| 1 | /*************************************************************************** |
| 2 | * |
| 3 | * This file is provided under a dual BSD/GPLv2 license. When using or |
| 4 | * redistributing this file, you may do so under either license. |
| 5 | * |
| 6 | * GPL LICENSE SUMMARY |
| 7 | * |
| 8 | * Copyright(c) 2007,2008,2009 Intel Corporation. All rights reserved. |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify |
| 11 | * it under the terms of version 2 of the GNU General Public License as |
| 12 | * published by the Free Software Foundation. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, but |
| 15 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 17 | * General Public License for more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License |
| 20 | * along with this program; if not, write to the Free Software |
| 21 | * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 22 | * The full GNU General Public License is included in this distribution |
| 23 | * in the file called LICENSE.GPL. |
| 24 | * |
| 25 | * Contact Information: |
| 26 | * Intel Corporation |
| 27 | * |
| 28 | * BSD LICENSE |
| 29 | * |
| 30 | * Copyright(c) 2007,2008,2009 Intel Corporation. All rights reserved. |
| 31 | * All rights reserved. |
| 32 | * |
| 33 | * Redistribution and use in source and binary forms, with or without |
| 34 | * modification, are permitted provided that the following conditions |
| 35 | * are met: |
| 36 | * |
| 37 | * * Redistributions of source code must retain the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer. |
| 39 | * * Redistributions in binary form must reproduce the above copyright |
| 40 | * notice, this list of conditions and the following disclaimer in |
| 41 | * the documentation and/or other materials provided with the |
| 42 | * distribution. |
| 43 | * * Neither the name of Intel Corporation nor the names of its |
| 44 | * contributors may be used to endorse or promote products derived |
| 45 | * from this software without specific prior written permission. |
| 46 | * |
| 47 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 48 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 49 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 50 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 51 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 52 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 53 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 54 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 55 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 56 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 57 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 58 | * |
| 59 | * |
| 60 | * version: Security.L.1.0.2-229 |
| 61 | * |
| 62 | ***************************************************************************/ |
| 63 | /* |
| 64 | * An OCF module that uses the API for IntelĀ® QuickAssist Technology to do the |
| 65 | * cryptography. |
| 66 | * |
| 67 | * This driver requires the ICP Access Library that is available from Intel in |
| 68 | * order to operate. |
| 69 | */ |
| 70 | |
| 71 | #include "icp_ocf.h" |
| 72 | |
| 73 | /*This is the call back function for all symmetric cryptographic processes. |
| 74 | Its main functionality is to free driver crypto operation structure and to |
| 75 | call back to OCF*/ |
| 76 | static void |
| 77 | icp_ocfDrvSymCallBack(void *callbackTag, |
| 78 | CpaStatus status, |
| 79 | const CpaCySymOp operationType, |
| 80 | void *pOpData, |
| 81 | CpaBufferList * pDstBuffer, CpaBoolean verifyResult); |
| 82 | |
| 83 | /*This function is used to extract crypto processing information from the OCF |
| 84 | inputs, so as that it may be passed onto LAC*/ |
| 85 | static int |
| 86 | icp_ocfDrvProcessDataSetup(struct icp_drvOpData *drvOpData, |
| 87 | struct cryptodesc *crp_desc); |
| 88 | |
| 89 | /*This function checks whether the crp_desc argument pertains to a digest or a |
| 90 | cipher operation*/ |
| 91 | static int icp_ocfDrvAlgCheck(struct cryptodesc *crp_desc); |
| 92 | |
| 93 | /*This function copies all the passed in session context information and stores |
| 94 | it in a LAC context structure*/ |
| 95 | static int |
| 96 | icp_ocfDrvAlgorithmSetup(struct cryptoini *cri, |
| 97 | CpaCySymSessionSetupData * lacSessCtx); |
| 98 | |
| 99 | /*This function is used to free an OCF->OCF_DRV session object*/ |
| 100 | static void icp_ocfDrvFreeOCFSession(struct icp_drvSessionData *sessionData); |
| 101 | |
| 102 | /*max IOV buffs supported in a UIO structure*/ |
| 103 | #define NUM_IOV_SUPPORTED (1) |
| 104 | |
| 105 | /* Name : icp_ocfDrvSymCallBack |
| 106 | * |
| 107 | * Description : When this function returns it signifies that the LAC |
| 108 | * component has completed the relevant symmetric operation. |
| 109 | * |
| 110 | * Notes : The callbackTag is a pointer to an icp_drvOpData. This memory |
| 111 | * object was passed to LAC for the cryptographic processing and contains all |
| 112 | * the relevant information for cleaning up buffer handles etc. so that the |
| 113 | * OCF EP80579 Driver portion of this crypto operation can be fully completed. |
| 114 | */ |
| 115 | static void |
| 116 | icp_ocfDrvSymCallBack(void *callbackTag, |
| 117 | CpaStatus status, |
| 118 | const CpaCySymOp operationType, |
| 119 | void *pOpData, |
| 120 | CpaBufferList * pDstBuffer, CpaBoolean verifyResult) |
| 121 | { |
| 122 | struct cryptop *crp = NULL; |
| 123 | struct icp_drvOpData *temp_drvOpData = |
| 124 | (struct icp_drvOpData *)callbackTag; |
| 125 | uint64_t *tempBasePtr = NULL; |
| 126 | uint32_t tempLen = 0; |
| 127 | |
| 128 | if (NULL == temp_drvOpData) { |
| 129 | DPRINTK("%s(): The callback from the LAC component" |
| 130 | " has failed due to Null userOpaque data" |
| 131 | "(status == %d).\n", __FUNCTION__, status); |
| 132 | DPRINTK("%s(): Unable to call OCF back! \n", __FUNCTION__); |
| 133 | return; |
| 134 | } |
| 135 | |
| 136 | crp = temp_drvOpData->crp; |
| 137 | crp->crp_etype = ICP_OCF_DRV_NO_CRYPTO_PROCESS_ERROR; |
| 138 | |
| 139 | if (NULL == pOpData) { |
| 140 | DPRINTK("%s(): The callback from the LAC component" |
| 141 | " has failed due to Null Symmetric Op data" |
| 142 | "(status == %d).\n", __FUNCTION__, status); |
| 143 | crp->crp_etype = ECANCELED; |
| 144 | crypto_done(crp); |
| 145 | return; |
| 146 | } |
| 147 | |
| 148 | if (NULL == pDstBuffer) { |
| 149 | DPRINTK("%s(): The callback from the LAC component" |
| 150 | " has failed due to Null Dst Bufferlist data" |
| 151 | "(status == %d).\n", __FUNCTION__, status); |
| 152 | crp->crp_etype = ECANCELED; |
| 153 | crypto_done(crp); |
| 154 | return; |
| 155 | } |
| 156 | |
| 157 | if (CPA_STATUS_SUCCESS == status) { |
| 158 | |
| 159 | if (temp_drvOpData->bufferType == ICP_CRYPTO_F_PACKET_BUF) { |
| 160 | if (ICP_OCF_DRV_STATUS_SUCCESS != |
| 161 | icp_ocfDrvBufferListToPacketBuff(pDstBuffer, |
| 162 | (icp_packet_buffer_t |
| 163 | **) |
| 164 | & (crp->crp_buf))) { |
| 165 | EPRINTK("%s(): BufferList to SkBuff " |
| 166 | "conversion error.\n", __FUNCTION__); |
| 167 | crp->crp_etype = EPERM; |
| 168 | } |
| 169 | } else { |
| 170 | icp_ocfDrvBufferListToPtrAndLen(pDstBuffer, |
| 171 | (void **)&tempBasePtr, |
| 172 | &tempLen); |
| 173 | crp->crp_olen = (int)tempLen; |
| 174 | } |
| 175 | |
| 176 | } else { |
| 177 | DPRINTK("%s(): The callback from the LAC component has failed" |
| 178 | "(status == %d).\n", __FUNCTION__, status); |
| 179 | |
| 180 | crp->crp_etype = ECANCELED; |
| 181 | } |
| 182 | |
| 183 | if (temp_drvOpData->numBufferListArray > |
| 184 | ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS) { |
| 185 | icp_kfree(pDstBuffer->pBuffers); |
| 186 | } |
| 187 | icp_ocfDrvFreeMetaData(pDstBuffer); |
| 188 | ICP_CACHE_FREE(drvOpData_zone, temp_drvOpData); |
| 189 | |
| 190 | /* Invoke the OCF callback function */ |
| 191 | crypto_done(crp); |
| 192 | |
| 193 | return; |
| 194 | } |
| 195 | |
| 196 | /* Name : icp_ocfDrvNewSession |
| 197 | * |
| 198 | * Description : This function will create a new Driver<->OCF session |
| 199 | * |
| 200 | * Notes : LAC session registration happens during the first perform call. |
| 201 | * That is the first time we know all information about a given session. |
| 202 | */ |
| 203 | int icp_ocfDrvNewSession(icp_device_t dev, uint32_t * sid, |
| 204 | struct cryptoini *cri) |
| 205 | { |
| 206 | struct icp_drvSessionData *sessionData = NULL; |
| 207 | uint32_t delete_session = 0; |
| 208 | |
| 209 | /* The SID passed in should be our driver ID. We can return the */ |
| 210 | /* local ID (LID) which is a unique identifier which we can use */ |
| 211 | /* to differentiate between the encrypt/decrypt LAC session handles */ |
| 212 | if (NULL == sid) { |
| 213 | EPRINTK("%s(): Invalid input parameters - NULL sid.\n", |
| 214 | __FUNCTION__); |
| 215 | return EINVAL; |
| 216 | } |
| 217 | |
| 218 | if (NULL == cri) { |
| 219 | EPRINTK("%s(): Invalid input parameters - NULL cryptoini.\n", |
| 220 | __FUNCTION__); |
| 221 | return EINVAL; |
| 222 | } |
| 223 | |
| 224 | if (icp_ocfDrvDriverId != *sid) { |
| 225 | EPRINTK("%s(): Invalid input parameters - bad driver ID\n", |
| 226 | __FUNCTION__); |
| 227 | EPRINTK("\t sid = 0x08%p \n \t cri = 0x08%p \n", sid, cri); |
| 228 | return EINVAL; |
| 229 | } |
| 230 | |
| 231 | sessionData = icp_kmem_cache_zalloc(drvSessionData_zone, ICP_M_NOWAIT); |
| 232 | if (NULL == sessionData) { |
| 233 | DPRINTK("%s():No memory for Session Data\n", __FUNCTION__); |
| 234 | return ENOMEM; |
| 235 | } |
| 236 | |
| 237 | /*ENTER CRITICAL SECTION */ |
| 238 | icp_spin_lockbh_lock(&icp_ocfDrvSymSessInfoListSpinlock); |
| 239 | /*put this check in the spinlock so no new sessions can be added to the |
| 240 | linked list when we are exiting */ |
| 241 | if (CPA_TRUE == icp_atomic_read(&icp_ocfDrvIsExiting)) { |
| 242 | delete_session++; |
| 243 | |
| 244 | } else if (NO_OCF_TO_DRV_MAX_SESSIONS != max_sessions) { |
| 245 | if (icp_atomic_read(&num_ocf_to_drv_registered_sessions) >= |
| 246 | (max_sessions - |
| 247 | icp_atomic_read(&lac_session_failed_dereg_count))) { |
| 248 | delete_session++; |
| 249 | } else { |
| 250 | icp_atomic_inc(&num_ocf_to_drv_registered_sessions); |
| 251 | /* Add to session data linked list */ |
| 252 | ICP_LIST_ADD(sessionData, &icp_ocfDrvGlobalSymListHead, |
| 253 | listNode); |
| 254 | } |
| 255 | |
| 256 | } else if (NO_OCF_TO_DRV_MAX_SESSIONS == max_sessions) { |
| 257 | ICP_LIST_ADD(sessionData, &icp_ocfDrvGlobalSymListHead, |
| 258 | listNode); |
| 259 | } |
| 260 | |
| 261 | sessionData->inUse = ICP_SESSION_INITIALISED; |
| 262 | |
| 263 | /*EXIT CRITICAL SECTION */ |
| 264 | icp_spin_lockbh_unlock(&icp_ocfDrvSymSessInfoListSpinlock); |
| 265 | |
| 266 | if (delete_session) { |
| 267 | DPRINTK("%s():No Session handles available\n", __FUNCTION__); |
| 268 | ICP_CACHE_FREE(drvSessionData_zone, sessionData); |
| 269 | return EPERM; |
| 270 | } |
| 271 | |
| 272 | if (ICP_OCF_DRV_STATUS_SUCCESS != |
| 273 | icp_ocfDrvAlgorithmSetup(cri, &(sessionData->lacSessCtx))) { |
| 274 | DPRINTK("%s():algorithm not supported\n", __FUNCTION__); |
| 275 | icp_ocfDrvFreeOCFSession(sessionData); |
| 276 | return EINVAL; |
| 277 | } |
| 278 | |
| 279 | if (cri->cri_next) { |
| 280 | if (cri->cri_next->cri_next != NULL) { |
| 281 | DPRINTK("%s():only two chained algorithms supported\n", |
| 282 | __FUNCTION__); |
| 283 | icp_ocfDrvFreeOCFSession(sessionData); |
| 284 | return EPERM; |
| 285 | } |
| 286 | |
| 287 | if (ICP_OCF_DRV_STATUS_SUCCESS != |
| 288 | icp_ocfDrvAlgorithmSetup(cri->cri_next, |
| 289 | &(sessionData->lacSessCtx))) { |
| 290 | DPRINTK("%s():second algorithm not supported\n", |
| 291 | __FUNCTION__); |
| 292 | icp_ocfDrvFreeOCFSession(sessionData); |
| 293 | return EINVAL; |
| 294 | } |
| 295 | |
| 296 | sessionData->lacSessCtx.symOperation = |
| 297 | CPA_CY_SYM_OP_ALGORITHM_CHAINING; |
| 298 | } |
| 299 | |
| 300 | *sid = (uint32_t) sessionData; |
| 301 | |
| 302 | return ICP_OCF_DRV_STATUS_SUCCESS; |
| 303 | } |
| 304 | |
| 305 | /* Name : icp_ocfDrvAlgorithmSetup |
| 306 | * |
| 307 | * Description : This function builds the session context data from the |
| 308 | * information supplied through OCF. Algorithm chain order and whether the |
| 309 | * session is Encrypt/Decrypt can only be found out at perform time however, so |
| 310 | * the session is registered with LAC at that time. |
| 311 | */ |
| 312 | static int |
| 313 | icp_ocfDrvAlgorithmSetup(struct cryptoini *cri, |
| 314 | CpaCySymSessionSetupData * lacSessCtx) |
| 315 | { |
| 316 | |
| 317 | lacSessCtx->sessionPriority = CPA_CY_PRIORITY_NORMAL; |
| 318 | |
| 319 | switch (cri->cri_alg) { |
| 320 | |
| 321 | case CRYPTO_NULL_CBC: |
| 322 | DPRINTK("%s(): NULL CBC\n", __FUNCTION__); |
| 323 | lacSessCtx->symOperation = CPA_CY_SYM_OP_CIPHER; |
| 324 | lacSessCtx->cipherSetupData.cipherAlgorithm = |
| 325 | CPA_CY_SYM_CIPHER_NULL; |
| 326 | lacSessCtx->cipherSetupData.cipherKeyLenInBytes = |
| 327 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 328 | lacSessCtx->cipherSetupData.pCipherKey = cri->cri_key; |
| 329 | break; |
| 330 | |
| 331 | case CRYPTO_DES_CBC: |
| 332 | DPRINTK("%s(): DES CBC\n", __FUNCTION__); |
| 333 | lacSessCtx->symOperation = CPA_CY_SYM_OP_CIPHER; |
| 334 | lacSessCtx->cipherSetupData.cipherAlgorithm = |
| 335 | CPA_CY_SYM_CIPHER_DES_CBC; |
| 336 | lacSessCtx->cipherSetupData.cipherKeyLenInBytes = |
| 337 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 338 | lacSessCtx->cipherSetupData.pCipherKey = cri->cri_key; |
| 339 | break; |
| 340 | |
| 341 | case CRYPTO_3DES_CBC: |
| 342 | DPRINTK("%s(): 3DES CBC\n", __FUNCTION__); |
| 343 | lacSessCtx->symOperation = CPA_CY_SYM_OP_CIPHER; |
| 344 | lacSessCtx->cipherSetupData.cipherAlgorithm = |
| 345 | CPA_CY_SYM_CIPHER_3DES_CBC; |
| 346 | lacSessCtx->cipherSetupData.cipherKeyLenInBytes = |
| 347 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 348 | lacSessCtx->cipherSetupData.pCipherKey = cri->cri_key; |
| 349 | break; |
| 350 | |
| 351 | case CRYPTO_AES_CBC: |
| 352 | DPRINTK("%s(): AES CBC\n", __FUNCTION__); |
| 353 | lacSessCtx->symOperation = CPA_CY_SYM_OP_CIPHER; |
| 354 | lacSessCtx->cipherSetupData.cipherAlgorithm = |
| 355 | CPA_CY_SYM_CIPHER_AES_CBC; |
| 356 | lacSessCtx->cipherSetupData.cipherKeyLenInBytes = |
| 357 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 358 | lacSessCtx->cipherSetupData.pCipherKey = cri->cri_key; |
| 359 | break; |
| 360 | |
| 361 | case CRYPTO_ARC4: |
| 362 | DPRINTK("%s(): ARC4\n", __FUNCTION__); |
| 363 | lacSessCtx->symOperation = CPA_CY_SYM_OP_CIPHER; |
| 364 | lacSessCtx->cipherSetupData.cipherAlgorithm = |
| 365 | CPA_CY_SYM_CIPHER_ARC4; |
| 366 | lacSessCtx->cipherSetupData.cipherKeyLenInBytes = |
| 367 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 368 | lacSessCtx->cipherSetupData.pCipherKey = cri->cri_key; |
| 369 | break; |
| 370 | |
| 371 | case CRYPTO_SHA1: |
| 372 | DPRINTK("%s(): SHA1\n", __FUNCTION__); |
| 373 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 374 | lacSessCtx->hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_SHA1; |
| 375 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_PLAIN; |
| 376 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 377 | (cri->cri_mlen ? |
| 378 | cri->cri_mlen : ICP_SHA1_DIGEST_SIZE_IN_BYTES); |
| 379 | |
| 380 | break; |
| 381 | |
| 382 | case CRYPTO_SHA1_HMAC: |
| 383 | DPRINTK("%s(): SHA1_HMAC\n", __FUNCTION__); |
| 384 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 385 | lacSessCtx->hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_SHA1; |
| 386 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_AUTH; |
| 387 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 388 | (cri->cri_mlen ? |
| 389 | cri->cri_mlen : ICP_SHA1_DIGEST_SIZE_IN_BYTES); |
| 390 | lacSessCtx->hashSetupData.authModeSetupData.authKey = |
| 391 | cri->cri_key; |
| 392 | lacSessCtx->hashSetupData.authModeSetupData.authKeyLenInBytes = |
| 393 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 394 | lacSessCtx->hashSetupData.authModeSetupData.aadLenInBytes = 0; |
| 395 | |
| 396 | break; |
| 397 | |
| 398 | case CRYPTO_SHA2_256: |
| 399 | DPRINTK("%s(): SHA256\n", __FUNCTION__); |
| 400 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 401 | lacSessCtx->hashSetupData.hashAlgorithm = |
| 402 | CPA_CY_SYM_HASH_SHA256; |
| 403 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_PLAIN; |
| 404 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 405 | (cri->cri_mlen ? |
| 406 | cri->cri_mlen : ICP_SHA256_DIGEST_SIZE_IN_BYTES); |
| 407 | |
| 408 | break; |
| 409 | |
| 410 | case CRYPTO_SHA2_256_HMAC: |
| 411 | DPRINTK("%s(): SHA256_HMAC\n", __FUNCTION__); |
| 412 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 413 | lacSessCtx->hashSetupData.hashAlgorithm = |
| 414 | CPA_CY_SYM_HASH_SHA256; |
| 415 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_AUTH; |
| 416 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 417 | (cri->cri_mlen ? |
| 418 | cri->cri_mlen : ICP_SHA256_DIGEST_SIZE_IN_BYTES); |
| 419 | lacSessCtx->hashSetupData.authModeSetupData.authKey = |
| 420 | cri->cri_key; |
| 421 | lacSessCtx->hashSetupData.authModeSetupData.authKeyLenInBytes = |
| 422 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 423 | lacSessCtx->hashSetupData.authModeSetupData.aadLenInBytes = 0; |
| 424 | |
| 425 | break; |
| 426 | |
| 427 | case CRYPTO_SHA2_384: |
| 428 | DPRINTK("%s(): SHA384\n", __FUNCTION__); |
| 429 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 430 | lacSessCtx->hashSetupData.hashAlgorithm = |
| 431 | CPA_CY_SYM_HASH_SHA384; |
| 432 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_PLAIN; |
| 433 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 434 | (cri->cri_mlen ? |
| 435 | cri->cri_mlen : ICP_SHA384_DIGEST_SIZE_IN_BYTES); |
| 436 | |
| 437 | break; |
| 438 | |
| 439 | case CRYPTO_SHA2_384_HMAC: |
| 440 | DPRINTK("%s(): SHA384_HMAC\n", __FUNCTION__); |
| 441 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 442 | lacSessCtx->hashSetupData.hashAlgorithm = |
| 443 | CPA_CY_SYM_HASH_SHA384; |
| 444 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_AUTH; |
| 445 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 446 | (cri->cri_mlen ? |
| 447 | cri->cri_mlen : ICP_SHA384_DIGEST_SIZE_IN_BYTES); |
| 448 | lacSessCtx->hashSetupData.authModeSetupData.authKey = |
| 449 | cri->cri_key; |
| 450 | lacSessCtx->hashSetupData.authModeSetupData.authKeyLenInBytes = |
| 451 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 452 | lacSessCtx->hashSetupData.authModeSetupData.aadLenInBytes = 0; |
| 453 | |
| 454 | break; |
| 455 | |
| 456 | case CRYPTO_SHA2_512: |
| 457 | DPRINTK("%s(): SHA512\n", __FUNCTION__); |
| 458 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 459 | lacSessCtx->hashSetupData.hashAlgorithm = |
| 460 | CPA_CY_SYM_HASH_SHA512; |
| 461 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_PLAIN; |
| 462 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 463 | (cri->cri_mlen ? |
| 464 | cri->cri_mlen : ICP_SHA512_DIGEST_SIZE_IN_BYTES); |
| 465 | |
| 466 | break; |
| 467 | |
| 468 | case CRYPTO_SHA2_512_HMAC: |
| 469 | DPRINTK("%s(): SHA512_HMAC\n", __FUNCTION__); |
| 470 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 471 | lacSessCtx->hashSetupData.hashAlgorithm = |
| 472 | CPA_CY_SYM_HASH_SHA512; |
| 473 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_AUTH; |
| 474 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 475 | (cri->cri_mlen ? |
| 476 | cri->cri_mlen : ICP_SHA512_DIGEST_SIZE_IN_BYTES); |
| 477 | lacSessCtx->hashSetupData.authModeSetupData.authKey = |
| 478 | cri->cri_key; |
| 479 | lacSessCtx->hashSetupData.authModeSetupData.authKeyLenInBytes = |
| 480 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 481 | lacSessCtx->hashSetupData.authModeSetupData.aadLenInBytes = 0; |
| 482 | |
| 483 | break; |
| 484 | |
| 485 | case CRYPTO_MD5: |
| 486 | DPRINTK("%s(): MD5\n", __FUNCTION__); |
| 487 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 488 | lacSessCtx->hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_MD5; |
| 489 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_PLAIN; |
| 490 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 491 | (cri->cri_mlen ? |
| 492 | cri->cri_mlen : ICP_MD5_DIGEST_SIZE_IN_BYTES); |
| 493 | |
| 494 | break; |
| 495 | |
| 496 | case CRYPTO_MD5_HMAC: |
| 497 | DPRINTK("%s(): MD5_HMAC\n", __FUNCTION__); |
| 498 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 499 | lacSessCtx->hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_MD5; |
| 500 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_AUTH; |
| 501 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 502 | (cri->cri_mlen ? |
| 503 | cri->cri_mlen : ICP_MD5_DIGEST_SIZE_IN_BYTES); |
| 504 | lacSessCtx->hashSetupData.authModeSetupData.authKey = |
| 505 | cri->cri_key; |
| 506 | lacSessCtx->hashSetupData.authModeSetupData.authKeyLenInBytes = |
| 507 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 508 | lacSessCtx->hashSetupData.authModeSetupData.aadLenInBytes = 0; |
| 509 | |
| 510 | break; |
| 511 | |
| 512 | default: |
| 513 | DPRINTK("%s(): ALG Setup FAIL\n", __FUNCTION__); |
| 514 | return ICP_OCF_DRV_STATUS_FAIL; |
| 515 | } |
| 516 | |
| 517 | return ICP_OCF_DRV_STATUS_SUCCESS; |
| 518 | } |
| 519 | |
| 520 | /* Name : icp_ocfDrvFreeOCFSession |
| 521 | * |
| 522 | * Description : This function deletes all existing Session data representing |
| 523 | * the Cryptographic session established between OCF and this driver. This |
| 524 | * also includes freeing the memory allocated for the session context. The |
| 525 | * session object is also removed from the session linked list. |
| 526 | */ |
| 527 | static void icp_ocfDrvFreeOCFSession(struct icp_drvSessionData *sessionData) |
| 528 | { |
| 529 | |
| 530 | sessionData->inUse = ICP_SESSION_DEREGISTERED; |
| 531 | |
| 532 | /*ENTER CRITICAL SECTION */ |
| 533 | icp_spin_lockbh_lock(&icp_ocfDrvSymSessInfoListSpinlock); |
| 534 | |
| 535 | if (CPA_TRUE == icp_atomic_read(&icp_ocfDrvIsExiting)) { |
| 536 | /*If the Driver is exiting, allow that process to |
| 537 | handle any deletions */ |
| 538 | /*EXIT CRITICAL SECTION */ |
| 539 | icp_spin_lockbh_unlock(&icp_ocfDrvSymSessInfoListSpinlock); |
| 540 | return; |
| 541 | } |
| 542 | |
| 543 | icp_atomic_dec(&num_ocf_to_drv_registered_sessions); |
| 544 | |
| 545 | ICP_LIST_DEL(sessionData, listNode); |
| 546 | |
| 547 | /*EXIT CRITICAL SECTION */ |
| 548 | icp_spin_lockbh_unlock(&icp_ocfDrvSymSessInfoListSpinlock); |
| 549 | |
| 550 | if (NULL != sessionData->sessHandle) { |
| 551 | icp_kfree(sessionData->sessHandle); |
| 552 | } |
| 553 | ICP_CACHE_FREE(drvSessionData_zone, sessionData); |
| 554 | } |
| 555 | |
| 556 | /* Name : icp_ocfDrvFreeLACSession |
| 557 | * |
| 558 | * Description : This attempts to deregister a LAC session. If it fails, the |
| 559 | * deregistation retry function is called. |
| 560 | */ |
| 561 | int icp_ocfDrvFreeLACSession(icp_device_t dev, uint64_t sid) |
| 562 | { |
| 563 | CpaCySymSessionCtx sessionToDeregister = NULL; |
| 564 | struct icp_drvSessionData *sessionData = NULL; |
| 565 | CpaStatus lacStatus = CPA_STATUS_SUCCESS; |
| 566 | int retval = 0; |
| 567 | |
| 568 | sessionData = (struct icp_drvSessionData *)CRYPTO_SESID2LID(sid); |
| 569 | if (NULL == sessionData) { |
| 570 | EPRINTK("%s(): OCF Free session called with Null Session ID.\n", |
| 571 | __FUNCTION__); |
| 572 | return EINVAL; |
| 573 | } |
| 574 | |
| 575 | sessionToDeregister = sessionData->sessHandle; |
| 576 | |
| 577 | if ((ICP_SESSION_INITIALISED != sessionData->inUse) && |
| 578 | (ICP_SESSION_RUNNING != sessionData->inUse) && |
| 579 | (ICP_SESSION_DEREGISTERED != sessionData->inUse)) { |
| 580 | DPRINTK("%s() Session not initialised.\n", __FUNCTION__); |
| 581 | return EINVAL; |
| 582 | } |
| 583 | |
| 584 | if (ICP_SESSION_RUNNING == sessionData->inUse) { |
| 585 | lacStatus = cpaCySymRemoveSession(CPA_INSTANCE_HANDLE_SINGLE, |
| 586 | sessionToDeregister); |
| 587 | if (CPA_STATUS_RETRY == lacStatus) { |
| 588 | if (ICP_OCF_DRV_STATUS_SUCCESS != |
| 589 | icp_ocfDrvDeregRetry(&sessionToDeregister)) { |
| 590 | /* the retry function increments the |
| 591 | dereg failed count */ |
| 592 | DPRINTK("%s(): LAC failed to deregister the " |
| 593 | "session. (localSessionId= %p)\n", |
| 594 | __FUNCTION__, sessionToDeregister); |
| 595 | retval = EPERM; |
| 596 | } |
| 597 | |
| 598 | } else if (CPA_STATUS_SUCCESS != lacStatus) { |
| 599 | DPRINTK("%s(): LAC failed to deregister the session. " |
| 600 | "localSessionId= %p, lacStatus = %d\n", |
| 601 | __FUNCTION__, sessionToDeregister, lacStatus); |
| 602 | icp_atomic_inc(&lac_session_failed_dereg_count); |
| 603 | retval = EPERM; |
| 604 | } |
| 605 | } else { |
| 606 | DPRINTK("%s() Session not registered with LAC.\n", |
| 607 | __FUNCTION__); |
| 608 | } |
| 609 | |
| 610 | icp_ocfDrvFreeOCFSession(sessionData); |
| 611 | return retval; |
| 612 | |
| 613 | } |
| 614 | |
| 615 | /* Name : icp_ocfDrvAlgCheck |
| 616 | * |
| 617 | * Description : This function checks whether the cryptodesc argument pertains |
| 618 | * to a sym or hash function |
| 619 | */ |
| 620 | static int icp_ocfDrvAlgCheck(struct cryptodesc *crp_desc) |
| 621 | { |
| 622 | |
| 623 | if (crp_desc->crd_alg == CRYPTO_3DES_CBC || |
| 624 | crp_desc->crd_alg == CRYPTO_AES_CBC || |
| 625 | crp_desc->crd_alg == CRYPTO_DES_CBC || |
| 626 | crp_desc->crd_alg == CRYPTO_NULL_CBC || |
| 627 | crp_desc->crd_alg == CRYPTO_ARC4) { |
| 628 | return ICP_OCF_DRV_ALG_CIPHER; |
| 629 | } |
| 630 | |
| 631 | return ICP_OCF_DRV_ALG_HASH; |
| 632 | } |
| 633 | |
| 634 | /* Name : icp_ocfDrvSymProcess |
| 635 | * |
| 636 | * Description : This function will map symmetric functionality calls from OCF |
| 637 | * to the LAC API. It will also allocate memory to store the session context. |
| 638 | * |
| 639 | * Notes: If it is the first perform call for a given session, then a LAC |
| 640 | * session is registered. After the session is registered, no checks as |
| 641 | * to whether session paramaters have changed (e.g. alg chain order) are |
| 642 | * done. |
| 643 | */ |
| 644 | int icp_ocfDrvSymProcess(icp_device_t dev, struct cryptop *crp, int hint) |
| 645 | { |
| 646 | struct icp_drvSessionData *sessionData = NULL; |
| 647 | struct icp_drvOpData *drvOpData = NULL; |
| 648 | CpaStatus lacStatus = CPA_STATUS_SUCCESS; |
| 649 | Cpa32U sessionCtxSizeInBytes = 0; |
| 650 | |
| 651 | if (NULL == crp) { |
| 652 | DPRINTK("%s(): Invalid input parameters, cryptop is NULL\n", |
| 653 | __FUNCTION__); |
| 654 | return EINVAL; |
| 655 | } |
| 656 | |
| 657 | if (NULL == crp->crp_desc) { |
| 658 | DPRINTK("%s(): Invalid input parameters, no crp_desc attached " |
| 659 | "to crp\n", __FUNCTION__); |
| 660 | crp->crp_etype = EINVAL; |
| 661 | return EINVAL; |
| 662 | } |
| 663 | |
| 664 | if (NULL == crp->crp_buf) { |
| 665 | DPRINTK("%s(): Invalid input parameters, no buffer attached " |
| 666 | "to crp\n", __FUNCTION__); |
| 667 | crp->crp_etype = EINVAL; |
| 668 | return EINVAL; |
| 669 | } |
| 670 | |
| 671 | if (CPA_TRUE == icp_atomic_read(&icp_ocfDrvIsExiting)) { |
| 672 | crp->crp_etype = EFAULT; |
| 673 | return EFAULT; |
| 674 | } |
| 675 | |
| 676 | sessionData = (struct icp_drvSessionData *) |
| 677 | (CRYPTO_SESID2LID(crp->crp_sid)); |
| 678 | if (NULL == sessionData) { |
| 679 | DPRINTK("%s(): Invalid input parameters, Null Session ID \n", |
| 680 | __FUNCTION__); |
| 681 | crp->crp_etype = EINVAL; |
| 682 | return EINVAL; |
| 683 | } |
| 684 | |
| 685 | /*If we get a request against a deregisted session, cancel operation*/ |
| 686 | if (ICP_SESSION_DEREGISTERED == sessionData->inUse) { |
| 687 | DPRINTK("%s(): Session ID %d was deregistered \n", |
| 688 | __FUNCTION__, (int)(CRYPTO_SESID2LID(crp->crp_sid))); |
| 689 | crp->crp_etype = EFAULT; |
| 690 | return EFAULT; |
| 691 | } |
| 692 | |
| 693 | /*If none of the session states are set, then the session structure was either |
| 694 | not initialised properly or we are reading from a freed memory area (possible |
| 695 | due to OCF batch mode not removing queued requests against deregistered |
| 696 | sessions*/ |
| 697 | if (ICP_SESSION_INITIALISED != sessionData->inUse && |
| 698 | ICP_SESSION_RUNNING != sessionData->inUse) { |
| 699 | DPRINTK("%s(): Session - ID %d - not properly initialised or " |
| 700 | "memory freed back to the kernel \n", |
| 701 | __FUNCTION__, (int)(CRYPTO_SESID2LID(crp->crp_sid))); |
| 702 | crp->crp_etype = EINVAL; |
| 703 | return EINVAL; |
| 704 | } |
| 705 | |
| 706 | /*For the below checks, remember error checking is already done in LAC. |
| 707 | We're not validating inputs subsequent to registration */ |
| 708 | if (sessionData->inUse == ICP_SESSION_INITIALISED) { |
| 709 | DPRINTK("%s(): Initialising session\n", __FUNCTION__); |
| 710 | |
| 711 | if (NULL != crp->crp_desc->crd_next) { |
| 712 | if (ICP_OCF_DRV_ALG_CIPHER == |
| 713 | icp_ocfDrvAlgCheck(crp->crp_desc)) { |
| 714 | |
| 715 | sessionData->lacSessCtx.algChainOrder = |
| 716 | CPA_CY_SYM_ALG_CHAIN_ORDER_CIPHER_THEN_HASH; |
| 717 | |
| 718 | if (crp->crp_desc->crd_flags & CRD_F_ENCRYPT) { |
| 719 | sessionData->lacSessCtx.cipherSetupData. |
| 720 | cipherDirection = |
| 721 | CPA_CY_SYM_CIPHER_DIRECTION_ENCRYPT; |
| 722 | } else { |
| 723 | sessionData->lacSessCtx.cipherSetupData. |
| 724 | cipherDirection = |
| 725 | CPA_CY_SYM_CIPHER_DIRECTION_DECRYPT; |
| 726 | } |
| 727 | } else { |
| 728 | sessionData->lacSessCtx.algChainOrder = |
| 729 | CPA_CY_SYM_ALG_CHAIN_ORDER_HASH_THEN_CIPHER; |
| 730 | |
| 731 | if (crp->crp_desc->crd_next->crd_flags & |
| 732 | CRD_F_ENCRYPT) { |
| 733 | sessionData->lacSessCtx.cipherSetupData. |
| 734 | cipherDirection = |
| 735 | CPA_CY_SYM_CIPHER_DIRECTION_ENCRYPT; |
| 736 | } else { |
| 737 | sessionData->lacSessCtx.cipherSetupData. |
| 738 | cipherDirection = |
| 739 | CPA_CY_SYM_CIPHER_DIRECTION_DECRYPT; |
| 740 | } |
| 741 | |
| 742 | } |
| 743 | |
| 744 | } else if (ICP_OCF_DRV_ALG_CIPHER == |
| 745 | icp_ocfDrvAlgCheck(crp->crp_desc)) { |
| 746 | if (crp->crp_desc->crd_flags & CRD_F_ENCRYPT) { |
| 747 | sessionData->lacSessCtx.cipherSetupData. |
| 748 | cipherDirection = |
| 749 | CPA_CY_SYM_CIPHER_DIRECTION_ENCRYPT; |
| 750 | } else { |
| 751 | sessionData->lacSessCtx.cipherSetupData. |
| 752 | cipherDirection = |
| 753 | CPA_CY_SYM_CIPHER_DIRECTION_DECRYPT; |
| 754 | } |
| 755 | |
| 756 | } |
| 757 | |
| 758 | /*No action required for standalone Auth here */ |
| 759 | |
| 760 | /* Allocate memory for SymSessionCtx before the Session Registration */ |
| 761 | lacStatus = |
| 762 | cpaCySymSessionCtxGetSize(CPA_INSTANCE_HANDLE_SINGLE, |
| 763 | &(sessionData->lacSessCtx), |
| 764 | &sessionCtxSizeInBytes); |
| 765 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 766 | EPRINTK("%s(): cpaCySymSessionCtxGetSize failed - %d\n", |
| 767 | __FUNCTION__, lacStatus); |
| 768 | crp->crp_etype = EINVAL; |
| 769 | return EINVAL; |
| 770 | } |
| 771 | sessionData->sessHandle = |
| 772 | icp_kmalloc(sessionCtxSizeInBytes, ICP_M_NOWAIT); |
| 773 | if (NULL == sessionData->sessHandle) { |
| 774 | EPRINTK |
| 775 | ("%s(): Failed to get memory for SymSessionCtx\n", |
| 776 | __FUNCTION__); |
| 777 | crp->crp_etype = ENOMEM; |
| 778 | return ENOMEM; |
| 779 | } |
| 780 | |
| 781 | lacStatus = cpaCySymInitSession(CPA_INSTANCE_HANDLE_SINGLE, |
| 782 | icp_ocfDrvSymCallBack, |
| 783 | &(sessionData->lacSessCtx), |
| 784 | sessionData->sessHandle); |
| 785 | |
| 786 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 787 | EPRINTK("%s(): cpaCySymInitSession failed -%d \n", |
| 788 | __FUNCTION__, lacStatus); |
| 789 | crp->crp_etype = EFAULT; |
| 790 | return EFAULT; |
| 791 | } |
| 792 | |
| 793 | sessionData->inUse = ICP_SESSION_RUNNING; |
| 794 | } |
| 795 | |
| 796 | drvOpData = icp_kmem_cache_zalloc(drvOpData_zone, ICP_M_NOWAIT); |
| 797 | if (NULL == drvOpData) { |
| 798 | EPRINTK("%s():Failed to get memory for drvOpData\n", |
| 799 | __FUNCTION__); |
| 800 | crp->crp_etype = ENOMEM; |
| 801 | return ENOMEM; |
| 802 | } |
| 803 | |
| 804 | drvOpData->lacOpData.pSessionCtx = sessionData->sessHandle; |
| 805 | drvOpData->digestSizeInBytes = sessionData->lacSessCtx.hashSetupData. |
| 806 | digestResultLenInBytes; |
| 807 | drvOpData->crp = crp; |
| 808 | |
| 809 | /* Set the default buffer list array memory allocation */ |
| 810 | drvOpData->srcBuffer.pBuffers = drvOpData->bufferListArray; |
| 811 | drvOpData->numBufferListArray = ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS; |
| 812 | |
| 813 | if (ICP_OCF_DRV_STATUS_SUCCESS != |
| 814 | icp_ocfDrvProcessDataSetup(drvOpData, drvOpData->crp->crp_desc)) { |
| 815 | crp->crp_etype = EINVAL; |
| 816 | goto err; |
| 817 | } |
| 818 | |
| 819 | if (drvOpData->crp->crp_desc->crd_next != NULL) { |
| 820 | if (icp_ocfDrvProcessDataSetup(drvOpData, drvOpData->crp-> |
| 821 | crp_desc->crd_next)) { |
| 822 | crp->crp_etype = EINVAL; |
| 823 | goto err; |
| 824 | } |
| 825 | |
| 826 | } |
| 827 | |
| 828 | /* |
| 829 | * Allocate buffer list array memory if the data fragment is more than |
| 830 | * the default number (ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS) and not |
| 831 | * calculated already |
| 832 | */ |
| 833 | if (crp->crp_flags & ICP_CRYPTO_F_PACKET_BUF) { |
| 834 | if (NULL == drvOpData->lacOpData.pDigestResult) { |
| 835 | drvOpData->numBufferListArray = |
| 836 | icp_ocfDrvGetPacketBuffFrags((icp_packet_buffer_t *) |
| 837 | crp->crp_buf); |
| 838 | } |
| 839 | |
| 840 | if (ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS < |
| 841 | drvOpData->numBufferListArray) { |
| 842 | DPRINTK("%s() numBufferListArray more than default\n", |
| 843 | __FUNCTION__); |
| 844 | drvOpData->srcBuffer.pBuffers = NULL; |
| 845 | drvOpData->srcBuffer.pBuffers = |
| 846 | icp_kmalloc(drvOpData->numBufferListArray * |
| 847 | sizeof(CpaFlatBuffer), ICP_M_NOWAIT); |
| 848 | if (NULL == drvOpData->srcBuffer.pBuffers) { |
| 849 | EPRINTK("%s() Failed to get memory for " |
| 850 | "pBuffers\n", __FUNCTION__); |
| 851 | ICP_CACHE_FREE(drvOpData_zone, drvOpData); |
| 852 | crp->crp_etype = ENOMEM; |
| 853 | return ENOMEM; |
| 854 | } |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | /* |
| 859 | * Check the type of buffer structure we got and convert it into |
| 860 | * CpaBufferList format. |
| 861 | */ |
| 862 | if (crp->crp_flags & ICP_CRYPTO_F_PACKET_BUF) { |
| 863 | if (ICP_OCF_DRV_STATUS_SUCCESS != |
| 864 | icp_ocfDrvPacketBuffToBufferList((icp_packet_buffer_t *) |
| 865 | crp->crp_buf, |
| 866 | &(drvOpData->srcBuffer))) { |
| 867 | EPRINTK("%s():Failed to translate from packet buffer " |
| 868 | "to bufferlist\n", __FUNCTION__); |
| 869 | crp->crp_etype = EINVAL; |
| 870 | goto err; |
| 871 | } |
| 872 | |
| 873 | drvOpData->bufferType = ICP_CRYPTO_F_PACKET_BUF; |
| 874 | } else if (crp->crp_flags & CRYPTO_F_IOV) { |
| 875 | /* OCF only supports IOV of one entry. */ |
| 876 | if (NUM_IOV_SUPPORTED == |
| 877 | ((struct uio *)(crp->crp_buf))->uio_iovcnt) { |
| 878 | |
| 879 | icp_ocfDrvPtrAndLenToBufferList(((struct uio *)(crp-> |
| 880 | crp_buf))-> |
| 881 | uio_iov[0].iov_base, |
| 882 | ((struct uio *)(crp-> |
| 883 | crp_buf))-> |
| 884 | uio_iov[0].iov_len, |
| 885 | &(drvOpData-> |
| 886 | srcBuffer)); |
| 887 | |
| 888 | drvOpData->bufferType = CRYPTO_F_IOV; |
| 889 | |
| 890 | } else { |
| 891 | DPRINTK("%s():Unable to handle IOVs with lengths of " |
| 892 | "greater than one!\n", __FUNCTION__); |
| 893 | crp->crp_etype = EINVAL; |
| 894 | goto err; |
| 895 | } |
| 896 | |
| 897 | } else { |
| 898 | icp_ocfDrvPtrAndLenToBufferList(crp->crp_buf, |
| 899 | crp->crp_ilen, |
| 900 | &(drvOpData->srcBuffer)); |
| 901 | |
| 902 | drvOpData->bufferType = CRYPTO_BUF_CONTIG; |
| 903 | } |
| 904 | |
| 905 | /* Allocate srcBuffer's private meta data */ |
| 906 | if (ICP_OCF_DRV_STATUS_SUCCESS != |
| 907 | icp_ocfDrvAllocMetaData(&(drvOpData->srcBuffer), drvOpData)) { |
| 908 | EPRINTK("%s() icp_ocfDrvAllocMetaData failed\n", __FUNCTION__); |
| 909 | memset(&(drvOpData->lacOpData), 0, sizeof(CpaCySymOpData)); |
| 910 | crp->crp_etype = EINVAL; |
| 911 | goto err; |
| 912 | } |
| 913 | |
| 914 | /* Perform "in-place" crypto operation */ |
| 915 | lacStatus = cpaCySymPerformOp(CPA_INSTANCE_HANDLE_SINGLE, |
| 916 | (void *)drvOpData, |
| 917 | &(drvOpData->lacOpData), |
| 918 | &(drvOpData->srcBuffer), |
| 919 | &(drvOpData->srcBuffer), |
| 920 | &(drvOpData->verifyResult)); |
| 921 | if (CPA_STATUS_RETRY == lacStatus) { |
| 922 | DPRINTK("%s(): cpaCySymPerformOp retry, lacStatus = %d\n", |
| 923 | __FUNCTION__, lacStatus); |
| 924 | memset(&(drvOpData->lacOpData), 0, sizeof(CpaCySymOpData)); |
| 925 | crp->crp_etype = ERESTART; |
| 926 | goto err; |
| 927 | } |
| 928 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 929 | EPRINTK("%s(): cpaCySymPerformOp failed, lacStatus = %d\n", |
| 930 | __FUNCTION__, lacStatus); |
| 931 | memset(&(drvOpData->lacOpData), 0, sizeof(CpaCySymOpData)); |
| 932 | crp->crp_etype = EINVAL; |
| 933 | goto err; |
| 934 | } |
| 935 | |
| 936 | return 0; //OCF success status value |
| 937 | |
| 938 | err: |
| 939 | if (drvOpData->numBufferListArray > ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS) { |
| 940 | icp_kfree(drvOpData->srcBuffer.pBuffers); |
| 941 | } |
| 942 | icp_ocfDrvFreeMetaData(&(drvOpData->srcBuffer)); |
| 943 | ICP_CACHE_FREE(drvOpData_zone, drvOpData); |
| 944 | |
| 945 | return crp->crp_etype; |
| 946 | } |
| 947 | |
| 948 | /* Name : icp_ocfDrvProcessDataSetup |
| 949 | * |
| 950 | * Description : This function will setup all the cryptographic operation data |
| 951 | * that is required by LAC to execute the operation. |
| 952 | */ |
| 953 | static int icp_ocfDrvProcessDataSetup(struct icp_drvOpData *drvOpData, |
| 954 | struct cryptodesc *crp_desc) |
| 955 | { |
| 956 | CpaCyRandGenOpData randGenOpData; |
| 957 | CpaFlatBuffer randData; |
| 958 | |
| 959 | drvOpData->lacOpData.packetType = CPA_CY_SYM_PACKET_TYPE_FULL; |
| 960 | |
| 961 | /* Convert from the cryptop to the ICP LAC crypto parameters */ |
| 962 | switch (crp_desc->crd_alg) { |
| 963 | case CRYPTO_NULL_CBC: |
| 964 | drvOpData->lacOpData. |
| 965 | cryptoStartSrcOffsetInBytes = crp_desc->crd_skip; |
| 966 | drvOpData->lacOpData. |
| 967 | messageLenToCipherInBytes = crp_desc->crd_len; |
| 968 | drvOpData->verifyResult = CPA_FALSE; |
| 969 | drvOpData->lacOpData.ivLenInBytes = NULL_BLOCK_LEN; |
| 970 | break; |
| 971 | case CRYPTO_DES_CBC: |
| 972 | drvOpData->lacOpData. |
| 973 | cryptoStartSrcOffsetInBytes = crp_desc->crd_skip; |
| 974 | drvOpData->lacOpData. |
| 975 | messageLenToCipherInBytes = crp_desc->crd_len; |
| 976 | drvOpData->verifyResult = CPA_FALSE; |
| 977 | drvOpData->lacOpData.ivLenInBytes = DES_BLOCK_LEN; |
| 978 | break; |
| 979 | case CRYPTO_3DES_CBC: |
| 980 | drvOpData->lacOpData. |
| 981 | cryptoStartSrcOffsetInBytes = crp_desc->crd_skip; |
| 982 | drvOpData->lacOpData. |
| 983 | messageLenToCipherInBytes = crp_desc->crd_len; |
| 984 | drvOpData->verifyResult = CPA_FALSE; |
| 985 | drvOpData->lacOpData.ivLenInBytes = DES3_BLOCK_LEN; |
| 986 | break; |
| 987 | case CRYPTO_ARC4: |
| 988 | drvOpData->lacOpData. |
| 989 | cryptoStartSrcOffsetInBytes = crp_desc->crd_skip; |
| 990 | drvOpData->lacOpData. |
| 991 | messageLenToCipherInBytes = crp_desc->crd_len; |
| 992 | drvOpData->verifyResult = CPA_FALSE; |
| 993 | drvOpData->lacOpData.ivLenInBytes = ARC4_COUNTER_LEN; |
| 994 | break; |
| 995 | case CRYPTO_AES_CBC: |
| 996 | drvOpData->lacOpData. |
| 997 | cryptoStartSrcOffsetInBytes = crp_desc->crd_skip; |
| 998 | drvOpData->lacOpData. |
| 999 | messageLenToCipherInBytes = crp_desc->crd_len; |
| 1000 | drvOpData->verifyResult = CPA_FALSE; |
| 1001 | drvOpData->lacOpData.ivLenInBytes = RIJNDAEL128_BLOCK_LEN; |
| 1002 | break; |
| 1003 | case CRYPTO_SHA1: |
| 1004 | case CRYPTO_SHA1_HMAC: |
| 1005 | case CRYPTO_SHA2_256: |
| 1006 | case CRYPTO_SHA2_256_HMAC: |
| 1007 | case CRYPTO_SHA2_384: |
| 1008 | case CRYPTO_SHA2_384_HMAC: |
| 1009 | case CRYPTO_SHA2_512: |
| 1010 | case CRYPTO_SHA2_512_HMAC: |
| 1011 | case CRYPTO_MD5: |
| 1012 | case CRYPTO_MD5_HMAC: |
| 1013 | drvOpData->lacOpData. |
| 1014 | hashStartSrcOffsetInBytes = crp_desc->crd_skip; |
| 1015 | drvOpData->lacOpData. |
| 1016 | messageLenToHashInBytes = crp_desc->crd_len; |
| 1017 | drvOpData->lacOpData. |
| 1018 | pDigestResult = |
| 1019 | icp_ocfDrvDigestPointerFind(drvOpData, crp_desc); |
| 1020 | |
| 1021 | if (NULL == drvOpData->lacOpData.pDigestResult) { |
| 1022 | DPRINTK("%s(): ERROR - could not calculate " |
| 1023 | "Digest Result memory address\n", __FUNCTION__); |
| 1024 | return ICP_OCF_DRV_STATUS_FAIL; |
| 1025 | } |
| 1026 | |
| 1027 | drvOpData->lacOpData.digestVerify = CPA_FALSE; |
| 1028 | break; |
| 1029 | default: |
| 1030 | DPRINTK("%s(): Crypto process error - algorithm not " |
| 1031 | "found \n", __FUNCTION__); |
| 1032 | return ICP_OCF_DRV_STATUS_FAIL; |
| 1033 | } |
| 1034 | |
| 1035 | /* Figure out what the IV is supposed to be */ |
| 1036 | if ((crp_desc->crd_alg == CRYPTO_DES_CBC) || |
| 1037 | (crp_desc->crd_alg == CRYPTO_3DES_CBC) || |
| 1038 | (crp_desc->crd_alg == CRYPTO_AES_CBC)) { |
| 1039 | /*ARC4 doesn't use an IV */ |
| 1040 | if (crp_desc->crd_flags & CRD_F_IV_EXPLICIT) { |
| 1041 | /* Explicit IV provided to OCF */ |
| 1042 | drvOpData->lacOpData.pIv = crp_desc->crd_iv; |
| 1043 | } else { |
| 1044 | /* IV is not explicitly provided to OCF */ |
| 1045 | |
| 1046 | /* Point the LAC OP Data IV pointer to our allocated |
| 1047 | storage location for this session. */ |
| 1048 | drvOpData->lacOpData.pIv = drvOpData->ivData; |
| 1049 | |
| 1050 | if ((crp_desc->crd_flags & CRD_F_ENCRYPT) && |
| 1051 | ((crp_desc->crd_flags & CRD_F_IV_PRESENT) == 0)) { |
| 1052 | |
| 1053 | /* Encrypting - need to create IV */ |
| 1054 | randGenOpData.generateBits = CPA_TRUE; |
| 1055 | randGenOpData.lenInBytes = MAX_IV_LEN_IN_BYTES; |
| 1056 | |
| 1057 | icp_ocfDrvPtrAndLenToFlatBuffer((Cpa8U *) |
| 1058 | drvOpData-> |
| 1059 | ivData, |
| 1060 | MAX_IV_LEN_IN_BYTES, |
| 1061 | &randData); |
| 1062 | |
| 1063 | if (CPA_STATUS_SUCCESS != |
| 1064 | cpaCyRandGen(CPA_INSTANCE_HANDLE_SINGLE, |
| 1065 | NULL, NULL, |
| 1066 | &randGenOpData, &randData)) { |
| 1067 | DPRINTK("%s(): ERROR - Failed to" |
| 1068 | " generate" |
| 1069 | " Initialisation Vector\n", |
| 1070 | __FUNCTION__); |
| 1071 | return ICP_OCF_DRV_STATUS_FAIL; |
| 1072 | } |
| 1073 | |
| 1074 | crypto_copyback(drvOpData->crp-> |
| 1075 | crp_flags, |
| 1076 | drvOpData->crp->crp_buf, |
| 1077 | crp_desc->crd_inject, |
| 1078 | drvOpData->lacOpData. |
| 1079 | ivLenInBytes, |
| 1080 | (caddr_t) (drvOpData->lacOpData. |
| 1081 | pIv)); |
| 1082 | } else { |
| 1083 | /* Reading IV from buffer */ |
| 1084 | crypto_copydata(drvOpData->crp-> |
| 1085 | crp_flags, |
| 1086 | drvOpData->crp->crp_buf, |
| 1087 | crp_desc->crd_inject, |
| 1088 | drvOpData->lacOpData. |
| 1089 | ivLenInBytes, |
| 1090 | (caddr_t) (drvOpData->lacOpData. |
| 1091 | pIv)); |
| 1092 | } |
| 1093 | |
| 1094 | } |
| 1095 | |
| 1096 | } |
| 1097 | |
| 1098 | return ICP_OCF_DRV_STATUS_SUCCESS; |
| 1099 | } |
| 1100 | |
| 1101 | /* Name : icp_ocfDrvDigestPointerFind |
| 1102 | * |
| 1103 | * Description : This function is used to find the memory address of where the |
| 1104 | * digest information shall be stored in. Input buffer types are an skbuff, iov |
| 1105 | * or flat buffer. The address is found using the buffer data start address and |
| 1106 | * an offset. |
| 1107 | * |
| 1108 | * Note: In the case of a linux skbuff, the digest address may exist within |
| 1109 | * a memory space linked to from the start buffer. These linked memory spaces |
| 1110 | * must be traversed by the data length offset in order to find the digest start |
| 1111 | * address. Whether there is enough space for the digest must also be checked. |
| 1112 | */ |
| 1113 | uint8_t *icp_ocfDrvDigestPointerFind(struct icp_drvOpData * drvOpData, |
| 1114 | struct cryptodesc * crp_desc) |
| 1115 | { |
| 1116 | |
| 1117 | int offsetInBytes = crp_desc->crd_inject; |
| 1118 | uint32_t digestSizeInBytes = drvOpData->digestSizeInBytes; |
| 1119 | uint8_t *flat_buffer_base = NULL; |
| 1120 | int flat_buffer_length = 0; |
| 1121 | |
| 1122 | if (drvOpData->crp->crp_flags & ICP_CRYPTO_F_PACKET_BUF) { |
| 1123 | |
| 1124 | return icp_ocfDrvPacketBufferDigestPointerFind(drvOpData, |
| 1125 | offsetInBytes, |
| 1126 | digestSizeInBytes); |
| 1127 | |
| 1128 | } else { |
| 1129 | /* IOV or flat buffer */ |
| 1130 | if (drvOpData->crp->crp_flags & CRYPTO_F_IOV) { |
| 1131 | /*single IOV check has already been done */ |
| 1132 | flat_buffer_base = ((struct uio *) |
| 1133 | (drvOpData->crp->crp_buf))-> |
| 1134 | uio_iov[0].iov_base; |
| 1135 | flat_buffer_length = ((struct uio *) |
| 1136 | (drvOpData->crp->crp_buf))-> |
| 1137 | uio_iov[0].iov_len; |
| 1138 | } else { |
| 1139 | flat_buffer_base = (uint8_t *) drvOpData->crp->crp_buf; |
| 1140 | flat_buffer_length = drvOpData->crp->crp_ilen; |
| 1141 | } |
| 1142 | |
| 1143 | if (flat_buffer_length < (offsetInBytes + digestSizeInBytes)) { |
| 1144 | DPRINTK("%s() Not enough space for Digest " |
| 1145 | "(IOV/Flat Buffer) \n", __FUNCTION__); |
| 1146 | return NULL; |
| 1147 | } else { |
| 1148 | return (uint8_t *) (flat_buffer_base + offsetInBytes); |
| 1149 | } |
| 1150 | } |
| 1151 | DPRINTK("%s() Should not reach this point\n", __FUNCTION__); |
| 1152 | return NULL; |
| 1153 | } |
| 1154 | |