| 1 | /******************************************************************************* |
| 2 | Copyright (C) Marvell International Ltd. and its affiliates |
| 3 | |
| 4 | This software file (the "File") is owned and distributed by Marvell |
| 5 | International Ltd. and/or its affiliates ("Marvell") under the following |
| 6 | alternative licensing terms. Once you have made an election to distribute the |
| 7 | File under one of the following license alternatives, please (i) delete this |
| 8 | introductory statement regarding license alternatives, (ii) delete the two |
| 9 | license alternatives that you have not elected to use and (iii) preserve the |
| 10 | Marvell copyright notice above. |
| 11 | |
| 12 | ******************************************************************************** |
| 13 | Marvell Commercial License Option |
| 14 | |
| 15 | If you received this File from Marvell and you have entered into a commercial |
| 16 | license agreement (a "Commercial License") with Marvell, the File is licensed |
| 17 | to you under the terms of the applicable Commercial License. |
| 18 | |
| 19 | ******************************************************************************** |
| 20 | Marvell GPL License Option |
| 21 | |
| 22 | If you received this File from Marvell, you may opt to use, redistribute and/or |
| 23 | modify this File in accordance with the terms and conditions of the General |
| 24 | Public License Version 2, June 1991 (the "GPL License"), a copy of which is |
| 25 | available along with the File in the license.txt file or by writing to the Free |
| 26 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 or |
| 27 | on the worldwide web at http://www.gnu.org/licenses/gpl.txt. |
| 28 | |
| 29 | THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE IMPLIED |
| 30 | WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY |
| 31 | DISCLAIMED. The GPL License provides additional details about this warranty |
| 32 | disclaimer. |
| 33 | ******************************************************************************** |
| 34 | Marvell BSD License Option |
| 35 | |
| 36 | If you received this File from Marvell, you may opt to use, redistribute and/or |
| 37 | modify this File under the following licensing terms. |
| 38 | Redistribution and use in source and binary forms, with or without modification, |
| 39 | are permitted provided that the following conditions are met: |
| 40 | |
| 41 | * Redistributions of source code must retain the above copyright notice, |
| 42 | this list of conditions and the following disclaimer. |
| 43 | |
| 44 | * Redistributions in binary form must reproduce the above copyright |
| 45 | notice, this list of conditions and the following disclaimer in the |
| 46 | documentation and/or other materials provided with the distribution. |
| 47 | |
| 48 | * Neither the name of Marvell nor the names of its contributors may be |
| 49 | used to endorse or promote products derived from this software without |
| 50 | specific prior written permission. |
| 51 | |
| 52 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| 53 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 54 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 55 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR |
| 56 | ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 57 | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 58 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| 59 | ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 60 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 61 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 62 | |
| 63 | *******************************************************************************/ |
| 64 | |
| 65 | #include "cesa/mvCesa.h" |
| 66 | |
| 67 | #include "ctrlEnv/mvCtrlEnvLib.h" |
| 68 | #undef CESA_DEBUG |
| 69 | |
| 70 | |
| 71 | /********** Global variables **********/ |
| 72 | |
| 73 | /* If request size is more than MV_CESA_MAX_BUF_SIZE the |
| 74 | * request is processed as fragmented request. |
| 75 | */ |
| 76 | |
| 77 | MV_CESA_STATS cesaStats; |
| 78 | |
| 79 | MV_BUF_INFO cesaSramSaBuf; |
| 80 | short cesaLastSid = -1; |
| 81 | MV_CESA_SA* pCesaSAD = NULL; |
| 82 | MV_U16 cesaMaxSA = 0; |
| 83 | |
| 84 | MV_CESA_REQ* pCesaReqFirst = NULL; |
| 85 | MV_CESA_REQ* pCesaReqLast = NULL; |
| 86 | MV_CESA_REQ* pCesaReqEmpty = NULL; |
| 87 | MV_CESA_REQ* pCesaReqProcess = NULL; |
| 88 | int cesaQueueDepth = 0; |
| 89 | int cesaReqResources = 0; |
| 90 | |
| 91 | MV_CESA_SRAM_MAP* cesaSramVirtPtr = NULL; |
| 92 | MV_U32 cesaCryptEngBase = 0; |
| 93 | void *cesaOsHandle = NULL; |
| 94 | #if (MV_CESA_VERSION >= 3) |
| 95 | MV_U32 cesaChainLength = 0; |
| 96 | int chainReqNum = 0; |
| 97 | MV_U32 chainIndex = 0; |
| 98 | MV_CESA_REQ* pNextActiveChain = 0; |
| 99 | MV_CESA_REQ* pEndCurrChain = 0; |
| 100 | MV_BOOL isFirstReq = MV_TRUE; |
| 101 | #endif |
| 102 | |
| 103 | static INLINE MV_U8* mvCesaSramAddrGet(void) |
| 104 | { |
| 105 | #ifdef MV_CESA_NO_SRAM |
| 106 | return (MV_U8*)cesaSramVirtPtr; |
| 107 | #else |
| 108 | return (MV_U8*)cesaCryptEngBase; |
| 109 | #endif /* MV_CESA_NO_SRAM */ |
| 110 | } |
| 111 | |
| 112 | static INLINE MV_ULONG mvCesaSramVirtToPhys(void* pDev, MV_U8* pSramVirt) |
| 113 | { |
| 114 | #ifdef MV_CESA_NO_SRAM |
| 115 | return (MV_ULONG)mvOsIoVirtToPhy(NULL, pSramVirt); |
| 116 | #else |
| 117 | return (MV_ULONG)pSramVirt; |
| 118 | #endif /* MV_CESA_NO_SRAM */ |
| 119 | } |
| 120 | |
| 121 | /* Internal Function prototypes */ |
| 122 | |
| 123 | static INLINE void mvCesaSramDescrBuild(MV_U32 config, int frag, |
| 124 | int cryptoOffset, int ivOffset, int cryptoLength, |
| 125 | int macOffset, int digestOffset, int macLength, int macTotalLen, |
| 126 | MV_CESA_REQ *pCesaReq, MV_DMA_DESC* pDmaDesc); |
| 127 | |
| 128 | static INLINE void mvCesaSramSaUpdate(short sid, MV_DMA_DESC *pDmaDesc); |
| 129 | |
| 130 | static INLINE int mvCesaDmaCopyPrepare(MV_CESA_MBUF* pMbuf, MV_U8* pSramBuf, |
| 131 | MV_DMA_DESC* pDmaDesc, MV_BOOL isToMbuf, |
| 132 | int offset, int copySize, MV_BOOL skipFlush); |
| 133 | |
| 134 | static void mvCesaHmacIvGet(MV_CESA_MAC_MODE macMode, unsigned char key[], int keyLength, |
| 135 | unsigned char innerIV[], unsigned char outerIV[]); |
| 136 | |
| 137 | static MV_STATUS mvCesaFragAuthComplete(MV_CESA_REQ* pReq, MV_CESA_SA* pSA, |
| 138 | int macDataSize); |
| 139 | |
| 140 | static MV_CESA_COMMAND* mvCesaCtrModeInit(void); |
| 141 | |
| 142 | static MV_STATUS mvCesaCtrModePrepare(MV_CESA_COMMAND *pCtrModeCmd, MV_CESA_COMMAND *pCmd); |
| 143 | static MV_STATUS mvCesaCtrModeComplete(MV_CESA_COMMAND *pOrgCmd, MV_CESA_COMMAND *pCmd); |
| 144 | static void mvCesaCtrModeFinish(MV_CESA_COMMAND *pCmd); |
| 145 | |
| 146 | static INLINE MV_STATUS mvCesaReqProcess(MV_CESA_REQ* pReq); |
| 147 | static MV_STATUS mvCesaFragReqProcess(MV_CESA_REQ* pReq, MV_U8 frag); |
| 148 | |
| 149 | static INLINE MV_STATUS mvCesaParamCheck(MV_CESA_SA* pSA, MV_CESA_COMMAND *pCmd, MV_U8* pFixOffset); |
| 150 | static INLINE MV_STATUS mvCesaFragParamCheck(MV_CESA_SA* pSA, MV_CESA_COMMAND *pCmd); |
| 151 | |
| 152 | static INLINE void mvCesaFragSizeFind(MV_CESA_SA* pSA, MV_CESA_REQ* pReq, |
| 153 | int cryptoOffset, int macOffset, |
| 154 | int* pCopySize, int* pCryptoDataSize, int* pMacDataSize); |
| 155 | static MV_STATUS mvCesaMbufCacheUnmap(MV_CESA_MBUF* pMbuf, int offset, int size); |
| 156 | |
| 157 | |
| 158 | /* Go to the next request in the request queue */ |
| 159 | static INLINE MV_CESA_REQ* MV_CESA_REQ_NEXT_PTR(MV_CESA_REQ* pReq) |
| 160 | { |
| 161 | if(pReq == pCesaReqLast) |
| 162 | return pCesaReqFirst; |
| 163 | |
| 164 | return pReq+1; |
| 165 | } |
| 166 | |
| 167 | #if (MV_CESA_VERSION >= 3) |
| 168 | /* Go to the previous request in the request queue */ |
| 169 | static INLINE MV_CESA_REQ* MV_CESA_REQ_PREV_PTR(MV_CESA_REQ* pReq) |
| 170 | { |
| 171 | if(pReq == pCesaReqFirst) |
| 172 | return pCesaReqLast; |
| 173 | |
| 174 | return pReq-1; |
| 175 | } |
| 176 | |
| 177 | #endif |
| 178 | |
| 179 | |
| 180 | static INLINE void mvCesaReqProcessStart(MV_CESA_REQ* pReq) |
| 181 | { |
| 182 | int frag; |
| 183 | |
| 184 | #if (MV_CESA_VERSION >= 3) |
| 185 | pReq->state = MV_CESA_CHAIN; |
| 186 | #else |
| 187 | pReq->state = MV_CESA_PROCESS; |
| 188 | #endif |
| 189 | cesaStats.startCount++; |
| 190 | |
| 191 | if(pReq->fragMode == MV_CESA_FRAG_NONE) |
| 192 | { |
| 193 | frag = 0; |
| 194 | } |
| 195 | else |
| 196 | { |
| 197 | frag = pReq->frags.nextFrag; |
| 198 | pReq->frags.nextFrag++; |
| 199 | } |
| 200 | #if (MV_CESA_VERSION >= 2) |
| 201 | /* Enable TDMA engine */ |
| 202 | MV_REG_WRITE(MV_CESA_TDMA_CURR_DESC_PTR_REG, 0); |
| 203 | MV_REG_WRITE(MV_CESA_TDMA_NEXT_DESC_PTR_REG, |
| 204 | (MV_U32)mvCesaVirtToPhys(&pReq->dmaDescBuf, pReq->dma[frag].pDmaFirst)); |
| 205 | #else |
| 206 | /* Enable IDMA engine */ |
| 207 | MV_REG_WRITE(IDMA_CURR_DESC_PTR_REG(0), 0); |
| 208 | MV_REG_WRITE(IDMA_NEXT_DESC_PTR_REG(0), |
| 209 | (MV_U32)mvCesaVirtToPhys(&pReq->dmaDescBuf, pReq->dma[frag].pDmaFirst)); |
| 210 | #endif /* MV_CESA_VERSION >= 2 */ |
| 211 | |
| 212 | #if defined(MV_BRIDGE_SYNC_REORDER) |
| 213 | mvOsBridgeReorderWA(); |
| 214 | #endif |
| 215 | |
| 216 | /* Start Accelerator */ |
| 217 | MV_REG_WRITE(MV_CESA_CMD_REG, MV_CESA_CMD_CHAN_ENABLE_MASK); |
| 218 | } |
| 219 | |
| 220 | |
| 221 | /******************************************************************************* |
| 222 | * mvCesaHalInit - Initialize the CESA driver |
| 223 | * |
| 224 | * DESCRIPTION: |
| 225 | * This function initialize the CESA driver. |
| 226 | * 1) Session database |
| 227 | * 2) Request queue |
| 228 | * 4) DMA descriptor lists - one list per request. Each list |
| 229 | * has MV_CESA_MAX_DMA_DESC descriptors. |
| 230 | * |
| 231 | * INPUT: |
| 232 | * numOfSession - maximum number of supported sessions |
| 233 | * queueDepth - number of elements in the request queue. |
| 234 | * pSramBase - virtual address of Sram |
| 235 | * osHandle - A handle used by the OS to allocate memory for the |
| 236 | * module (Passed to the OS Services layer) |
| 237 | * |
| 238 | * RETURN: |
| 239 | * MV_OK - Success |
| 240 | * MV_NO_RESOURCE - Fail, can't allocate resources: |
| 241 | * Session database, request queue, |
| 242 | * DMA descriptors list, LRU cache database. |
| 243 | * MV_NOT_ALIGNED - Sram base address is not 8 byte aligned. |
| 244 | * |
| 245 | *******************************************************************************/ |
| 246 | MV_STATUS mvCesaHalInit (int numOfSession, int queueDepth, char* pSramBase, MV_U32 cryptEngBase, |
| 247 | void *osHandle) |
| 248 | { |
| 249 | int i, req; |
| 250 | MV_U32 descOffsetReg, configReg; |
| 251 | MV_CESA_SRAM_SA *pSramSA; |
| 252 | |
| 253 | |
| 254 | mvOsPrintf("mvCesaInit: sessions=%d, queue=%d, pSram=%p\n", |
| 255 | numOfSession, queueDepth, pSramBase); |
| 256 | |
| 257 | cesaOsHandle = osHandle; |
| 258 | /* Create Session database */ |
| 259 | pCesaSAD = mvOsMalloc(sizeof(MV_CESA_SA)*numOfSession); |
| 260 | if(pCesaSAD == NULL) |
| 261 | { |
| 262 | mvOsPrintf("mvCesaInit: Can't allocate %u bytes for %d SAs\n", |
| 263 | sizeof(MV_CESA_SA)*numOfSession, numOfSession); |
| 264 | mvCesaFinish(); |
| 265 | return MV_NO_RESOURCE; |
| 266 | } |
| 267 | memset(pCesaSAD, 0, sizeof(MV_CESA_SA)*numOfSession); |
| 268 | cesaMaxSA = numOfSession; |
| 269 | |
| 270 | /* Allocate imag of sramSA in the DRAM */ |
| 271 | cesaSramSaBuf.bufSize = sizeof(MV_CESA_SRAM_SA)*numOfSession + |
| 272 | CPU_D_CACHE_LINE_SIZE; |
| 273 | |
| 274 | cesaSramSaBuf.bufVirtPtr = mvOsIoCachedMalloc(osHandle,cesaSramSaBuf.bufSize, |
| 275 | &cesaSramSaBuf.bufPhysAddr, |
| 276 | &cesaSramSaBuf.memHandle); |
| 277 | |
| 278 | if(cesaSramSaBuf.bufVirtPtr == NULL) |
| 279 | { |
| 280 | mvOsPrintf("mvCesaInit: Can't allocate %d bytes for sramSA structures\n", |
| 281 | cesaSramSaBuf.bufSize); |
| 282 | mvCesaFinish(); |
| 283 | return MV_NO_RESOURCE; |
| 284 | } |
| 285 | memset(cesaSramSaBuf.bufVirtPtr, 0, cesaSramSaBuf.bufSize); |
| 286 | pSramSA = (MV_CESA_SRAM_SA*)MV_ALIGN_UP((MV_ULONG)cesaSramSaBuf.bufVirtPtr, |
| 287 | CPU_D_CACHE_LINE_SIZE); |
| 288 | for(i=0; i<numOfSession; i++) |
| 289 | { |
| 290 | pCesaSAD[i].pSramSA = &pSramSA[i]; |
| 291 | } |
| 292 | |
| 293 | /* Create request queue */ |
| 294 | pCesaReqFirst = mvOsMalloc(sizeof(MV_CESA_REQ)*queueDepth); |
| 295 | if(pCesaReqFirst == NULL) |
| 296 | { |
| 297 | mvOsPrintf("mvCesaInit: Can't allocate %u bytes for %d requests\n", |
| 298 | sizeof(MV_CESA_REQ)*queueDepth, queueDepth); |
| 299 | mvCesaFinish(); |
| 300 | return MV_NO_RESOURCE; |
| 301 | } |
| 302 | memset(pCesaReqFirst, 0, sizeof(MV_CESA_REQ)*queueDepth); |
| 303 | pCesaReqEmpty = pCesaReqFirst; |
| 304 | pCesaReqLast = pCesaReqFirst + (queueDepth-1); |
| 305 | pCesaReqProcess = pCesaReqEmpty; |
| 306 | cesaQueueDepth = queueDepth; |
| 307 | cesaReqResources = queueDepth; |
| 308 | #if (MV_CESA_VERSION >= 3) |
| 309 | cesaChainLength = MAX_CESA_CHAIN_LENGTH; |
| 310 | #endif |
| 311 | /* pSramBase must be 8 byte aligned */ |
| 312 | if( MV_IS_NOT_ALIGN((MV_ULONG)pSramBase, 8) ) |
| 313 | { |
| 314 | mvOsPrintf("mvCesaInit: pSramBase (%p) must be 8 byte aligned\n", |
| 315 | pSramBase); |
| 316 | mvCesaFinish(); |
| 317 | return MV_NOT_ALIGNED; |
| 318 | } |
| 319 | cesaSramVirtPtr = (MV_CESA_SRAM_MAP*)pSramBase; |
| 320 | |
| 321 | cesaCryptEngBase = cryptEngBase; |
| 322 | |
| 323 | /*memset(cesaSramVirtPtr, 0, sizeof(MV_CESA_SRAM_MAP));*/ |
| 324 | |
| 325 | /* Clear registers */ |
| 326 | MV_REG_WRITE( MV_CESA_CFG_REG, 0); |
| 327 | MV_REG_WRITE( MV_CESA_ISR_CAUSE_REG, 0); |
| 328 | MV_REG_WRITE( MV_CESA_ISR_MASK_REG, 0); |
| 329 | |
| 330 | /* Initialize DMA descriptor lists for all requests in Request queue */ |
| 331 | descOffsetReg = configReg = 0; |
| 332 | for(req=0; req<queueDepth; req++) |
| 333 | { |
| 334 | int frag; |
| 335 | MV_CESA_REQ* pReq; |
| 336 | MV_DMA_DESC* pDmaDesc; |
| 337 | |
| 338 | pReq = &pCesaReqFirst[req]; |
| 339 | |
| 340 | pReq->cesaDescBuf.bufSize = sizeof(MV_CESA_DESC)*MV_CESA_MAX_REQ_FRAGS + |
| 341 | CPU_D_CACHE_LINE_SIZE; |
| 342 | |
| 343 | pReq->cesaDescBuf.bufVirtPtr = |
| 344 | mvOsIoCachedMalloc(osHandle,pReq->cesaDescBuf.bufSize, |
| 345 | &pReq->cesaDescBuf.bufPhysAddr, |
| 346 | &pReq->cesaDescBuf.memHandle); |
| 347 | |
| 348 | if(pReq->cesaDescBuf.bufVirtPtr == NULL) |
| 349 | { |
| 350 | mvOsPrintf("mvCesaInit: req=%d, Can't allocate %d bytes for CESA descriptors\n", |
| 351 | req, pReq->cesaDescBuf.bufSize); |
| 352 | mvCesaFinish(); |
| 353 | return MV_NO_RESOURCE; |
| 354 | } |
| 355 | memset(pReq->cesaDescBuf.bufVirtPtr, 0, pReq->cesaDescBuf.bufSize); |
| 356 | pReq->pCesaDesc = (MV_CESA_DESC*)MV_ALIGN_UP((MV_ULONG)pReq->cesaDescBuf.bufVirtPtr, |
| 357 | CPU_D_CACHE_LINE_SIZE); |
| 358 | |
| 359 | pReq->dmaDescBuf.bufSize = sizeof(MV_DMA_DESC)*MV_CESA_MAX_DMA_DESC*MV_CESA_MAX_REQ_FRAGS + |
| 360 | CPU_D_CACHE_LINE_SIZE; |
| 361 | |
| 362 | pReq->dmaDescBuf.bufVirtPtr = |
| 363 | mvOsIoCachedMalloc(osHandle,pReq->dmaDescBuf.bufSize, |
| 364 | &pReq->dmaDescBuf.bufPhysAddr, |
| 365 | &pReq->dmaDescBuf.memHandle); |
| 366 | |
| 367 | if(pReq->dmaDescBuf.bufVirtPtr == NULL) |
| 368 | { |
| 369 | mvOsPrintf("mvCesaInit: req=%d, Can't allocate %d bytes for DMA descriptor list\n", |
| 370 | req, pReq->dmaDescBuf.bufSize); |
| 371 | mvCesaFinish(); |
| 372 | return MV_NO_RESOURCE; |
| 373 | } |
| 374 | memset(pReq->dmaDescBuf.bufVirtPtr, 0, pReq->dmaDescBuf.bufSize); |
| 375 | pDmaDesc = (MV_DMA_DESC*)MV_ALIGN_UP((MV_ULONG)pReq->dmaDescBuf.bufVirtPtr, |
| 376 | CPU_D_CACHE_LINE_SIZE); |
| 377 | |
| 378 | for(frag=0; frag<MV_CESA_MAX_REQ_FRAGS; frag++) |
| 379 | { |
| 380 | MV_CESA_DMA* pDma = &pReq->dma[frag]; |
| 381 | |
| 382 | pDma->pDmaFirst = pDmaDesc; |
| 383 | pDma->pDmaLast = NULL; |
| 384 | |
| 385 | for(i=0; i<MV_CESA_MAX_DMA_DESC-1; i++) |
| 386 | { |
| 387 | /* link all DMA descriptors together */ |
| 388 | pDma->pDmaFirst[i].phyNextDescPtr = |
| 389 | MV_32BIT_LE(mvCesaVirtToPhys(&pReq->dmaDescBuf, &pDmaDesc[i+1])); |
| 390 | } |
| 391 | pDma->pDmaFirst[i].phyNextDescPtr = 0; |
| 392 | mvOsCacheFlush(NULL, &pDma->pDmaFirst[0], MV_CESA_MAX_DMA_DESC*sizeof(MV_DMA_DESC)); |
| 393 | |
| 394 | pDmaDesc += MV_CESA_MAX_DMA_DESC; |
| 395 | } |
| 396 | } |
| 397 | /*mvCesaCryptoIvSet(NULL, MV_CESA_MAX_IV_LENGTH);*/ |
| 398 | descOffsetReg = (MV_U16)((MV_U8*)&cesaSramVirtPtr->desc - mvCesaSramAddrGet()); |
| 399 | MV_REG_WRITE(MV_CESA_CHAN_DESC_OFFSET_REG, descOffsetReg); |
| 400 | |
| 401 | configReg |= (MV_CESA_CFG_WAIT_DMA_MASK | MV_CESA_CFG_ACT_DMA_MASK); |
| 402 | #if (MV_CESA_VERSION >= 3) |
| 403 | configReg |= MV_CESA_CFG_CHAIN_MODE_MASK; |
| 404 | #endif |
| 405 | |
| 406 | #if (MV_CESA_VERSION >= 2) |
| 407 | /* Initialize TDMA engine */ |
| 408 | MV_REG_WRITE(MV_CESA_TDMA_CTRL_REG, MV_CESA_TDMA_CTRL_VALUE); |
| 409 | MV_REG_WRITE(MV_CESA_TDMA_BYTE_COUNT_REG, 0); |
| 410 | MV_REG_WRITE(MV_CESA_TDMA_CURR_DESC_PTR_REG, 0); |
| 411 | #else |
| 412 | /* Initialize IDMA #0 engine */ |
| 413 | MV_REG_WRITE(IDMA_CTRL_LOW_REG(0), 0); |
| 414 | MV_REG_WRITE(IDMA_BYTE_COUNT_REG(0), 0); |
| 415 | MV_REG_WRITE(IDMA_CURR_DESC_PTR_REG(0), 0); |
| 416 | MV_REG_WRITE(IDMA_CTRL_HIGH_REG(0), ICCHR_ENDIAN_LITTLE |
| 417 | #ifdef MV_CPU_LE |
| 418 | | ICCHR_DESC_BYTE_SWAP_EN |
| 419 | #endif |
| 420 | ); |
| 421 | /* Clear Cause Byte of IDMA channel to be used */ |
| 422 | MV_REG_WRITE( IDMA_CAUSE_REG, ~ICICR_CAUSE_MASK_ALL(0)); |
| 423 | MV_REG_WRITE(IDMA_CTRL_LOW_REG(0), MV_CESA_IDMA_CTRL_LOW_VALUE); |
| 424 | #endif /* (MV_CESA_VERSION >= 2) */ |
| 425 | |
| 426 | /* Set CESA configuration registers */ |
| 427 | MV_REG_WRITE( MV_CESA_CFG_REG, configReg); |
| 428 | mvCesaDebugStatsClear(); |
| 429 | |
| 430 | return MV_OK; |
| 431 | } |
| 432 | |
| 433 | /******************************************************************************* |
| 434 | * mvCesaFinish - Shutdown the CESA driver |
| 435 | * |
| 436 | * DESCRIPTION: |
| 437 | * This function shutdown the CESA driver and free all allocted resources. |
| 438 | * |
| 439 | * INPUT: None |
| 440 | * |
| 441 | * RETURN: |
| 442 | * MV_OK - Success |
| 443 | * Other - Fail |
| 444 | * |
| 445 | *******************************************************************************/ |
| 446 | MV_STATUS mvCesaFinish (void) |
| 447 | { |
| 448 | int req; |
| 449 | MV_CESA_REQ* pReq; |
| 450 | |
| 451 | mvOsPrintf("mvCesaFinish: \n"); |
| 452 | |
| 453 | cesaSramVirtPtr = NULL; |
| 454 | |
| 455 | /* Free all resources: DMA list, etc. */ |
| 456 | for(req=0; req<cesaQueueDepth; req++) |
| 457 | { |
| 458 | pReq = &pCesaReqFirst[req]; |
| 459 | if(pReq->dmaDescBuf.bufVirtPtr != NULL) |
| 460 | { |
| 461 | mvOsIoCachedFree(cesaOsHandle,pReq->dmaDescBuf.bufSize, |
| 462 | pReq->dmaDescBuf.bufPhysAddr, |
| 463 | pReq->dmaDescBuf.bufVirtPtr, |
| 464 | pReq->dmaDescBuf.memHandle); |
| 465 | } |
| 466 | if(pReq->cesaDescBuf.bufVirtPtr != NULL) |
| 467 | { |
| 468 | mvOsIoCachedFree(cesaOsHandle,pReq->cesaDescBuf.bufSize, |
| 469 | pReq->cesaDescBuf.bufPhysAddr, |
| 470 | pReq->cesaDescBuf.bufVirtPtr, |
| 471 | pReq->cesaDescBuf.memHandle); |
| 472 | } |
| 473 | } |
| 474 | #if (MV_CESA_VERSION < 2) |
| 475 | MV_REG_WRITE(IDMA_CTRL_LOW_REG(0), 0); |
| 476 | #endif /* (MV_CESA_VERSION < 2) */ |
| 477 | |
| 478 | /* Free request queue */ |
| 479 | if(pCesaReqFirst != NULL) |
| 480 | { |
| 481 | mvOsFree(pCesaReqFirst); |
| 482 | pCesaReqFirst = pCesaReqLast = NULL; |
| 483 | pCesaReqEmpty = pCesaReqProcess = NULL; |
| 484 | cesaQueueDepth = cesaReqResources = 0; |
| 485 | } |
| 486 | /* Free SA database */ |
| 487 | if(pCesaSAD != NULL) |
| 488 | { |
| 489 | mvOsFree(pCesaSAD); |
| 490 | pCesaSAD = NULL; |
| 491 | cesaMaxSA = 0; |
| 492 | } |
| 493 | MV_REG_WRITE( MV_CESA_CFG_REG, 0); |
| 494 | MV_REG_WRITE( MV_CESA_ISR_CAUSE_REG, 0); |
| 495 | MV_REG_WRITE( MV_CESA_ISR_MASK_REG, 0); |
| 496 | |
| 497 | return MV_OK; |
| 498 | } |
| 499 | |
| 500 | /******************************************************************************* |
| 501 | * mvCesaCryptoIvSet - Set IV value for Crypto algorithm working in CBC mode |
| 502 | * |
| 503 | * DESCRIPTION: |
| 504 | * This function set IV value using by Crypto algorithms in CBC mode. |
| 505 | * Each channel has its own IV value. |
| 506 | * This function gets IV value from the caller. If no IV value passed from |
| 507 | * the caller or only part of IV passed, the function will init the rest part |
| 508 | * of IV value (or the whole IV) by random value. |
| 509 | * |
| 510 | * INPUT: |
| 511 | * MV_U8* pIV - Pointer to IV value supplied by user. If pIV==NULL |
| 512 | * the function will generate random IV value. |
| 513 | * int ivSize - size (in bytes) of IV provided by user. If ivSize is |
| 514 | * smaller than maximum IV size, the function will complete |
| 515 | * IV by random value. |
| 516 | * |
| 517 | * RETURN: |
| 518 | * MV_OK - Success |
| 519 | * Other - Fail |
| 520 | * |
| 521 | *******************************************************************************/ |
| 522 | MV_STATUS mvCesaCryptoIvSet(MV_U8* pIV, int ivSize) |
| 523 | { |
| 524 | MV_U8* pSramIV; |
| 525 | #if defined(MV646xx) |
| 526 | mvOsPrintf("mvCesaCryptoIvSet: ERR. shouldn't use this call on MV64660\n"); |
| 527 | #endif |
| 528 | pSramIV = cesaSramVirtPtr->cryptoIV; |
| 529 | if(ivSize > MV_CESA_MAX_IV_LENGTH) |
| 530 | { |
| 531 | mvOsPrintf("mvCesaCryptoIvSet: ivSize (%d) is too large\n", ivSize); |
| 532 | ivSize = MV_CESA_MAX_IV_LENGTH; |
| 533 | } |
| 534 | if(pIV != NULL) |
| 535 | { |
| 536 | memcpy(pSramIV, pIV, ivSize); |
| 537 | ivSize = MV_CESA_MAX_IV_LENGTH - ivSize; |
| 538 | pSramIV += ivSize; |
| 539 | } |
| 540 | |
| 541 | while(ivSize > 0) |
| 542 | { |
| 543 | int size, mv_random = mvOsRand(); |
| 544 | |
| 545 | size = MV_MIN(ivSize, sizeof(mv_random)); |
| 546 | memcpy(pSramIV, (void*)&mv_random, size); |
| 547 | |
| 548 | pSramIV += size; |
| 549 | ivSize -= size; |
| 550 | } |
| 551 | /* |
| 552 | mvOsCacheFlush(NULL, cesaSramVirtPtr->cryptoIV, |
| 553 | MV_CESA_MAX_IV_LENGTH); |
| 554 | mvOsCacheInvalidate(NULL, cesaSramVirtPtr->cryptoIV, |
| 555 | MV_CESA_MAX_IV_LENGTH); |
| 556 | */ |
| 557 | return MV_OK; |
| 558 | } |
| 559 | |
| 560 | /******************************************************************************* |
| 561 | * mvCesaSessionOpen - Open new uni-directional crypto session |
| 562 | * |
| 563 | * DESCRIPTION: |
| 564 | * This function open new session. |
| 565 | * |
| 566 | * INPUT: |
| 567 | * MV_CESA_OPEN_SESSION *pSession - pointer to new session input parameters |
| 568 | * |
| 569 | * OUTPUT: |
| 570 | * short *pSid - session ID, should be used for all future |
| 571 | * requests over this session. |
| 572 | * |
| 573 | * RETURN: |
| 574 | * MV_OK - Session opend successfully. |
| 575 | * MV_FULL - All sessions are in use, no free place in |
| 576 | * SA database. |
| 577 | * MV_BAD_PARAM - One of session input parameters is invalid. |
| 578 | * |
| 579 | *******************************************************************************/ |
| 580 | MV_STATUS mvCesaSessionOpen(MV_CESA_OPEN_SESSION *pSession, short* pSid) |
| 581 | { |
| 582 | short sid; |
| 583 | MV_U32 config = 0; |
| 584 | int digestSize; |
| 585 | |
| 586 | cesaStats.openedCount++; |
| 587 | |
| 588 | /* Find free entry in SAD */ |
| 589 | for(sid=0; sid<cesaMaxSA; sid++) |
| 590 | { |
| 591 | if(pCesaSAD[sid].valid == 0) |
| 592 | { |
| 593 | break; |
| 594 | } |
| 595 | } |
| 596 | if(sid == cesaMaxSA) |
| 597 | { |
| 598 | mvOsPrintf("mvCesaSessionOpen: SA Database is FULL\n"); |
| 599 | return MV_FULL; |
| 600 | } |
| 601 | |
| 602 | /* Check Input parameters for Open session */ |
| 603 | if (pSession->operation >= MV_CESA_MAX_OPERATION) |
| 604 | { |
| 605 | mvOsPrintf("mvCesaSessionOpen: Unexpected operation %d\n", |
| 606 | pSession->operation); |
| 607 | return MV_BAD_PARAM; |
| 608 | } |
| 609 | config |= (pSession->operation << MV_CESA_OPERATION_OFFSET); |
| 610 | |
| 611 | if( (pSession->direction != MV_CESA_DIR_ENCODE) && |
| 612 | (pSession->direction != MV_CESA_DIR_DECODE) ) |
| 613 | { |
| 614 | mvOsPrintf("mvCesaSessionOpen: Unexpected direction %d\n", |
| 615 | pSession->direction); |
| 616 | return MV_BAD_PARAM; |
| 617 | } |
| 618 | config |= (pSession->direction << MV_CESA_DIRECTION_BIT); |
| 619 | /* Clear SA entry */ |
| 620 | /* memset(&pCesaSAD[sid], 0, sizeof(pCesaSAD[sid])); */ |
| 621 | |
| 622 | /* Check AUTH parameters and update SA entry */ |
| 623 | if(pSession->operation != MV_CESA_CRYPTO_ONLY) |
| 624 | { |
| 625 | /* For HMAC (MD5 and SHA1) - Maximum Key size is 64 bytes */ |
| 626 | if( (pSession->macMode == MV_CESA_MAC_HMAC_MD5) || |
| 627 | (pSession->macMode == MV_CESA_MAC_HMAC_SHA1) ) |
| 628 | { |
| 629 | if(pSession->macKeyLength > MV_CESA_MAX_MAC_KEY_LENGTH) |
| 630 | { |
| 631 | mvOsPrintf("mvCesaSessionOpen: macKeyLength %d is too large\n", |
| 632 | pSession->macKeyLength); |
| 633 | return MV_BAD_PARAM; |
| 634 | } |
| 635 | mvCesaHmacIvGet(pSession->macMode, pSession->macKey, pSession->macKeyLength, |
| 636 | pCesaSAD[sid].pSramSA->macInnerIV, |
| 637 | pCesaSAD[sid].pSramSA->macOuterIV); |
| 638 | pCesaSAD[sid].macKeyLength = pSession->macKeyLength; |
| 639 | } |
| 640 | switch(pSession->macMode) |
| 641 | { |
| 642 | case MV_CESA_MAC_MD5: |
| 643 | case MV_CESA_MAC_HMAC_MD5: |
| 644 | digestSize = MV_CESA_MD5_DIGEST_SIZE; |
| 645 | break; |
| 646 | |
| 647 | case MV_CESA_MAC_SHA1: |
| 648 | case MV_CESA_MAC_HMAC_SHA1: |
| 649 | digestSize = MV_CESA_SHA1_DIGEST_SIZE; |
| 650 | break; |
| 651 | |
| 652 | default: |
| 653 | mvOsPrintf("mvCesaSessionOpen: Unexpected macMode %d\n", |
| 654 | pSession->macMode); |
| 655 | return MV_BAD_PARAM; |
| 656 | } |
| 657 | config |= (pSession->macMode << MV_CESA_MAC_MODE_OFFSET); |
| 658 | |
| 659 | /* Supported digest sizes: MD5 - 16 bytes (128 bits), */ |
| 660 | /* SHA1 - 20 bytes (160 bits) or 12 bytes (96 bits) for both */ |
| 661 | if( (pSession->digestSize != digestSize) && (pSession->digestSize != 12)) |
| 662 | { |
| 663 | mvOsPrintf("mvCesaSessionOpen: Unexpected digest size %d\n", |
| 664 | pSession->digestSize); |
| 665 | mvOsPrintf("\t Valid values [bytes]: MD5-16, SHA1-20, Both-12\n"); |
| 666 | return MV_BAD_PARAM; |
| 667 | } |
| 668 | pCesaSAD[sid].digestSize = pSession->digestSize; |
| 669 | |
| 670 | if(pCesaSAD[sid].digestSize == 12) |
| 671 | { |
| 672 | /* Set MV_CESA_MAC_DIGEST_SIZE_BIT if digest size is 96 bits */ |
| 673 | config |= (MV_CESA_MAC_DIGEST_96B << MV_CESA_MAC_DIGEST_SIZE_BIT); |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | /* Check CRYPTO parameters and update SA entry */ |
| 678 | if(pSession->operation != MV_CESA_MAC_ONLY) |
| 679 | { |
| 680 | switch(pSession->cryptoAlgorithm) |
| 681 | { |
| 682 | case MV_CESA_CRYPTO_DES: |
| 683 | pCesaSAD[sid].cryptoKeyLength = MV_CESA_DES_KEY_LENGTH; |
| 684 | pCesaSAD[sid].cryptoBlockSize = MV_CESA_DES_BLOCK_SIZE; |
| 685 | break; |
| 686 | |
| 687 | case MV_CESA_CRYPTO_3DES: |
| 688 | pCesaSAD[sid].cryptoKeyLength = MV_CESA_3DES_KEY_LENGTH; |
| 689 | pCesaSAD[sid].cryptoBlockSize = MV_CESA_DES_BLOCK_SIZE; |
| 690 | /* Only EDE mode is supported */ |
| 691 | config |= (MV_CESA_CRYPTO_3DES_EDE << |
| 692 | MV_CESA_CRYPTO_3DES_MODE_BIT); |
| 693 | break; |
| 694 | |
| 695 | case MV_CESA_CRYPTO_AES: |
| 696 | switch(pSession->cryptoKeyLength) |
| 697 | { |
| 698 | case 16: |
| 699 | pCesaSAD[sid].cryptoKeyLength = MV_CESA_AES_128_KEY_LENGTH; |
| 700 | config |= (MV_CESA_CRYPTO_AES_KEY_128 << |
| 701 | MV_CESA_CRYPTO_AES_KEY_LEN_OFFSET); |
| 702 | break; |
| 703 | |
| 704 | case 24: |
| 705 | pCesaSAD[sid].cryptoKeyLength = MV_CESA_AES_192_KEY_LENGTH; |
| 706 | config |= (MV_CESA_CRYPTO_AES_KEY_192 << |
| 707 | MV_CESA_CRYPTO_AES_KEY_LEN_OFFSET); |
| 708 | break; |
| 709 | |
| 710 | case 32: |
| 711 | default: |
| 712 | pCesaSAD[sid].cryptoKeyLength = MV_CESA_AES_256_KEY_LENGTH; |
| 713 | config |= (MV_CESA_CRYPTO_AES_KEY_256 << |
| 714 | MV_CESA_CRYPTO_AES_KEY_LEN_OFFSET); |
| 715 | break; |
| 716 | } |
| 717 | pCesaSAD[sid].cryptoBlockSize = MV_CESA_AES_BLOCK_SIZE; |
| 718 | break; |
| 719 | |
| 720 | default: |
| 721 | mvOsPrintf("mvCesaSessionOpen: Unexpected cryptoAlgorithm %d\n", |
| 722 | pSession->cryptoAlgorithm); |
| 723 | return MV_BAD_PARAM; |
| 724 | } |
| 725 | config |= (pSession->cryptoAlgorithm << MV_CESA_CRYPTO_ALG_OFFSET); |
| 726 | |
| 727 | if(pSession->cryptoKeyLength != pCesaSAD[sid].cryptoKeyLength) |
| 728 | { |
| 729 | mvOsPrintf("cesaSessionOpen: Wrong CryptoKeySize %d != %d\n", |
| 730 | pSession->cryptoKeyLength, pCesaSAD[sid].cryptoKeyLength); |
| 731 | return MV_BAD_PARAM; |
| 732 | } |
| 733 | |
| 734 | /* Copy Crypto key */ |
| 735 | if( (pSession->cryptoAlgorithm == MV_CESA_CRYPTO_AES) && |
| 736 | (pSession->direction == MV_CESA_DIR_DECODE)) |
| 737 | { |
| 738 | /* Crypto Key for AES decode is computed from original key material */ |
| 739 | /* and depend on cryptoKeyLength (128/192/256 bits) */ |
| 740 | aesMakeKey(pCesaSAD[sid].pSramSA->cryptoKey, pSession->cryptoKey, |
| 741 | pSession->cryptoKeyLength*8, MV_CESA_AES_BLOCK_SIZE*8); |
| 742 | } |
| 743 | else |
| 744 | { |
| 745 | /*panic("mvCesaSessionOpen2");*/ |
| 746 | memcpy(pCesaSAD[sid].pSramSA->cryptoKey, pSession->cryptoKey, |
| 747 | pCesaSAD[sid].cryptoKeyLength); |
| 748 | |
| 749 | } |
| 750 | |
| 751 | switch(pSession->cryptoMode) |
| 752 | { |
| 753 | case MV_CESA_CRYPTO_ECB: |
| 754 | pCesaSAD[sid].cryptoIvSize = 0; |
| 755 | break; |
| 756 | |
| 757 | case MV_CESA_CRYPTO_CBC: |
| 758 | pCesaSAD[sid].cryptoIvSize = pCesaSAD[sid].cryptoBlockSize; |
| 759 | break; |
| 760 | |
| 761 | case MV_CESA_CRYPTO_CTR: |
| 762 | /* Supported only for AES algorithm */ |
| 763 | if(pSession->cryptoAlgorithm != MV_CESA_CRYPTO_AES) |
| 764 | { |
| 765 | mvOsPrintf("mvCesaSessionOpen: CRYPTO CTR mode supported for AES only\n"); |
| 766 | return MV_BAD_PARAM; |
| 767 | } |
| 768 | pCesaSAD[sid].cryptoIvSize = 0; |
| 769 | pCesaSAD[sid].ctrMode = 1; |
| 770 | /* Replace to ECB mode for HW */ |
| 771 | pSession->cryptoMode = MV_CESA_CRYPTO_ECB; |
| 772 | break; |
| 773 | |
| 774 | default: |
| 775 | mvOsPrintf("mvCesaSessionOpen: Unexpected cryptoMode %d\n", |
| 776 | pSession->cryptoMode); |
| 777 | return MV_BAD_PARAM; |
| 778 | } |
| 779 | |
| 780 | config |= (pSession->cryptoMode << MV_CESA_CRYPTO_MODE_BIT); |
| 781 | } |
| 782 | pCesaSAD[sid].config = config; |
| 783 | |
| 784 | mvOsCacheFlush(NULL, pCesaSAD[sid].pSramSA, sizeof(MV_CESA_SRAM_SA)); |
| 785 | if(pSid != NULL) |
| 786 | *pSid = sid; |
| 787 | |
| 788 | pCesaSAD[sid].valid = 1; |
| 789 | return MV_OK; |
| 790 | } |
| 791 | |
| 792 | /******************************************************************************* |
| 793 | * mvCesaSessionClose - Close active crypto session |
| 794 | * |
| 795 | * DESCRIPTION: |
| 796 | * This function closes existing session |
| 797 | * |
| 798 | * INPUT: |
| 799 | * short sid - Unique identifier of the session to be closed |
| 800 | * |
| 801 | * RETURN: |
| 802 | * MV_OK - Session closed successfully. |
| 803 | * MV_BAD_PARAM - Session identifier is out of valid range. |
| 804 | * MV_NOT_FOUND - There is no active session with such ID. |
| 805 | * |
| 806 | *******************************************************************************/ |
| 807 | MV_STATUS mvCesaSessionClose(short sid) |
| 808 | { |
| 809 | cesaStats.closedCount++; |
| 810 | |
| 811 | if(sid >= cesaMaxSA) |
| 812 | { |
| 813 | mvOsPrintf("CESA Error: sid (%d) is too big\n", sid); |
| 814 | return MV_BAD_PARAM; |
| 815 | } |
| 816 | if(pCesaSAD[sid].valid == 0) |
| 817 | { |
| 818 | mvOsPrintf("CESA Warning: Session (sid=%d) is invalid\n", sid); |
| 819 | return MV_NOT_FOUND; |
| 820 | } |
| 821 | if(cesaLastSid == sid) |
| 822 | cesaLastSid = -1; |
| 823 | |
| 824 | pCesaSAD[sid].valid = 0; |
| 825 | return MV_OK; |
| 826 | } |
| 827 | |
| 828 | /******************************************************************************* |
| 829 | * mvCesaAction - Perform crypto operation |
| 830 | * |
| 831 | * DESCRIPTION: |
| 832 | * This function set new CESA request FIFO queue for further HW processing. |
| 833 | * The function checks request parameters before set new request to the queue. |
| 834 | * If one of the CESA channels is ready for processing the request will be |
| 835 | * passed to HW. When request processing is finished the CESA interrupt will |
| 836 | * be generated by HW. The caller should call mvCesaReadyGet() function to |
| 837 | * complete request processing and get result. |
| 838 | * |
| 839 | * INPUT: |
| 840 | * MV_CESA_COMMAND *pCmd - pointer to new CESA request. |
| 841 | * It includes pointers to Source and Destination |
| 842 | * buffers, session identifier get from |
| 843 | * mvCesaSessionOpen() function, pointer to caller |
| 844 | * private data and all needed crypto parameters. |
| 845 | * |
| 846 | * RETURN: |
| 847 | * MV_OK - request successfully added to request queue |
| 848 | * and will be processed. |
| 849 | * MV_NO_MORE - request successfully added to request queue and will |
| 850 | * be processed, but request queue became Full and next |
| 851 | * request will not be accepted. |
| 852 | * MV_NO_RESOURCE - request queue is FULL and the request can not |
| 853 | * be processed. |
| 854 | * MV_OUT_OF_CPU_MEM - memory allocation needed for request processing is |
| 855 | * failed. Request can not be processed. |
| 856 | * MV_NOT_ALLOWED - This mixed request (CRYPTO+MAC) can not be processed |
| 857 | * as one request and should be splitted for two requests: |
| 858 | * CRYPTO_ONLY and MAC_ONLY. |
| 859 | * MV_BAD_PARAM - One of the request parameters is out of valid range. |
| 860 | * The request can not be processed. |
| 861 | * |
| 862 | *******************************************************************************/ |
| 863 | MV_STATUS mvCesaAction (MV_CESA_COMMAND *pCmd) |
| 864 | { |
| 865 | MV_STATUS status; |
| 866 | MV_CESA_REQ* pReq = pCesaReqEmpty; |
| 867 | int sid = pCmd->sessionId; |
| 868 | MV_CESA_SA* pSA = &pCesaSAD[sid]; |
| 869 | #if (MV_CESA_VERSION >= 3) |
| 870 | MV_CESA_REQ* pFromReq; |
| 871 | MV_CESA_REQ* pToReq; |
| 872 | #endif |
| 873 | cesaStats.reqCount++; |
| 874 | |
| 875 | /* Check that the request queue is not FULL */ |
| 876 | if(cesaReqResources == 0) |
| 877 | return MV_NO_RESOURCE; |
| 878 | |
| 879 | if( (sid >= cesaMaxSA) || (!pSA->valid) ) |
| 880 | { |
| 881 | mvOsPrintf("CESA Action Error: Session sid=%d is INVALID\n", sid); |
| 882 | return MV_BAD_PARAM; |
| 883 | } |
| 884 | pSA->count++; |
| 885 | |
| 886 | if(pSA->ctrMode) |
| 887 | { |
| 888 | /* AES in CTR mode can't be mixed with Authentication */ |
| 889 | if( (pSA->config & MV_CESA_OPERATION_MASK) != |
| 890 | (MV_CESA_CRYPTO_ONLY << MV_CESA_OPERATION_OFFSET) ) |
| 891 | { |
| 892 | mvOsPrintf("mvCesaAction : CRYPTO CTR mode can't be mixed with AUTH\n"); |
| 893 | return MV_NOT_ALLOWED; |
| 894 | } |
| 895 | /* All other request parameters should not be checked because key stream */ |
| 896 | /* (not user data) processed by AES HW engine */ |
| 897 | pReq->pOrgCmd = pCmd; |
| 898 | /* Allocate temporary pCmd structure for Key stream */ |
| 899 | pCmd = mvCesaCtrModeInit(); |
| 900 | if(pCmd == NULL) |
| 901 | return MV_OUT_OF_CPU_MEM; |
| 902 | |
| 903 | /* Prepare Key stream */ |
| 904 | mvCesaCtrModePrepare(pCmd, pReq->pOrgCmd); |
| 905 | pReq->fixOffset = 0; |
| 906 | } |
| 907 | else |
| 908 | { |
| 909 | /* Check request parameters and calculae fixOffset */ |
| 910 | status = mvCesaParamCheck(pSA, pCmd, &pReq->fixOffset); |
| 911 | if(status != MV_OK) |
| 912 | { |
| 913 | return status; |
| 914 | } |
| 915 | } |
| 916 | pReq->pCmd = pCmd; |
| 917 | |
| 918 | /* Check if the packet need fragmentation */ |
| 919 | if(pCmd->pSrc->mbufSize <= sizeof(cesaSramVirtPtr->buf) ) |
| 920 | { |
| 921 | /* request size is smaller than single buffer size */ |
| 922 | pReq->fragMode = MV_CESA_FRAG_NONE; |
| 923 | |
| 924 | /* Prepare NOT fragmented packets */ |
| 925 | status = mvCesaReqProcess(pReq); |
| 926 | if(status != MV_OK) |
| 927 | { |
| 928 | mvOsPrintf("CesaReady: ReqProcess error: pReq=%p, status=0x%x\n", |
| 929 | pReq, status); |
| 930 | } |
| 931 | #if (MV_CESA_VERSION >= 3) |
| 932 | pReq->frags.numFrag = 1; |
| 933 | #endif |
| 934 | } |
| 935 | else |
| 936 | { |
| 937 | MV_U8 frag = 0; |
| 938 | |
| 939 | /* request size is larger than buffer size - needs fragmentation */ |
| 940 | |
| 941 | /* Check restrictions for processing fragmented packets */ |
| 942 | status = mvCesaFragParamCheck(pSA, pCmd); |
| 943 | if(status != MV_OK) |
| 944 | return status; |
| 945 | |
| 946 | pReq->fragMode = MV_CESA_FRAG_FIRST; |
| 947 | pReq->frags.nextFrag = 0; |
| 948 | |
| 949 | /* Prepare Process Fragmented packets */ |
| 950 | while(pReq->fragMode != MV_CESA_FRAG_LAST) |
| 951 | { |
| 952 | if(frag >= MV_CESA_MAX_REQ_FRAGS) |
| 953 | { |
| 954 | mvOsPrintf("mvCesaAction Error: Too large request frag=%d\n", frag); |
| 955 | return MV_OUT_OF_CPU_MEM; |
| 956 | } |
| 957 | status = mvCesaFragReqProcess(pReq, frag); |
| 958 | if(status == MV_OK) { |
| 959 | #if (MV_CESA_VERSION >= 3) |
| 960 | if(frag) { |
| 961 | pReq->dma[frag-1].pDmaLast->phyNextDescPtr = |
| 962 | MV_32BIT_LE(mvCesaVirtToPhys(&pReq->dmaDescBuf, pReq->dma[frag].pDmaFirst)); |
| 963 | mvOsCacheFlush(NULL, pReq->dma[frag-1].pDmaLast, sizeof(MV_DMA_DESC)); |
| 964 | } |
| 965 | #endif |
| 966 | frag++; |
| 967 | } |
| 968 | } |
| 969 | pReq->frags.numFrag = frag; |
| 970 | #if (MV_CESA_VERSION >= 3) |
| 971 | if(chainReqNum) { |
| 972 | chainReqNum += pReq->frags.numFrag; |
| 973 | if(chainReqNum >= MAX_CESA_CHAIN_LENGTH) |
| 974 | chainReqNum = MAX_CESA_CHAIN_LENGTH; |
| 975 | } |
| 976 | #endif |
| 977 | } |
| 978 | |
| 979 | pReq->state = MV_CESA_PENDING; |
| 980 | |
| 981 | pCesaReqEmpty = MV_CESA_REQ_NEXT_PTR(pReq); |
| 982 | cesaReqResources -= 1; |
| 983 | |
| 984 | /* #ifdef CESA_DEBUG */ |
| 985 | if( (cesaQueueDepth - cesaReqResources) > cesaStats.maxReqCount) |
| 986 | cesaStats.maxReqCount = (cesaQueueDepth - cesaReqResources); |
| 987 | /* #endif CESA_DEBUG */ |
| 988 | |
| 989 | cesaLastSid = sid; |
| 990 | |
| 991 | #if (MV_CESA_VERSION >= 3) |
| 992 | /* Are we within chain bounderies and follows the first request ? */ |
| 993 | if((chainReqNum > 0) && (chainReqNum < MAX_CESA_CHAIN_LENGTH)) { |
| 994 | if(chainIndex) { |
| 995 | pFromReq = MV_CESA_REQ_PREV_PTR(pReq); |
| 996 | pToReq = pReq; |
| 997 | pReq->state = MV_CESA_CHAIN; |
| 998 | /* assume concatenating is possible */ |
| 999 | pFromReq->dma[pFromReq->frags.numFrag-1].pDmaLast->phyNextDescPtr = |
| 1000 | MV_32BIT_LE(mvCesaVirtToPhys(&pToReq->dmaDescBuf, pToReq->dma[0].pDmaFirst)); |
| 1001 | mvOsCacheFlush(NULL, pFromReq->dma[pFromReq->frags.numFrag-1].pDmaLast, sizeof(MV_DMA_DESC)); |
| 1002 | |
| 1003 | /* align active & next pointers */ |
| 1004 | if(pNextActiveChain->state != MV_CESA_PENDING) |
| 1005 | pEndCurrChain = pNextActiveChain = MV_CESA_REQ_NEXT_PTR(pReq); |
| 1006 | } |
| 1007 | else { /* we have only one chain, start new one */ |
| 1008 | chainReqNum = 0; |
| 1009 | chainIndex++; |
| 1010 | /* align active & next pointers */ |
| 1011 | if(pNextActiveChain->state != MV_CESA_PENDING) |
| 1012 | pEndCurrChain = pNextActiveChain = pReq; |
| 1013 | } |
| 1014 | } |
| 1015 | else { |
| 1016 | /* In case we concatenate full chain */ |
| 1017 | if(chainReqNum == MAX_CESA_CHAIN_LENGTH) { |
| 1018 | chainIndex++; |
| 1019 | if(pNextActiveChain->state != MV_CESA_PENDING) |
| 1020 | pEndCurrChain = pNextActiveChain = pReq; |
| 1021 | chainReqNum = 0; |
| 1022 | } |
| 1023 | |
| 1024 | pReq = pCesaReqProcess; |
| 1025 | if(pReq->state == MV_CESA_PENDING) { |
| 1026 | pNextActiveChain = pReq; |
| 1027 | pEndCurrChain = MV_CESA_REQ_NEXT_PTR(pReq); |
| 1028 | /* Start Process new request */ |
| 1029 | mvCesaReqProcessStart(pReq); |
| 1030 | } |
| 1031 | } |
| 1032 | |
| 1033 | chainReqNum++; |
| 1034 | |
| 1035 | if((chainIndex < MAX_CESA_CHAIN_LENGTH) && (chainReqNum > cesaStats.maxChainUsage)) |
| 1036 | cesaStats.maxChainUsage = chainReqNum; |
| 1037 | |
| 1038 | #else |
| 1039 | |
| 1040 | /* Check status of CESA channels and process requests if possible */ |
| 1041 | pReq = pCesaReqProcess; |
| 1042 | if(pReq->state == MV_CESA_PENDING) |
| 1043 | { |
| 1044 | /* Start Process new request */ |
| 1045 | mvCesaReqProcessStart(pReq); |
| 1046 | } |
| 1047 | #endif |
| 1048 | /* If request queue became FULL - return MV_NO_MORE */ |
| 1049 | if(cesaReqResources == 0) |
| 1050 | return MV_NO_MORE; |
| 1051 | |
| 1052 | return MV_OK; |
| 1053 | |
| 1054 | } |
| 1055 | |
| 1056 | /******************************************************************************* |
| 1057 | * mvCesaReadyGet - Get crypto request that processing is finished |
| 1058 | * |
| 1059 | * DESCRIPTION: |
| 1060 | * This function complete request processing and return ready request to |
| 1061 | * caller. To don't miss interrupts the caller must call this function |
| 1062 | * while MV_OK or MV_TERMINATE values returned. |
| 1063 | * |
| 1064 | * INPUT: |
| 1065 | * MV_U32 chanMap - map of CESA channels finished thier job |
| 1066 | * accordingly with CESA Cause register. |
| 1067 | * MV_CESA_RESULT* pResult - pointer to structure contains information |
| 1068 | * about ready request. It includes pointer to |
| 1069 | * user private structure "pReqPrv", session identifier |
| 1070 | * for this request "sessionId" and return code. |
| 1071 | * Return code set to MV_FAIL if calculated digest value |
| 1072 | * on decode direction is different than digest value |
| 1073 | * in the packet. |
| 1074 | * |
| 1075 | * RETURN: |
| 1076 | * MV_OK - Success, ready request is returned. |
| 1077 | * MV_NOT_READY - Next request is not ready yet. New interrupt will |
| 1078 | * be generated for futher request processing. |
| 1079 | * MV_EMPTY - There is no more request for processing. |
| 1080 | * MV_BUSY - Fragmented request is not ready yet. |
| 1081 | * MV_TERMINATE - Call this function once more to complete processing |
| 1082 | * of fragmented request. |
| 1083 | * |
| 1084 | *******************************************************************************/ |
| 1085 | MV_STATUS mvCesaReadyGet(MV_CESA_RESULT* pResult) |
| 1086 | { |
| 1087 | MV_STATUS status, readyStatus = MV_NOT_READY; |
| 1088 | MV_U32 statusReg; |
| 1089 | MV_CESA_REQ* pReq; |
| 1090 | MV_CESA_SA* pSA; |
| 1091 | |
| 1092 | #if (MV_CESA_VERSION >= 3) |
| 1093 | if(isFirstReq == MV_TRUE) { |
| 1094 | if(chainIndex == 0) |
| 1095 | chainReqNum = 0; |
| 1096 | |
| 1097 | isFirstReq = MV_FALSE; |
| 1098 | |
| 1099 | if(pNextActiveChain->state == MV_CESA_PENDING) { |
| 1100 | /* Start request Process */ |
| 1101 | mvCesaReqProcessStart(pNextActiveChain); |
| 1102 | pEndCurrChain = pNextActiveChain; |
| 1103 | if(chainIndex > 0) |
| 1104 | chainIndex--; |
| 1105 | /* Update pNextActiveChain to next chain head */ |
| 1106 | while(pNextActiveChain->state == MV_CESA_CHAIN) |
| 1107 | pNextActiveChain = MV_CESA_REQ_NEXT_PTR(pNextActiveChain); |
| 1108 | } |
| 1109 | } |
| 1110 | |
| 1111 | /* Check if there are more processed requests - can we remove pEndCurrChain ??? */ |
| 1112 | if(pCesaReqProcess == pEndCurrChain) { |
| 1113 | isFirstReq = MV_TRUE; |
| 1114 | pEndCurrChain = pNextActiveChain; |
| 1115 | #else |
| 1116 | if(pCesaReqProcess->state != MV_CESA_PROCESS) { |
| 1117 | #endif |
| 1118 | return MV_EMPTY; |
| 1119 | } |
| 1120 | |
| 1121 | #ifdef CESA_DEBUG |
| 1122 | statusReg = MV_REG_READ(MV_CESA_STATUS_REG); |
| 1123 | if( statusReg & MV_CESA_STATUS_ACTIVE_MASK ) |
| 1124 | { |
| 1125 | mvOsPrintf("mvCesaReadyGet: Not Ready, Status = 0x%x\n", statusReg); |
| 1126 | cesaStats.notReadyCount++; |
| 1127 | return MV_NOT_READY; |
| 1128 | } |
| 1129 | #endif /* CESA_DEBUG */ |
| 1130 | |
| 1131 | cesaStats.readyCount++; |
| 1132 | |
| 1133 | pReq = pCesaReqProcess; |
| 1134 | pSA = &pCesaSAD[pReq->pCmd->sessionId]; |
| 1135 | |
| 1136 | pResult->retCode = MV_OK; |
| 1137 | if(pReq->fragMode != MV_CESA_FRAG_NONE) |
| 1138 | { |
| 1139 | MV_U8* pNewDigest; |
| 1140 | int frag; |
| 1141 | #if (MV_CESA_VERSION >= 3) |
| 1142 | pReq->frags.nextFrag = 1; |
| 1143 | while(pReq->frags.nextFrag <= pReq->frags.numFrag) { |
| 1144 | #endif |
| 1145 | frag = (pReq->frags.nextFrag - 1); |
| 1146 | |
| 1147 | /* Restore DMA descriptor list */ |
| 1148 | pReq->dma[frag].pDmaLast->phyNextDescPtr = |
| 1149 | MV_32BIT_LE(mvCesaVirtToPhys(&pReq->dmaDescBuf, &pReq->dma[frag].pDmaLast[1])); |
| 1150 | pReq->dma[frag].pDmaLast = NULL; |
| 1151 | |
| 1152 | /* Special processing for finished fragmented request */ |
| 1153 | if(pReq->frags.nextFrag >= pReq->frags.numFrag) |
| 1154 | { |
| 1155 | mvCesaMbufCacheUnmap(pReq->pCmd->pDst, 0, pReq->pCmd->pDst->mbufSize); |
| 1156 | |
| 1157 | /* Fragmented packet is ready */ |
| 1158 | if( (pSA->config & MV_CESA_OPERATION_MASK) != |
| 1159 | (MV_CESA_CRYPTO_ONLY << MV_CESA_OPERATION_OFFSET) ) |
| 1160 | { |
| 1161 | int macDataSize = pReq->pCmd->macLength - pReq->frags.macSize; |
| 1162 | |
| 1163 | if(macDataSize != 0) |
| 1164 | { |
| 1165 | /* Calculate all other blocks by SW */ |
| 1166 | mvCesaFragAuthComplete(pReq, pSA, macDataSize); |
| 1167 | } |
| 1168 | |
| 1169 | /* Copy new digest from SRAM to the Destination buffer */ |
| 1170 | pNewDigest = cesaSramVirtPtr->buf + pReq->frags.newDigestOffset; |
| 1171 | status = mvCesaCopyToMbuf(pNewDigest, pReq->pCmd->pDst, |
| 1172 | pReq->pCmd->digestOffset, pSA->digestSize); |
| 1173 | |
| 1174 | /* For decryption: Compare new digest value with original one */ |
| 1175 | if((pSA->config & MV_CESA_DIRECTION_MASK) == |
| 1176 | (MV_CESA_DIR_DECODE << MV_CESA_DIRECTION_BIT)) |
| 1177 | { |
| 1178 | if( memcmp(pNewDigest, pReq->frags.orgDigest, pSA->digestSize) != 0) |
| 1179 | { |
| 1180 | /* |
| 1181 | mvOsPrintf("Digest error: chan=%d, newDigest=%p, orgDigest=%p, status = 0x%x\n", |
| 1182 | chan, pNewDigest, pReq->frags.orgDigest, MV_REG_READ(MV_CESA_STATUS_REG)); |
| 1183 | */ |
| 1184 | /* Signiture verification is failed */ |
| 1185 | pResult->retCode = MV_FAIL; |
| 1186 | } |
| 1187 | } |
| 1188 | } |
| 1189 | readyStatus = MV_OK; |
| 1190 | } |
| 1191 | #if (MV_CESA_VERSION >= 3) |
| 1192 | pReq->frags.nextFrag++; |
| 1193 | } |
| 1194 | #endif |
| 1195 | } |
| 1196 | else |
| 1197 | { |
| 1198 | mvCesaMbufCacheUnmap(pReq->pCmd->pDst, 0, pReq->pCmd->pDst->mbufSize); |
| 1199 | |
| 1200 | /* Restore DMA descriptor list */ |
| 1201 | pReq->dma[0].pDmaLast->phyNextDescPtr = |
| 1202 | MV_32BIT_LE(mvCesaVirtToPhys(&pReq->dmaDescBuf, &pReq->dma[0].pDmaLast[1])); |
| 1203 | pReq->dma[0].pDmaLast = NULL; |
| 1204 | if( ((pSA->config & MV_CESA_OPERATION_MASK) != |
| 1205 | (MV_CESA_CRYPTO_ONLY << MV_CESA_OPERATION_OFFSET) ) && |
| 1206 | ((pSA->config & MV_CESA_DIRECTION_MASK) == |
| 1207 | (MV_CESA_DIR_DECODE << MV_CESA_DIRECTION_BIT)) ) |
| 1208 | { |
| 1209 | /* For AUTH on decode : Check Digest result in Status register */ |
| 1210 | statusReg = MV_REG_READ(MV_CESA_STATUS_REG); |
| 1211 | if(statusReg & MV_CESA_STATUS_DIGEST_ERR_MASK) |
| 1212 | { |
| 1213 | /* |
| 1214 | mvOsPrintf("Digest error: chan=%d, status = 0x%x\n", |
| 1215 | chan, statusReg); |
| 1216 | */ |
| 1217 | /* Signiture verification is failed */ |
| 1218 | pResult->retCode = MV_FAIL; |
| 1219 | } |
| 1220 | } |
| 1221 | readyStatus = MV_OK; |
| 1222 | } |
| 1223 | |
| 1224 | if(readyStatus == MV_OK) |
| 1225 | { |
| 1226 | /* If Request is ready - Prepare pResult structure */ |
| 1227 | pResult->pReqPrv = pReq->pCmd->pReqPrv; |
| 1228 | pResult->sessionId = pReq->pCmd->sessionId; |
| 1229 | |
| 1230 | pReq->state = MV_CESA_IDLE; |
| 1231 | pCesaReqProcess = MV_CESA_REQ_NEXT_PTR(pReq); |
| 1232 | cesaReqResources++; |
| 1233 | |
| 1234 | if(pSA->ctrMode) |
| 1235 | { |
| 1236 | /* For AES CTR mode - complete processing and free allocated resources */ |
| 1237 | mvCesaCtrModeComplete(pReq->pOrgCmd, pReq->pCmd); |
| 1238 | mvCesaCtrModeFinish(pReq->pCmd); |
| 1239 | pReq->pOrgCmd = NULL; |
| 1240 | } |
| 1241 | } |
| 1242 | |
| 1243 | #if (MV_CESA_VERSION < 3) |
| 1244 | if(pCesaReqProcess->state == MV_CESA_PROCESS) |
| 1245 | { |
| 1246 | /* Start request Process */ |
| 1247 | mvCesaReqProcessStart(pCesaReqProcess); |
| 1248 | if(readyStatus == MV_NOT_READY) |
| 1249 | readyStatus = MV_BUSY; |
| 1250 | } |
| 1251 | else if(pCesaReqProcess != pCesaReqEmpty) |
| 1252 | { |
| 1253 | /* Start process new request from the queue */ |
| 1254 | mvCesaReqProcessStart(pCesaReqProcess); |
| 1255 | } |
| 1256 | #endif |
| 1257 | return readyStatus; |
| 1258 | } |
| 1259 | |
| 1260 | /***************** Functions to work with CESA_MBUF structure ******************/ |
| 1261 | |
| 1262 | /******************************************************************************* |
| 1263 | * mvCesaMbufOffset - Locate offset in the Mbuf structure |
| 1264 | * |
| 1265 | * DESCRIPTION: |
| 1266 | * This function locates offset inside Multi-Bufeer structure. |
| 1267 | * It get fragment number and place in the fragment where the offset |
| 1268 | * is located. |
| 1269 | * |
| 1270 | * |
| 1271 | * INPUT: |
| 1272 | * MV_CESA_MBUF* pMbuf - Pointer to multi-buffer structure |
| 1273 | * int offset - Offset from the beginning of the data presented by |
| 1274 | * the Mbuf structure. |
| 1275 | * |
| 1276 | * OUTPUT: |
| 1277 | * int* pBufOffset - Offset from the beginning of the fragment where |
| 1278 | * the offset is located. |
| 1279 | * |
| 1280 | * RETURN: |
| 1281 | * int - Number of fragment, where the offset is located\ |
| 1282 | * |
| 1283 | *******************************************************************************/ |
| 1284 | int mvCesaMbufOffset(MV_CESA_MBUF* pMbuf, int offset, int* pBufOffset) |
| 1285 | { |
| 1286 | int frag = 0; |
| 1287 | |
| 1288 | while(offset > 0) |
| 1289 | { |
| 1290 | if(frag >= pMbuf->numFrags) |
| 1291 | { |
| 1292 | mvOsPrintf("mvCesaMbufOffset: Error: frag (%d) > numFrags (%d)\n", |
| 1293 | frag, pMbuf->numFrags); |
| 1294 | return MV_INVALID; |
| 1295 | } |
| 1296 | if(offset < pMbuf->pFrags[frag].bufSize) |
| 1297 | { |
| 1298 | break; |
| 1299 | } |
| 1300 | offset -= pMbuf->pFrags[frag].bufSize; |
| 1301 | frag++; |
| 1302 | } |
| 1303 | if(pBufOffset != NULL) |
| 1304 | *pBufOffset = offset; |
| 1305 | |
| 1306 | return frag; |
| 1307 | } |
| 1308 | |
| 1309 | /******************************************************************************* |
| 1310 | * mvCesaCopyFromMbuf - Copy data from the Mbuf structure to continuous buffer |
| 1311 | * |
| 1312 | * DESCRIPTION: |
| 1313 | * |
| 1314 | * |
| 1315 | * INPUT: |
| 1316 | * MV_U8* pDstBuf - Pointer to continuous buffer, where data is |
| 1317 | * copied to. |
| 1318 | * MV_CESA_MBUF* pSrcMbuf - Pointer to multi-buffer structure where data is |
| 1319 | * copied from. |
| 1320 | * int offset - Offset in the Mbuf structure where located first |
| 1321 | * byte of data should be copied. |
| 1322 | * int size - Size of data should be copied |
| 1323 | * |
| 1324 | * RETURN: |
| 1325 | * MV_OK - Success, all data is copied successfully. |
| 1326 | * MV_OUT_OF_RANGE - Failed, offset is out of Multi-buffer data range. |
| 1327 | * No data is copied. |
| 1328 | * MV_EMPTY - Multi-buffer structure has not enough data to copy |
| 1329 | * Data from the offset to end of Mbuf data is copied. |
| 1330 | * |
| 1331 | *******************************************************************************/ |
| 1332 | MV_STATUS mvCesaCopyFromMbuf(MV_U8* pDstBuf, MV_CESA_MBUF* pSrcMbuf, |
| 1333 | int offset, int size) |
| 1334 | { |
| 1335 | int frag, fragOffset, bufSize; |
| 1336 | MV_U8* pBuf; |
| 1337 | |
| 1338 | if(size == 0) |
| 1339 | return MV_OK; |
| 1340 | |
| 1341 | frag = mvCesaMbufOffset(pSrcMbuf, offset, &fragOffset); |
| 1342 | if(frag == MV_INVALID) |
| 1343 | { |
| 1344 | mvOsPrintf("CESA Mbuf Error: offset (%d) out of range\n", offset); |
| 1345 | return MV_OUT_OF_RANGE; |
| 1346 | } |
| 1347 | |
| 1348 | bufSize = pSrcMbuf->pFrags[frag].bufSize - fragOffset; |
| 1349 | pBuf = pSrcMbuf->pFrags[frag].bufVirtPtr + fragOffset; |
| 1350 | while(MV_TRUE) |
| 1351 | { |
| 1352 | if(size <= bufSize) |
| 1353 | { |
| 1354 | memcpy(pDstBuf, pBuf, size); |
| 1355 | return MV_OK; |
| 1356 | } |
| 1357 | memcpy(pDstBuf, pBuf, bufSize); |
| 1358 | size -= bufSize; |
| 1359 | frag++; |
| 1360 | pDstBuf += bufSize; |
| 1361 | if(frag >= pSrcMbuf->numFrags) |
| 1362 | break; |
| 1363 | |
| 1364 | bufSize = pSrcMbuf->pFrags[frag].bufSize; |
| 1365 | pBuf = pSrcMbuf->pFrags[frag].bufVirtPtr; |
| 1366 | } |
| 1367 | mvOsPrintf("mvCesaCopyFromMbuf: Mbuf is EMPTY - %d bytes isn't copied\n", |
| 1368 | size); |
| 1369 | return MV_EMPTY; |
| 1370 | } |
| 1371 | |
| 1372 | /******************************************************************************* |
| 1373 | * mvCesaCopyToMbuf - Copy data from continuous buffer to the Mbuf structure |
| 1374 | * |
| 1375 | * DESCRIPTION: |
| 1376 | * |
| 1377 | * |
| 1378 | * INPUT: |
| 1379 | * MV_U8* pSrcBuf - Pointer to continuous buffer, where data is |
| 1380 | * copied from. |
| 1381 | * MV_CESA_MBUF* pDstMbuf - Pointer to multi-buffer structure where data is |
| 1382 | * copied to. |
| 1383 | * int offset - Offset in the Mbuf structure where located first |
| 1384 | * byte of data should be copied. |
| 1385 | * int size - Size of data should be copied |
| 1386 | * |
| 1387 | * RETURN: |
| 1388 | * MV_OK - Success, all data is copied successfully. |
| 1389 | * MV_OUT_OF_RANGE - Failed, offset is out of Multi-buffer data range. |
| 1390 | * No data is copied. |
| 1391 | * MV_FULL - Multi-buffer structure has not enough place to copy |
| 1392 | * all data. Data from the offset to end of Mbuf data |
| 1393 | * is copied. |
| 1394 | * |
| 1395 | *******************************************************************************/ |
| 1396 | MV_STATUS mvCesaCopyToMbuf(MV_U8* pSrcBuf, MV_CESA_MBUF* pDstMbuf, |
| 1397 | int offset, int size) |
| 1398 | { |
| 1399 | int frag, fragOffset, bufSize; |
| 1400 | MV_U8* pBuf; |
| 1401 | |
| 1402 | if(size == 0) |
| 1403 | return MV_OK; |
| 1404 | |
| 1405 | frag = mvCesaMbufOffset(pDstMbuf, offset, &fragOffset); |
| 1406 | if(frag == MV_INVALID) |
| 1407 | { |
| 1408 | mvOsPrintf("CESA Mbuf Error: offset (%d) out of range\n", offset); |
| 1409 | return MV_OUT_OF_RANGE; |
| 1410 | } |
| 1411 | |
| 1412 | bufSize = pDstMbuf->pFrags[frag].bufSize - fragOffset; |
| 1413 | pBuf = pDstMbuf->pFrags[frag].bufVirtPtr + fragOffset; |
| 1414 | while(MV_TRUE) |
| 1415 | { |
| 1416 | if(size <= bufSize) |
| 1417 | { |
| 1418 | memcpy(pBuf, pSrcBuf, size); |
| 1419 | return MV_OK; |
| 1420 | } |
| 1421 | memcpy(pBuf, pSrcBuf, bufSize); |
| 1422 | size -= bufSize; |
| 1423 | frag++; |
| 1424 | pSrcBuf += bufSize; |
| 1425 | if(frag >= pDstMbuf->numFrags) |
| 1426 | break; |
| 1427 | |
| 1428 | bufSize = pDstMbuf->pFrags[frag].bufSize; |
| 1429 | pBuf = pDstMbuf->pFrags[frag].bufVirtPtr; |
| 1430 | } |
| 1431 | mvOsPrintf("mvCesaCopyToMbuf: Mbuf is FULL - %d bytes isn't copied\n", |
| 1432 | size); |
| 1433 | return MV_FULL; |
| 1434 | } |
| 1435 | |
| 1436 | /******************************************************************************* |
| 1437 | * mvCesaMbufCopy - Copy data from one Mbuf structure to the other Mbuf structure |
| 1438 | * |
| 1439 | * DESCRIPTION: |
| 1440 | * |
| 1441 | * |
| 1442 | * INPUT: |
| 1443 | * |
| 1444 | * MV_CESA_MBUF* pDstMbuf - Pointer to multi-buffer structure where data is |
| 1445 | * copied to. |
| 1446 | * int dstMbufOffset - Offset in the dstMbuf structure where first byte |
| 1447 | * of data should be copied to. |
| 1448 | * MV_CESA_MBUF* pSrcMbuf - Pointer to multi-buffer structure where data is |
| 1449 | * copied from. |
| 1450 | * int srcMbufOffset - Offset in the srcMbuf structure where first byte |
| 1451 | * of data should be copied from. |
| 1452 | * int size - Size of data should be copied |
| 1453 | * |
| 1454 | * RETURN: |
| 1455 | * MV_OK - Success, all data is copied successfully. |
| 1456 | * MV_OUT_OF_RANGE - Failed, srcMbufOffset or dstMbufOffset is out of |
| 1457 | * srcMbuf or dstMbuf structure correspondently. |
| 1458 | * No data is copied. |
| 1459 | * MV_BAD_SIZE - srcMbuf or dstMbuf structure is too small to copy |
| 1460 | * all data. Partial data is copied |
| 1461 | * |
| 1462 | *******************************************************************************/ |
| 1463 | MV_STATUS mvCesaMbufCopy(MV_CESA_MBUF* pMbufDst, int dstMbufOffset, |
| 1464 | MV_CESA_MBUF* pMbufSrc, int srcMbufOffset, int size) |
| 1465 | { |
| 1466 | int srcFrag, dstFrag, srcSize, dstSize, srcOffset, dstOffset; |
| 1467 | int copySize; |
| 1468 | MV_U8 *pSrc, *pDst; |
| 1469 | |
| 1470 | if(size == 0) |
| 1471 | return MV_OK; |
| 1472 | |
| 1473 | srcFrag = mvCesaMbufOffset(pMbufSrc, srcMbufOffset, &srcOffset); |
| 1474 | if(srcFrag == MV_INVALID) |
| 1475 | { |
| 1476 | mvOsPrintf("CESA srcMbuf Error: offset (%d) out of range\n", srcMbufOffset); |
| 1477 | return MV_OUT_OF_RANGE; |
| 1478 | } |
| 1479 | pSrc = pMbufSrc->pFrags[srcFrag].bufVirtPtr + srcOffset; |
| 1480 | srcSize = pMbufSrc->pFrags[srcFrag].bufSize - srcOffset; |
| 1481 | |
| 1482 | dstFrag = mvCesaMbufOffset(pMbufDst, dstMbufOffset, &dstOffset); |
| 1483 | if(dstFrag == MV_INVALID) |
| 1484 | { |
| 1485 | mvOsPrintf("CESA dstMbuf Error: offset (%d) out of range\n", dstMbufOffset); |
| 1486 | return MV_OUT_OF_RANGE; |
| 1487 | } |
| 1488 | pDst = pMbufDst->pFrags[dstFrag].bufVirtPtr + dstOffset; |
| 1489 | dstSize = pMbufDst->pFrags[dstFrag].bufSize - dstOffset; |
| 1490 | |
| 1491 | while(size > 0) |
| 1492 | { |
| 1493 | copySize = MV_MIN(srcSize, dstSize); |
| 1494 | if(size <= copySize) |
| 1495 | { |
| 1496 | memcpy(pDst, pSrc, size); |
| 1497 | return MV_OK; |
| 1498 | } |
| 1499 | memcpy(pDst, pSrc, copySize); |
| 1500 | size -= copySize; |
| 1501 | srcSize -= copySize; |
| 1502 | dstSize -= copySize; |
| 1503 | |
| 1504 | if(srcSize == 0) |
| 1505 | { |
| 1506 | srcFrag++; |
| 1507 | if(srcFrag >= pMbufSrc->numFrags) |
| 1508 | break; |
| 1509 | |
| 1510 | pSrc = pMbufSrc->pFrags[srcFrag].bufVirtPtr; |
| 1511 | srcSize = pMbufSrc->pFrags[srcFrag].bufSize; |
| 1512 | } |
| 1513 | |
| 1514 | if(dstSize == 0) |
| 1515 | { |
| 1516 | dstFrag++; |
| 1517 | if(dstFrag >= pMbufDst->numFrags) |
| 1518 | break; |
| 1519 | |
| 1520 | pDst = pMbufDst->pFrags[dstFrag].bufVirtPtr; |
| 1521 | dstSize = pMbufDst->pFrags[dstFrag].bufSize; |
| 1522 | } |
| 1523 | } |
| 1524 | mvOsPrintf("mvCesaMbufCopy: BAD size - %d bytes isn't copied\n", |
| 1525 | size); |
| 1526 | |
| 1527 | return MV_BAD_SIZE; |
| 1528 | } |
| 1529 | |
| 1530 | static MV_STATUS mvCesaMbufCacheUnmap(MV_CESA_MBUF* pMbuf, int offset, int size) |
| 1531 | { |
| 1532 | int frag, fragOffset, bufSize; |
| 1533 | MV_U8* pBuf; |
| 1534 | |
| 1535 | if(size == 0) |
| 1536 | return MV_OK; |
| 1537 | |
| 1538 | frag = mvCesaMbufOffset(pMbuf, offset, &fragOffset); |
| 1539 | if(frag == MV_INVALID) |
| 1540 | { |
| 1541 | mvOsPrintf("CESA Mbuf Error: offset (%d) out of range\n", offset); |
| 1542 | return MV_OUT_OF_RANGE; |
| 1543 | } |
| 1544 | |
| 1545 | bufSize = pMbuf->pFrags[frag].bufSize - fragOffset; |
| 1546 | pBuf = pMbuf->pFrags[frag].bufVirtPtr + fragOffset; |
| 1547 | while(MV_TRUE) |
| 1548 | { |
| 1549 | if(size <= bufSize) |
| 1550 | { |
| 1551 | mvOsCacheUnmap(NULL, mvOsIoVirtToPhy(NULL, pBuf), size); |
| 1552 | return MV_OK; |
| 1553 | } |
| 1554 | |
| 1555 | mvOsCacheUnmap(NULL, mvOsIoVirtToPhy(NULL, pBuf), bufSize); |
| 1556 | size -= bufSize; |
| 1557 | frag++; |
| 1558 | if(frag >= pMbuf->numFrags) |
| 1559 | break; |
| 1560 | |
| 1561 | bufSize = pMbuf->pFrags[frag].bufSize; |
| 1562 | pBuf = pMbuf->pFrags[frag].bufVirtPtr; |
| 1563 | } |
| 1564 | mvOsPrintf("%s: Mbuf is FULL - %d bytes isn't Unmapped\n", |
| 1565 | __FUNCTION__, size); |
| 1566 | return MV_FULL; |
| 1567 | } |
| 1568 | |
| 1569 | |
| 1570 | /*************************************** Local Functions ******************************/ |
| 1571 | |
| 1572 | /******************************************************************************* |
| 1573 | * mvCesaFragReqProcess - Process fragmented request |
| 1574 | * |
| 1575 | * DESCRIPTION: |
| 1576 | * This function processes a fragment of fragmented request (First, Middle or Last) |
| 1577 | * |
| 1578 | * |
| 1579 | * INPUT: |
| 1580 | * MV_CESA_REQ* pReq - Pointer to the request in the request queue. |
| 1581 | * |
| 1582 | * RETURN: |
| 1583 | * MV_OK - The fragment is successfully passed to HW for processing. |
| 1584 | * MV_TERMINATE - Means, that HW finished its work on this packet and no more |
| 1585 | * interrupts will be generated for this request. |
| 1586 | * Function mvCesaReadyGet() must be called to complete request |
| 1587 | * processing and get request result. |
| 1588 | * |
| 1589 | *******************************************************************************/ |
| 1590 | static MV_STATUS mvCesaFragReqProcess(MV_CESA_REQ* pReq, MV_U8 frag) |
| 1591 | { |
| 1592 | int i, copySize, cryptoDataSize, macDataSize, sid; |
| 1593 | int cryptoIvOffset, digestOffset; |
| 1594 | MV_U32 config; |
| 1595 | MV_CESA_COMMAND* pCmd = pReq->pCmd; |
| 1596 | MV_CESA_SA* pSA; |
| 1597 | MV_CESA_MBUF* pMbuf; |
| 1598 | MV_DMA_DESC* pDmaDesc = pReq->dma[frag].pDmaFirst; |
| 1599 | MV_U8* pSramBuf = cesaSramVirtPtr->buf; |
| 1600 | int macTotalLen = 0; |
| 1601 | int fixOffset, cryptoOffset, macOffset; |
| 1602 | |
| 1603 | cesaStats.fragCount++; |
| 1604 | |
| 1605 | sid = pReq->pCmd->sessionId; |
| 1606 | |
| 1607 | pSA = &pCesaSAD[sid]; |
| 1608 | |
| 1609 | cryptoIvOffset = digestOffset = 0; |
| 1610 | i = macDataSize = 0; |
| 1611 | cryptoDataSize = 0; |
| 1612 | |
| 1613 | /* First fragment processing */ |
| 1614 | if(pReq->fragMode == MV_CESA_FRAG_FIRST) |
| 1615 | { |
| 1616 | /* pReq->frags monitors processing of fragmented request between fragments */ |
| 1617 | pReq->frags.bufOffset = 0; |
| 1618 | pReq->frags.cryptoSize = 0; |
| 1619 | pReq->frags.macSize = 0; |
| 1620 | |
| 1621 | config = pSA->config | (MV_CESA_FRAG_FIRST << MV_CESA_FRAG_MODE_OFFSET); |
| 1622 | |
| 1623 | /* fixOffset can be not equal to zero only for FIRST fragment */ |
| 1624 | fixOffset = pReq->fixOffset; |
| 1625 | /* For FIRST fragment crypto and mac offsets are taken from pCmd */ |
| 1626 | cryptoOffset = pCmd->cryptoOffset; |
| 1627 | macOffset = pCmd->macOffset; |
| 1628 | |
| 1629 | copySize = sizeof(cesaSramVirtPtr->buf) - pReq->fixOffset; |
| 1630 | |
| 1631 | /* Find fragment size: Must meet all requirements for CRYPTO and MAC |
| 1632 | * cryptoDataSize - size of data will be encrypted/decrypted in this fragment |
| 1633 | * macDataSize - size of data will be signed/verified in this fragment |
| 1634 | * copySize - size of data will be copied from srcMbuf to SRAM and |
| 1635 | * back to dstMbuf for this fragment |
| 1636 | */ |
| 1637 | mvCesaFragSizeFind(pSA, pReq, cryptoOffset, macOffset, |
| 1638 | ©Size, &cryptoDataSize, &macDataSize); |
| 1639 | |
| 1640 | if( (pSA->config & MV_CESA_OPERATION_MASK) != |
| 1641 | (MV_CESA_MAC_ONLY << MV_CESA_OPERATION_OFFSET)) |
| 1642 | { |
| 1643 | /* CryptoIV special processing */ |
| 1644 | if( (pSA->config & MV_CESA_CRYPTO_MODE_MASK) == |
| 1645 | (MV_CESA_CRYPTO_CBC << MV_CESA_CRYPTO_MODE_BIT) ) |
| 1646 | { |
| 1647 | /* In CBC mode for encode direction when IV from user */ |
| 1648 | if( (pCmd->ivFromUser) && |
| 1649 | ((pSA->config & MV_CESA_DIRECTION_MASK) == |
| 1650 | (MV_CESA_DIR_ENCODE << MV_CESA_DIRECTION_BIT)) ) |
| 1651 | { |
| 1652 | |
| 1653 | /* For Crypto Encode in CBC mode HW always takes IV from SRAM IVPointer, |
| 1654 | * (not from IVBufPointer). So when ivFromUser==1, we should copy IV from user place |
| 1655 | * in the buffer to SRAM IVPointer |
| 1656 | */ |
| 1657 | i += mvCesaDmaCopyPrepare(pCmd->pSrc, cesaSramVirtPtr->cryptoIV, &pDmaDesc[i], |
| 1658 | MV_FALSE, pCmd->ivOffset, pSA->cryptoIvSize, pCmd->skipFlush); |
| 1659 | } |
| 1660 | |
| 1661 | /* Special processing when IV is not located in the first fragment */ |
| 1662 | if(pCmd->ivOffset > (copySize - pSA->cryptoIvSize)) |
| 1663 | { |
| 1664 | /* Prepare dummy place for cryptoIV in SRAM */ |
| 1665 | cryptoIvOffset = cesaSramVirtPtr->tempCryptoIV - mvCesaSramAddrGet(); |
| 1666 | |
| 1667 | /* For Decryption: Copy IV value from pCmd->ivOffset to Special SRAM place */ |
| 1668 | if((pSA->config & MV_CESA_DIRECTION_MASK) == |
| 1669 | (MV_CESA_DIR_DECODE << MV_CESA_DIRECTION_BIT)) |
| 1670 | { |
| 1671 | i += mvCesaDmaCopyPrepare(pCmd->pSrc, cesaSramVirtPtr->tempCryptoIV, &pDmaDesc[i], |
| 1672 | MV_FALSE, pCmd->ivOffset, pSA->cryptoIvSize, pCmd->skipFlush); |
| 1673 | } |
| 1674 | else |
| 1675 | { |
| 1676 | /* For Encryption when IV is NOT from User: */ |
| 1677 | /* Copy IV from SRAM to buffer (pCmd->ivOffset) */ |
| 1678 | if(pCmd->ivFromUser == 0) |
| 1679 | { |
| 1680 | /* copy IV value from cryptoIV to Buffer (pCmd->ivOffset) */ |
| 1681 | i += mvCesaDmaCopyPrepare(pCmd->pSrc, cesaSramVirtPtr->cryptoIV, &pDmaDesc[i], |
| 1682 | MV_TRUE, pCmd->ivOffset, pSA->cryptoIvSize, pCmd->skipFlush); |
| 1683 | } |
| 1684 | } |
| 1685 | } |
| 1686 | else |
| 1687 | { |
| 1688 | cryptoIvOffset = pCmd->ivOffset; |
| 1689 | } |
| 1690 | } |
| 1691 | } |
| 1692 | |
| 1693 | if( (pSA->config & MV_CESA_OPERATION_MASK) != |
| 1694 | (MV_CESA_CRYPTO_ONLY << MV_CESA_OPERATION_OFFSET) ) |
| 1695 | { |
| 1696 | /* MAC digest special processing on Decode direction */ |
| 1697 | if((pSA->config & MV_CESA_DIRECTION_MASK) == |
| 1698 | (MV_CESA_DIR_DECODE << MV_CESA_DIRECTION_BIT)) |
| 1699 | { |
| 1700 | /* Save digest from pCmd->digestOffset */ |
| 1701 | mvCesaCopyFromMbuf(pReq->frags.orgDigest, |
| 1702 | pCmd->pSrc, pCmd->digestOffset, pSA->digestSize); |
| 1703 | |
| 1704 | /* If pCmd->digestOffset is not located on the first */ |
| 1705 | if(pCmd->digestOffset > (copySize - pSA->digestSize)) |
| 1706 | { |
| 1707 | MV_U8 digestZero[MV_CESA_MAX_DIGEST_SIZE]; |
| 1708 | |
| 1709 | /* Set zeros to pCmd->digestOffset (DRAM) */ |
| 1710 | memset(digestZero, 0, MV_CESA_MAX_DIGEST_SIZE); |
| 1711 | mvCesaCopyToMbuf(digestZero, pCmd->pSrc, pCmd->digestOffset, pSA->digestSize); |
| 1712 | |
| 1713 | /* Prepare dummy place for digest in SRAM */ |
| 1714 | digestOffset = cesaSramVirtPtr->tempDigest - mvCesaSramAddrGet(); |
| 1715 | } |
| 1716 | else |
| 1717 | { |
| 1718 | digestOffset = pCmd->digestOffset; |
| 1719 | } |
| 1720 | } |
| 1721 | } |
| 1722 | /* Update SA in SRAM */ |
| 1723 | if(cesaLastSid != sid) |
| 1724 | { |
| 1725 | mvCesaSramSaUpdate(sid, &pDmaDesc[i]); |
| 1726 | i++; |
| 1727 | } |
| 1728 | |
| 1729 | pReq->fragMode = MV_CESA_FRAG_MIDDLE; |
| 1730 | } |
| 1731 | else |
| 1732 | { |
| 1733 | /* Continue fragment */ |
| 1734 | fixOffset = 0; |
| 1735 | cryptoOffset = 0; |
| 1736 | macOffset = 0; |
| 1737 | if( (pCmd->pSrc->mbufSize - pReq->frags.bufOffset) <= sizeof(cesaSramVirtPtr->buf)) |
| 1738 | { |
| 1739 | /* Last fragment */ |
| 1740 | config = pSA->config | (MV_CESA_FRAG_LAST << MV_CESA_FRAG_MODE_OFFSET); |
| 1741 | pReq->fragMode = MV_CESA_FRAG_LAST; |
| 1742 | copySize = pCmd->pSrc->mbufSize - pReq->frags.bufOffset; |
| 1743 | |
| 1744 | if( (pSA->config & MV_CESA_OPERATION_MASK) != |
| 1745 | (MV_CESA_CRYPTO_ONLY << MV_CESA_OPERATION_OFFSET) ) |
| 1746 | { |
| 1747 | macDataSize = pCmd->macLength - pReq->frags.macSize; |
| 1748 | |
| 1749 | /* If pCmd->digestOffset is not located on last fragment */ |
| 1750 | if(pCmd->digestOffset < pReq->frags.bufOffset) |
| 1751 | { |
| 1752 | /* Prepare dummy place for digest in SRAM */ |
| 1753 | digestOffset = cesaSramVirtPtr->tempDigest - mvCesaSramAddrGet(); |
| 1754 | } |
| 1755 | else |
| 1756 | { |
| 1757 | digestOffset = pCmd->digestOffset - pReq->frags.bufOffset; |
| 1758 | } |
| 1759 | pReq->frags.newDigestOffset = digestOffset; |
| 1760 | macTotalLen = pCmd->macLength; |
| 1761 | |
| 1762 | /* HW can't calculate the Digest correctly for fragmented packets |
| 1763 | * in the following cases: |
| 1764 | * - MV88F5182 || |
| 1765 | * - MV88F5181L when total macLength more that 16 Kbytes || |
| 1766 | * - total macLength more that 64 Kbytes |
| 1767 | */ |
| 1768 | if( (mvCtrlModelGet() == MV_5182_DEV_ID) || |
| 1769 | ( (mvCtrlModelGet() == MV_5181_DEV_ID) && |
| 1770 | (mvCtrlRevGet() >= MV_5181L_A0_REV) && |
| 1771 | (pCmd->macLength >= (1 << 14)) ) ) |
| 1772 | { |
| 1773 | return MV_TERMINATE; |
| 1774 | } |
| 1775 | } |
| 1776 | if( (pSA->config & MV_CESA_OPERATION_MASK) != |
| 1777 | (MV_CESA_MAC_ONLY << MV_CESA_OPERATION_OFFSET) ) |
| 1778 | { |
| 1779 | cryptoDataSize = pCmd->cryptoLength - pReq->frags.cryptoSize; |
| 1780 | } |
| 1781 | |
| 1782 | /* cryptoIvOffset - don't care */ |
| 1783 | } |
| 1784 | else |
| 1785 | { |
| 1786 | /* WA for MV88F5182 SHA1 and MD5 fragmentation mode */ |
| 1787 | if( (mvCtrlModelGet() == MV_5182_DEV_ID) && |
| 1788 | (((pSA->config & MV_CESA_MAC_MODE_MASK) == |
| 1789 | (MV_CESA_MAC_MD5 << MV_CESA_MAC_MODE_OFFSET)) || |
| 1790 | ((pSA->config & MV_CESA_MAC_MODE_MASK) == |
| 1791 | (MV_CESA_MAC_SHA1 << MV_CESA_MAC_MODE_OFFSET))) ) |
| 1792 | { |
| 1793 | pReq->frags.newDigestOffset = cesaSramVirtPtr->tempDigest - mvCesaSramAddrGet(); |
| 1794 | pReq->fragMode = MV_CESA_FRAG_LAST; |
| 1795 | |
| 1796 | return MV_TERMINATE; |
| 1797 | } |
| 1798 | /* Middle fragment */ |
| 1799 | config = pSA->config | (MV_CESA_FRAG_MIDDLE << MV_CESA_FRAG_MODE_OFFSET); |
| 1800 | copySize = sizeof(cesaSramVirtPtr->buf); |
| 1801 | /* digestOffset and cryptoIvOffset - don't care */ |
| 1802 | |
| 1803 | /* Find fragment size */ |
| 1804 | mvCesaFragSizeFind(pSA, pReq, cryptoOffset, macOffset, |
| 1805 | ©Size, &cryptoDataSize, &macDataSize); |
| 1806 | } |
| 1807 | } |
| 1808 | /********* Prepare DMA descriptors to copy from pSrc to SRAM *********/ |
| 1809 | pMbuf = pCmd->pSrc; |
| 1810 | i += mvCesaDmaCopyPrepare(pMbuf, pSramBuf + fixOffset, &pDmaDesc[i], |
| 1811 | MV_FALSE, pReq->frags.bufOffset, copySize, pCmd->skipFlush); |
| 1812 | |
| 1813 | /* Prepare CESA descriptor to copy from DRAM to SRAM by DMA */ |
| 1814 | mvCesaSramDescrBuild(config, frag, |
| 1815 | cryptoOffset + fixOffset, cryptoIvOffset + fixOffset, |
| 1816 | cryptoDataSize, macOffset + fixOffset, |
| 1817 | digestOffset + fixOffset, macDataSize, macTotalLen, |
| 1818 | pReq, &pDmaDesc[i]); |
| 1819 | i++; |
| 1820 | |
| 1821 | /* Add special descriptor Ownership for CPU */ |
| 1822 | pDmaDesc[i].byteCnt = 0; |
| 1823 | pDmaDesc[i].phySrcAdd = 0; |
| 1824 | pDmaDesc[i].phyDestAdd = 0; |
| 1825 | i++; |
| 1826 | |
| 1827 | /********* Prepare DMA descriptors to copy from SRAM to pDst *********/ |
| 1828 | pMbuf = pCmd->pDst; |
| 1829 | i += mvCesaDmaCopyPrepare(pMbuf, pSramBuf + fixOffset, &pDmaDesc[i], |
| 1830 | MV_TRUE, pReq->frags.bufOffset, copySize, pCmd->skipFlush); |
| 1831 | |
| 1832 | /* Next field of Last DMA descriptor must be NULL */ |
| 1833 | pDmaDesc[i-1].phyNextDescPtr = 0; |
| 1834 | pReq->dma[frag].pDmaLast = &pDmaDesc[i-1]; |
| 1835 | mvOsCacheFlush(NULL, pReq->dma[frag].pDmaFirst, |
| 1836 | i*sizeof(MV_DMA_DESC)); |
| 1837 | |
| 1838 | /*mvCesaDebugDescriptor(&cesaSramVirtPtr->desc[frag]);*/ |
| 1839 | |
| 1840 | pReq->frags.bufOffset += copySize; |
| 1841 | pReq->frags.cryptoSize += cryptoDataSize; |
| 1842 | pReq->frags.macSize += macDataSize; |
| 1843 | |
| 1844 | return MV_OK; |
| 1845 | } |
| 1846 | |
| 1847 | |
| 1848 | /******************************************************************************* |
| 1849 | * mvCesaReqProcess - Process regular (Non-fragmented) request |
| 1850 | * |
| 1851 | * DESCRIPTION: |
| 1852 | * This function processes the whole (not fragmented) request |
| 1853 | * |
| 1854 | * INPUT: |
| 1855 | * MV_CESA_REQ* pReq - Pointer to the request in the request queue. |
| 1856 | * |
| 1857 | * RETURN: |
| 1858 | * MV_OK - The request is successfully passed to HW for processing. |
| 1859 | * Other - Failure. The request will not be processed |
| 1860 | * |
| 1861 | *******************************************************************************/ |
| 1862 | static MV_STATUS mvCesaReqProcess(MV_CESA_REQ* pReq) |
| 1863 | { |
| 1864 | MV_CESA_MBUF *pMbuf; |
| 1865 | MV_DMA_DESC *pDmaDesc; |
| 1866 | MV_U8 *pSramBuf; |
| 1867 | int sid, i, fixOffset; |
| 1868 | MV_CESA_SA *pSA; |
| 1869 | MV_CESA_COMMAND *pCmd = pReq->pCmd; |
| 1870 | |
| 1871 | cesaStats.procCount++; |
| 1872 | |
| 1873 | sid = pCmd->sessionId; |
| 1874 | pSA = &pCesaSAD[sid]; |
| 1875 | pDmaDesc = pReq->dma[0].pDmaFirst; |
| 1876 | pSramBuf = cesaSramVirtPtr->buf; |
| 1877 | fixOffset = pReq->fixOffset; |
| 1878 | |
| 1879 | /* |
| 1880 | mvOsPrintf("mvCesaReqProcess: sid=%d, pSA=%p, pDmaDesc=%p, pSramBuf=%p\n", |
| 1881 | sid, pSA, pDmaDesc, pSramBuf); |
| 1882 | */ |
| 1883 | i = 0; |
| 1884 | |
| 1885 | /* Crypto IV Special processing in CBC mode for Encryption direction */ |
| 1886 | if( ((pSA->config & MV_CESA_OPERATION_MASK) != (MV_CESA_MAC_ONLY << MV_CESA_OPERATION_OFFSET)) && |
| 1887 | ((pSA->config & MV_CESA_CRYPTO_MODE_MASK) == (MV_CESA_CRYPTO_CBC << MV_CESA_CRYPTO_MODE_BIT)) && |
| 1888 | ((pSA->config & MV_CESA_DIRECTION_MASK) == (MV_CESA_DIR_ENCODE << MV_CESA_DIRECTION_BIT)) && |
| 1889 | (pCmd->ivFromUser) ) |
| 1890 | { |
| 1891 | /* For Crypto Encode in CBC mode HW always takes IV from SRAM IVPointer, |
| 1892 | * (not from IVBufPointer). So when ivFromUser==1, we should copy IV from user place |
| 1893 | * in the buffer to SRAM IVPointer |
| 1894 | */ |
| 1895 | i += mvCesaDmaCopyPrepare(pCmd->pSrc, cesaSramVirtPtr->cryptoIV, &pDmaDesc[i], |
| 1896 | MV_FALSE, pCmd->ivOffset, pSA->cryptoIvSize, pCmd->skipFlush); |
| 1897 | } |
| 1898 | |
| 1899 | /* Update SA in SRAM */ |
| 1900 | if(cesaLastSid != sid) |
| 1901 | { |
| 1902 | mvCesaSramSaUpdate(sid, &pDmaDesc[i]); |
| 1903 | i++; |
| 1904 | } |
| 1905 | |
| 1906 | /********* Prepare DMA descriptors to copy from pSrc to SRAM *********/ |
| 1907 | pMbuf = pCmd->pSrc; |
| 1908 | i += mvCesaDmaCopyPrepare(pMbuf, pSramBuf + fixOffset, &pDmaDesc[i], |
| 1909 | MV_FALSE, 0, pMbuf->mbufSize, pCmd->skipFlush); |
| 1910 | |
| 1911 | /* Prepare Security Accelerator descriptor to SRAM words 0 - 7 */ |
| 1912 | mvCesaSramDescrBuild(pSA->config, 0, pCmd->cryptoOffset + fixOffset, |
| 1913 | pCmd->ivOffset + fixOffset, pCmd->cryptoLength, |
| 1914 | pCmd->macOffset + fixOffset, pCmd->digestOffset + fixOffset, |
| 1915 | pCmd->macLength, pCmd->macLength, pReq, &pDmaDesc[i]); |
| 1916 | i++; |
| 1917 | |
| 1918 | /* Add special descriptor Ownership for CPU */ |
| 1919 | pDmaDesc[i].byteCnt = 0; |
| 1920 | pDmaDesc[i].phySrcAdd = 0; |
| 1921 | pDmaDesc[i].phyDestAdd = 0; |
| 1922 | i++; |
| 1923 | |
| 1924 | /********* Prepare DMA descriptors to copy from SRAM to pDst *********/ |
| 1925 | pMbuf = pCmd->pDst; |
| 1926 | i += mvCesaDmaCopyPrepare(pMbuf, pSramBuf + fixOffset, &pDmaDesc[i], |
| 1927 | MV_TRUE, 0, pMbuf->mbufSize, pCmd->skipFlush); |
| 1928 | |
| 1929 | /* Next field of Last DMA descriptor must be NULL */ |
| 1930 | pDmaDesc[i-1].phyNextDescPtr = 0; |
| 1931 | pReq->dma[0].pDmaLast = &pDmaDesc[i-1]; |
| 1932 | mvOsCacheFlush(NULL, pReq->dma[0].pDmaFirst, i*sizeof(MV_DMA_DESC)); |
| 1933 | |
| 1934 | return MV_OK; |
| 1935 | } |
| 1936 | |
| 1937 | |
| 1938 | /******************************************************************************* |
| 1939 | * mvCesaSramDescrBuild - Set CESA descriptor in SRAM |
| 1940 | * |
| 1941 | * DESCRIPTION: |
| 1942 | * This function builds CESA descriptor in SRAM from all Command parameters |
| 1943 | * |
| 1944 | * |
| 1945 | * INPUT: |
| 1946 | * int chan - CESA channel uses the descriptor |
| 1947 | * MV_U32 config - 32 bits of WORD_0 in CESA descriptor structure |
| 1948 | * int cryptoOffset - Offset from the beginning of SRAM buffer where |
| 1949 | * data for encryption/decription is started. |
| 1950 | * int ivOffset - Offset of crypto IV from the SRAM base. Valid only |
| 1951 | * for first fragment. |
| 1952 | * int cryptoLength - Size (in bytes) of data for encryption/descryption |
| 1953 | * operation on this fragment. |
| 1954 | * int macOffset - Offset from the beginning of SRAM buffer where |
| 1955 | * data for Authentication is started |
| 1956 | * int digestOffset - Offset from the beginning of SRAM buffer where |
| 1957 | * digest is located. Valid for first and last fragments. |
| 1958 | * int macLength - Size (in bytes) of data for Authentication |
| 1959 | * operation on this fragment. |
| 1960 | * int macTotalLen - Toatl size (in bytes) of data for Authentication |
| 1961 | * operation on the whole request (packet). Valid for |
| 1962 | * last fragment only. |
| 1963 | * |
| 1964 | * RETURN: None |
| 1965 | * |
| 1966 | *******************************************************************************/ |
| 1967 | static void mvCesaSramDescrBuild(MV_U32 config, int frag, |
| 1968 | int cryptoOffset, int ivOffset, int cryptoLength, |
| 1969 | int macOffset, int digestOffset, int macLength, |
| 1970 | int macTotalLen, MV_CESA_REQ* pReq, MV_DMA_DESC* pDmaDesc) |
| 1971 | { |
| 1972 | MV_CESA_DESC* pCesaDesc = &pReq->pCesaDesc[frag]; |
| 1973 | MV_CESA_DESC* pSramDesc = pSramDesc = &cesaSramVirtPtr->desc; |
| 1974 | MV_U16 sramBufOffset = (MV_U16)((MV_U8*)cesaSramVirtPtr->buf - mvCesaSramAddrGet()); |
| 1975 | |
| 1976 | pCesaDesc->config = MV_32BIT_LE(config); |
| 1977 | |
| 1978 | if( (config & MV_CESA_OPERATION_MASK) != |
| 1979 | (MV_CESA_MAC_ONLY << MV_CESA_OPERATION_OFFSET) ) |
| 1980 | { |
| 1981 | /* word 1 */ |
| 1982 | pCesaDesc->cryptoSrcOffset = MV_16BIT_LE(sramBufOffset + cryptoOffset); |
| 1983 | pCesaDesc->cryptoDstOffset = MV_16BIT_LE(sramBufOffset + cryptoOffset); |
| 1984 | /* word 2 */ |
| 1985 | pCesaDesc->cryptoDataLen = MV_16BIT_LE(cryptoLength); |
| 1986 | /* word 3 */ |
| 1987 | pCesaDesc->cryptoKeyOffset = MV_16BIT_LE((MV_U16)(cesaSramVirtPtr->sramSA.cryptoKey - |
| 1988 | mvCesaSramAddrGet())); |
| 1989 | /* word 4 */ |
| 1990 | pCesaDesc->cryptoIvOffset = MV_16BIT_LE((MV_U16)(cesaSramVirtPtr->cryptoIV - |
| 1991 | mvCesaSramAddrGet())); |
| 1992 | pCesaDesc->cryptoIvBufOffset = MV_16BIT_LE(sramBufOffset + ivOffset); |
| 1993 | } |
| 1994 | |
| 1995 | if( (config & MV_CESA_OPERATION_MASK) != |
| 1996 | (MV_CESA_CRYPTO_ONLY << MV_CESA_OPERATION_OFFSET) ) |
| 1997 | { |
| 1998 | /* word 5 */ |
| 1999 | pCesaDesc->macSrcOffset = MV_16BIT_LE(sramBufOffset + macOffset); |
| 2000 | pCesaDesc->macTotalLen = MV_16BIT_LE(macTotalLen); |
| 2001 | |
| 2002 | /* word 6 */ |
| 2003 | pCesaDesc->macDigestOffset = MV_16BIT_LE(sramBufOffset + digestOffset); |
| 2004 | pCesaDesc->macDataLen = MV_16BIT_LE(macLength); |
| 2005 | |
| 2006 | /* word 7 */ |
| 2007 | pCesaDesc->macInnerIvOffset = MV_16BIT_LE((MV_U16)(cesaSramVirtPtr->sramSA.macInnerIV - |
| 2008 | mvCesaSramAddrGet())); |
| 2009 | pCesaDesc->macOuterIvOffset = MV_16BIT_LE((MV_U16)(cesaSramVirtPtr->sramSA.macOuterIV - |
| 2010 | mvCesaSramAddrGet())); |
| 2011 | } |
| 2012 | /* Prepare DMA descriptor to CESA descriptor from DRAM to SRAM */ |
| 2013 | pDmaDesc->phySrcAdd = MV_32BIT_LE(mvCesaVirtToPhys(&pReq->cesaDescBuf, pCesaDesc)); |
| 2014 | pDmaDesc->phyDestAdd = MV_32BIT_LE(mvCesaSramVirtToPhys(NULL, (MV_U8*)pSramDesc)); |
| 2015 | pDmaDesc->byteCnt = MV_32BIT_LE(sizeof(MV_CESA_DESC) | BIT31); |
| 2016 | |
| 2017 | /* flush Source buffer */ |
| 2018 | mvOsCacheFlush(NULL, pCesaDesc, sizeof(MV_CESA_DESC)); |
| 2019 | } |
| 2020 | |
| 2021 | /******************************************************************************* |
| 2022 | * mvCesaSramSaUpdate - Move required SA information to SRAM if needed. |
| 2023 | * |
| 2024 | * DESCRIPTION: |
| 2025 | * Copy to SRAM values of the required SA. |
| 2026 | * |
| 2027 | * |
| 2028 | * INPUT: |
| 2029 | * short sid - Session ID needs SRAM Cache update |
| 2030 | * MV_DMA_DESC *pDmaDesc - Pointer to DMA descriptor used to |
| 2031 | * copy SA values from DRAM to SRAM. |
| 2032 | * |
| 2033 | * RETURN: |
| 2034 | * MV_OK - Cache entry for this SA copied to SRAM. |
| 2035 | * MV_NO_CHANGE - Cache entry for this SA already exist in SRAM |
| 2036 | * |
| 2037 | *******************************************************************************/ |
| 2038 | static INLINE void mvCesaSramSaUpdate(short sid, MV_DMA_DESC *pDmaDesc) |
| 2039 | { |
| 2040 | MV_CESA_SA *pSA = &pCesaSAD[sid]; |
| 2041 | |
| 2042 | /* Prepare DMA descriptor to Copy CACHE_SA from SA database in DRAM to SRAM */ |
| 2043 | pDmaDesc->byteCnt = MV_32BIT_LE(sizeof(MV_CESA_SRAM_SA) | BIT31); |
| 2044 | pDmaDesc->phySrcAdd = MV_32BIT_LE(mvCesaVirtToPhys(&cesaSramSaBuf, pSA->pSramSA)); |
| 2045 | pDmaDesc->phyDestAdd = |
| 2046 | MV_32BIT_LE(mvCesaSramVirtToPhys(NULL, (MV_U8*)&cesaSramVirtPtr->sramSA)); |
| 2047 | |
| 2048 | /* Source buffer is already flushed during OpenSession*/ |
| 2049 | /*mvOsCacheFlush(NULL, &pSA->sramSA, sizeof(MV_CESA_SRAM_SA));*/ |
| 2050 | } |
| 2051 | |
| 2052 | /******************************************************************************* |
| 2053 | * mvCesaDmaCopyPrepare - prepare DMA descriptor list to copy data presented by |
| 2054 | * Mbuf structure from DRAM to SRAM |
| 2055 | * |
| 2056 | * DESCRIPTION: |
| 2057 | * |
| 2058 | * |
| 2059 | * INPUT: |
| 2060 | * MV_CESA_MBUF* pMbuf - pointer to Mbuf structure contains request |
| 2061 | * data in DRAM |
| 2062 | * MV_U8* pSramBuf - pointer to buffer in SRAM where data should |
| 2063 | * be copied to. |
| 2064 | * MV_DMA_DESC* pDmaDesc - pointer to first DMA descriptor for this copy. |
| 2065 | * The function set number of DMA descriptors needed |
| 2066 | * to copy the copySize bytes from Mbuf. |
| 2067 | * MV_BOOL isToMbuf - Copy direction. |
| 2068 | * MV_TRUE means copy from SRAM buffer to Mbuf in DRAM. |
| 2069 | * MV_FALSE means copy from Mbuf in DRAM to SRAM buffer. |
| 2070 | * int offset - Offset in the Mbuf structure that copy should be |
| 2071 | * started from. |
| 2072 | * int copySize - Size of data should be copied. |
| 2073 | * |
| 2074 | * RETURN: |
| 2075 | * int - number of DMA descriptors used for the copy. |
| 2076 | * |
| 2077 | *******************************************************************************/ |
| 2078 | #ifndef MV_NETBSD |
| 2079 | static INLINE int mvCesaDmaCopyPrepare(MV_CESA_MBUF* pMbuf, MV_U8* pSramBuf, |
| 2080 | MV_DMA_DESC* pDmaDesc, MV_BOOL isToMbuf, |
| 2081 | int offset, int copySize, MV_BOOL skipFlush) |
| 2082 | { |
| 2083 | int bufOffset, bufSize, size, frag, i; |
| 2084 | MV_U8* pBuf; |
| 2085 | |
| 2086 | i = 0; |
| 2087 | |
| 2088 | /* Calculate start place for copy: fragment number and offset in the fragment */ |
| 2089 | frag = mvCesaMbufOffset(pMbuf, offset, &bufOffset); |
| 2090 | bufSize = pMbuf->pFrags[frag].bufSize - bufOffset; |
| 2091 | pBuf = pMbuf->pFrags[frag].bufVirtPtr + bufOffset; |
| 2092 | |
| 2093 | /* Size accumulate total copy size */ |
| 2094 | size = 0; |
| 2095 | |
| 2096 | /* Create DMA lists to copy mBuf from pSrc to SRAM */ |
| 2097 | while(size < copySize) |
| 2098 | { |
| 2099 | /* Find copy size for each DMA descriptor */ |
| 2100 | bufSize = MV_MIN(bufSize, (copySize - size)); |
| 2101 | pDmaDesc[i].byteCnt = MV_32BIT_LE(bufSize | BIT31); |
| 2102 | if(isToMbuf) |
| 2103 | { |
| 2104 | pDmaDesc[i].phyDestAdd = MV_32BIT_LE(mvOsIoVirtToPhy(NULL, pBuf)); |
| 2105 | pDmaDesc[i].phySrcAdd = |
| 2106 | MV_32BIT_LE(mvCesaSramVirtToPhys(NULL, (pSramBuf + size))); |
| 2107 | /* invalidate the buffer */ |
| 2108 | if(skipFlush == MV_FALSE) |
| 2109 | mvOsCacheInvalidate(NULL, pBuf, bufSize); |
| 2110 | } |
| 2111 | else |
| 2112 | { |
| 2113 | pDmaDesc[i].phySrcAdd = MV_32BIT_LE(mvOsIoVirtToPhy(NULL, pBuf)); |
| 2114 | pDmaDesc[i].phyDestAdd = |
| 2115 | MV_32BIT_LE(mvCesaSramVirtToPhys(NULL, (pSramBuf + size))); |
| 2116 | /* flush the buffer */ |
| 2117 | if(skipFlush == MV_FALSE) |
| 2118 | mvOsCacheFlush(NULL, pBuf, bufSize); |
| 2119 | } |
| 2120 | |
| 2121 | /* Count number of used DMA descriptors */ |
| 2122 | i++; |
| 2123 | size += bufSize; |
| 2124 | |
| 2125 | /* go to next fragment in the Mbuf */ |
| 2126 | frag++; |
| 2127 | pBuf = pMbuf->pFrags[frag].bufVirtPtr; |
| 2128 | bufSize = pMbuf->pFrags[frag].bufSize; |
| 2129 | } |
| 2130 | return i; |
| 2131 | } |
| 2132 | #else /* MV_NETBSD */ |
| 2133 | static int mvCesaDmaCopyPrepare(MV_CESA_MBUF* pMbuf, MV_U8* pSramBuf, |
| 2134 | MV_DMA_DESC* pDmaDesc, MV_BOOL isToMbuf, |
| 2135 | int offset, int copySize, MV_BOOL skipFlush) |
| 2136 | { |
| 2137 | int bufOffset, bufSize, thisSize, size, frag, i; |
| 2138 | MV_ULONG bufPhys, sramPhys; |
| 2139 | MV_U8* pBuf; |
| 2140 | |
| 2141 | /* |
| 2142 | * Calculate start place for copy: fragment number and offset in |
| 2143 | * the fragment |
| 2144 | */ |
| 2145 | frag = mvCesaMbufOffset(pMbuf, offset, &bufOffset); |
| 2146 | |
| 2147 | /* |
| 2148 | * Get SRAM physical address only once. We can update it in-place |
| 2149 | * as we build the descriptor chain. |
| 2150 | */ |
| 2151 | sramPhys = mvCesaSramVirtToPhys(NULL, pSramBuf); |
| 2152 | |
| 2153 | /* |
| 2154 | * 'size' accumulates total copy size, 'i' counts desccriptors. |
| 2155 | */ |
| 2156 | size = i = 0; |
| 2157 | |
| 2158 | /* Create DMA lists to copy mBuf from pSrc to SRAM */ |
| 2159 | while (size < copySize) { |
| 2160 | /* |
| 2161 | * Calculate # of bytes to copy from the current fragment, |
| 2162 | * and the pointer to the start of data |
| 2163 | */ |
| 2164 | bufSize = pMbuf->pFrags[frag].bufSize - bufOffset; |
| 2165 | pBuf = pMbuf->pFrags[frag].bufVirtPtr + bufOffset; |
| 2166 | bufOffset = 0; /* First frag may be non-zero */ |
| 2167 | frag++; |
| 2168 | |
| 2169 | /* |
| 2170 | * As long as there is data in the current fragment... |
| 2171 | */ |
| 2172 | while (bufSize > 0) { |
| 2173 | /* |
| 2174 | * Ensure we don't cross an MMU page boundary. |
| 2175 | * XXX: This is NetBSD-specific, but it is a |
| 2176 | * quick and dirty way to fix the problem. |
| 2177 | * A true HAL would rely on the OS-specific |
| 2178 | * driver to do this... |
| 2179 | */ |
| 2180 | thisSize = PAGE_SIZE - |
| 2181 | (((MV_ULONG)pBuf) & (PAGE_SIZE - 1)); |
| 2182 | thisSize = MV_MIN(bufSize, thisSize); |
| 2183 | /* |
| 2184 | * Make sure we don't copy more than requested |
| 2185 | */ |
| 2186 | if (thisSize > (copySize - size)) { |
| 2187 | thisSize = copySize - size; |
| 2188 | bufSize = 0; |
| 2189 | } |
| 2190 | |
| 2191 | /* |
| 2192 | * Physicall address of this fragment |
| 2193 | */ |
| 2194 | bufPhys = MV_32BIT_LE(mvOsIoVirtToPhy(NULL, pBuf)); |
| 2195 | |
| 2196 | /* |
| 2197 | * Set up the descriptor |
| 2198 | */ |
| 2199 | pDmaDesc[i].byteCnt = MV_32BIT_LE(thisSize | BIT31); |
| 2200 | if(isToMbuf) { |
| 2201 | pDmaDesc[i].phyDestAdd = bufPhys; |
| 2202 | pDmaDesc[i].phySrcAdd = MV_32BIT_LE(sramPhys); |
| 2203 | /* invalidate the buffer */ |
| 2204 | if(skipFlush == MV_FALSE) |
| 2205 | mvOsCacheInvalidate(NULL, pBuf, thisSize); |
| 2206 | } else { |
| 2207 | pDmaDesc[i].phySrcAdd = bufPhys; |
| 2208 | pDmaDesc[i].phyDestAdd = MV_32BIT_LE(sramPhys); |
| 2209 | /* flush the buffer */ |
| 2210 | if(skipFlush == MV_FALSE) |
| 2211 | mvOsCacheFlush(NULL, pBuf, thisSize); |
| 2212 | } |
| 2213 | |
| 2214 | pDmaDesc[i].phyNextDescPtr = |
| 2215 | MV_32BIT_LE(mvOsIoVirtToPhy(NULL,(&pDmaDesc[i+1]))); |
| 2216 | |
| 2217 | /* flush the DMA desc */ |
| 2218 | mvOsCacheFlush(NULL, &pDmaDesc[i], sizeof(MV_DMA_DESC)); |
| 2219 | |
| 2220 | /* Update state */ |
| 2221 | bufSize -= thisSize; |
| 2222 | sramPhys += thisSize; |
| 2223 | pBuf += thisSize; |
| 2224 | size += thisSize; |
| 2225 | i++; |
| 2226 | } |
| 2227 | } |
| 2228 | |
| 2229 | return i; |
| 2230 | } |
| 2231 | #endif /* MV_NETBSD */ |
| 2232 | /******************************************************************************* |
| 2233 | * mvCesaHmacIvGet - Calculate Inner and Outter values from HMAC key |
| 2234 | * |
| 2235 | * DESCRIPTION: |
| 2236 | * This function calculate Inner and Outer values used for HMAC algorithm. |
| 2237 | * This operation allows improve performance fro the whole HMAC processing. |
| 2238 | * |
| 2239 | * INPUT: |
| 2240 | * MV_CESA_MAC_MODE macMode - Authentication mode: HMAC_MD5 or HMAC_SHA1. |
| 2241 | * unsigned char key[] - Pointer to HMAC key. |
| 2242 | * int keyLength - Size of HMAC key (maximum 64 bytes) |
| 2243 | * |
| 2244 | * OUTPUT: |
| 2245 | * unsigned char innerIV[] - HASH(key^inner) |
| 2246 | * unsigned char outerIV[] - HASH(key^outter) |
| 2247 | * |
| 2248 | * RETURN: None |
| 2249 | * |
| 2250 | *******************************************************************************/ |
| 2251 | static void mvCesaHmacIvGet(MV_CESA_MAC_MODE macMode, unsigned char key[], int keyLength, |
| 2252 | unsigned char innerIV[], unsigned char outerIV[]) |
| 2253 | { |
| 2254 | unsigned char inner[MV_CESA_MAX_MAC_KEY_LENGTH]; |
| 2255 | unsigned char outer[MV_CESA_MAX_MAC_KEY_LENGTH]; |
| 2256 | int i, digestSize = 0; |
| 2257 | #if defined(MV_CPU_LE) || defined(MV_PPC) |
| 2258 | MV_U32 swapped32, val32, *pVal32; |
| 2259 | #endif |
| 2260 | for(i=0; i<keyLength; i++) |
| 2261 | { |
| 2262 | inner[i] = 0x36 ^ key[i]; |
| 2263 | outer[i] = 0x5c ^ key[i]; |
| 2264 | } |
| 2265 | |
| 2266 | for(i=keyLength; i<MV_CESA_MAX_MAC_KEY_LENGTH; i++) |
| 2267 | { |
| 2268 | inner[i] = 0x36; |
| 2269 | outer[i] = 0x5c; |
| 2270 | } |
| 2271 | if(macMode == MV_CESA_MAC_HMAC_MD5) |
| 2272 | { |
| 2273 | MV_MD5_CONTEXT ctx; |
| 2274 | |
| 2275 | mvMD5Init(&ctx); |
| 2276 | mvMD5Update(&ctx, inner, MV_CESA_MAX_MAC_KEY_LENGTH); |
| 2277 | |
| 2278 | memcpy(innerIV, ctx.buf, MV_CESA_MD5_DIGEST_SIZE); |
| 2279 | memset(&ctx, 0, sizeof(ctx)); |
| 2280 | |
| 2281 | mvMD5Init(&ctx); |
| 2282 | mvMD5Update(&ctx, outer, MV_CESA_MAX_MAC_KEY_LENGTH); |
| 2283 | memcpy(outerIV, ctx.buf, MV_CESA_MD5_DIGEST_SIZE); |
| 2284 | memset(&ctx, 0, sizeof(ctx)); |
| 2285 | digestSize = MV_CESA_MD5_DIGEST_SIZE; |
| 2286 | } |
| 2287 | else if(macMode == MV_CESA_MAC_HMAC_SHA1) |
| 2288 | { |
| 2289 | MV_SHA1_CTX ctx; |
| 2290 | |
| 2291 | mvSHA1Init(&ctx); |
| 2292 | mvSHA1Update(&ctx, inner, MV_CESA_MAX_MAC_KEY_LENGTH); |
| 2293 | memcpy(innerIV, ctx.state, MV_CESA_SHA1_DIGEST_SIZE); |
| 2294 | memset(&ctx, 0, sizeof(ctx)); |
| 2295 | |
| 2296 | mvSHA1Init(&ctx); |
| 2297 | mvSHA1Update(&ctx, outer, MV_CESA_MAX_MAC_KEY_LENGTH); |
| 2298 | memcpy(outerIV, ctx.state, MV_CESA_SHA1_DIGEST_SIZE); |
| 2299 | memset(&ctx, 0, sizeof(ctx)); |
| 2300 | digestSize = MV_CESA_SHA1_DIGEST_SIZE; |
| 2301 | } |
| 2302 | else |
| 2303 | { |
| 2304 | mvOsPrintf("hmacGetIV: Unexpected macMode %d\n", macMode); |
| 2305 | } |
| 2306 | #if defined(MV_CPU_LE) || defined(MV_PPC) |
| 2307 | /* 32 bits Swap of Inner and Outer values */ |
| 2308 | pVal32 = (MV_U32*)innerIV; |
| 2309 | for(i=0; i<digestSize/4; i++) |
| 2310 | { |
| 2311 | val32 = *pVal32; |
| 2312 | swapped32 = MV_BYTE_SWAP_32BIT(val32); |
| 2313 | *pVal32 = swapped32; |
| 2314 | pVal32++; |
| 2315 | } |
| 2316 | pVal32 = (MV_U32*)outerIV; |
| 2317 | for(i=0; i<digestSize/4; i++) |
| 2318 | { |
| 2319 | val32 = *pVal32; |
| 2320 | swapped32 = MV_BYTE_SWAP_32BIT(val32); |
| 2321 | *pVal32 = swapped32; |
| 2322 | pVal32++; |
| 2323 | } |
| 2324 | #endif /* defined(MV_CPU_LE) || defined(MV_PPC) */ |
| 2325 | } |
| 2326 | |
| 2327 | |
| 2328 | /******************************************************************************* |
| 2329 | * mvCesaFragSha1Complete - Complete SHA1 authentication started by HW using SW |
| 2330 | * |
| 2331 | * DESCRIPTION: |
| 2332 | * |
| 2333 | * |
| 2334 | * INPUT: |
| 2335 | * MV_CESA_MBUF* pMbuf - Pointer to Mbuf structure where data |
| 2336 | * for SHA1 is placed. |
| 2337 | * int offset - Offset in the Mbuf structure where |
| 2338 | * unprocessed data for SHA1 is started. |
| 2339 | * MV_U8* pOuterIV - Pointer to OUTER for this session. |
| 2340 | * If pOuterIV==NULL - MAC mode is HASH_SHA1 |
| 2341 | * If pOuterIV!=NULL - MAC mode is HMAC_SHA1 |
| 2342 | * int macLeftSize - Size of unprocessed data for SHA1. |
| 2343 | * int macTotalSize - Total size of data for SHA1 in the |
| 2344 | * request (processed + unprocessed) |
| 2345 | * |
| 2346 | * OUTPUT: |
| 2347 | * MV_U8* pDigest - Pointer to place where calculated Digest will |
| 2348 | * be stored. |
| 2349 | * |
| 2350 | * RETURN: None |
| 2351 | * |
| 2352 | *******************************************************************************/ |
| 2353 | static void mvCesaFragSha1Complete(MV_CESA_MBUF* pMbuf, int offset, |
| 2354 | MV_U8* pOuterIV, int macLeftSize, |
| 2355 | int macTotalSize, MV_U8* pDigest) |
| 2356 | { |
| 2357 | MV_SHA1_CTX ctx; |
| 2358 | MV_U8 *pData; |
| 2359 | int i, frag, fragOffset, size; |
| 2360 | |
| 2361 | /* Read temporary Digest from HW */ |
| 2362 | for(i=0; i<MV_CESA_SHA1_DIGEST_SIZE/4; i++) |
| 2363 | { |
| 2364 | ctx.state[i] = MV_REG_READ(MV_CESA_AUTH_INIT_VAL_DIGEST_REG(i)); |
| 2365 | } |
| 2366 | /* Initialize MV_SHA1_CTX structure */ |
| 2367 | memset(ctx.buffer, 0, 64); |
| 2368 | /* Set count[0] in bits. 32 bits is enough for 512 MBytes */ |
| 2369 | /* so count[1] is always 0 */ |
| 2370 | ctx.count[0] = ((macTotalSize - macLeftSize) * 8); |
| 2371 | ctx.count[1] = 0; |
| 2372 | |
| 2373 | /* If HMAC - add size of Inner block (64 bytes) ro count[0] */ |
| 2374 | if(pOuterIV != NULL) |
| 2375 | ctx.count[0] += (64 * 8); |
| 2376 | |
| 2377 | /* Get place of unprocessed data in the Mbuf structure */ |
| 2378 | frag = mvCesaMbufOffset(pMbuf, offset, &fragOffset); |
| 2379 | if(frag == MV_INVALID) |
| 2380 | { |
| 2381 | mvOsPrintf("CESA Mbuf Error: offset (%d) out of range\n", offset); |
| 2382 | return; |
| 2383 | } |
| 2384 | |
| 2385 | pData = pMbuf->pFrags[frag].bufVirtPtr + fragOffset; |
| 2386 | size = pMbuf->pFrags[frag].bufSize - fragOffset; |
| 2387 | |
| 2388 | /* Complete Inner part */ |
| 2389 | while(macLeftSize > 0) |
| 2390 | { |
| 2391 | if(macLeftSize <= size) |
| 2392 | { |
| 2393 | mvSHA1Update(&ctx, pData, macLeftSize); |
| 2394 | break; |
| 2395 | } |
| 2396 | mvSHA1Update(&ctx, pData, size); |
| 2397 | macLeftSize -= size; |
| 2398 | frag++; |
| 2399 | pData = pMbuf->pFrags[frag].bufVirtPtr; |
| 2400 | size = pMbuf->pFrags[frag].bufSize; |
| 2401 | } |
| 2402 | mvSHA1Final(pDigest, &ctx); |
| 2403 | /* |
| 2404 | mvOsPrintf("mvCesaFragSha1Complete: pOuterIV=%p, macLeftSize=%d, macTotalSize=%d\n", |
| 2405 | pOuterIV, macLeftSize, macTotalSize); |
| 2406 | mvDebugMemDump(pDigest, MV_CESA_SHA1_DIGEST_SIZE, 1); |
| 2407 | */ |
| 2408 | |
| 2409 | if(pOuterIV != NULL) |
| 2410 | { |
| 2411 | /* If HMAC - Complete Outer part */ |
| 2412 | for(i=0; i<MV_CESA_SHA1_DIGEST_SIZE/4; i++) |
| 2413 | { |
| 2414 | #if defined(MV_CPU_LE) || defined(MV_ARM) |
| 2415 | ctx.state[i] = MV_BYTE_SWAP_32BIT(((MV_U32*)pOuterIV)[i]); |
| 2416 | #else |
| 2417 | ctx.state[i] = ((MV_U32*)pOuterIV)[i]; |
| 2418 | #endif |
| 2419 | } |
| 2420 | memset(ctx.buffer, 0, 64); |
| 2421 | |
| 2422 | ctx.count[0] = 64*8; |
| 2423 | ctx.count[1] = 0; |
| 2424 | mvSHA1Update(&ctx, pDigest, MV_CESA_SHA1_DIGEST_SIZE); |
| 2425 | mvSHA1Final(pDigest, &ctx); |
| 2426 | } |
| 2427 | } |
| 2428 | |
| 2429 | /******************************************************************************* |
| 2430 | * mvCesaFragMd5Complete - Complete MD5 authentication started by HW using SW |
| 2431 | * |
| 2432 | * DESCRIPTION: |
| 2433 | * |
| 2434 | * |
| 2435 | * INPUT: |
| 2436 | * MV_CESA_MBUF* pMbuf - Pointer to Mbuf structure where data |
| 2437 | * for SHA1 is placed. |
| 2438 | * int offset - Offset in the Mbuf structure where |
| 2439 | * unprocessed data for MD5 is started. |
| 2440 | * MV_U8* pOuterIV - Pointer to OUTER for this session. |
| 2441 | * If pOuterIV==NULL - MAC mode is HASH_MD5 |
| 2442 | * If pOuterIV!=NULL - MAC mode is HMAC_MD5 |
| 2443 | * int macLeftSize - Size of unprocessed data for MD5. |
| 2444 | * int macTotalSize - Total size of data for MD5 in the |
| 2445 | * request (processed + unprocessed) |
| 2446 | * |
| 2447 | * OUTPUT: |
| 2448 | * MV_U8* pDigest - Pointer to place where calculated Digest will |
| 2449 | * be stored. |
| 2450 | * |
| 2451 | * RETURN: None |
| 2452 | * |
| 2453 | *******************************************************************************/ |
| 2454 | static void mvCesaFragMd5Complete(MV_CESA_MBUF* pMbuf, int offset, |
| 2455 | MV_U8* pOuterIV, int macLeftSize, |
| 2456 | int macTotalSize, MV_U8* pDigest) |
| 2457 | { |
| 2458 | MV_MD5_CONTEXT ctx; |
| 2459 | MV_U8 *pData; |
| 2460 | int i, frag, fragOffset, size; |
| 2461 | |
| 2462 | /* Read temporary Digest from HW */ |
| 2463 | for(i=0; i<MV_CESA_MD5_DIGEST_SIZE/4; i++) |
| 2464 | { |
| 2465 | ctx.buf[i] = MV_REG_READ(MV_CESA_AUTH_INIT_VAL_DIGEST_REG(i)); |
| 2466 | } |
| 2467 | memset(ctx.in, 0, 64); |
| 2468 | |
| 2469 | /* Set count[0] in bits. 32 bits is enough for 512 MBytes */ |
| 2470 | /* so count[1] is always 0 */ |
| 2471 | ctx.bits[0] = ((macTotalSize - macLeftSize) * 8); |
| 2472 | ctx.bits[1] = 0; |
| 2473 | |
| 2474 | /* If HMAC - add size of Inner block (64 bytes) ro count[0] */ |
| 2475 | if(pOuterIV != NULL) |
| 2476 | ctx.bits[0] += (64 * 8); |
| 2477 | |
| 2478 | frag = mvCesaMbufOffset(pMbuf, offset, &fragOffset); |
| 2479 | if(frag == MV_INVALID) |
| 2480 | { |
| 2481 | mvOsPrintf("CESA Mbuf Error: offset (%d) out of range\n", offset); |
| 2482 | return; |
| 2483 | } |
| 2484 | |
| 2485 | pData = pMbuf->pFrags[frag].bufVirtPtr + fragOffset; |
| 2486 | size = pMbuf->pFrags[frag].bufSize - fragOffset; |
| 2487 | |
| 2488 | /* Complete Inner part */ |
| 2489 | while(macLeftSize > 0) |
| 2490 | { |
| 2491 | if(macLeftSize <= size) |
| 2492 | { |
| 2493 | mvMD5Update(&ctx, pData, macLeftSize); |
| 2494 | break; |
| 2495 | } |
| 2496 | mvMD5Update(&ctx, pData, size); |
| 2497 | macLeftSize -= size; |
| 2498 | frag++; |
| 2499 | pData = pMbuf->pFrags[frag].bufVirtPtr; |
| 2500 | size = pMbuf->pFrags[frag].bufSize; |
| 2501 | } |
| 2502 | mvMD5Final(pDigest, &ctx); |
| 2503 | |
| 2504 | /* |
| 2505 | mvOsPrintf("mvCesaFragMd5Complete: pOuterIV=%p, macLeftSize=%d, macTotalSize=%d\n", |
| 2506 | pOuterIV, macLeftSize, macTotalSize); |
| 2507 | mvDebugMemDump(pDigest, MV_CESA_MD5_DIGEST_SIZE, 1); |
| 2508 | */ |
| 2509 | if(pOuterIV != NULL) |
| 2510 | { |
| 2511 | /* Complete Outer part */ |
| 2512 | for(i=0; i<MV_CESA_MD5_DIGEST_SIZE/4; i++) |
| 2513 | { |
| 2514 | #if defined(MV_CPU_LE) || defined(MV_ARM) |
| 2515 | ctx.buf[i] = MV_BYTE_SWAP_32BIT(((MV_U32*)pOuterIV)[i]); |
| 2516 | #else |
| 2517 | ctx.buf[i] = ((MV_U32*)pOuterIV)[i]; |
| 2518 | #endif |
| 2519 | } |
| 2520 | memset(ctx.in, 0, 64); |
| 2521 | |
| 2522 | ctx.bits[0] = 64*8; |
| 2523 | ctx.bits[1] = 0; |
| 2524 | mvMD5Update(&ctx, pDigest, MV_CESA_MD5_DIGEST_SIZE); |
| 2525 | mvMD5Final(pDigest, &ctx); |
| 2526 | } |
| 2527 | } |
| 2528 | |
| 2529 | /******************************************************************************* |
| 2530 | * mvCesaFragAuthComplete - |
| 2531 | * |
| 2532 | * DESCRIPTION: |
| 2533 | * |
| 2534 | * |
| 2535 | * INPUT: |
| 2536 | * MV_CESA_REQ* pReq, |
| 2537 | * MV_CESA_SA* pSA, |
| 2538 | * int macDataSize |
| 2539 | * |
| 2540 | * RETURN: |
| 2541 | * MV_STATUS |
| 2542 | * |
| 2543 | *******************************************************************************/ |
| 2544 | static MV_STATUS mvCesaFragAuthComplete(MV_CESA_REQ* pReq, MV_CESA_SA* pSA, |
| 2545 | int macDataSize) |
| 2546 | { |
| 2547 | MV_CESA_COMMAND* pCmd = pReq->pCmd; |
| 2548 | MV_U8* pDigest; |
| 2549 | MV_CESA_MAC_MODE macMode; |
| 2550 | MV_U8* pOuterIV = NULL; |
| 2551 | |
| 2552 | /* Copy data from Source fragment to Destination */ |
| 2553 | if(pCmd->pSrc != pCmd->pDst) |
| 2554 | { |
| 2555 | mvCesaMbufCopy(pCmd->pDst, pReq->frags.bufOffset, |
| 2556 | pCmd->pSrc, pReq->frags.bufOffset, macDataSize); |
| 2557 | } |
| 2558 | |
| 2559 | /* |
| 2560 | mvCesaCopyFromMbuf(cesaSramVirtPtr->buf[0], pCmd->pSrc, pReq->frags.bufOffset, macDataSize); |
| 2561 | mvCesaCopyToMbuf(cesaSramVirtPtr->buf[0], pCmd->pDst, pReq->frags.bufOffset, macDataSize); |
| 2562 | */ |
| 2563 | pDigest = (mvCesaSramAddrGet() + pReq->frags.newDigestOffset); |
| 2564 | |
| 2565 | macMode = (pSA->config & MV_CESA_MAC_MODE_MASK) >> MV_CESA_MAC_MODE_OFFSET; |
| 2566 | /* |
| 2567 | mvOsPrintf("macDataSize=%d, macLength=%d, digestOffset=%d, macMode=%d\n", |
| 2568 | macDataSize, pCmd->macLength, pCmd->digestOffset, macMode); |
| 2569 | */ |
| 2570 | switch(macMode) |
| 2571 | { |
| 2572 | case MV_CESA_MAC_HMAC_MD5: |
| 2573 | pOuterIV = pSA->pSramSA->macOuterIV; |
| 2574 | |
| 2575 | case MV_CESA_MAC_MD5: |
| 2576 | mvCesaFragMd5Complete(pCmd->pDst, pReq->frags.bufOffset, pOuterIV, |
| 2577 | macDataSize, pCmd->macLength, pDigest); |
| 2578 | break; |
| 2579 | |
| 2580 | case MV_CESA_MAC_HMAC_SHA1: |
| 2581 | pOuterIV = pSA->pSramSA->macOuterIV; |
| 2582 | |
| 2583 | case MV_CESA_MAC_SHA1: |
| 2584 | mvCesaFragSha1Complete(pCmd->pDst, pReq->frags.bufOffset, pOuterIV, |
| 2585 | macDataSize, pCmd->macLength, pDigest); |
| 2586 | break; |
| 2587 | |
| 2588 | default: |
| 2589 | mvOsPrintf("mvCesaFragAuthComplete: Unexpected macMode %d\n", macMode); |
| 2590 | return MV_BAD_PARAM; |
| 2591 | } |
| 2592 | return MV_OK; |
| 2593 | } |
| 2594 | |
| 2595 | /******************************************************************************* |
| 2596 | * mvCesaCtrModeInit - |
| 2597 | * |
| 2598 | * DESCRIPTION: |
| 2599 | * |
| 2600 | * |
| 2601 | * INPUT: NONE |
| 2602 | * |
| 2603 | * |
| 2604 | * RETURN: |
| 2605 | * MV_CESA_COMMAND* |
| 2606 | * |
| 2607 | *******************************************************************************/ |
| 2608 | static MV_CESA_COMMAND* mvCesaCtrModeInit(void) |
| 2609 | { |
| 2610 | MV_CESA_MBUF *pMbuf; |
| 2611 | MV_U8 *pBuf; |
| 2612 | MV_CESA_COMMAND *pCmd; |
| 2613 | |
| 2614 | pBuf = mvOsMalloc(sizeof(MV_CESA_COMMAND) + |
| 2615 | sizeof(MV_CESA_MBUF) + sizeof(MV_BUF_INFO) + 100); |
| 2616 | if(pBuf == NULL) |
| 2617 | { |
| 2618 | mvOsPrintf("mvCesaSessionOpen: Can't allocate %u bytes for CTR Mode\n", |
| 2619 | sizeof(MV_CESA_COMMAND) + sizeof(MV_CESA_MBUF) + sizeof(MV_BUF_INFO) ); |
| 2620 | return NULL; |
| 2621 | } |
| 2622 | pCmd = (MV_CESA_COMMAND*)pBuf; |
| 2623 | pBuf += sizeof(MV_CESA_COMMAND); |
| 2624 | |
| 2625 | pMbuf = (MV_CESA_MBUF*)pBuf; |
| 2626 | pBuf += sizeof(MV_CESA_MBUF); |
| 2627 | |
| 2628 | pMbuf->pFrags = (MV_BUF_INFO*)pBuf; |
| 2629 | |
| 2630 | pMbuf->numFrags = 1; |
| 2631 | pCmd->pSrc = pMbuf; |
| 2632 | pCmd->pDst = pMbuf; |
| 2633 | /* |
| 2634 | mvOsPrintf("CtrModeInit: pCmd=%p, pSrc=%p, pDst=%p, pFrags=%p\n", |
| 2635 | pCmd, pCmd->pSrc, pCmd->pDst, |
| 2636 | pMbuf->pFrags); |
| 2637 | */ |
| 2638 | return pCmd; |
| 2639 | } |
| 2640 | |
| 2641 | /******************************************************************************* |
| 2642 | * mvCesaCtrModePrepare - |
| 2643 | * |
| 2644 | * DESCRIPTION: |
| 2645 | * |
| 2646 | * |
| 2647 | * INPUT: |
| 2648 | * MV_CESA_COMMAND *pCtrModeCmd, MV_CESA_COMMAND *pCmd |
| 2649 | * |
| 2650 | * RETURN: |
| 2651 | * MV_STATUS |
| 2652 | * |
| 2653 | *******************************************************************************/ |
| 2654 | static MV_STATUS mvCesaCtrModePrepare(MV_CESA_COMMAND *pCtrModeCmd, MV_CESA_COMMAND *pCmd) |
| 2655 | { |
| 2656 | MV_CESA_MBUF *pMbuf; |
| 2657 | MV_U8 *pBuf, *pIV; |
| 2658 | MV_U32 counter, *pCounter; |
| 2659 | int cryptoSize = MV_ALIGN_UP(pCmd->cryptoLength, MV_CESA_AES_BLOCK_SIZE); |
| 2660 | /* |
| 2661 | mvOsPrintf("CtrModePrepare: pCmd=%p, pCtrSrc=%p, pCtrDst=%p, pOrgCmd=%p, pOrgSrc=%p, pOrgDst=%p\n", |
| 2662 | pCmd, pCmd->pSrc, pCmd->pDst, |
| 2663 | pCtrModeCmd, pCtrModeCmd->pSrc, pCtrModeCmd->pDst); |
| 2664 | */ |
| 2665 | pMbuf = pCtrModeCmd->pSrc; |
| 2666 | |
| 2667 | /* Allocate buffer for Key stream */ |
| 2668 | pBuf = mvOsIoCachedMalloc(cesaOsHandle,cryptoSize, |
| 2669 | &pMbuf->pFrags[0].bufPhysAddr, |
| 2670 | &pMbuf->pFrags[0].memHandle); |
| 2671 | if(pBuf == NULL) |
| 2672 | { |
| 2673 | mvOsPrintf("mvCesaCtrModePrepare: Can't allocate %d bytes\n", cryptoSize); |
| 2674 | return MV_OUT_OF_CPU_MEM; |
| 2675 | } |
| 2676 | memset(pBuf, 0, cryptoSize); |
| 2677 | mvOsCacheFlush(NULL, pBuf, cryptoSize); |
| 2678 | |
| 2679 | pMbuf->pFrags[0].bufVirtPtr = pBuf; |
| 2680 | pMbuf->mbufSize = cryptoSize; |
| 2681 | pMbuf->pFrags[0].bufSize = cryptoSize; |
| 2682 | |
| 2683 | pCtrModeCmd->pReqPrv = pCmd->pReqPrv; |
| 2684 | pCtrModeCmd->sessionId = pCmd->sessionId; |
| 2685 | |
| 2686 | /* ivFromUser and ivOffset are don't care */ |
| 2687 | pCtrModeCmd->cryptoOffset = 0; |
| 2688 | pCtrModeCmd->cryptoLength = cryptoSize; |
| 2689 | |
| 2690 | /* digestOffset, macOffset and macLength are don't care */ |
| 2691 | |
| 2692 | mvCesaCopyFromMbuf(pBuf, pCmd->pSrc, pCmd->ivOffset, MV_CESA_AES_BLOCK_SIZE); |
| 2693 | pCounter = (MV_U32*)(pBuf + (MV_CESA_AES_BLOCK_SIZE - sizeof(counter))); |
| 2694 | counter = *pCounter; |
| 2695 | counter = MV_32BIT_BE(counter); |
| 2696 | pIV = pBuf; |
| 2697 | cryptoSize -= MV_CESA_AES_BLOCK_SIZE; |
| 2698 | |
| 2699 | /* fill key stream */ |
| 2700 | while(cryptoSize > 0) |
| 2701 | { |
| 2702 | pBuf += MV_CESA_AES_BLOCK_SIZE; |
| 2703 | memcpy(pBuf, pIV, MV_CESA_AES_BLOCK_SIZE - sizeof(counter)); |
| 2704 | pCounter = (MV_U32*)(pBuf + (MV_CESA_AES_BLOCK_SIZE - sizeof(counter))); |
| 2705 | counter++; |
| 2706 | *pCounter = MV_32BIT_BE(counter); |
| 2707 | cryptoSize -= MV_CESA_AES_BLOCK_SIZE; |
| 2708 | } |
| 2709 | |
| 2710 | return MV_OK; |
| 2711 | } |
| 2712 | |
| 2713 | /******************************************************************************* |
| 2714 | * mvCesaCtrModeComplete - |
| 2715 | * |
| 2716 | * DESCRIPTION: |
| 2717 | * |
| 2718 | * |
| 2719 | * INPUT: |
| 2720 | * MV_CESA_COMMAND *pOrgCmd, MV_CESA_COMMAND *pCmd |
| 2721 | * |
| 2722 | * RETURN: |
| 2723 | * MV_STATUS |
| 2724 | * |
| 2725 | *******************************************************************************/ |
| 2726 | static MV_STATUS mvCesaCtrModeComplete(MV_CESA_COMMAND *pOrgCmd, MV_CESA_COMMAND *pCmd) |
| 2727 | { |
| 2728 | int srcFrag, dstFrag, srcOffset, dstOffset, keyOffset, srcSize, dstSize; |
| 2729 | int cryptoSize = pCmd->cryptoLength; |
| 2730 | MV_U8 *pSrc, *pDst, *pKey; |
| 2731 | MV_STATUS status = MV_OK; |
| 2732 | /* |
| 2733 | mvOsPrintf("CtrModeComplete: pCmd=%p, pCtrSrc=%p, pCtrDst=%p, pOrgCmd=%p, pOrgSrc=%p, pOrgDst=%p\n", |
| 2734 | pCmd, pCmd->pSrc, pCmd->pDst, |
| 2735 | pOrgCmd, pOrgCmd->pSrc, pOrgCmd->pDst); |
| 2736 | */ |
| 2737 | /* XOR source data with key stream to destination data */ |
| 2738 | pKey = pCmd->pDst->pFrags[0].bufVirtPtr; |
| 2739 | keyOffset = 0; |
| 2740 | |
| 2741 | if( (pOrgCmd->pSrc != pOrgCmd->pDst) && |
| 2742 | (pOrgCmd->cryptoOffset > 0) ) |
| 2743 | { |
| 2744 | /* Copy Prefix from source buffer to destination buffer */ |
| 2745 | |
| 2746 | status = mvCesaMbufCopy(pOrgCmd->pDst, 0, |
| 2747 | pOrgCmd->pSrc, 0, pOrgCmd->cryptoOffset); |
| 2748 | /* |
| 2749 | status = mvCesaCopyFromMbuf(tempBuf, pOrgCmd->pSrc, |
| 2750 | 0, pOrgCmd->cryptoOffset); |
| 2751 | status = mvCesaCopyToMbuf(tempBuf, pOrgCmd->pDst, |
| 2752 | 0, pOrgCmd->cryptoOffset); |
| 2753 | */ |
| 2754 | } |
| 2755 | |
| 2756 | srcFrag = mvCesaMbufOffset(pOrgCmd->pSrc, pOrgCmd->cryptoOffset, &srcOffset); |
| 2757 | pSrc = pOrgCmd->pSrc->pFrags[srcFrag].bufVirtPtr; |
| 2758 | srcSize = pOrgCmd->pSrc->pFrags[srcFrag].bufSize; |
| 2759 | |
| 2760 | dstFrag = mvCesaMbufOffset(pOrgCmd->pDst, pOrgCmd->cryptoOffset, &dstOffset); |
| 2761 | pDst = pOrgCmd->pDst->pFrags[dstFrag].bufVirtPtr; |
| 2762 | dstSize = pOrgCmd->pDst->pFrags[dstFrag].bufSize; |
| 2763 | |
| 2764 | while(cryptoSize > 0) |
| 2765 | { |
| 2766 | pDst[dstOffset] = (pSrc[srcOffset] ^ pKey[keyOffset]); |
| 2767 | |
| 2768 | cryptoSize--; |
| 2769 | dstOffset++; |
| 2770 | srcOffset++; |
| 2771 | keyOffset++; |
| 2772 | |
| 2773 | if(srcOffset >= srcSize) |
| 2774 | { |
| 2775 | srcFrag++; |
| 2776 | srcOffset = 0; |
| 2777 | pSrc = pOrgCmd->pSrc->pFrags[srcFrag].bufVirtPtr; |
| 2778 | srcSize = pOrgCmd->pSrc->pFrags[srcFrag].bufSize; |
| 2779 | } |
| 2780 | |
| 2781 | if(dstOffset >= dstSize) |
| 2782 | { |
| 2783 | dstFrag++; |
| 2784 | dstOffset = 0; |
| 2785 | pDst = pOrgCmd->pDst->pFrags[dstFrag].bufVirtPtr; |
| 2786 | dstSize = pOrgCmd->pDst->pFrags[dstFrag].bufSize; |
| 2787 | } |
| 2788 | } |
| 2789 | |
| 2790 | if(pOrgCmd->pSrc != pOrgCmd->pDst) |
| 2791 | { |
| 2792 | /* Copy Suffix from source buffer to destination buffer */ |
| 2793 | srcOffset = pOrgCmd->cryptoOffset + pOrgCmd->cryptoLength; |
| 2794 | |
| 2795 | if( (pOrgCmd->pDst->mbufSize - srcOffset) > 0) |
| 2796 | { |
| 2797 | status = mvCesaMbufCopy(pOrgCmd->pDst, srcOffset, |
| 2798 | pOrgCmd->pSrc, srcOffset, |
| 2799 | pOrgCmd->pDst->mbufSize - srcOffset); |
| 2800 | } |
| 2801 | |
| 2802 | /* |
| 2803 | status = mvCesaCopyFromMbuf(tempBuf, pOrgCmd->pSrc, |
| 2804 | srcOffset, pOrgCmd->pSrc->mbufSize - srcOffset); |
| 2805 | status = mvCesaCopyToMbuf(tempBuf, pOrgCmd->pDst, |
| 2806 | srcOffset, pOrgCmd->pDst->mbufSize - srcOffset); |
| 2807 | */ |
| 2808 | } |
| 2809 | |
| 2810 | /* Free buffer used for Key stream */ |
| 2811 | mvOsIoCachedFree(cesaOsHandle,pCmd->pDst->pFrags[0].bufSize, |
| 2812 | pCmd->pDst->pFrags[0].bufPhysAddr, |
| 2813 | pCmd->pDst->pFrags[0].bufVirtPtr, |
| 2814 | pCmd->pDst->pFrags[0].memHandle); |
| 2815 | |
| 2816 | return MV_OK; |
| 2817 | } |
| 2818 | |
| 2819 | /******************************************************************************* |
| 2820 | * mvCesaCtrModeFinish - |
| 2821 | * |
| 2822 | * DESCRIPTION: |
| 2823 | * |
| 2824 | * |
| 2825 | * INPUT: |
| 2826 | * MV_CESA_COMMAND* pCmd |
| 2827 | * |
| 2828 | * RETURN: |
| 2829 | * MV_STATUS |
| 2830 | * |
| 2831 | *******************************************************************************/ |
| 2832 | static void mvCesaCtrModeFinish(MV_CESA_COMMAND* pCmd) |
| 2833 | { |
| 2834 | mvOsFree(pCmd); |
| 2835 | } |
| 2836 | |
| 2837 | /******************************************************************************* |
| 2838 | * mvCesaParamCheck - |
| 2839 | * |
| 2840 | * DESCRIPTION: |
| 2841 | * |
| 2842 | * |
| 2843 | * INPUT: |
| 2844 | * MV_CESA_SA* pSA, MV_CESA_COMMAND *pCmd, MV_U8* pFixOffset |
| 2845 | * |
| 2846 | * RETURN: |
| 2847 | * MV_STATUS |
| 2848 | * |
| 2849 | *******************************************************************************/ |
| 2850 | static MV_STATUS mvCesaParamCheck(MV_CESA_SA* pSA, MV_CESA_COMMAND *pCmd, |
| 2851 | MV_U8* pFixOffset) |
| 2852 | { |
| 2853 | MV_U8 fixOffset = 0xFF; |
| 2854 | |
| 2855 | /* Check AUTH operation parameters */ |
| 2856 | if( ((pSA->config & MV_CESA_OPERATION_MASK) != |
| 2857 | (MV_CESA_CRYPTO_ONLY << MV_CESA_OPERATION_OFFSET)) ) |
| 2858 | { |
| 2859 | /* MAC offset should be at least 4 byte aligned */ |
| 2860 | if( MV_IS_NOT_ALIGN(pCmd->macOffset, 4) ) |
| 2861 | { |
| 2862 | mvOsPrintf("mvCesaAction: macOffset %d must be 4 byte aligned\n", |
| 2863 | pCmd->macOffset); |
| 2864 | return MV_BAD_PARAM; |
| 2865 | } |
| 2866 | /* Digest offset must be 4 byte aligned */ |
| 2867 | if( MV_IS_NOT_ALIGN(pCmd->digestOffset, 4) ) |
| 2868 | { |
| 2869 | mvOsPrintf("mvCesaAction: digestOffset %d must be 4 byte aligned\n", |
| 2870 | pCmd->digestOffset); |
| 2871 | return MV_BAD_PARAM; |
| 2872 | } |
| 2873 | /* In addition all offsets should be the same alignment: 8 or 4 */ |
| 2874 | if(fixOffset == 0xFF) |
| 2875 | { |
| 2876 | fixOffset = (pCmd->macOffset % 8); |
| 2877 | } |
| 2878 | else |
| 2879 | { |
| 2880 | if( (pCmd->macOffset % 8) != fixOffset) |
| 2881 | { |
| 2882 | mvOsPrintf("mvCesaAction: macOffset %d mod 8 must be equal %d\n", |
| 2883 | pCmd->macOffset, fixOffset); |
| 2884 | return MV_BAD_PARAM; |
| 2885 | } |
| 2886 | } |
| 2887 | if( (pCmd->digestOffset % 8) != fixOffset) |
| 2888 | { |
| 2889 | mvOsPrintf("mvCesaAction: digestOffset %d mod 8 must be equal %d\n", |
| 2890 | pCmd->digestOffset, fixOffset); |
| 2891 | return MV_BAD_PARAM; |
| 2892 | } |
| 2893 | } |
| 2894 | /* Check CRYPTO operation parameters */ |
| 2895 | if( ((pSA->config & MV_CESA_OPERATION_MASK) != |
| 2896 | (MV_CESA_MAC_ONLY << MV_CESA_OPERATION_OFFSET)) ) |
| 2897 | { |
| 2898 | /* CryptoOffset should be at least 4 byte aligned */ |
| 2899 | if( MV_IS_NOT_ALIGN(pCmd->cryptoOffset, 4) ) |
| 2900 | { |
| 2901 | mvOsPrintf("CesaAction: cryptoOffset=%d must be 4 byte aligned\n", |
| 2902 | pCmd->cryptoOffset); |
| 2903 | return MV_BAD_PARAM; |
| 2904 | } |
| 2905 | /* cryptoLength should be the whole number of blocks */ |
| 2906 | if( MV_IS_NOT_ALIGN(pCmd->cryptoLength, pSA->cryptoBlockSize) ) |
| 2907 | { |
| 2908 | mvOsPrintf("mvCesaAction: cryptoLength=%d must be %d byte aligned\n", |
| 2909 | pCmd->cryptoLength, pSA->cryptoBlockSize); |
| 2910 | return MV_BAD_PARAM; |
| 2911 | } |
| 2912 | if(fixOffset == 0xFF) |
| 2913 | { |
| 2914 | fixOffset = (pCmd->cryptoOffset % 8); |
| 2915 | } |
| 2916 | else |
| 2917 | { |
| 2918 | /* In addition all offsets should be the same alignment: 8 or 4 */ |
| 2919 | if( (pCmd->cryptoOffset % 8) != fixOffset) |
| 2920 | { |
| 2921 | mvOsPrintf("mvCesaAction: cryptoOffset %d mod 8 must be equal %d \n", |
| 2922 | pCmd->cryptoOffset, fixOffset); |
| 2923 | return MV_BAD_PARAM; |
| 2924 | } |
| 2925 | } |
| 2926 | |
| 2927 | /* check for CBC mode */ |
| 2928 | if(pSA->cryptoIvSize > 0) |
| 2929 | { |
| 2930 | /* cryptoIV must not be part of CryptoLength */ |
| 2931 | if( ((pCmd->ivOffset + pSA->cryptoIvSize) > pCmd->cryptoOffset) && |
| 2932 | (pCmd->ivOffset < (pCmd->cryptoOffset + pCmd->cryptoLength)) ) |
| 2933 | { |
| 2934 | mvOsPrintf("mvCesaFragParamCheck: cryptoIvOffset (%d) is part of cryptoLength (%d+%d)\n", |
| 2935 | pCmd->ivOffset, pCmd->macOffset, pCmd->macLength); |
| 2936 | return MV_BAD_PARAM; |
| 2937 | } |
| 2938 | |
| 2939 | /* ivOffset must be 4 byte aligned */ |
| 2940 | if( MV_IS_NOT_ALIGN(pCmd->ivOffset, 4) ) |
| 2941 | { |
| 2942 | mvOsPrintf("CesaAction: ivOffset=%d must be 4 byte aligned\n", |
| 2943 | pCmd->ivOffset); |
| 2944 | return MV_BAD_PARAM; |
| 2945 | } |
| 2946 | /* In addition all offsets should be the same alignment: 8 or 4 */ |
| 2947 | if( (pCmd->ivOffset % 8) != fixOffset) |
| 2948 | { |
| 2949 | mvOsPrintf("mvCesaAction: ivOffset %d mod 8 must be %d\n", |
| 2950 | pCmd->ivOffset, fixOffset); |
| 2951 | return MV_BAD_PARAM; |
| 2952 | } |
| 2953 | } |
| 2954 | } |
| 2955 | return MV_OK; |
| 2956 | } |
| 2957 | |
| 2958 | /******************************************************************************* |
| 2959 | * mvCesaFragParamCheck - |
| 2960 | * |
| 2961 | * DESCRIPTION: |
| 2962 | * |
| 2963 | * |
| 2964 | * INPUT: |
| 2965 | * MV_CESA_SA* pSA, MV_CESA_COMMAND *pCmd |
| 2966 | * |
| 2967 | * RETURN: |
| 2968 | * MV_STATUS |
| 2969 | * |
| 2970 | *******************************************************************************/ |
| 2971 | static MV_STATUS mvCesaFragParamCheck(MV_CESA_SA* pSA, MV_CESA_COMMAND *pCmd) |
| 2972 | { |
| 2973 | int offset; |
| 2974 | |
| 2975 | if( ((pSA->config & MV_CESA_OPERATION_MASK) != |
| 2976 | (MV_CESA_CRYPTO_ONLY << MV_CESA_OPERATION_OFFSET)) ) |
| 2977 | { |
| 2978 | /* macOffset must be less that SRAM buffer size */ |
| 2979 | if(pCmd->macOffset > (sizeof(cesaSramVirtPtr->buf) - MV_CESA_AUTH_BLOCK_SIZE)) |
| 2980 | { |
| 2981 | mvOsPrintf("mvCesaFragParamCheck: macOffset is too large (%d)\n", |
| 2982 | pCmd->macOffset); |
| 2983 | return MV_BAD_PARAM; |
| 2984 | } |
| 2985 | /* macOffset+macSize must be more than mbufSize - SRAM buffer size */ |
| 2986 | if( ((pCmd->macOffset + pCmd->macLength) > pCmd->pSrc->mbufSize) || |
| 2987 | ((pCmd->pSrc->mbufSize - (pCmd->macOffset + pCmd->macLength)) >= |
| 2988 | sizeof(cesaSramVirtPtr->buf)) ) |
| 2989 | { |
| 2990 | mvOsPrintf("mvCesaFragParamCheck: macLength is too large (%d), mbufSize=%d\n", |
| 2991 | pCmd->macLength, pCmd->pSrc->mbufSize); |
| 2992 | return MV_BAD_PARAM; |
| 2993 | } |
| 2994 | } |
| 2995 | |
| 2996 | if( ((pSA->config & MV_CESA_OPERATION_MASK) != |
| 2997 | (MV_CESA_MAC_ONLY << MV_CESA_OPERATION_OFFSET)) ) |
| 2998 | { |
| 2999 | /* cryptoOffset must be less that SRAM buffer size */ |
| 3000 | /* 4 for possible fixOffset */ |
| 3001 | if( (pCmd->cryptoOffset + 4) > (sizeof(cesaSramVirtPtr->buf) - pSA->cryptoBlockSize)) |
| 3002 | { |
| 3003 | mvOsPrintf("mvCesaFragParamCheck: cryptoOffset is too large (%d)\n", |
| 3004 | pCmd->cryptoOffset); |
| 3005 | return MV_BAD_PARAM; |
| 3006 | } |
| 3007 | |
| 3008 | /* cryptoOffset+cryptoSize must be more than mbufSize - SRAM buffer size */ |
| 3009 | if( ((pCmd->cryptoOffset + pCmd->cryptoLength) > pCmd->pSrc->mbufSize) || |
| 3010 | ((pCmd->pSrc->mbufSize - (pCmd->cryptoOffset + pCmd->cryptoLength)) >= |
| 3011 | (sizeof(cesaSramVirtPtr->buf) - pSA->cryptoBlockSize)) ) |
| 3012 | { |
| 3013 | mvOsPrintf("mvCesaFragParamCheck: cryptoLength is too large (%d), mbufSize=%d\n", |
| 3014 | pCmd->cryptoLength, pCmd->pSrc->mbufSize); |
| 3015 | return MV_BAD_PARAM; |
| 3016 | } |
| 3017 | } |
| 3018 | |
| 3019 | /* When MAC_THEN_CRYPTO or CRYPTO_THEN_MAC */ |
| 3020 | if( ((pSA->config & MV_CESA_OPERATION_MASK) == |
| 3021 | (MV_CESA_MAC_THEN_CRYPTO << MV_CESA_OPERATION_OFFSET)) || |
| 3022 | ((pSA->config & MV_CESA_OPERATION_MASK) == |
| 3023 | (MV_CESA_CRYPTO_THEN_MAC << MV_CESA_OPERATION_OFFSET)) ) |
| 3024 | { |
| 3025 | if( (mvCtrlModelGet() == MV_5182_DEV_ID) || |
| 3026 | ( (mvCtrlModelGet() == MV_5181_DEV_ID) && |
| 3027 | (mvCtrlRevGet() >= MV_5181L_A0_REV) && |
| 3028 | (pCmd->macLength >= (1 << 14)) ) ) |
| 3029 | { |
| 3030 | return MV_NOT_ALLOWED; |
| 3031 | } |
| 3032 | |
| 3033 | /* abs(cryptoOffset-macOffset) must be aligned cryptoBlockSize */ |
| 3034 | if(pCmd->cryptoOffset > pCmd->macOffset) |
| 3035 | { |
| 3036 | offset = pCmd->cryptoOffset - pCmd->macOffset; |
| 3037 | } |
| 3038 | else |
| 3039 | { |
| 3040 | offset = pCmd->macOffset - pCmd->cryptoOffset; |
| 3041 | } |
| 3042 | |
| 3043 | if( MV_IS_NOT_ALIGN(offset, pSA->cryptoBlockSize) ) |
| 3044 | { |
| 3045 | /* |
| 3046 | mvOsPrintf("mvCesaFragParamCheck: (cryptoOffset - macOffset) must be %d byte aligned\n", |
| 3047 | pSA->cryptoBlockSize); |
| 3048 | */ |
| 3049 | return MV_NOT_ALLOWED; |
| 3050 | } |
| 3051 | /* Digest must not be part of CryptoLength */ |
| 3052 | if( ((pCmd->digestOffset + pSA->digestSize) > pCmd->cryptoOffset) && |
| 3053 | (pCmd->digestOffset < (pCmd->cryptoOffset + pCmd->cryptoLength)) ) |
| 3054 | { |
| 3055 | /* |
| 3056 | mvOsPrintf("mvCesaFragParamCheck: digestOffset (%d) is part of cryptoLength (%d+%d)\n", |
| 3057 | pCmd->digestOffset, pCmd->cryptoOffset, pCmd->cryptoLength); |
| 3058 | */ |
| 3059 | return MV_NOT_ALLOWED; |
| 3060 | } |
| 3061 | } |
| 3062 | return MV_OK; |
| 3063 | } |
| 3064 | |
| 3065 | /******************************************************************************* |
| 3066 | * mvCesaFragSizeFind - |
| 3067 | * |
| 3068 | * DESCRIPTION: |
| 3069 | * |
| 3070 | * |
| 3071 | * INPUT: |
| 3072 | * MV_CESA_SA* pSA, MV_CESA_COMMAND *pCmd, |
| 3073 | * int cryptoOffset, int macOffset, |
| 3074 | * |
| 3075 | * OUTPUT: |
| 3076 | * int* pCopySize, int* pCryptoDataSize, int* pMacDataSize |
| 3077 | * |
| 3078 | * RETURN: |
| 3079 | * MV_STATUS |
| 3080 | * |
| 3081 | *******************************************************************************/ |
| 3082 | static void mvCesaFragSizeFind(MV_CESA_SA* pSA, MV_CESA_REQ* pReq, |
| 3083 | int cryptoOffset, int macOffset, |
| 3084 | int* pCopySize, int* pCryptoDataSize, int* pMacDataSize) |
| 3085 | { |
| 3086 | MV_CESA_COMMAND *pCmd = pReq->pCmd; |
| 3087 | int cryptoDataSize, macDataSize, copySize; |
| 3088 | |
| 3089 | cryptoDataSize = macDataSize = 0; |
| 3090 | copySize = *pCopySize; |
| 3091 | |
| 3092 | if( (pSA->config & MV_CESA_OPERATION_MASK) != |
| 3093 | (MV_CESA_MAC_ONLY << MV_CESA_OPERATION_OFFSET) ) |
| 3094 | { |
| 3095 | cryptoDataSize = MV_MIN( (copySize - cryptoOffset), |
| 3096 | (pCmd->cryptoLength - (pReq->frags.cryptoSize + 1)) ); |
| 3097 | |
| 3098 | /* cryptoSize for each fragment must be the whole number of blocksSize */ |
| 3099 | if( MV_IS_NOT_ALIGN(cryptoDataSize, pSA->cryptoBlockSize) ) |
| 3100 | { |
| 3101 | cryptoDataSize = MV_ALIGN_DOWN(cryptoDataSize, pSA->cryptoBlockSize); |
| 3102 | copySize = cryptoOffset + cryptoDataSize; |
| 3103 | } |
| 3104 | } |
| 3105 | if( (pSA->config & MV_CESA_OPERATION_MASK) != |
| 3106 | (MV_CESA_CRYPTO_ONLY << MV_CESA_OPERATION_OFFSET) ) |
| 3107 | { |
| 3108 | macDataSize = MV_MIN( (copySize - macOffset), |
| 3109 | (pCmd->macLength - (pReq->frags.macSize + 1))); |
| 3110 | |
| 3111 | /* macSize for each fragment (except last) must be the whole number of blocksSize */ |
| 3112 | if( MV_IS_NOT_ALIGN(macDataSize, MV_CESA_AUTH_BLOCK_SIZE) ) |
| 3113 | { |
| 3114 | macDataSize = MV_ALIGN_DOWN(macDataSize, MV_CESA_AUTH_BLOCK_SIZE); |
| 3115 | copySize = macOffset + macDataSize; |
| 3116 | } |
| 3117 | cryptoDataSize = copySize - cryptoOffset; |
| 3118 | } |
| 3119 | *pCopySize = copySize; |
| 3120 | |
| 3121 | if(pCryptoDataSize != NULL) |
| 3122 | *pCryptoDataSize = cryptoDataSize; |
| 3123 | |
| 3124 | if(pMacDataSize != NULL) |
| 3125 | *pMacDataSize = macDataSize; |
| 3126 | } |
| 3127 | |