| 1 | /*- |
| 2 | * Linux port done by David McCullough <david_mccullough@mcafee.com> |
| 3 | * Copyright (C) 2006-2010 David McCullough |
| 4 | * Copyright (C) 2004-2005 Intel Corporation. |
| 5 | * The license and original author are listed below. |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without |
| 8 | * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. |
| 9 | * |
| 10 | * modification, are permitted provided that the following conditions |
| 11 | * are met: |
| 12 | * 1. Redistributions of source code must retain the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer. |
| 14 | * 2. Redistributions in binary form must reproduce the above copyright |
| 15 | * notice, this list of conditions and the following disclaimer in the |
| 16 | * documentation and/or other materials provided with the distribution. |
| 17 | * |
| 18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| 19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| 21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 28 | */ |
| 29 | |
| 30 | #if 0 |
| 31 | #include <sys/cdefs.h> |
| 32 | __FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.27 2007/03/21 03:42:51 sam Exp $"); |
| 33 | #endif |
| 34 | |
| 35 | /* |
| 36 | * Cryptographic Subsystem. |
| 37 | * |
| 38 | * This code is derived from the Openbsd Cryptographic Framework (OCF) |
| 39 | * that has the copyright shown below. Very little of the original |
| 40 | * code remains. |
| 41 | */ |
| 42 | /*- |
| 43 | * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) |
| 44 | * |
| 45 | * This code was written by Angelos D. Keromytis in Athens, Greece, in |
| 46 | * February 2000. Network Security Technologies Inc. (NSTI) kindly |
| 47 | * supported the development of this code. |
| 48 | * |
| 49 | * Copyright (c) 2000, 2001 Angelos D. Keromytis |
| 50 | * |
| 51 | * Permission to use, copy, and modify this software with or without fee |
| 52 | * is hereby granted, provided that this entire notice is included in |
| 53 | * all source code copies of any software which is or includes a copy or |
| 54 | * modification of this software. |
| 55 | * |
| 56 | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR |
| 57 | * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY |
| 58 | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE |
| 59 | * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR |
| 60 | * PURPOSE. |
| 61 | * |
| 62 | __FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.16 2005/01/07 02:29:16 imp Exp $"); |
| 63 | */ |
| 64 | |
| 65 | |
| 66 | #include <linux/version.h> |
| 67 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,38) && !defined(AUTOCONF_INCLUDED) |
| 68 | #include <linux/config.h> |
| 69 | #endif |
| 70 | #include <linux/module.h> |
| 71 | #include <linux/init.h> |
| 72 | #include <linux/list.h> |
| 73 | #include <linux/slab.h> |
| 74 | #include <linux/wait.h> |
| 75 | #include <linux/sched.h> |
| 76 | #include <linux/spinlock.h> |
| 77 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,4) |
| 78 | #include <linux/kthread.h> |
| 79 | #endif |
| 80 | #include <cryptodev.h> |
| 81 | |
| 82 | /* |
| 83 | * keep track of whether or not we have been initialised, a big |
| 84 | * issue if we are linked into the kernel and a driver gets started before |
| 85 | * us |
| 86 | */ |
| 87 | static int crypto_initted = 0; |
| 88 | |
| 89 | /* |
| 90 | * Crypto drivers register themselves by allocating a slot in the |
| 91 | * crypto_drivers table with crypto_get_driverid() and then registering |
| 92 | * each algorithm they support with crypto_register() and crypto_kregister(). |
| 93 | */ |
| 94 | |
| 95 | /* |
| 96 | * lock on driver table |
| 97 | * we track its state as spin_is_locked does not do anything on non-SMP boxes |
| 98 | */ |
| 99 | static spinlock_t crypto_drivers_lock; |
| 100 | static int crypto_drivers_locked; /* for non-SMP boxes */ |
| 101 | |
| 102 | #define CRYPTO_DRIVER_LOCK() \ |
| 103 | ({ \ |
| 104 | spin_lock_irqsave(&crypto_drivers_lock, d_flags); \ |
| 105 | crypto_drivers_locked = 1; \ |
| 106 | dprintk("%s,%d: DRIVER_LOCK()\n", __FILE__, __LINE__); \ |
| 107 | }) |
| 108 | #define CRYPTO_DRIVER_UNLOCK() \ |
| 109 | ({ \ |
| 110 | dprintk("%s,%d: DRIVER_UNLOCK()\n", __FILE__, __LINE__); \ |
| 111 | crypto_drivers_locked = 0; \ |
| 112 | spin_unlock_irqrestore(&crypto_drivers_lock, d_flags); \ |
| 113 | }) |
| 114 | #define CRYPTO_DRIVER_ASSERT() \ |
| 115 | ({ \ |
| 116 | if (!crypto_drivers_locked) { \ |
| 117 | dprintk("%s,%d: DRIVER_ASSERT!\n", __FILE__, __LINE__); \ |
| 118 | } \ |
| 119 | }) |
| 120 | |
| 121 | /* |
| 122 | * Crypto device/driver capabilities structure. |
| 123 | * |
| 124 | * Synchronization: |
| 125 | * (d) - protected by CRYPTO_DRIVER_LOCK() |
| 126 | * (q) - protected by CRYPTO_Q_LOCK() |
| 127 | * Not tagged fields are read-only. |
| 128 | */ |
| 129 | struct cryptocap { |
| 130 | device_t cc_dev; /* (d) device/driver */ |
| 131 | u_int32_t cc_sessions; /* (d) # of sessions */ |
| 132 | u_int32_t cc_koperations; /* (d) # os asym operations */ |
| 133 | /* |
| 134 | * Largest possible operator length (in bits) for each type of |
| 135 | * encryption algorithm. XXX not used |
| 136 | */ |
| 137 | u_int16_t cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1]; |
| 138 | u_int8_t cc_alg[CRYPTO_ALGORITHM_MAX + 1]; |
| 139 | u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; |
| 140 | |
| 141 | int cc_flags; /* (d) flags */ |
| 142 | #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ |
| 143 | int cc_qblocked; /* (q) symmetric q blocked */ |
| 144 | int cc_kqblocked; /* (q) asymmetric q blocked */ |
| 145 | |
| 146 | int cc_unqblocked; /* (q) symmetric q blocked */ |
| 147 | int cc_unkqblocked; /* (q) asymmetric q blocked */ |
| 148 | }; |
| 149 | static struct cryptocap *crypto_drivers = NULL; |
| 150 | static int crypto_drivers_num = 0; |
| 151 | |
| 152 | /* |
| 153 | * There are two queues for crypto requests; one for symmetric (e.g. |
| 154 | * cipher) operations and one for asymmetric (e.g. MOD)operations. |
| 155 | * A single mutex is used to lock access to both queues. We could |
| 156 | * have one per-queue but having one simplifies handling of block/unblock |
| 157 | * operations. |
| 158 | */ |
| 159 | static LIST_HEAD(crp_q); /* crypto request queue */ |
| 160 | static LIST_HEAD(crp_kq); /* asym request queue */ |
| 161 | |
| 162 | static spinlock_t crypto_q_lock; |
| 163 | |
| 164 | int crypto_all_qblocked = 0; /* protect with Q_LOCK */ |
| 165 | module_param(crypto_all_qblocked, int, 0444); |
| 166 | MODULE_PARM_DESC(crypto_all_qblocked, "Are all crypto queues blocked"); |
| 167 | |
| 168 | int crypto_all_kqblocked = 0; /* protect with Q_LOCK */ |
| 169 | module_param(crypto_all_kqblocked, int, 0444); |
| 170 | MODULE_PARM_DESC(crypto_all_kqblocked, "Are all asym crypto queues blocked"); |
| 171 | |
| 172 | #define CRYPTO_Q_LOCK() \ |
| 173 | ({ \ |
| 174 | spin_lock_irqsave(&crypto_q_lock, q_flags); \ |
| 175 | dprintk("%s,%d: Q_LOCK()\n", __FILE__, __LINE__); \ |
| 176 | }) |
| 177 | #define CRYPTO_Q_UNLOCK() \ |
| 178 | ({ \ |
| 179 | dprintk("%s,%d: Q_UNLOCK()\n", __FILE__, __LINE__); \ |
| 180 | spin_unlock_irqrestore(&crypto_q_lock, q_flags); \ |
| 181 | }) |
| 182 | |
| 183 | /* |
| 184 | * There are two queues for processing completed crypto requests; one |
| 185 | * for the symmetric and one for the asymmetric ops. We only need one |
| 186 | * but have two to avoid type futzing (cryptop vs. cryptkop). A single |
| 187 | * mutex is used to lock access to both queues. Note that this lock |
| 188 | * must be separate from the lock on request queues to insure driver |
| 189 | * callbacks don't generate lock order reversals. |
| 190 | */ |
| 191 | static LIST_HEAD(crp_ret_q); /* callback queues */ |
| 192 | static LIST_HEAD(crp_ret_kq); |
| 193 | |
| 194 | static spinlock_t crypto_ret_q_lock; |
| 195 | #define CRYPTO_RETQ_LOCK() \ |
| 196 | ({ \ |
| 197 | spin_lock_irqsave(&crypto_ret_q_lock, r_flags); \ |
| 198 | dprintk("%s,%d: RETQ_LOCK\n", __FILE__, __LINE__); \ |
| 199 | }) |
| 200 | #define CRYPTO_RETQ_UNLOCK() \ |
| 201 | ({ \ |
| 202 | dprintk("%s,%d: RETQ_UNLOCK\n", __FILE__, __LINE__); \ |
| 203 | spin_unlock_irqrestore(&crypto_ret_q_lock, r_flags); \ |
| 204 | }) |
| 205 | #define CRYPTO_RETQ_EMPTY() (list_empty(&crp_ret_q) && list_empty(&crp_ret_kq)) |
| 206 | |
| 207 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) |
| 208 | static kmem_cache_t *cryptop_zone; |
| 209 | static kmem_cache_t *cryptodesc_zone; |
| 210 | #else |
| 211 | static struct kmem_cache *cryptop_zone; |
| 212 | static struct kmem_cache *cryptodesc_zone; |
| 213 | #endif |
| 214 | |
| 215 | #define debug crypto_debug |
| 216 | int crypto_debug = 0; |
| 217 | module_param(crypto_debug, int, 0644); |
| 218 | MODULE_PARM_DESC(crypto_debug, "Enable debug"); |
| 219 | EXPORT_SYMBOL(crypto_debug); |
| 220 | |
| 221 | /* |
| 222 | * Maximum number of outstanding crypto requests before we start |
| 223 | * failing requests. We need this to prevent DOS when too many |
| 224 | * requests are arriving for us to keep up. Otherwise we will |
| 225 | * run the system out of memory. Since crypto is slow, we are |
| 226 | * usually the bottleneck that needs to say, enough is enough. |
| 227 | * |
| 228 | * We cannot print errors when this condition occurs, we are already too |
| 229 | * slow, printing anything will just kill us |
| 230 | */ |
| 231 | |
| 232 | static int crypto_q_cnt = 0; |
| 233 | module_param(crypto_q_cnt, int, 0444); |
| 234 | MODULE_PARM_DESC(crypto_q_cnt, |
| 235 | "Current number of outstanding crypto requests"); |
| 236 | |
| 237 | static int crypto_q_max = 1000; |
| 238 | module_param(crypto_q_max, int, 0644); |
| 239 | MODULE_PARM_DESC(crypto_q_max, |
| 240 | "Maximum number of outstanding crypto requests"); |
| 241 | |
| 242 | #define bootverbose crypto_verbose |
| 243 | static int crypto_verbose = 0; |
| 244 | module_param(crypto_verbose, int, 0644); |
| 245 | MODULE_PARM_DESC(crypto_verbose, |
| 246 | "Enable verbose crypto startup"); |
| 247 | |
| 248 | int crypto_usercrypto = 1; /* userland may do crypto reqs */ |
| 249 | module_param(crypto_usercrypto, int, 0644); |
| 250 | MODULE_PARM_DESC(crypto_usercrypto, |
| 251 | "Enable/disable user-mode access to crypto support"); |
| 252 | |
| 253 | int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */ |
| 254 | module_param(crypto_userasymcrypto, int, 0644); |
| 255 | MODULE_PARM_DESC(crypto_userasymcrypto, |
| 256 | "Enable/disable user-mode access to asymmetric crypto support"); |
| 257 | |
| 258 | int crypto_devallowsoft = 0; /* only use hardware crypto */ |
| 259 | module_param(crypto_devallowsoft, int, 0644); |
| 260 | MODULE_PARM_DESC(crypto_devallowsoft, |
| 261 | "Enable/disable use of software crypto support"); |
| 262 | |
| 263 | /* |
| 264 | * This parameter controls the maximum number of crypto operations to |
| 265 | * do consecutively in the crypto kernel thread before scheduling to allow |
| 266 | * other processes to run. Without it, it is possible to get into a |
| 267 | * situation where the crypto thread never allows any other processes to run. |
| 268 | * Default to 1000 which should be less than one second. |
| 269 | */ |
| 270 | static int crypto_max_loopcount = 1000; |
| 271 | module_param(crypto_max_loopcount, int, 0644); |
| 272 | MODULE_PARM_DESC(crypto_max_loopcount, |
| 273 | "Maximum number of crypto ops to do before yielding to other processes"); |
| 274 | |
| 275 | #ifndef CONFIG_NR_CPUS |
| 276 | #define CONFIG_NR_CPUS 1 |
| 277 | #endif |
| 278 | |
| 279 | static struct task_struct *cryptoproc[CONFIG_NR_CPUS]; |
| 280 | static struct task_struct *cryptoretproc[CONFIG_NR_CPUS]; |
| 281 | static DECLARE_WAIT_QUEUE_HEAD(cryptoproc_wait); |
| 282 | static DECLARE_WAIT_QUEUE_HEAD(cryptoretproc_wait); |
| 283 | |
| 284 | static int crypto_proc(void *arg); |
| 285 | static int crypto_ret_proc(void *arg); |
| 286 | static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); |
| 287 | static int crypto_kinvoke(struct cryptkop *krp, int flags); |
| 288 | static void crypto_exit(void); |
| 289 | static int crypto_init(void); |
| 290 | |
| 291 | static struct cryptostats cryptostats; |
| 292 | |
| 293 | static struct cryptocap * |
| 294 | crypto_checkdriver(u_int32_t hid) |
| 295 | { |
| 296 | if (crypto_drivers == NULL) |
| 297 | return NULL; |
| 298 | return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]); |
| 299 | } |
| 300 | |
| 301 | /* |
| 302 | * Compare a driver's list of supported algorithms against another |
| 303 | * list; return non-zero if all algorithms are supported. |
| 304 | */ |
| 305 | static int |
| 306 | driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri) |
| 307 | { |
| 308 | const struct cryptoini *cr; |
| 309 | |
| 310 | /* See if all the algorithms are supported. */ |
| 311 | for (cr = cri; cr; cr = cr->cri_next) |
| 312 | if (cap->cc_alg[cr->cri_alg] == 0) |
| 313 | return 0; |
| 314 | return 1; |
| 315 | } |
| 316 | |
| 317 | |
| 318 | /* |
| 319 | * Select a driver for a new session that supports the specified |
| 320 | * algorithms and, optionally, is constrained according to the flags. |
| 321 | * The algorithm we use here is pretty stupid; just use the |
| 322 | * first driver that supports all the algorithms we need. If there |
| 323 | * are multiple drivers we choose the driver with the fewest active |
| 324 | * sessions. We prefer hardware-backed drivers to software ones. |
| 325 | * |
| 326 | * XXX We need more smarts here (in real life too, but that's |
| 327 | * XXX another story altogether). |
| 328 | */ |
| 329 | static struct cryptocap * |
| 330 | crypto_select_driver(const struct cryptoini *cri, int flags) |
| 331 | { |
| 332 | struct cryptocap *cap, *best; |
| 333 | int match, hid; |
| 334 | |
| 335 | CRYPTO_DRIVER_ASSERT(); |
| 336 | |
| 337 | /* |
| 338 | * Look first for hardware crypto devices if permitted. |
| 339 | */ |
| 340 | if (flags & CRYPTOCAP_F_HARDWARE) |
| 341 | match = CRYPTOCAP_F_HARDWARE; |
| 342 | else |
| 343 | match = CRYPTOCAP_F_SOFTWARE; |
| 344 | best = NULL; |
| 345 | again: |
| 346 | for (hid = 0; hid < crypto_drivers_num; hid++) { |
| 347 | cap = &crypto_drivers[hid]; |
| 348 | /* |
| 349 | * If it's not initialized, is in the process of |
| 350 | * going away, or is not appropriate (hardware |
| 351 | * or software based on match), then skip. |
| 352 | */ |
| 353 | if (cap->cc_dev == NULL || |
| 354 | (cap->cc_flags & CRYPTOCAP_F_CLEANUP) || |
| 355 | (cap->cc_flags & match) == 0) |
| 356 | continue; |
| 357 | |
| 358 | /* verify all the algorithms are supported. */ |
| 359 | if (driver_suitable(cap, cri)) { |
| 360 | if (best == NULL || |
| 361 | cap->cc_sessions < best->cc_sessions) |
| 362 | best = cap; |
| 363 | } |
| 364 | } |
| 365 | if (best != NULL) |
| 366 | return best; |
| 367 | if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { |
| 368 | /* sort of an Algol 68-style for loop */ |
| 369 | match = CRYPTOCAP_F_SOFTWARE; |
| 370 | goto again; |
| 371 | } |
| 372 | return best; |
| 373 | } |
| 374 | |
| 375 | /* |
| 376 | * Create a new session. The crid argument specifies a crypto |
| 377 | * driver to use or constraints on a driver to select (hardware |
| 378 | * only, software only, either). Whatever driver is selected |
| 379 | * must be capable of the requested crypto algorithms. |
| 380 | */ |
| 381 | int |
| 382 | crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid) |
| 383 | { |
| 384 | struct cryptocap *cap; |
| 385 | u_int32_t hid, lid; |
| 386 | int err; |
| 387 | unsigned long d_flags; |
| 388 | |
| 389 | CRYPTO_DRIVER_LOCK(); |
| 390 | if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { |
| 391 | /* |
| 392 | * Use specified driver; verify it is capable. |
| 393 | */ |
| 394 | cap = crypto_checkdriver(crid); |
| 395 | if (cap != NULL && !driver_suitable(cap, cri)) |
| 396 | cap = NULL; |
| 397 | } else { |
| 398 | /* |
| 399 | * No requested driver; select based on crid flags. |
| 400 | */ |
| 401 | cap = crypto_select_driver(cri, crid); |
| 402 | /* |
| 403 | * if NULL then can't do everything in one session. |
| 404 | * XXX Fix this. We need to inject a "virtual" session |
| 405 | * XXX layer right about here. |
| 406 | */ |
| 407 | } |
| 408 | if (cap != NULL) { |
| 409 | /* Call the driver initialization routine. */ |
| 410 | hid = cap - crypto_drivers; |
| 411 | lid = hid; /* Pass the driver ID. */ |
| 412 | cap->cc_sessions++; |
| 413 | CRYPTO_DRIVER_UNLOCK(); |
| 414 | err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri); |
| 415 | CRYPTO_DRIVER_LOCK(); |
| 416 | if (err == 0) { |
| 417 | (*sid) = (cap->cc_flags & 0xff000000) |
| 418 | | (hid & 0x00ffffff); |
| 419 | (*sid) <<= 32; |
| 420 | (*sid) |= (lid & 0xffffffff); |
| 421 | } else |
| 422 | cap->cc_sessions--; |
| 423 | } else |
| 424 | err = EINVAL; |
| 425 | CRYPTO_DRIVER_UNLOCK(); |
| 426 | return err; |
| 427 | } |
| 428 | |
| 429 | static void |
| 430 | crypto_remove(struct cryptocap *cap) |
| 431 | { |
| 432 | CRYPTO_DRIVER_ASSERT(); |
| 433 | if (cap->cc_sessions == 0 && cap->cc_koperations == 0) |
| 434 | bzero(cap, sizeof(*cap)); |
| 435 | } |
| 436 | |
| 437 | /* |
| 438 | * Delete an existing session (or a reserved session on an unregistered |
| 439 | * driver). |
| 440 | */ |
| 441 | int |
| 442 | crypto_freesession(u_int64_t sid) |
| 443 | { |
| 444 | struct cryptocap *cap; |
| 445 | u_int32_t hid; |
| 446 | int err = 0; |
| 447 | unsigned long d_flags; |
| 448 | |
| 449 | dprintk("%s()\n", __FUNCTION__); |
| 450 | CRYPTO_DRIVER_LOCK(); |
| 451 | |
| 452 | if (crypto_drivers == NULL) { |
| 453 | err = EINVAL; |
| 454 | goto done; |
| 455 | } |
| 456 | |
| 457 | /* Determine two IDs. */ |
| 458 | hid = CRYPTO_SESID2HID(sid); |
| 459 | |
| 460 | if (hid >= crypto_drivers_num) { |
| 461 | dprintk("%s - INVALID DRIVER NUM %d\n", __FUNCTION__, hid); |
| 462 | err = ENOENT; |
| 463 | goto done; |
| 464 | } |
| 465 | cap = &crypto_drivers[hid]; |
| 466 | |
| 467 | if (cap->cc_dev) { |
| 468 | CRYPTO_DRIVER_UNLOCK(); |
| 469 | /* Call the driver cleanup routine, if available, unlocked. */ |
| 470 | err = CRYPTODEV_FREESESSION(cap->cc_dev, sid); |
| 471 | CRYPTO_DRIVER_LOCK(); |
| 472 | } |
| 473 | |
| 474 | if (cap->cc_sessions) |
| 475 | cap->cc_sessions--; |
| 476 | |
| 477 | if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) |
| 478 | crypto_remove(cap); |
| 479 | |
| 480 | done: |
| 481 | CRYPTO_DRIVER_UNLOCK(); |
| 482 | return err; |
| 483 | } |
| 484 | |
| 485 | /* |
| 486 | * Return an unused driver id. Used by drivers prior to registering |
| 487 | * support for the algorithms they handle. |
| 488 | */ |
| 489 | int32_t |
| 490 | crypto_get_driverid(device_t dev, int flags) |
| 491 | { |
| 492 | struct cryptocap *newdrv; |
| 493 | int i; |
| 494 | unsigned long d_flags; |
| 495 | |
| 496 | if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { |
| 497 | printf("%s: no flags specified when registering driver\n", |
| 498 | device_get_nameunit(dev)); |
| 499 | return -1; |
| 500 | } |
| 501 | |
| 502 | CRYPTO_DRIVER_LOCK(); |
| 503 | |
| 504 | for (i = 0; i < crypto_drivers_num; i++) { |
| 505 | if (crypto_drivers[i].cc_dev == NULL && |
| 506 | (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) { |
| 507 | break; |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | /* Out of entries, allocate some more. */ |
| 512 | if (i == crypto_drivers_num) { |
| 513 | /* Be careful about wrap-around. */ |
| 514 | if (2 * crypto_drivers_num <= crypto_drivers_num) { |
| 515 | CRYPTO_DRIVER_UNLOCK(); |
| 516 | printk("crypto: driver count wraparound!\n"); |
| 517 | return -1; |
| 518 | } |
| 519 | |
| 520 | newdrv = kmalloc(2 * crypto_drivers_num * sizeof(struct cryptocap), |
| 521 | GFP_KERNEL); |
| 522 | if (newdrv == NULL) { |
| 523 | CRYPTO_DRIVER_UNLOCK(); |
| 524 | printk("crypto: no space to expand driver table!\n"); |
| 525 | return -1; |
| 526 | } |
| 527 | |
| 528 | memcpy(newdrv, crypto_drivers, |
| 529 | crypto_drivers_num * sizeof(struct cryptocap)); |
| 530 | memset(&newdrv[crypto_drivers_num], 0, |
| 531 | crypto_drivers_num * sizeof(struct cryptocap)); |
| 532 | |
| 533 | crypto_drivers_num *= 2; |
| 534 | |
| 535 | kfree(crypto_drivers); |
| 536 | crypto_drivers = newdrv; |
| 537 | } |
| 538 | |
| 539 | /* NB: state is zero'd on free */ |
| 540 | crypto_drivers[i].cc_sessions = 1; /* Mark */ |
| 541 | crypto_drivers[i].cc_dev = dev; |
| 542 | crypto_drivers[i].cc_flags = flags; |
| 543 | if (bootverbose) |
| 544 | printf("crypto: assign %s driver id %u, flags %u\n", |
| 545 | device_get_nameunit(dev), i, flags); |
| 546 | |
| 547 | CRYPTO_DRIVER_UNLOCK(); |
| 548 | |
| 549 | return i; |
| 550 | } |
| 551 | |
| 552 | /* |
| 553 | * Lookup a driver by name. We match against the full device |
| 554 | * name and unit, and against just the name. The latter gives |
| 555 | * us a simple widlcarding by device name. On success return the |
| 556 | * driver/hardware identifier; otherwise return -1. |
| 557 | */ |
| 558 | int |
| 559 | crypto_find_driver(const char *match) |
| 560 | { |
| 561 | int i, len = strlen(match); |
| 562 | unsigned long d_flags; |
| 563 | |
| 564 | CRYPTO_DRIVER_LOCK(); |
| 565 | for (i = 0; i < crypto_drivers_num; i++) { |
| 566 | device_t dev = crypto_drivers[i].cc_dev; |
| 567 | if (dev == NULL || |
| 568 | (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP)) |
| 569 | continue; |
| 570 | if (strncmp(match, device_get_nameunit(dev), len) == 0 || |
| 571 | strncmp(match, device_get_name(dev), len) == 0) |
| 572 | break; |
| 573 | } |
| 574 | CRYPTO_DRIVER_UNLOCK(); |
| 575 | return i < crypto_drivers_num ? i : -1; |
| 576 | } |
| 577 | |
| 578 | /* |
| 579 | * Return the device_t for the specified driver or NULL |
| 580 | * if the driver identifier is invalid. |
| 581 | */ |
| 582 | device_t |
| 583 | crypto_find_device_byhid(int hid) |
| 584 | { |
| 585 | struct cryptocap *cap = crypto_checkdriver(hid); |
| 586 | return cap != NULL ? cap->cc_dev : NULL; |
| 587 | } |
| 588 | |
| 589 | /* |
| 590 | * Return the device/driver capabilities. |
| 591 | */ |
| 592 | int |
| 593 | crypto_getcaps(int hid) |
| 594 | { |
| 595 | struct cryptocap *cap = crypto_checkdriver(hid); |
| 596 | return cap != NULL ? cap->cc_flags : 0; |
| 597 | } |
| 598 | |
| 599 | /* |
| 600 | * Register support for a key-related algorithm. This routine |
| 601 | * is called once for each algorithm supported a driver. |
| 602 | */ |
| 603 | int |
| 604 | crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags) |
| 605 | { |
| 606 | struct cryptocap *cap; |
| 607 | int err; |
| 608 | unsigned long d_flags; |
| 609 | |
| 610 | dprintk("%s()\n", __FUNCTION__); |
| 611 | CRYPTO_DRIVER_LOCK(); |
| 612 | |
| 613 | cap = crypto_checkdriver(driverid); |
| 614 | if (cap != NULL && |
| 615 | (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { |
| 616 | /* |
| 617 | * XXX Do some performance testing to determine placing. |
| 618 | * XXX We probably need an auxiliary data structure that |
| 619 | * XXX describes relative performances. |
| 620 | */ |
| 621 | |
| 622 | cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; |
| 623 | if (bootverbose) |
| 624 | printf("crypto: %s registers key alg %u flags %u\n" |
| 625 | , device_get_nameunit(cap->cc_dev) |
| 626 | , kalg |
| 627 | , flags |
| 628 | ); |
| 629 | err = 0; |
| 630 | } else |
| 631 | err = EINVAL; |
| 632 | |
| 633 | CRYPTO_DRIVER_UNLOCK(); |
| 634 | return err; |
| 635 | } |
| 636 | |
| 637 | /* |
| 638 | * Register support for a non-key-related algorithm. This routine |
| 639 | * is called once for each such algorithm supported by a driver. |
| 640 | */ |
| 641 | int |
| 642 | crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, |
| 643 | u_int32_t flags) |
| 644 | { |
| 645 | struct cryptocap *cap; |
| 646 | int err; |
| 647 | unsigned long d_flags; |
| 648 | |
| 649 | dprintk("%s(id=0x%x, alg=%d, maxoplen=%d, flags=0x%x)\n", __FUNCTION__, |
| 650 | driverid, alg, maxoplen, flags); |
| 651 | |
| 652 | CRYPTO_DRIVER_LOCK(); |
| 653 | |
| 654 | cap = crypto_checkdriver(driverid); |
| 655 | /* NB: algorithms are in the range [1..max] */ |
| 656 | if (cap != NULL && |
| 657 | (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) { |
| 658 | /* |
| 659 | * XXX Do some performance testing to determine placing. |
| 660 | * XXX We probably need an auxiliary data structure that |
| 661 | * XXX describes relative performances. |
| 662 | */ |
| 663 | |
| 664 | cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; |
| 665 | cap->cc_max_op_len[alg] = maxoplen; |
| 666 | if (bootverbose) |
| 667 | printf("crypto: %s registers alg %u flags %u maxoplen %u\n" |
| 668 | , device_get_nameunit(cap->cc_dev) |
| 669 | , alg |
| 670 | , flags |
| 671 | , maxoplen |
| 672 | ); |
| 673 | cap->cc_sessions = 0; /* Unmark */ |
| 674 | err = 0; |
| 675 | } else |
| 676 | err = EINVAL; |
| 677 | |
| 678 | CRYPTO_DRIVER_UNLOCK(); |
| 679 | return err; |
| 680 | } |
| 681 | |
| 682 | static void |
| 683 | driver_finis(struct cryptocap *cap) |
| 684 | { |
| 685 | u_int32_t ses, kops; |
| 686 | |
| 687 | CRYPTO_DRIVER_ASSERT(); |
| 688 | |
| 689 | ses = cap->cc_sessions; |
| 690 | kops = cap->cc_koperations; |
| 691 | bzero(cap, sizeof(*cap)); |
| 692 | if (ses != 0 || kops != 0) { |
| 693 | /* |
| 694 | * If there are pending sessions, |
| 695 | * just mark as invalid. |
| 696 | */ |
| 697 | cap->cc_flags |= CRYPTOCAP_F_CLEANUP; |
| 698 | cap->cc_sessions = ses; |
| 699 | cap->cc_koperations = kops; |
| 700 | } |
| 701 | } |
| 702 | |
| 703 | /* |
| 704 | * Unregister a crypto driver. If there are pending sessions using it, |
| 705 | * leave enough information around so that subsequent calls using those |
| 706 | * sessions will correctly detect the driver has been unregistered and |
| 707 | * reroute requests. |
| 708 | */ |
| 709 | int |
| 710 | crypto_unregister(u_int32_t driverid, int alg) |
| 711 | { |
| 712 | struct cryptocap *cap; |
| 713 | int i, err; |
| 714 | unsigned long d_flags; |
| 715 | |
| 716 | dprintk("%s()\n", __FUNCTION__); |
| 717 | CRYPTO_DRIVER_LOCK(); |
| 718 | |
| 719 | cap = crypto_checkdriver(driverid); |
| 720 | if (cap != NULL && |
| 721 | (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) && |
| 722 | cap->cc_alg[alg] != 0) { |
| 723 | cap->cc_alg[alg] = 0; |
| 724 | cap->cc_max_op_len[alg] = 0; |
| 725 | |
| 726 | /* Was this the last algorithm ? */ |
| 727 | for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) |
| 728 | if (cap->cc_alg[i] != 0) |
| 729 | break; |
| 730 | |
| 731 | if (i == CRYPTO_ALGORITHM_MAX + 1) |
| 732 | driver_finis(cap); |
| 733 | err = 0; |
| 734 | } else |
| 735 | err = EINVAL; |
| 736 | CRYPTO_DRIVER_UNLOCK(); |
| 737 | return err; |
| 738 | } |
| 739 | |
| 740 | /* |
| 741 | * Unregister all algorithms associated with a crypto driver. |
| 742 | * If there are pending sessions using it, leave enough information |
| 743 | * around so that subsequent calls using those sessions will |
| 744 | * correctly detect the driver has been unregistered and reroute |
| 745 | * requests. |
| 746 | */ |
| 747 | int |
| 748 | crypto_unregister_all(u_int32_t driverid) |
| 749 | { |
| 750 | struct cryptocap *cap; |
| 751 | int err; |
| 752 | unsigned long d_flags; |
| 753 | |
| 754 | dprintk("%s()\n", __FUNCTION__); |
| 755 | CRYPTO_DRIVER_LOCK(); |
| 756 | cap = crypto_checkdriver(driverid); |
| 757 | if (cap != NULL) { |
| 758 | driver_finis(cap); |
| 759 | err = 0; |
| 760 | } else |
| 761 | err = EINVAL; |
| 762 | CRYPTO_DRIVER_UNLOCK(); |
| 763 | |
| 764 | return err; |
| 765 | } |
| 766 | |
| 767 | /* |
| 768 | * Clear blockage on a driver. The what parameter indicates whether |
| 769 | * the driver is now ready for cryptop's and/or cryptokop's. |
| 770 | */ |
| 771 | int |
| 772 | crypto_unblock(u_int32_t driverid, int what) |
| 773 | { |
| 774 | struct cryptocap *cap; |
| 775 | int err; |
| 776 | unsigned long q_flags; |
| 777 | |
| 778 | CRYPTO_Q_LOCK(); |
| 779 | cap = crypto_checkdriver(driverid); |
| 780 | if (cap != NULL) { |
| 781 | if (what & CRYPTO_SYMQ) { |
| 782 | cap->cc_qblocked = 0; |
| 783 | cap->cc_unqblocked = 0; |
| 784 | crypto_all_qblocked = 0; |
| 785 | } |
| 786 | if (what & CRYPTO_ASYMQ) { |
| 787 | cap->cc_kqblocked = 0; |
| 788 | cap->cc_unkqblocked = 0; |
| 789 | crypto_all_kqblocked = 0; |
| 790 | } |
| 791 | wake_up_interruptible(&cryptoproc_wait); |
| 792 | err = 0; |
| 793 | } else |
| 794 | err = EINVAL; |
| 795 | CRYPTO_Q_UNLOCK(); //DAVIDM should this be a driver lock |
| 796 | |
| 797 | return err; |
| 798 | } |
| 799 | |
| 800 | /* |
| 801 | * Add a crypto request to a queue, to be processed by the kernel thread. |
| 802 | */ |
| 803 | int |
| 804 | crypto_dispatch(struct cryptop *crp) |
| 805 | { |
| 806 | struct cryptocap *cap; |
| 807 | int result = -1; |
| 808 | unsigned long q_flags; |
| 809 | |
| 810 | dprintk("%s()\n", __FUNCTION__); |
| 811 | |
| 812 | cryptostats.cs_ops++; |
| 813 | |
| 814 | CRYPTO_Q_LOCK(); |
| 815 | if (crypto_q_cnt >= crypto_q_max) { |
| 816 | cryptostats.cs_drops++; |
| 817 | CRYPTO_Q_UNLOCK(); |
| 818 | return ENOMEM; |
| 819 | } |
| 820 | crypto_q_cnt++; |
| 821 | |
| 822 | /* make sure we are starting a fresh run on this crp. */ |
| 823 | crp->crp_flags &= ~CRYPTO_F_DONE; |
| 824 | crp->crp_etype = 0; |
| 825 | |
| 826 | /* |
| 827 | * Caller marked the request to be processed immediately; dispatch |
| 828 | * it directly to the driver unless the driver is currently blocked. |
| 829 | */ |
| 830 | if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { |
| 831 | int hid = CRYPTO_SESID2HID(crp->crp_sid); |
| 832 | cap = crypto_checkdriver(hid); |
| 833 | /* Driver cannot disappear when there is an active session. */ |
| 834 | KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__)); |
| 835 | if (!cap->cc_qblocked) { |
| 836 | crypto_all_qblocked = 0; |
| 837 | crypto_drivers[hid].cc_unqblocked = 1; |
| 838 | CRYPTO_Q_UNLOCK(); |
| 839 | result = crypto_invoke(cap, crp, 0); |
| 840 | CRYPTO_Q_LOCK(); |
| 841 | if (result == ERESTART) |
| 842 | if (crypto_drivers[hid].cc_unqblocked) |
| 843 | crypto_drivers[hid].cc_qblocked = 1; |
| 844 | crypto_drivers[hid].cc_unqblocked = 0; |
| 845 | } |
| 846 | } |
| 847 | if (result == ERESTART) { |
| 848 | /* |
| 849 | * The driver ran out of resources, mark the |
| 850 | * driver ``blocked'' for cryptop's and put |
| 851 | * the request back in the queue. It would |
| 852 | * best to put the request back where we got |
| 853 | * it but that's hard so for now we put it |
| 854 | * at the front. This should be ok; putting |
| 855 | * it at the end does not work. |
| 856 | */ |
| 857 | list_add(&crp->crp_next, &crp_q); |
| 858 | cryptostats.cs_blocks++; |
| 859 | result = 0; |
| 860 | } else if (result == -1) { |
| 861 | TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); |
| 862 | result = 0; |
| 863 | } |
| 864 | wake_up_interruptible(&cryptoproc_wait); |
| 865 | CRYPTO_Q_UNLOCK(); |
| 866 | return result; |
| 867 | } |
| 868 | |
| 869 | /* |
| 870 | * Add an asymetric crypto request to a queue, |
| 871 | * to be processed by the kernel thread. |
| 872 | */ |
| 873 | int |
| 874 | crypto_kdispatch(struct cryptkop *krp) |
| 875 | { |
| 876 | int error; |
| 877 | unsigned long q_flags; |
| 878 | |
| 879 | cryptostats.cs_kops++; |
| 880 | |
| 881 | error = crypto_kinvoke(krp, krp->krp_crid); |
| 882 | if (error == ERESTART) { |
| 883 | CRYPTO_Q_LOCK(); |
| 884 | TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); |
| 885 | wake_up_interruptible(&cryptoproc_wait); |
| 886 | CRYPTO_Q_UNLOCK(); |
| 887 | error = 0; |
| 888 | } |
| 889 | return error; |
| 890 | } |
| 891 | |
| 892 | /* |
| 893 | * Verify a driver is suitable for the specified operation. |
| 894 | */ |
| 895 | static __inline int |
| 896 | kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) |
| 897 | { |
| 898 | return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; |
| 899 | } |
| 900 | |
| 901 | /* |
| 902 | * Select a driver for an asym operation. The driver must |
| 903 | * support the necessary algorithm. The caller can constrain |
| 904 | * which device is selected with the flags parameter. The |
| 905 | * algorithm we use here is pretty stupid; just use the first |
| 906 | * driver that supports the algorithms we need. If there are |
| 907 | * multiple suitable drivers we choose the driver with the |
| 908 | * fewest active operations. We prefer hardware-backed |
| 909 | * drivers to software ones when either may be used. |
| 910 | */ |
| 911 | static struct cryptocap * |
| 912 | crypto_select_kdriver(const struct cryptkop *krp, int flags) |
| 913 | { |
| 914 | struct cryptocap *cap, *best, *blocked; |
| 915 | int match, hid; |
| 916 | |
| 917 | CRYPTO_DRIVER_ASSERT(); |
| 918 | |
| 919 | /* |
| 920 | * Look first for hardware crypto devices if permitted. |
| 921 | */ |
| 922 | if (flags & CRYPTOCAP_F_HARDWARE) |
| 923 | match = CRYPTOCAP_F_HARDWARE; |
| 924 | else |
| 925 | match = CRYPTOCAP_F_SOFTWARE; |
| 926 | best = NULL; |
| 927 | blocked = NULL; |
| 928 | again: |
| 929 | for (hid = 0; hid < crypto_drivers_num; hid++) { |
| 930 | cap = &crypto_drivers[hid]; |
| 931 | /* |
| 932 | * If it's not initialized, is in the process of |
| 933 | * going away, or is not appropriate (hardware |
| 934 | * or software based on match), then skip. |
| 935 | */ |
| 936 | if (cap->cc_dev == NULL || |
| 937 | (cap->cc_flags & CRYPTOCAP_F_CLEANUP) || |
| 938 | (cap->cc_flags & match) == 0) |
| 939 | continue; |
| 940 | |
| 941 | /* verify all the algorithms are supported. */ |
| 942 | if (kdriver_suitable(cap, krp)) { |
| 943 | if (best == NULL || |
| 944 | cap->cc_koperations < best->cc_koperations) |
| 945 | best = cap; |
| 946 | } |
| 947 | } |
| 948 | if (best != NULL) |
| 949 | return best; |
| 950 | if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { |
| 951 | /* sort of an Algol 68-style for loop */ |
| 952 | match = CRYPTOCAP_F_SOFTWARE; |
| 953 | goto again; |
| 954 | } |
| 955 | return best; |
| 956 | } |
| 957 | |
| 958 | /* |
| 959 | * Dispatch an assymetric crypto request. |
| 960 | */ |
| 961 | static int |
| 962 | crypto_kinvoke(struct cryptkop *krp, int crid) |
| 963 | { |
| 964 | struct cryptocap *cap = NULL; |
| 965 | int error; |
| 966 | unsigned long d_flags; |
| 967 | |
| 968 | KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); |
| 969 | KASSERT(krp->krp_callback != NULL, |
| 970 | ("%s: krp->crp_callback == NULL", __func__)); |
| 971 | |
| 972 | CRYPTO_DRIVER_LOCK(); |
| 973 | if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { |
| 974 | cap = crypto_checkdriver(crid); |
| 975 | if (cap != NULL) { |
| 976 | /* |
| 977 | * Driver present, it must support the necessary |
| 978 | * algorithm and, if s/w drivers are excluded, |
| 979 | * it must be registered as hardware-backed. |
| 980 | */ |
| 981 | if (!kdriver_suitable(cap, krp) || |
| 982 | (!crypto_devallowsoft && |
| 983 | (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) |
| 984 | cap = NULL; |
| 985 | } |
| 986 | } else { |
| 987 | /* |
| 988 | * No requested driver; select based on crid flags. |
| 989 | */ |
| 990 | if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ |
| 991 | crid &= ~CRYPTOCAP_F_SOFTWARE; |
| 992 | cap = crypto_select_kdriver(krp, crid); |
| 993 | } |
| 994 | if (cap != NULL && !cap->cc_kqblocked) { |
| 995 | krp->krp_hid = cap - crypto_drivers; |
| 996 | cap->cc_koperations++; |
| 997 | CRYPTO_DRIVER_UNLOCK(); |
| 998 | error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); |
| 999 | CRYPTO_DRIVER_LOCK(); |
| 1000 | if (error == ERESTART) { |
| 1001 | cap->cc_koperations--; |
| 1002 | CRYPTO_DRIVER_UNLOCK(); |
| 1003 | return (error); |
| 1004 | } |
| 1005 | /* return the actual device used */ |
| 1006 | krp->krp_crid = krp->krp_hid; |
| 1007 | } else { |
| 1008 | /* |
| 1009 | * NB: cap is !NULL if device is blocked; in |
| 1010 | * that case return ERESTART so the operation |
| 1011 | * is resubmitted if possible. |
| 1012 | */ |
| 1013 | error = (cap == NULL) ? ENODEV : ERESTART; |
| 1014 | } |
| 1015 | CRYPTO_DRIVER_UNLOCK(); |
| 1016 | |
| 1017 | if (error) { |
| 1018 | krp->krp_status = error; |
| 1019 | crypto_kdone(krp); |
| 1020 | } |
| 1021 | return 0; |
| 1022 | } |
| 1023 | |
| 1024 | |
| 1025 | /* |
| 1026 | * Dispatch a crypto request to the appropriate crypto devices. |
| 1027 | */ |
| 1028 | static int |
| 1029 | crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) |
| 1030 | { |
| 1031 | KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); |
| 1032 | KASSERT(crp->crp_callback != NULL, |
| 1033 | ("%s: crp->crp_callback == NULL", __func__)); |
| 1034 | KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__)); |
| 1035 | |
| 1036 | dprintk("%s()\n", __FUNCTION__); |
| 1037 | |
| 1038 | #ifdef CRYPTO_TIMING |
| 1039 | if (crypto_timing) |
| 1040 | crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); |
| 1041 | #endif |
| 1042 | if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { |
| 1043 | struct cryptodesc *crd; |
| 1044 | u_int64_t nid; |
| 1045 | |
| 1046 | /* |
| 1047 | * Driver has unregistered; migrate the session and return |
| 1048 | * an error to the caller so they'll resubmit the op. |
| 1049 | * |
| 1050 | * XXX: What if there are more already queued requests for this |
| 1051 | * session? |
| 1052 | */ |
| 1053 | crypto_freesession(crp->crp_sid); |
| 1054 | |
| 1055 | for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next) |
| 1056 | crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI); |
| 1057 | |
| 1058 | /* XXX propagate flags from initial session? */ |
| 1059 | if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), |
| 1060 | CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) |
| 1061 | crp->crp_sid = nid; |
| 1062 | |
| 1063 | crp->crp_etype = EAGAIN; |
| 1064 | crypto_done(crp); |
| 1065 | return 0; |
| 1066 | } else { |
| 1067 | /* |
| 1068 | * Invoke the driver to process the request. |
| 1069 | */ |
| 1070 | return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); |
| 1071 | } |
| 1072 | } |
| 1073 | |
| 1074 | /* |
| 1075 | * Release a set of crypto descriptors. |
| 1076 | */ |
| 1077 | void |
| 1078 | crypto_freereq(struct cryptop *crp) |
| 1079 | { |
| 1080 | struct cryptodesc *crd; |
| 1081 | |
| 1082 | if (crp == NULL) |
| 1083 | return; |
| 1084 | |
| 1085 | #ifdef DIAGNOSTIC |
| 1086 | { |
| 1087 | struct cryptop *crp2; |
| 1088 | unsigned long q_flags; |
| 1089 | |
| 1090 | CRYPTO_Q_LOCK(); |
| 1091 | TAILQ_FOREACH(crp2, &crp_q, crp_next) { |
| 1092 | KASSERT(crp2 != crp, |
| 1093 | ("Freeing cryptop from the crypto queue (%p).", |
| 1094 | crp)); |
| 1095 | } |
| 1096 | CRYPTO_Q_UNLOCK(); |
| 1097 | CRYPTO_RETQ_LOCK(); |
| 1098 | TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) { |
| 1099 | KASSERT(crp2 != crp, |
| 1100 | ("Freeing cryptop from the return queue (%p).", |
| 1101 | crp)); |
| 1102 | } |
| 1103 | CRYPTO_RETQ_UNLOCK(); |
| 1104 | } |
| 1105 | #endif |
| 1106 | |
| 1107 | while ((crd = crp->crp_desc) != NULL) { |
| 1108 | crp->crp_desc = crd->crd_next; |
| 1109 | kmem_cache_free(cryptodesc_zone, crd); |
| 1110 | } |
| 1111 | kmem_cache_free(cryptop_zone, crp); |
| 1112 | } |
| 1113 | |
| 1114 | /* |
| 1115 | * Acquire a set of crypto descriptors. |
| 1116 | */ |
| 1117 | struct cryptop * |
| 1118 | crypto_getreq(int num) |
| 1119 | { |
| 1120 | struct cryptodesc *crd; |
| 1121 | struct cryptop *crp; |
| 1122 | |
| 1123 | crp = kmem_cache_alloc(cryptop_zone, SLAB_ATOMIC); |
| 1124 | if (crp != NULL) { |
| 1125 | memset(crp, 0, sizeof(*crp)); |
| 1126 | INIT_LIST_HEAD(&crp->crp_next); |
| 1127 | init_waitqueue_head(&crp->crp_waitq); |
| 1128 | while (num--) { |
| 1129 | crd = kmem_cache_alloc(cryptodesc_zone, SLAB_ATOMIC); |
| 1130 | if (crd == NULL) { |
| 1131 | crypto_freereq(crp); |
| 1132 | return NULL; |
| 1133 | } |
| 1134 | memset(crd, 0, sizeof(*crd)); |
| 1135 | crd->crd_next = crp->crp_desc; |
| 1136 | crp->crp_desc = crd; |
| 1137 | } |
| 1138 | } |
| 1139 | return crp; |
| 1140 | } |
| 1141 | |
| 1142 | /* |
| 1143 | * Invoke the callback on behalf of the driver. |
| 1144 | */ |
| 1145 | void |
| 1146 | crypto_done(struct cryptop *crp) |
| 1147 | { |
| 1148 | unsigned long q_flags; |
| 1149 | |
| 1150 | dprintk("%s()\n", __FUNCTION__); |
| 1151 | if ((crp->crp_flags & CRYPTO_F_DONE) == 0) { |
| 1152 | crp->crp_flags |= CRYPTO_F_DONE; |
| 1153 | CRYPTO_Q_LOCK(); |
| 1154 | crypto_q_cnt--; |
| 1155 | CRYPTO_Q_UNLOCK(); |
| 1156 | } else |
| 1157 | printk("crypto: crypto_done op already done, flags 0x%x", |
| 1158 | crp->crp_flags); |
| 1159 | if (crp->crp_etype != 0) |
| 1160 | cryptostats.cs_errs++; |
| 1161 | /* |
| 1162 | * CBIMM means unconditionally do the callback immediately; |
| 1163 | * CBIFSYNC means do the callback immediately only if the |
| 1164 | * operation was done synchronously. Both are used to avoid |
| 1165 | * doing extraneous context switches; the latter is mostly |
| 1166 | * used with the software crypto driver. |
| 1167 | */ |
| 1168 | if ((crp->crp_flags & CRYPTO_F_CBIMM) || |
| 1169 | ((crp->crp_flags & CRYPTO_F_CBIFSYNC) && |
| 1170 | (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) { |
| 1171 | /* |
| 1172 | * Do the callback directly. This is ok when the |
| 1173 | * callback routine does very little (e.g. the |
| 1174 | * /dev/crypto callback method just does a wakeup). |
| 1175 | */ |
| 1176 | crp->crp_callback(crp); |
| 1177 | } else { |
| 1178 | unsigned long r_flags; |
| 1179 | /* |
| 1180 | * Normal case; queue the callback for the thread. |
| 1181 | */ |
| 1182 | CRYPTO_RETQ_LOCK(); |
| 1183 | wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */ |
| 1184 | TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next); |
| 1185 | CRYPTO_RETQ_UNLOCK(); |
| 1186 | } |
| 1187 | } |
| 1188 | |
| 1189 | /* |
| 1190 | * Invoke the callback on behalf of the driver. |
| 1191 | */ |
| 1192 | void |
| 1193 | crypto_kdone(struct cryptkop *krp) |
| 1194 | { |
| 1195 | struct cryptocap *cap; |
| 1196 | unsigned long d_flags; |
| 1197 | |
| 1198 | if ((krp->krp_flags & CRYPTO_KF_DONE) != 0) |
| 1199 | printk("crypto: crypto_kdone op already done, flags 0x%x", |
| 1200 | krp->krp_flags); |
| 1201 | krp->krp_flags |= CRYPTO_KF_DONE; |
| 1202 | if (krp->krp_status != 0) |
| 1203 | cryptostats.cs_kerrs++; |
| 1204 | |
| 1205 | CRYPTO_DRIVER_LOCK(); |
| 1206 | /* XXX: What if driver is loaded in the meantime? */ |
| 1207 | if (krp->krp_hid < crypto_drivers_num) { |
| 1208 | cap = &crypto_drivers[krp->krp_hid]; |
| 1209 | cap->cc_koperations--; |
| 1210 | KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0")); |
| 1211 | if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) |
| 1212 | crypto_remove(cap); |
| 1213 | } |
| 1214 | CRYPTO_DRIVER_UNLOCK(); |
| 1215 | |
| 1216 | /* |
| 1217 | * CBIMM means unconditionally do the callback immediately; |
| 1218 | * This is used to avoid doing extraneous context switches |
| 1219 | */ |
| 1220 | if ((krp->krp_flags & CRYPTO_KF_CBIMM)) { |
| 1221 | /* |
| 1222 | * Do the callback directly. This is ok when the |
| 1223 | * callback routine does very little (e.g. the |
| 1224 | * /dev/crypto callback method just does a wakeup). |
| 1225 | */ |
| 1226 | krp->krp_callback(krp); |
| 1227 | } else { |
| 1228 | unsigned long r_flags; |
| 1229 | /* |
| 1230 | * Normal case; queue the callback for the thread. |
| 1231 | */ |
| 1232 | CRYPTO_RETQ_LOCK(); |
| 1233 | wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */ |
| 1234 | TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next); |
| 1235 | CRYPTO_RETQ_UNLOCK(); |
| 1236 | } |
| 1237 | } |
| 1238 | |
| 1239 | int |
| 1240 | crypto_getfeat(int *featp) |
| 1241 | { |
| 1242 | int hid, kalg, feat = 0; |
| 1243 | unsigned long d_flags; |
| 1244 | |
| 1245 | CRYPTO_DRIVER_LOCK(); |
| 1246 | for (hid = 0; hid < crypto_drivers_num; hid++) { |
| 1247 | const struct cryptocap *cap = &crypto_drivers[hid]; |
| 1248 | |
| 1249 | if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && |
| 1250 | !crypto_devallowsoft) { |
| 1251 | continue; |
| 1252 | } |
| 1253 | for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) |
| 1254 | if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) |
| 1255 | feat |= 1 << kalg; |
| 1256 | } |
| 1257 | CRYPTO_DRIVER_UNLOCK(); |
| 1258 | *featp = feat; |
| 1259 | return (0); |
| 1260 | } |
| 1261 | |
| 1262 | /* |
| 1263 | * Crypto thread, dispatches crypto requests. |
| 1264 | */ |
| 1265 | static int |
| 1266 | crypto_proc(void *arg) |
| 1267 | { |
| 1268 | struct cryptop *crp, *submit; |
| 1269 | struct cryptkop *krp, *krpp; |
| 1270 | struct cryptocap *cap; |
| 1271 | u_int32_t hid; |
| 1272 | int result, hint; |
| 1273 | unsigned long q_flags; |
| 1274 | int loopcount = 0; |
| 1275 | |
| 1276 | set_current_state(TASK_INTERRUPTIBLE); |
| 1277 | |
| 1278 | CRYPTO_Q_LOCK(); |
| 1279 | for (;;) { |
| 1280 | /* |
| 1281 | * we need to make sure we don't get into a busy loop with nothing |
| 1282 | * to do, the two crypto_all_*blocked vars help us find out when |
| 1283 | * we are all full and can do nothing on any driver or Q. If so we |
| 1284 | * wait for an unblock. |
| 1285 | */ |
| 1286 | crypto_all_qblocked = !list_empty(&crp_q); |
| 1287 | |
| 1288 | /* |
| 1289 | * Find the first element in the queue that can be |
| 1290 | * processed and look-ahead to see if multiple ops |
| 1291 | * are ready for the same driver. |
| 1292 | */ |
| 1293 | submit = NULL; |
| 1294 | hint = 0; |
| 1295 | list_for_each_entry(crp, &crp_q, crp_next) { |
| 1296 | hid = CRYPTO_SESID2HID(crp->crp_sid); |
| 1297 | cap = crypto_checkdriver(hid); |
| 1298 | /* |
| 1299 | * Driver cannot disappear when there is an active |
| 1300 | * session. |
| 1301 | */ |
| 1302 | KASSERT(cap != NULL, ("%s:%u Driver disappeared.", |
| 1303 | __func__, __LINE__)); |
| 1304 | if (cap == NULL || cap->cc_dev == NULL) { |
| 1305 | /* Op needs to be migrated, process it. */ |
| 1306 | if (submit == NULL) |
| 1307 | submit = crp; |
| 1308 | break; |
| 1309 | } |
| 1310 | if (!cap->cc_qblocked) { |
| 1311 | if (submit != NULL) { |
| 1312 | /* |
| 1313 | * We stop on finding another op, |
| 1314 | * regardless whether its for the same |
| 1315 | * driver or not. We could keep |
| 1316 | * searching the queue but it might be |
| 1317 | * better to just use a per-driver |
| 1318 | * queue instead. |
| 1319 | */ |
| 1320 | if (CRYPTO_SESID2HID(submit->crp_sid) == hid) |
| 1321 | hint = CRYPTO_HINT_MORE; |
| 1322 | break; |
| 1323 | } else { |
| 1324 | submit = crp; |
| 1325 | if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) |
| 1326 | break; |
| 1327 | /* keep scanning for more are q'd */ |
| 1328 | } |
| 1329 | } |
| 1330 | } |
| 1331 | if (submit != NULL) { |
| 1332 | hid = CRYPTO_SESID2HID(submit->crp_sid); |
| 1333 | crypto_all_qblocked = 0; |
| 1334 | list_del(&submit->crp_next); |
| 1335 | crypto_drivers[hid].cc_unqblocked = 1; |
| 1336 | cap = crypto_checkdriver(hid); |
| 1337 | CRYPTO_Q_UNLOCK(); |
| 1338 | KASSERT(cap != NULL, ("%s:%u Driver disappeared.", |
| 1339 | __func__, __LINE__)); |
| 1340 | result = crypto_invoke(cap, submit, hint); |
| 1341 | CRYPTO_Q_LOCK(); |
| 1342 | if (result == ERESTART) { |
| 1343 | /* |
| 1344 | * The driver ran out of resources, mark the |
| 1345 | * driver ``blocked'' for cryptop's and put |
| 1346 | * the request back in the queue. It would |
| 1347 | * best to put the request back where we got |
| 1348 | * it but that's hard so for now we put it |
| 1349 | * at the front. This should be ok; putting |
| 1350 | * it at the end does not work. |
| 1351 | */ |
| 1352 | /* XXX validate sid again? */ |
| 1353 | list_add(&submit->crp_next, &crp_q); |
| 1354 | cryptostats.cs_blocks++; |
| 1355 | if (crypto_drivers[hid].cc_unqblocked) |
| 1356 | crypto_drivers[hid].cc_qblocked=0; |
| 1357 | crypto_drivers[hid].cc_unqblocked=0; |
| 1358 | } |
| 1359 | crypto_drivers[hid].cc_unqblocked = 0; |
| 1360 | } |
| 1361 | |
| 1362 | crypto_all_kqblocked = !list_empty(&crp_kq); |
| 1363 | |
| 1364 | /* As above, but for key ops */ |
| 1365 | krp = NULL; |
| 1366 | list_for_each_entry(krpp, &crp_kq, krp_next) { |
| 1367 | cap = crypto_checkdriver(krpp->krp_hid); |
| 1368 | if (cap == NULL || cap->cc_dev == NULL) { |
| 1369 | /* |
| 1370 | * Operation needs to be migrated, invalidate |
| 1371 | * the assigned device so it will reselect a |
| 1372 | * new one below. Propagate the original |
| 1373 | * crid selection flags if supplied. |
| 1374 | */ |
| 1375 | krp->krp_hid = krp->krp_crid & |
| 1376 | (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE); |
| 1377 | if (krp->krp_hid == 0) |
| 1378 | krp->krp_hid = |
| 1379 | CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE; |
| 1380 | break; |
| 1381 | } |
| 1382 | if (!cap->cc_kqblocked) { |
| 1383 | krp = krpp; |
| 1384 | break; |
| 1385 | } |
| 1386 | } |
| 1387 | if (krp != NULL) { |
| 1388 | crypto_all_kqblocked = 0; |
| 1389 | list_del(&krp->krp_next); |
| 1390 | crypto_drivers[krp->krp_hid].cc_kqblocked = 1; |
| 1391 | CRYPTO_Q_UNLOCK(); |
| 1392 | result = crypto_kinvoke(krp, krp->krp_hid); |
| 1393 | CRYPTO_Q_LOCK(); |
| 1394 | if (result == ERESTART) { |
| 1395 | /* |
| 1396 | * The driver ran out of resources, mark the |
| 1397 | * driver ``blocked'' for cryptkop's and put |
| 1398 | * the request back in the queue. It would |
| 1399 | * best to put the request back where we got |
| 1400 | * it but that's hard so for now we put it |
| 1401 | * at the front. This should be ok; putting |
| 1402 | * it at the end does not work. |
| 1403 | */ |
| 1404 | /* XXX validate sid again? */ |
| 1405 | list_add(&krp->krp_next, &crp_kq); |
| 1406 | cryptostats.cs_kblocks++; |
| 1407 | } else |
| 1408 | crypto_drivers[krp->krp_hid].cc_kqblocked = 0; |
| 1409 | } |
| 1410 | |
| 1411 | if (submit == NULL && krp == NULL) { |
| 1412 | /* |
| 1413 | * Nothing more to be processed. Sleep until we're |
| 1414 | * woken because there are more ops to process. |
| 1415 | * This happens either by submission or by a driver |
| 1416 | * becoming unblocked and notifying us through |
| 1417 | * crypto_unblock. Note that when we wakeup we |
| 1418 | * start processing each queue again from the |
| 1419 | * front. It's not clear that it's important to |
| 1420 | * preserve this ordering since ops may finish |
| 1421 | * out of order if dispatched to different devices |
| 1422 | * and some become blocked while others do not. |
| 1423 | */ |
| 1424 | dprintk("%s - sleeping (qe=%d qb=%d kqe=%d kqb=%d)\n", |
| 1425 | __FUNCTION__, |
| 1426 | list_empty(&crp_q), crypto_all_qblocked, |
| 1427 | list_empty(&crp_kq), crypto_all_kqblocked); |
| 1428 | loopcount = 0; |
| 1429 | CRYPTO_Q_UNLOCK(); |
| 1430 | wait_event_interruptible(cryptoproc_wait, |
| 1431 | !(list_empty(&crp_q) || crypto_all_qblocked) || |
| 1432 | !(list_empty(&crp_kq) || crypto_all_kqblocked) || |
| 1433 | kthread_should_stop()); |
| 1434 | if (signal_pending (current)) { |
| 1435 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) |
| 1436 | spin_lock_irq(¤t->sigmask_lock); |
| 1437 | #endif |
| 1438 | flush_signals(current); |
| 1439 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) |
| 1440 | spin_unlock_irq(¤t->sigmask_lock); |
| 1441 | #endif |
| 1442 | } |
| 1443 | CRYPTO_Q_LOCK(); |
| 1444 | dprintk("%s - awake\n", __FUNCTION__); |
| 1445 | if (kthread_should_stop()) |
| 1446 | break; |
| 1447 | cryptostats.cs_intrs++; |
| 1448 | } else if (loopcount > crypto_max_loopcount) { |
| 1449 | /* |
| 1450 | * Give other processes a chance to run if we've |
| 1451 | * been using the CPU exclusively for a while. |
| 1452 | */ |
| 1453 | loopcount = 0; |
| 1454 | CRYPTO_Q_UNLOCK(); |
| 1455 | schedule(); |
| 1456 | CRYPTO_Q_LOCK(); |
| 1457 | } |
| 1458 | loopcount++; |
| 1459 | } |
| 1460 | CRYPTO_Q_UNLOCK(); |
| 1461 | return 0; |
| 1462 | } |
| 1463 | |
| 1464 | /* |
| 1465 | * Crypto returns thread, does callbacks for processed crypto requests. |
| 1466 | * Callbacks are done here, rather than in the crypto drivers, because |
| 1467 | * callbacks typically are expensive and would slow interrupt handling. |
| 1468 | */ |
| 1469 | static int |
| 1470 | crypto_ret_proc(void *arg) |
| 1471 | { |
| 1472 | struct cryptop *crpt; |
| 1473 | struct cryptkop *krpt; |
| 1474 | unsigned long r_flags; |
| 1475 | |
| 1476 | set_current_state(TASK_INTERRUPTIBLE); |
| 1477 | |
| 1478 | CRYPTO_RETQ_LOCK(); |
| 1479 | for (;;) { |
| 1480 | /* Harvest return q's for completed ops */ |
| 1481 | crpt = NULL; |
| 1482 | if (!list_empty(&crp_ret_q)) |
| 1483 | crpt = list_entry(crp_ret_q.next, typeof(*crpt), crp_next); |
| 1484 | if (crpt != NULL) |
| 1485 | list_del(&crpt->crp_next); |
| 1486 | |
| 1487 | krpt = NULL; |
| 1488 | if (!list_empty(&crp_ret_kq)) |
| 1489 | krpt = list_entry(crp_ret_kq.next, typeof(*krpt), krp_next); |
| 1490 | if (krpt != NULL) |
| 1491 | list_del(&krpt->krp_next); |
| 1492 | |
| 1493 | if (crpt != NULL || krpt != NULL) { |
| 1494 | CRYPTO_RETQ_UNLOCK(); |
| 1495 | /* |
| 1496 | * Run callbacks unlocked. |
| 1497 | */ |
| 1498 | if (crpt != NULL) |
| 1499 | crpt->crp_callback(crpt); |
| 1500 | if (krpt != NULL) |
| 1501 | krpt->krp_callback(krpt); |
| 1502 | CRYPTO_RETQ_LOCK(); |
| 1503 | } else { |
| 1504 | /* |
| 1505 | * Nothing more to be processed. Sleep until we're |
| 1506 | * woken because there are more returns to process. |
| 1507 | */ |
| 1508 | dprintk("%s - sleeping\n", __FUNCTION__); |
| 1509 | CRYPTO_RETQ_UNLOCK(); |
| 1510 | wait_event_interruptible(cryptoretproc_wait, |
| 1511 | !list_empty(&crp_ret_q) || |
| 1512 | !list_empty(&crp_ret_kq) || |
| 1513 | kthread_should_stop()); |
| 1514 | if (signal_pending (current)) { |
| 1515 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) |
| 1516 | spin_lock_irq(¤t->sigmask_lock); |
| 1517 | #endif |
| 1518 | flush_signals(current); |
| 1519 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) |
| 1520 | spin_unlock_irq(¤t->sigmask_lock); |
| 1521 | #endif |
| 1522 | } |
| 1523 | CRYPTO_RETQ_LOCK(); |
| 1524 | dprintk("%s - awake\n", __FUNCTION__); |
| 1525 | if (kthread_should_stop()) { |
| 1526 | dprintk("%s - EXITING!\n", __FUNCTION__); |
| 1527 | break; |
| 1528 | } |
| 1529 | cryptostats.cs_rets++; |
| 1530 | } |
| 1531 | } |
| 1532 | CRYPTO_RETQ_UNLOCK(); |
| 1533 | return 0; |
| 1534 | } |
| 1535 | |
| 1536 | |
| 1537 | #if 0 /* should put this into /proc or something */ |
| 1538 | static void |
| 1539 | db_show_drivers(void) |
| 1540 | { |
| 1541 | int hid; |
| 1542 | |
| 1543 | db_printf("%12s %4s %4s %8s %2s %2s\n" |
| 1544 | , "Device" |
| 1545 | , "Ses" |
| 1546 | , "Kops" |
| 1547 | , "Flags" |
| 1548 | , "QB" |
| 1549 | , "KB" |
| 1550 | ); |
| 1551 | for (hid = 0; hid < crypto_drivers_num; hid++) { |
| 1552 | const struct cryptocap *cap = &crypto_drivers[hid]; |
| 1553 | if (cap->cc_dev == NULL) |
| 1554 | continue; |
| 1555 | db_printf("%-12s %4u %4u %08x %2u %2u\n" |
| 1556 | , device_get_nameunit(cap->cc_dev) |
| 1557 | , cap->cc_sessions |
| 1558 | , cap->cc_koperations |
| 1559 | , cap->cc_flags |
| 1560 | , cap->cc_qblocked |
| 1561 | , cap->cc_kqblocked |
| 1562 | ); |
| 1563 | } |
| 1564 | } |
| 1565 | |
| 1566 | DB_SHOW_COMMAND(crypto, db_show_crypto) |
| 1567 | { |
| 1568 | struct cryptop *crp; |
| 1569 | |
| 1570 | db_show_drivers(); |
| 1571 | db_printf("\n"); |
| 1572 | |
| 1573 | db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", |
| 1574 | "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", |
| 1575 | "Desc", "Callback"); |
| 1576 | TAILQ_FOREACH(crp, &crp_q, crp_next) { |
| 1577 | db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n" |
| 1578 | , (int) CRYPTO_SESID2HID(crp->crp_sid) |
| 1579 | , (int) CRYPTO_SESID2CAPS(crp->crp_sid) |
| 1580 | , crp->crp_ilen, crp->crp_olen |
| 1581 | , crp->crp_etype |
| 1582 | , crp->crp_flags |
| 1583 | , crp->crp_desc |
| 1584 | , crp->crp_callback |
| 1585 | ); |
| 1586 | } |
| 1587 | if (!TAILQ_EMPTY(&crp_ret_q)) { |
| 1588 | db_printf("\n%4s %4s %4s %8s\n", |
| 1589 | "HID", "Etype", "Flags", "Callback"); |
| 1590 | TAILQ_FOREACH(crp, &crp_ret_q, crp_next) { |
| 1591 | db_printf("%4u %4u %04x %8p\n" |
| 1592 | , (int) CRYPTO_SESID2HID(crp->crp_sid) |
| 1593 | , crp->crp_etype |
| 1594 | , crp->crp_flags |
| 1595 | , crp->crp_callback |
| 1596 | ); |
| 1597 | } |
| 1598 | } |
| 1599 | } |
| 1600 | |
| 1601 | DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) |
| 1602 | { |
| 1603 | struct cryptkop *krp; |
| 1604 | |
| 1605 | db_show_drivers(); |
| 1606 | db_printf("\n"); |
| 1607 | |
| 1608 | db_printf("%4s %5s %4s %4s %8s %4s %8s\n", |
| 1609 | "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); |
| 1610 | TAILQ_FOREACH(krp, &crp_kq, krp_next) { |
| 1611 | db_printf("%4u %5u %4u %4u %08x %4u %8p\n" |
| 1612 | , krp->krp_op |
| 1613 | , krp->krp_status |
| 1614 | , krp->krp_iparams, krp->krp_oparams |
| 1615 | , krp->krp_crid, krp->krp_hid |
| 1616 | , krp->krp_callback |
| 1617 | ); |
| 1618 | } |
| 1619 | if (!TAILQ_EMPTY(&crp_ret_q)) { |
| 1620 | db_printf("%4s %5s %8s %4s %8s\n", |
| 1621 | "Op", "Status", "CRID", "HID", "Callback"); |
| 1622 | TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) { |
| 1623 | db_printf("%4u %5u %08x %4u %8p\n" |
| 1624 | , krp->krp_op |
| 1625 | , krp->krp_status |
| 1626 | , krp->krp_crid, krp->krp_hid |
| 1627 | , krp->krp_callback |
| 1628 | ); |
| 1629 | } |
| 1630 | } |
| 1631 | } |
| 1632 | #endif |
| 1633 | |
| 1634 | |
| 1635 | static int |
| 1636 | crypto_init(void) |
| 1637 | { |
| 1638 | int error; |
| 1639 | unsigned long cpu; |
| 1640 | |
| 1641 | dprintk("%s(%p)\n", __FUNCTION__, (void *) crypto_init); |
| 1642 | |
| 1643 | if (crypto_initted) |
| 1644 | return 0; |
| 1645 | crypto_initted = 1; |
| 1646 | |
| 1647 | spin_lock_init(&crypto_drivers_lock); |
| 1648 | spin_lock_init(&crypto_q_lock); |
| 1649 | spin_lock_init(&crypto_ret_q_lock); |
| 1650 | |
| 1651 | cryptop_zone = kmem_cache_create("cryptop", sizeof(struct cryptop), |
| 1652 | 0, SLAB_HWCACHE_ALIGN, NULL |
| 1653 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) |
| 1654 | , NULL |
| 1655 | #endif |
| 1656 | ); |
| 1657 | |
| 1658 | cryptodesc_zone = kmem_cache_create("cryptodesc", sizeof(struct cryptodesc), |
| 1659 | 0, SLAB_HWCACHE_ALIGN, NULL |
| 1660 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) |
| 1661 | , NULL |
| 1662 | #endif |
| 1663 | ); |
| 1664 | |
| 1665 | if (cryptodesc_zone == NULL || cryptop_zone == NULL) { |
| 1666 | printk("crypto: crypto_init cannot setup crypto zones\n"); |
| 1667 | error = ENOMEM; |
| 1668 | goto bad; |
| 1669 | } |
| 1670 | |
| 1671 | crypto_drivers_num = CRYPTO_DRIVERS_INITIAL; |
| 1672 | crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap), |
| 1673 | GFP_KERNEL); |
| 1674 | if (crypto_drivers == NULL) { |
| 1675 | printk("crypto: crypto_init cannot setup crypto drivers\n"); |
| 1676 | error = ENOMEM; |
| 1677 | goto bad; |
| 1678 | } |
| 1679 | |
| 1680 | memset(crypto_drivers, 0, crypto_drivers_num * sizeof(struct cryptocap)); |
| 1681 | |
| 1682 | ocf_for_each_cpu(cpu) { |
| 1683 | cryptoproc[cpu] = kthread_create(crypto_proc, (void *) cpu, |
| 1684 | "ocf_%d", (int) cpu); |
| 1685 | if (IS_ERR(cryptoproc[cpu])) { |
| 1686 | error = PTR_ERR(cryptoproc[cpu]); |
| 1687 | printk("crypto: crypto_init cannot start crypto thread; error %d", |
| 1688 | error); |
| 1689 | goto bad; |
| 1690 | } |
| 1691 | kthread_bind(cryptoproc[cpu], cpu); |
| 1692 | wake_up_process(cryptoproc[cpu]); |
| 1693 | |
| 1694 | cryptoretproc[cpu] = kthread_create(crypto_ret_proc, (void *) cpu, |
| 1695 | "ocf_ret_%d", (int) cpu); |
| 1696 | if (IS_ERR(cryptoretproc[cpu])) { |
| 1697 | error = PTR_ERR(cryptoretproc[cpu]); |
| 1698 | printk("crypto: crypto_init cannot start cryptoret thread; error %d", |
| 1699 | error); |
| 1700 | goto bad; |
| 1701 | } |
| 1702 | kthread_bind(cryptoretproc[cpu], cpu); |
| 1703 | wake_up_process(cryptoretproc[cpu]); |
| 1704 | } |
| 1705 | |
| 1706 | return 0; |
| 1707 | bad: |
| 1708 | crypto_exit(); |
| 1709 | return error; |
| 1710 | } |
| 1711 | |
| 1712 | |
| 1713 | static void |
| 1714 | crypto_exit(void) |
| 1715 | { |
| 1716 | int cpu; |
| 1717 | |
| 1718 | dprintk("%s()\n", __FUNCTION__); |
| 1719 | |
| 1720 | /* |
| 1721 | * Terminate any crypto threads. |
| 1722 | */ |
| 1723 | ocf_for_each_cpu(cpu) { |
| 1724 | kthread_stop(cryptoproc[cpu]); |
| 1725 | kthread_stop(cryptoretproc[cpu]); |
| 1726 | } |
| 1727 | |
| 1728 | /* |
| 1729 | * Reclaim dynamically allocated resources. |
| 1730 | */ |
| 1731 | if (crypto_drivers != NULL) |
| 1732 | kfree(crypto_drivers); |
| 1733 | |
| 1734 | if (cryptodesc_zone != NULL) |
| 1735 | kmem_cache_destroy(cryptodesc_zone); |
| 1736 | if (cryptop_zone != NULL) |
| 1737 | kmem_cache_destroy(cryptop_zone); |
| 1738 | } |
| 1739 | |
| 1740 | |
| 1741 | EXPORT_SYMBOL(crypto_newsession); |
| 1742 | EXPORT_SYMBOL(crypto_freesession); |
| 1743 | EXPORT_SYMBOL(crypto_get_driverid); |
| 1744 | EXPORT_SYMBOL(crypto_kregister); |
| 1745 | EXPORT_SYMBOL(crypto_register); |
| 1746 | EXPORT_SYMBOL(crypto_unregister); |
| 1747 | EXPORT_SYMBOL(crypto_unregister_all); |
| 1748 | EXPORT_SYMBOL(crypto_unblock); |
| 1749 | EXPORT_SYMBOL(crypto_dispatch); |
| 1750 | EXPORT_SYMBOL(crypto_kdispatch); |
| 1751 | EXPORT_SYMBOL(crypto_freereq); |
| 1752 | EXPORT_SYMBOL(crypto_getreq); |
| 1753 | EXPORT_SYMBOL(crypto_done); |
| 1754 | EXPORT_SYMBOL(crypto_kdone); |
| 1755 | EXPORT_SYMBOL(crypto_getfeat); |
| 1756 | EXPORT_SYMBOL(crypto_userasymcrypto); |
| 1757 | EXPORT_SYMBOL(crypto_getcaps); |
| 1758 | EXPORT_SYMBOL(crypto_find_driver); |
| 1759 | EXPORT_SYMBOL(crypto_find_device_byhid); |
| 1760 | |
| 1761 | module_init(crypto_init); |
| 1762 | module_exit(crypto_exit); |
| 1763 | |
| 1764 | MODULE_LICENSE("BSD"); |
| 1765 | MODULE_AUTHOR("David McCullough <david_mccullough@mcafee.com>"); |
| 1766 | MODULE_DESCRIPTION("OCF (OpenBSD Cryptographic Framework)"); |
| 1767 | |