| 1 | /* ========================================================================== |
| 2 | * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.c $ |
| 3 | * $Revision: #147 $ |
| 4 | * $Date: 2008/10/16 $ |
| 5 | * $Change: 1117667 $ |
| 6 | * |
| 7 | * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, |
| 8 | * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless |
| 9 | * otherwise expressly agreed to in writing between Synopsys and you. |
| 10 | * |
| 11 | * The Software IS NOT an item of Licensed Software or Licensed Product under |
| 12 | * any End User Software License Agreement or Agreement for Licensed Product |
| 13 | * with Synopsys or any supplement thereto. You are permitted to use and |
| 14 | * redistribute this Software in source and binary forms, with or without |
| 15 | * modification, provided that redistributions of source code must retain this |
| 16 | * notice. You may not view, use, disclose, copy or distribute this file or |
| 17 | * any information contained herein except pursuant to this license grant from |
| 18 | * Synopsys. If you do not agree with this notice, including the disclaimer |
| 19 | * below, then you are not authorized to use the Software. |
| 20 | * |
| 21 | * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS |
| 22 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 24 | * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, |
| 25 | * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 26 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 27 | * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 28 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH |
| 31 | * DAMAGE. |
| 32 | * ========================================================================== */ |
| 33 | |
| 34 | /** @file |
| 35 | * |
| 36 | * The Core Interface Layer provides basic services for accessing and |
| 37 | * managing the DWC_otg hardware. These services are used by both the |
| 38 | * Host Controller Driver and the Peripheral Controller Driver. |
| 39 | * |
| 40 | * The CIL manages the memory map for the core so that the HCD and PCD |
| 41 | * don't have to do this separately. It also handles basic tasks like |
| 42 | * reading/writing the registers and data FIFOs in the controller. |
| 43 | * Some of the data access functions provide encapsulation of several |
| 44 | * operations required to perform a task, such as writing multiple |
| 45 | * registers to start a transfer. Finally, the CIL performs basic |
| 46 | * services that are not specific to either the host or device modes |
| 47 | * of operation. These services include management of the OTG Host |
| 48 | * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A |
| 49 | * Diagnostic API is also provided to allow testing of the controller |
| 50 | * hardware. |
| 51 | * |
| 52 | * The Core Interface Layer has the following requirements: |
| 53 | * - Provides basic controller operations. |
| 54 | * - Minimal use of OS services. |
| 55 | * - The OS services used will be abstracted by using inline functions |
| 56 | * or macros. |
| 57 | * |
| 58 | */ |
| 59 | #include <asm/unaligned.h> |
| 60 | #include <linux/dma-mapping.h> |
| 61 | #ifdef DEBUG |
| 62 | #include <linux/jiffies.h> |
| 63 | #endif |
| 64 | |
| 65 | #include "otg_plat.h" |
| 66 | #include "otg_regs.h" |
| 67 | #include "otg_cil.h" |
| 68 | #include "otg_pcd.h" |
| 69 | |
| 70 | |
| 71 | /** |
| 72 | * This function is called to initialize the DWC_otg CSR data |
| 73 | * structures. The register addresses in the device and host |
| 74 | * structures are initialized from the base address supplied by the |
| 75 | * caller. The calling function must make the OS calls to get the |
| 76 | * base address of the DWC_otg controller registers. The core_params |
| 77 | * argument holds the parameters that specify how the core should be |
| 78 | * configured. |
| 79 | * |
| 80 | * @param[in] reg_base_addr Base address of DWC_otg core registers |
| 81 | * @param[in] core_params Pointer to the core configuration parameters |
| 82 | * |
| 83 | */ |
| 84 | dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *reg_base_addr, |
| 85 | dwc_otg_core_params_t *core_params) |
| 86 | { |
| 87 | dwc_otg_core_if_t *core_if = 0; |
| 88 | dwc_otg_dev_if_t *dev_if = 0; |
| 89 | dwc_otg_host_if_t *host_if = 0; |
| 90 | uint8_t *reg_base = (uint8_t *)reg_base_addr; |
| 91 | int i = 0; |
| 92 | |
| 93 | DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, reg_base_addr, core_params); |
| 94 | |
| 95 | core_if = kmalloc(sizeof(dwc_otg_core_if_t), GFP_KERNEL); |
| 96 | |
| 97 | if (core_if == 0) { |
| 98 | DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_core_if_t failed\n"); |
| 99 | return 0; |
| 100 | } |
| 101 | |
| 102 | memset(core_if, 0, sizeof(dwc_otg_core_if_t)); |
| 103 | |
| 104 | core_if->core_params = core_params; |
| 105 | core_if->core_global_regs = (dwc_otg_core_global_regs_t *)reg_base; |
| 106 | |
| 107 | /* |
| 108 | * Allocate the Device Mode structures. |
| 109 | */ |
| 110 | dev_if = kmalloc(sizeof(dwc_otg_dev_if_t), GFP_KERNEL); |
| 111 | |
| 112 | if (dev_if == 0) { |
| 113 | DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n"); |
| 114 | kfree(core_if); |
| 115 | return 0; |
| 116 | } |
| 117 | |
| 118 | dev_if->dev_global_regs = |
| 119 | (dwc_otg_device_global_regs_t *)(reg_base + DWC_DEV_GLOBAL_REG_OFFSET); |
| 120 | |
| 121 | for (i=0; i<MAX_EPS_CHANNELS; i++) |
| 122 | { |
| 123 | dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *) |
| 124 | (reg_base + DWC_DEV_IN_EP_REG_OFFSET + |
| 125 | (i * DWC_EP_REG_OFFSET)); |
| 126 | |
| 127 | dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *) |
| 128 | (reg_base + DWC_DEV_OUT_EP_REG_OFFSET + |
| 129 | (i * DWC_EP_REG_OFFSET)); |
| 130 | DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n", |
| 131 | i, &dev_if->in_ep_regs[i]->diepctl); |
| 132 | DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n", |
| 133 | i, &dev_if->out_ep_regs[i]->doepctl); |
| 134 | } |
| 135 | |
| 136 | dev_if->speed = 0; // unknown |
| 137 | |
| 138 | core_if->dev_if = dev_if; |
| 139 | |
| 140 | /* |
| 141 | * Allocate the Host Mode structures. |
| 142 | */ |
| 143 | host_if = kmalloc(sizeof(dwc_otg_host_if_t), GFP_KERNEL); |
| 144 | |
| 145 | if (host_if == 0) { |
| 146 | DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_host_if_t failed\n"); |
| 147 | kfree(dev_if); |
| 148 | kfree(core_if); |
| 149 | return 0; |
| 150 | } |
| 151 | |
| 152 | host_if->host_global_regs = (dwc_otg_host_global_regs_t *) |
| 153 | (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET); |
| 154 | |
| 155 | host_if->hprt0 = (uint32_t*)(reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET); |
| 156 | |
| 157 | for (i=0; i<MAX_EPS_CHANNELS; i++) |
| 158 | { |
| 159 | host_if->hc_regs[i] = (dwc_otg_hc_regs_t *) |
| 160 | (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET + |
| 161 | (i * DWC_OTG_CHAN_REGS_OFFSET)); |
| 162 | DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n", |
| 163 | i, &host_if->hc_regs[i]->hcchar); |
| 164 | } |
| 165 | |
| 166 | host_if->num_host_channels = MAX_EPS_CHANNELS; |
| 167 | core_if->host_if = host_if; |
| 168 | |
| 169 | for (i=0; i<MAX_EPS_CHANNELS; i++) |
| 170 | { |
| 171 | core_if->data_fifo[i] = |
| 172 | (uint32_t *)(reg_base + DWC_OTG_DATA_FIFO_OFFSET + |
| 173 | (i * DWC_OTG_DATA_FIFO_SIZE)); |
| 174 | DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n", |
| 175 | i, (unsigned)core_if->data_fifo[i]); |
| 176 | } |
| 177 | |
| 178 | core_if->pcgcctl = (uint32_t*)(reg_base + DWC_OTG_PCGCCTL_OFFSET); |
| 179 | |
| 180 | /* |
| 181 | * Store the contents of the hardware configuration registers here for |
| 182 | * easy access later. |
| 183 | */ |
| 184 | core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1); |
| 185 | core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2); |
| 186 | core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3); |
| 187 | core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4); |
| 188 | |
| 189 | DWC_DEBUGPL(DBG_CILV,"hwcfg1=%08x\n",core_if->hwcfg1.d32); |
| 190 | DWC_DEBUGPL(DBG_CILV,"hwcfg2=%08x\n",core_if->hwcfg2.d32); |
| 191 | DWC_DEBUGPL(DBG_CILV,"hwcfg3=%08x\n",core_if->hwcfg3.d32); |
| 192 | DWC_DEBUGPL(DBG_CILV,"hwcfg4=%08x\n",core_if->hwcfg4.d32); |
| 193 | |
| 194 | core_if->hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg); |
| 195 | core_if->dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg); |
| 196 | |
| 197 | DWC_DEBUGPL(DBG_CILV,"hcfg=%08x\n",core_if->hcfg.d32); |
| 198 | DWC_DEBUGPL(DBG_CILV,"dcfg=%08x\n",core_if->dcfg.d32); |
| 199 | |
| 200 | DWC_DEBUGPL(DBG_CILV,"op_mode=%0x\n",core_if->hwcfg2.b.op_mode); |
| 201 | DWC_DEBUGPL(DBG_CILV,"arch=%0x\n",core_if->hwcfg2.b.architecture); |
| 202 | DWC_DEBUGPL(DBG_CILV,"num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep); |
| 203 | DWC_DEBUGPL(DBG_CILV,"num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan); |
| 204 | DWC_DEBUGPL(DBG_CILV,"nonperio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.nonperio_tx_q_depth); |
| 205 | DWC_DEBUGPL(DBG_CILV,"host_perio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.host_perio_tx_q_depth); |
| 206 | DWC_DEBUGPL(DBG_CILV,"dev_token_q_depth=0x%0x\n",core_if->hwcfg2.b.dev_token_q_depth); |
| 207 | |
| 208 | DWC_DEBUGPL(DBG_CILV,"Total FIFO SZ=%d\n", core_if->hwcfg3.b.dfifo_depth); |
| 209 | DWC_DEBUGPL(DBG_CILV,"xfer_size_cntr_width=%0x\n", core_if->hwcfg3.b.xfer_size_cntr_width); |
| 210 | |
| 211 | /* |
| 212 | * Set the SRP sucess bit for FS-I2c |
| 213 | */ |
| 214 | core_if->srp_success = 0; |
| 215 | core_if->srp_timer_started = 0; |
| 216 | |
| 217 | |
| 218 | /* |
| 219 | * Create new workqueue and init works |
| 220 | */ |
| 221 | core_if->wq_otg = create_singlethread_workqueue("dwc_otg"); |
| 222 | if(core_if->wq_otg == 0) { |
| 223 | DWC_DEBUGPL(DBG_CIL, "Creation of wq_otg failed\n"); |
| 224 | kfree(host_if); |
| 225 | kfree(dev_if); |
| 226 | kfree(core_if); |
| 227 | return 0 * HZ; |
| 228 | } |
| 229 | INIT_WORK(&core_if->w_conn_id, w_conn_id_status_change); |
| 230 | INIT_DELAYED_WORK(&core_if->w_wkp, w_wakeup_detected); |
| 231 | |
| 232 | return core_if; |
| 233 | } |
| 234 | |
| 235 | /** |
| 236 | * This function frees the structures allocated by dwc_otg_cil_init(). |
| 237 | * |
| 238 | * @param[in] core_if The core interface pointer returned from |
| 239 | * dwc_otg_cil_init(). |
| 240 | * |
| 241 | */ |
| 242 | void dwc_otg_cil_remove(dwc_otg_core_if_t *core_if) |
| 243 | { |
| 244 | /* Disable all interrupts */ |
| 245 | dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 1, 0); |
| 246 | dwc_write_reg32(&core_if->core_global_regs->gintmsk, 0); |
| 247 | |
| 248 | if (core_if->wq_otg) { |
| 249 | destroy_workqueue(core_if->wq_otg); |
| 250 | } |
| 251 | if (core_if->dev_if) { |
| 252 | kfree(core_if->dev_if); |
| 253 | } |
| 254 | if (core_if->host_if) { |
| 255 | kfree(core_if->host_if); |
| 256 | } |
| 257 | kfree(core_if); |
| 258 | } |
| 259 | |
| 260 | /** |
| 261 | * This function enables the controller's Global Interrupt in the AHB Config |
| 262 | * register. |
| 263 | * |
| 264 | * @param[in] core_if Programming view of DWC_otg controller. |
| 265 | */ |
| 266 | void dwc_otg_enable_global_interrupts(dwc_otg_core_if_t *core_if) |
| 267 | { |
| 268 | gahbcfg_data_t ahbcfg = { .d32 = 0}; |
| 269 | ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ |
| 270 | dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32); |
| 271 | } |
| 272 | |
| 273 | /** |
| 274 | * This function disables the controller's Global Interrupt in the AHB Config |
| 275 | * register. |
| 276 | * |
| 277 | * @param[in] core_if Programming view of DWC_otg controller. |
| 278 | */ |
| 279 | void dwc_otg_disable_global_interrupts(dwc_otg_core_if_t *core_if) |
| 280 | { |
| 281 | gahbcfg_data_t ahbcfg = { .d32 = 0}; |
| 282 | ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ |
| 283 | dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0); |
| 284 | } |
| 285 | |
| 286 | /** |
| 287 | * This function initializes the commmon interrupts, used in both |
| 288 | * device and host modes. |
| 289 | * |
| 290 | * @param[in] core_if Programming view of the DWC_otg controller |
| 291 | * |
| 292 | */ |
| 293 | static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t *core_if) |
| 294 | { |
| 295 | dwc_otg_core_global_regs_t *global_regs = |
| 296 | core_if->core_global_regs; |
| 297 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 298 | |
| 299 | /* Clear any pending OTG Interrupts */ |
| 300 | dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF); |
| 301 | |
| 302 | /* Clear any pending interrupts */ |
| 303 | dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); |
| 304 | |
| 305 | /* |
| 306 | * Enable the interrupts in the GINTMSK. |
| 307 | */ |
| 308 | intr_mask.b.modemismatch = 1; |
| 309 | intr_mask.b.otgintr = 1; |
| 310 | |
| 311 | if (!core_if->dma_enable) { |
| 312 | intr_mask.b.rxstsqlvl = 1; |
| 313 | } |
| 314 | |
| 315 | intr_mask.b.conidstschng = 1; |
| 316 | intr_mask.b.wkupintr = 1; |
| 317 | intr_mask.b.disconnect = 1; |
| 318 | intr_mask.b.usbsuspend = 1; |
| 319 | intr_mask.b.sessreqintr = 1; |
| 320 | dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32); |
| 321 | } |
| 322 | |
| 323 | /** |
| 324 | * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY |
| 325 | * type. |
| 326 | */ |
| 327 | static void init_fslspclksel(dwc_otg_core_if_t *core_if) |
| 328 | { |
| 329 | uint32_t val; |
| 330 | hcfg_data_t hcfg; |
| 331 | |
| 332 | if (((core_if->hwcfg2.b.hs_phy_type == 2) && |
| 333 | (core_if->hwcfg2.b.fs_phy_type == 1) && |
| 334 | (core_if->core_params->ulpi_fs_ls)) || |
| 335 | (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { |
| 336 | /* Full speed PHY */ |
| 337 | val = DWC_HCFG_48_MHZ; |
| 338 | } |
| 339 | else { |
| 340 | /* High speed PHY running at full speed or high speed */ |
| 341 | val = DWC_HCFG_30_60_MHZ; |
| 342 | } |
| 343 | |
| 344 | DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val); |
| 345 | hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg); |
| 346 | hcfg.b.fslspclksel = val; |
| 347 | dwc_write_reg32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32); |
| 348 | } |
| 349 | |
| 350 | /** |
| 351 | * Initializes the DevSpd field of the DCFG register depending on the PHY type |
| 352 | * and the enumeration speed of the device. |
| 353 | */ |
| 354 | static void init_devspd(dwc_otg_core_if_t *core_if) |
| 355 | { |
| 356 | uint32_t val; |
| 357 | dcfg_data_t dcfg; |
| 358 | |
| 359 | if (((core_if->hwcfg2.b.hs_phy_type == 2) && |
| 360 | (core_if->hwcfg2.b.fs_phy_type == 1) && |
| 361 | (core_if->core_params->ulpi_fs_ls)) || |
| 362 | (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { |
| 363 | /* Full speed PHY */ |
| 364 | val = 0x3; |
| 365 | } |
| 366 | else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) { |
| 367 | /* High speed PHY running at full speed */ |
| 368 | val = 0x1; |
| 369 | } |
| 370 | else { |
| 371 | /* High speed PHY running at high speed */ |
| 372 | val = 0x0; |
| 373 | } |
| 374 | |
| 375 | DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val); |
| 376 | |
| 377 | dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg); |
| 378 | dcfg.b.devspd = val; |
| 379 | dwc_write_reg32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32); |
| 380 | } |
| 381 | |
| 382 | /** |
| 383 | * This function calculates the number of IN EPS |
| 384 | * using GHWCFG1 and GHWCFG2 registers values |
| 385 | * |
| 386 | * @param core_if Programming view of the DWC_otg controller |
| 387 | */ |
| 388 | static uint32_t calc_num_in_eps(dwc_otg_core_if_t *core_if) |
| 389 | { |
| 390 | uint32_t num_in_eps = 0; |
| 391 | uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep; |
| 392 | uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 3; |
| 393 | uint32_t num_tx_fifos = core_if->hwcfg4.b.num_in_eps; |
| 394 | int i; |
| 395 | |
| 396 | |
| 397 | for(i = 0; i < num_eps; ++i) |
| 398 | { |
| 399 | if(!(hwcfg1 & 0x1)) |
| 400 | num_in_eps++; |
| 401 | |
| 402 | hwcfg1 >>= 2; |
| 403 | } |
| 404 | |
| 405 | if(core_if->hwcfg4.b.ded_fifo_en) { |
| 406 | num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps; |
| 407 | } |
| 408 | |
| 409 | return num_in_eps; |
| 410 | } |
| 411 | |
| 412 | |
| 413 | /** |
| 414 | * This function calculates the number of OUT EPS |
| 415 | * using GHWCFG1 and GHWCFG2 registers values |
| 416 | * |
| 417 | * @param core_if Programming view of the DWC_otg controller |
| 418 | */ |
| 419 | static uint32_t calc_num_out_eps(dwc_otg_core_if_t *core_if) |
| 420 | { |
| 421 | uint32_t num_out_eps = 0; |
| 422 | uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep; |
| 423 | uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 2; |
| 424 | int i; |
| 425 | |
| 426 | for(i = 0; i < num_eps; ++i) |
| 427 | { |
| 428 | if(!(hwcfg1 & 0x2)) |
| 429 | num_out_eps++; |
| 430 | |
| 431 | hwcfg1 >>= 2; |
| 432 | } |
| 433 | return num_out_eps; |
| 434 | } |
| 435 | /** |
| 436 | * This function initializes the DWC_otg controller registers and |
| 437 | * prepares the core for device mode or host mode operation. |
| 438 | * |
| 439 | * @param core_if Programming view of the DWC_otg controller |
| 440 | * |
| 441 | */ |
| 442 | void dwc_otg_core_init(dwc_otg_core_if_t *core_if) |
| 443 | { |
| 444 | int i = 0; |
| 445 | dwc_otg_core_global_regs_t *global_regs = |
| 446 | core_if->core_global_regs; |
| 447 | dwc_otg_dev_if_t *dev_if = core_if->dev_if; |
| 448 | gahbcfg_data_t ahbcfg = { .d32 = 0 }; |
| 449 | gusbcfg_data_t usbcfg = { .d32 = 0 }; |
| 450 | gi2cctl_data_t i2cctl = { .d32 = 0 }; |
| 451 | |
| 452 | DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", core_if); |
| 453 | |
| 454 | /* Common Initialization */ |
| 455 | |
| 456 | usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); |
| 457 | |
| 458 | // usbcfg.b.tx_end_delay = 1; |
| 459 | /* Program the ULPI External VBUS bit if needed */ |
| 460 | usbcfg.b.ulpi_ext_vbus_drv = |
| 461 | (core_if->core_params->phy_ulpi_ext_vbus == DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0; |
| 462 | |
| 463 | /* Set external TS Dline pulsing */ |
| 464 | usbcfg.b.term_sel_dl_pulse = (core_if->core_params->ts_dline == 1) ? 1 : 0; |
| 465 | dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); |
| 466 | |
| 467 | |
| 468 | /* Reset the Controller */ |
| 469 | dwc_otg_core_reset(core_if); |
| 470 | |
| 471 | /* Initialize parameters from Hardware configuration registers. */ |
| 472 | dev_if->num_in_eps = calc_num_in_eps(core_if); |
| 473 | dev_if->num_out_eps = calc_num_out_eps(core_if); |
| 474 | |
| 475 | |
| 476 | DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n", core_if->hwcfg4.b.num_dev_perio_in_ep); |
| 477 | |
| 478 | for (i=0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) |
| 479 | { |
| 480 | dev_if->perio_tx_fifo_size[i] = |
| 481 | dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16; |
| 482 | DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n", |
| 483 | i, dev_if->perio_tx_fifo_size[i]); |
| 484 | } |
| 485 | |
| 486 | for (i=0; i < core_if->hwcfg4.b.num_in_eps; i++) |
| 487 | { |
| 488 | dev_if->tx_fifo_size[i] = |
| 489 | dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16; |
| 490 | DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n", |
| 491 | i, dev_if->perio_tx_fifo_size[i]); |
| 492 | } |
| 493 | |
| 494 | core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth; |
| 495 | core_if->rx_fifo_size = |
| 496 | dwc_read_reg32(&global_regs->grxfsiz); |
| 497 | core_if->nperio_tx_fifo_size = |
| 498 | dwc_read_reg32(&global_regs->gnptxfsiz) >> 16; |
| 499 | |
| 500 | DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", core_if->total_fifo_size); |
| 501 | DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", core_if->rx_fifo_size); |
| 502 | DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", core_if->nperio_tx_fifo_size); |
| 503 | |
| 504 | /* This programming sequence needs to happen in FS mode before any other |
| 505 | * programming occurs */ |
| 506 | if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) && |
| 507 | (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { |
| 508 | /* If FS mode with FS PHY */ |
| 509 | |
| 510 | /* core_init() is now called on every switch so only call the |
| 511 | * following for the first time through. */ |
| 512 | if (!core_if->phy_init_done) { |
| 513 | core_if->phy_init_done = 1; |
| 514 | DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n"); |
| 515 | usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); |
| 516 | usbcfg.b.physel = 1; |
| 517 | dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); |
| 518 | |
| 519 | /* Reset after a PHY select */ |
| 520 | dwc_otg_core_reset(core_if); |
| 521 | } |
| 522 | |
| 523 | /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also |
| 524 | * do this on HNP Dev/Host mode switches (done in dev_init and |
| 525 | * host_init). */ |
| 526 | if (dwc_otg_is_host_mode(core_if)) { |
| 527 | init_fslspclksel(core_if); |
| 528 | } |
| 529 | else { |
| 530 | init_devspd(core_if); |
| 531 | } |
| 532 | |
| 533 | if (core_if->core_params->i2c_enable) { |
| 534 | DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n"); |
| 535 | /* Program GUSBCFG.OtgUtmifsSel to I2C */ |
| 536 | usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); |
| 537 | usbcfg.b.otgutmifssel = 1; |
| 538 | dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); |
| 539 | |
| 540 | /* Program GI2CCTL.I2CEn */ |
| 541 | i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl); |
| 542 | i2cctl.b.i2cdevaddr = 1; |
| 543 | i2cctl.b.i2cen = 0; |
| 544 | dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32); |
| 545 | i2cctl.b.i2cen = 1; |
| 546 | dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32); |
| 547 | } |
| 548 | |
| 549 | } /* endif speed == DWC_SPEED_PARAM_FULL */ |
| 550 | |
| 551 | else { |
| 552 | /* High speed PHY. */ |
| 553 | if (!core_if->phy_init_done) { |
| 554 | core_if->phy_init_done = 1; |
| 555 | /* HS PHY parameters. These parameters are preserved |
| 556 | * during soft reset so only program the first time. Do |
| 557 | * a soft reset immediately after setting phyif. */ |
| 558 | usbcfg.b.ulpi_utmi_sel = core_if->core_params->phy_type; |
| 559 | if (usbcfg.b.ulpi_utmi_sel == 1) { |
| 560 | /* ULPI interface */ |
| 561 | usbcfg.b.phyif = 0; |
| 562 | usbcfg.b.ddrsel = core_if->core_params->phy_ulpi_ddr; |
| 563 | } |
| 564 | else { |
| 565 | /* UTMI+ interface */ |
| 566 | if (core_if->core_params->phy_utmi_width == 16) { |
| 567 | usbcfg.b.phyif = 1; |
| 568 | } |
| 569 | else { |
| 570 | usbcfg.b.phyif = 0; |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); |
| 575 | |
| 576 | /* Reset after setting the PHY parameters */ |
| 577 | dwc_otg_core_reset(core_if); |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | if ((core_if->hwcfg2.b.hs_phy_type == 2) && |
| 582 | (core_if->hwcfg2.b.fs_phy_type == 1) && |
| 583 | (core_if->core_params->ulpi_fs_ls)) { |
| 584 | DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n"); |
| 585 | usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); |
| 586 | usbcfg.b.ulpi_fsls = 1; |
| 587 | usbcfg.b.ulpi_clk_sus_m = 1; |
| 588 | dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); |
| 589 | } |
| 590 | else { |
| 591 | usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); |
| 592 | usbcfg.b.ulpi_fsls = 0; |
| 593 | usbcfg.b.ulpi_clk_sus_m = 0; |
| 594 | dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); |
| 595 | } |
| 596 | |
| 597 | /* Program the GAHBCFG Register.*/ |
| 598 | switch (core_if->hwcfg2.b.architecture) { |
| 599 | |
| 600 | case DWC_SLAVE_ONLY_ARCH: |
| 601 | DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n"); |
| 602 | ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; |
| 603 | ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; |
| 604 | core_if->dma_enable = 0; |
| 605 | core_if->dma_desc_enable = 0; |
| 606 | break; |
| 607 | |
| 608 | case DWC_EXT_DMA_ARCH: |
| 609 | DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n"); |
| 610 | ahbcfg.b.hburstlen = core_if->core_params->dma_burst_size; |
| 611 | core_if->dma_enable = (core_if->core_params->dma_enable != 0); |
| 612 | core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0); |
| 613 | break; |
| 614 | |
| 615 | case DWC_INT_DMA_ARCH: |
| 616 | DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n"); |
| 617 | ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR; |
| 618 | core_if->dma_enable = (core_if->core_params->dma_enable != 0); |
| 619 | core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0); |
| 620 | break; |
| 621 | |
| 622 | } |
| 623 | ahbcfg.b.dmaenable = core_if->dma_enable; |
| 624 | dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32); |
| 625 | |
| 626 | core_if->en_multiple_tx_fifo = core_if->hwcfg4.b.ded_fifo_en; |
| 627 | |
| 628 | core_if->pti_enh_enable = core_if->core_params->pti_enable != 0; |
| 629 | core_if->multiproc_int_enable = core_if->core_params->mpi_enable; |
| 630 | DWC_PRINT("Periodic Transfer Interrupt Enhancement - %s\n", ((core_if->pti_enh_enable) ? "enabled": "disabled")); |
| 631 | DWC_PRINT("Multiprocessor Interrupt Enhancement - %s\n", ((core_if->multiproc_int_enable) ? "enabled": "disabled")); |
| 632 | |
| 633 | /* |
| 634 | * Program the GUSBCFG register. |
| 635 | */ |
| 636 | usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); |
| 637 | |
| 638 | switch (core_if->hwcfg2.b.op_mode) { |
| 639 | case DWC_MODE_HNP_SRP_CAPABLE: |
| 640 | usbcfg.b.hnpcap = (core_if->core_params->otg_cap == |
| 641 | DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE); |
| 642 | usbcfg.b.srpcap = (core_if->core_params->otg_cap != |
| 643 | DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); |
| 644 | break; |
| 645 | |
| 646 | case DWC_MODE_SRP_ONLY_CAPABLE: |
| 647 | usbcfg.b.hnpcap = 0; |
| 648 | usbcfg.b.srpcap = (core_if->core_params->otg_cap != |
| 649 | DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); |
| 650 | break; |
| 651 | |
| 652 | case DWC_MODE_NO_HNP_SRP_CAPABLE: |
| 653 | usbcfg.b.hnpcap = 0; |
| 654 | usbcfg.b.srpcap = 0; |
| 655 | break; |
| 656 | |
| 657 | case DWC_MODE_SRP_CAPABLE_DEVICE: |
| 658 | usbcfg.b.hnpcap = 0; |
| 659 | usbcfg.b.srpcap = (core_if->core_params->otg_cap != |
| 660 | DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); |
| 661 | break; |
| 662 | |
| 663 | case DWC_MODE_NO_SRP_CAPABLE_DEVICE: |
| 664 | usbcfg.b.hnpcap = 0; |
| 665 | usbcfg.b.srpcap = 0; |
| 666 | break; |
| 667 | |
| 668 | case DWC_MODE_SRP_CAPABLE_HOST: |
| 669 | usbcfg.b.hnpcap = 0; |
| 670 | usbcfg.b.srpcap = (core_if->core_params->otg_cap != |
| 671 | DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); |
| 672 | break; |
| 673 | |
| 674 | case DWC_MODE_NO_SRP_CAPABLE_HOST: |
| 675 | usbcfg.b.hnpcap = 0; |
| 676 | usbcfg.b.srpcap = 0; |
| 677 | break; |
| 678 | } |
| 679 | |
| 680 | dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); |
| 681 | |
| 682 | /* Enable common interrupts */ |
| 683 | dwc_otg_enable_common_interrupts(core_if); |
| 684 | |
| 685 | /* Do device or host intialization based on mode during PCD |
| 686 | * and HCD initialization */ |
| 687 | if (dwc_otg_is_host_mode(core_if)) { |
| 688 | DWC_DEBUGPL(DBG_ANY, "Host Mode\n"); |
| 689 | core_if->op_state = A_HOST; |
| 690 | } |
| 691 | else { |
| 692 | DWC_DEBUGPL(DBG_ANY, "Device Mode\n"); |
| 693 | core_if->op_state = B_PERIPHERAL; |
| 694 | #ifdef DWC_DEVICE_ONLY |
| 695 | dwc_otg_core_dev_init(core_if); |
| 696 | #endif |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | |
| 701 | /** |
| 702 | * This function enables the Device mode interrupts. |
| 703 | * |
| 704 | * @param core_if Programming view of DWC_otg controller |
| 705 | */ |
| 706 | void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *core_if) |
| 707 | { |
| 708 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 709 | dwc_otg_core_global_regs_t *global_regs = |
| 710 | core_if->core_global_regs; |
| 711 | |
| 712 | DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); |
| 713 | |
| 714 | /* Disable all interrupts. */ |
| 715 | dwc_write_reg32(&global_regs->gintmsk, 0); |
| 716 | |
| 717 | /* Clear any pending interrupts */ |
| 718 | dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); |
| 719 | |
| 720 | /* Enable the common interrupts */ |
| 721 | dwc_otg_enable_common_interrupts(core_if); |
| 722 | |
| 723 | /* Enable interrupts */ |
| 724 | intr_mask.b.usbreset = 1; |
| 725 | intr_mask.b.enumdone = 1; |
| 726 | |
| 727 | if(!core_if->multiproc_int_enable) { |
| 728 | intr_mask.b.inepintr = 1; |
| 729 | intr_mask.b.outepintr = 1; |
| 730 | } |
| 731 | |
| 732 | intr_mask.b.erlysuspend = 1; |
| 733 | |
| 734 | if(core_if->en_multiple_tx_fifo == 0) { |
| 735 | intr_mask.b.epmismatch = 1; |
| 736 | } |
| 737 | |
| 738 | |
| 739 | #ifdef DWC_EN_ISOC |
| 740 | if(core_if->dma_enable) { |
| 741 | if(core_if->dma_desc_enable == 0) { |
| 742 | if(core_if->pti_enh_enable) { |
| 743 | dctl_data_t dctl = { .d32 = 0 }; |
| 744 | dctl.b.ifrmnum = 1; |
| 745 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, 0, dctl.d32); |
| 746 | } else { |
| 747 | intr_mask.b.incomplisoin = 1; |
| 748 | intr_mask.b.incomplisoout = 1; |
| 749 | } |
| 750 | } |
| 751 | } else { |
| 752 | intr_mask.b.incomplisoin = 1; |
| 753 | intr_mask.b.incomplisoout = 1; |
| 754 | } |
| 755 | #endif // DWC_EN_ISOC |
| 756 | |
| 757 | /** @todo NGS: Should this be a module parameter? */ |
| 758 | #ifdef USE_PERIODIC_EP |
| 759 | intr_mask.b.isooutdrop = 1; |
| 760 | intr_mask.b.eopframe = 1; |
| 761 | intr_mask.b.incomplisoin = 1; |
| 762 | intr_mask.b.incomplisoout = 1; |
| 763 | #endif |
| 764 | |
| 765 | dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); |
| 766 | |
| 767 | DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__, |
| 768 | dwc_read_reg32(&global_regs->gintmsk)); |
| 769 | } |
| 770 | |
| 771 | /** |
| 772 | * This function initializes the DWC_otg controller registers for |
| 773 | * device mode. |
| 774 | * |
| 775 | * @param core_if Programming view of DWC_otg controller |
| 776 | * |
| 777 | */ |
| 778 | void dwc_otg_core_dev_init(dwc_otg_core_if_t *core_if) |
| 779 | { |
| 780 | int i,size; |
| 781 | u_int32_t *default_value_array; |
| 782 | |
| 783 | dwc_otg_core_global_regs_t *global_regs = |
| 784 | core_if->core_global_regs; |
| 785 | dwc_otg_dev_if_t *dev_if = core_if->dev_if; |
| 786 | dwc_otg_core_params_t *params = core_if->core_params; |
| 787 | dcfg_data_t dcfg = { .d32 = 0}; |
| 788 | grstctl_t resetctl = { .d32 = 0 }; |
| 789 | uint32_t rx_fifo_size; |
| 790 | fifosize_data_t nptxfifosize; |
| 791 | fifosize_data_t txfifosize; |
| 792 | dthrctl_data_t dthrctl; |
| 793 | |
| 794 | /* Restart the Phy Clock */ |
| 795 | dwc_write_reg32(core_if->pcgcctl, 0); |
| 796 | |
| 797 | /* Device configuration register */ |
| 798 | init_devspd(core_if); |
| 799 | dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg); |
| 800 | dcfg.b.descdma = (core_if->dma_desc_enable) ? 1 : 0; |
| 801 | dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80; |
| 802 | |
| 803 | dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32); |
| 804 | |
| 805 | /* Configure data FIFO sizes */ |
| 806 | if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) { |
| 807 | DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", core_if->total_fifo_size); |
| 808 | DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->dev_rx_fifo_size); |
| 809 | DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", params->dev_nperio_tx_fifo_size); |
| 810 | |
| 811 | /* Rx FIFO */ |
| 812 | DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n", |
| 813 | dwc_read_reg32(&global_regs->grxfsiz)); |
| 814 | |
| 815 | rx_fifo_size = params->dev_rx_fifo_size; |
| 816 | dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size); |
| 817 | |
| 818 | DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n", |
| 819 | dwc_read_reg32(&global_regs->grxfsiz)); |
| 820 | |
| 821 | /** Set Periodic Tx FIFO Mask all bits 0 */ |
| 822 | core_if->p_tx_msk = 0; |
| 823 | |
| 824 | /** Set Tx FIFO Mask all bits 0 */ |
| 825 | core_if->tx_msk = 0; |
| 826 | |
| 827 | /* Non-periodic Tx FIFO */ |
| 828 | DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n", |
| 829 | dwc_read_reg32(&global_regs->gnptxfsiz)); |
| 830 | |
| 831 | nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size; |
| 832 | nptxfifosize.b.startaddr = params->dev_rx_fifo_size; |
| 833 | |
| 834 | dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); |
| 835 | |
| 836 | DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", |
| 837 | dwc_read_reg32(&global_regs->gnptxfsiz)); |
| 838 | |
| 839 | txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth; |
| 840 | if(core_if->en_multiple_tx_fifo == 0) { |
| 841 | //core_if->hwcfg4.b.ded_fifo_en==0 |
| 842 | |
| 843 | /**@todo NGS: Fix Periodic FIFO Sizing! */ |
| 844 | /* |
| 845 | * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15. |
| 846 | * Indexes of the FIFO size module parameters in the |
| 847 | * dev_perio_tx_fifo_size array and the FIFO size registers in |
| 848 | * the dptxfsiz array run from 0 to 14. |
| 849 | */ |
| 850 | /** @todo Finish debug of this */ |
| 851 | size=core_if->hwcfg4.b.num_dev_perio_in_ep; |
| 852 | default_value_array=params->dev_perio_tx_fifo_size; |
| 853 | |
| 854 | } |
| 855 | else { |
| 856 | //core_if->hwcfg4.b.ded_fifo_en==1 |
| 857 | /* |
| 858 | * Tx FIFOs These FIFOs are numbered from 1 to 15. |
| 859 | * Indexes of the FIFO size module parameters in the |
| 860 | * dev_tx_fifo_size array and the FIFO size registers in |
| 861 | * the dptxfsiz_dieptxf array run from 0 to 14. |
| 862 | */ |
| 863 | |
| 864 | size=core_if->hwcfg4.b.num_in_eps; |
| 865 | default_value_array=params->dev_tx_fifo_size; |
| 866 | |
| 867 | } |
| 868 | for (i=0; i < size; i++) |
| 869 | { |
| 870 | |
| 871 | txfifosize.b.depth = default_value_array[i]; |
| 872 | DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz_dieptxf[%d]=%08x\n", i, |
| 873 | dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); |
| 874 | dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i], |
| 875 | txfifosize.d32); |
| 876 | DWC_DEBUGPL(DBG_CIL, "new dptxfsiz_dieptxf[%d]=%08x\n", i, |
| 877 | dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); |
| 878 | txfifosize.b.startaddr += txfifosize.b.depth; |
| 879 | } |
| 880 | } |
| 881 | /* Flush the FIFOs */ |
| 882 | dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */ |
| 883 | dwc_otg_flush_rx_fifo(core_if); |
| 884 | |
| 885 | /* Flush the Learning Queue. */ |
| 886 | resetctl.b.intknqflsh = 1; |
| 887 | dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32); |
| 888 | |
| 889 | /* Clear all pending Device Interrupts */ |
| 890 | |
| 891 | if(core_if->multiproc_int_enable) { |
| 892 | } |
| 893 | |
| 894 | /** @todo - if the condition needed to be checked |
| 895 | * or in any case all pending interrutps should be cleared? |
| 896 | */ |
| 897 | if(core_if->multiproc_int_enable) { |
| 898 | for(i = 0; i < core_if->dev_if->num_in_eps; ++i) { |
| 899 | dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[i], 0); |
| 900 | } |
| 901 | |
| 902 | for(i = 0; i < core_if->dev_if->num_out_eps; ++i) { |
| 903 | dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[i], 0); |
| 904 | } |
| 905 | |
| 906 | dwc_write_reg32(&dev_if->dev_global_regs->deachint, 0xFFFFFFFF); |
| 907 | dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, 0); |
| 908 | } else { |
| 909 | dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0); |
| 910 | dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0); |
| 911 | dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF); |
| 912 | dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0); |
| 913 | } |
| 914 | |
| 915 | for (i=0; i <= dev_if->num_in_eps; i++) |
| 916 | { |
| 917 | depctl_data_t depctl; |
| 918 | depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl); |
| 919 | if (depctl.b.epena) { |
| 920 | depctl.d32 = 0; |
| 921 | depctl.b.epdis = 1; |
| 922 | depctl.b.snak = 1; |
| 923 | } |
| 924 | else { |
| 925 | depctl.d32 = 0; |
| 926 | } |
| 927 | |
| 928 | dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32); |
| 929 | |
| 930 | |
| 931 | dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0); |
| 932 | dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0); |
| 933 | dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF); |
| 934 | } |
| 935 | |
| 936 | for (i=0; i <= dev_if->num_out_eps; i++) |
| 937 | { |
| 938 | depctl_data_t depctl; |
| 939 | depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl); |
| 940 | if (depctl.b.epena) { |
| 941 | depctl.d32 = 0; |
| 942 | depctl.b.epdis = 1; |
| 943 | depctl.b.snak = 1; |
| 944 | } |
| 945 | else { |
| 946 | depctl.d32 = 0; |
| 947 | } |
| 948 | |
| 949 | dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32); |
| 950 | |
| 951 | dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0); |
| 952 | dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0); |
| 953 | dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF); |
| 954 | } |
| 955 | |
| 956 | if(core_if->en_multiple_tx_fifo && core_if->dma_enable) { |
| 957 | dev_if->non_iso_tx_thr_en = params->thr_ctl & 0x1; |
| 958 | dev_if->iso_tx_thr_en = (params->thr_ctl >> 1) & 0x1; |
| 959 | dev_if->rx_thr_en = (params->thr_ctl >> 2) & 0x1; |
| 960 | |
| 961 | dev_if->rx_thr_length = params->rx_thr_length; |
| 962 | dev_if->tx_thr_length = params->tx_thr_length; |
| 963 | |
| 964 | dev_if->setup_desc_index = 0; |
| 965 | |
| 966 | dthrctl.d32 = 0; |
| 967 | dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en; |
| 968 | dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en; |
| 969 | dthrctl.b.tx_thr_len = dev_if->tx_thr_length; |
| 970 | dthrctl.b.rx_thr_en = dev_if->rx_thr_en; |
| 971 | dthrctl.b.rx_thr_len = dev_if->rx_thr_length; |
| 972 | |
| 973 | dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl, dthrctl.d32); |
| 974 | |
| 975 | DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\nRx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n", |
| 976 | dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en, dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len, dthrctl.b.rx_thr_len); |
| 977 | |
| 978 | } |
| 979 | |
| 980 | dwc_otg_enable_device_interrupts(core_if); |
| 981 | |
| 982 | { |
| 983 | diepmsk_data_t msk = { .d32 = 0 }; |
| 984 | msk.b.txfifoundrn = 1; |
| 985 | if(core_if->multiproc_int_enable) { |
| 986 | dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], msk.d32, msk.d32); |
| 987 | } else { |
| 988 | dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32, msk.d32); |
| 989 | } |
| 990 | } |
| 991 | |
| 992 | |
| 993 | if(core_if->multiproc_int_enable) { |
| 994 | /* Set NAK on Babble */ |
| 995 | dctl_data_t dctl = { .d32 = 0}; |
| 996 | dctl.b.nakonbble = 1; |
| 997 | dwc_modify_reg32(&dev_if->dev_global_regs->dctl, 0, dctl.d32); |
| 998 | } |
| 999 | } |
| 1000 | |
| 1001 | /** |
| 1002 | * This function enables the Host mode interrupts. |
| 1003 | * |
| 1004 | * @param core_if Programming view of DWC_otg controller |
| 1005 | */ |
| 1006 | void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *core_if) |
| 1007 | { |
| 1008 | dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; |
| 1009 | gintmsk_data_t intr_mask = { .d32 = 0 }; |
| 1010 | |
| 1011 | DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); |
| 1012 | |
| 1013 | /* Disable all interrupts. */ |
| 1014 | dwc_write_reg32(&global_regs->gintmsk, 0); |
| 1015 | |
| 1016 | /* Clear any pending interrupts. */ |
| 1017 | dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); |
| 1018 | |
| 1019 | /* Enable the common interrupts */ |
| 1020 | dwc_otg_enable_common_interrupts(core_if); |
| 1021 | |
| 1022 | /* |
| 1023 | * Enable host mode interrupts without disturbing common |
| 1024 | * interrupts. |
| 1025 | */ |
| 1026 | intr_mask.b.sofintr = 1; |
| 1027 | intr_mask.b.portintr = 1; |
| 1028 | intr_mask.b.hcintr = 1; |
| 1029 | |
| 1030 | dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); |
| 1031 | } |
| 1032 | |
| 1033 | /** |
| 1034 | * This function disables the Host Mode interrupts. |
| 1035 | * |
| 1036 | * @param core_if Programming view of DWC_otg controller |
| 1037 | */ |
| 1038 | void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *core_if) |
| 1039 | { |
| 1040 | dwc_otg_core_global_regs_t *global_regs = |
| 1041 | core_if->core_global_regs; |
| 1042 | gintmsk_data_t intr_mask = { .d32 = 0 }; |
| 1043 | |
| 1044 | DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__); |
| 1045 | |
| 1046 | /* |
| 1047 | * Disable host mode interrupts without disturbing common |
| 1048 | * interrupts. |
| 1049 | */ |
| 1050 | intr_mask.b.sofintr = 1; |
| 1051 | intr_mask.b.portintr = 1; |
| 1052 | intr_mask.b.hcintr = 1; |
| 1053 | intr_mask.b.ptxfempty = 1; |
| 1054 | intr_mask.b.nptxfempty = 1; |
| 1055 | |
| 1056 | dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); |
| 1057 | } |
| 1058 | |
| 1059 | /** |
| 1060 | * This function initializes the DWC_otg controller registers for |
| 1061 | * host mode. |
| 1062 | * |
| 1063 | * This function flushes the Tx and Rx FIFOs and it flushes any entries in the |
| 1064 | * request queues. Host channels are reset to ensure that they are ready for |
| 1065 | * performing transfers. |
| 1066 | * |
| 1067 | * @param core_if Programming view of DWC_otg controller |
| 1068 | * |
| 1069 | */ |
| 1070 | void dwc_otg_core_host_init(dwc_otg_core_if_t *core_if) |
| 1071 | { |
| 1072 | dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; |
| 1073 | dwc_otg_host_if_t *host_if = core_if->host_if; |
| 1074 | dwc_otg_core_params_t *params = core_if->core_params; |
| 1075 | hprt0_data_t hprt0 = { .d32 = 0 }; |
| 1076 | fifosize_data_t nptxfifosize; |
| 1077 | fifosize_data_t ptxfifosize; |
| 1078 | int i; |
| 1079 | hcchar_data_t hcchar; |
| 1080 | hcfg_data_t hcfg; |
| 1081 | dwc_otg_hc_regs_t *hc_regs; |
| 1082 | int num_channels; |
| 1083 | gotgctl_data_t gotgctl = { .d32 = 0 }; |
| 1084 | |
| 1085 | DWC_DEBUGPL(DBG_CILV,"%s(%p)\n", __func__, core_if); |
| 1086 | |
| 1087 | /* Restart the Phy Clock */ |
| 1088 | dwc_write_reg32(core_if->pcgcctl, 0); |
| 1089 | |
| 1090 | /* Initialize Host Configuration Register */ |
| 1091 | init_fslspclksel(core_if); |
| 1092 | if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) |
| 1093 | { |
| 1094 | hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg); |
| 1095 | hcfg.b.fslssupp = 1; |
| 1096 | dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32); |
| 1097 | } |
| 1098 | |
| 1099 | /* Configure data FIFO sizes */ |
| 1100 | if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) { |
| 1101 | DWC_DEBUGPL(DBG_CIL,"Total FIFO Size=%d\n", core_if->total_fifo_size); |
| 1102 | DWC_DEBUGPL(DBG_CIL,"Rx FIFO Size=%d\n", params->host_rx_fifo_size); |
| 1103 | DWC_DEBUGPL(DBG_CIL,"NP Tx FIFO Size=%d\n", params->host_nperio_tx_fifo_size); |
| 1104 | DWC_DEBUGPL(DBG_CIL,"P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size); |
| 1105 | |
| 1106 | /* Rx FIFO */ |
| 1107 | DWC_DEBUGPL(DBG_CIL,"initial grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz)); |
| 1108 | dwc_write_reg32(&global_regs->grxfsiz, params->host_rx_fifo_size); |
| 1109 | DWC_DEBUGPL(DBG_CIL,"new grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz)); |
| 1110 | |
| 1111 | /* Non-periodic Tx FIFO */ |
| 1112 | DWC_DEBUGPL(DBG_CIL,"initial gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz)); |
| 1113 | nptxfifosize.b.depth = params->host_nperio_tx_fifo_size; |
| 1114 | nptxfifosize.b.startaddr = params->host_rx_fifo_size; |
| 1115 | dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); |
| 1116 | DWC_DEBUGPL(DBG_CIL,"new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz)); |
| 1117 | |
| 1118 | /* Periodic Tx FIFO */ |
| 1119 | DWC_DEBUGPL(DBG_CIL,"initial hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz)); |
| 1120 | ptxfifosize.b.depth = params->host_perio_tx_fifo_size; |
| 1121 | ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth; |
| 1122 | dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32); |
| 1123 | DWC_DEBUGPL(DBG_CIL,"new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz)); |
| 1124 | } |
| 1125 | |
| 1126 | /* Clear Host Set HNP Enable in the OTG Control Register */ |
| 1127 | gotgctl.b.hstsethnpen = 1; |
| 1128 | dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0); |
| 1129 | |
| 1130 | /* Make sure the FIFOs are flushed. */ |
| 1131 | dwc_otg_flush_tx_fifo(core_if, 0x10 /* all Tx FIFOs */); |
| 1132 | dwc_otg_flush_rx_fifo(core_if); |
| 1133 | |
| 1134 | /* Flush out any leftover queued requests. */ |
| 1135 | num_channels = core_if->core_params->host_channels; |
| 1136 | for (i = 0; i < num_channels; i++) |
| 1137 | { |
| 1138 | hc_regs = core_if->host_if->hc_regs[i]; |
| 1139 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1140 | hcchar.b.chen = 0; |
| 1141 | hcchar.b.chdis = 1; |
| 1142 | hcchar.b.epdir = 0; |
| 1143 | dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); |
| 1144 | } |
| 1145 | |
| 1146 | /* Halt all channels to put them into a known state. */ |
| 1147 | for (i = 0; i < num_channels; i++) |
| 1148 | { |
| 1149 | int count = 0; |
| 1150 | hc_regs = core_if->host_if->hc_regs[i]; |
| 1151 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1152 | hcchar.b.chen = 1; |
| 1153 | hcchar.b.chdis = 1; |
| 1154 | hcchar.b.epdir = 0; |
| 1155 | dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); |
| 1156 | DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i); |
| 1157 | do { |
| 1158 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1159 | if (++count > 1000) |
| 1160 | { |
| 1161 | DWC_ERROR("%s: Unable to clear halt on channel %d\n", |
| 1162 | __func__, i); |
| 1163 | break; |
| 1164 | } |
| 1165 | } |
| 1166 | while (hcchar.b.chen); |
| 1167 | } |
| 1168 | |
| 1169 | /* Turn on the vbus power. */ |
| 1170 | DWC_PRINT("Init: Port Power? op_state=%d\n", core_if->op_state); |
| 1171 | if (core_if->op_state == A_HOST) { |
| 1172 | hprt0.d32 = dwc_otg_read_hprt0(core_if); |
| 1173 | DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr); |
| 1174 | if (hprt0.b.prtpwr == 0) { |
| 1175 | hprt0.b.prtpwr = 1; |
| 1176 | dwc_write_reg32(host_if->hprt0, hprt0.d32); |
| 1177 | } |
| 1178 | } |
| 1179 | |
| 1180 | dwc_otg_enable_host_interrupts(core_if); |
| 1181 | } |
| 1182 | |
| 1183 | /** |
| 1184 | * Prepares a host channel for transferring packets to/from a specific |
| 1185 | * endpoint. The HCCHARn register is set up with the characteristics specified |
| 1186 | * in _hc. Host channel interrupts that may need to be serviced while this |
| 1187 | * transfer is in progress are enabled. |
| 1188 | * |
| 1189 | * @param core_if Programming view of DWC_otg controller |
| 1190 | * @param hc Information needed to initialize the host channel |
| 1191 | */ |
| 1192 | void dwc_otg_hc_init(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) |
| 1193 | { |
| 1194 | uint32_t intr_enable; |
| 1195 | hcintmsk_data_t hc_intr_mask; |
| 1196 | gintmsk_data_t gintmsk = { .d32 = 0 }; |
| 1197 | hcchar_data_t hcchar; |
| 1198 | hcsplt_data_t hcsplt; |
| 1199 | |
| 1200 | uint8_t hc_num = hc->hc_num; |
| 1201 | dwc_otg_host_if_t *host_if = core_if->host_if; |
| 1202 | dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num]; |
| 1203 | |
| 1204 | /* Clear old interrupt conditions for this host channel. */ |
| 1205 | hc_intr_mask.d32 = 0xFFFFFFFF; |
| 1206 | hc_intr_mask.b.reserved = 0; |
| 1207 | dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32); |
| 1208 | |
| 1209 | /* Enable channel interrupts required for this transfer. */ |
| 1210 | hc_intr_mask.d32 = 0; |
| 1211 | hc_intr_mask.b.chhltd = 1; |
| 1212 | if (core_if->dma_enable) { |
| 1213 | hc_intr_mask.b.ahberr = 1; |
| 1214 | if (hc->error_state && !hc->do_split && |
| 1215 | hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { |
| 1216 | hc_intr_mask.b.ack = 1; |
| 1217 | if (hc->ep_is_in) { |
| 1218 | hc_intr_mask.b.datatglerr = 1; |
| 1219 | if (hc->ep_type != DWC_OTG_EP_TYPE_INTR) { |
| 1220 | hc_intr_mask.b.nak = 1; |
| 1221 | } |
| 1222 | } |
| 1223 | } |
| 1224 | } |
| 1225 | else { |
| 1226 | switch (hc->ep_type) { |
| 1227 | case DWC_OTG_EP_TYPE_CONTROL: |
| 1228 | case DWC_OTG_EP_TYPE_BULK: |
| 1229 | hc_intr_mask.b.xfercompl = 1; |
| 1230 | hc_intr_mask.b.stall = 1; |
| 1231 | hc_intr_mask.b.xacterr = 1; |
| 1232 | hc_intr_mask.b.datatglerr = 1; |
| 1233 | if (hc->ep_is_in) { |
| 1234 | hc_intr_mask.b.bblerr = 1; |
| 1235 | } |
| 1236 | else { |
| 1237 | hc_intr_mask.b.nak = 1; |
| 1238 | hc_intr_mask.b.nyet = 1; |
| 1239 | if (hc->do_ping) { |
| 1240 | hc_intr_mask.b.ack = 1; |
| 1241 | } |
| 1242 | } |
| 1243 | |
| 1244 | if (hc->do_split) { |
| 1245 | hc_intr_mask.b.nak = 1; |
| 1246 | if (hc->complete_split) { |
| 1247 | hc_intr_mask.b.nyet = 1; |
| 1248 | } |
| 1249 | else { |
| 1250 | hc_intr_mask.b.ack = 1; |
| 1251 | } |
| 1252 | } |
| 1253 | |
| 1254 | if (hc->error_state) { |
| 1255 | hc_intr_mask.b.ack = 1; |
| 1256 | } |
| 1257 | break; |
| 1258 | case DWC_OTG_EP_TYPE_INTR: |
| 1259 | hc_intr_mask.b.xfercompl = 1; |
| 1260 | hc_intr_mask.b.nak = 1; |
| 1261 | hc_intr_mask.b.stall = 1; |
| 1262 | hc_intr_mask.b.xacterr = 1; |
| 1263 | hc_intr_mask.b.datatglerr = 1; |
| 1264 | hc_intr_mask.b.frmovrun = 1; |
| 1265 | |
| 1266 | if (hc->ep_is_in) { |
| 1267 | hc_intr_mask.b.bblerr = 1; |
| 1268 | } |
| 1269 | if (hc->error_state) { |
| 1270 | hc_intr_mask.b.ack = 1; |
| 1271 | } |
| 1272 | if (hc->do_split) { |
| 1273 | if (hc->complete_split) { |
| 1274 | hc_intr_mask.b.nyet = 1; |
| 1275 | } |
| 1276 | else { |
| 1277 | hc_intr_mask.b.ack = 1; |
| 1278 | } |
| 1279 | } |
| 1280 | break; |
| 1281 | case DWC_OTG_EP_TYPE_ISOC: |
| 1282 | hc_intr_mask.b.xfercompl = 1; |
| 1283 | hc_intr_mask.b.frmovrun = 1; |
| 1284 | hc_intr_mask.b.ack = 1; |
| 1285 | |
| 1286 | if (hc->ep_is_in) { |
| 1287 | hc_intr_mask.b.xacterr = 1; |
| 1288 | hc_intr_mask.b.bblerr = 1; |
| 1289 | } |
| 1290 | break; |
| 1291 | } |
| 1292 | } |
| 1293 | dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32); |
| 1294 | |
| 1295 | // if(hc->ep_type == DWC_OTG_EP_TYPE_BULK && !hc->ep_is_in) |
| 1296 | // hc->max_packet = 512; |
| 1297 | /* Enable the top level host channel interrupt. */ |
| 1298 | intr_enable = (1 << hc_num); |
| 1299 | dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable); |
| 1300 | |
| 1301 | /* Make sure host channel interrupts are enabled. */ |
| 1302 | gintmsk.b.hcintr = 1; |
| 1303 | dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32); |
| 1304 | |
| 1305 | /* |
| 1306 | * Program the HCCHARn register with the endpoint characteristics for |
| 1307 | * the current transfer. |
| 1308 | */ |
| 1309 | hcchar.d32 = 0; |
| 1310 | hcchar.b.devaddr = hc->dev_addr; |
| 1311 | hcchar.b.epnum = hc->ep_num; |
| 1312 | hcchar.b.epdir = hc->ep_is_in; |
| 1313 | hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW); |
| 1314 | hcchar.b.eptype = hc->ep_type; |
| 1315 | hcchar.b.mps = hc->max_packet; |
| 1316 | |
| 1317 | dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32); |
| 1318 | |
| 1319 | DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); |
| 1320 | DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr); |
| 1321 | DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum); |
| 1322 | DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir); |
| 1323 | DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev); |
| 1324 | DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype); |
| 1325 | DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); |
| 1326 | DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt); |
| 1327 | |
| 1328 | /* |
| 1329 | * Program the HCSPLIT register for SPLITs |
| 1330 | */ |
| 1331 | hcsplt.d32 = 0; |
| 1332 | if (hc->do_split) { |
| 1333 | DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", hc->hc_num, |
| 1334 | hc->complete_split ? "CSPLIT" : "SSPLIT"); |
| 1335 | hcsplt.b.compsplt = hc->complete_split; |
| 1336 | hcsplt.b.xactpos = hc->xact_pos; |
| 1337 | hcsplt.b.hubaddr = hc->hub_addr; |
| 1338 | hcsplt.b.prtaddr = hc->port_addr; |
| 1339 | DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", hc->complete_split); |
| 1340 | DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", hc->xact_pos); |
| 1341 | DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", hc->hub_addr); |
| 1342 | DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", hc->port_addr); |
| 1343 | DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", hc->ep_is_in); |
| 1344 | DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); |
| 1345 | DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", hc->xfer_len); |
| 1346 | } |
| 1347 | dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32); |
| 1348 | |
| 1349 | } |
| 1350 | |
| 1351 | /** |
| 1352 | * Attempts to halt a host channel. This function should only be called in |
| 1353 | * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under |
| 1354 | * normal circumstances in DMA mode, the controller halts the channel when the |
| 1355 | * transfer is complete or a condition occurs that requires application |
| 1356 | * intervention. |
| 1357 | * |
| 1358 | * In slave mode, checks for a free request queue entry, then sets the Channel |
| 1359 | * Enable and Channel Disable bits of the Host Channel Characteristics |
| 1360 | * register of the specified channel to intiate the halt. If there is no free |
| 1361 | * request queue entry, sets only the Channel Disable bit of the HCCHARn |
| 1362 | * register to flush requests for this channel. In the latter case, sets a |
| 1363 | * flag to indicate that the host channel needs to be halted when a request |
| 1364 | * queue slot is open. |
| 1365 | * |
| 1366 | * In DMA mode, always sets the Channel Enable and Channel Disable bits of the |
| 1367 | * HCCHARn register. The controller ensures there is space in the request |
| 1368 | * queue before submitting the halt request. |
| 1369 | * |
| 1370 | * Some time may elapse before the core flushes any posted requests for this |
| 1371 | * host channel and halts. The Channel Halted interrupt handler completes the |
| 1372 | * deactivation of the host channel. |
| 1373 | * |
| 1374 | * @param core_if Controller register interface. |
| 1375 | * @param hc Host channel to halt. |
| 1376 | * @param halt_status Reason for halting the channel. |
| 1377 | */ |
| 1378 | void dwc_otg_hc_halt(dwc_otg_core_if_t *core_if, |
| 1379 | dwc_hc_t *hc, |
| 1380 | dwc_otg_halt_status_e halt_status) |
| 1381 | { |
| 1382 | gnptxsts_data_t nptxsts; |
| 1383 | hptxsts_data_t hptxsts; |
| 1384 | hcchar_data_t hcchar; |
| 1385 | dwc_otg_hc_regs_t *hc_regs; |
| 1386 | dwc_otg_core_global_regs_t *global_regs; |
| 1387 | dwc_otg_host_global_regs_t *host_global_regs; |
| 1388 | |
| 1389 | hc_regs = core_if->host_if->hc_regs[hc->hc_num]; |
| 1390 | global_regs = core_if->core_global_regs; |
| 1391 | host_global_regs = core_if->host_if->host_global_regs; |
| 1392 | |
| 1393 | WARN_ON(halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS); |
| 1394 | |
| 1395 | if (halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || |
| 1396 | halt_status == DWC_OTG_HC_XFER_AHB_ERR) { |
| 1397 | /* |
| 1398 | * Disable all channel interrupts except Ch Halted. The QTD |
| 1399 | * and QH state associated with this transfer has been cleared |
| 1400 | * (in the case of URB_DEQUEUE), so the channel needs to be |
| 1401 | * shut down carefully to prevent crashes. |
| 1402 | */ |
| 1403 | hcintmsk_data_t hcintmsk; |
| 1404 | hcintmsk.d32 = 0; |
| 1405 | hcintmsk.b.chhltd = 1; |
| 1406 | dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32); |
| 1407 | |
| 1408 | /* |
| 1409 | * Make sure no other interrupts besides halt are currently |
| 1410 | * pending. Handling another interrupt could cause a crash due |
| 1411 | * to the QTD and QH state. |
| 1412 | */ |
| 1413 | dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32); |
| 1414 | |
| 1415 | /* |
| 1416 | * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR |
| 1417 | * even if the channel was already halted for some other |
| 1418 | * reason. |
| 1419 | */ |
| 1420 | hc->halt_status = halt_status; |
| 1421 | |
| 1422 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1423 | if (hcchar.b.chen == 0) { |
| 1424 | /* |
| 1425 | * The channel is either already halted or it hasn't |
| 1426 | * started yet. In DMA mode, the transfer may halt if |
| 1427 | * it finishes normally or a condition occurs that |
| 1428 | * requires driver intervention. Don't want to halt |
| 1429 | * the channel again. In either Slave or DMA mode, |
| 1430 | * it's possible that the transfer has been assigned |
| 1431 | * to a channel, but not started yet when an URB is |
| 1432 | * dequeued. Don't want to halt a channel that hasn't |
| 1433 | * started yet. |
| 1434 | */ |
| 1435 | return; |
| 1436 | } |
| 1437 | } |
| 1438 | |
| 1439 | if (hc->halt_pending) { |
| 1440 | /* |
| 1441 | * A halt has already been issued for this channel. This might |
| 1442 | * happen when a transfer is aborted by a higher level in |
| 1443 | * the stack. |
| 1444 | */ |
| 1445 | #ifdef DEBUG |
| 1446 | DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n", |
| 1447 | __func__, hc->hc_num); |
| 1448 | |
| 1449 | /* dwc_otg_dump_global_registers(core_if); */ |
| 1450 | /* dwc_otg_dump_host_registers(core_if); */ |
| 1451 | #endif |
| 1452 | return; |
| 1453 | } |
| 1454 | |
| 1455 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1456 | hcchar.b.chen = 1; |
| 1457 | hcchar.b.chdis = 1; |
| 1458 | |
| 1459 | if (!core_if->dma_enable) { |
| 1460 | /* Check for space in the request queue to issue the halt. */ |
| 1461 | if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || |
| 1462 | hc->ep_type == DWC_OTG_EP_TYPE_BULK) { |
| 1463 | nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts); |
| 1464 | if (nptxsts.b.nptxqspcavail == 0) { |
| 1465 | hcchar.b.chen = 0; |
| 1466 | } |
| 1467 | } |
| 1468 | else { |
| 1469 | hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts); |
| 1470 | if ((hptxsts.b.ptxqspcavail == 0) || (core_if->queuing_high_bandwidth)) { |
| 1471 | hcchar.b.chen = 0; |
| 1472 | } |
| 1473 | } |
| 1474 | } |
| 1475 | |
| 1476 | dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); |
| 1477 | |
| 1478 | hc->halt_status = halt_status; |
| 1479 | |
| 1480 | if (hcchar.b.chen) { |
| 1481 | hc->halt_pending = 1; |
| 1482 | hc->halt_on_queue = 0; |
| 1483 | } |
| 1484 | else { |
| 1485 | hc->halt_on_queue = 1; |
| 1486 | } |
| 1487 | |
| 1488 | DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); |
| 1489 | DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32); |
| 1490 | DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", hc->halt_pending); |
| 1491 | DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", hc->halt_on_queue); |
| 1492 | DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", hc->halt_status); |
| 1493 | |
| 1494 | return; |
| 1495 | } |
| 1496 | |
| 1497 | /** |
| 1498 | * Clears the transfer state for a host channel. This function is normally |
| 1499 | * called after a transfer is done and the host channel is being released. |
| 1500 | * |
| 1501 | * @param core_if Programming view of DWC_otg controller. |
| 1502 | * @param hc Identifies the host channel to clean up. |
| 1503 | */ |
| 1504 | void dwc_otg_hc_cleanup(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) |
| 1505 | { |
| 1506 | dwc_otg_hc_regs_t *hc_regs; |
| 1507 | |
| 1508 | hc->xfer_started = 0; |
| 1509 | |
| 1510 | /* |
| 1511 | * Clear channel interrupt enables and any unhandled channel interrupt |
| 1512 | * conditions. |
| 1513 | */ |
| 1514 | hc_regs = core_if->host_if->hc_regs[hc->hc_num]; |
| 1515 | dwc_write_reg32(&hc_regs->hcintmsk, 0); |
| 1516 | dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF); |
| 1517 | |
| 1518 | #ifdef DEBUG |
| 1519 | del_timer(&core_if->hc_xfer_timer[hc->hc_num]); |
| 1520 | { |
| 1521 | hcchar_data_t hcchar; |
| 1522 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1523 | if (hcchar.b.chdis) { |
| 1524 | DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", |
| 1525 | __func__, hc->hc_num, hcchar.d32); |
| 1526 | } |
| 1527 | } |
| 1528 | #endif |
| 1529 | } |
| 1530 | |
| 1531 | /** |
| 1532 | * Sets the channel property that indicates in which frame a periodic transfer |
| 1533 | * should occur. This is always set to the _next_ frame. This function has no |
| 1534 | * effect on non-periodic transfers. |
| 1535 | * |
| 1536 | * @param core_if Programming view of DWC_otg controller. |
| 1537 | * @param hc Identifies the host channel to set up and its properties. |
| 1538 | * @param hcchar Current value of the HCCHAR register for the specified host |
| 1539 | * channel. |
| 1540 | */ |
| 1541 | static inline void hc_set_even_odd_frame(dwc_otg_core_if_t *core_if, |
| 1542 | dwc_hc_t *hc, |
| 1543 | hcchar_data_t *hcchar) |
| 1544 | { |
| 1545 | if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || |
| 1546 | hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { |
| 1547 | hfnum_data_t hfnum; |
| 1548 | hfnum.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hfnum); |
| 1549 | |
| 1550 | /* 1 if _next_ frame is odd, 0 if it's even */ |
| 1551 | hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1; |
| 1552 | #ifdef DEBUG |
| 1553 | if (hc->ep_type == DWC_OTG_EP_TYPE_INTR && hc->do_split && !hc->complete_split) { |
| 1554 | switch (hfnum.b.frnum & 0x7) { |
| 1555 | case 7: |
| 1556 | core_if->hfnum_7_samples++; |
| 1557 | core_if->hfnum_7_frrem_accum += hfnum.b.frrem; |
| 1558 | break; |
| 1559 | case 0: |
| 1560 | core_if->hfnum_0_samples++; |
| 1561 | core_if->hfnum_0_frrem_accum += hfnum.b.frrem; |
| 1562 | break; |
| 1563 | default: |
| 1564 | core_if->hfnum_other_samples++; |
| 1565 | core_if->hfnum_other_frrem_accum += hfnum.b.frrem; |
| 1566 | break; |
| 1567 | } |
| 1568 | } |
| 1569 | #endif |
| 1570 | } |
| 1571 | } |
| 1572 | |
| 1573 | #ifdef DEBUG |
| 1574 | static void hc_xfer_timeout(unsigned long ptr) |
| 1575 | { |
| 1576 | hc_xfer_info_t *xfer_info = (hc_xfer_info_t *)ptr; |
| 1577 | int hc_num = xfer_info->hc->hc_num; |
| 1578 | DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num); |
| 1579 | DWC_WARN(" start_hcchar_val 0x%08x\n", xfer_info->core_if->start_hcchar_val[hc_num]); |
| 1580 | } |
| 1581 | #endif |
| 1582 | |
| 1583 | /* |
| 1584 | * This function does the setup for a data transfer for a host channel and |
| 1585 | * starts the transfer. May be called in either Slave mode or DMA mode. In |
| 1586 | * Slave mode, the caller must ensure that there is sufficient space in the |
| 1587 | * request queue and Tx Data FIFO. |
| 1588 | * |
| 1589 | * For an OUT transfer in Slave mode, it loads a data packet into the |
| 1590 | * appropriate FIFO. If necessary, additional data packets will be loaded in |
| 1591 | * the Host ISR. |
| 1592 | * |
| 1593 | * For an IN transfer in Slave mode, a data packet is requested. The data |
| 1594 | * packets are unloaded from the Rx FIFO in the Host ISR. If necessary, |
| 1595 | * additional data packets are requested in the Host ISR. |
| 1596 | * |
| 1597 | * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ |
| 1598 | * register along with a packet count of 1 and the channel is enabled. This |
| 1599 | * causes a single PING transaction to occur. Other fields in HCTSIZ are |
| 1600 | * simply set to 0 since no data transfer occurs in this case. |
| 1601 | * |
| 1602 | * For a PING transfer in DMA mode, the HCTSIZ register is initialized with |
| 1603 | * all the information required to perform the subsequent data transfer. In |
| 1604 | * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the |
| 1605 | * controller performs the entire PING protocol, then starts the data |
| 1606 | * transfer. |
| 1607 | * |
| 1608 | * @param core_if Programming view of DWC_otg controller. |
| 1609 | * @param hc Information needed to initialize the host channel. The xfer_len |
| 1610 | * value may be reduced to accommodate the max widths of the XferSize and |
| 1611 | * PktCnt fields in the HCTSIZn register. The multi_count value may be changed |
| 1612 | * to reflect the final xfer_len value. |
| 1613 | */ |
| 1614 | void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) |
| 1615 | { |
| 1616 | hcchar_data_t hcchar; |
| 1617 | hctsiz_data_t hctsiz; |
| 1618 | uint16_t num_packets; |
| 1619 | uint32_t max_hc_xfer_size = core_if->core_params->max_transfer_size; |
| 1620 | uint16_t max_hc_pkt_count = core_if->core_params->max_packet_count; |
| 1621 | dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num]; |
| 1622 | |
| 1623 | hctsiz.d32 = 0; |
| 1624 | |
| 1625 | if (hc->do_ping) { |
| 1626 | if (!core_if->dma_enable) { |
| 1627 | dwc_otg_hc_do_ping(core_if, hc); |
| 1628 | hc->xfer_started = 1; |
| 1629 | return; |
| 1630 | } |
| 1631 | else { |
| 1632 | hctsiz.b.dopng = 1; |
| 1633 | } |
| 1634 | } |
| 1635 | |
| 1636 | if (hc->do_split) { |
| 1637 | num_packets = 1; |
| 1638 | |
| 1639 | if (hc->complete_split && !hc->ep_is_in) { |
| 1640 | /* For CSPLIT OUT Transfer, set the size to 0 so the |
| 1641 | * core doesn't expect any data written to the FIFO */ |
| 1642 | hc->xfer_len = 0; |
| 1643 | } |
| 1644 | else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet)) { |
| 1645 | hc->xfer_len = hc->max_packet; |
| 1646 | } |
| 1647 | else if (!hc->ep_is_in && (hc->xfer_len > 188)) { |
| 1648 | hc->xfer_len = 188; |
| 1649 | } |
| 1650 | |
| 1651 | hctsiz.b.xfersize = hc->xfer_len; |
| 1652 | } |
| 1653 | else { |
| 1654 | /* |
| 1655 | * Ensure that the transfer length and packet count will fit |
| 1656 | * in the widths allocated for them in the HCTSIZn register. |
| 1657 | */ |
| 1658 | if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || |
| 1659 | hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { |
| 1660 | /* |
| 1661 | * Make sure the transfer size is no larger than one |
| 1662 | * (micro)frame's worth of data. (A check was done |
| 1663 | * when the periodic transfer was accepted to ensure |
| 1664 | * that a (micro)frame's worth of data can be |
| 1665 | * programmed into a channel.) |
| 1666 | */ |
| 1667 | uint32_t max_periodic_len = hc->multi_count * hc->max_packet; |
| 1668 | if (hc->xfer_len > max_periodic_len) { |
| 1669 | hc->xfer_len = max_periodic_len; |
| 1670 | } |
| 1671 | else { |
| 1672 | } |
| 1673 | } |
| 1674 | else if (hc->xfer_len > max_hc_xfer_size) { |
| 1675 | /* Make sure that xfer_len is a multiple of max packet size. */ |
| 1676 | hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1; |
| 1677 | } |
| 1678 | |
| 1679 | if (hc->xfer_len > 0) { |
| 1680 | num_packets = (hc->xfer_len + hc->max_packet - 1) / hc->max_packet; |
| 1681 | if (num_packets > max_hc_pkt_count) { |
| 1682 | num_packets = max_hc_pkt_count; |
| 1683 | hc->xfer_len = num_packets * hc->max_packet; |
| 1684 | } |
| 1685 | } |
| 1686 | else { |
| 1687 | /* Need 1 packet for transfer length of 0. */ |
| 1688 | num_packets = 1; |
| 1689 | } |
| 1690 | |
| 1691 | #if 0 |
| 1692 | //host testusb item 10, would do series of Control transfer |
| 1693 | //with URB_SHORT_NOT_OK set in transfer_flags , |
| 1694 | //changing the xfer_len would cause the test fail |
| 1695 | if (hc->ep_is_in) { |
| 1696 | /* Always program an integral # of max packets for IN transfers. */ |
| 1697 | hc->xfer_len = num_packets * hc->max_packet; |
| 1698 | } |
| 1699 | #endif |
| 1700 | |
| 1701 | if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || |
| 1702 | hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { |
| 1703 | /* |
| 1704 | * Make sure that the multi_count field matches the |
| 1705 | * actual transfer length. |
| 1706 | */ |
| 1707 | hc->multi_count = num_packets; |
| 1708 | } |
| 1709 | |
| 1710 | if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { |
| 1711 | /* Set up the initial PID for the transfer. */ |
| 1712 | if (hc->speed == DWC_OTG_EP_SPEED_HIGH) { |
| 1713 | if (hc->ep_is_in) { |
| 1714 | if (hc->multi_count == 1) { |
| 1715 | hc->data_pid_start = DWC_OTG_HC_PID_DATA0; |
| 1716 | } |
| 1717 | else if (hc->multi_count == 2) { |
| 1718 | hc->data_pid_start = DWC_OTG_HC_PID_DATA1; |
| 1719 | } |
| 1720 | else { |
| 1721 | hc->data_pid_start = DWC_OTG_HC_PID_DATA2; |
| 1722 | } |
| 1723 | } |
| 1724 | else { |
| 1725 | if (hc->multi_count == 1) { |
| 1726 | hc->data_pid_start = DWC_OTG_HC_PID_DATA0; |
| 1727 | } |
| 1728 | else { |
| 1729 | hc->data_pid_start = DWC_OTG_HC_PID_MDATA; |
| 1730 | } |
| 1731 | } |
| 1732 | } |
| 1733 | else { |
| 1734 | hc->data_pid_start = DWC_OTG_HC_PID_DATA0; |
| 1735 | } |
| 1736 | } |
| 1737 | |
| 1738 | hctsiz.b.xfersize = hc->xfer_len; |
| 1739 | } |
| 1740 | |
| 1741 | hc->start_pkt_count = num_packets; |
| 1742 | hctsiz.b.pktcnt = num_packets; |
| 1743 | hctsiz.b.pid = hc->data_pid_start; |
| 1744 | dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); |
| 1745 | |
| 1746 | DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); |
| 1747 | DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize); |
| 1748 | DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt); |
| 1749 | DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid); |
| 1750 | |
| 1751 | if (core_if->dma_enable) { |
| 1752 | dwc_write_reg32(&hc_regs->hcdma, (uint32_t)hc->xfer_buff); |
| 1753 | } |
| 1754 | |
| 1755 | /* Start the split */ |
| 1756 | if (hc->do_split) { |
| 1757 | hcsplt_data_t hcsplt; |
| 1758 | hcsplt.d32 = dwc_read_reg32 (&hc_regs->hcsplt); |
| 1759 | hcsplt.b.spltena = 1; |
| 1760 | dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32); |
| 1761 | } |
| 1762 | |
| 1763 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1764 | hcchar.b.multicnt = hc->multi_count; |
| 1765 | hc_set_even_odd_frame(core_if, hc, &hcchar); |
| 1766 | #ifdef DEBUG |
| 1767 | core_if->start_hcchar_val[hc->hc_num] = hcchar.d32; |
| 1768 | if (hcchar.b.chdis) { |
| 1769 | DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", |
| 1770 | __func__, hc->hc_num, hcchar.d32); |
| 1771 | } |
| 1772 | #endif |
| 1773 | |
| 1774 | /* Set host channel enable after all other setup is complete. */ |
| 1775 | hcchar.b.chen = 1; |
| 1776 | hcchar.b.chdis = 0; |
| 1777 | dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); |
| 1778 | |
| 1779 | hc->xfer_started = 1; |
| 1780 | hc->requests++; |
| 1781 | |
| 1782 | if (!core_if->dma_enable && |
| 1783 | !hc->ep_is_in && hc->xfer_len > 0) { |
| 1784 | /* Load OUT packet into the appropriate Tx FIFO. */ |
| 1785 | dwc_otg_hc_write_packet(core_if, hc); |
| 1786 | } |
| 1787 | |
| 1788 | #ifdef DEBUG |
| 1789 | /* Start a timer for this transfer. */ |
| 1790 | core_if->hc_xfer_timer[hc->hc_num].function = hc_xfer_timeout; |
| 1791 | core_if->hc_xfer_info[hc->hc_num].core_if = core_if; |
| 1792 | core_if->hc_xfer_info[hc->hc_num].hc = hc; |
| 1793 | core_if->hc_xfer_timer[hc->hc_num].data = (unsigned long)(&core_if->hc_xfer_info[hc->hc_num]); |
| 1794 | core_if->hc_xfer_timer[hc->hc_num].expires = jiffies + (HZ*10); |
| 1795 | add_timer(&core_if->hc_xfer_timer[hc->hc_num]); |
| 1796 | #endif |
| 1797 | } |
| 1798 | |
| 1799 | /** |
| 1800 | * This function continues a data transfer that was started by previous call |
| 1801 | * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is |
| 1802 | * sufficient space in the request queue and Tx Data FIFO. This function |
| 1803 | * should only be called in Slave mode. In DMA mode, the controller acts |
| 1804 | * autonomously to complete transfers programmed to a host channel. |
| 1805 | * |
| 1806 | * For an OUT transfer, a new data packet is loaded into the appropriate FIFO |
| 1807 | * if there is any data remaining to be queued. For an IN transfer, another |
| 1808 | * data packet is always requested. For the SETUP phase of a control transfer, |
| 1809 | * this function does nothing. |
| 1810 | * |
| 1811 | * @return 1 if a new request is queued, 0 if no more requests are required |
| 1812 | * for this transfer. |
| 1813 | */ |
| 1814 | int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) |
| 1815 | { |
| 1816 | DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); |
| 1817 | |
| 1818 | if (hc->do_split) { |
| 1819 | /* SPLITs always queue just once per channel */ |
| 1820 | return 0; |
| 1821 | } |
| 1822 | else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) { |
| 1823 | /* SETUPs are queued only once since they can't be NAKed. */ |
| 1824 | return 0; |
| 1825 | } |
| 1826 | else if (hc->ep_is_in) { |
| 1827 | /* |
| 1828 | * Always queue another request for other IN transfers. If |
| 1829 | * back-to-back INs are issued and NAKs are received for both, |
| 1830 | * the driver may still be processing the first NAK when the |
| 1831 | * second NAK is received. When the interrupt handler clears |
| 1832 | * the NAK interrupt for the first NAK, the second NAK will |
| 1833 | * not be seen. So we can't depend on the NAK interrupt |
| 1834 | * handler to requeue a NAKed request. Instead, IN requests |
| 1835 | * are issued each time this function is called. When the |
| 1836 | * transfer completes, the extra requests for the channel will |
| 1837 | * be flushed. |
| 1838 | */ |
| 1839 | hcchar_data_t hcchar; |
| 1840 | dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num]; |
| 1841 | |
| 1842 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1843 | hc_set_even_odd_frame(core_if, hc, &hcchar); |
| 1844 | hcchar.b.chen = 1; |
| 1845 | hcchar.b.chdis = 0; |
| 1846 | DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32); |
| 1847 | dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); |
| 1848 | hc->requests++; |
| 1849 | return 1; |
| 1850 | } |
| 1851 | else { |
| 1852 | /* OUT transfers. */ |
| 1853 | if (hc->xfer_count < hc->xfer_len) { |
| 1854 | if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || |
| 1855 | hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { |
| 1856 | hcchar_data_t hcchar; |
| 1857 | dwc_otg_hc_regs_t *hc_regs; |
| 1858 | hc_regs = core_if->host_if->hc_regs[hc->hc_num]; |
| 1859 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1860 | hc_set_even_odd_frame(core_if, hc, &hcchar); |
| 1861 | } |
| 1862 | |
| 1863 | /* Load OUT packet into the appropriate Tx FIFO. */ |
| 1864 | dwc_otg_hc_write_packet(core_if, hc); |
| 1865 | hc->requests++; |
| 1866 | return 1; |
| 1867 | } |
| 1868 | else { |
| 1869 | return 0; |
| 1870 | } |
| 1871 | } |
| 1872 | } |
| 1873 | |
| 1874 | /** |
| 1875 | * Starts a PING transfer. This function should only be called in Slave mode. |
| 1876 | * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled. |
| 1877 | */ |
| 1878 | void dwc_otg_hc_do_ping(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) |
| 1879 | { |
| 1880 | hcchar_data_t hcchar; |
| 1881 | hctsiz_data_t hctsiz; |
| 1882 | dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num]; |
| 1883 | |
| 1884 | DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); |
| 1885 | |
| 1886 | hctsiz.d32 = 0; |
| 1887 | hctsiz.b.dopng = 1; |
| 1888 | hctsiz.b.pktcnt = 1; |
| 1889 | dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); |
| 1890 | |
| 1891 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1892 | hcchar.b.chen = 1; |
| 1893 | hcchar.b.chdis = 0; |
| 1894 | dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); |
| 1895 | } |
| 1896 | |
| 1897 | /* |
| 1898 | * This function writes a packet into the Tx FIFO associated with the Host |
| 1899 | * Channel. For a channel associated with a non-periodic EP, the non-periodic |
| 1900 | * Tx FIFO is written. For a channel associated with a periodic EP, the |
| 1901 | * periodic Tx FIFO is written. This function should only be called in Slave |
| 1902 | * mode. |
| 1903 | * |
| 1904 | * Upon return the xfer_buff and xfer_count fields in _hc are incremented by |
| 1905 | * then number of bytes written to the Tx FIFO. |
| 1906 | */ |
| 1907 | void dwc_otg_hc_write_packet(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) |
| 1908 | { |
| 1909 | uint32_t i; |
| 1910 | uint32_t remaining_count; |
| 1911 | uint32_t byte_count; |
| 1912 | uint32_t dword_count; |
| 1913 | |
| 1914 | uint32_t *data_buff = (uint32_t *)(hc->xfer_buff); |
| 1915 | uint32_t *data_fifo = core_if->data_fifo[hc->hc_num]; |
| 1916 | |
| 1917 | remaining_count = hc->xfer_len - hc->xfer_count; |
| 1918 | if (remaining_count > hc->max_packet) { |
| 1919 | byte_count = hc->max_packet; |
| 1920 | } |
| 1921 | else { |
| 1922 | byte_count = remaining_count; |
| 1923 | } |
| 1924 | |
| 1925 | dword_count = (byte_count + 3) / 4; |
| 1926 | |
| 1927 | if ((((unsigned long)data_buff) & 0x3) == 0) { |
| 1928 | /* xfer_buff is DWORD aligned. */ |
| 1929 | for (i = 0; i < dword_count; i++, data_buff++) |
| 1930 | { |
| 1931 | dwc_write_reg32(data_fifo, *data_buff); |
| 1932 | } |
| 1933 | } |
| 1934 | else { |
| 1935 | /* xfer_buff is not DWORD aligned. */ |
| 1936 | for (i = 0; i < dword_count; i++, data_buff++) |
| 1937 | { |
| 1938 | dwc_write_reg32(data_fifo, get_unaligned(data_buff)); |
| 1939 | } |
| 1940 | } |
| 1941 | |
| 1942 | hc->xfer_count += byte_count; |
| 1943 | hc->xfer_buff += byte_count; |
| 1944 | } |
| 1945 | |
| 1946 | /** |
| 1947 | * Gets the current USB frame number. This is the frame number from the last |
| 1948 | * SOF packet. |
| 1949 | */ |
| 1950 | uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *core_if) |
| 1951 | { |
| 1952 | dsts_data_t dsts; |
| 1953 | dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); |
| 1954 | |
| 1955 | /* read current frame/microframe number from DSTS register */ |
| 1956 | return dsts.b.soffn; |
| 1957 | } |
| 1958 | |
| 1959 | /** |
| 1960 | * This function reads a setup packet from the Rx FIFO into the destination |
| 1961 | * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl) |
| 1962 | * Interrupt routine when a SETUP packet has been received in Slave mode. |
| 1963 | * |
| 1964 | * @param core_if Programming view of DWC_otg controller. |
| 1965 | * @param dest Destination buffer for packet data. |
| 1966 | */ |
| 1967 | void dwc_otg_read_setup_packet(dwc_otg_core_if_t *core_if, uint32_t *dest) |
| 1968 | { |
| 1969 | /* Get the 8 bytes of a setup transaction data */ |
| 1970 | |
| 1971 | /* Pop 2 DWORDS off the receive data FIFO into memory */ |
| 1972 | dest[0] = dwc_read_reg32(core_if->data_fifo[0]); |
| 1973 | dest[1] = dwc_read_reg32(core_if->data_fifo[0]); |
| 1974 | } |
| 1975 | |
| 1976 | |
| 1977 | /** |
| 1978 | * This function enables EP0 OUT to receive SETUP packets and configures EP0 |
| 1979 | * IN for transmitting packets. It is normally called when the |
| 1980 | * "Enumeration Done" interrupt occurs. |
| 1981 | * |
| 1982 | * @param core_if Programming view of DWC_otg controller. |
| 1983 | * @param ep The EP0 data. |
| 1984 | */ |
| 1985 | void dwc_otg_ep0_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) |
| 1986 | { |
| 1987 | dwc_otg_dev_if_t *dev_if = core_if->dev_if; |
| 1988 | dsts_data_t dsts; |
| 1989 | depctl_data_t diepctl; |
| 1990 | depctl_data_t doepctl; |
| 1991 | dctl_data_t dctl = { .d32 = 0 }; |
| 1992 | |
| 1993 | /* Read the Device Status and Endpoint 0 Control registers */ |
| 1994 | dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts); |
| 1995 | diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl); |
| 1996 | doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl); |
| 1997 | |
| 1998 | /* Set the MPS of the IN EP based on the enumeration speed */ |
| 1999 | switch (dsts.b.enumspd) { |
| 2000 | case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ: |
| 2001 | case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ: |
| 2002 | case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ: |
| 2003 | diepctl.b.mps = DWC_DEP0CTL_MPS_64; |
| 2004 | break; |
| 2005 | case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ: |
| 2006 | diepctl.b.mps = DWC_DEP0CTL_MPS_8; |
| 2007 | break; |
| 2008 | } |
| 2009 | |
| 2010 | dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32); |
| 2011 | |
| 2012 | /* Enable OUT EP for receive */ |
| 2013 | doepctl.b.epena = 1; |
| 2014 | dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32); |
| 2015 | |
| 2016 | #ifdef VERBOSE |
| 2017 | DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n", |
| 2018 | dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); |
| 2019 | DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n", |
| 2020 | dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl)); |
| 2021 | #endif |
| 2022 | dctl.b.cgnpinnak = 1; |
| 2023 | |
| 2024 | dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32); |
| 2025 | DWC_DEBUGPL(DBG_PCDV,"dctl=%0x\n", |
| 2026 | dwc_read_reg32(&dev_if->dev_global_regs->dctl)); |
| 2027 | } |
| 2028 | |
| 2029 | /** |
| 2030 | * This function activates an EP. The Device EP control register for |
| 2031 | * the EP is configured as defined in the ep structure. Note: This |
| 2032 | * function is not used for EP0. |
| 2033 | * |
| 2034 | * @param core_if Programming view of DWC_otg controller. |
| 2035 | * @param ep The EP to activate. |
| 2036 | */ |
| 2037 | void dwc_otg_ep_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) |
| 2038 | { |
| 2039 | dwc_otg_dev_if_t *dev_if = core_if->dev_if; |
| 2040 | depctl_data_t depctl; |
| 2041 | volatile uint32_t *addr; |
| 2042 | daint_data_t daintmsk = { .d32 = 0 }; |
| 2043 | |
| 2044 | DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, ep->num, |
| 2045 | (ep->is_in?"IN":"OUT")); |
| 2046 | |
| 2047 | /* Read DEPCTLn register */ |
| 2048 | if (ep->is_in == 1) { |
| 2049 | addr = &dev_if->in_ep_regs[ep->num]->diepctl; |
| 2050 | daintmsk.ep.in = 1<<ep->num; |
| 2051 | } |
| 2052 | else { |
| 2053 | addr = &dev_if->out_ep_regs[ep->num]->doepctl; |
| 2054 | daintmsk.ep.out = 1<<ep->num; |
| 2055 | } |
| 2056 | |
| 2057 | /* If the EP is already active don't change the EP Control |
| 2058 | * register. */ |
| 2059 | depctl.d32 = dwc_read_reg32(addr); |
| 2060 | if (!depctl.b.usbactep) { |
| 2061 | depctl.b.mps = ep->maxpacket; |
| 2062 | depctl.b.eptype = ep->type; |
| 2063 | depctl.b.txfnum = ep->tx_fifo_num; |
| 2064 | |
| 2065 | if (ep->type == DWC_OTG_EP_TYPE_ISOC) { |
| 2066 | depctl.b.setd0pid = 1; // ??? |
| 2067 | } |
| 2068 | else { |
| 2069 | depctl.b.setd0pid = 1; |
| 2070 | } |
| 2071 | depctl.b.usbactep = 1; |
| 2072 | |
| 2073 | dwc_write_reg32(addr, depctl.d32); |
| 2074 | DWC_DEBUGPL(DBG_PCDV,"DEPCTL(%.8x)=%08x\n",(u32)addr, dwc_read_reg32(addr)); |
| 2075 | } |
| 2076 | |
| 2077 | /* Enable the Interrupt for this EP */ |
| 2078 | if(core_if->multiproc_int_enable) { |
| 2079 | if (ep->is_in == 1) { |
| 2080 | diepmsk_data_t diepmsk = { .d32 = 0}; |
| 2081 | diepmsk.b.xfercompl = 1; |
| 2082 | diepmsk.b.timeout = 1; |
| 2083 | diepmsk.b.epdisabled = 1; |
| 2084 | diepmsk.b.ahberr = 1; |
| 2085 | diepmsk.b.intknepmis = 1; |
| 2086 | diepmsk.b.txfifoundrn = 1; //????? |
| 2087 | |
| 2088 | |
| 2089 | if(core_if->dma_desc_enable) { |
| 2090 | diepmsk.b.bna = 1; |
| 2091 | } |
| 2092 | /* |
| 2093 | if(core_if->dma_enable) { |
| 2094 | doepmsk.b.nak = 1; |
| 2095 | } |
| 2096 | */ |
| 2097 | dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num], diepmsk.d32); |
| 2098 | |
| 2099 | } else { |
| 2100 | doepmsk_data_t doepmsk = { .d32 = 0}; |
| 2101 | doepmsk.b.xfercompl = 1; |
| 2102 | doepmsk.b.ahberr = 1; |
| 2103 | doepmsk.b.epdisabled = 1; |
| 2104 | |
| 2105 | |
| 2106 | if(core_if->dma_desc_enable) { |
| 2107 | doepmsk.b.bna = 1; |
| 2108 | } |
| 2109 | /* |
| 2110 | doepmsk.b.babble = 1; |
| 2111 | doepmsk.b.nyet = 1; |
| 2112 | doepmsk.b.nak = 1; |
| 2113 | */ |
| 2114 | dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[ep->num], doepmsk.d32); |
| 2115 | } |
| 2116 | dwc_modify_reg32(&dev_if->dev_global_regs->deachintmsk, |
| 2117 | 0, daintmsk.d32); |
| 2118 | } else { |
| 2119 | dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk, |
| 2120 | 0, daintmsk.d32); |
| 2121 | } |
| 2122 | |
| 2123 | DWC_DEBUGPL(DBG_PCDV,"DAINTMSK=%0x\n", |
| 2124 | dwc_read_reg32(&dev_if->dev_global_regs->daintmsk)); |
| 2125 | |
| 2126 | ep->stall_clear_flag = 0; |
| 2127 | return; |
| 2128 | } |
| 2129 | |
| 2130 | /** |
| 2131 | * This function deactivates an EP. This is done by clearing the USB Active |
| 2132 | * EP bit in the Device EP control register. Note: This function is not used |
| 2133 | * for EP0. EP0 cannot be deactivated. |
| 2134 | * |
| 2135 | * @param core_if Programming view of DWC_otg controller. |
| 2136 | * @param ep The EP to deactivate. |
| 2137 | */ |
| 2138 | void dwc_otg_ep_deactivate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) |
| 2139 | { |
| 2140 | depctl_data_t depctl = { .d32 = 0 }; |
| 2141 | volatile uint32_t *addr; |
| 2142 | daint_data_t daintmsk = { .d32 = 0}; |
| 2143 | |
| 2144 | /* Read DEPCTLn register */ |
| 2145 | if (ep->is_in == 1) { |
| 2146 | addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl; |
| 2147 | daintmsk.ep.in = 1<<ep->num; |
| 2148 | } |
| 2149 | else { |
| 2150 | addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl; |
| 2151 | daintmsk.ep.out = 1<<ep->num; |
| 2152 | } |
| 2153 | |
| 2154 | //disabled ep only when ep is enabled |
| 2155 | //or got halt in the loop in test in cv9 |
| 2156 | depctl.d32=dwc_read_reg32(addr); |
| 2157 | if(depctl.b.epena){ |
| 2158 | if (ep->is_in == 1) { |
| 2159 | diepint_data_t diepint; |
| 2160 | dwc_otg_dev_in_ep_regs_t *in_reg=core_if->dev_if->in_ep_regs[ep->num]; |
| 2161 | |
| 2162 | //Set ep nak |
| 2163 | depctl.d32=dwc_read_reg32(&in_reg->diepctl); |
| 2164 | depctl.b.snak=1; |
| 2165 | dwc_write_reg32(&in_reg->diepctl,depctl.d32); |
| 2166 | |
| 2167 | //wait for diepint.b.inepnakeff |
| 2168 | diepint.d32=dwc_read_reg32(&in_reg->diepint); |
| 2169 | while(!diepint.b.inepnakeff){ |
| 2170 | udelay(1); |
| 2171 | diepint.d32=dwc_read_reg32(&in_reg->diepint); |
| 2172 | } |
| 2173 | diepint.d32=0; |
| 2174 | diepint.b.inepnakeff=1; |
| 2175 | dwc_write_reg32(&in_reg->diepint,diepint.d32); |
| 2176 | |
| 2177 | //set ep disable and snak |
| 2178 | depctl.d32=dwc_read_reg32(&in_reg->diepctl); |
| 2179 | depctl.b.snak=1; |
| 2180 | depctl.b.epdis=1; |
| 2181 | dwc_write_reg32(&in_reg->diepctl,depctl.d32); |
| 2182 | |
| 2183 | //wait for diepint.b.epdisabled |
| 2184 | diepint.d32=dwc_read_reg32(&in_reg->diepint); |
| 2185 | while(!diepint.b.epdisabled){ |
| 2186 | udelay(1); |
| 2187 | diepint.d32=dwc_read_reg32(&in_reg->diepint); |
| 2188 | } |
| 2189 | diepint.d32=0; |
| 2190 | diepint.b.epdisabled=1; |
| 2191 | dwc_write_reg32(&in_reg->diepint,diepint.d32); |
| 2192 | |
| 2193 | //clear ep enable and disable bit |
| 2194 | depctl.d32=dwc_read_reg32(&in_reg->diepctl); |
| 2195 | depctl.b.epena=0; |
| 2196 | depctl.b.epdis=0; |
| 2197 | dwc_write_reg32(&in_reg->diepctl,depctl.d32); |
| 2198 | |
| 2199 | } |
| 2200 | #if 0 |
| 2201 | //following DWC OTG DataBook v2.72a, 6.4.2.1.3 Disabling an OUT Endpoint, |
| 2202 | //but this doesn't work, the old code do. |
| 2203 | else { |
| 2204 | doepint_data_t doepint; |
| 2205 | dwc_otg_dev_out_ep_regs_t *out_reg=core_if->dev_if->out_ep_regs[ep->num]; |
| 2206 | dctl_data_t dctl; |
| 2207 | gintsts_data_t gintsts; |
| 2208 | |
| 2209 | //set dctl global out nak |
| 2210 | dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl); |
| 2211 | dctl.b.sgoutnak=1; |
| 2212 | dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl,dctl.d32); |
| 2213 | |
| 2214 | //wait for gintsts.goutnakeff |
| 2215 | gintsts.d32=dwc_read_reg32(&core_if->core_global_regs->gintsts); |
| 2216 | while(!gintsts.b.goutnakeff){ |
| 2217 | udelay(1); |
| 2218 | gintsts.d32=dwc_read_reg32(&core_if->core_global_regs->gintsts); |
| 2219 | } |
| 2220 | gintsts.d32=0; |
| 2221 | gintsts.b.goutnakeff=1; |
| 2222 | dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); |
| 2223 | |
| 2224 | //set ep disable and snak |
| 2225 | depctl.d32=dwc_read_reg32(&out_reg->doepctl); |
| 2226 | depctl.b.snak=1; |
| 2227 | depctl.b.epdis=1; |
| 2228 | dwc_write_reg32(&out_reg->doepctl,depctl.d32); |
| 2229 | |
| 2230 | //wait for diepint.b.epdisabled |
| 2231 | doepint.d32=dwc_read_reg32(&out_reg->doepint); |
| 2232 | while(!doepint.b.epdisabled){ |
| 2233 | udelay(1); |
| 2234 | doepint.d32=dwc_read_reg32(&out_reg->doepint); |
| 2235 | } |
| 2236 | doepint.d32=0; |
| 2237 | doepint.b.epdisabled=1; |
| 2238 | dwc_write_reg32(&out_reg->doepint,doepint.d32); |
| 2239 | |
| 2240 | //clear ep enable and disable bit |
| 2241 | depctl.d32=dwc_read_reg32(&out_reg->doepctl); |
| 2242 | depctl.b.epena=0; |
| 2243 | depctl.b.epdis=0; |
| 2244 | dwc_write_reg32(&out_reg->doepctl,depctl.d32); |
| 2245 | } |
| 2246 | #endif |
| 2247 | |
| 2248 | depctl.d32=0; |
| 2249 | depctl.b.usbactep = 0; |
| 2250 | |
| 2251 | if (ep->is_in == 0) { |
| 2252 | if(core_if->dma_enable||core_if->dma_desc_enable) |
| 2253 | depctl.b.epdis = 1; |
| 2254 | } |
| 2255 | |
| 2256 | dwc_write_reg32(addr, depctl.d32); |
| 2257 | } |
| 2258 | |
| 2259 | /* Disable the Interrupt for this EP */ |
| 2260 | if(core_if->multiproc_int_enable) { |
| 2261 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->deachintmsk, |
| 2262 | daintmsk.d32, 0); |
| 2263 | |
| 2264 | if (ep->is_in == 1) { |
| 2265 | dwc_write_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[ep->num], 0); |
| 2266 | } else { |
| 2267 | dwc_write_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[ep->num], 0); |
| 2268 | } |
| 2269 | } else { |
| 2270 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->daintmsk, |
| 2271 | daintmsk.d32, 0); |
| 2272 | } |
| 2273 | |
| 2274 | if (ep->is_in == 1) { |
| 2275 | DWC_DEBUGPL(DBG_PCD, "DIEPCTL(%.8x)=%08x DIEPTSIZ=%08x, DIEPINT=%.8x, DIEPDMA=%.8x, DTXFSTS=%.8x\n", |
| 2276 | (u32)&core_if->dev_if->in_ep_regs[ep->num]->diepctl, |
| 2277 | dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepctl), |
| 2278 | dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz), |
| 2279 | dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepint), |
| 2280 | dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepdma), |
| 2281 | dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts)); |
| 2282 | DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", |
| 2283 | dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk), |
| 2284 | dwc_read_reg32(&core_if->core_global_regs->gintmsk)); |
| 2285 | } |
| 2286 | else { |
| 2287 | DWC_DEBUGPL(DBG_PCD, "DOEPCTL(%.8x)=%08x DOEPTSIZ=%08x, DOEPINT=%.8x, DOEPDMA=%.8x\n", |
| 2288 | (u32)&core_if->dev_if->out_ep_regs[ep->num]->doepctl, |
| 2289 | dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepctl), |
| 2290 | dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz), |
| 2291 | dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepint), |
| 2292 | dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepdma)); |
| 2293 | |
| 2294 | DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", |
| 2295 | dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk), |
| 2296 | dwc_read_reg32(&core_if->core_global_regs->gintmsk)); |
| 2297 | } |
| 2298 | |
| 2299 | } |
| 2300 | |
| 2301 | /** |
| 2302 | * This function does the setup for a data transfer for an EP and |
| 2303 | * starts the transfer. For an IN transfer, the packets will be |
| 2304 | * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers, |
| 2305 | * the packets are unloaded from the Rx FIFO in the ISR. the ISR. |
| 2306 | * |
| 2307 | * @param core_if Programming view of DWC_otg controller. |
| 2308 | * @param ep The EP to start the transfer on. |
| 2309 | */ |
| 2310 | static void init_dma_desc_chain(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) |
| 2311 | { |
| 2312 | dwc_otg_dma_desc_t* dma_desc; |
| 2313 | uint32_t offset; |
| 2314 | uint32_t xfer_est; |
| 2315 | int i; |
| 2316 | |
| 2317 | ep->desc_cnt = ( ep->total_len / ep->maxxfer) + |
| 2318 | ((ep->total_len % ep->maxxfer) ? 1 : 0); |
| 2319 | if(!ep->desc_cnt) |
| 2320 | ep->desc_cnt = 1; |
| 2321 | |
| 2322 | dma_desc = ep->desc_addr; |
| 2323 | xfer_est = ep->total_len; |
| 2324 | offset = 0; |
| 2325 | for( i = 0; i < ep->desc_cnt; ++i) { |
| 2326 | /** DMA Descriptor Setup */ |
| 2327 | if(xfer_est > ep->maxxfer) { |
| 2328 | dma_desc->status.b.bs = BS_HOST_BUSY; |
| 2329 | dma_desc->status.b.l = 0; |
| 2330 | dma_desc->status.b.ioc = 0; |
| 2331 | dma_desc->status.b.sp = 0; |
| 2332 | dma_desc->status.b.bytes = ep->maxxfer; |
| 2333 | dma_desc->buf = ep->dma_addr + offset; |
| 2334 | dma_desc->status.b.bs = BS_HOST_READY; |
| 2335 | |
| 2336 | xfer_est -= ep->maxxfer; |
| 2337 | offset += ep->maxxfer; |
| 2338 | } else { |
| 2339 | dma_desc->status.b.bs = BS_HOST_BUSY; |
| 2340 | dma_desc->status.b.l = 1; |
| 2341 | dma_desc->status.b.ioc = 1; |
| 2342 | if(ep->is_in) { |
| 2343 | dma_desc->status.b.sp = (xfer_est % ep->maxpacket) ? |
| 2344 | 1 : ((ep->sent_zlp) ? 1 : 0); |
| 2345 | dma_desc->status.b.bytes = xfer_est; |
| 2346 | } else { |
| 2347 | dma_desc->status.b.bytes = xfer_est + ((4 - (xfer_est & 0x3)) & 0x3) ; |
| 2348 | } |
| 2349 | |
| 2350 | dma_desc->buf = ep->dma_addr + offset; |
| 2351 | dma_desc->status.b.bs = BS_HOST_READY; |
| 2352 | } |
| 2353 | dma_desc ++; |
| 2354 | } |
| 2355 | } |
| 2356 | |
| 2357 | /** |
| 2358 | * This function does the setup for a data transfer for an EP and |
| 2359 | * starts the transfer. For an IN transfer, the packets will be |
| 2360 | * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers, |
| 2361 | * the packets are unloaded from the Rx FIFO in the ISR. the ISR. |
| 2362 | * |
| 2363 | * @param core_if Programming view of DWC_otg controller. |
| 2364 | * @param ep The EP to start the transfer on. |
| 2365 | */ |
| 2366 | |
| 2367 | void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) |
| 2368 | { |
| 2369 | depctl_data_t depctl; |
| 2370 | deptsiz_data_t deptsiz; |
| 2371 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 2372 | |
| 2373 | DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__); |
| 2374 | |
| 2375 | DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " |
| 2376 | "xfer_buff=%p start_xfer_buff=%p\n", |
| 2377 | ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len, |
| 2378 | ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff); |
| 2379 | |
| 2380 | /* IN endpoint */ |
| 2381 | if (ep->is_in == 1) { |
| 2382 | dwc_otg_dev_in_ep_regs_t *in_regs = |
| 2383 | core_if->dev_if->in_ep_regs[ep->num]; |
| 2384 | |
| 2385 | gnptxsts_data_t gtxstatus; |
| 2386 | |
| 2387 | gtxstatus.d32 = |
| 2388 | dwc_read_reg32(&core_if->core_global_regs->gnptxsts); |
| 2389 | |
| 2390 | if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) { |
| 2391 | #ifdef DEBUG |
| 2392 | DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32); |
| 2393 | #endif |
| 2394 | return; |
| 2395 | } |
| 2396 | |
| 2397 | depctl.d32 = dwc_read_reg32(&(in_regs->diepctl)); |
| 2398 | deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz)); |
| 2399 | |
| 2400 | ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ? |
| 2401 | ep->maxxfer : (ep->total_len - ep->xfer_len); |
| 2402 | |
| 2403 | /* Zero Length Packet? */ |
| 2404 | if ((ep->xfer_len - ep->xfer_count) == 0) { |
| 2405 | deptsiz.b.xfersize = 0; |
| 2406 | deptsiz.b.pktcnt = 1; |
| 2407 | } |
| 2408 | else { |
| 2409 | /* Program the transfer size and packet count |
| 2410 | * as follows: xfersize = N * maxpacket + |
| 2411 | * short_packet pktcnt = N + (short_packet |
| 2412 | * exist ? 1 : 0) |
| 2413 | */ |
| 2414 | deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count; |
| 2415 | deptsiz.b.pktcnt = |
| 2416 | (ep->xfer_len - ep->xfer_count - 1 + ep->maxpacket) / |
| 2417 | ep->maxpacket; |
| 2418 | } |
| 2419 | |
| 2420 | |
| 2421 | /* Write the DMA register */ |
| 2422 | if (core_if->dma_enable) { |
| 2423 | if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) { |
| 2424 | ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE); |
| 2425 | } |
| 2426 | DWC_DEBUGPL(DBG_PCDV, "ep%d dma_addr=%.8x\n", ep->num, ep->dma_addr); |
| 2427 | |
| 2428 | if (core_if->dma_desc_enable == 0) { |
| 2429 | dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); |
| 2430 | |
| 2431 | VERIFY_PCD_DMA_ADDR(ep->dma_addr); |
| 2432 | dwc_write_reg32 (&(in_regs->diepdma), |
| 2433 | (uint32_t)ep->dma_addr); |
| 2434 | } |
| 2435 | else { |
| 2436 | init_dma_desc_chain(core_if, ep); |
| 2437 | /** DIEPDMAn Register write */ |
| 2438 | |
| 2439 | VERIFY_PCD_DMA_ADDR(ep->dma_desc_addr); |
| 2440 | dwc_write_reg32(&in_regs->diepdma, ep->dma_desc_addr); |
| 2441 | } |
| 2442 | } |
| 2443 | else |
| 2444 | { |
| 2445 | dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); |
| 2446 | if(ep->type != DWC_OTG_EP_TYPE_ISOC) { |
| 2447 | /** |
| 2448 | * Enable the Non-Periodic Tx FIFO empty interrupt, |
| 2449 | * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode, |
| 2450 | * the data will be written into the fifo by the ISR. |
| 2451 | */ |
| 2452 | if(core_if->en_multiple_tx_fifo == 0) { |
| 2453 | intr_mask.b.nptxfempty = 1; |
| 2454 | dwc_modify_reg32(&core_if->core_global_regs->gintmsk, |
| 2455 | intr_mask.d32, intr_mask.d32); |
| 2456 | } |
| 2457 | else { |
| 2458 | /* Enable the Tx FIFO Empty Interrupt for this EP */ |
| 2459 | if(ep->xfer_len > 0) { |
| 2460 | uint32_t fifoemptymsk = 0; |
| 2461 | fifoemptymsk = 1 << ep->num; |
| 2462 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, |
| 2463 | 0, fifoemptymsk); |
| 2464 | |
| 2465 | } |
| 2466 | } |
| 2467 | } |
| 2468 | } |
| 2469 | |
| 2470 | /* EP enable, IN data in FIFO */ |
| 2471 | depctl.b.cnak = 1; |
| 2472 | depctl.b.epena = 1; |
| 2473 | dwc_write_reg32(&in_regs->diepctl, depctl.d32); |
| 2474 | |
| 2475 | depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl); |
| 2476 | depctl.b.nextep = ep->num; |
| 2477 | dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32); |
| 2478 | |
| 2479 | DWC_DEBUGPL(DBG_PCD, "DIEPCTL(%.8x)=%08x DIEPTSIZ=%08x, DIEPINT=%.8x, DIEPDMA=%.8x, DTXFSTS=%.8x\n", |
| 2480 | (u32)&in_regs->diepctl, |
| 2481 | dwc_read_reg32(&in_regs->diepctl), |
| 2482 | dwc_read_reg32(&in_regs->dieptsiz), |
| 2483 | dwc_read_reg32(&in_regs->diepint), |
| 2484 | dwc_read_reg32(&in_regs->diepdma), |
| 2485 | dwc_read_reg32(&in_regs->dtxfsts)); |
| 2486 | DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", |
| 2487 | dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk), |
| 2488 | dwc_read_reg32(&core_if->core_global_regs->gintmsk)); |
| 2489 | |
| 2490 | } |
| 2491 | else { |
| 2492 | /* OUT endpoint */ |
| 2493 | dwc_otg_dev_out_ep_regs_t *out_regs = |
| 2494 | core_if->dev_if->out_ep_regs[ep->num]; |
| 2495 | |
| 2496 | depctl.d32 = dwc_read_reg32(&(out_regs->doepctl)); |
| 2497 | deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz)); |
| 2498 | |
| 2499 | ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ? |
| 2500 | ep->maxxfer : (ep->total_len - ep->xfer_len); |
| 2501 | |
| 2502 | /* Program the transfer size and packet count as follows: |
| 2503 | * |
| 2504 | * pktcnt = N |
| 2505 | * xfersize = N * maxpacket |
| 2506 | */ |
| 2507 | if ((ep->xfer_len - ep->xfer_count) == 0) { |
| 2508 | /* Zero Length Packet */ |
| 2509 | deptsiz.b.xfersize = ep->maxpacket; |
| 2510 | deptsiz.b.pktcnt = 1; |
| 2511 | } |
| 2512 | else { |
| 2513 | deptsiz.b.pktcnt = |
| 2514 | (ep->xfer_len - ep->xfer_count + (ep->maxpacket - 1)) / |
| 2515 | ep->maxpacket; |
| 2516 | ep->xfer_len = deptsiz.b.pktcnt * ep->maxpacket + ep->xfer_count; |
| 2517 | deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count; |
| 2518 | } |
| 2519 | |
| 2520 | DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n", |
| 2521 | ep->num, |
| 2522 | deptsiz.b.xfersize, deptsiz.b.pktcnt); |
| 2523 | |
| 2524 | if (core_if->dma_enable) { |
| 2525 | if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) { |
| 2526 | ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE); |
| 2527 | } |
| 2528 | DWC_DEBUGPL(DBG_PCDV, "ep%d dma_addr=%.8x\n", |
| 2529 | ep->num, |
| 2530 | ep->dma_addr); |
| 2531 | if (!core_if->dma_desc_enable) { |
| 2532 | dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); |
| 2533 | |
| 2534 | VERIFY_PCD_DMA_ADDR(ep->dma_addr); |
| 2535 | dwc_write_reg32 (&(out_regs->doepdma), |
| 2536 | (uint32_t)ep->dma_addr); |
| 2537 | } |
| 2538 | else { |
| 2539 | init_dma_desc_chain(core_if, ep); |
| 2540 | |
| 2541 | /** DOEPDMAn Register write */ |
| 2542 | |
| 2543 | VERIFY_PCD_DMA_ADDR(ep->dma_desc_addr); |
| 2544 | dwc_write_reg32(&out_regs->doepdma, ep->dma_desc_addr); |
| 2545 | } |
| 2546 | } |
| 2547 | else { |
| 2548 | dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); |
| 2549 | } |
| 2550 | |
| 2551 | /* EP enable */ |
| 2552 | depctl.b.cnak = 1; |
| 2553 | depctl.b.epena = 1; |
| 2554 | |
| 2555 | dwc_write_reg32(&out_regs->doepctl, depctl.d32); |
| 2556 | |
| 2557 | DWC_DEBUGPL(DBG_PCD, "DOEPCTL(%.8x)=%08x DOEPTSIZ=%08x, DOEPINT=%.8x, DOEPDMA=%.8x\n", |
| 2558 | (u32)&out_regs->doepctl, |
| 2559 | dwc_read_reg32(&out_regs->doepctl), |
| 2560 | dwc_read_reg32(&out_regs->doeptsiz), |
| 2561 | dwc_read_reg32(&out_regs->doepint), |
| 2562 | dwc_read_reg32(&out_regs->doepdma)); |
| 2563 | |
| 2564 | DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", |
| 2565 | dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk), |
| 2566 | dwc_read_reg32(&core_if->core_global_regs->gintmsk)); |
| 2567 | } |
| 2568 | } |
| 2569 | |
| 2570 | /** |
| 2571 | * This function setup a zero length transfer in Buffer DMA and |
| 2572 | * Slave modes for usb requests with zero field set |
| 2573 | * |
| 2574 | * @param core_if Programming view of DWC_otg controller. |
| 2575 | * @param ep The EP to start the transfer on. |
| 2576 | * |
| 2577 | */ |
| 2578 | void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) |
| 2579 | { |
| 2580 | |
| 2581 | depctl_data_t depctl; |
| 2582 | deptsiz_data_t deptsiz; |
| 2583 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 2584 | |
| 2585 | DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__); |
| 2586 | |
| 2587 | /* IN endpoint */ |
| 2588 | if (ep->is_in == 1) { |
| 2589 | dwc_otg_dev_in_ep_regs_t *in_regs = |
| 2590 | core_if->dev_if->in_ep_regs[ep->num]; |
| 2591 | |
| 2592 | depctl.d32 = dwc_read_reg32(&(in_regs->diepctl)); |
| 2593 | deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz)); |
| 2594 | |
| 2595 | deptsiz.b.xfersize = 0; |
| 2596 | deptsiz.b.pktcnt = 1; |
| 2597 | |
| 2598 | |
| 2599 | /* Write the DMA register */ |
| 2600 | if (core_if->dma_enable) { |
| 2601 | if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) { |
| 2602 | ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE); |
| 2603 | } |
| 2604 | if (core_if->dma_desc_enable == 0) { |
| 2605 | dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); |
| 2606 | |
| 2607 | VERIFY_PCD_DMA_ADDR(ep->dma_addr); |
| 2608 | dwc_write_reg32 (&(in_regs->diepdma), |
| 2609 | (uint32_t)ep->dma_addr); |
| 2610 | } |
| 2611 | } |
| 2612 | else { |
| 2613 | dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); |
| 2614 | /** |
| 2615 | * Enable the Non-Periodic Tx FIFO empty interrupt, |
| 2616 | * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode, |
| 2617 | * the data will be written into the fifo by the ISR. |
| 2618 | */ |
| 2619 | if(core_if->en_multiple_tx_fifo == 0) { |
| 2620 | intr_mask.b.nptxfempty = 1; |
| 2621 | dwc_modify_reg32(&core_if->core_global_regs->gintmsk, |
| 2622 | intr_mask.d32, intr_mask.d32); |
| 2623 | } |
| 2624 | else { |
| 2625 | /* Enable the Tx FIFO Empty Interrupt for this EP */ |
| 2626 | if(ep->xfer_len > 0) { |
| 2627 | uint32_t fifoemptymsk = 0; |
| 2628 | fifoemptymsk = 1 << ep->num; |
| 2629 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, |
| 2630 | 0, fifoemptymsk); |
| 2631 | } |
| 2632 | } |
| 2633 | } |
| 2634 | |
| 2635 | /* EP enable, IN data in FIFO */ |
| 2636 | depctl.b.cnak = 1; |
| 2637 | depctl.b.epena = 1; |
| 2638 | dwc_write_reg32(&in_regs->diepctl, depctl.d32); |
| 2639 | |
| 2640 | depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl); |
| 2641 | depctl.b.nextep = ep->num; |
| 2642 | dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32); |
| 2643 | |
| 2644 | } |
| 2645 | else { |
| 2646 | /* OUT endpoint */ |
| 2647 | dwc_otg_dev_out_ep_regs_t *out_regs = |
| 2648 | core_if->dev_if->out_ep_regs[ep->num]; |
| 2649 | |
| 2650 | depctl.d32 = dwc_read_reg32(&(out_regs->doepctl)); |
| 2651 | deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz)); |
| 2652 | |
| 2653 | /* Zero Length Packet */ |
| 2654 | deptsiz.b.xfersize = ep->maxpacket; |
| 2655 | deptsiz.b.pktcnt = 1; |
| 2656 | |
| 2657 | if (core_if->dma_enable) { |
| 2658 | if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) { |
| 2659 | ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE); |
| 2660 | } |
| 2661 | if (!core_if->dma_desc_enable) { |
| 2662 | dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); |
| 2663 | |
| 2664 | |
| 2665 | VERIFY_PCD_DMA_ADDR(ep->dma_addr); |
| 2666 | dwc_write_reg32 (&(out_regs->doepdma), |
| 2667 | (uint32_t)ep->dma_addr); |
| 2668 | } |
| 2669 | } |
| 2670 | else { |
| 2671 | dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); |
| 2672 | } |
| 2673 | |
| 2674 | /* EP enable */ |
| 2675 | depctl.b.cnak = 1; |
| 2676 | depctl.b.epena = 1; |
| 2677 | |
| 2678 | dwc_write_reg32(&out_regs->doepctl, depctl.d32); |
| 2679 | |
| 2680 | } |
| 2681 | } |
| 2682 | |
| 2683 | /** |
| 2684 | * This function does the setup for a data transfer for EP0 and starts |
| 2685 | * the transfer. For an IN transfer, the packets will be loaded into |
| 2686 | * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are |
| 2687 | * unloaded from the Rx FIFO in the ISR. |
| 2688 | * |
| 2689 | * @param core_if Programming view of DWC_otg controller. |
| 2690 | * @param ep The EP0 data. |
| 2691 | */ |
| 2692 | void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) |
| 2693 | { |
| 2694 | depctl_data_t depctl; |
| 2695 | deptsiz0_data_t deptsiz; |
| 2696 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 2697 | dwc_otg_dma_desc_t* dma_desc; |
| 2698 | |
| 2699 | DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " |
| 2700 | "xfer_buff=%p start_xfer_buff=%p, dma_addr=%.8x\n", |
| 2701 | ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len, |
| 2702 | ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff,ep->dma_addr); |
| 2703 | |
| 2704 | ep->total_len = ep->xfer_len; |
| 2705 | |
| 2706 | /* IN endpoint */ |
| 2707 | if (ep->is_in == 1) { |
| 2708 | dwc_otg_dev_in_ep_regs_t *in_regs = |
| 2709 | core_if->dev_if->in_ep_regs[0]; |
| 2710 | |
| 2711 | gnptxsts_data_t gtxstatus; |
| 2712 | |
| 2713 | gtxstatus.d32 = |
| 2714 | dwc_read_reg32(&core_if->core_global_regs->gnptxsts); |
| 2715 | |
| 2716 | if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) { |
| 2717 | #ifdef DEBUG |
| 2718 | deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); |
| 2719 | DWC_DEBUGPL(DBG_PCD,"DIEPCTL0=%0x\n", |
| 2720 | dwc_read_reg32(&in_regs->diepctl)); |
| 2721 | DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n", |
| 2722 | deptsiz.d32, |
| 2723 | deptsiz.b.xfersize, deptsiz.b.pktcnt); |
| 2724 | DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n", |
| 2725 | gtxstatus.d32); |
| 2726 | #endif |
| 2727 | return; |
| 2728 | } |
| 2729 | |
| 2730 | |
| 2731 | depctl.d32 = dwc_read_reg32(&in_regs->diepctl); |
| 2732 | deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); |
| 2733 | |
| 2734 | /* Zero Length Packet? */ |
| 2735 | if (ep->xfer_len == 0) { |
| 2736 | deptsiz.b.xfersize = 0; |
| 2737 | deptsiz.b.pktcnt = 1; |
| 2738 | } |
| 2739 | else { |
| 2740 | /* Program the transfer size and packet count |
| 2741 | * as follows: xfersize = N * maxpacket + |
| 2742 | * short_packet pktcnt = N + (short_packet |
| 2743 | * exist ? 1 : 0) |
| 2744 | */ |
| 2745 | if (ep->xfer_len > ep->maxpacket) { |
| 2746 | ep->xfer_len = ep->maxpacket; |
| 2747 | deptsiz.b.xfersize = ep->maxpacket; |
| 2748 | } |
| 2749 | else { |
| 2750 | deptsiz.b.xfersize = ep->xfer_len; |
| 2751 | } |
| 2752 | deptsiz.b.pktcnt = 1; |
| 2753 | |
| 2754 | } |
| 2755 | DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", |
| 2756 | ep->xfer_len, |
| 2757 | deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32); |
| 2758 | /* Write the DMA register */ |
| 2759 | if (core_if->dma_enable) { |
| 2760 | if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) { |
| 2761 | ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE); |
| 2762 | } |
| 2763 | if(core_if->dma_desc_enable == 0) { |
| 2764 | dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); |
| 2765 | |
| 2766 | VERIFY_PCD_DMA_ADDR(ep->dma_addr); |
| 2767 | dwc_write_reg32 (&(in_regs->diepdma), |
| 2768 | (uint32_t)ep->dma_addr); |
| 2769 | } |
| 2770 | else { |
| 2771 | dma_desc = core_if->dev_if->in_desc_addr; |
| 2772 | |
| 2773 | /** DMA Descriptor Setup */ |
| 2774 | dma_desc->status.b.bs = BS_HOST_BUSY; |
| 2775 | dma_desc->status.b.l = 1; |
| 2776 | dma_desc->status.b.ioc = 1; |
| 2777 | dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1; |
| 2778 | dma_desc->status.b.bytes = ep->xfer_len; |
| 2779 | dma_desc->buf = ep->dma_addr; |
| 2780 | dma_desc->status.b.bs = BS_HOST_READY; |
| 2781 | |
| 2782 | /** DIEPDMA0 Register write */ |
| 2783 | |
| 2784 | VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_in_desc_addr); |
| 2785 | dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr); |
| 2786 | } |
| 2787 | } |
| 2788 | else { |
| 2789 | dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); |
| 2790 | } |
| 2791 | |
| 2792 | /* EP enable, IN data in FIFO */ |
| 2793 | depctl.b.cnak = 1; |
| 2794 | depctl.b.epena = 1; |
| 2795 | dwc_write_reg32(&in_regs->diepctl, depctl.d32); |
| 2796 | |
| 2797 | /** |
| 2798 | * Enable the Non-Periodic Tx FIFO empty interrupt, the |
| 2799 | * data will be written into the fifo by the ISR. |
| 2800 | */ |
| 2801 | if (!core_if->dma_enable) { |
| 2802 | if(core_if->en_multiple_tx_fifo == 0) { |
| 2803 | intr_mask.b.nptxfempty = 1; |
| 2804 | dwc_modify_reg32(&core_if->core_global_regs->gintmsk, |
| 2805 | intr_mask.d32, intr_mask.d32); |
| 2806 | } |
| 2807 | else { |
| 2808 | /* Enable the Tx FIFO Empty Interrupt for this EP */ |
| 2809 | if(ep->xfer_len > 0) { |
| 2810 | uint32_t fifoemptymsk = 0; |
| 2811 | fifoemptymsk |= 1 << ep->num; |
| 2812 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, |
| 2813 | 0, fifoemptymsk); |
| 2814 | } |
| 2815 | } |
| 2816 | } |
| 2817 | } |
| 2818 | else { |
| 2819 | /* OUT endpoint */ |
| 2820 | dwc_otg_dev_out_ep_regs_t *out_regs = |
| 2821 | core_if->dev_if->out_ep_regs[0]; |
| 2822 | |
| 2823 | depctl.d32 = dwc_read_reg32(&out_regs->doepctl); |
| 2824 | deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz); |
| 2825 | |
| 2826 | /* Program the transfer size and packet count as follows: |
| 2827 | * xfersize = N * (maxpacket + 4 - (maxpacket % 4)) |
| 2828 | * pktcnt = N */ |
| 2829 | /* Zero Length Packet */ |
| 2830 | deptsiz.b.xfersize = ep->maxpacket; |
| 2831 | deptsiz.b.pktcnt = 1; |
| 2832 | |
| 2833 | DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n", |
| 2834 | ep->xfer_len, |
| 2835 | deptsiz.b.xfersize, deptsiz.b.pktcnt); |
| 2836 | |
| 2837 | if (core_if->dma_enable) { |
| 2838 | if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) { |
| 2839 | ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE); |
| 2840 | } |
| 2841 | if(!core_if->dma_desc_enable) { |
| 2842 | dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); |
| 2843 | |
| 2844 | |
| 2845 | VERIFY_PCD_DMA_ADDR(ep->dma_addr); |
| 2846 | dwc_write_reg32 (&(out_regs->doepdma), |
| 2847 | (uint32_t)ep->dma_addr); |
| 2848 | } |
| 2849 | else { |
| 2850 | dma_desc = core_if->dev_if->out_desc_addr; |
| 2851 | |
| 2852 | /** DMA Descriptor Setup */ |
| 2853 | dma_desc->status.b.bs = BS_HOST_BUSY; |
| 2854 | dma_desc->status.b.l = 1; |
| 2855 | dma_desc->status.b.ioc = 1; |
| 2856 | dma_desc->status.b.bytes = ep->maxpacket; |
| 2857 | dma_desc->buf = ep->dma_addr; |
| 2858 | dma_desc->status.b.bs = BS_HOST_READY; |
| 2859 | |
| 2860 | /** DOEPDMA0 Register write */ |
| 2861 | VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_out_desc_addr); |
| 2862 | dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr); |
| 2863 | } |
| 2864 | } |
| 2865 | else { |
| 2866 | dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); |
| 2867 | } |
| 2868 | |
| 2869 | /* EP enable */ |
| 2870 | depctl.b.cnak = 1; |
| 2871 | depctl.b.epena = 1; |
| 2872 | dwc_write_reg32 (&(out_regs->doepctl), depctl.d32); |
| 2873 | } |
| 2874 | } |
| 2875 | |
| 2876 | /** |
| 2877 | * This function continues control IN transfers started by |
| 2878 | * dwc_otg_ep0_start_transfer, when the transfer does not fit in a |
| 2879 | * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one |
| 2880 | * bit for the packet count. |
| 2881 | * |
| 2882 | * @param core_if Programming view of DWC_otg controller. |
| 2883 | * @param ep The EP0 data. |
| 2884 | */ |
| 2885 | void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) |
| 2886 | { |
| 2887 | depctl_data_t depctl; |
| 2888 | deptsiz0_data_t deptsiz; |
| 2889 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 2890 | dwc_otg_dma_desc_t* dma_desc; |
| 2891 | |
| 2892 | if (ep->is_in == 1) { |
| 2893 | dwc_otg_dev_in_ep_regs_t *in_regs = |
| 2894 | core_if->dev_if->in_ep_regs[0]; |
| 2895 | gnptxsts_data_t tx_status = { .d32 = 0 }; |
| 2896 | |
| 2897 | tx_status.d32 = dwc_read_reg32(&core_if->core_global_regs->gnptxsts); |
| 2898 | /** @todo Should there be check for room in the Tx |
| 2899 | * Status Queue. If not remove the code above this comment. */ |
| 2900 | |
| 2901 | depctl.d32 = dwc_read_reg32(&in_regs->diepctl); |
| 2902 | deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); |
| 2903 | |
| 2904 | /* Program the transfer size and packet count |
| 2905 | * as follows: xfersize = N * maxpacket + |
| 2906 | * short_packet pktcnt = N + (short_packet |
| 2907 | * exist ? 1 : 0) |
| 2908 | */ |
| 2909 | |
| 2910 | |
| 2911 | if(core_if->dma_desc_enable == 0) { |
| 2912 | deptsiz.b.xfersize = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket : |
| 2913 | (ep->total_len - ep->xfer_count); |
| 2914 | deptsiz.b.pktcnt = 1; |
| 2915 | if(core_if->dma_enable == 0) { |
| 2916 | ep->xfer_len += deptsiz.b.xfersize; |
| 2917 | } else { |
| 2918 | ep->xfer_len = deptsiz.b.xfersize; |
| 2919 | } |
| 2920 | dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); |
| 2921 | } |
| 2922 | else { |
| 2923 | ep->xfer_len = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket : |
| 2924 | (ep->total_len - ep->xfer_count); |
| 2925 | |
| 2926 | dma_desc = core_if->dev_if->in_desc_addr; |
| 2927 | |
| 2928 | /** DMA Descriptor Setup */ |
| 2929 | dma_desc->status.b.bs = BS_HOST_BUSY; |
| 2930 | dma_desc->status.b.l = 1; |
| 2931 | dma_desc->status.b.ioc = 1; |
| 2932 | dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1; |
| 2933 | dma_desc->status.b.bytes = ep->xfer_len; |
| 2934 | dma_desc->buf = ep->dma_addr; |
| 2935 | dma_desc->status.b.bs = BS_HOST_READY; |
| 2936 | |
| 2937 | |
| 2938 | /** DIEPDMA0 Register write */ |
| 2939 | VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_in_desc_addr); |
| 2940 | dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr); |
| 2941 | } |
| 2942 | |
| 2943 | |
| 2944 | DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", |
| 2945 | ep->xfer_len, |
| 2946 | deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32); |
| 2947 | |
| 2948 | /* Write the DMA register */ |
| 2949 | if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) { |
| 2950 | if(core_if->dma_desc_enable == 0){ |
| 2951 | |
| 2952 | VERIFY_PCD_DMA_ADDR(ep->dma_addr); |
| 2953 | dwc_write_reg32 (&(in_regs->diepdma), (uint32_t)ep->dma_addr); |
| 2954 | } |
| 2955 | } |
| 2956 | |
| 2957 | /* EP enable, IN data in FIFO */ |
| 2958 | depctl.b.cnak = 1; |
| 2959 | depctl.b.epena = 1; |
| 2960 | dwc_write_reg32(&in_regs->diepctl, depctl.d32); |
| 2961 | |
| 2962 | /** |
| 2963 | * Enable the Non-Periodic Tx FIFO empty interrupt, the |
| 2964 | * data will be written into the fifo by the ISR. |
| 2965 | */ |
| 2966 | if (!core_if->dma_enable) { |
| 2967 | if(core_if->en_multiple_tx_fifo == 0) { |
| 2968 | /* First clear it from GINTSTS */ |
| 2969 | intr_mask.b.nptxfempty = 1; |
| 2970 | dwc_modify_reg32(&core_if->core_global_regs->gintmsk, |
| 2971 | intr_mask.d32, intr_mask.d32); |
| 2972 | |
| 2973 | } |
| 2974 | else { |
| 2975 | /* Enable the Tx FIFO Empty Interrupt for this EP */ |
| 2976 | if(ep->xfer_len > 0) { |
| 2977 | uint32_t fifoemptymsk = 0; |
| 2978 | fifoemptymsk |= 1 << ep->num; |
| 2979 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, |
| 2980 | 0, fifoemptymsk); |
| 2981 | } |
| 2982 | } |
| 2983 | } |
| 2984 | } |
| 2985 | else { |
| 2986 | dwc_otg_dev_out_ep_regs_t *out_regs = |
| 2987 | core_if->dev_if->out_ep_regs[0]; |
| 2988 | |
| 2989 | |
| 2990 | depctl.d32 = dwc_read_reg32(&out_regs->doepctl); |
| 2991 | deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz); |
| 2992 | |
| 2993 | /* Program the transfer size and packet count |
| 2994 | * as follows: xfersize = N * maxpacket + |
| 2995 | * short_packet pktcnt = N + (short_packet |
| 2996 | * exist ? 1 : 0) |
| 2997 | */ |
| 2998 | deptsiz.b.xfersize = ep->maxpacket; |
| 2999 | deptsiz.b.pktcnt = 1; |
| 3000 | |
| 3001 | |
| 3002 | if(core_if->dma_desc_enable == 0) { |
| 3003 | dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); |
| 3004 | } |
| 3005 | else { |
| 3006 | dma_desc = core_if->dev_if->out_desc_addr; |
| 3007 | |
| 3008 | /** DMA Descriptor Setup */ |
| 3009 | dma_desc->status.b.bs = BS_HOST_BUSY; |
| 3010 | dma_desc->status.b.l = 1; |
| 3011 | dma_desc->status.b.ioc = 1; |
| 3012 | dma_desc->status.b.bytes = ep->maxpacket; |
| 3013 | dma_desc->buf = ep->dma_addr; |
| 3014 | dma_desc->status.b.bs = BS_HOST_READY; |
| 3015 | |
| 3016 | /** DOEPDMA0 Register write */ |
| 3017 | VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_out_desc_addr); |
| 3018 | dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr); |
| 3019 | } |
| 3020 | |
| 3021 | |
| 3022 | DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", |
| 3023 | ep->xfer_len, |
| 3024 | deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32); |
| 3025 | |
| 3026 | /* Write the DMA register */ |
| 3027 | if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) { |
| 3028 | if(core_if->dma_desc_enable == 0){ |
| 3029 | |
| 3030 | VERIFY_PCD_DMA_ADDR(ep->dma_addr); |
| 3031 | dwc_write_reg32 (&(out_regs->doepdma), (uint32_t)ep->dma_addr); |
| 3032 | } |
| 3033 | } |
| 3034 | |
| 3035 | /* EP enable, IN data in FIFO */ |
| 3036 | depctl.b.cnak = 1; |
| 3037 | depctl.b.epena = 1; |
| 3038 | dwc_write_reg32(&out_regs->doepctl, depctl.d32); |
| 3039 | |
| 3040 | } |
| 3041 | } |
| 3042 | |
| 3043 | #ifdef DEBUG |
| 3044 | void dump_msg(const u8 *buf, unsigned int length) |
| 3045 | { |
| 3046 | unsigned int start, num, i; |
| 3047 | char line[52], *p; |
| 3048 | |
| 3049 | if (length >= 512) |
| 3050 | return; |
| 3051 | start = 0; |
| 3052 | while (length > 0) { |
| 3053 | num = min(length, 16u); |
| 3054 | p = line; |
| 3055 | for (i = 0; i < num; ++i) |
| 3056 | { |
| 3057 | if (i == 8) |
| 3058 | *p++ = ' '; |
| 3059 | sprintf(p, " %02x", buf[i]); |
| 3060 | p += 3; |
| 3061 | } |
| 3062 | *p = 0; |
| 3063 | DWC_PRINT("%6x: %s\n", start, line); |
| 3064 | buf += num; |
| 3065 | start += num; |
| 3066 | length -= num; |
| 3067 | } |
| 3068 | } |
| 3069 | #else |
| 3070 | static inline void dump_msg(const u8 *buf, unsigned int length) |
| 3071 | { |
| 3072 | } |
| 3073 | #endif |
| 3074 | |
| 3075 | /** |
| 3076 | * This function writes a packet into the Tx FIFO associated with the |
| 3077 | * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For |
| 3078 | * periodic EPs the periodic Tx FIFO associated with the EP is written |
| 3079 | * with all packets for the next micro-frame. |
| 3080 | * |
| 3081 | * @param core_if Programming view of DWC_otg controller. |
| 3082 | * @param ep The EP to write packet for. |
| 3083 | * @param dma Indicates if DMA is being used. |
| 3084 | */ |
| 3085 | void dwc_otg_ep_write_packet(dwc_otg_core_if_t *core_if, dwc_ep_t *ep, int dma) |
| 3086 | { |
| 3087 | /** |
| 3088 | * The buffer is padded to DWORD on a per packet basis in |
| 3089 | * slave/dma mode if the MPS is not DWORD aligned. The last |
| 3090 | * packet, if short, is also padded to a multiple of DWORD. |
| 3091 | * |
| 3092 | * ep->xfer_buff always starts DWORD aligned in memory and is a |
| 3093 | * multiple of DWORD in length |
| 3094 | * |
| 3095 | * ep->xfer_len can be any number of bytes |
| 3096 | * |
| 3097 | * ep->xfer_count is a multiple of ep->maxpacket until the last |
| 3098 | * packet |
| 3099 | * |
| 3100 | * FIFO access is DWORD */ |
| 3101 | |
| 3102 | uint32_t i; |
| 3103 | uint32_t byte_count; |
| 3104 | uint32_t dword_count; |
| 3105 | uint32_t *fifo; |
| 3106 | uint32_t *data_buff = (uint32_t *)ep->xfer_buff; |
| 3107 | |
| 3108 | DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, core_if, ep); |
| 3109 | if (ep->xfer_count >= ep->xfer_len) { |
| 3110 | DWC_WARN("%s() No data for EP%d!!!\n", __func__, ep->num); |
| 3111 | return; |
| 3112 | } |
| 3113 | |
| 3114 | /* Find the byte length of the packet either short packet or MPS */ |
| 3115 | if ((ep->xfer_len - ep->xfer_count) < ep->maxpacket) { |
| 3116 | byte_count = ep->xfer_len - ep->xfer_count; |
| 3117 | } |
| 3118 | else { |
| 3119 | byte_count = ep->maxpacket; |
| 3120 | } |
| 3121 | |
| 3122 | /* Find the DWORD length, padded by extra bytes as neccessary if MPS |
| 3123 | * is not a multiple of DWORD */ |
| 3124 | dword_count = (byte_count + 3) / 4; |
| 3125 | |
| 3126 | #ifdef VERBOSE |
| 3127 | dump_msg(ep->xfer_buff, byte_count); |
| 3128 | #endif |
| 3129 | |
| 3130 | /**@todo NGS Where are the Periodic Tx FIFO addresses |
| 3131 | * intialized? What should this be? */ |
| 3132 | |
| 3133 | fifo = core_if->data_fifo[ep->num]; |
| 3134 | |
| 3135 | |
| 3136 | DWC_DEBUGPL((DBG_PCDV|DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n", fifo, data_buff, *data_buff, byte_count); |
| 3137 | |
| 3138 | if (!dma) { |
| 3139 | for (i=0; i<dword_count; i++, data_buff++) { |
| 3140 | dwc_write_reg32(fifo, *data_buff); |
| 3141 | } |
| 3142 | } |
| 3143 | |
| 3144 | ep->xfer_count += byte_count; |
| 3145 | ep->xfer_buff += byte_count; |
| 3146 | ep->dma_addr += byte_count; |
| 3147 | } |
| 3148 | |
| 3149 | /** |
| 3150 | * Set the EP STALL. |
| 3151 | * |
| 3152 | * @param core_if Programming view of DWC_otg controller. |
| 3153 | * @param ep The EP to set the stall on. |
| 3154 | */ |
| 3155 | void dwc_otg_ep_set_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) |
| 3156 | { |
| 3157 | depctl_data_t depctl; |
| 3158 | volatile uint32_t *depctl_addr; |
| 3159 | |
| 3160 | DWC_DEBUGPL(DBG_PCDV, "%s ep%d-%s1\n", __func__, ep->num, |
| 3161 | (ep->is_in?"IN":"OUT")); |
| 3162 | |
| 3163 | DWC_PRINT("%s ep%d-%s\n", __func__, ep->num, |
| 3164 | (ep->is_in?"in":"out")); |
| 3165 | |
| 3166 | if (ep->is_in == 1) { |
| 3167 | depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl); |
| 3168 | depctl.d32 = dwc_read_reg32(depctl_addr); |
| 3169 | |
| 3170 | /* set the disable and stall bits */ |
| 3171 | #if 0 |
| 3172 | //epdis is set here but not cleared at latter dwc_otg_ep_clear_stall, |
| 3173 | //which cause the testusb item 13 failed(Host:pc, device: otg device) |
| 3174 | if (depctl.b.epena) { |
| 3175 | depctl.b.epdis = 1; |
| 3176 | } |
| 3177 | #endif |
| 3178 | depctl.b.stall = 1; |
| 3179 | dwc_write_reg32(depctl_addr, depctl.d32); |
| 3180 | } |
| 3181 | else { |
| 3182 | depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl); |
| 3183 | depctl.d32 = dwc_read_reg32(depctl_addr); |
| 3184 | |
| 3185 | /* set the stall bit */ |
| 3186 | depctl.b.stall = 1; |
| 3187 | dwc_write_reg32(depctl_addr, depctl.d32); |
| 3188 | } |
| 3189 | |
| 3190 | DWC_DEBUGPL(DBG_PCDV,"%s: DEPCTL(%.8x)=%0x\n",__func__,(u32)depctl_addr,dwc_read_reg32(depctl_addr)); |
| 3191 | |
| 3192 | return; |
| 3193 | } |
| 3194 | |
| 3195 | /** |
| 3196 | * Clear the EP STALL. |
| 3197 | * |
| 3198 | * @param core_if Programming view of DWC_otg controller. |
| 3199 | * @param ep The EP to clear stall from. |
| 3200 | */ |
| 3201 | void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) |
| 3202 | { |
| 3203 | depctl_data_t depctl; |
| 3204 | volatile uint32_t *depctl_addr; |
| 3205 | |
| 3206 | DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num, |
| 3207 | (ep->is_in?"IN":"OUT")); |
| 3208 | |
| 3209 | if (ep->is_in == 1) { |
| 3210 | depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl); |
| 3211 | } |
| 3212 | else { |
| 3213 | depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl); |
| 3214 | } |
| 3215 | |
| 3216 | depctl.d32 = dwc_read_reg32(depctl_addr); |
| 3217 | |
| 3218 | /* clear the stall bits */ |
| 3219 | depctl.b.stall = 0; |
| 3220 | |
| 3221 | /* |
| 3222 | * USB Spec 9.4.5: For endpoints using data toggle, regardless |
| 3223 | * of whether an endpoint has the Halt feature set, a |
| 3224 | * ClearFeature(ENDPOINT_HALT) request always results in the |
| 3225 | * data toggle being reinitialized to DATA0. |
| 3226 | */ |
| 3227 | if (ep->type == DWC_OTG_EP_TYPE_INTR || |
| 3228 | ep->type == DWC_OTG_EP_TYPE_BULK) { |
| 3229 | depctl.b.setd0pid = 1; /* DATA0 */ |
| 3230 | } |
| 3231 | |
| 3232 | dwc_write_reg32(depctl_addr, depctl.d32); |
| 3233 | DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr)); |
| 3234 | return; |
| 3235 | } |
| 3236 | |
| 3237 | /** |
| 3238 | * This function reads a packet from the Rx FIFO into the destination |
| 3239 | * buffer. To read SETUP data use dwc_otg_read_setup_packet. |
| 3240 | * |
| 3241 | * @param core_if Programming view of DWC_otg controller. |
| 3242 | * @param dest Destination buffer for the packet. |
| 3243 | * @param bytes Number of bytes to copy to the destination. |
| 3244 | */ |
| 3245 | void dwc_otg_read_packet(dwc_otg_core_if_t *core_if, |
| 3246 | uint8_t *dest, |
| 3247 | uint16_t bytes) |
| 3248 | { |
| 3249 | int i; |
| 3250 | int word_count = (bytes + 3) / 4; |
| 3251 | |
| 3252 | volatile uint32_t *fifo = core_if->data_fifo[0]; |
| 3253 | uint32_t *data_buff = (uint32_t *)dest; |
| 3254 | |
| 3255 | /** |
| 3256 | * @todo Account for the case where _dest is not dword aligned. This |
| 3257 | * requires reading data from the FIFO into a uint32_t temp buffer, |
| 3258 | * then moving it into the data buffer. |
| 3259 | */ |
| 3260 | |
| 3261 | DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__, |
| 3262 | core_if, dest, bytes); |
| 3263 | |
| 3264 | for (i=0; i<word_count; i++, data_buff++) |
| 3265 | { |
| 3266 | *data_buff = dwc_read_reg32(fifo); |
| 3267 | } |
| 3268 | |
| 3269 | return; |
| 3270 | } |
| 3271 | |
| 3272 | |
| 3273 | |
| 3274 | /** |
| 3275 | * This functions reads the device registers and prints them |
| 3276 | * |
| 3277 | * @param core_if Programming view of DWC_otg controller. |
| 3278 | */ |
| 3279 | void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *core_if) |
| 3280 | { |
| 3281 | int i; |
| 3282 | volatile uint32_t *addr; |
| 3283 | |
| 3284 | DWC_PRINT("Device Global Registers\n"); |
| 3285 | addr=&core_if->dev_if->dev_global_regs->dcfg; |
| 3286 | DWC_PRINT("DCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3287 | addr=&core_if->dev_if->dev_global_regs->dctl; |
| 3288 | DWC_PRINT("DCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3289 | addr=&core_if->dev_if->dev_global_regs->dsts; |
| 3290 | DWC_PRINT("DSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3291 | addr=&core_if->dev_if->dev_global_regs->diepmsk; |
| 3292 | DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3293 | addr=&core_if->dev_if->dev_global_regs->doepmsk; |
| 3294 | DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3295 | addr=&core_if->dev_if->dev_global_regs->daint; |
| 3296 | DWC_PRINT("DAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3297 | addr=&core_if->dev_if->dev_global_regs->daintmsk; |
| 3298 | DWC_PRINT("DAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3299 | addr=&core_if->dev_if->dev_global_regs->dtknqr1; |
| 3300 | DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3301 | if (core_if->hwcfg2.b.dev_token_q_depth > 6) { |
| 3302 | addr=&core_if->dev_if->dev_global_regs->dtknqr2; |
| 3303 | DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n", |
| 3304 | (uint32_t)addr,dwc_read_reg32(addr)); |
| 3305 | } |
| 3306 | |
| 3307 | addr=&core_if->dev_if->dev_global_regs->dvbusdis; |
| 3308 | DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3309 | |
| 3310 | addr=&core_if->dev_if->dev_global_regs->dvbuspulse; |
| 3311 | DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n", |
| 3312 | (uint32_t)addr,dwc_read_reg32(addr)); |
| 3313 | |
| 3314 | if (core_if->hwcfg2.b.dev_token_q_depth > 14) { |
| 3315 | addr=&core_if->dev_if->dev_global_regs->dtknqr3_dthrctl; |
| 3316 | DWC_PRINT("DTKNQR3_DTHRCTL @0x%08X : 0x%08X\n", |
| 3317 | (uint32_t)addr, dwc_read_reg32(addr)); |
| 3318 | } |
| 3319 | /* |
| 3320 | if (core_if->hwcfg2.b.dev_token_q_depth > 22) { |
| 3321 | addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk; |
| 3322 | DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n", |
| 3323 | (uint32_t)addr, dwc_read_reg32(addr)); |
| 3324 | } |
| 3325 | */ |
| 3326 | addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk; |
| 3327 | DWC_PRINT("FIFOEMPMSK @0x%08X : 0x%08X\n", (uint32_t)addr, dwc_read_reg32(addr)); |
| 3328 | |
| 3329 | addr=&core_if->dev_if->dev_global_regs->deachint; |
| 3330 | DWC_PRINT("DEACHINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3331 | addr=&core_if->dev_if->dev_global_regs->deachintmsk; |
| 3332 | DWC_PRINT("DEACHINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3333 | |
| 3334 | for (i=0; i<= core_if->dev_if->num_in_eps; i++) { |
| 3335 | addr=&core_if->dev_if->dev_global_regs->diepeachintmsk[i]; |
| 3336 | DWC_PRINT("DIEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr)); |
| 3337 | } |
| 3338 | |
| 3339 | |
| 3340 | for (i=0; i<= core_if->dev_if->num_out_eps; i++) { |
| 3341 | addr=&core_if->dev_if->dev_global_regs->doepeachintmsk[i]; |
| 3342 | DWC_PRINT("DOEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr)); |
| 3343 | } |
| 3344 | |
| 3345 | for (i=0; i<= core_if->dev_if->num_in_eps; i++) { |
| 3346 | DWC_PRINT("Device IN EP %d Registers\n", i); |
| 3347 | addr=&core_if->dev_if->in_ep_regs[i]->diepctl; |
| 3348 | DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3349 | addr=&core_if->dev_if->in_ep_regs[i]->diepint; |
| 3350 | DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3351 | addr=&core_if->dev_if->in_ep_regs[i]->dieptsiz; |
| 3352 | DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3353 | addr=&core_if->dev_if->in_ep_regs[i]->diepdma; |
| 3354 | DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3355 | addr=&core_if->dev_if->in_ep_regs[i]->dtxfsts; |
| 3356 | DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3357 | //reading depdmab in non desc dma mode would halt the ahb bus... |
| 3358 | if(core_if->dma_desc_enable){ |
| 3359 | addr=&core_if->dev_if->in_ep_regs[i]->diepdmab; |
| 3360 | DWC_PRINT("DIEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3361 | } |
| 3362 | } |
| 3363 | |
| 3364 | |
| 3365 | for (i=0; i<= core_if->dev_if->num_out_eps; i++) { |
| 3366 | DWC_PRINT("Device OUT EP %d Registers\n", i); |
| 3367 | addr=&core_if->dev_if->out_ep_regs[i]->doepctl; |
| 3368 | DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3369 | addr=&core_if->dev_if->out_ep_regs[i]->doepfn; |
| 3370 | DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3371 | addr=&core_if->dev_if->out_ep_regs[i]->doepint; |
| 3372 | DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3373 | addr=&core_if->dev_if->out_ep_regs[i]->doeptsiz; |
| 3374 | DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3375 | addr=&core_if->dev_if->out_ep_regs[i]->doepdma; |
| 3376 | DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3377 | |
| 3378 | //reading depdmab in non desc dma mode would halt the ahb bus... |
| 3379 | if(core_if->dma_desc_enable){ |
| 3380 | addr=&core_if->dev_if->out_ep_regs[i]->doepdmab; |
| 3381 | DWC_PRINT("DOEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3382 | } |
| 3383 | |
| 3384 | } |
| 3385 | |
| 3386 | |
| 3387 | |
| 3388 | return; |
| 3389 | } |
| 3390 | |
| 3391 | /** |
| 3392 | * This functions reads the SPRAM and prints its content |
| 3393 | * |
| 3394 | * @param core_if Programming view of DWC_otg controller. |
| 3395 | */ |
| 3396 | void dwc_otg_dump_spram(dwc_otg_core_if_t *core_if) |
| 3397 | { |
| 3398 | volatile uint8_t *addr, *start_addr, *end_addr; |
| 3399 | |
| 3400 | DWC_PRINT("SPRAM Data:\n"); |
| 3401 | start_addr = (void*)core_if->core_global_regs; |
| 3402 | DWC_PRINT("Base Address: 0x%8X\n", (uint32_t)start_addr); |
| 3403 | start_addr += 0x00028000; |
| 3404 | end_addr=(void*)core_if->core_global_regs; |
| 3405 | end_addr += 0x000280e0; |
| 3406 | |
| 3407 | for(addr = start_addr; addr < end_addr; addr+=16) |
| 3408 | { |
| 3409 | DWC_PRINT("0x%8X:\t%2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X\n", (uint32_t)addr, |
| 3410 | addr[0], |
| 3411 | addr[1], |
| 3412 | addr[2], |
| 3413 | addr[3], |
| 3414 | addr[4], |
| 3415 | addr[5], |
| 3416 | addr[6], |
| 3417 | addr[7], |
| 3418 | addr[8], |
| 3419 | addr[9], |
| 3420 | addr[10], |
| 3421 | addr[11], |
| 3422 | addr[12], |
| 3423 | addr[13], |
| 3424 | addr[14], |
| 3425 | addr[15] |
| 3426 | ); |
| 3427 | } |
| 3428 | |
| 3429 | return; |
| 3430 | } |
| 3431 | /** |
| 3432 | * This function reads the host registers and prints them |
| 3433 | * |
| 3434 | * @param core_if Programming view of DWC_otg controller. |
| 3435 | */ |
| 3436 | void dwc_otg_dump_host_registers(dwc_otg_core_if_t *core_if) |
| 3437 | { |
| 3438 | int i; |
| 3439 | volatile uint32_t *addr; |
| 3440 | |
| 3441 | DWC_PRINT("Host Global Registers\n"); |
| 3442 | addr=&core_if->host_if->host_global_regs->hcfg; |
| 3443 | DWC_PRINT("HCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3444 | addr=&core_if->host_if->host_global_regs->hfir; |
| 3445 | DWC_PRINT("HFIR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3446 | addr=&core_if->host_if->host_global_regs->hfnum; |
| 3447 | DWC_PRINT("HFNUM @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3448 | addr=&core_if->host_if->host_global_regs->hptxsts; |
| 3449 | DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3450 | addr=&core_if->host_if->host_global_regs->haint; |
| 3451 | DWC_PRINT("HAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3452 | addr=&core_if->host_if->host_global_regs->haintmsk; |
| 3453 | DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3454 | addr=core_if->host_if->hprt0; |
| 3455 | DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3456 | |
| 3457 | for (i=0; i<core_if->core_params->host_channels; i++) |
| 3458 | { |
| 3459 | DWC_PRINT("Host Channel %d Specific Registers\n", i); |
| 3460 | addr=&core_if->host_if->hc_regs[i]->hcchar; |
| 3461 | DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3462 | addr=&core_if->host_if->hc_regs[i]->hcsplt; |
| 3463 | DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3464 | addr=&core_if->host_if->hc_regs[i]->hcint; |
| 3465 | DWC_PRINT("HCINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3466 | addr=&core_if->host_if->hc_regs[i]->hcintmsk; |
| 3467 | DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3468 | addr=&core_if->host_if->hc_regs[i]->hctsiz; |
| 3469 | DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3470 | addr=&core_if->host_if->hc_regs[i]->hcdma; |
| 3471 | DWC_PRINT("HCDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3472 | } |
| 3473 | return; |
| 3474 | } |
| 3475 | |
| 3476 | /** |
| 3477 | * This function reads the core global registers and prints them |
| 3478 | * |
| 3479 | * @param core_if Programming view of DWC_otg controller. |
| 3480 | */ |
| 3481 | void dwc_otg_dump_global_registers(dwc_otg_core_if_t *core_if) |
| 3482 | { |
| 3483 | int i,size; |
| 3484 | char* str; |
| 3485 | volatile uint32_t *addr; |
| 3486 | |
| 3487 | DWC_PRINT("Core Global Registers\n"); |
| 3488 | addr=&core_if->core_global_regs->gotgctl; |
| 3489 | DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3490 | addr=&core_if->core_global_regs->gotgint; |
| 3491 | DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3492 | addr=&core_if->core_global_regs->gahbcfg; |
| 3493 | DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3494 | addr=&core_if->core_global_regs->gusbcfg; |
| 3495 | DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3496 | addr=&core_if->core_global_regs->grstctl; |
| 3497 | DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3498 | addr=&core_if->core_global_regs->gintsts; |
| 3499 | DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3500 | addr=&core_if->core_global_regs->gintmsk; |
| 3501 | DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3502 | addr=&core_if->core_global_regs->grxstsr; |
| 3503 | DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3504 | //addr=&core_if->core_global_regs->grxstsp; |
| 3505 | //DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3506 | addr=&core_if->core_global_regs->grxfsiz; |
| 3507 | DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3508 | addr=&core_if->core_global_regs->gnptxfsiz; |
| 3509 | DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3510 | addr=&core_if->core_global_regs->gnptxsts; |
| 3511 | DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3512 | addr=&core_if->core_global_regs->gi2cctl; |
| 3513 | DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3514 | addr=&core_if->core_global_regs->gpvndctl; |
| 3515 | DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3516 | addr=&core_if->core_global_regs->ggpio; |
| 3517 | DWC_PRINT("GGPIO @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3518 | addr=&core_if->core_global_regs->guid; |
| 3519 | DWC_PRINT("GUID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3520 | addr=&core_if->core_global_regs->gsnpsid; |
| 3521 | DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3522 | addr=&core_if->core_global_regs->ghwcfg1; |
| 3523 | DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3524 | addr=&core_if->core_global_regs->ghwcfg2; |
| 3525 | DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3526 | addr=&core_if->core_global_regs->ghwcfg3; |
| 3527 | DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3528 | addr=&core_if->core_global_regs->ghwcfg4; |
| 3529 | DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3530 | addr=&core_if->core_global_regs->hptxfsiz; |
| 3531 | DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 3532 | |
| 3533 | size=(core_if->hwcfg4.b.ded_fifo_en)? |
| 3534 | core_if->hwcfg4.b.num_in_eps:core_if->hwcfg4.b.num_dev_perio_in_ep; |
| 3535 | str=(core_if->hwcfg4.b.ded_fifo_en)?"DIEPTXF":"DPTXFSIZ"; |
| 3536 | for (i=0; i<size; i++) |
| 3537 | { |
| 3538 | addr=&core_if->core_global_regs->dptxfsiz_dieptxf[i]; |
| 3539 | DWC_PRINT("%s[%d] @0x%08X : 0x%08X\n",str,i,(uint32_t)addr,dwc_read_reg32(addr)); |
| 3540 | } |
| 3541 | } |
| 3542 | |
| 3543 | /** |
| 3544 | * Flush a Tx FIFO. |
| 3545 | * |
| 3546 | * @param core_if Programming view of DWC_otg controller. |
| 3547 | * @param num Tx FIFO to flush. |
| 3548 | */ |
| 3549 | void dwc_otg_flush_tx_fifo(dwc_otg_core_if_t *core_if, |
| 3550 | const int num) |
| 3551 | { |
| 3552 | dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; |
| 3553 | volatile grstctl_t greset = { .d32 = 0}; |
| 3554 | int count = 0; |
| 3555 | |
| 3556 | DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "Flush Tx FIFO %d\n", num); |
| 3557 | |
| 3558 | greset.b.txfflsh = 1; |
| 3559 | greset.b.txfnum = num; |
| 3560 | dwc_write_reg32(&global_regs->grstctl, greset.d32); |
| 3561 | |
| 3562 | do { |
| 3563 | greset.d32 = dwc_read_reg32(&global_regs->grstctl); |
| 3564 | if (++count > 10000) { |
| 3565 | DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n", |
| 3566 | __func__, greset.d32, |
| 3567 | dwc_read_reg32(&global_regs->gnptxsts)); |
| 3568 | break; |
| 3569 | } |
| 3570 | } |
| 3571 | while (greset.b.txfflsh == 1); |
| 3572 | |
| 3573 | /* Wait for 3 PHY Clocks*/ |
| 3574 | UDELAY(1); |
| 3575 | } |
| 3576 | |
| 3577 | /** |
| 3578 | * Flush Rx FIFO. |
| 3579 | * |
| 3580 | * @param core_if Programming view of DWC_otg controller. |
| 3581 | */ |
| 3582 | void dwc_otg_flush_rx_fifo(dwc_otg_core_if_t *core_if) |
| 3583 | { |
| 3584 | dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; |
| 3585 | volatile grstctl_t greset = { .d32 = 0}; |
| 3586 | int count = 0; |
| 3587 | |
| 3588 | DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "%s\n", __func__); |
| 3589 | /* |
| 3590 | * |
| 3591 | */ |
| 3592 | greset.b.rxfflsh = 1; |
| 3593 | dwc_write_reg32(&global_regs->grstctl, greset.d32); |
| 3594 | |
| 3595 | do { |
| 3596 | greset.d32 = dwc_read_reg32(&global_regs->grstctl); |
| 3597 | if (++count > 10000) { |
| 3598 | DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__, |
| 3599 | greset.d32); |
| 3600 | break; |
| 3601 | } |
| 3602 | } |
| 3603 | while (greset.b.rxfflsh == 1); |
| 3604 | |
| 3605 | /* Wait for 3 PHY Clocks*/ |
| 3606 | UDELAY(1); |
| 3607 | } |
| 3608 | |
| 3609 | /** |
| 3610 | * Do core a soft reset of the core. Be careful with this because it |
| 3611 | * resets all the internal state machines of the core. |
| 3612 | */ |
| 3613 | void dwc_otg_core_reset(dwc_otg_core_if_t *core_if) |
| 3614 | { |
| 3615 | dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; |
| 3616 | volatile grstctl_t greset = { .d32 = 0}; |
| 3617 | int count = 0; |
| 3618 | |
| 3619 | DWC_DEBUGPL(DBG_CILV, "%s\n", __func__); |
| 3620 | /* Wait for AHB master IDLE state. */ |
| 3621 | do { |
| 3622 | UDELAY(10); |
| 3623 | greset.d32 = dwc_read_reg32(&global_regs->grstctl); |
| 3624 | if (++count > 100000) { |
| 3625 | DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__, |
| 3626 | greset.d32); |
| 3627 | return; |
| 3628 | } |
| 3629 | } |
| 3630 | while (greset.b.ahbidle == 0); |
| 3631 | |
| 3632 | /* Core Soft Reset */ |
| 3633 | count = 0; |
| 3634 | greset.b.csftrst = 1; |
| 3635 | dwc_write_reg32(&global_regs->grstctl, greset.d32); |
| 3636 | do { |
| 3637 | greset.d32 = dwc_read_reg32(&global_regs->grstctl); |
| 3638 | if (++count > 10000) { |
| 3639 | DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__, |
| 3640 | greset.d32); |
| 3641 | break; |
| 3642 | } |
| 3643 | } |
| 3644 | while (greset.b.csftrst == 1); |
| 3645 | |
| 3646 | /* Wait for 3 PHY Clocks*/ |
| 3647 | MDELAY(100); |
| 3648 | |
| 3649 | DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts)); |
| 3650 | DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts)); |
| 3651 | DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts)); |
| 3652 | |
| 3653 | } |
| 3654 | |
| 3655 | |
| 3656 | |
| 3657 | /** |
| 3658 | * Register HCD callbacks. The callbacks are used to start and stop |
| 3659 | * the HCD for interrupt processing. |
| 3660 | * |
| 3661 | * @param core_if Programming view of DWC_otg controller. |
| 3662 | * @param cb the HCD callback structure. |
| 3663 | * @param p pointer to be passed to callback function (usb_hcd*). |
| 3664 | */ |
| 3665 | void dwc_otg_cil_register_hcd_callbacks(dwc_otg_core_if_t *core_if, |
| 3666 | dwc_otg_cil_callbacks_t *cb, |
| 3667 | void *p) |
| 3668 | { |
| 3669 | core_if->hcd_cb = cb; |
| 3670 | cb->p = p; |
| 3671 | } |
| 3672 | |
| 3673 | /** |
| 3674 | * Register PCD callbacks. The callbacks are used to start and stop |
| 3675 | * the PCD for interrupt processing. |
| 3676 | * |
| 3677 | * @param core_if Programming view of DWC_otg controller. |
| 3678 | * @param cb the PCD callback structure. |
| 3679 | * @param p pointer to be passed to callback function (pcd*). |
| 3680 | */ |
| 3681 | void dwc_otg_cil_register_pcd_callbacks(dwc_otg_core_if_t *core_if, |
| 3682 | dwc_otg_cil_callbacks_t *cb, |
| 3683 | void *p) |
| 3684 | { |
| 3685 | core_if->pcd_cb = cb; |
| 3686 | cb->p = p; |
| 3687 | } |
| 3688 | |
| 3689 | #ifdef DWC_EN_ISOC |
| 3690 | |
| 3691 | /** |
| 3692 | * This function writes isoc data per 1 (micro)frame into tx fifo |
| 3693 | * |
| 3694 | * @param core_if Programming view of DWC_otg controller. |
| 3695 | * @param ep The EP to start the transfer on. |
| 3696 | * |
| 3697 | */ |
| 3698 | void write_isoc_frame_data(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) |
| 3699 | { |
| 3700 | dwc_otg_dev_in_ep_regs_t *ep_regs; |
| 3701 | dtxfsts_data_t txstatus = {.d32 = 0}; |
| 3702 | uint32_t len = 0; |
| 3703 | uint32_t dwords; |
| 3704 | |
| 3705 | ep->xfer_len = ep->data_per_frame; |
| 3706 | ep->xfer_count = 0; |
| 3707 | |
| 3708 | ep_regs = core_if->dev_if->in_ep_regs[ep->num]; |
| 3709 | |
| 3710 | len = ep->xfer_len - ep->xfer_count; |
| 3711 | |
| 3712 | if (len > ep->maxpacket) { |
| 3713 | len = ep->maxpacket; |
| 3714 | } |
| 3715 | |
| 3716 | dwords = (len + 3)/4; |
| 3717 | |
| 3718 | /* While there is space in the queue and space in the FIFO and |
| 3719 | * More data to tranfer, Write packets to the Tx FIFO */ |
| 3720 | txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts); |
| 3721 | DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",ep->num,txstatus.d32); |
| 3722 | |
| 3723 | while (txstatus.b.txfspcavail > dwords && |
| 3724 | ep->xfer_count < ep->xfer_len && |
| 3725 | ep->xfer_len != 0) { |
| 3726 | /* Write the FIFO */ |
| 3727 | dwc_otg_ep_write_packet(core_if, ep, 0); |
| 3728 | |
| 3729 | len = ep->xfer_len - ep->xfer_count; |
| 3730 | if (len > ep->maxpacket) { |
| 3731 | len = ep->maxpacket; |
| 3732 | } |
| 3733 | |
| 3734 | dwords = (len + 3)/4; |
| 3735 | txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts); |
| 3736 | DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", ep->num, txstatus.d32); |
| 3737 | } |
| 3738 | } |
| 3739 | |
| 3740 | |
| 3741 | /** |
| 3742 | * This function initializes a descriptor chain for Isochronous transfer |
| 3743 | * |
| 3744 | * @param core_if Programming view of DWC_otg controller. |
| 3745 | * @param ep The EP to start the transfer on. |
| 3746 | * |
| 3747 | */ |
| 3748 | void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) |
| 3749 | { |
| 3750 | deptsiz_data_t deptsiz = { .d32 = 0 }; |
| 3751 | depctl_data_t depctl = { .d32 = 0 }; |
| 3752 | dsts_data_t dsts = { .d32 = 0 }; |
| 3753 | volatile uint32_t *addr; |
| 3754 | |
| 3755 | if(ep->is_in) { |
| 3756 | addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl; |
| 3757 | } else { |
| 3758 | addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl; |
| 3759 | } |
| 3760 | |
| 3761 | ep->xfer_len = ep->data_per_frame; |
| 3762 | ep->xfer_count = 0; |
| 3763 | ep->xfer_buff = ep->cur_pkt_addr; |
| 3764 | ep->dma_addr = ep->cur_pkt_dma_addr; |
| 3765 | |
| 3766 | if(ep->is_in) { |
| 3767 | /* Program the transfer size and packet count |
| 3768 | * as follows: xfersize = N * maxpacket + |
| 3769 | * short_packet pktcnt = N + (short_packet |
| 3770 | * exist ? 1 : 0) |
| 3771 | */ |
| 3772 | deptsiz.b.xfersize = ep->xfer_len; |
| 3773 | deptsiz.b.pktcnt = |
| 3774 | (ep->xfer_len - 1 + ep->maxpacket) / |
| 3775 | ep->maxpacket; |
| 3776 | deptsiz.b.mc = deptsiz.b.pktcnt; |
| 3777 | dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32); |
| 3778 | |
| 3779 | /* Write the DMA register */ |
| 3780 | if (core_if->dma_enable) { |
| 3781 | dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr); |
| 3782 | } |
| 3783 | } else { |
| 3784 | deptsiz.b.pktcnt = |
| 3785 | (ep->xfer_len + (ep->maxpacket - 1)) / |
| 3786 | ep->maxpacket; |
| 3787 | deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket; |
| 3788 | |
| 3789 | dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32); |
| 3790 | |
| 3791 | if (core_if->dma_enable) { |
| 3792 | dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma), |
| 3793 | (uint32_t)ep->dma_addr); |
| 3794 | } |
| 3795 | } |
| 3796 | |
| 3797 | |
| 3798 | /** Enable endpoint, clear nak */ |
| 3799 | |
| 3800 | depctl.d32 = 0; |
| 3801 | if(ep->bInterval == 1) { |
| 3802 | dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); |
| 3803 | ep->next_frame = dsts.b.soffn + ep->bInterval; |
| 3804 | |
| 3805 | if(ep->next_frame & 0x1) { |
| 3806 | depctl.b.setd1pid = 1; |
| 3807 | } else { |
| 3808 | depctl.b.setd0pid = 1; |
| 3809 | } |
| 3810 | } else { |
| 3811 | ep->next_frame += ep->bInterval; |
| 3812 | |
| 3813 | if(ep->next_frame & 0x1) { |
| 3814 | depctl.b.setd1pid = 1; |
| 3815 | } else { |
| 3816 | depctl.b.setd0pid = 1; |
| 3817 | } |
| 3818 | } |
| 3819 | depctl.b.epena = 1; |
| 3820 | depctl.b.cnak = 1; |
| 3821 | |
| 3822 | dwc_modify_reg32(addr, 0, depctl.d32); |
| 3823 | depctl.d32 = dwc_read_reg32(addr); |
| 3824 | |
| 3825 | if(ep->is_in && core_if->dma_enable == 0) { |
| 3826 | write_isoc_frame_data(core_if, ep); |
| 3827 | } |
| 3828 | |
| 3829 | } |
| 3830 | |
| 3831 | #endif //DWC_EN_ISOC |
| 3832 | |