Root/target/linux/generic/files/crypto/ocf/crypto.c

1/*-
2 * Linux port done by David McCullough <david_mccullough@mcafee.com>
3 * Copyright (C) 2006-2010 David McCullough
4 * Copyright (C) 2004-2005 Intel Corporation.
5 * The license and original author are listed below.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved.
9 *
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30#if 0
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.27 2007/03/21 03:42:51 sam Exp $");
33#endif
34
35/*
36 * Cryptographic Subsystem.
37 *
38 * This code is derived from the Openbsd Cryptographic Framework (OCF)
39 * that has the copyright shown below. Very little of the original
40 * code remains.
41 */
42/*-
43 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
44 *
45 * This code was written by Angelos D. Keromytis in Athens, Greece, in
46 * February 2000. Network Security Technologies Inc. (NSTI) kindly
47 * supported the development of this code.
48 *
49 * Copyright (c) 2000, 2001 Angelos D. Keromytis
50 *
51 * Permission to use, copy, and modify this software with or without fee
52 * is hereby granted, provided that this entire notice is included in
53 * all source code copies of any software which is or includes a copy or
54 * modification of this software.
55 *
56 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
57 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
58 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
59 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
60 * PURPOSE.
61 *
62__FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.16 2005/01/07 02:29:16 imp Exp $");
63 */
64
65
66#include <linux/version.h>
67#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,38) && !defined(AUTOCONF_INCLUDED)
68#include <linux/config.h>
69#endif
70#include <linux/module.h>
71#include <linux/init.h>
72#include <linux/list.h>
73#include <linux/slab.h>
74#include <linux/wait.h>
75#include <linux/sched.h>
76#include <linux/spinlock.h>
77#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,4)
78#include <linux/kthread.h>
79#endif
80#include <cryptodev.h>
81
82/*
83 * keep track of whether or not we have been initialised, a big
84 * issue if we are linked into the kernel and a driver gets started before
85 * us
86 */
87static int crypto_initted = 0;
88
89/*
90 * Crypto drivers register themselves by allocating a slot in the
91 * crypto_drivers table with crypto_get_driverid() and then registering
92 * each algorithm they support with crypto_register() and crypto_kregister().
93 */
94
95/*
96 * lock on driver table
97 * we track its state as spin_is_locked does not do anything on non-SMP boxes
98 */
99static spinlock_t crypto_drivers_lock;
100static int crypto_drivers_locked; /* for non-SMP boxes */
101
102#define CRYPTO_DRIVER_LOCK() \
103            ({ \
104                spin_lock_irqsave(&crypto_drivers_lock, d_flags); \
105                 crypto_drivers_locked = 1; \
106                dprintk("%s,%d: DRIVER_LOCK()\n", __FILE__, __LINE__); \
107             })
108#define CRYPTO_DRIVER_UNLOCK() \
109            ({ \
110                 dprintk("%s,%d: DRIVER_UNLOCK()\n", __FILE__, __LINE__); \
111                 crypto_drivers_locked = 0; \
112                spin_unlock_irqrestore(&crypto_drivers_lock, d_flags); \
113             })
114#define CRYPTO_DRIVER_ASSERT() \
115            ({ \
116                 if (!crypto_drivers_locked) { \
117                    dprintk("%s,%d: DRIVER_ASSERT!\n", __FILE__, __LINE__); \
118                 } \
119             })
120
121/*
122 * Crypto device/driver capabilities structure.
123 *
124 * Synchronization:
125 * (d) - protected by CRYPTO_DRIVER_LOCK()
126 * (q) - protected by CRYPTO_Q_LOCK()
127 * Not tagged fields are read-only.
128 */
129struct cryptocap {
130    device_t cc_dev; /* (d) device/driver */
131    u_int32_t cc_sessions; /* (d) # of sessions */
132    u_int32_t cc_koperations; /* (d) # os asym operations */
133    /*
134     * Largest possible operator length (in bits) for each type of
135     * encryption algorithm. XXX not used
136     */
137    u_int16_t cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
138    u_int8_t cc_alg[CRYPTO_ALGORITHM_MAX + 1];
139    u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1];
140
141    int cc_flags; /* (d) flags */
142#define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */
143    int cc_qblocked; /* (q) symmetric q blocked */
144    int cc_kqblocked; /* (q) asymmetric q blocked */
145
146    int cc_unqblocked; /* (q) symmetric q blocked */
147    int cc_unkqblocked; /* (q) asymmetric q blocked */
148};
149static struct cryptocap *crypto_drivers = NULL;
150static int crypto_drivers_num = 0;
151
152/*
153 * There are two queues for crypto requests; one for symmetric (e.g.
154 * cipher) operations and one for asymmetric (e.g. MOD)operations.
155 * A single mutex is used to lock access to both queues. We could
156 * have one per-queue but having one simplifies handling of block/unblock
157 * operations.
158 */
159static LIST_HEAD(crp_q); /* crypto request queue */
160static LIST_HEAD(crp_kq); /* asym request queue */
161
162static spinlock_t crypto_q_lock;
163
164int crypto_all_qblocked = 0; /* protect with Q_LOCK */
165module_param(crypto_all_qblocked, int, 0444);
166MODULE_PARM_DESC(crypto_all_qblocked, "Are all crypto queues blocked");
167
168int crypto_all_kqblocked = 0; /* protect with Q_LOCK */
169module_param(crypto_all_kqblocked, int, 0444);
170MODULE_PARM_DESC(crypto_all_kqblocked, "Are all asym crypto queues blocked");
171
172#define CRYPTO_Q_LOCK() \
173            ({ \
174                spin_lock_irqsave(&crypto_q_lock, q_flags); \
175                 dprintk("%s,%d: Q_LOCK()\n", __FILE__, __LINE__); \
176             })
177#define CRYPTO_Q_UNLOCK() \
178            ({ \
179                 dprintk("%s,%d: Q_UNLOCK()\n", __FILE__, __LINE__); \
180                spin_unlock_irqrestore(&crypto_q_lock, q_flags); \
181             })
182
183/*
184 * There are two queues for processing completed crypto requests; one
185 * for the symmetric and one for the asymmetric ops. We only need one
186 * but have two to avoid type futzing (cryptop vs. cryptkop). A single
187 * mutex is used to lock access to both queues. Note that this lock
188 * must be separate from the lock on request queues to insure driver
189 * callbacks don't generate lock order reversals.
190 */
191static LIST_HEAD(crp_ret_q); /* callback queues */
192static LIST_HEAD(crp_ret_kq);
193
194static spinlock_t crypto_ret_q_lock;
195#define CRYPTO_RETQ_LOCK() \
196            ({ \
197                spin_lock_irqsave(&crypto_ret_q_lock, r_flags); \
198                dprintk("%s,%d: RETQ_LOCK\n", __FILE__, __LINE__); \
199             })
200#define CRYPTO_RETQ_UNLOCK() \
201            ({ \
202                 dprintk("%s,%d: RETQ_UNLOCK\n", __FILE__, __LINE__); \
203                spin_unlock_irqrestore(&crypto_ret_q_lock, r_flags); \
204             })
205#define CRYPTO_RETQ_EMPTY() (list_empty(&crp_ret_q) && list_empty(&crp_ret_kq))
206
207#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
208static kmem_cache_t *cryptop_zone;
209static kmem_cache_t *cryptodesc_zone;
210#else
211static struct kmem_cache *cryptop_zone;
212static struct kmem_cache *cryptodesc_zone;
213#endif
214
215#define debug crypto_debug
216int crypto_debug = 0;
217module_param(crypto_debug, int, 0644);
218MODULE_PARM_DESC(crypto_debug, "Enable debug");
219EXPORT_SYMBOL(crypto_debug);
220
221/*
222 * Maximum number of outstanding crypto requests before we start
223 * failing requests. We need this to prevent DOS when too many
224 * requests are arriving for us to keep up. Otherwise we will
225 * run the system out of memory. Since crypto is slow, we are
226 * usually the bottleneck that needs to say, enough is enough.
227 *
228 * We cannot print errors when this condition occurs, we are already too
229 * slow, printing anything will just kill us
230 */
231
232static int crypto_q_cnt = 0;
233module_param(crypto_q_cnt, int, 0444);
234MODULE_PARM_DESC(crypto_q_cnt,
235        "Current number of outstanding crypto requests");
236
237static int crypto_q_max = 1000;
238module_param(crypto_q_max, int, 0644);
239MODULE_PARM_DESC(crypto_q_max,
240        "Maximum number of outstanding crypto requests");
241
242#define bootverbose crypto_verbose
243static int crypto_verbose = 0;
244module_param(crypto_verbose, int, 0644);
245MODULE_PARM_DESC(crypto_verbose,
246        "Enable verbose crypto startup");
247
248int crypto_usercrypto = 1; /* userland may do crypto reqs */
249module_param(crypto_usercrypto, int, 0644);
250MODULE_PARM_DESC(crypto_usercrypto,
251       "Enable/disable user-mode access to crypto support");
252
253int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
254module_param(crypto_userasymcrypto, int, 0644);
255MODULE_PARM_DESC(crypto_userasymcrypto,
256       "Enable/disable user-mode access to asymmetric crypto support");
257
258int crypto_devallowsoft = 0; /* only use hardware crypto */
259module_param(crypto_devallowsoft, int, 0644);
260MODULE_PARM_DESC(crypto_devallowsoft,
261       "Enable/disable use of software crypto support");
262
263/*
264 * This parameter controls the maximum number of crypto operations to
265 * do consecutively in the crypto kernel thread before scheduling to allow
266 * other processes to run. Without it, it is possible to get into a
267 * situation where the crypto thread never allows any other processes to run.
268 * Default to 1000 which should be less than one second.
269 */
270static int crypto_max_loopcount = 1000;
271module_param(crypto_max_loopcount, int, 0644);
272MODULE_PARM_DESC(crypto_max_loopcount,
273       "Maximum number of crypto ops to do before yielding to other processes");
274
275#ifndef CONFIG_NR_CPUS
276#define CONFIG_NR_CPUS 1
277#endif
278
279static struct task_struct *cryptoproc[CONFIG_NR_CPUS];
280static struct task_struct *cryptoretproc[CONFIG_NR_CPUS];
281static DECLARE_WAIT_QUEUE_HEAD(cryptoproc_wait);
282static DECLARE_WAIT_QUEUE_HEAD(cryptoretproc_wait);
283
284static int crypto_proc(void *arg);
285static int crypto_ret_proc(void *arg);
286static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
287static int crypto_kinvoke(struct cryptkop *krp, int flags);
288static void crypto_exit(void);
289static int crypto_init(void);
290
291static struct cryptostats cryptostats;
292
293static struct cryptocap *
294crypto_checkdriver(u_int32_t hid)
295{
296    if (crypto_drivers == NULL)
297        return NULL;
298    return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
299}
300
301/*
302 * Compare a driver's list of supported algorithms against another
303 * list; return non-zero if all algorithms are supported.
304 */
305static int
306driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
307{
308    const struct cryptoini *cr;
309
310    /* See if all the algorithms are supported. */
311    for (cr = cri; cr; cr = cr->cri_next)
312        if (cap->cc_alg[cr->cri_alg] == 0)
313            return 0;
314    return 1;
315}
316
317
318/*
319 * Select a driver for a new session that supports the specified
320 * algorithms and, optionally, is constrained according to the flags.
321 * The algorithm we use here is pretty stupid; just use the
322 * first driver that supports all the algorithms we need. If there
323 * are multiple drivers we choose the driver with the fewest active
324 * sessions. We prefer hardware-backed drivers to software ones.
325 *
326 * XXX We need more smarts here (in real life too, but that's
327 * XXX another story altogether).
328 */
329static struct cryptocap *
330crypto_select_driver(const struct cryptoini *cri, int flags)
331{
332    struct cryptocap *cap, *best;
333    int match, hid;
334
335    CRYPTO_DRIVER_ASSERT();
336
337    /*
338     * Look first for hardware crypto devices if permitted.
339     */
340    if (flags & CRYPTOCAP_F_HARDWARE)
341        match = CRYPTOCAP_F_HARDWARE;
342    else
343        match = CRYPTOCAP_F_SOFTWARE;
344    best = NULL;
345again:
346    for (hid = 0; hid < crypto_drivers_num; hid++) {
347        cap = &crypto_drivers[hid];
348        /*
349         * If it's not initialized, is in the process of
350         * going away, or is not appropriate (hardware
351         * or software based on match), then skip.
352         */
353        if (cap->cc_dev == NULL ||
354            (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
355            (cap->cc_flags & match) == 0)
356            continue;
357
358        /* verify all the algorithms are supported. */
359        if (driver_suitable(cap, cri)) {
360            if (best == NULL ||
361                cap->cc_sessions < best->cc_sessions)
362                best = cap;
363        }
364    }
365    if (best != NULL)
366        return best;
367    if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
368        /* sort of an Algol 68-style for loop */
369        match = CRYPTOCAP_F_SOFTWARE;
370        goto again;
371    }
372    return best;
373}
374
375/*
376 * Create a new session. The crid argument specifies a crypto
377 * driver to use or constraints on a driver to select (hardware
378 * only, software only, either). Whatever driver is selected
379 * must be capable of the requested crypto algorithms.
380 */
381int
382crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
383{
384    struct cryptocap *cap;
385    u_int32_t hid, lid;
386    int err;
387    unsigned long d_flags;
388
389    CRYPTO_DRIVER_LOCK();
390    if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
391        /*
392         * Use specified driver; verify it is capable.
393         */
394        cap = crypto_checkdriver(crid);
395        if (cap != NULL && !driver_suitable(cap, cri))
396            cap = NULL;
397    } else {
398        /*
399         * No requested driver; select based on crid flags.
400         */
401        cap = crypto_select_driver(cri, crid);
402        /*
403         * if NULL then can't do everything in one session.
404         * XXX Fix this. We need to inject a "virtual" session
405         * XXX layer right about here.
406         */
407    }
408    if (cap != NULL) {
409        /* Call the driver initialization routine. */
410        hid = cap - crypto_drivers;
411        lid = hid; /* Pass the driver ID. */
412        cap->cc_sessions++;
413        CRYPTO_DRIVER_UNLOCK();
414        err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
415        CRYPTO_DRIVER_LOCK();
416        if (err == 0) {
417            (*sid) = (cap->cc_flags & 0xff000000)
418                   | (hid & 0x00ffffff);
419            (*sid) <<= 32;
420            (*sid) |= (lid & 0xffffffff);
421        } else
422            cap->cc_sessions--;
423    } else
424        err = EINVAL;
425    CRYPTO_DRIVER_UNLOCK();
426    return err;
427}
428
429static void
430crypto_remove(struct cryptocap *cap)
431{
432    CRYPTO_DRIVER_ASSERT();
433    if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
434        bzero(cap, sizeof(*cap));
435}
436
437/*
438 * Delete an existing session (or a reserved session on an unregistered
439 * driver).
440 */
441int
442crypto_freesession(u_int64_t sid)
443{
444    struct cryptocap *cap;
445    u_int32_t hid;
446    int err = 0;
447    unsigned long d_flags;
448
449    dprintk("%s()\n", __FUNCTION__);
450    CRYPTO_DRIVER_LOCK();
451
452    if (crypto_drivers == NULL) {
453        err = EINVAL;
454        goto done;
455    }
456
457    /* Determine two IDs. */
458    hid = CRYPTO_SESID2HID(sid);
459
460    if (hid >= crypto_drivers_num) {
461        dprintk("%s - INVALID DRIVER NUM %d\n", __FUNCTION__, hid);
462        err = ENOENT;
463        goto done;
464    }
465    cap = &crypto_drivers[hid];
466
467    if (cap->cc_dev) {
468        CRYPTO_DRIVER_UNLOCK();
469        /* Call the driver cleanup routine, if available, unlocked. */
470        err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
471        CRYPTO_DRIVER_LOCK();
472    }
473
474    if (cap->cc_sessions)
475        cap->cc_sessions--;
476
477    if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
478        crypto_remove(cap);
479
480done:
481    CRYPTO_DRIVER_UNLOCK();
482    return err;
483}
484
485/*
486 * Return an unused driver id. Used by drivers prior to registering
487 * support for the algorithms they handle.
488 */
489int32_t
490crypto_get_driverid(device_t dev, int flags)
491{
492    struct cryptocap *newdrv;
493    int i;
494    unsigned long d_flags;
495
496    if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
497        printf("%s: no flags specified when registering driver\n",
498            device_get_nameunit(dev));
499        return -1;
500    }
501
502    CRYPTO_DRIVER_LOCK();
503
504    for (i = 0; i < crypto_drivers_num; i++) {
505        if (crypto_drivers[i].cc_dev == NULL &&
506            (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
507            break;
508        }
509    }
510
511    /* Out of entries, allocate some more. */
512    if (i == crypto_drivers_num) {
513        /* Be careful about wrap-around. */
514        if (2 * crypto_drivers_num <= crypto_drivers_num) {
515            CRYPTO_DRIVER_UNLOCK();
516            printk("crypto: driver count wraparound!\n");
517            return -1;
518        }
519
520        newdrv = kmalloc(2 * crypto_drivers_num * sizeof(struct cryptocap),
521                GFP_KERNEL);
522        if (newdrv == NULL) {
523            CRYPTO_DRIVER_UNLOCK();
524            printk("crypto: no space to expand driver table!\n");
525            return -1;
526        }
527
528        memcpy(newdrv, crypto_drivers,
529                crypto_drivers_num * sizeof(struct cryptocap));
530        memset(&newdrv[crypto_drivers_num], 0,
531                crypto_drivers_num * sizeof(struct cryptocap));
532
533        crypto_drivers_num *= 2;
534
535        kfree(crypto_drivers);
536        crypto_drivers = newdrv;
537    }
538
539    /* NB: state is zero'd on free */
540    crypto_drivers[i].cc_sessions = 1; /* Mark */
541    crypto_drivers[i].cc_dev = dev;
542    crypto_drivers[i].cc_flags = flags;
543    if (bootverbose)
544        printf("crypto: assign %s driver id %u, flags %u\n",
545            device_get_nameunit(dev), i, flags);
546
547    CRYPTO_DRIVER_UNLOCK();
548
549    return i;
550}
551
552/*
553 * Lookup a driver by name. We match against the full device
554 * name and unit, and against just the name. The latter gives
555 * us a simple widlcarding by device name. On success return the
556 * driver/hardware identifier; otherwise return -1.
557 */
558int
559crypto_find_driver(const char *match)
560{
561    int i, len = strlen(match);
562    unsigned long d_flags;
563
564    CRYPTO_DRIVER_LOCK();
565    for (i = 0; i < crypto_drivers_num; i++) {
566        device_t dev = crypto_drivers[i].cc_dev;
567        if (dev == NULL ||
568            (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
569            continue;
570        if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
571            strncmp(match, device_get_name(dev), len) == 0)
572            break;
573    }
574    CRYPTO_DRIVER_UNLOCK();
575    return i < crypto_drivers_num ? i : -1;
576}
577
578/*
579 * Return the device_t for the specified driver or NULL
580 * if the driver identifier is invalid.
581 */
582device_t
583crypto_find_device_byhid(int hid)
584{
585    struct cryptocap *cap = crypto_checkdriver(hid);
586    return cap != NULL ? cap->cc_dev : NULL;
587}
588
589/*
590 * Return the device/driver capabilities.
591 */
592int
593crypto_getcaps(int hid)
594{
595    struct cryptocap *cap = crypto_checkdriver(hid);
596    return cap != NULL ? cap->cc_flags : 0;
597}
598
599/*
600 * Register support for a key-related algorithm. This routine
601 * is called once for each algorithm supported a driver.
602 */
603int
604crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
605{
606    struct cryptocap *cap;
607    int err;
608    unsigned long d_flags;
609
610    dprintk("%s()\n", __FUNCTION__);
611    CRYPTO_DRIVER_LOCK();
612
613    cap = crypto_checkdriver(driverid);
614    if (cap != NULL &&
615        (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
616        /*
617         * XXX Do some performance testing to determine placing.
618         * XXX We probably need an auxiliary data structure that
619         * XXX describes relative performances.
620         */
621
622        cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
623        if (bootverbose)
624            printf("crypto: %s registers key alg %u flags %u\n"
625                , device_get_nameunit(cap->cc_dev)
626                , kalg
627                , flags
628            );
629        err = 0;
630    } else
631        err = EINVAL;
632
633    CRYPTO_DRIVER_UNLOCK();
634    return err;
635}
636
637/*
638 * Register support for a non-key-related algorithm. This routine
639 * is called once for each such algorithm supported by a driver.
640 */
641int
642crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
643    u_int32_t flags)
644{
645    struct cryptocap *cap;
646    int err;
647    unsigned long d_flags;
648
649    dprintk("%s(id=0x%x, alg=%d, maxoplen=%d, flags=0x%x)\n", __FUNCTION__,
650            driverid, alg, maxoplen, flags);
651
652    CRYPTO_DRIVER_LOCK();
653
654    cap = crypto_checkdriver(driverid);
655    /* NB: algorithms are in the range [1..max] */
656    if (cap != NULL &&
657        (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
658        /*
659         * XXX Do some performance testing to determine placing.
660         * XXX We probably need an auxiliary data structure that
661         * XXX describes relative performances.
662         */
663
664        cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
665        cap->cc_max_op_len[alg] = maxoplen;
666        if (bootverbose)
667            printf("crypto: %s registers alg %u flags %u maxoplen %u\n"
668                , device_get_nameunit(cap->cc_dev)
669                , alg
670                , flags
671                , maxoplen
672            );
673        cap->cc_sessions = 0; /* Unmark */
674        err = 0;
675    } else
676        err = EINVAL;
677
678    CRYPTO_DRIVER_UNLOCK();
679    return err;
680}
681
682static void
683driver_finis(struct cryptocap *cap)
684{
685    u_int32_t ses, kops;
686
687    CRYPTO_DRIVER_ASSERT();
688
689    ses = cap->cc_sessions;
690    kops = cap->cc_koperations;
691    bzero(cap, sizeof(*cap));
692    if (ses != 0 || kops != 0) {
693        /*
694         * If there are pending sessions,
695         * just mark as invalid.
696         */
697        cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
698        cap->cc_sessions = ses;
699        cap->cc_koperations = kops;
700    }
701}
702
703/*
704 * Unregister a crypto driver. If there are pending sessions using it,
705 * leave enough information around so that subsequent calls using those
706 * sessions will correctly detect the driver has been unregistered and
707 * reroute requests.
708 */
709int
710crypto_unregister(u_int32_t driverid, int alg)
711{
712    struct cryptocap *cap;
713    int i, err;
714    unsigned long d_flags;
715
716    dprintk("%s()\n", __FUNCTION__);
717    CRYPTO_DRIVER_LOCK();
718
719    cap = crypto_checkdriver(driverid);
720    if (cap != NULL &&
721        (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
722        cap->cc_alg[alg] != 0) {
723        cap->cc_alg[alg] = 0;
724        cap->cc_max_op_len[alg] = 0;
725
726        /* Was this the last algorithm ? */
727        for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
728            if (cap->cc_alg[i] != 0)
729                break;
730
731        if (i == CRYPTO_ALGORITHM_MAX + 1)
732            driver_finis(cap);
733        err = 0;
734    } else
735        err = EINVAL;
736    CRYPTO_DRIVER_UNLOCK();
737    return err;
738}
739
740/*
741 * Unregister all algorithms associated with a crypto driver.
742 * If there are pending sessions using it, leave enough information
743 * around so that subsequent calls using those sessions will
744 * correctly detect the driver has been unregistered and reroute
745 * requests.
746 */
747int
748crypto_unregister_all(u_int32_t driverid)
749{
750    struct cryptocap *cap;
751    int err;
752    unsigned long d_flags;
753
754    dprintk("%s()\n", __FUNCTION__);
755    CRYPTO_DRIVER_LOCK();
756    cap = crypto_checkdriver(driverid);
757    if (cap != NULL) {
758        driver_finis(cap);
759        err = 0;
760    } else
761        err = EINVAL;
762    CRYPTO_DRIVER_UNLOCK();
763
764    return err;
765}
766
767/*
768 * Clear blockage on a driver. The what parameter indicates whether
769 * the driver is now ready for cryptop's and/or cryptokop's.
770 */
771int
772crypto_unblock(u_int32_t driverid, int what)
773{
774    struct cryptocap *cap;
775    int err;
776    unsigned long q_flags;
777
778    CRYPTO_Q_LOCK();
779    cap = crypto_checkdriver(driverid);
780    if (cap != NULL) {
781        if (what & CRYPTO_SYMQ) {
782            cap->cc_qblocked = 0;
783            cap->cc_unqblocked = 0;
784            crypto_all_qblocked = 0;
785        }
786        if (what & CRYPTO_ASYMQ) {
787            cap->cc_kqblocked = 0;
788            cap->cc_unkqblocked = 0;
789            crypto_all_kqblocked = 0;
790        }
791        wake_up_interruptible(&cryptoproc_wait);
792        err = 0;
793    } else
794        err = EINVAL;
795    CRYPTO_Q_UNLOCK(); //DAVIDM should this be a driver lock
796
797    return err;
798}
799
800/*
801 * Add a crypto request to a queue, to be processed by the kernel thread.
802 */
803int
804crypto_dispatch(struct cryptop *crp)
805{
806    struct cryptocap *cap;
807    int result = -1;
808    unsigned long q_flags;
809
810    dprintk("%s()\n", __FUNCTION__);
811
812    cryptostats.cs_ops++;
813
814    CRYPTO_Q_LOCK();
815    if (crypto_q_cnt >= crypto_q_max) {
816        cryptostats.cs_drops++;
817        CRYPTO_Q_UNLOCK();
818        return ENOMEM;
819    }
820    crypto_q_cnt++;
821
822    /* make sure we are starting a fresh run on this crp. */
823    crp->crp_flags &= ~CRYPTO_F_DONE;
824    crp->crp_etype = 0;
825
826    /*
827     * Caller marked the request to be processed immediately; dispatch
828     * it directly to the driver unless the driver is currently blocked.
829     */
830    if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
831        int hid = CRYPTO_SESID2HID(crp->crp_sid);
832        cap = crypto_checkdriver(hid);
833        /* Driver cannot disappear when there is an active session. */
834        KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
835        if (!cap->cc_qblocked) {
836            crypto_all_qblocked = 0;
837            crypto_drivers[hid].cc_unqblocked = 1;
838            CRYPTO_Q_UNLOCK();
839            result = crypto_invoke(cap, crp, 0);
840            CRYPTO_Q_LOCK();
841            if (result == ERESTART)
842                if (crypto_drivers[hid].cc_unqblocked)
843                    crypto_drivers[hid].cc_qblocked = 1;
844            crypto_drivers[hid].cc_unqblocked = 0;
845        }
846    }
847    if (result == ERESTART) {
848        /*
849         * The driver ran out of resources, mark the
850         * driver ``blocked'' for cryptop's and put
851         * the request back in the queue. It would
852         * best to put the request back where we got
853         * it but that's hard so for now we put it
854         * at the front. This should be ok; putting
855         * it at the end does not work.
856         */
857        list_add(&crp->crp_next, &crp_q);
858        cryptostats.cs_blocks++;
859        result = 0;
860    } else if (result == -1) {
861        TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
862        result = 0;
863    }
864    wake_up_interruptible(&cryptoproc_wait);
865    CRYPTO_Q_UNLOCK();
866    return result;
867}
868
869/*
870 * Add an asymetric crypto request to a queue,
871 * to be processed by the kernel thread.
872 */
873int
874crypto_kdispatch(struct cryptkop *krp)
875{
876    int error;
877    unsigned long q_flags;
878
879    cryptostats.cs_kops++;
880
881    error = crypto_kinvoke(krp, krp->krp_crid);
882    if (error == ERESTART) {
883        CRYPTO_Q_LOCK();
884        TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
885        wake_up_interruptible(&cryptoproc_wait);
886        CRYPTO_Q_UNLOCK();
887        error = 0;
888    }
889    return error;
890}
891
892/*
893 * Verify a driver is suitable for the specified operation.
894 */
895static __inline int
896kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
897{
898    return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
899}
900
901/*
902 * Select a driver for an asym operation. The driver must
903 * support the necessary algorithm. The caller can constrain
904 * which device is selected with the flags parameter. The
905 * algorithm we use here is pretty stupid; just use the first
906 * driver that supports the algorithms we need. If there are
907 * multiple suitable drivers we choose the driver with the
908 * fewest active operations. We prefer hardware-backed
909 * drivers to software ones when either may be used.
910 */
911static struct cryptocap *
912crypto_select_kdriver(const struct cryptkop *krp, int flags)
913{
914    struct cryptocap *cap, *best, *blocked;
915    int match, hid;
916
917    CRYPTO_DRIVER_ASSERT();
918
919    /*
920     * Look first for hardware crypto devices if permitted.
921     */
922    if (flags & CRYPTOCAP_F_HARDWARE)
923        match = CRYPTOCAP_F_HARDWARE;
924    else
925        match = CRYPTOCAP_F_SOFTWARE;
926    best = NULL;
927    blocked = NULL;
928again:
929    for (hid = 0; hid < crypto_drivers_num; hid++) {
930        cap = &crypto_drivers[hid];
931        /*
932         * If it's not initialized, is in the process of
933         * going away, or is not appropriate (hardware
934         * or software based on match), then skip.
935         */
936        if (cap->cc_dev == NULL ||
937            (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
938            (cap->cc_flags & match) == 0)
939            continue;
940
941        /* verify all the algorithms are supported. */
942        if (kdriver_suitable(cap, krp)) {
943            if (best == NULL ||
944                cap->cc_koperations < best->cc_koperations)
945                best = cap;
946        }
947    }
948    if (best != NULL)
949        return best;
950    if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
951        /* sort of an Algol 68-style for loop */
952        match = CRYPTOCAP_F_SOFTWARE;
953        goto again;
954    }
955    return best;
956}
957
958/*
959 * Dispatch an assymetric crypto request.
960 */
961static int
962crypto_kinvoke(struct cryptkop *krp, int crid)
963{
964    struct cryptocap *cap = NULL;
965    int error;
966    unsigned long d_flags;
967
968    KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
969    KASSERT(krp->krp_callback != NULL,
970        ("%s: krp->crp_callback == NULL", __func__));
971
972    CRYPTO_DRIVER_LOCK();
973    if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
974        cap = crypto_checkdriver(crid);
975        if (cap != NULL) {
976            /*
977             * Driver present, it must support the necessary
978             * algorithm and, if s/w drivers are excluded,
979             * it must be registered as hardware-backed.
980             */
981            if (!kdriver_suitable(cap, krp) ||
982                (!crypto_devallowsoft &&
983                 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
984                cap = NULL;
985        }
986    } else {
987        /*
988         * No requested driver; select based on crid flags.
989         */
990        if (!crypto_devallowsoft) /* NB: disallow s/w drivers */
991            crid &= ~CRYPTOCAP_F_SOFTWARE;
992        cap = crypto_select_kdriver(krp, crid);
993    }
994    if (cap != NULL && !cap->cc_kqblocked) {
995        krp->krp_hid = cap - crypto_drivers;
996        cap->cc_koperations++;
997        CRYPTO_DRIVER_UNLOCK();
998        error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
999        CRYPTO_DRIVER_LOCK();
1000        if (error == ERESTART) {
1001            cap->cc_koperations--;
1002            CRYPTO_DRIVER_UNLOCK();
1003            return (error);
1004        }
1005        /* return the actual device used */
1006        krp->krp_crid = krp->krp_hid;
1007    } else {
1008        /*
1009         * NB: cap is !NULL if device is blocked; in
1010         * that case return ERESTART so the operation
1011         * is resubmitted if possible.
1012         */
1013        error = (cap == NULL) ? ENODEV : ERESTART;
1014    }
1015    CRYPTO_DRIVER_UNLOCK();
1016
1017    if (error) {
1018        krp->krp_status = error;
1019        crypto_kdone(krp);
1020    }
1021    return 0;
1022}
1023
1024
1025/*
1026 * Dispatch a crypto request to the appropriate crypto devices.
1027 */
1028static int
1029crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1030{
1031    KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1032    KASSERT(crp->crp_callback != NULL,
1033        ("%s: crp->crp_callback == NULL", __func__));
1034    KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
1035
1036    dprintk("%s()\n", __FUNCTION__);
1037
1038#ifdef CRYPTO_TIMING
1039    if (crypto_timing)
1040        crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1041#endif
1042    if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1043        struct cryptodesc *crd;
1044        u_int64_t nid;
1045
1046        /*
1047         * Driver has unregistered; migrate the session and return
1048         * an error to the caller so they'll resubmit the op.
1049         *
1050         * XXX: What if there are more already queued requests for this
1051         * session?
1052         */
1053        crypto_freesession(crp->crp_sid);
1054
1055        for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1056            crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1057
1058        /* XXX propagate flags from initial session? */
1059        if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
1060            CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1061            crp->crp_sid = nid;
1062
1063        crp->crp_etype = EAGAIN;
1064        crypto_done(crp);
1065        return 0;
1066    } else {
1067        /*
1068         * Invoke the driver to process the request.
1069         */
1070        return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1071    }
1072}
1073
1074/*
1075 * Release a set of crypto descriptors.
1076 */
1077void
1078crypto_freereq(struct cryptop *crp)
1079{
1080    struct cryptodesc *crd;
1081
1082    if (crp == NULL)
1083        return;
1084
1085#ifdef DIAGNOSTIC
1086    {
1087        struct cryptop *crp2;
1088        unsigned long q_flags;
1089
1090        CRYPTO_Q_LOCK();
1091        TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1092            KASSERT(crp2 != crp,
1093                ("Freeing cryptop from the crypto queue (%p).",
1094                crp));
1095        }
1096        CRYPTO_Q_UNLOCK();
1097        CRYPTO_RETQ_LOCK();
1098        TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
1099            KASSERT(crp2 != crp,
1100                ("Freeing cryptop from the return queue (%p).",
1101                crp));
1102        }
1103        CRYPTO_RETQ_UNLOCK();
1104    }
1105#endif
1106
1107    while ((crd = crp->crp_desc) != NULL) {
1108        crp->crp_desc = crd->crd_next;
1109        kmem_cache_free(cryptodesc_zone, crd);
1110    }
1111    kmem_cache_free(cryptop_zone, crp);
1112}
1113
1114/*
1115 * Acquire a set of crypto descriptors.
1116 */
1117struct cryptop *
1118crypto_getreq(int num)
1119{
1120    struct cryptodesc *crd;
1121    struct cryptop *crp;
1122
1123    crp = kmem_cache_alloc(cryptop_zone, SLAB_ATOMIC);
1124    if (crp != NULL) {
1125        memset(crp, 0, sizeof(*crp));
1126        INIT_LIST_HEAD(&crp->crp_next);
1127        init_waitqueue_head(&crp->crp_waitq);
1128        while (num--) {
1129            crd = kmem_cache_alloc(cryptodesc_zone, SLAB_ATOMIC);
1130            if (crd == NULL) {
1131                crypto_freereq(crp);
1132                return NULL;
1133            }
1134            memset(crd, 0, sizeof(*crd));
1135            crd->crd_next = crp->crp_desc;
1136            crp->crp_desc = crd;
1137        }
1138    }
1139    return crp;
1140}
1141
1142/*
1143 * Invoke the callback on behalf of the driver.
1144 */
1145void
1146crypto_done(struct cryptop *crp)
1147{
1148    unsigned long q_flags;
1149
1150    dprintk("%s()\n", __FUNCTION__);
1151    if ((crp->crp_flags & CRYPTO_F_DONE) == 0) {
1152        crp->crp_flags |= CRYPTO_F_DONE;
1153        CRYPTO_Q_LOCK();
1154        crypto_q_cnt--;
1155        CRYPTO_Q_UNLOCK();
1156    } else
1157        printk("crypto: crypto_done op already done, flags 0x%x",
1158                crp->crp_flags);
1159    if (crp->crp_etype != 0)
1160        cryptostats.cs_errs++;
1161    /*
1162     * CBIMM means unconditionally do the callback immediately;
1163     * CBIFSYNC means do the callback immediately only if the
1164     * operation was done synchronously. Both are used to avoid
1165     * doing extraneous context switches; the latter is mostly
1166     * used with the software crypto driver.
1167     */
1168    if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1169        ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1170         (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
1171        /*
1172         * Do the callback directly. This is ok when the
1173         * callback routine does very little (e.g. the
1174         * /dev/crypto callback method just does a wakeup).
1175         */
1176        crp->crp_callback(crp);
1177    } else {
1178        unsigned long r_flags;
1179        /*
1180         * Normal case; queue the callback for the thread.
1181         */
1182        CRYPTO_RETQ_LOCK();
1183        wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
1184        TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1185        CRYPTO_RETQ_UNLOCK();
1186    }
1187}
1188
1189/*
1190 * Invoke the callback on behalf of the driver.
1191 */
1192void
1193crypto_kdone(struct cryptkop *krp)
1194{
1195    struct cryptocap *cap;
1196    unsigned long d_flags;
1197
1198    if ((krp->krp_flags & CRYPTO_KF_DONE) != 0)
1199        printk("crypto: crypto_kdone op already done, flags 0x%x",
1200                krp->krp_flags);
1201    krp->krp_flags |= CRYPTO_KF_DONE;
1202    if (krp->krp_status != 0)
1203        cryptostats.cs_kerrs++;
1204
1205    CRYPTO_DRIVER_LOCK();
1206    /* XXX: What if driver is loaded in the meantime? */
1207    if (krp->krp_hid < crypto_drivers_num) {
1208        cap = &crypto_drivers[krp->krp_hid];
1209        cap->cc_koperations--;
1210        KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
1211        if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1212            crypto_remove(cap);
1213    }
1214    CRYPTO_DRIVER_UNLOCK();
1215
1216    /*
1217     * CBIMM means unconditionally do the callback immediately;
1218     * This is used to avoid doing extraneous context switches
1219     */
1220    if ((krp->krp_flags & CRYPTO_KF_CBIMM)) {
1221        /*
1222         * Do the callback directly. This is ok when the
1223         * callback routine does very little (e.g. the
1224         * /dev/crypto callback method just does a wakeup).
1225         */
1226        krp->krp_callback(krp);
1227    } else {
1228        unsigned long r_flags;
1229        /*
1230         * Normal case; queue the callback for the thread.
1231         */
1232        CRYPTO_RETQ_LOCK();
1233        wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
1234        TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1235        CRYPTO_RETQ_UNLOCK();
1236    }
1237}
1238
1239int
1240crypto_getfeat(int *featp)
1241{
1242    int hid, kalg, feat = 0;
1243    unsigned long d_flags;
1244
1245    CRYPTO_DRIVER_LOCK();
1246    for (hid = 0; hid < crypto_drivers_num; hid++) {
1247        const struct cryptocap *cap = &crypto_drivers[hid];
1248
1249        if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1250            !crypto_devallowsoft) {
1251            continue;
1252        }
1253        for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1254            if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1255                feat |= 1 << kalg;
1256    }
1257    CRYPTO_DRIVER_UNLOCK();
1258    *featp = feat;
1259    return (0);
1260}
1261
1262/*
1263 * Crypto thread, dispatches crypto requests.
1264 */
1265static int
1266crypto_proc(void *arg)
1267{
1268    struct cryptop *crp, *submit;
1269    struct cryptkop *krp, *krpp;
1270    struct cryptocap *cap;
1271    u_int32_t hid;
1272    int result, hint;
1273    unsigned long q_flags;
1274    int loopcount = 0;
1275
1276    set_current_state(TASK_INTERRUPTIBLE);
1277
1278    CRYPTO_Q_LOCK();
1279    for (;;) {
1280        /*
1281         * we need to make sure we don't get into a busy loop with nothing
1282         * to do, the two crypto_all_*blocked vars help us find out when
1283         * we are all full and can do nothing on any driver or Q. If so we
1284         * wait for an unblock.
1285         */
1286        crypto_all_qblocked = !list_empty(&crp_q);
1287
1288        /*
1289         * Find the first element in the queue that can be
1290         * processed and look-ahead to see if multiple ops
1291         * are ready for the same driver.
1292         */
1293        submit = NULL;
1294        hint = 0;
1295        list_for_each_entry(crp, &crp_q, crp_next) {
1296            hid = CRYPTO_SESID2HID(crp->crp_sid);
1297            cap = crypto_checkdriver(hid);
1298            /*
1299             * Driver cannot disappear when there is an active
1300             * session.
1301             */
1302            KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1303                __func__, __LINE__));
1304            if (cap == NULL || cap->cc_dev == NULL) {
1305                /* Op needs to be migrated, process it. */
1306                if (submit == NULL)
1307                    submit = crp;
1308                break;
1309            }
1310            if (!cap->cc_qblocked) {
1311                if (submit != NULL) {
1312                    /*
1313                     * We stop on finding another op,
1314                     * regardless whether its for the same
1315                     * driver or not. We could keep
1316                     * searching the queue but it might be
1317                     * better to just use a per-driver
1318                     * queue instead.
1319                     */
1320                    if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
1321                        hint = CRYPTO_HINT_MORE;
1322                    break;
1323                } else {
1324                    submit = crp;
1325                    if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1326                        break;
1327                    /* keep scanning for more are q'd */
1328                }
1329            }
1330        }
1331        if (submit != NULL) {
1332            hid = CRYPTO_SESID2HID(submit->crp_sid);
1333            crypto_all_qblocked = 0;
1334            list_del(&submit->crp_next);
1335            crypto_drivers[hid].cc_unqblocked = 1;
1336            cap = crypto_checkdriver(hid);
1337            CRYPTO_Q_UNLOCK();
1338            KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1339                __func__, __LINE__));
1340            result = crypto_invoke(cap, submit, hint);
1341            CRYPTO_Q_LOCK();
1342            if (result == ERESTART) {
1343                /*
1344                 * The driver ran out of resources, mark the
1345                 * driver ``blocked'' for cryptop's and put
1346                 * the request back in the queue. It would
1347                 * best to put the request back where we got
1348                 * it but that's hard so for now we put it
1349                 * at the front. This should be ok; putting
1350                 * it at the end does not work.
1351                 */
1352                /* XXX validate sid again? */
1353                list_add(&submit->crp_next, &crp_q);
1354                cryptostats.cs_blocks++;
1355                if (crypto_drivers[hid].cc_unqblocked)
1356                    crypto_drivers[hid].cc_qblocked=0;
1357                crypto_drivers[hid].cc_unqblocked=0;
1358            }
1359            crypto_drivers[hid].cc_unqblocked = 0;
1360        }
1361
1362        crypto_all_kqblocked = !list_empty(&crp_kq);
1363
1364        /* As above, but for key ops */
1365        krp = NULL;
1366        list_for_each_entry(krpp, &crp_kq, krp_next) {
1367            cap = crypto_checkdriver(krpp->krp_hid);
1368            if (cap == NULL || cap->cc_dev == NULL) {
1369                /*
1370                 * Operation needs to be migrated, invalidate
1371                 * the assigned device so it will reselect a
1372                 * new one below. Propagate the original
1373                 * crid selection flags if supplied.
1374                 */
1375                krp->krp_hid = krp->krp_crid &
1376                    (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
1377                if (krp->krp_hid == 0)
1378                    krp->krp_hid =
1379                    CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
1380                break;
1381            }
1382            if (!cap->cc_kqblocked) {
1383                krp = krpp;
1384                break;
1385            }
1386        }
1387        if (krp != NULL) {
1388            crypto_all_kqblocked = 0;
1389            list_del(&krp->krp_next);
1390            crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1391            CRYPTO_Q_UNLOCK();
1392            result = crypto_kinvoke(krp, krp->krp_hid);
1393            CRYPTO_Q_LOCK();
1394            if (result == ERESTART) {
1395                /*
1396                 * The driver ran out of resources, mark the
1397                 * driver ``blocked'' for cryptkop's and put
1398                 * the request back in the queue. It would
1399                 * best to put the request back where we got
1400                 * it but that's hard so for now we put it
1401                 * at the front. This should be ok; putting
1402                 * it at the end does not work.
1403                 */
1404                /* XXX validate sid again? */
1405                list_add(&krp->krp_next, &crp_kq);
1406                cryptostats.cs_kblocks++;
1407            } else
1408                crypto_drivers[krp->krp_hid].cc_kqblocked = 0;
1409        }
1410
1411        if (submit == NULL && krp == NULL) {
1412            /*
1413             * Nothing more to be processed. Sleep until we're
1414             * woken because there are more ops to process.
1415             * This happens either by submission or by a driver
1416             * becoming unblocked and notifying us through
1417             * crypto_unblock. Note that when we wakeup we
1418             * start processing each queue again from the
1419             * front. It's not clear that it's important to
1420             * preserve this ordering since ops may finish
1421             * out of order if dispatched to different devices
1422             * and some become blocked while others do not.
1423             */
1424            dprintk("%s - sleeping (qe=%d qb=%d kqe=%d kqb=%d)\n",
1425                    __FUNCTION__,
1426                    list_empty(&crp_q), crypto_all_qblocked,
1427                    list_empty(&crp_kq), crypto_all_kqblocked);
1428            loopcount = 0;
1429            CRYPTO_Q_UNLOCK();
1430            wait_event_interruptible(cryptoproc_wait,
1431                    !(list_empty(&crp_q) || crypto_all_qblocked) ||
1432                    !(list_empty(&crp_kq) || crypto_all_kqblocked) ||
1433                    kthread_should_stop());
1434            if (signal_pending (current)) {
1435#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1436                spin_lock_irq(&current->sigmask_lock);
1437#endif
1438                flush_signals(current);
1439#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1440                spin_unlock_irq(&current->sigmask_lock);
1441#endif
1442            }
1443            CRYPTO_Q_LOCK();
1444            dprintk("%s - awake\n", __FUNCTION__);
1445            if (kthread_should_stop())
1446                break;
1447            cryptostats.cs_intrs++;
1448        } else if (loopcount > crypto_max_loopcount) {
1449            /*
1450             * Give other processes a chance to run if we've
1451             * been using the CPU exclusively for a while.
1452             */
1453            loopcount = 0;
1454            CRYPTO_Q_UNLOCK();
1455            schedule();
1456            CRYPTO_Q_LOCK();
1457        }
1458        loopcount++;
1459    }
1460    CRYPTO_Q_UNLOCK();
1461    return 0;
1462}
1463
1464/*
1465 * Crypto returns thread, does callbacks for processed crypto requests.
1466 * Callbacks are done here, rather than in the crypto drivers, because
1467 * callbacks typically are expensive and would slow interrupt handling.
1468 */
1469static int
1470crypto_ret_proc(void *arg)
1471{
1472    struct cryptop *crpt;
1473    struct cryptkop *krpt;
1474    unsigned long r_flags;
1475
1476    set_current_state(TASK_INTERRUPTIBLE);
1477
1478    CRYPTO_RETQ_LOCK();
1479    for (;;) {
1480        /* Harvest return q's for completed ops */
1481        crpt = NULL;
1482        if (!list_empty(&crp_ret_q))
1483            crpt = list_entry(crp_ret_q.next, typeof(*crpt), crp_next);
1484        if (crpt != NULL)
1485            list_del(&crpt->crp_next);
1486
1487        krpt = NULL;
1488        if (!list_empty(&crp_ret_kq))
1489            krpt = list_entry(crp_ret_kq.next, typeof(*krpt), krp_next);
1490        if (krpt != NULL)
1491            list_del(&krpt->krp_next);
1492
1493        if (crpt != NULL || krpt != NULL) {
1494            CRYPTO_RETQ_UNLOCK();
1495            /*
1496             * Run callbacks unlocked.
1497             */
1498            if (crpt != NULL)
1499                crpt->crp_callback(crpt);
1500            if (krpt != NULL)
1501                krpt->krp_callback(krpt);
1502            CRYPTO_RETQ_LOCK();
1503        } else {
1504            /*
1505             * Nothing more to be processed. Sleep until we're
1506             * woken because there are more returns to process.
1507             */
1508            dprintk("%s - sleeping\n", __FUNCTION__);
1509            CRYPTO_RETQ_UNLOCK();
1510            wait_event_interruptible(cryptoretproc_wait,
1511                    !list_empty(&crp_ret_q) ||
1512                    !list_empty(&crp_ret_kq) ||
1513                    kthread_should_stop());
1514            if (signal_pending (current)) {
1515#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1516                spin_lock_irq(&current->sigmask_lock);
1517#endif
1518                flush_signals(current);
1519#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1520                spin_unlock_irq(&current->sigmask_lock);
1521#endif
1522            }
1523            CRYPTO_RETQ_LOCK();
1524            dprintk("%s - awake\n", __FUNCTION__);
1525            if (kthread_should_stop()) {
1526                dprintk("%s - EXITING!\n", __FUNCTION__);
1527                break;
1528            }
1529            cryptostats.cs_rets++;
1530        }
1531    }
1532    CRYPTO_RETQ_UNLOCK();
1533    return 0;
1534}
1535
1536
1537#if 0 /* should put this into /proc or something */
1538static void
1539db_show_drivers(void)
1540{
1541    int hid;
1542
1543    db_printf("%12s %4s %4s %8s %2s %2s\n"
1544        , "Device"
1545        , "Ses"
1546        , "Kops"
1547        , "Flags"
1548        , "QB"
1549        , "KB"
1550    );
1551    for (hid = 0; hid < crypto_drivers_num; hid++) {
1552        const struct cryptocap *cap = &crypto_drivers[hid];
1553        if (cap->cc_dev == NULL)
1554            continue;
1555        db_printf("%-12s %4u %4u %08x %2u %2u\n"
1556            , device_get_nameunit(cap->cc_dev)
1557            , cap->cc_sessions
1558            , cap->cc_koperations
1559            , cap->cc_flags
1560            , cap->cc_qblocked
1561            , cap->cc_kqblocked
1562        );
1563    }
1564}
1565
1566DB_SHOW_COMMAND(crypto, db_show_crypto)
1567{
1568    struct cryptop *crp;
1569
1570    db_show_drivers();
1571    db_printf("\n");
1572
1573    db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1574        "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1575        "Desc", "Callback");
1576    TAILQ_FOREACH(crp, &crp_q, crp_next) {
1577        db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1578            , (int) CRYPTO_SESID2HID(crp->crp_sid)
1579            , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
1580            , crp->crp_ilen, crp->crp_olen
1581            , crp->crp_etype
1582            , crp->crp_flags
1583            , crp->crp_desc
1584            , crp->crp_callback
1585        );
1586    }
1587    if (!TAILQ_EMPTY(&crp_ret_q)) {
1588        db_printf("\n%4s %4s %4s %8s\n",
1589            "HID", "Etype", "Flags", "Callback");
1590        TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
1591            db_printf("%4u %4u %04x %8p\n"
1592                , (int) CRYPTO_SESID2HID(crp->crp_sid)
1593                , crp->crp_etype
1594                , crp->crp_flags
1595                , crp->crp_callback
1596            );
1597        }
1598    }
1599}
1600
1601DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
1602{
1603    struct cryptkop *krp;
1604
1605    db_show_drivers();
1606    db_printf("\n");
1607
1608    db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1609        "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1610    TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1611        db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1612            , krp->krp_op
1613            , krp->krp_status
1614            , krp->krp_iparams, krp->krp_oparams
1615            , krp->krp_crid, krp->krp_hid
1616            , krp->krp_callback
1617        );
1618    }
1619    if (!TAILQ_EMPTY(&crp_ret_q)) {
1620        db_printf("%4s %5s %8s %4s %8s\n",
1621            "Op", "Status", "CRID", "HID", "Callback");
1622        TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
1623            db_printf("%4u %5u %08x %4u %8p\n"
1624                , krp->krp_op
1625                , krp->krp_status
1626                , krp->krp_crid, krp->krp_hid
1627                , krp->krp_callback
1628            );
1629        }
1630    }
1631}
1632#endif
1633
1634
1635static int
1636crypto_init(void)
1637{
1638    int error;
1639    unsigned long cpu;
1640
1641    dprintk("%s(%p)\n", __FUNCTION__, (void *) crypto_init);
1642
1643    if (crypto_initted)
1644        return 0;
1645    crypto_initted = 1;
1646
1647    spin_lock_init(&crypto_drivers_lock);
1648    spin_lock_init(&crypto_q_lock);
1649    spin_lock_init(&crypto_ret_q_lock);
1650
1651    cryptop_zone = kmem_cache_create("cryptop", sizeof(struct cryptop),
1652                       0, SLAB_HWCACHE_ALIGN, NULL
1653#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
1654                       , NULL
1655#endif
1656                    );
1657
1658    cryptodesc_zone = kmem_cache_create("cryptodesc", sizeof(struct cryptodesc),
1659                       0, SLAB_HWCACHE_ALIGN, NULL
1660#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
1661                       , NULL
1662#endif
1663                    );
1664
1665    if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
1666        printk("crypto: crypto_init cannot setup crypto zones\n");
1667        error = ENOMEM;
1668        goto bad;
1669    }
1670
1671    crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
1672    crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap),
1673            GFP_KERNEL);
1674    if (crypto_drivers == NULL) {
1675        printk("crypto: crypto_init cannot setup crypto drivers\n");
1676        error = ENOMEM;
1677        goto bad;
1678    }
1679
1680    memset(crypto_drivers, 0, crypto_drivers_num * sizeof(struct cryptocap));
1681
1682    ocf_for_each_cpu(cpu) {
1683        cryptoproc[cpu] = kthread_create(crypto_proc, (void *) cpu,
1684                                    "ocf_%d", (int) cpu);
1685        if (IS_ERR(cryptoproc[cpu])) {
1686            error = PTR_ERR(cryptoproc[cpu]);
1687            printk("crypto: crypto_init cannot start crypto thread; error %d",
1688                error);
1689            goto bad;
1690        }
1691        kthread_bind(cryptoproc[cpu], cpu);
1692        wake_up_process(cryptoproc[cpu]);
1693
1694        cryptoretproc[cpu] = kthread_create(crypto_ret_proc, (void *) cpu,
1695                                    "ocf_ret_%d", (int) cpu);
1696        if (IS_ERR(cryptoretproc[cpu])) {
1697            error = PTR_ERR(cryptoretproc[cpu]);
1698            printk("crypto: crypto_init cannot start cryptoret thread; error %d",
1699                    error);
1700            goto bad;
1701        }
1702        kthread_bind(cryptoretproc[cpu], cpu);
1703        wake_up_process(cryptoretproc[cpu]);
1704    }
1705
1706    return 0;
1707bad:
1708    crypto_exit();
1709    return error;
1710}
1711
1712
1713static void
1714crypto_exit(void)
1715{
1716    int cpu;
1717
1718    dprintk("%s()\n", __FUNCTION__);
1719
1720    /*
1721     * Terminate any crypto threads.
1722     */
1723    ocf_for_each_cpu(cpu) {
1724        kthread_stop(cryptoproc[cpu]);
1725        kthread_stop(cryptoretproc[cpu]);
1726    }
1727
1728    /*
1729     * Reclaim dynamically allocated resources.
1730     */
1731    if (crypto_drivers != NULL)
1732        kfree(crypto_drivers);
1733
1734    if (cryptodesc_zone != NULL)
1735        kmem_cache_destroy(cryptodesc_zone);
1736    if (cryptop_zone != NULL)
1737        kmem_cache_destroy(cryptop_zone);
1738}
1739
1740
1741EXPORT_SYMBOL(crypto_newsession);
1742EXPORT_SYMBOL(crypto_freesession);
1743EXPORT_SYMBOL(crypto_get_driverid);
1744EXPORT_SYMBOL(crypto_kregister);
1745EXPORT_SYMBOL(crypto_register);
1746EXPORT_SYMBOL(crypto_unregister);
1747EXPORT_SYMBOL(crypto_unregister_all);
1748EXPORT_SYMBOL(crypto_unblock);
1749EXPORT_SYMBOL(crypto_dispatch);
1750EXPORT_SYMBOL(crypto_kdispatch);
1751EXPORT_SYMBOL(crypto_freereq);
1752EXPORT_SYMBOL(crypto_getreq);
1753EXPORT_SYMBOL(crypto_done);
1754EXPORT_SYMBOL(crypto_kdone);
1755EXPORT_SYMBOL(crypto_getfeat);
1756EXPORT_SYMBOL(crypto_userasymcrypto);
1757EXPORT_SYMBOL(crypto_getcaps);
1758EXPORT_SYMBOL(crypto_find_driver);
1759EXPORT_SYMBOL(crypto_find_device_byhid);
1760
1761module_init(crypto_init);
1762module_exit(crypto_exit);
1763
1764MODULE_LICENSE("BSD");
1765MODULE_AUTHOR("David McCullough <david_mccullough@mcafee.com>");
1766MODULE_DESCRIPTION("OCF (OpenBSD Cryptographic Framework)");
1767

Archive Download this file



interactive