR_UNSUPPORTED;
2590+
2591+ p->lc = d % 9;
2592+ d /= 9;
2593+ p->pb = d / 5;
2594+ p->lp = d % 5;
2595+
2596+ return SZ_OK;
2597+}
2598+
2599+static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAlloc *alloc)
2600+{
2601+ UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
2602+ if (p->probs == 0 || numProbs != p->numProbs)
2603+ {
2604+ LzmaDec_FreeProbs(p, alloc);
2605+ p->probs = (CLzmaProb *)alloc->Alloc(alloc, numProbs * sizeof(CLzmaProb));
2606+ p->numProbs = numProbs;
2607+ if (p->probs == 0)
2608+ return SZ_ERROR_MEM;
2609+ }
2610+ return SZ_OK;
2611+}
2612+
2613+SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
2614+{
2615+ CLzmaProps propNew;
2616+ RINOK(LzmaProps_Decode(&propNew, props, propsSize));
2617+ RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
2618+ p->prop = propNew;
2619+ return SZ_OK;
2620+}
2621+
2622+SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
2623+{
2624+ CLzmaProps propNew;
2625+ SizeT dicBufSize;
2626+ RINOK(LzmaProps_Decode(&propNew, props, propsSize));
2627+ RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
2628+ dicBufSize = propNew.dicSize;
2629+ if (p->dic == 0 || dicBufSize != p->dicBufSize)
2630+ {
2631+ LzmaDec_FreeDict(p, alloc);
2632+ p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize);
2633+ if (p->dic == 0)
2634+ {
2635+ LzmaDec_FreeProbs(p, alloc);
2636+ return SZ_ERROR_MEM;
2637+ }
2638+ }
2639+ p->dicBufSize = dicBufSize;
2640+ p->prop = propNew;
2641+ return SZ_OK;
2642+}
2643+
2644+SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
2645+ const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
2646+ ELzmaStatus *status, ISzAlloc *alloc)
2647+{
2648+ CLzmaDec p;
2649+ SRes res;
2650+ SizeT inSize = *srcLen;
2651+ SizeT outSize = *destLen;
2652+ *srcLen = *destLen = 0;
2653+ if (inSize < RC_INIT_SIZE)
2654+ return SZ_ERROR_INPUT_EOF;
2655+
2656+ LzmaDec_Construct(&p);
2657+ res = LzmaDec_AllocateProbs(&p, propData, propSize, alloc);
2658+ if (res != 0)
2659+ return res;
2660+ p.dic = dest;
2661+ p.dicBufSize = outSize;
2662+
2663+ LzmaDec_Init(&p);
2664+
2665+ *srcLen = inSize;
2666+ res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
2667+
2668+ if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
2669+ res = SZ_ERROR_INPUT_EOF;
2670+
2671+ (*destLen) = p.dicPos;
2672+ LzmaDec_FreeProbs(&p, alloc);
2673+ return res;
2674+}
2675--- a/lzma/LzmaEnc.c 1970-01-01 01:00:00.000000000 +0100
2676+++ b/lzma/LzmaEnc.c 2010-03-20 23:19:47.815156000 +0100
2677@@ -0,0 +1,2335 @@
2678+/* LzmaEnc.c -- LZMA Encoder
2679+2008-04-28
2680+Copyright (c) 1999-2008 Igor Pavlov
2681+Read LzmaEnc.h for license options */
2682+
2683+#if defined(SHOW_STAT) || defined(SHOW_STAT2)
2684+#include <stdio.h>
2685+#endif
2686+
2687+#include <string.h>
2688+
2689+#include "LzmaEnc.h"
2690+
2691+#include "LzFind.h"
2692+#ifdef COMPRESS_MF_MT
2693+#include "LzFindMt.h"
2694+#endif
2695+
2696+/* #define SHOW_STAT */
2697+/* #define SHOW_STAT2 */
2698+
2699+#ifdef SHOW_STAT
2700+static int ttt = 0;
2701+#endif
2702+
2703+#define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
2704+
2705+#define kBlockSize (9 << 10)
2706+#define kUnpackBlockSize (1 << 18)
2707+#define kMatchArraySize (1 << 21)
2708+#define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
2709+
2710+#define kNumMaxDirectBits (31)
2711+
2712+#define kNumTopBits 24
2713+#define kTopValue ((UInt32)1 << kNumTopBits)
2714+
2715+#define kNumBitModelTotalBits 11
2716+#define kBitModelTotal (1 << kNumBitModelTotalBits)
2717+#define kNumMoveBits 5
2718+#define kProbInitValue (kBitModelTotal >> 1)
2719+
2720+#define kNumMoveReducingBits 4
2721+#define kNumBitPriceShiftBits 4
2722+#define kBitPrice (1 << kNumBitPriceShiftBits)
2723+
2724+void LzmaEncProps_Init(CLzmaEncProps *p)
2725+{
2726+ p->level = 5;
2727+ p->dictSize = p->mc = 0;
2728+ p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
2729+ p->writeEndMark = 0;
2730+}
2731+
2732+void LzmaEncProps_Normalize(CLzmaEncProps *p)
2733+{
2734+ int level = p->level;
2735+ if (level < 0) level = 5;
2736+ p->level = level;
2737+ if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
2738+ if (p->lc < 0) p->lc = 3;
2739+ if (p->lp < 0) p->lp = 0;
2740+ if (p->pb < 0) p->pb = 2;
2741+ if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
2742+ if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
2743+ if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
2744+ if (p->numHashBytes < 0) p->numHashBytes = 4;
2745+ if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
2746+ if (p->numThreads < 0) p->numThreads = ((p->btMode && p->algo) ? 2 : 1);
2747+}
2748+
2749+UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
2750+{
2751+ CLzmaEncProps props = *props2;
2752+ LzmaEncProps_Normalize(&props);
2753+ return props.dictSize;
2754+}
2755+
2756+/* #define LZMA_LOG_BSR */
2757+/* Define it for Intel's CPU */
2758+
2759+
2760+#ifdef LZMA_LOG_BSR
2761+
2762+#define kDicLogSizeMaxCompress 30
2763+
2764+#define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); }
2765+
2766+UInt32 GetPosSlot1(UInt32 pos)
2767+{
2768+ UInt32 res;
2769+ BSR2_RET(pos, res);
2770+ return res;
2771+}
2772+#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
2773+#define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
2774+
2775+#else
2776+
2777+#define kNumLogBits (9 + (int)sizeof(size_t) / 2)
2778+#define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
2779+
2780+void LzmaEnc_FastPosInit(Byte *g_FastPos)
2781+{
2782+ int c = 2, slotFast;
2783+ g_FastPos[0] = 0;
2784+ g_FastPos[1] = 1;
2785+
2786+ for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
2787+ {
2788+ UInt32 k = (1 << ((slotFast >> 1) - 1));
2789+ UInt32 j;
2790+ for (j = 0; j < k; j++, c++)
2791+ g_FastPos[c] = (Byte)slotFast;
2792+ }
2793+}
2794+
2795+#define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \
2796+ (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
2797+ res = p->g_FastPos[pos >> i] + (i * 2); }
2798+/*
2799+#define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
2800+ p->g_FastPos[pos >> 6] + 12 : \
2801+ p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
2802+*/
2803+
2804+#define GetPosSlot1(pos) p->g_FastPos[pos]
2805+#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
2806+#define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
2807+
2808+#endif
2809+
2810+
2811+#define LZMA_NUM_REPS 4
2812+
2813+typedef unsigned CState;
2814+
2815+typedef struct _COptimal
2816+{
2817+ UInt32 price;
2818+
2819+ CState state;
2820+ int prev1IsChar;
2821+ int prev2;
2822+
2823+ UInt32 posPrev2;
2824+ UInt32 backPrev2;
2825+
2826+ UInt32 posPrev;
2827+ UInt32 backPrev;
2828+ UInt32 backs[LZMA_NUM_REPS];
2829+} COptimal;
2830+
2831+#define kNumOpts (1 << 12)
2832+
2833+#define kNumLenToPosStates 4
2834+#define kNumPosSlotBits 6
2835+#define kDicLogSizeMin 0
2836+#define kDicLogSizeMax 32
2837+#define kDistTableSizeMax (kDicLogSizeMax * 2)
2838+
2839+
2840+#define kNumAlignBits 4
2841+#define kAlignTableSize (1 << kNumAlignBits)
2842+#define kAlignMask (kAlignTableSize - 1)
2843+
2844+#define kStartPosModelIndex 4
2845+#define kEndPosModelIndex 14
2846+#define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
2847+
2848+#define kNumFullDistances (1 << (kEndPosModelIndex / 2))
2849+
2850+#ifdef _LZMA_PROB32
2851+#define CLzmaProb UInt32
2852+#else
2853+#define CLzmaProb UInt16
2854+#endif
2855+
2856+#define LZMA_PB_MAX 4
2857+#define LZMA_LC_MAX 8
2858+#define LZMA_LP_MAX 4
2859+
2860+#define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
2861+
2862+
2863+#define kLenNumLowBits 3
2864+#define kLenNumLowSymbols (1 << kLenNumLowBits)
2865+#define kLenNumMidBits 3
2866+#define kLenNumMidSymbols (1 << kLenNumMidBits)
2867+#define kLenNumHighBits 8
2868+#define kLenNumHighSymbols (1 << kLenNumHighBits)
2869+
2870+#define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
2871+
2872+#define LZMA_MATCH_LEN_MIN 2
2873+#define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
2874+
2875+#define kNumStates 12
2876+
2877+typedef struct
2878+{
2879+ CLzmaProb choice;
2880+ CLzmaProb choice2;
2881+ CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
2882+ CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
2883+ CLzmaProb high[kLenNumHighSymbols];
2884+} CLenEnc;
2885+
2886+typedef struct
2887+{
2888+ CLenEnc p;
2889+ UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
2890+ UInt32 tableSize;
2891+ UInt32 counters[LZMA_NUM_PB_STATES_MAX];
2892+} CLenPriceEnc;
2893+
2894+typedef struct _CRangeEnc
2895+{
2896+ UInt32 range;
2897+ Byte cache;
2898+ UInt64 low;
2899+ UInt64 cacheSize;
2900+ Byte *buf;
2901+ Byte *bufLim;
2902+ Byte *bufBase;
2903+ ISeqOutStream *outStream;
2904+ UInt64 processed;
2905+ SRes res;
2906+} CRangeEnc;
2907+
2908+typedef struct _CSeqInStreamBuf
2909+{
2910+ ISeqInStream funcTable;
2911+ const Byte *data;
2912+ SizeT rem;
2913+} CSeqInStreamBuf;
2914+
2915+static SRes MyRead(void *pp, void *data, size_t *size)
2916+{
2917+ size_t curSize = *size;
2918+ CSeqInStreamBuf *p = (CSeqInStreamBuf *)pp;
2919+ if (p->rem < curSize)
2920+ curSize = p->rem;
2921+ memcpy(data, p->data, curSize);
2922+ p->rem -= curSize;
2923+ p->data += curSize;
2924+ *size = curSize;
2925+ return SZ_OK;
2926+}
2927+
2928+typedef struct
2929+{
2930+ CLzmaProb *litProbs;
2931+
2932+ CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
2933+ CLzmaProb isRep[kNumStates];
2934+ CLzmaProb isRepG0[kNumStates];
2935+ CLzmaProb isRepG1[kNumStates];
2936+ CLzmaProb isRepG2[kNumStates];
2937+ CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
2938+
2939+ CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
2940+ CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
2941+ CLzmaProb posAlignEncoder[1 << kNumAlignBits];
2942+
2943+ CLenPriceEnc lenEnc;
2944+ CLenPriceEnc repLenEnc;
2945+
2946+ UInt32 reps[LZMA_NUM_REPS];
2947+ UInt32 state;
2948+} CSaveState;
2949+
2950+typedef struct _CLzmaEnc
2951+{
2952+ IMatchFinder matchFinder;
2953+ void *matchFinderObj;
2954+
2955+ #ifdef COMPRESS_MF_MT
2956+ Bool mtMode;
2957+ CMatchFinderMt matchFinderMt;
2958+ #endif
2959+
2960+ CMatchFinder matchFinderBase;
2961+
2962+ #ifdef COMPRESS_MF_MT
2963+ Byte pad[128];
2964+ #endif
2965+
2966+ UInt32 optimumEndIndex;
2967+ UInt32 optimumCurrentIndex;
2968+
2969+ Bool longestMatchWasFound;
2970+ UInt32 longestMatchLength;
2971+ UInt32 numDistancePairs;
2972+
2973+ COptimal opt[kNumOpts];
2974+
2975+ #ifndef LZMA_LOG_BSR
2976+ Byte g_FastPos[1 << kNumLogBits];
2977+ #endif
2978+
2979+ UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
2980+ UInt32 matchDistances[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
2981+ UInt32 numFastBytes;
2982+ UInt32 additionalOffset;
2983+ UInt32 reps[LZMA_NUM_REPS];
2984+ UInt32 state;
2985+
2986+ UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
2987+ UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
2988+ UInt32 alignPrices[kAlignTableSize];
2989+ UInt32 alignPriceCount;
2990+
2991+ UInt32 distTableSize;
2992+
2993+ unsigned lc, lp, pb;
2994+ unsigned lpMask, pbMask;
2995+
2996+ CLzmaProb *litProbs;
2997+
2998+ CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
2999+ CLzmaProb isRep[kNumStates];
3000+ CLzmaProb isRepG0[kNumStates];
3001+ CLzmaProb isRepG1[kNumStates];
3002+ CLzmaProb isRepG2[kNumStates];
3003+ CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
3004+
3005+ CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
3006+ CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
3007+ CLzmaProb posAlignEncoder[1 << kNumAlignBits];
3008+
3009+ CLenPriceEnc lenEnc;
3010+ CLenPriceEnc repLenEnc;
3011+
3012+ unsigned lclp;
3013+
3014+ Bool fastMode;
3015+
3016+ CRangeEnc rc;
3017+
3018+ Bool writeEndMark;
3019+ UInt64 nowPos64;
3020+ UInt32 matchPriceCount;
3021+ Bool finished;
3022+ Bool multiThread;
3023+
3024+ SRes result;
3025+ UInt32 dictSize;
3026+ UInt32 matchFinderCycles;
3027+
3028+ ISeqInStream *inStream;
3029+ CSeqInStreamBuf seqBufInStream;
3030+
3031+ CSaveState saveState;
3032+} CLzmaEnc;
3033+
3034+void LzmaEnc_SaveState(CLzmaEncHandle pp)
3035+{
3036+ CLzmaEnc *p = (CLzmaEnc *)pp;
3037+ CSaveState *dest = &p->saveState;
3038+ int i;
3039+ dest->lenEnc = p->lenEnc;
3040+ dest->repLenEnc = p->repLenEnc;
3041+ dest->state = p->state;
3042+
3043+ for (i = 0; i < kNumStates; i++)
3044+ {
3045+ memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
3046+ memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
3047+ }
3048+ for (i = 0; i < kNumLenToPosStates; i++)
3049+ memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
3050+ memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
3051+ memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
3052+ memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
3053+ memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
3054+ memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
3055+ memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
3056+ memcpy(dest->reps, p->reps, sizeof(p->reps));
3057+ memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
3058+}
3059+
3060+void LzmaEnc_RestoreState(CLzmaEncHandle pp)
3061+{
3062+ CLzmaEnc *dest = (CLzmaEnc *)pp;
3063+ const CSaveState *p = &dest->saveState;
3064+ int i;
3065+ dest->lenEnc = p->lenEnc;
3066+ dest->repLenEnc = p->repLenEnc;
3067+ dest->state = p->state;
3068+
3069+ for (i = 0; i < kNumStates; i++)
3070+ {
3071+ memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
3072+ memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
3073+ }
3074+ for (i = 0; i < kNumLenToPosStates; i++)
3075+ memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
3076+ memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
3077+ memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
3078+ memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
3079+ memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
3080+ memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
3081+ memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
3082+ memcpy(dest->reps, p->reps, sizeof(p->reps));
3083+ memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
3084+}
3085+
3086+SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
3087+{
3088+ CLzmaEnc *p = (CLzmaEnc *)pp;
3089+ CLzmaEncProps props = *props2;
3090+ LzmaEncProps_Normalize(&props);
3091+
3092+ if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
3093+ props.dictSize > (1 << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30))
3094+ return SZ_ERROR_PARAM;
3095+ p->dictSize = props.dictSize;
3096+ p->matchFinderCycles = props.mc;
3097+ {
3098+ unsigned fb = props.fb;
3099+ if (fb < 5)
3100+ fb = 5;
3101+ if (fb > LZMA_MATCH_LEN_MAX)
3102+ fb = LZMA_MATCH_LEN_MAX;
3103+ p->numFastBytes = fb;
3104+ }
3105+ p->lc = props.lc;
3106+ p->lp = props.lp;
3107+ p->pb = props.pb;
3108+ p->fastMode = (props.algo == 0);
3109+ p->matchFinderBase.btMode = props.btMode;
3110+ {
3111+ UInt32 numHashBytes = 4;
3112+ if (props.btMode)
3113+ {
3114+ if (props.numHashBytes < 2)
3115+ numHashBytes = 2;
3116+ else if (props.numHashBytes < 4)
3117+ numHashBytes = props.numHashBytes;
3118+ }
3119+ p->matchFinderBase.numHashBytes = numHashBytes;
3120+ }
3121+
3122+ p->matchFinderBase.cutValue = props.mc;
3123+
3124+ p->writeEndMark = props.writeEndMark;
3125+
3126+ #ifdef COMPRESS_MF_MT
3127+ /*
3128+ if (newMultiThread != _multiThread)
3129+ {
3130+ ReleaseMatchFinder();
3131+ _multiThread = newMultiThread;
3132+ }
3133+ */
3134+ p->multiThread = (props.numThreads > 1);
3135+ #endif
3136+
3137+ return SZ_OK;
3138+}
3139+
3140+static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
3141+static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
3142+static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
3143+static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
3144+
3145+/*
3146+ void UpdateChar() { Index = kLiteralNextStates[Index]; }
3147+ void UpdateMatch() { Index = kMatchNextStates[Index]; }
3148+ void UpdateRep() { Index = kRepNextStates[Index]; }
3149+ void UpdateShortRep() { Index = kShortRepNextStates[Index]; }
3150+*/
3151+
3152+#define IsCharState(s) ((s) < 7)
3153+
3154+
3155+#define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
3156+
3157+#define kInfinityPrice (1 << 30)
3158+
3159+static void RangeEnc_Construct(CRangeEnc *p)
3160+{
3161+ p->outStream = 0;
3162+ p->bufBase = 0;
3163+}
3164+
3165+#define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
3166+
3167+#define RC_BUF_SIZE (1 << 16)
3168+static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
3169+{
3170+ if (p->bufBase == 0)
3171+ {
3172+ p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
3173+ if (p->bufBase == 0)
3174+ return 0;
3175+ p->bufLim = p->bufBase + RC_BUF_SIZE;
3176+ }
3177+ return 1;
3178+}
3179+
3180+static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
3181+{
3182+ alloc->Free(alloc, p->bufBase);
3183+ p->bufBase = 0;
3184+}
3185+
3186+static void RangeEnc_Init(CRangeEnc *p)
3187+{
3188+ /* Stream.Init(); */
3189+ p->low = 0;
3190+ p->range = 0xFFFFFFFF;
3191+ p->cacheSize = 1;
3192+ p->cache = 0;
3193+
3194+ p->buf = p->bufBase;
3195+
3196+ p->processed = 0;
3197+ p->res = SZ_OK;
3198+}
3199+
3200+static void RangeEnc_FlushStream(CRangeEnc *p)
3201+{
3202+ size_t num;
3203+ if (p->res != SZ_OK)
3204+ return;
3205+ num = p->buf - p->bufBase;
3206+ if (num != p->outStream->Write(p->outStream, p->bufBase, num))
3207+ p->res = SZ_ERROR_WRITE;
3208+ p->processed += num;
3209+ p->buf = p->bufBase;
3210+}
3211+
3212+static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
3213+{
3214+ if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0)
3215+ {
3216+ Byte temp = p->cache;
3217+ do
3218+ {
3219+ Byte *buf = p->buf;
3220+ *buf++ = (Byte)(temp + (Byte)(p->low >> 32));
3221+ p->buf = buf;
3222+ if (buf == p->bufLim)
3223+ RangeEnc_FlushStream(p);
3224+ temp = 0xFF;
3225+ }
3226+ while (--p->cacheSize != 0);
3227+ p->cache = (Byte)((UInt32)p->low >> 24);
3228+ }
3229+ p->cacheSize++;
3230+ p->low = (UInt32)p->low << 8;
3231+}
3232+
3233+static void RangeEnc_FlushData(CRangeEnc *p)
3234+{
3235+ int i;
3236+ for (i = 0; i < 5; i++)
3237+ RangeEnc_ShiftLow(p);
3238+}
3239+
3240+static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits)
3241+{
3242+ do
3243+ {
3244+ p->range >>= 1;
3245+ p->low += p->range & (0 - ((value >> --numBits) & 1));
3246+ if (p->range < kTopValue)
3247+ {
3248+ p->range <<= 8;
3249+ RangeEnc_ShiftLow(p);
3250+ }
3251+ }
3252+ while (numBits != 0);
3253+}
3254+
3255+static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
3256+{
3257+ UInt32 ttt = *prob;
3258+ UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
3259+ if (symbol == 0)
3260+ {
3261+ p->range = newBound;
3262+ ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
3263+ }
3264+ else
3265+ {
3266+ p->low += newBound;
3267+ p->range -= newBound;
3268+ ttt -= ttt >> kNumMoveBits;
3269+ }
3270+ *prob = (CLzmaProb)ttt;
3271+ if (p->range < kTopValue)
3272+ {
3273+ p->range <<= 8;
3274+ RangeEnc_ShiftLow(p);
3275+ }
3276+}
3277+
3278+static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
3279+{
3280+ symbol |= 0x100;
3281+ do
3282+ {
3283+ RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
3284+ symbol <<= 1;
3285+ }
3286+ while (symbol < 0x10000);
3287+}
3288+
3289+static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
3290+{
3291+ UInt32 offs = 0x100;
3292+ symbol |= 0x100;
3293+ do
3294+ {
3295+ matchByte <<= 1;
3296+ RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
3297+ symbol <<= 1;
3298+ offs &= ~(matchByte ^ symbol);
3299+ }
3300+ while (symbol < 0x10000);
3301+}
3302+
3303+void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
3304+{
3305+ UInt32 i;
3306+ for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
3307+ {
3308+ const int kCyclesBits = kNumBitPriceShiftBits;
3309+ UInt32 w = i;
3310+ UInt32 bitCount = 0;
3311+ int j;
3312+ for (j = 0; j < kCyclesBits; j++)
3313+ {
3314+ w = w * w;
3315+ bitCount <<= 1;
3316+ while (w >= ((UInt32)1 << 16))
3317+ {
3318+ w >>= 1;
3319+ bitCount++;
3320+ }
3321+ }
3322+ ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
3323+ }
3324+}
3325+
3326+
3327+#define GET_PRICE(prob, symbol) \
3328+ p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
3329+
3330+#define GET_PRICEa(prob, symbol) \
3331+ ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
3332+
3333+#define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
3334+#define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
3335+
3336+#define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
3337+#define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
3338+
3339+static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
3340+{
3341+ UInt32 price = 0;
3342+ symbol |= 0x100;
3343+ do
3344+ {
3345+ price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
3346+ symbol <<= 1;
3347+ }
3348+ while (symbol < 0x10000);
3349+ return price;
3350+};
3351+
3352+static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
3353+{
3354+ UInt32 price = 0;
3355+ UInt32 offs = 0x100;
3356+ symbol |= 0x100;
3357+ do
3358+ {
3359+ matchByte <<= 1;
3360+ price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
3361+ symbol <<= 1;
3362+ offs &= ~(matchByte ^ symbol);
3363+ }
3364+ while (symbol < 0x10000);
3365+ return price;
3366+};
3367+
3368+
3369+static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
3370+{
3371+ UInt32 m = 1;
3372+ int i;
3373+ for (i = numBitLevels; i != 0 ;)
3374+ {
3375+ UInt32 bit;
3376+ i--;
3377+ bit = (symbol >> i) & 1;
3378+ RangeEnc_EncodeBit(rc, probs + m, bit);
3379+ m = (m << 1) | bit;
3380+ }
3381+};
3382+
3383+static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
3384+{
3385+ UInt32 m = 1;
3386+ int i;
3387+ for (i = 0; i < numBitLevels; i++)
3388+ {
3389+ UInt32 bit = symbol & 1;
3390+ RangeEnc_EncodeBit(rc, probs + m, bit);
3391+ m = (m << 1) | bit;
3392+ symbol >>= 1;
3393+ }
3394+}
3395+
3396+static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
3397+{
3398+ UInt32 price = 0;
3399+ symbol |= (1 << numBitLevels);
3400+ while (symbol != 1)
3401+ {
3402+ price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
3403+ symbol >>= 1;
3404+ }
3405+ return price;
3406+}
3407+
3408+static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
3409+{
3410+ UInt32 price = 0;
3411+ UInt32 m = 1;
3412+ int i;
3413+ for (i = numBitLevels; i != 0; i--)
3414+ {
3415+ UInt32 bit = symbol & 1;
3416+ symbol >>= 1;
3417+ price += GET_PRICEa(probs[m], bit);
3418+ m = (m << 1) | bit;
3419+ }
3420+ return price;
3421+}
3422+
3423+
3424+static void LenEnc_Init(CLenEnc *p)
3425+{
3426+ unsigned i;
3427+ p->choice = p->choice2 = kProbInitValue;
3428+ for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
3429+ p->low[i] = kProbInitValue;
3430+ for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
3431+ p->mid[i] = kProbInitValue;
3432+ for (i = 0; i < kLenNumHighSymbols; i++)
3433+ p->high[i] = kProbInitValue;
3434+}
3435+
3436+static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
3437+{
3438+ if (symbol < kLenNumLowSymbols)
3439+ {
3440+ RangeEnc_EncodeBit(rc, &p->choice, 0);
3441+ RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
3442+ }
3443+ else
3444+ {
3445+ RangeEnc_EncodeBit(rc, &p->choice, 1);
3446+ if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
3447+ {
3448+ RangeEnc_EncodeBit(rc, &p->choice2, 0);
3449+ RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
3450+ }
3451+ else
3452+ {
3453+ RangeEnc_EncodeBit(rc, &p->choice2, 1);
3454+ RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
3455+ }
3456+ }
3457+}
3458+
3459+static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
3460+{
3461+ UInt32 a0 = GET_PRICE_0a(p->choice);
3462+ UInt32 a1 = GET_PRICE_1a(p->choice);
3463+ UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
3464+ UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
3465+ UInt32 i = 0;
3466+ for (i = 0; i < kLenNumLowSymbols; i++)
3467+ {
3468+ if (i >= numSymbols)
3469+ return;
3470+ prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
3471+ }
3472+ for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
3473+ {
3474+ if (i >= numSymbols)
3475+ return;
3476+ prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
3477+ }
3478+ for (; i < numSymbols; i++)
3479+ prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
3480+}
3481+
3482+static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
3483+{
3484+ LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
3485+ p->counters[posState] = p->tableSize;
3486+}
3487+
3488+static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
3489+{
3490+ UInt32 posState;
3491+ for (posState = 0; posState < numPosStates; posState++)
3492+ LenPriceEnc_UpdateTable(p, posState, ProbPrices);
3493+}
3494+
3495+static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
3496+{
3497+ LenEnc_Encode(&p->p, rc, symbol, posState);
3498+ if (updatePrice)
3499+ if (--p->counters[posState] == 0)
3500+ LenPriceEnc_UpdateTable(p, posState, ProbPrices);
3501+}
3502+
3503+
3504+
3505+
3506+static void MovePos(CLzmaEnc *p, UInt32 num)
3507+{
3508+ #ifdef SHOW_STAT
3509+ ttt += num;
3510+ printf("\n MovePos %d", num);
3511+ #endif
3512+ if (num != 0)
3513+ {
3514+ p->additionalOffset += num;
3515+ p->matchFinder.Skip(p->matchFinderObj, num);
3516+ }
3517+}
3518+
3519+static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
3520+{
3521+ UInt32 lenRes = 0, numDistancePairs;
3522+ numDistancePairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matchDistances);
3523+ #ifdef SHOW_STAT
3524+ printf("\n i = %d numPairs = %d ", ttt, numDistancePairs / 2);
3525+ if (ttt >= 61994)
3526+ ttt = ttt;
3527+
3528+ ttt++;
3529+ {
3530+ UInt32 i;
3531+ for (i = 0; i < numDistancePairs; i += 2)
3532+ printf("%2d %6d | ", p->matchDistances[i], p->matchDistances[i + 1]);
3533+ }
3534+ #endif
3535+ if (numDistancePairs > 0)
3536+ {
3537+ lenRes = p->matchDistances[numDistancePairs - 2];
3538+ if (lenRes == p->numFastBytes)
3539+ {
3540+ UInt32 numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) + 1;
3541+ const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
3542+ UInt32 distance = p->matchDistances[numDistancePairs - 1] + 1;
3543+ if (numAvail > LZMA_MATCH_LEN_MAX)
3544+ numAvail = LZMA_MATCH_LEN_MAX;
3545+
3546+ {
3547+ const Byte *pby2 = pby - distance;
3548+ for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
3549+ }
3550+ }
3551+ }
3552+ p->additionalOffset++;
3553+ *numDistancePairsRes = numDistancePairs;
3554+ return lenRes;
3555+}
3556+
3557+
3558+#define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
3559+#define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
3560+#define IsShortRep(p) ((p)->backPrev == 0)
3561+
3562+static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
3563+{
3564+ return
3565+ GET_PRICE_0(p->isRepG0[state]) +
3566+ GET_PRICE_0(p->isRep0Long[state][posState]);
3567+}
3568+
3569+static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
3570+{
3571+ UInt32 price;
3572+ if (repIndex == 0)
3573+ {
3574+ price = GET_PRICE_0(p->isRepG0[state]);
3575+ price += GET_PRICE_1(p->isRep0Long[state][posState]);
3576+ }
3577+ else
3578+ {
3579+ price = GET_PRICE_1(p->isRepG0[state]);
3580+ if (repIndex == 1)
3581+ price += GET_PRICE_0(p->isRepG1[state]);
3582+ else
3583+ {
3584+ price += GET_PRICE_1(p->isRepG1[state]);
3585+ price += GET_PRICE(p->isRepG2[state], repIndex - 2);
3586+ }
3587+ }
3588+ return price;
3589+}
3590+
3591+static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
3592+{
3593+ return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
3594+ GetPureRepPrice(p, repIndex, state, posState);
3595+}
3596+
3597+static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
3598+{
3599+ UInt32 posMem = p->opt[cur].posPrev;
3600+ UInt32 backMem = p->opt[cur].backPrev;
3601+ p->optimumEndIndex = cur;
3602+ do
3603+ {
3604+ if (p->opt[cur].prev1IsChar)
3605+ {
3606+ MakeAsChar(&p->opt[posMem])
3607+ p->opt[posMem].posPrev = posMem - 1;
3608+ if (p->opt[cur].prev2)
3609+ {
3610+ p->opt[posMem - 1].prev1IsChar = False;
3611+ p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
3612+ p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
3613+ }
3614+ }
3615+ {
3616+ UInt32 posPrev = posMem;
3617+ UInt32 backCur = backMem;
3618+
3619+ backMem = p->opt[posPrev].backPrev;
3620+ posMem = p->opt[posPrev].posPrev;
3621+
3622+ p->opt[posPrev].backPrev = backCur;
3623+ p->opt[posPrev].posPrev = cur;
3624+ cur = posPrev;
3625+ }
3626+ }
3627+ while (cur != 0);
3628+ *backRes = p->opt[0].backPrev;
3629+ p->optimumCurrentIndex = p->opt[0].posPrev;
3630+ return p->optimumCurrentIndex;
3631+}
3632+
3633+#define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300)
3634+
3635+static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
3636+{
3637+ UInt32 numAvailableBytes, lenMain, numDistancePairs;
3638+ const Byte *data;
3639+ UInt32 reps[LZMA_NUM_REPS];
3640+ UInt32 repLens[LZMA_NUM_REPS];
3641+ UInt32 repMaxIndex, i;
3642+ UInt32 *matchDistances;
3643+ Byte currentByte, matchByte;
3644+ UInt32 posState;
3645+ UInt32 matchPrice, repMatchPrice;
3646+ UInt32 lenEnd;
3647+ UInt32 len;
3648+ UInt32 normalMatchPrice;
3649+ UInt32 cur;
3650+ if (p->optimumEndIndex != p->optimumCurrentIndex)
3651+ {
3652+ const COptimal *opt = &p->opt[p->optimumCurrentIndex];
3653+ UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
3654+ *backRes = opt->backPrev;
3655+ p->optimumCurrentIndex = opt->posPrev;
3656+ return lenRes;
3657+ }
3658+ p->optimumCurrentIndex = p->optimumEndIndex = 0;
3659+
3660+ numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
3661+
3662+ if (!p->longestMatchWasFound)
3663+ {
3664+ lenMain = ReadMatchDistances(p, &numDistancePairs);
3665+ }
3666+ else
3667+ {
3668+ lenMain = p->longestMatchLength;
3669+ numDistancePairs = p->numDistancePairs;
3670+ p->longestMatchWasFound = False;
3671+ }
3672+
3673+ data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
3674+ if (numAvailableBytes < 2)
3675+ {
3676+ *backRes = (UInt32)(-1);
3677+ return 1;
3678+ }
3679+ if (numAvailableBytes > LZMA_MATCH_LEN_MAX)
3680+ numAvailableBytes = LZMA_MATCH_LEN_MAX;
3681+
3682+ repMaxIndex = 0;
3683+ for (i = 0; i < LZMA_NUM_REPS; i++)
3684+ {
3685+ UInt32 lenTest;
3686+ const Byte *data2;
3687+ reps[i] = p->reps[i];
3688+ data2 = data - (reps[i] + 1);
3689+ if (data[0] != data2[0] || data[1] != data2[1])
3690+ {
3691+ repLens[i] = 0;
3692+ continue;
3693+ }
3694+ for (lenTest = 2; lenTest < numAvailableBytes && data[lenTest] == data2[lenTest]; lenTest++);
3695+ repLens[i] = lenTest;
3696+ if (lenTest > repLens[repMaxIndex])
3697+ repMaxIndex = i;
3698+ }
3699+ if (repLens[repMaxIndex] >= p->numFastBytes)
3700+ {
3701+ UInt32 lenRes;
3702+ *backRes = repMaxIndex;
3703+ lenRes = repLens[repMaxIndex];
3704+ MovePos(p, lenRes - 1);
3705+ return lenRes;
3706+ }
3707+
3708+ matchDistances = p->matchDistances;
3709+ if (lenMain >= p->numFastBytes)
3710+ {
3711+ *backRes = matchDistances[numDistancePairs - 1] + LZMA_NUM_REPS;
3712+ MovePos(p, lenMain - 1);
3713+ return lenMain;
3714+ }
3715+ currentByte = *data;
3716+ matchByte = *(data - (reps[0] + 1));
3717+
3718+ if (lenMain < 2 && currentByte != matchByte && repLens[repMaxIndex] < 2)
3719+ {
3720+ *backRes = (UInt32)-1;
3721+ return 1;
3722+ }
3723+
3724+ p->opt[0].state = (CState)p->state;
3725+
3726+ posState = (position & p->pbMask);
3727+
3728+ {
3729+ const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
3730+ p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
3731+ (!IsCharState(p->state) ?
3732+ LitEnc_GetPriceMatched(probs, currentByte, matchByte, p->ProbPrices) :
3733+ LitEnc_GetPrice(probs, currentByte, p->ProbPrices));
3734+ }
3735+
3736+ MakeAsChar(&p->opt[1]);
3737+
3738+ matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
3739+ repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
3740+
3741+ if (matchByte == currentByte)
3742+ {
3743+ UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
3744+ if (shortRepPrice < p->opt[1].price)
3745+ {
3746+ p->opt[1].price = shortRepPrice;
3747+ MakeAsShortRep(&p->opt[1]);
3748+ }
3749+ }
3750+ lenEnd = ((lenMain >= repLens[repMaxIndex]) ? lenMain : repLens[repMaxIndex]);
3751+
3752+ if (lenEnd < 2)
3753+ {
3754+ *backRes = p->opt[1].backPrev;
3755+ return 1;
3756+ }
3757+
3758+ p->opt[1].posPrev = 0;
3759+ for (i = 0; i < LZMA_NUM_REPS; i++)
3760+ p->opt[0].backs[i] = reps[i];
3761+
3762+ len = lenEnd;
3763+ do
3764+ p->opt[len--].price = kInfinityPrice;
3765+ while (len >= 2);
3766+
3767+ for (i = 0; i < LZMA_NUM_REPS; i++)
3768+ {
3769+ UInt32 repLen = repLens[i];
3770+ UInt32 price;
3771+ if (repLen < 2)
3772+ continue;
3773+ price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
3774+ do
3775+ {
3776+ UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
3777+ COptimal *opt = &p->opt[repLen];
3778+ if (curAndLenPrice < opt->price)
3779+ {
3780+ opt->price = curAndLenPrice;
3781+ opt->posPrev = 0;
3782+ opt->backPrev = i;
3783+ opt->prev1IsChar = False;
3784+ }
3785+ }
3786+ while (--repLen >= 2);
3787+ }
3788+
3789+ normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
3790+
3791+ len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
3792+ if (len <= lenMain)
3793+ {
3794+ UInt32 offs = 0;
3795+ while (len > matchDistances[offs])
3796+ offs += 2;
3797+ for (; ; len++)
3798+ {
3799+ COptimal *opt;
3800+ UInt32 distance = matchDistances[offs + 1];
3801+
3802+ UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
3803+ UInt32 lenToPosState = GetLenToPosState(len);
3804+ if (distance < kNumFullDistances)
3805+ curAndLenPrice += p->distancesPrices[lenToPosState][distance];
3806+ else
3807+ {
3808+ UInt32 slot;
3809+ GetPosSlot2(distance, slot);
3810+ curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
3811+ }
3812+ opt = &p->opt[len];
3813+ if (curAndLenPrice < opt->price)
3814+ {
3815+ opt->price = curAndLenPrice;
3816+ opt->posPrev = 0;
3817+ opt->backPrev = distance + LZMA_NUM_REPS;
3818+ opt->prev1IsChar = False;
3819+ }
3820+ if (len == matchDistances[offs])
3821+ {
3822+ offs += 2;
3823+ if (offs == numDistancePairs)
3824+ break;
3825+ }
3826+ }
3827+ }
3828+
3829+ cur = 0;
3830+
3831+ #ifdef SHOW_STAT2
3832+ if (position >= 0)
3833+ {
3834+ unsigned i;
3835+ printf("\n pos = %4X", position);
3836+ for (i = cur; i <= lenEnd; i++)
3837+ printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price);
3838+ }
3839+ #endif
3840+
3841+ for (;;)
3842+ {
3843+ UInt32 numAvailableBytesFull, newLen, numDistancePairs;
3844+ COptimal *curOpt;
3845+ UInt32 posPrev;
3846+ UInt32 state;
3847+ UInt32 curPrice;
3848+ Bool nextIsChar;
3849+ const Byte *data;
3850+ Byte currentByte, matchByte;
3851+ UInt32 posState;
3852+ UInt32 curAnd1Price;
3853+ COptimal *nextOpt;
3854+ UInt32 matchPrice, repMatchPrice;
3855+ UInt32 numAvailableBytes;
3856+ UInt32 startLen;
3857+
3858+ cur++;
3859+ if (cur == lenEnd)
3860+ return Backward(p, backRes, cur);
3861+
3862+ numAvailableBytesFull = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
3863+ newLen = ReadMatchDistances(p, &numDistancePairs);
3864+ if (newLen >= p->numFastBytes)
3865+ {
3866+ p->numDistancePairs = numDistancePairs;
3867+ p->longestMatchLength = newLen;
3868+ p->longestMatchWasFound = True;
3869+ return Backward(p, backRes, cur);
3870+ }
3871+ position++;
3872+ curOpt = &p->opt[cur];
3873+ posPrev = curOpt->posPrev;
3874+ if (curOpt->prev1IsChar)
3875+ {
3876+ posPrev--;
3877+ if (curOpt->prev2)
3878+ {
3879+ state = p->opt[curOpt->posPrev2].state;
3880+ if (curOpt->backPrev2 < LZMA_NUM_REPS)
3881+ state = kRepNextStates[state];
3882+ else
3883+ state = kMatchNextStates[state];
3884+ }
3885+ else
3886+ state = p->opt[posPrev].state;
3887+ state = kLiteralNextStates[state];
3888+ }
3889+ else
3890+ state = p->opt[posPrev].state;
3891+ if (posPrev == cur - 1)
3892+ {
3893+ if (IsShortRep(curOpt))
3894+ state = kShortRepNextStates[state];
3895+ else
3896+ state = kLiteralNextStates[state];
3897+ }
3898+ else
3899+ {
3900+ UInt32 pos;
3901+ const COptimal *prevOpt;
3902+ if (curOpt->prev1IsChar && curOpt->prev2)
3903+ {
3904+ posPrev = curOpt->posPrev2;
3905+ pos = curOpt->backPrev2;
3906+ state = kRepNextStates[state];
3907+ }
3908+ else
3909+ {
3910+ pos = curOpt->backPrev;
3911+ if (pos < LZMA_NUM_REPS)
3912+ state = kRepNextStates[state];
3913+ else
3914+ state = kMatchNextStates[state];
3915+ }
3916+ prevOpt = &p->opt[posPrev];
3917+ if (pos < LZMA_NUM_REPS)
3918+ {
3919+ UInt32 i;
3920+ reps[0] = prevOpt->backs[pos];
3921+ for (i = 1; i <= pos; i++)
3922+ reps[i] = prevOpt->backs[i - 1];
3923+ for (; i < LZMA_NUM_REPS; i++)
3924+ reps[i] = prevOpt->backs[i];
3925+ }
3926+ else
3927+ {
3928+ UInt32 i;
3929+ reps[0] = (pos - LZMA_NUM_REPS);
3930+ for (i = 1; i < LZMA_NUM_REPS; i++)
3931+ reps[i] = prevOpt->backs[i - 1];
3932+ }
3933+ }
3934+ curOpt->state = (CState)state;
3935+
3936+ curOpt->backs[0] = reps[0];
3937+ curOpt->backs[1] = reps[1];
3938+ curOpt->backs[2] = reps[2];
3939+ curOpt->backs[3] = reps[3];
3940+
3941+ curPrice = curOpt->price;
3942+ nextIsChar = False;
3943+ data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
3944+ currentByte = *data;
3945+ matchByte = *(data - (reps[0] + 1));
3946+
3947+ posState = (position & p->pbMask);
3948+
3949+ curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
3950+ {
3951+ const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
3952+ curAnd1Price +=
3953+ (!IsCharState(state) ?
3954+ LitEnc_GetPriceMatched(probs, currentByte, matchByte, p->ProbPrices) :
3955+ LitEnc_GetPrice(probs, currentByte, p->ProbPrices));
3956+ }
3957+
3958+ nextOpt = &p->opt[cur + 1];
3959+
3960+ if (curAnd1Price < nextOpt->price)
3961+ {
3962+ nextOpt->price = curAnd1Price;
3963+ nextOpt->posPrev = cur;
3964+ MakeAsChar(nextOpt);
3965+ nextIsChar = True;
3966+ }
3967+
3968+ matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
3969+ repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
3970+
3971+ if (matchByte == currentByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
3972+ {
3973+ UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
3974+ if (shortRepPrice <= nextOpt->price)
3975+ {
3976+ nextOpt->price = shortRepPrice;
3977+ nextOpt->posPrev = cur;
3978+ MakeAsShortRep(nextOpt);
3979+ nextIsChar = True;
3980+ }
3981+ }
3982+
3983+ {
3984+ UInt32 temp = kNumOpts - 1 - cur;
3985+ if (temp < numAvailableBytesFull)
3986+ numAvailableBytesFull = temp;
3987+ }
3988+ numAvailableBytes = numAvailableBytesFull;
3989+
3990+ if (numAvailableBytes < 2)
3991+ continue;
3992+ if (numAvailableBytes > p->numFastBytes)
3993+ numAvailableBytes = p->numFastBytes;
3994+ if (!nextIsChar && matchByte != currentByte) /* speed optimization */
3995+ {
3996+ /* try Literal + rep0 */
3997+ UInt32 temp;
3998+ UInt32 lenTest2;
3999+ const Byte *data2 = data - (reps[0] + 1);
4000+ UInt32 limit = p->numFastBytes + 1;
4001+ if (limit > numAvailableBytesFull)
4002+ limit = numAvailableBytesFull;
4003+
4004+ for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
4005+ lenTest2 = temp - 1;
4006+ if (lenTest2 >= 2)
4007+ {
4008+ UInt32 state2 = kLiteralNextStates[state];
4009+ UInt32 posStateNext = (position + 1) & p->pbMask;
4010+ UInt32 nextRepMatchPrice = curAnd1Price +
4011+ GET_PRICE_1(p->isMatch[state2][posStateNext]) +
4012+ GET_PRICE_1(p->isRep[state2]);
4013+ /* for (; lenTest2 >= 2; lenTest2--) */
4014+ {
4015+ UInt32 curAndLenPrice;
4016+ COptimal *opt;
4017+ UInt32 offset = cur + 1 + lenTest2;
4018+ while (lenEnd < offset)
4019+ p->opt[++lenEnd].price = kInfinityPrice;
4020+ curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
4021+ opt = &p->opt[offset];
4022+ if (curAndLenPrice < opt->price)
4023+ {
4024+ opt->price = curAndLenPrice;
4025+ opt->posPrev = cur + 1;
4026+ opt->backPrev = 0;
4027+ opt->prev1IsChar = True;
4028+ opt->prev2 = False;
4029+ }
4030+ }
4031+ }
4032+ }
4033+
4034+ startLen = 2; /* speed optimization */
4035+ {
4036+ UInt32 repIndex;
4037+ for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
4038+ {
4039+ UInt32 lenTest;
4040+ UInt32 lenTestTemp;
4041+ UInt32 price;
4042+ const Byte *data2 = data - (reps[repIndex] + 1);
4043+ if (data[0] != data2[0] || data[1] != data2[1])
4044+ continue;
4045+ for (lenTest = 2; lenTest < numAvailableBytes && data[lenTest] == data2[lenTest]; lenTest++);
4046+ while (lenEnd < cur + lenTest)
4047+ p->opt[++lenEnd].price = kInfinityPrice;
4048+ lenTestTemp = lenTest;
4049+ price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
4050+ do
4051+ {
4052+ UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
4053+ COptimal *opt = &p->opt[cur + lenTest];
4054+ if (curAndLenPrice < opt->price)
4055+ {
4056+ opt->price = curAndLenPrice;
4057+ opt->posPrev = cur;
4058+ opt->backPrev = repIndex;
4059+ opt->prev1IsChar = False;
4060+ }
4061+ }
4062+ while (--lenTest >= 2);
4063+ lenTest = lenTestTemp;
4064+
4065+ if (repIndex == 0)
4066+ startLen = lenTest + 1;
4067+
4068+ /* if (_maxMode) */
4069+ {
4070+ UInt32 lenTest2 = lenTest + 1;
4071+ UInt32 limit = lenTest2 + p->numFastBytes;
4072+ UInt32 nextRepMatchPrice;
4073+ if (limit > numAvailableBytesFull)
4074+ limit = numAvailableBytesFull;
4075+ for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
4076+ lenTest2 -= lenTest + 1;
4077+ if (lenTest2 >= 2)
4078+ {
4079+ UInt32 state2 = kRepNextStates[state];
4080+ UInt32 posStateNext = (position + lenTest) & p->pbMask;
4081+ UInt32 curAndLenCharPrice =
4082+ price + p->repLenEnc.prices[posState][lenTest - 2] +
4083+ GET_PRICE_0(p->isMatch[state2][posStateNext]) +
4084+ LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
4085+ data[lenTest], data2[lenTest], p->ProbPrices);
4086+ state2 = kLiteralNextStates[state2];
4087+ posStateNext = (position + lenTest + 1) & p->pbMask;
4088+ nextRepMatchPrice = curAndLenCharPrice +
4089+ GET_PRICE_1(p->isMatch[state2][posStateNext]) +
4090+ GET_PRICE_1(p->isRep[state2]);
4091+
4092+ /* for (; lenTest2 >= 2; lenTest2--) */
4093+ {
4094+ UInt32 curAndLenPrice;
4095+ COptimal *opt;
4096+ UInt32 offset = cur + lenTest + 1 + lenTest2;
4097+ while (lenEnd < offset)
4098+ p->opt[++lenEnd].price = kInfinityPrice;
4099+ curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
4100+ opt = &p->opt[offset];
4101+ if (curAndLenPrice < opt->price)
4102+ {
4103+ opt->price = curAndLenPrice;
4104+ opt->posPrev = cur + lenTest + 1;
4105+ opt->backPrev = 0;
4106+ opt->prev1IsChar = True;
4107+ opt->prev2 = True;
4108+ opt->posPrev2 = cur;
4109+ opt->backPrev2 = repIndex;
4110+ }
4111+ }
4112+ }
4113+ }
4114+ }
4115+ }
4116+ /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
4117+ if (newLen > numAvailableBytes)
4118+ {
4119+ newLen = numAvailableBytes;
4120+ for (numDistancePairs = 0; newLen > matchDistances[numDistancePairs]; numDistancePairs += 2);
4121+ matchDistances[numDistancePairs] = newLen;
4122+ numDistancePairs += 2;
4123+ }
4124+ if (newLen >= startLen)
4125+ {
4126+ UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
4127+ UInt32 offs, curBack, posSlot;
4128+ UInt32 lenTest;
4129+ while (lenEnd < cur + newLen)
4130+ p->opt[++lenEnd].price = kInfinityPrice;
4131+
4132+ offs = 0;
4133+ while (startLen > matchDistances[offs])
4134+ offs += 2;
4135+ curBack = matchDistances[offs + 1];
4136+ GetPosSlot2(curBack, posSlot);
4137+ for (lenTest = /*2*/ startLen; ; lenTest++)
4138+ {
4139+ UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
4140+ UInt32 lenToPosState = GetLenToPosState(lenTest);
4141+ COptimal *opt;
4142+ if (curBack < kNumFullDistances)
4143+ curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
4144+ else
4145+ curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
4146+
4147+ opt = &p->opt[cur + lenTest];
4148+ if (curAndLenPrice < opt->price)
4149+ {
4150+ opt->price = curAndLenPrice;
4151+ opt->posPrev = cur;
4152+ opt->backPrev = curBack + LZMA_NUM_REPS;
4153+ opt->prev1IsChar = False;
4154+ }
4155+
4156+ if (/*_maxMode && */lenTest == matchDistances[offs])
4157+ {
4158+ /* Try Match + Literal + Rep0 */
4159+ const Byte *data2 = data - (curBack + 1);
4160+ UInt32 lenTest2 = lenTest + 1;
4161+ UInt32 limit = lenTest2 + p->numFastBytes;
4162+ UInt32 nextRepMatchPrice;
4163+ if (limit > numAvailableBytesFull)
4164+ limit = numAvailableBytesFull;
4165+ for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
4166+ lenTest2 -= lenTest + 1;
4167+ if (lenTest2 >= 2)
4168+ {
4169+ UInt32 state2 = kMatchNextStates[state];
4170+ UInt32 posStateNext = (position + lenTest) & p->pbMask;
4171+ UInt32 curAndLenCharPrice = curAndLenPrice +
4172+ GET_PRICE_0(p->isMatch[state2][posStateNext]) +
4173+ LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
4174+ data[lenTest], data2[lenTest], p->ProbPrices);
4175+ state2 = kLiteralNextStates[state2];
4176+ posStateNext = (posStateNext + 1) & p->pbMask;
4177+ nextRepMatchPrice = curAndLenCharPrice +
4178+ GET_PRICE_1(p->isMatch[state2][posStateNext]) +
4179+ GET_PRICE_1(p->isRep[state2]);
4180+
4181+ /* for (; lenTest2 >= 2; lenTest2--) */
4182+ {
4183+ UInt32 offset = cur + lenTest + 1 + lenTest2;
4184+ UInt32 curAndLenPrice;
4185+ COptimal *opt;
4186+ while (lenEnd < offset)
4187+ p->opt[++lenEnd].price = kInfinityPrice;
4188+ curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
4189+ opt = &p->opt[offset];
4190+ if (curAndLenPrice < opt->price)
4191+ {
4192+ opt->price = curAndLenPrice;
4193+ opt->posPrev = cur + lenTest + 1;
4194+ opt->backPrev = 0;
4195+ opt->prev1IsChar = True;
4196+ opt->prev2 = True;
4197+ opt->posPrev2 = cur;
4198+ opt->backPrev2 = curBack + LZMA_NUM_REPS;
4199+ }
4200+ }
4201+ }
4202+ offs += 2;
4203+ if (offs == numDistancePairs)
4204+ break;
4205+ curBack = matchDistances[offs + 1];
4206+ if (curBack >= kNumFullDistances)
4207+ GetPosSlot2(curBack, posSlot);
4208+ }
4209+ }
4210+ }
4211+ }
4212+}
4213+
4214+#define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
4215+
4216+static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
4217+{
4218+ UInt32 numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
4219+ UInt32 lenMain, numDistancePairs;
4220+ const Byte *data;
4221+ UInt32 repLens[LZMA_NUM_REPS];
4222+ UInt32 repMaxIndex, i;
4223+ UInt32 *matchDistances;
4224+ UInt32 backMain;
4225+
4226+ if (!p->longestMatchWasFound)
4227+ {
4228+ lenMain = ReadMatchDistances(p, &numDistancePairs);
4229+ }
4230+ else
4231+ {
4232+ lenMain = p->longestMatchLength;
4233+ numDistancePairs = p->numDistancePairs;
4234+ p->longestMatchWasFound = False;
4235+ }
4236+
4237+ data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
4238+ if (numAvailableBytes > LZMA_MATCH_LEN_MAX)
4239+ numAvailableBytes = LZMA_MATCH_LEN_MAX;
4240+ if (numAvailableBytes < 2)
4241+ {
4242+ *backRes = (UInt32)(-1);
4243+ return 1;
4244+ }
4245+
4246+ repMaxIndex = 0;
4247+
4248+ for (i = 0; i < LZMA_NUM_REPS; i++)
4249+ {
4250+ const Byte *data2 = data - (p->reps[i] + 1);
4251+ UInt32 len;
4252+ if (data[0] != data2[0] || data[1] != data2[1])
4253+ {
4254+ repLens[i] = 0;
4255+ continue;
4256+ }
4257+ for (len = 2; len < numAvailableBytes && data[len] == data2[len]; len++);
4258+ if (len >= p->numFastBytes)
4259+ {
4260+ *backRes = i;
4261+ MovePos(p, len - 1);
4262+ return len;
4263+ }
4264+ repLens[i] = len;
4265+ if (len > repLens[repMaxIndex])
4266+ repMaxIndex = i;
4267+ }
4268+ matchDistances = p->matchDistances;
4269+ if (lenMain >= p->numFastBytes)
4270+ {
4271+ *backRes = matchDistances[numDistancePairs - 1] + LZMA_NUM_REPS;
4272+ MovePos(p, lenMain - 1);
4273+ return lenMain;
4274+ }
4275+
4276+ backMain = 0; /* for GCC */
4277+ if (lenMain >= 2)
4278+ {
4279+ backMain = matchDistances[numDistancePairs - 1];
4280+ while (numDistancePairs > 2 && lenMain == matchDistances[numDistancePairs - 4] + 1)
4281+ {
4282+ if (!ChangePair(matchDistances[numDistancePairs - 3], backMain))
4283+ break;
4284+ numDistancePairs -= 2;
4285+ lenMain = matchDistances[numDistancePairs - 2];
4286+ backMain = matchDistances[numDistancePairs - 1];
4287+ }
4288+ if (lenMain == 2 && backMain >= 0x80)
4289+ lenMain = 1;
4290+ }
4291+
4292+ if (repLens[repMaxIndex] >= 2)
4293+ {
4294+ if (repLens[repMaxIndex] + 1 >= lenMain ||
4295+ (repLens[repMaxIndex] + 2 >= lenMain && (backMain > (1 << 9))) ||
4296+ (repLens[repMaxIndex] + 3 >= lenMain && (backMain > (1 << 15))))
4297+ {
4298+ UInt32 lenRes;
4299+ *backRes = repMaxIndex;
4300+ lenRes = repLens[repMaxIndex];
4301+ MovePos(p, lenRes - 1);
4302+ return lenRes;
4303+ }
4304+ }
4305+
4306+ if (lenMain >= 2 && numAvailableBytes > 2)
4307+ {
4308+ UInt32 i;
4309+ numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
4310+ p->longestMatchLength = ReadMatchDistances(p, &p->numDistancePairs);
4311+ if (p->longestMatchLength >= 2)
4312+ {
4313+ UInt32 newDistance = matchDistances[p->numDistancePairs - 1];
4314+ if ((p->longestMatchLength >= lenMain && newDistance < backMain) ||
4315+ (p->longestMatchLength == lenMain + 1 && !ChangePair(backMain, newDistance)) ||
4316+ (p->longestMatchLength > lenMain + 1) ||
4317+ (p->longestMatchLength + 1 >= lenMain && lenMain >= 3 && ChangePair(newDistance, backMain)))
4318+ {
4319+ p->longestMatchWasFound = True;
4320+ *backRes = (UInt32)(-1);
4321+ return 1;
4322+ }
4323+ }
4324+ data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
4325+ for (i = 0; i < LZMA_NUM_REPS; i++)
4326+ {
4327+ UInt32 len;
4328+ const Byte *data2 = data - (p->reps[i] + 1);
4329+ if (data[1] != data2[1] || data[2] != data2[2])
4330+ {
4331+ repLens[i] = 0;
4332+ continue;
4333+ }
4334+ for (len = 2; len < numAvailableBytes && data[len] == data2[len]; len++);
4335+ if (len + 1 >= lenMain)
4336+ {
4337+ p->longestMatchWasFound = True;
4338+ *backRes = (UInt32)(-1);
4339+ return 1;
4340+ }
4341+ }
4342+ *backRes = backMain + LZMA_NUM_REPS;
4343+ MovePos(p, lenMain - 2);
4344+ return lenMain;
4345+ }
4346+ *backRes = (UInt32)(-1);
4347+ return 1;
4348+}
4349+
4350+static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
4351+{
4352+ UInt32 len;
4353+ RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
4354+ RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
4355+ p->state = kMatchNextStates[p->state];
4356+ len = LZMA_MATCH_LEN_MIN;
4357+ LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
4358+ RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
4359+ RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
4360+ RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
4361+}
4362+
4363+static SRes CheckErrors(CLzmaEnc *p)
4364+{
4365+ if (p->result != SZ_OK)
4366+ return p->result;
4367+ if (p->rc.res != SZ_OK)
4368+ p->result = SZ_ERROR_WRITE;
4369+ if (p->matchFinderBase.result != SZ_OK)
4370+ p->result = SZ_ERROR_READ;
4371+ if (p->result != SZ_OK)
4372+ p->finished = True;
4373+ return p->result;
4374+}
4375+
4376+static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
4377+{
4378+ /* ReleaseMFStream(); */
4379+ p->finished = True;
4380+ if (p->writeEndMark)
4381+ WriteEndMarker(p, nowPos & p->pbMask);
4382+ RangeEnc_FlushData(&p->rc);
4383+ RangeEnc_FlushStream(&p->rc);
4384+ return CheckErrors(p);
4385+}
4386+
4387+static void FillAlignPrices(CLzmaEnc *p)
4388+{
4389+ UInt32 i;
4390+ for (i = 0; i < kAlignTableSize; i++)
4391+ p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
4392+ p->alignPriceCount = 0;
4393+}
4394+
4395+static void FillDistancesPrices(CLzmaEnc *p)
4396+{
4397+ UInt32 tempPrices[kNumFullDistances];
4398+ UInt32 i, lenToPosState;
4399+ for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
4400+ {
4401+ UInt32 posSlot = GetPosSlot1(i);
4402+ UInt32 footerBits = ((posSlot >> 1) - 1);
4403+ UInt32 base = ((2 | (posSlot & 1)) << footerBits);
4404+ tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
4405+ }
4406+
4407+ for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
4408+ {
4409+ UInt32 posSlot;
4410+ const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
4411+ UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
4412+ for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
4413+ posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
4414+ for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
4415+ posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
4416+
4417+ {
4418+ UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
4419+ UInt32 i;
4420+ for (i = 0; i < kStartPosModelIndex; i++)
4421+ distancesPrices[i] = posSlotPrices[i];
4422+ for (; i < kNumFullDistances; i++)
4423+ distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
4424+ }
4425+ }
4426+ p->matchPriceCount = 0;
4427+}
4428+
4429+void LzmaEnc_Construct(CLzmaEnc *p)
4430+{
4431+ RangeEnc_Construct(&p->rc);
4432+ MatchFinder_Construct(&p->matchFinderBase);
4433+ #ifdef COMPRESS_MF_MT
4434+ MatchFinderMt_Construct(&p->matchFinderMt);
4435+ p->matchFinderMt.MatchFinder = &p->matchFinderBase;
4436+ #endif
4437+
4438+ {
4439+ CLzmaEncProps props;
4440+ LzmaEncProps_Init(&props);
4441+ LzmaEnc_SetProps(p, &props);
4442+ }
4443+
4444+ #ifndef LZMA_LOG_BSR
4445+ LzmaEnc_FastPosInit(p->g_FastPos);
4446+ #endif
4447+
4448+ LzmaEnc_InitPriceTables(p->ProbPrices);
4449+ p->litProbs = 0;
4450+ p->saveState.litProbs = 0;
4451+}
4452+
4453+CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
4454+{
4455+ void *p;
4456+ p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
4457+ if (p != 0)
4458+ LzmaEnc_Construct((CLzmaEnc *)p);
4459+ return p;
4460+}
4461+
4462+void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
4463+{
4464+ alloc->Free(alloc, p->litProbs);
4465+ alloc->Free(alloc, p->saveState.litProbs);
4466+ p->litProbs = 0;
4467+ p->saveState.litProbs = 0;
4468+}
4469+
4470+void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
4471+{
4472+ #ifdef COMPRESS_MF_MT
4473+ MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
4474+ #endif
4475+ MatchFinder_Free(&p->matchFinderBase, allocBig);
4476+ LzmaEnc_FreeLits(p, alloc);
4477+ RangeEnc_Free(&p->rc, alloc);
4478+}
4479+
4480+void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
4481+{
4482+ LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
4483+ alloc->Free(alloc, p);
4484+}
4485+
4486+static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
4487+{
4488+ UInt32 nowPos32, startPos32;
4489+ if (p->inStream != 0)
4490+ {
4491+ p->matchFinderBase.stream = p->inStream;
4492+ p->matchFinder.Init(p->matchFinderObj);
4493+ p->inStream = 0;
4494+ }
4495+
4496+ if (p->finished)
4497+ return p->result;
4498+ RINOK(CheckErrors(p));
4499+
4500+ nowPos32 = (UInt32)p->nowPos64;
4501+ startPos32 = nowPos32;
4502+
4503+ if (p->nowPos64 == 0)
4504+ {
4505+ UInt32 numDistancePairs;
4506+ Byte curByte;
4507+ if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
4508+ return Flush(p, nowPos32);
4509+ ReadMatchDistances(p, &numDistancePairs);
4510+ RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
4511+ p->state = kLiteralNextStates[p->state];
4512+ curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
4513+ LitEnc_Encode(&p->rc, p->litProbs, curByte);
4514+ p->additionalOffset--;
4515+ nowPos32++;
4516+ }
4517+
4518+ if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
4519+ for (;;)
4520+ {
4521+ UInt32 pos, len, posState;
4522+
4523+ if (p->fastMode)
4524+ len = GetOptimumFast(p, &pos);
4525+ else
4526+ len = GetOptimum(p, nowPos32, &pos);
4527+
4528+ #ifdef SHOW_STAT2
4529+ printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos);
4530+ #endif
4531+
4532+ posState = nowPos32 & p->pbMask;
4533+ if (len == 1 && pos == 0xFFFFFFFF)
4534+ {
4535+ Byte curByte;
4536+ CLzmaProb *probs;
4537+ const Byte *data;
4538+
4539+ RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
4540+ data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
4541+ curByte = *data;
4542+ probs = LIT_PROBS(nowPos32, *(data - 1));
4543+ if (IsCharState(p->state))
4544+ LitEnc_Encode(&p->rc, probs, curByte);
4545+ else
4546+ LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
4547+ p->state = kLiteralNextStates[p->state];
4548+ }
4549+ else
4550+ {
4551+ RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
4552+ if (pos < LZMA_NUM_REPS)
4553+ {
4554+ RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
4555+ if (pos == 0)
4556+ {
4557+ RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
4558+ RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
4559+ }
4560+ else
4561+ {
4562+ UInt32 distance = p->reps[pos];
4563+ RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
4564+ if (pos == 1)
4565+ RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
4566+ else
4567+ {
4568+ RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
4569+ RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
4570+ if (pos == 3)
4571+ p->reps[3] = p->reps[2];
4572+ p->reps[2] = p->reps[1];
4573+ }
4574+ p->reps[1] = p->reps[0];
4575+ p->reps[0] = distance;
4576+ }
4577+ if (len == 1)
4578+ p->state = kShortRepNextStates[p->state];
4579+ else
4580+ {
4581+ LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
4582+ p->state = kRepNextStates[p->state];
4583+ }
4584+ }
4585+ else
4586+ {
4587+ UInt32 posSlot;
4588+ RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
4589+ p->state = kMatchNextStates[p->state];
4590+ LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
4591+ pos -= LZMA_NUM_REPS;
4592+ GetPosSlot(pos, posSlot);
4593+ RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
4594+
4595+ if (posSlot >= kStartPosModelIndex)
4596+ {
4597+ UInt32 footerBits = ((posSlot >> 1) - 1);
4598+ UInt32 base = ((2 | (posSlot & 1)) << footerBits);
4599+ UInt32 posReduced = pos - base;
4600+
4601+ if (posSlot < kEndPosModelIndex)
4602+ RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
4603+ else
4604+ {
4605+ RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
4606+ RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
4607+ p->alignPriceCount++;
4608+ }
4609+ }
4610+ p->reps[3] = p->reps[2];
4611+ p->reps[2] = p->reps[1];
4612+ p->reps[1] = p->reps[0];
4613+ p->reps[0] = pos;
4614+ p->matchPriceCount++;
4615+ }
4616+ }
4617+ p->additionalOffset -= len;
4618+ nowPos32 += len;
4619+ if (p->additionalOffset == 0)
4620+ {
4621+ UInt32 processed;
4622+ if (!p->fastMode)
4623+ {
4624+ if (p->matchPriceCount >= (1 << 7))
4625+ FillDistancesPrices(p);
4626+ if (p->alignPriceCount >= kAlignTableSize)
4627+ FillAlignPrices(p);
4628+ }
4629+ if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
4630+ break;
4631+ processed = nowPos32 - startPos32;
4632+ if (useLimits)
4633+ {
4634+ if (processed + kNumOpts + 300 >= maxUnpackSize ||
4635+ RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
4636+ break;
4637+ }
4638+ else if (processed >= (1 << 15))
4639+ {
4640+ p->nowPos64 += nowPos32 - startPos32;
4641+ return CheckErrors(p);
4642+ }
4643+ }
4644+ }
4645+ p->nowPos64 += nowPos32 - startPos32;
4646+ return Flush(p, nowPos32);
4647+}
4648+
4649+#define kBigHashDicLimit ((UInt32)1 << 24)
4650+
4651+static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
4652+{
4653+ UInt32 beforeSize = kNumOpts;
4654+ Bool btMode;
4655+ if (!RangeEnc_Alloc(&p->rc, alloc))
4656+ return SZ_ERROR_MEM;
4657+ btMode = (p->matchFinderBase.btMode != 0);
4658+ #ifdef COMPRESS_MF_MT
4659+ p->mtMode = (p->multiThread && !p->fastMode && btMode);
4660+ #endif
4661+
4662+ {
4663+ unsigned lclp = p->lc + p->lp;
4664+ if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
4665+ {
4666+ LzmaEnc_FreeLits(p, alloc);
4667+ p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
4668+ p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
4669+ if (p->litProbs == 0 || p->saveState.litProbs == 0)
4670+ {
4671+ LzmaEnc_FreeLits(p, alloc);
4672+ return SZ_ERROR_MEM;
4673+ }
4674+ p->lclp = lclp;
4675+ }
4676+ }
4677+
4678+ p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
4679+
4680+ if (beforeSize + p->dictSize < keepWindowSize)
4681+ beforeSize = keepWindowSize - p->dictSize;
4682+
4683+ #ifdef COMPRESS_MF_MT
4684+ if (p->mtMode)
4685+ {
4686+ RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
4687+ p->matchFinderObj = &p->matchFinderMt;
4688+ MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
4689+ }
4690+ else
4691+ #endif
4692+ {
4693+ if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
4694+ return SZ_ERROR_MEM;
4695+ p->matchFinderObj = &p->matchFinderBase;
4696+ MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
4697+ }
4698+ return SZ_OK;
4699+}
4700+
4701+void LzmaEnc_Init(CLzmaEnc *p)
4702+{
4703+ UInt32 i;
4704+ p->state = 0;
4705+ for(i = 0 ; i < LZMA_NUM_REPS; i++)
4706+ p->reps[i] = 0;
4707+
4708+ RangeEnc_Init(&p->rc);
4709+
4710+
4711+ for (i = 0; i < kNumStates; i++)
4712+ {
4713+ UInt32 j;
4714+ for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
4715+ {
4716+ p->isMatch[i][j] = kProbInitValue;
4717+ p->isRep0Long[i][j] = kProbInitValue;
4718+ }
4719+ p->isRep[i] = kProbInitValue;
4720+ p->isRepG0[i] = kProbInitValue;
4721+ p->isRepG1[i] = kProbInitValue;
4722+ p->isRepG2[i] = kProbInitValue;
4723+ }
4724+
4725+ {
4726+ UInt32 num = 0x300 << (p->lp + p->lc);
4727+ for (i = 0; i < num; i++)
4728+ p->litProbs[i] = kProbInitValue;
4729+ }
4730+
4731+ {
4732+ for (i = 0; i < kNumLenToPosStates; i++)
4733+ {
4734+ CLzmaProb *probs = p->posSlotEncoder[i];
4735+ UInt32 j;
4736+ for (j = 0; j < (1 << kNumPosSlotBits); j++)
4737+ probs[j] = kProbInitValue;
4738+ }
4739+ }
4740+ {
4741+ for(i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
4742+ p->posEncoders[i] = kProbInitValue;
4743+ }
4744+
4745+ LenEnc_Init(&p->lenEnc.p);
4746+ LenEnc_Init(&p->repLenEnc.p);
4747+
4748+ for (i = 0; i < (1 << kNumAlignBits); i++)
4749+ p->posAlignEncoder[i] = kProbInitValue;
4750+
4751+ p->longestMatchWasFound = False;
4752+ p->optimumEndIndex = 0;
4753+ p->optimumCurrentIndex = 0;
4754+ p->additionalOffset = 0;
4755+
4756+ p->pbMask = (1 << p->pb) - 1;
4757+ p->lpMask = (1 << p->lp) - 1;
4758+}
4759+
4760+void LzmaEnc_InitPrices(CLzmaEnc *p)
4761+{
4762+ if (!p->fastMode)
4763+ {
4764+ FillDistancesPrices(p);
4765+ FillAlignPrices(p);
4766+ }
4767+
4768+ p->lenEnc.tableSize =
4769+ p->repLenEnc.tableSize =
4770+ p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
4771+ LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
4772+ LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
4773+}
4774+
4775+static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
4776+{
4777+ UInt32 i;
4778+ for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
4779+ if (p->dictSize <= ((UInt32)1 << i))
4780+ break;
4781+ p->distTableSize = i * 2;
4782+
4783+ p->finished = False;
4784+ p->result = SZ_OK;
4785+ RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
4786+ LzmaEnc_Init(p);
4787+ LzmaEnc_InitPrices(p);
4788+ p->nowPos64 = 0;
4789+ return SZ_OK;
4790+}
4791+
4792+static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqInStream *inStream, ISeqOutStream *outStream,
4793+ ISzAlloc *alloc, ISzAlloc *allocBig)
4794+{
4795+ CLzmaEnc *p = (CLzmaEnc *)pp;
4796+ p->inStream = inStream;
4797+ p->rc.outStream = outStream;
4798+ return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
4799+}
4800+
4801+SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
4802+ ISeqInStream *inStream, UInt32 keepWindowSize,
4803+ ISzAlloc *alloc, ISzAlloc *allocBig)
4804+{
4805+ CLzmaEnc *p = (CLzmaEnc *)pp;
4806+ p->inStream = inStream;
4807+ return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
4808+}
4809+
4810+static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
4811+{
4812+ p->seqBufInStream.funcTable.Read = MyRead;
4813+ p->seqBufInStream.data = src;
4814+ p->seqBufInStream.rem = srcLen;
4815+}
4816+
4817+SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
4818+ UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
4819+{
4820+ CLzmaEnc *p = (CLzmaEnc *)pp;
4821+ LzmaEnc_SetInputBuf(p, src, srcLen);
4822+ p->inStream = &p->seqBufInStream.funcTable;
4823+ return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
4824+}
4825+
4826+void LzmaEnc_Finish(CLzmaEncHandle pp)
4827+{
4828+ #ifdef COMPRESS_MF_MT
4829+ CLzmaEnc *p = (CLzmaEnc *)pp;
4830+ if (p->mtMode)
4831+ MatchFinderMt_ReleaseStream(&p->matchFinderMt);
4832+ #endif
4833+}
4834+
4835+typedef struct _CSeqOutStreamBuf
4836+{
4837+ ISeqOutStream funcTable;
4838+ Byte *data;
4839+ SizeT rem;
4840+ Bool overflow;
4841+} CSeqOutStreamBuf;
4842+
4843+static size_t MyWrite(void *pp, const void *data, size_t size)
4844+{
4845+ CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
4846+ if (p->rem < size)
4847+ {
4848+ size = p->rem;
4849+ p->overflow = True;
4850+ }
4851+ memcpy(p->data, data, size);
4852+ p->rem -= size;
4853+ p->data += size;
4854+ return size;
4855+}
4856+
4857+
4858+UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
4859+{
4860+ const CLzmaEnc *p = (CLzmaEnc *)pp;
4861+ return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
4862+}
4863+
4864+const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
4865+{
4866+ const CLzmaEnc *p = (CLzmaEnc *)pp;
4867+ return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
4868+}
4869+
4870+SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
4871+ Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
4872+{
4873+ CLzmaEnc *p = (CLzmaEnc *)pp;
4874+ UInt64 nowPos64;
4875+ SRes res;
4876+ CSeqOutStreamBuf outStream;
4877+
4878+ outStream.funcTable.Write = MyWrite;
4879+ outStream.data = dest;
4880+ outStream.rem = *destLen;
4881+ outStream.overflow = False;
4882+
4883+ p->writeEndMark = False;
4884+ p->finished = False;
4885+ p->result = SZ_OK;
4886+
4887+ if (reInit)
4888+ LzmaEnc_Init(p);
4889+ LzmaEnc_InitPrices(p);
4890+ nowPos64 = p->nowPos64;
4891+ RangeEnc_Init(&p->rc);
4892+ p->rc.outStream = &outStream.funcTable;
4893+
4894+ res = LzmaEnc_CodeOneBlock(pp, True, desiredPackSize, *unpackSize);
4895+
4896+ *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
4897+ *destLen -= outStream.rem;
4898+ if (outStream.overflow)
4899+ return SZ_ERROR_OUTPUT_EOF;
4900+
4901+ return res;
4902+}
4903+
4904+SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
4905+ ISzAlloc *alloc, ISzAlloc *allocBig)
4906+{
4907+ CLzmaEnc *p = (CLzmaEnc *)pp;
4908+ SRes res = SZ_OK;
4909+
4910+ #ifdef COMPRESS_MF_MT
4911+ Byte allocaDummy[0x300];
4912+ int i = 0;
4913+ for (i = 0; i < 16; i++)
4914+ allocaDummy[i] = (Byte)i;
4915+ #endif
4916+
4917+ RINOK(LzmaEnc_Prepare(pp, inStream, outStream, alloc, allocBig));
4918+
4919+ for (;;)
4920+ {
4921+ res = LzmaEnc_CodeOneBlock(pp, False, 0, 0);
4922+ if (res != SZ_OK || p->finished != 0)
4923+ break;
4924+ if (progress != 0)
4925+ {
4926+ res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
4927+ if (res != SZ_OK)
4928+ {
4929+ res = SZ_ERROR_PROGRESS;
4930+ break;
4931+ }
4932+ }
4933+ }
4934+ LzmaEnc_Finish(pp);
4935+ return res;
4936+}
4937+
4938+SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
4939+{
4940+ CLzmaEnc *p = (CLzmaEnc *)pp;
4941+ int i;
4942+ UInt32 dictSize = p->dictSize;
4943+ if (*size < LZMA_PROPS_SIZE)
4944+ return SZ_ERROR_PARAM;
4945+ *size = LZMA_PROPS_SIZE;
4946+ props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
4947+
4948+ for (i = 11; i <= 30; i++)
4949+ {
4950+ if (dictSize <= ((UInt32)2 << i))
4951+ {
4952+ dictSize = (2 << i);
4953+ break;
4954+ }
4955+ if (dictSize <= ((UInt32)3 << i))
4956+ {
4957+ dictSize = (3 << i);
4958+ break;
4959+ }
4960+ }
4961+
4962+ for (i = 0; i < 4; i++)
4963+ props[1 + i] = (Byte)(dictSize >> (8 * i));
4964+ return SZ_OK;
4965+}
4966+
4967+SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
4968+ int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
4969+{
4970+ SRes res;
4971+ CLzmaEnc *p = (CLzmaEnc *)pp;
4972+
4973+ CSeqOutStreamBuf outStream;
4974+
4975+ LzmaEnc_SetInputBuf(p, src, srcLen);
4976+
4977+ outStream.funcTable.Write = MyWrite;
4978+ outStream.data = dest;
4979+ outStream.rem = *destLen;
4980+ outStream.overflow = False;
4981+
4982+ p->writeEndMark = writeEndMark;
4983+ res = LzmaEnc_Encode(pp, &outStream.funcTable, &p->seqBufInStream.funcTable,
4984+ progress, alloc, allocBig);
4985+
4986+ *destLen -= outStream.rem;
4987+ if (outStream.overflow)
4988+ return SZ_ERROR_OUTPUT_EOF;
4989+ return res;
4990+}
4991+
4992+SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
4993+ const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
4994+ ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
4995+{
4996+ CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
4997+ SRes res;
4998+ if (p == 0)
4999+ return SZ_ERROR_MEM;
5000+
5001+ res = LzmaEnc_SetProps(p, props);
5002+ if (res == SZ_OK)
5003+ {
5004+ res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
5005+ if (res == SZ_OK)
5006+ res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
5007+ writeEndMark, progress, alloc, allocBig);
5008+ }
5009+
5010+ LzmaEnc_Destroy(p, alloc, allocBig);
5011+ return res;
5012+}
5013--- a/mkfs.jffs2.c 2009-06-05 16:59:08.000000000 +0200
5014+++ b/mkfs.jffs2.c 2010-03-20 23:16:16.877026000 +0100
5015@@ -1761,11 +1761,11 @@ int main(int argc, char **argv)
5016                           }
5017                           erase_block_size *= units;
5018 
5019- /* If it's less than 8KiB, they're not allowed */
5020- if (erase_block_size < 0x2000) {
5021- fprintf(stderr, "Erase size 0x%x too small. Increasing to 8KiB minimum\n",
5022+ /* If it's less than 4KiB, they're not allowed */
5023+ if (erase_block_size < 0x1000) {
5024+ fprintf(stderr, "Erase size 0x%x too small. Increasing to 4KiB minimum\n",
5025                                       erase_block_size);
5026- erase_block_size = 0x2000;
5027+ erase_block_size = 0x1000;
5028                           }
5029                           break;
5030                       }
5031

Archive Download this file



interactive