| 1 | /******************************************************************************* |
| 2 | Copyright (C) Marvell International Ltd. and its affiliates |
| 3 | |
| 4 | This software file (the "File") is owned and distributed by Marvell |
| 5 | International Ltd. and/or its affiliates ("Marvell") under the following |
| 6 | alternative licensing terms. Once you have made an election to distribute the |
| 7 | File under one of the following license alternatives, please (i) delete this |
| 8 | introductory statement regarding license alternatives, (ii) delete the two |
| 9 | license alternatives that you have not elected to use and (iii) preserve the |
| 10 | Marvell copyright notice above. |
| 11 | |
| 12 | ******************************************************************************** |
| 13 | Marvell Commercial License Option |
| 14 | |
| 15 | If you received this File from Marvell and you have entered into a commercial |
| 16 | license agreement (a "Commercial License") with Marvell, the File is licensed |
| 17 | to you under the terms of the applicable Commercial License. |
| 18 | |
| 19 | ******************************************************************************** |
| 20 | Marvell GPL License Option |
| 21 | |
| 22 | If you received this File from Marvell, you may opt to use, redistribute and/or |
| 23 | modify this File in accordance with the terms and conditions of the General |
| 24 | Public License Version 2, June 1991 (the "GPL License"), a copy of which is |
| 25 | available along with the File in the license.txt file or by writing to the Free |
| 26 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 or |
| 27 | on the worldwide web at http://www.gnu.org/licenses/gpl.txt. |
| 28 | |
| 29 | THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE IMPLIED |
| 30 | WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY |
| 31 | DISCLAIMED. The GPL License provides additional details about this warranty |
| 32 | disclaimer. |
| 33 | ******************************************************************************** |
| 34 | Marvell BSD License Option |
| 35 | |
| 36 | If you received this File from Marvell, you may opt to use, redistribute and/or |
| 37 | modify this File under the following licensing terms. |
| 38 | Redistribution and use in source and binary forms, with or without modification, |
| 39 | are permitted provided that the following conditions are met: |
| 40 | |
| 41 | * Redistributions of source code must retain the above copyright notice, |
| 42 | this list of conditions and the following disclaimer. |
| 43 | |
| 44 | * Redistributions in binary form must reproduce the above copyright |
| 45 | notice, this list of conditions and the following disclaimer in the |
| 46 | documentation and/or other materials provided with the distribution. |
| 47 | |
| 48 | * Neither the name of Marvell nor the names of its contributors may be |
| 49 | used to endorse or promote products derived from this software without |
| 50 | specific prior written permission. |
| 51 | |
| 52 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| 53 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 54 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 55 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR |
| 56 | ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 57 | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 58 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| 59 | ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 60 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 61 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 62 | |
| 63 | *******************************************************************************/ |
| 64 | |
| 65 | #include "ddr1_2/mvDram.h" |
| 66 | #include "boardEnv/mvBoardEnvLib.h" |
| 67 | |
| 68 | #undef MV_DEBUG |
| 69 | #ifdef MV_DEBUG |
| 70 | #define DB(x) x |
| 71 | #else |
| 72 | #define DB(x) |
| 73 | #endif |
| 74 | |
| 75 | static MV_VOID cpyDimm2BankInfo(MV_DIMM_INFO *pDimmInfo, |
| 76 | MV_DRAM_BANK_INFO *pBankInfo); |
| 77 | static MV_U32 cas2ps(MV_U8 spd_byte); |
| 78 | /******************************************************************************* |
| 79 | * mvDramBankGet - Get the DRAM bank paramters. |
| 80 | * |
| 81 | * DESCRIPTION: |
| 82 | * This function retrieves DRAM bank parameters as described in |
| 83 | * DRAM_BANK_INFO struct to the controller DRAM unit. In case the board |
| 84 | * has its DRAM on DIMMs it will use its EEPROM to extract SPD data |
| 85 | * from it. Otherwise, if the DRAM is soldered on board, the function |
| 86 | * should insert its bank information into MV_DRAM_BANK_INFO struct. |
| 87 | * |
| 88 | * INPUT: |
| 89 | * bankNum - Board DRAM bank number. |
| 90 | * |
| 91 | * OUTPUT: |
| 92 | * pBankInfo - DRAM bank information struct. |
| 93 | * |
| 94 | * RETURN: |
| 95 | * MV_FAIL - Bank parameters could not be read. |
| 96 | * |
| 97 | *******************************************************************************/ |
| 98 | MV_STATUS mvDramBankInfoGet(MV_U32 bankNum, MV_DRAM_BANK_INFO *pBankInfo) |
| 99 | { |
| 100 | MV_DIMM_INFO dimmInfo; |
| 101 | |
| 102 | DB(mvOsPrintf("Dram: mvDramBankInfoGet bank %d\n", bankNum)); |
| 103 | /* zero pBankInfo structure */ |
| 104 | memset(pBankInfo, 0, sizeof(*pBankInfo)); |
| 105 | |
| 106 | if((NULL == pBankInfo) || (bankNum >= MV_DRAM_MAX_CS )) |
| 107 | { |
| 108 | DB(mvOsPrintf("Dram: mvDramBankInfoGet bad params \n")); |
| 109 | return MV_BAD_PARAM; |
| 110 | } |
| 111 | if( MV_OK != dimmSpdGet((MV_U32)(bankNum/2), &dimmInfo)) |
| 112 | { |
| 113 | DB(mvOsPrintf("Dram: ERR dimmSpdGet failed to get dimm info \n")); |
| 114 | return MV_FAIL; |
| 115 | } |
| 116 | if((dimmInfo.numOfModuleBanks == 1) && ((bankNum % 2) == 1)) |
| 117 | { |
| 118 | DB(mvOsPrintf("Dram: ERR dimmSpdGet. Can't find DIMM bank 2 \n")); |
| 119 | return MV_FAIL; |
| 120 | } |
| 121 | |
| 122 | /* convert Dimm info to Bank info */ |
| 123 | cpyDimm2BankInfo(&dimmInfo, pBankInfo); |
| 124 | |
| 125 | return MV_OK; |
| 126 | } |
| 127 | |
| 128 | /******************************************************************************* |
| 129 | * cpyDimm2BankInfo - Convert a Dimm info struct into a bank info struct. |
| 130 | * |
| 131 | * DESCRIPTION: |
| 132 | * Convert a Dimm info struct into a bank info struct. |
| 133 | * |
| 134 | * INPUT: |
| 135 | * pDimmInfo - DIMM information structure. |
| 136 | * |
| 137 | * OUTPUT: |
| 138 | * pBankInfo - DRAM bank information struct. |
| 139 | * |
| 140 | * RETURN: |
| 141 | * None. |
| 142 | * |
| 143 | *******************************************************************************/ |
| 144 | static MV_VOID cpyDimm2BankInfo(MV_DIMM_INFO *pDimmInfo, |
| 145 | MV_DRAM_BANK_INFO *pBankInfo) |
| 146 | { |
| 147 | pBankInfo->memoryType = pDimmInfo->memoryType; |
| 148 | |
| 149 | /* DIMM dimensions */ |
| 150 | pBankInfo->numOfRowAddr = pDimmInfo->numOfRowAddr; |
| 151 | pBankInfo->numOfColAddr = pDimmInfo->numOfColAddr; |
| 152 | pBankInfo->dataWidth = pDimmInfo->dataWidth; |
| 153 | pBankInfo->errorCheckType = pDimmInfo->errorCheckType; |
| 154 | pBankInfo->sdramWidth = pDimmInfo->sdramWidth; |
| 155 | pBankInfo->errorCheckDataWidth = pDimmInfo->errorCheckDataWidth; |
| 156 | pBankInfo->numOfBanksOnEachDevice = pDimmInfo->numOfBanksOnEachDevice; |
| 157 | pBankInfo->suportedCasLatencies = pDimmInfo->suportedCasLatencies; |
| 158 | pBankInfo->refreshInterval = pDimmInfo->refreshInterval; |
| 159 | |
| 160 | /* DIMM timing parameters */ |
| 161 | pBankInfo->minCycleTimeAtMaxCasLatPs = pDimmInfo->minCycleTimeAtMaxCasLatPs; |
| 162 | pBankInfo->minCycleTimeAtMaxCasLatMinus1Ps = |
| 163 | pDimmInfo->minCycleTimeAtMaxCasLatMinus1Ps; |
| 164 | pBankInfo->minCycleTimeAtMaxCasLatMinus2Ps = |
| 165 | pDimmInfo->minCycleTimeAtMaxCasLatMinus2Ps; |
| 166 | |
| 167 | pBankInfo->minRowPrechargeTime = pDimmInfo->minRowPrechargeTime; |
| 168 | pBankInfo->minRowActiveToRowActive = pDimmInfo->minRowActiveToRowActive; |
| 169 | pBankInfo->minRasToCasDelay = pDimmInfo->minRasToCasDelay; |
| 170 | pBankInfo->minRasPulseWidth = pDimmInfo->minRasPulseWidth; |
| 171 | pBankInfo->minWriteRecoveryTime = pDimmInfo->minWriteRecoveryTime; |
| 172 | pBankInfo->minWriteToReadCmdDelay = pDimmInfo->minWriteToReadCmdDelay; |
| 173 | pBankInfo->minReadToPrechCmdDelay = pDimmInfo->minReadToPrechCmdDelay; |
| 174 | pBankInfo->minRefreshToActiveCmd = pDimmInfo->minRefreshToActiveCmd; |
| 175 | |
| 176 | /* Parameters calculated from the extracted DIMM information */ |
| 177 | pBankInfo->size = pDimmInfo->size/pDimmInfo->numOfModuleBanks; |
| 178 | pBankInfo->deviceDensity = pDimmInfo->deviceDensity; |
| 179 | pBankInfo->numberOfDevices = pDimmInfo->numberOfDevices / |
| 180 | pDimmInfo->numOfModuleBanks; |
| 181 | |
| 182 | /* DIMM attributes (MV_TRUE for yes) */ |
| 183 | |
| 184 | if ((pDimmInfo->memoryType == MEM_TYPE_SDRAM) || |
| 185 | (pDimmInfo->memoryType == MEM_TYPE_DDR1) ) |
| 186 | { |
| 187 | if (pDimmInfo->dimmAttributes & BIT1) |
| 188 | pBankInfo->registeredAddrAndControlInputs = MV_TRUE; |
| 189 | else |
| 190 | pBankInfo->registeredAddrAndControlInputs = MV_FALSE; |
| 191 | } |
| 192 | else /* pDimmInfo->memoryType == MEM_TYPE_DDR2 */ |
| 193 | { |
| 194 | if (pDimmInfo->dimmTypeInfo & (BIT0 | BIT4)) |
| 195 | pBankInfo->registeredAddrAndControlInputs = MV_TRUE; |
| 196 | else |
| 197 | pBankInfo->registeredAddrAndControlInputs = MV_FALSE; |
| 198 | } |
| 199 | |
| 200 | return; |
| 201 | } |
| 202 | |
| 203 | /******************************************************************************* |
| 204 | * dimmSpdCpy - Cpy SPD parameters from dimm 0 to dimm 1. |
| 205 | * |
| 206 | * DESCRIPTION: |
| 207 | * Read the DIMM SPD parameters from dimm 0 into dimm 1 SPD. |
| 208 | * |
| 209 | * INPUT: |
| 210 | * None. |
| 211 | * |
| 212 | * OUTPUT: |
| 213 | * None. |
| 214 | * |
| 215 | * RETURN: |
| 216 | * MV_TRUE if function could read DIMM parameters, MV_FALSE otherwise. |
| 217 | * |
| 218 | *******************************************************************************/ |
| 219 | MV_STATUS dimmSpdCpy(MV_VOID) |
| 220 | { |
| 221 | MV_U32 i; |
| 222 | MV_U32 spdChecksum; |
| 223 | |
| 224 | MV_TWSI_SLAVE twsiSlave; |
| 225 | MV_U8 data[SPD_SIZE]; |
| 226 | |
| 227 | /* zero dimmInfo structure */ |
| 228 | memset(data, 0, SPD_SIZE); |
| 229 | |
| 230 | /* read the dimm eeprom */ |
| 231 | DB(mvOsPrintf("DRAM: Read Dimm eeprom\n")); |
| 232 | twsiSlave.slaveAddr.address = MV_BOARD_DIMM0_I2C_ADDR; |
| 233 | twsiSlave.slaveAddr.type = ADDR7_BIT; |
| 234 | twsiSlave.validOffset = MV_TRUE; |
| 235 | twsiSlave.offset = 0; |
| 236 | twsiSlave.moreThen256 = MV_FALSE; |
| 237 | |
| 238 | if( MV_OK != mvTwsiRead (MV_BOARD_DIMM_I2C_CHANNEL, |
| 239 | &twsiSlave, data, SPD_SIZE) ) |
| 240 | { |
| 241 | DB(mvOsPrintf("DRAM: ERR. no DIMM in dimmNum 0\n")); |
| 242 | return MV_FAIL; |
| 243 | } |
| 244 | DB(puts("DRAM: Reading dimm info succeded.\n")); |
| 245 | |
| 246 | /* calculate SPD checksum */ |
| 247 | spdChecksum = 0; |
| 248 | |
| 249 | for(i = 0 ; i <= 62 ; i++) |
| 250 | { |
| 251 | spdChecksum += data[i]; |
| 252 | } |
| 253 | |
| 254 | if ((spdChecksum & 0xff) != data[63]) |
| 255 | { |
| 256 | DB(mvOsPrintf("DRAM: Warning. Wrong SPD Checksum %2x, expValue=%2x\n", |
| 257 | (MV_U32)(spdChecksum & 0xff), data[63])); |
| 258 | } |
| 259 | else |
| 260 | { |
| 261 | DB(mvOsPrintf("DRAM: SPD Checksum ok!\n")); |
| 262 | } |
| 263 | |
| 264 | /* copy the SPD content 1:1 into the DIMM 1 SPD */ |
| 265 | twsiSlave.slaveAddr.address = MV_BOARD_DIMM1_I2C_ADDR; |
| 266 | twsiSlave.slaveAddr.type = ADDR7_BIT; |
| 267 | twsiSlave.validOffset = MV_TRUE; |
| 268 | twsiSlave.offset = 0; |
| 269 | twsiSlave.moreThen256 = MV_FALSE; |
| 270 | |
| 271 | for(i = 0 ; i < SPD_SIZE ; i++) |
| 272 | { |
| 273 | twsiSlave.offset = i; |
| 274 | if( MV_OK != mvTwsiWrite (MV_BOARD_DIMM_I2C_CHANNEL, |
| 275 | &twsiSlave, &data[i], 1) ) |
| 276 | { |
| 277 | mvOsPrintf("DRAM: ERR. no DIMM in dimmNum 1 byte %d \n",i); |
| 278 | return MV_FAIL; |
| 279 | } |
| 280 | mvOsDelay(5); |
| 281 | } |
| 282 | |
| 283 | DB(puts("DRAM: Reading dimm info succeded.\n")); |
| 284 | return MV_OK; |
| 285 | } |
| 286 | |
| 287 | /******************************************************************************* |
| 288 | * dimmSpdGet - Get the SPD parameters. |
| 289 | * |
| 290 | * DESCRIPTION: |
| 291 | * Read the DIMM SPD parameters into given struct parameter. |
| 292 | * |
| 293 | * INPUT: |
| 294 | * dimmNum - DIMM number. See MV_BOARD_DIMM_NUM enumerator. |
| 295 | * |
| 296 | * OUTPUT: |
| 297 | * pDimmInfo - DIMM information structure. |
| 298 | * |
| 299 | * RETURN: |
| 300 | * MV_TRUE if function could read DIMM parameters, MV_FALSE otherwise. |
| 301 | * |
| 302 | *******************************************************************************/ |
| 303 | MV_STATUS dimmSpdGet(MV_U32 dimmNum, MV_DIMM_INFO *pDimmInfo) |
| 304 | { |
| 305 | MV_U32 i; |
| 306 | MV_U32 density = 1; |
| 307 | MV_U32 spdChecksum; |
| 308 | |
| 309 | MV_TWSI_SLAVE twsiSlave; |
| 310 | MV_U8 data[SPD_SIZE]; |
| 311 | |
| 312 | if((NULL == pDimmInfo)|| (dimmNum >= MAX_DIMM_NUM)) |
| 313 | { |
| 314 | DB(mvOsPrintf("Dram: mvDramBankInfoGet bad params \n")); |
| 315 | return MV_BAD_PARAM; |
| 316 | } |
| 317 | |
| 318 | /* zero dimmInfo structure */ |
| 319 | memset(data, 0, SPD_SIZE); |
| 320 | |
| 321 | /* read the dimm eeprom */ |
| 322 | DB(mvOsPrintf("DRAM: Read Dimm eeprom\n")); |
| 323 | twsiSlave.slaveAddr.address = (dimmNum == 0) ? |
| 324 | MV_BOARD_DIMM0_I2C_ADDR : MV_BOARD_DIMM1_I2C_ADDR; |
| 325 | twsiSlave.slaveAddr.type = ADDR7_BIT; |
| 326 | twsiSlave.validOffset = MV_TRUE; |
| 327 | twsiSlave.offset = 0; |
| 328 | twsiSlave.moreThen256 = MV_FALSE; |
| 329 | |
| 330 | if( MV_OK != mvTwsiRead (MV_BOARD_DIMM_I2C_CHANNEL, |
| 331 | &twsiSlave, data, SPD_SIZE) ) |
| 332 | { |
| 333 | DB(mvOsPrintf("DRAM: ERR. no DIMM in dimmNum %d \n", dimmNum)); |
| 334 | return MV_FAIL; |
| 335 | } |
| 336 | DB(puts("DRAM: Reading dimm info succeded.\n")); |
| 337 | |
| 338 | /* calculate SPD checksum */ |
| 339 | spdChecksum = 0; |
| 340 | |
| 341 | for(i = 0 ; i <= 62 ; i++) |
| 342 | { |
| 343 | spdChecksum += data[i]; |
| 344 | } |
| 345 | |
| 346 | if ((spdChecksum & 0xff) != data[63]) |
| 347 | { |
| 348 | DB(mvOsPrintf("DRAM: Warning. Wrong SPD Checksum %2x, expValue=%2x\n", |
| 349 | (MV_U32)(spdChecksum & 0xff), data[63])); |
| 350 | } |
| 351 | else |
| 352 | { |
| 353 | DB(mvOsPrintf("DRAM: SPD Checksum ok!\n")); |
| 354 | } |
| 355 | |
| 356 | /* copy the SPD content 1:1 into the dimmInfo structure*/ |
| 357 | for(i = 0 ; i < SPD_SIZE ; i++) |
| 358 | { |
| 359 | pDimmInfo->spdRawData[i] = data[i]; |
| 360 | DB(mvOsPrintf("SPD-EEPROM Byte %3d = %3x (%3d)\n",i, data[i], data[i])); |
| 361 | } |
| 362 | |
| 363 | DB(mvOsPrintf("DRAM SPD Information:\n")); |
| 364 | |
| 365 | /* Memory type (DDR / SDRAM) */ |
| 366 | switch (data[DIMM_MEM_TYPE]) |
| 367 | { |
| 368 | case (DIMM_MEM_TYPE_SDRAM): |
| 369 | pDimmInfo->memoryType = MEM_TYPE_SDRAM; |
| 370 | DB(mvOsPrintf("DRAM Memeory type SDRAM\n")); |
| 371 | break; |
| 372 | case (DIMM_MEM_TYPE_DDR1): |
| 373 | pDimmInfo->memoryType = MEM_TYPE_DDR1; |
| 374 | DB(mvOsPrintf("DRAM Memeory type DDR1\n")); |
| 375 | break; |
| 376 | case (DIMM_MEM_TYPE_DDR2): |
| 377 | pDimmInfo->memoryType = MEM_TYPE_DDR2; |
| 378 | DB(mvOsPrintf("DRAM Memeory type DDR2\n")); |
| 379 | break; |
| 380 | default: |
| 381 | mvOsPrintf("ERROR: Undefined memory type!\n"); |
| 382 | return MV_ERROR; |
| 383 | } |
| 384 | |
| 385 | |
| 386 | /* Number Of Row Addresses */ |
| 387 | pDimmInfo->numOfRowAddr = data[DIMM_ROW_NUM]; |
| 388 | DB(mvOsPrintf("DRAM numOfRowAddr[3] %d\n",pDimmInfo->numOfRowAddr)); |
| 389 | |
| 390 | /* Number Of Column Addresses */ |
| 391 | pDimmInfo->numOfColAddr = data[DIMM_COL_NUM]; |
| 392 | DB(mvOsPrintf("DRAM numOfColAddr[4] %d\n",pDimmInfo->numOfColAddr)); |
| 393 | |
| 394 | /* Number Of Module Banks */ |
| 395 | pDimmInfo->numOfModuleBanks = data[DIMM_MODULE_BANK_NUM]; |
| 396 | DB(mvOsPrintf("DRAM numOfModuleBanks[5] 0x%x\n", |
| 397 | pDimmInfo->numOfModuleBanks)); |
| 398 | |
| 399 | /* Number of module banks encoded differently for DDR2 */ |
| 400 | if (pDimmInfo->memoryType == MEM_TYPE_DDR2) |
| 401 | pDimmInfo->numOfModuleBanks = (pDimmInfo->numOfModuleBanks & 0x7)+1; |
| 402 | |
| 403 | /* Data Width */ |
| 404 | pDimmInfo->dataWidth = data[DIMM_DATA_WIDTH]; |
| 405 | DB(mvOsPrintf("DRAM dataWidth[6] 0x%x\n", pDimmInfo->dataWidth)); |
| 406 | |
| 407 | /* Minimum Cycle Time At Max CasLatancy */ |
| 408 | pDimmInfo->minCycleTimeAtMaxCasLatPs = cas2ps(data[DIMM_MIN_CC_AT_MAX_CAS]); |
| 409 | |
| 410 | /* Error Check Type */ |
| 411 | pDimmInfo->errorCheckType = data[DIMM_ERR_CHECK_TYPE]; |
| 412 | DB(mvOsPrintf("DRAM errorCheckType[11] 0x%x\n", |
| 413 | pDimmInfo->errorCheckType)); |
| 414 | |
| 415 | /* Refresh Interval */ |
| 416 | pDimmInfo->refreshInterval = data[DIMM_REFRESH_INTERVAL]; |
| 417 | DB(mvOsPrintf("DRAM refreshInterval[12] 0x%x\n", |
| 418 | pDimmInfo->refreshInterval)); |
| 419 | |
| 420 | /* Sdram Width */ |
| 421 | pDimmInfo->sdramWidth = data[DIMM_SDRAM_WIDTH]; |
| 422 | DB(mvOsPrintf("DRAM sdramWidth[13] 0x%x\n",pDimmInfo->sdramWidth)); |
| 423 | |
| 424 | /* Error Check Data Width */ |
| 425 | pDimmInfo->errorCheckDataWidth = data[DIMM_ERR_CHECK_DATA_WIDTH]; |
| 426 | DB(mvOsPrintf("DRAM errorCheckDataWidth[14] 0x%x\n", |
| 427 | pDimmInfo->errorCheckDataWidth)); |
| 428 | |
| 429 | /* Burst Length Supported */ |
| 430 | /* SDRAM/DDR1: |
| 431 | *******-******-******-******-******-******-******-******* |
| 432 | * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * |
| 433 | *******-******-******-******-******-******-******-******* |
| 434 | burst length = * Page | TBD | TBD | TBD | 8 | 4 | 2 | 1 * |
| 435 | *********************************************************/ |
| 436 | /* DDR2: |
| 437 | *******-******-******-******-******-******-******-******* |
| 438 | * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * |
| 439 | *******-******-******-******-******-******-******-******* |
| 440 | burst length = * Page | TBD | TBD | TBD | 8 | 4 | TBD | TBD * |
| 441 | *********************************************************/ |
| 442 | |
| 443 | pDimmInfo->burstLengthSupported = data[DIMM_BURST_LEN_SUP]; |
| 444 | DB(mvOsPrintf("DRAM burstLengthSupported[16] 0x%x\n", |
| 445 | pDimmInfo->burstLengthSupported)); |
| 446 | |
| 447 | /* Number Of Banks On Each Device */ |
| 448 | pDimmInfo->numOfBanksOnEachDevice = data[DIMM_DEV_BANK_NUM]; |
| 449 | DB(mvOsPrintf("DRAM numOfBanksOnEachDevice[17] 0x%x\n", |
| 450 | pDimmInfo->numOfBanksOnEachDevice)); |
| 451 | |
| 452 | /* Suported Cas Latencies */ |
| 453 | |
| 454 | /* SDRAM: |
| 455 | *******-******-******-******-******-******-******-******* |
| 456 | * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * |
| 457 | *******-******-******-******-******-******-******-******* |
| 458 | CAS = * TBD | 7 | 6 | 5 | 4 | 3 | 2 | 1 * |
| 459 | ********************************************************/ |
| 460 | |
| 461 | /* DDR 1: |
| 462 | *******-******-******-******-******-******-******-******* |
| 463 | * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * |
| 464 | *******-******-******-******-******-******-******-******* |
| 465 | CAS = * TBD | 4 | 3.5 | 3 | 2.5 | 2 | 1.5 | 1 * |
| 466 | *********************************************************/ |
| 467 | |
| 468 | /* DDR 2: |
| 469 | *******-******-******-******-******-******-******-******* |
| 470 | * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * |
| 471 | *******-******-******-******-******-******-******-******* |
| 472 | CAS = * TBD | TBD | 5 | 4 | 3 | 2 | TBD | TBD * |
| 473 | *********************************************************/ |
| 474 | |
| 475 | pDimmInfo->suportedCasLatencies = data[DIMM_SUP_CAL]; |
| 476 | DB(mvOsPrintf("DRAM suportedCasLatencies[18] 0x%x\n", |
| 477 | pDimmInfo->suportedCasLatencies)); |
| 478 | |
| 479 | /* For DDR2 only, get the DIMM type information */ |
| 480 | if (pDimmInfo->memoryType == MEM_TYPE_DDR2) |
| 481 | { |
| 482 | pDimmInfo->dimmTypeInfo = data[DIMM_DDR2_TYPE_INFORMATION]; |
| 483 | DB(mvOsPrintf("DRAM dimmTypeInfo[20] (DDR2) 0x%x\n", |
| 484 | pDimmInfo->dimmTypeInfo)); |
| 485 | } |
| 486 | |
| 487 | /* SDRAM Modules Attributes */ |
| 488 | pDimmInfo->dimmAttributes = data[DIMM_BUF_ADDR_CONT_IN]; |
| 489 | DB(mvOsPrintf("DRAM dimmAttributes[21] 0x%x\n", |
| 490 | pDimmInfo->dimmAttributes)); |
| 491 | |
| 492 | /* Minimum Cycle Time At Max CasLatancy Minus 1*/ |
| 493 | pDimmInfo->minCycleTimeAtMaxCasLatMinus1Ps = |
| 494 | cas2ps(data[DIMM_MIN_CC_AT_MAX_CAS_MINUS1]); |
| 495 | |
| 496 | /* Minimum Cycle Time At Max CasLatancy Minus 2*/ |
| 497 | pDimmInfo->minCycleTimeAtMaxCasLatMinus2Ps = |
| 498 | cas2ps(data[DIMM_MIN_CC_AT_MAX_CAS_MINUS2]); |
| 499 | |
| 500 | pDimmInfo->minRowPrechargeTime = data[DIMM_MIN_ROW_PRECHARGE_TIME]; |
| 501 | DB(mvOsPrintf("DRAM minRowPrechargeTime[27] 0x%x\n", |
| 502 | pDimmInfo->minRowPrechargeTime)); |
| 503 | pDimmInfo->minRowActiveToRowActive = data[DIMM_MIN_ROW_ACTIVE_TO_ROW_ACTIVE]; |
| 504 | DB(mvOsPrintf("DRAM minRowActiveToRowActive[28] 0x%x\n", |
| 505 | pDimmInfo->minRowActiveToRowActive)); |
| 506 | pDimmInfo->minRasToCasDelay = data[DIMM_MIN_RAS_TO_CAS_DELAY]; |
| 507 | DB(mvOsPrintf("DRAM minRasToCasDelay[29] 0x%x\n", |
| 508 | pDimmInfo->minRasToCasDelay)); |
| 509 | pDimmInfo->minRasPulseWidth = data[DIMM_MIN_RAS_PULSE_WIDTH]; |
| 510 | DB(mvOsPrintf("DRAM minRasPulseWidth[30] 0x%x\n", |
| 511 | pDimmInfo->minRasPulseWidth)); |
| 512 | |
| 513 | /* DIMM Bank Density */ |
| 514 | pDimmInfo->dimmBankDensity = data[DIMM_BANK_DENSITY]; |
| 515 | DB(mvOsPrintf("DRAM dimmBankDensity[31] 0x%x\n", |
| 516 | pDimmInfo->dimmBankDensity)); |
| 517 | |
| 518 | /* Only DDR2 includes Write Recovery Time field. Other SDRAM ignore */ |
| 519 | pDimmInfo->minWriteRecoveryTime = data[DIMM_MIN_WRITE_RECOVERY_TIME]; |
| 520 | DB(mvOsPrintf("DRAM minWriteRecoveryTime[36] 0x%x\n", |
| 521 | pDimmInfo->minWriteRecoveryTime)); |
| 522 | |
| 523 | /* Only DDR2 includes Internal Write To Read Command Delay field. */ |
| 524 | pDimmInfo->minWriteToReadCmdDelay = data[DIMM_MIN_WRITE_TO_READ_CMD_DELAY]; |
| 525 | DB(mvOsPrintf("DRAM minWriteToReadCmdDelay[37] 0x%x\n", |
| 526 | pDimmInfo->minWriteToReadCmdDelay)); |
| 527 | |
| 528 | /* Only DDR2 includes Internal Read To Precharge Command Delay field. */ |
| 529 | pDimmInfo->minReadToPrechCmdDelay = data[DIMM_MIN_READ_TO_PRECH_CMD_DELAY]; |
| 530 | DB(mvOsPrintf("DRAM minReadToPrechCmdDelay[38] 0x%x\n", |
| 531 | pDimmInfo->minReadToPrechCmdDelay)); |
| 532 | |
| 533 | /* Only DDR2 includes Minimum Refresh to Activate/Refresh Command field */ |
| 534 | pDimmInfo->minRefreshToActiveCmd = data[DIMM_MIN_REFRESH_TO_ACTIVATE_CMD]; |
| 535 | DB(mvOsPrintf("DRAM minRefreshToActiveCmd[42] 0x%x\n", |
| 536 | pDimmInfo->minRefreshToActiveCmd)); |
| 537 | |
| 538 | /* calculating the sdram density. Representing device density from */ |
| 539 | /* bit 20 to allow representation of 4GB and above. */ |
| 540 | /* For example, if density is 512Mbit 0x20000000, will be represent in */ |
| 541 | /* deviceDensity by 0x20000000 >> 16 --> 0x00000200. Another example */ |
| 542 | /* is density 8GB 0x200000000 >> 16 --> 0x00002000. */ |
| 543 | density = (1 << ((pDimmInfo->numOfRowAddr + pDimmInfo->numOfColAddr) - 20)); |
| 544 | pDimmInfo->deviceDensity = density * |
| 545 | pDimmInfo->numOfBanksOnEachDevice * |
| 546 | pDimmInfo->sdramWidth; |
| 547 | DB(mvOsPrintf("DRAM deviceDensity %d\n",pDimmInfo->deviceDensity)); |
| 548 | |
| 549 | /* Number of devices includeing Error correction */ |
| 550 | pDimmInfo->numberOfDevices = (pDimmInfo->dataWidth/pDimmInfo->sdramWidth) * |
| 551 | pDimmInfo->numOfModuleBanks; |
| 552 | DB(mvOsPrintf("DRAM numberOfDevices %d\n", |
| 553 | pDimmInfo->numberOfDevices)); |
| 554 | |
| 555 | pDimmInfo->size = 0; |
| 556 | |
| 557 | /* Note that pDimmInfo->size is in MB units */ |
| 558 | if (pDimmInfo->memoryType == MEM_TYPE_SDRAM) |
| 559 | { |
| 560 | if (pDimmInfo->dimmBankDensity & BIT0) |
| 561 | pDimmInfo->size += 1024; /* Equal to 1GB */ |
| 562 | else if (pDimmInfo->dimmBankDensity & BIT1) |
| 563 | pDimmInfo->size += 8; /* Equal to 8MB */ |
| 564 | else if (pDimmInfo->dimmBankDensity & BIT2) |
| 565 | pDimmInfo->size += 16; /* Equal to 16MB */ |
| 566 | else if (pDimmInfo->dimmBankDensity & BIT3) |
| 567 | pDimmInfo->size += 32; /* Equal to 32MB */ |
| 568 | else if (pDimmInfo->dimmBankDensity & BIT4) |
| 569 | pDimmInfo->size += 64; /* Equal to 64MB */ |
| 570 | else if (pDimmInfo->dimmBankDensity & BIT5) |
| 571 | pDimmInfo->size += 128; /* Equal to 128MB */ |
| 572 | else if (pDimmInfo->dimmBankDensity & BIT6) |
| 573 | pDimmInfo->size += 256; /* Equal to 256MB */ |
| 574 | else if (pDimmInfo->dimmBankDensity & BIT7) |
| 575 | pDimmInfo->size += 512; /* Equal to 512MB */ |
| 576 | } |
| 577 | else if (pDimmInfo->memoryType == MEM_TYPE_DDR1) |
| 578 | { |
| 579 | if (pDimmInfo->dimmBankDensity & BIT0) |
| 580 | pDimmInfo->size += 1024; /* Equal to 1GB */ |
| 581 | else if (pDimmInfo->dimmBankDensity & BIT1) |
| 582 | pDimmInfo->size += 2048; /* Equal to 2GB */ |
| 583 | else if (pDimmInfo->dimmBankDensity & BIT2) |
| 584 | pDimmInfo->size += 16; /* Equal to 16MB */ |
| 585 | else if (pDimmInfo->dimmBankDensity & BIT3) |
| 586 | pDimmInfo->size += 32; /* Equal to 32MB */ |
| 587 | else if (pDimmInfo->dimmBankDensity & BIT4) |
| 588 | pDimmInfo->size += 64; /* Equal to 64MB */ |
| 589 | else if (pDimmInfo->dimmBankDensity & BIT5) |
| 590 | pDimmInfo->size += 128; /* Equal to 128MB */ |
| 591 | else if (pDimmInfo->dimmBankDensity & BIT6) |
| 592 | pDimmInfo->size += 256; /* Equal to 256MB */ |
| 593 | else if (pDimmInfo->dimmBankDensity & BIT7) |
| 594 | pDimmInfo->size += 512; /* Equal to 512MB */ |
| 595 | } |
| 596 | else /* if (dimmInfo.memoryType == MEM_TYPE_DDR2) */ |
| 597 | { |
| 598 | if (pDimmInfo->dimmBankDensity & BIT0) |
| 599 | pDimmInfo->size += 1024; /* Equal to 1GB */ |
| 600 | else if (pDimmInfo->dimmBankDensity & BIT1) |
| 601 | pDimmInfo->size += 2048; /* Equal to 2GB */ |
| 602 | else if (pDimmInfo->dimmBankDensity & BIT2) |
| 603 | pDimmInfo->size += 4096; /* Equal to 4GB */ |
| 604 | else if (pDimmInfo->dimmBankDensity & BIT3) |
| 605 | pDimmInfo->size += 8192; /* Equal to 8GB */ |
| 606 | else if (pDimmInfo->dimmBankDensity & BIT4) |
| 607 | pDimmInfo->size += 16384; /* Equal to 16GB */ |
| 608 | else if (pDimmInfo->dimmBankDensity & BIT5) |
| 609 | pDimmInfo->size += 128; /* Equal to 128MB */ |
| 610 | else if (pDimmInfo->dimmBankDensity & BIT6) |
| 611 | pDimmInfo->size += 256; /* Equal to 256MB */ |
| 612 | else if (pDimmInfo->dimmBankDensity & BIT7) |
| 613 | pDimmInfo->size += 512; /* Equal to 512MB */ |
| 614 | } |
| 615 | |
| 616 | pDimmInfo->size *= pDimmInfo->numOfModuleBanks; |
| 617 | |
| 618 | DB(mvOsPrintf("Dram: dimm size %dMB \n",pDimmInfo->size)); |
| 619 | |
| 620 | return MV_OK; |
| 621 | } |
| 622 | |
| 623 | /******************************************************************************* |
| 624 | * dimmSpdPrint - Print the SPD parameters. |
| 625 | * |
| 626 | * DESCRIPTION: |
| 627 | * Print the Dimm SPD parameters. |
| 628 | * |
| 629 | * INPUT: |
| 630 | * pDimmInfo - DIMM information structure. |
| 631 | * |
| 632 | * OUTPUT: |
| 633 | * None. |
| 634 | * |
| 635 | * RETURN: |
| 636 | * None. |
| 637 | * |
| 638 | *******************************************************************************/ |
| 639 | MV_VOID dimmSpdPrint(MV_U32 dimmNum) |
| 640 | { |
| 641 | MV_DIMM_INFO dimmInfo; |
| 642 | MV_U32 i, temp = 0; |
| 643 | MV_U32 k, maskLeftOfPoint = 0, maskRightOfPoint = 0; |
| 644 | MV_U32 rightOfPoint = 0,leftOfPoint = 0, div, time_tmp, shift; |
| 645 | MV_U32 busClkPs; |
| 646 | MV_U8 trp_clocks=0, trcd_clocks, tras_clocks, trrd_clocks, |
| 647 | temp_buf[40], *spdRawData; |
| 648 | |
| 649 | busClkPs = 1000000000 / (mvBoardSysClkGet() / 100); /* in 10 ps units */ |
| 650 | |
| 651 | spdRawData = dimmInfo.spdRawData; |
| 652 | |
| 653 | if(MV_OK != dimmSpdGet(dimmNum, &dimmInfo)) |
| 654 | { |
| 655 | mvOsOutput("ERROR: Could not read SPD information!\n"); |
| 656 | return; |
| 657 | } |
| 658 | |
| 659 | /* find Manufactura of Dimm Module */ |
| 660 | mvOsOutput("\nManufacturer's JEDEC ID Code: "); |
| 661 | for(i = 0 ; i < DIMM_MODULE_MANU_SIZE ; i++) |
| 662 | { |
| 663 | mvOsOutput("%x",spdRawData[DIMM_MODULE_MANU_OFFS + i]); |
| 664 | } |
| 665 | mvOsOutput("\n"); |
| 666 | |
| 667 | /* Manufacturer's Specific Data */ |
| 668 | for(i = 0 ; i < DIMM_MODULE_ID_SIZE ; i++) |
| 669 | { |
| 670 | temp_buf[i] = spdRawData[DIMM_MODULE_ID_OFFS + i]; |
| 671 | } |
| 672 | mvOsOutput("Manufacturer's Specific Data: %s\n", temp_buf); |
| 673 | |
| 674 | /* Module Part Number */ |
| 675 | for(i = 0 ; i < DIMM_MODULE_VEN_SIZE ; i++) |
| 676 | { |
| 677 | temp_buf[i] = spdRawData[DIMM_MODULE_VEN_OFFS + i]; |
| 678 | } |
| 679 | mvOsOutput("Module Part Number: %s\n", temp_buf); |
| 680 | |
| 681 | /* Module Serial Number */ |
| 682 | for(i = 0; i < sizeof(MV_U32); i++) |
| 683 | { |
| 684 | temp |= spdRawData[95+i] << 8*i; |
| 685 | } |
| 686 | mvOsOutput("DIMM Serial No. %ld (%lx)\n", (long)temp, |
| 687 | (long)temp); |
| 688 | |
| 689 | /* find Manufac-Data of Dimm Module */ |
| 690 | mvOsOutput("Manufactoring Date: Year 20%d%d/ ww %d%d\n", |
| 691 | ((spdRawData[93] & 0xf0) >> 4), (spdRawData[93] & 0xf), |
| 692 | ((spdRawData[94] & 0xf0) >> 4), (spdRawData[94] & 0xf)); |
| 693 | /* find modul_revision of Dimm Module */ |
| 694 | mvOsOutput("Module Revision: %d.%d\n", |
| 695 | spdRawData[91], spdRawData[92]); |
| 696 | |
| 697 | /* find manufac_place of Dimm Module */ |
| 698 | mvOsOutput("manufac_place: %d\n", spdRawData[72]); |
| 699 | |
| 700 | /* go over the first 35 I2C data bytes */ |
| 701 | for(i = 2 ; i <= 35 ; i++) |
| 702 | switch(i) |
| 703 | { |
| 704 | case 2: /* Memory type (DDR1/2 / SDRAM) */ |
| 705 | if (dimmInfo.memoryType == MEM_TYPE_SDRAM) |
| 706 | mvOsOutput("Dram Type is: SDRAM\n"); |
| 707 | else if (dimmInfo.memoryType == MEM_TYPE_DDR1) |
| 708 | mvOsOutput("Dram Type is: SDRAM DDR1\n"); |
| 709 | else if (dimmInfo.memoryType == MEM_TYPE_DDR2) |
| 710 | mvOsOutput("Dram Type is: SDRAM DDR2\n"); |
| 711 | else |
| 712 | mvOsOutput("Dram Type unknown\n"); |
| 713 | break; |
| 714 | /*----------------------------------------------------------------------------*/ |
| 715 | |
| 716 | case 3: /* Number Of Row Addresses */ |
| 717 | mvOsOutput("Module Number of row addresses: %d\n", |
| 718 | dimmInfo.numOfRowAddr); |
| 719 | break; |
| 720 | /*----------------------------------------------------------------------------*/ |
| 721 | |
| 722 | case 4: /* Number Of Column Addresses */ |
| 723 | mvOsOutput("Module Number of col addresses: %d\n", |
| 724 | dimmInfo.numOfColAddr); |
| 725 | break; |
| 726 | /*----------------------------------------------------------------------------*/ |
| 727 | |
| 728 | case 5: /* Number Of Module Banks */ |
| 729 | mvOsOutput("Number of Banks on Mod.: %d\n", |
| 730 | dimmInfo.numOfModuleBanks); |
| 731 | break; |
| 732 | /*----------------------------------------------------------------------------*/ |
| 733 | |
| 734 | case 6: /* Data Width */ |
| 735 | mvOsOutput("Module Data Width: %d bit\n", |
| 736 | dimmInfo.dataWidth); |
| 737 | break; |
| 738 | /*----------------------------------------------------------------------------*/ |
| 739 | |
| 740 | case 8: /* Voltage Interface */ |
| 741 | switch(spdRawData[i]) |
| 742 | { |
| 743 | case 0x0: |
| 744 | mvOsOutput("Module is TTL_5V_TOLERANT\n"); |
| 745 | break; |
| 746 | case 0x1: |
| 747 | mvOsOutput("Module is LVTTL\n"); |
| 748 | break; |
| 749 | case 0x2: |
| 750 | mvOsOutput("Module is HSTL_1_5V\n"); |
| 751 | break; |
| 752 | case 0x3: |
| 753 | mvOsOutput("Module is SSTL_3_3V\n"); |
| 754 | break; |
| 755 | case 0x4: |
| 756 | mvOsOutput("Module is SSTL_2_5V\n"); |
| 757 | break; |
| 758 | case 0x5: |
| 759 | if (dimmInfo.memoryType != MEM_TYPE_SDRAM) |
| 760 | { |
| 761 | mvOsOutput("Module is SSTL_1_8V\n"); |
| 762 | break; |
| 763 | } |
| 764 | default: |
| 765 | mvOsOutput("Module is VOLTAGE_UNKNOWN\n"); |
| 766 | break; |
| 767 | } |
| 768 | break; |
| 769 | /*----------------------------------------------------------------------------*/ |
| 770 | |
| 771 | case 9: /* Minimum Cycle Time At Max CasLatancy */ |
| 772 | leftOfPoint = (spdRawData[i] & 0xf0) >> 4; |
| 773 | rightOfPoint = (spdRawData[i] & 0x0f) * 10; |
| 774 | |
| 775 | /* DDR2 addition of right of point */ |
| 776 | if ((spdRawData[i] & 0x0f) == 0xA) |
| 777 | { |
| 778 | rightOfPoint = 25; |
| 779 | } |
| 780 | if ((spdRawData[i] & 0x0f) == 0xB) |
| 781 | { |
| 782 | rightOfPoint = 33; |
| 783 | } |
| 784 | if ((spdRawData[i] & 0x0f) == 0xC) |
| 785 | { |
| 786 | rightOfPoint = 66; |
| 787 | } |
| 788 | if ((spdRawData[i] & 0x0f) == 0xD) |
| 789 | { |
| 790 | rightOfPoint = 75; |
| 791 | } |
| 792 | mvOsOutput("Minimum Cycle Time At Max CL: %d.%d [ns]\n", |
| 793 | leftOfPoint, rightOfPoint); |
| 794 | break; |
| 795 | /*----------------------------------------------------------------------------*/ |
| 796 | |
| 797 | case 10: /* Clock To Data Out */ |
| 798 | div = (dimmInfo.memoryType == MEM_TYPE_SDRAM)? 10:100; |
| 799 | time_tmp = (((spdRawData[i] & 0xf0) >> 4)*10) + |
| 800 | ((spdRawData[i] & 0x0f)); |
| 801 | leftOfPoint = time_tmp / div; |
| 802 | rightOfPoint = time_tmp % div; |
| 803 | mvOsOutput("Clock To Data Out: %d.%d [ns]\n", |
| 804 | leftOfPoint, rightOfPoint); |
| 805 | break; |
| 806 | /*----------------------------------------------------------------------------*/ |
| 807 | |
| 808 | case 11: /* Error Check Type */ |
| 809 | mvOsOutput("Error Check Type (0=NONE): %d\n", |
| 810 | dimmInfo.errorCheckType); |
| 811 | break; |
| 812 | /*----------------------------------------------------------------------------*/ |
| 813 | |
| 814 | case 12: /* Refresh Interval */ |
| 815 | mvOsOutput("Refresh Rate: %x\n", |
| 816 | dimmInfo.refreshInterval); |
| 817 | break; |
| 818 | /*----------------------------------------------------------------------------*/ |
| 819 | |
| 820 | case 13: /* Sdram Width */ |
| 821 | mvOsOutput("Sdram Width: %d bits\n", |
| 822 | dimmInfo.sdramWidth); |
| 823 | break; |
| 824 | /*----------------------------------------------------------------------------*/ |
| 825 | |
| 826 | case 14: /* Error Check Data Width */ |
| 827 | mvOsOutput("Error Check Data Width: %d bits\n", |
| 828 | dimmInfo.errorCheckDataWidth); |
| 829 | break; |
| 830 | /*----------------------------------------------------------------------------*/ |
| 831 | |
| 832 | case 15: /* Minimum Clock Delay is unsupported */ |
| 833 | if ((dimmInfo.memoryType == MEM_TYPE_SDRAM) || |
| 834 | (dimmInfo.memoryType == MEM_TYPE_DDR1)) |
| 835 | { |
| 836 | mvOsOutput("Minimum Clk Delay back to back: %d\n", |
| 837 | spdRawData[i]); |
| 838 | } |
| 839 | break; |
| 840 | /*----------------------------------------------------------------------------*/ |
| 841 | |
| 842 | case 16: /* Burst Length Supported */ |
| 843 | /* SDRAM/DDR1: |
| 844 | *******-******-******-******-******-******-******-******* |
| 845 | * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * |
| 846 | *******-******-******-******-******-******-******-******* |
| 847 | burst length = * Page | TBD | TBD | TBD | 8 | 4 | 2 | 1 * |
| 848 | *********************************************************/ |
| 849 | /* DDR2: |
| 850 | *******-******-******-******-******-******-******-******* |
| 851 | * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * |
| 852 | *******-******-******-******-******-******-******-******* |
| 853 | burst length = * Page | TBD | TBD | TBD | 8 | 4 | TBD | TBD * |
| 854 | *********************************************************/ |
| 855 | mvOsOutput("Burst Length Supported: "); |
| 856 | if ((dimmInfo.memoryType == MEM_TYPE_SDRAM) || |
| 857 | (dimmInfo.memoryType == MEM_TYPE_DDR1)) |
| 858 | { |
| 859 | if (dimmInfo.burstLengthSupported & BIT0) |
| 860 | mvOsOutput("1, "); |
| 861 | if (dimmInfo.burstLengthSupported & BIT1) |
| 862 | mvOsOutput("2, "); |
| 863 | } |
| 864 | if (dimmInfo.burstLengthSupported & BIT2) |
| 865 | mvOsOutput("4, "); |
| 866 | if (dimmInfo.burstLengthSupported & BIT3) |
| 867 | mvOsOutput("8, "); |
| 868 | |
| 869 | mvOsOutput(" Bit \n"); |
| 870 | break; |
| 871 | /*----------------------------------------------------------------------------*/ |
| 872 | |
| 873 | case 17: /* Number Of Banks On Each Device */ |
| 874 | mvOsOutput("Number Of Banks On Each Chip: %d\n", |
| 875 | dimmInfo.numOfBanksOnEachDevice); |
| 876 | break; |
| 877 | /*----------------------------------------------------------------------------*/ |
| 878 | |
| 879 | case 18: /* Suported Cas Latencies */ |
| 880 | |
| 881 | /* SDRAM: |
| 882 | *******-******-******-******-******-******-******-******* |
| 883 | * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * |
| 884 | *******-******-******-******-******-******-******-******* |
| 885 | CAS = * TBD | 7 | 6 | 5 | 4 | 3 | 2 | 1 * |
| 886 | ********************************************************/ |
| 887 | |
| 888 | /* DDR 1: |
| 889 | *******-******-******-******-******-******-******-******* |
| 890 | * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * |
| 891 | *******-******-******-******-******-******-******-******* |
| 892 | CAS = * TBD | 4 | 3.5 | 3 | 2.5 | 2 | 1.5 | 1 * |
| 893 | *********************************************************/ |
| 894 | |
| 895 | /* DDR 2: |
| 896 | *******-******-******-******-******-******-******-******* |
| 897 | * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * |
| 898 | *******-******-******-******-******-******-******-******* |
| 899 | CAS = * TBD | TBD | 5 | 4 | 3 | 2 | TBD | TBD * |
| 900 | *********************************************************/ |
| 901 | |
| 902 | mvOsOutput("Suported Cas Latencies: (CL) "); |
| 903 | if (dimmInfo.memoryType == MEM_TYPE_SDRAM) |
| 904 | { |
| 905 | for (k = 0; k <=7; k++) |
| 906 | { |
| 907 | if (dimmInfo.suportedCasLatencies & (1 << k)) |
| 908 | mvOsOutput("%d, ", k+1); |
| 909 | } |
| 910 | } |
| 911 | else if (dimmInfo.memoryType == MEM_TYPE_DDR1) |
| 912 | { |
| 913 | if (dimmInfo.suportedCasLatencies & BIT0) |
| 914 | mvOsOutput("1, "); |
| 915 | if (dimmInfo.suportedCasLatencies & BIT1) |
| 916 | mvOsOutput("1.5, "); |
| 917 | if (dimmInfo.suportedCasLatencies & BIT2) |
| 918 | mvOsOutput("2, "); |
| 919 | if (dimmInfo.suportedCasLatencies & BIT3) |
| 920 | mvOsOutput("2.5, "); |
| 921 | if (dimmInfo.suportedCasLatencies & BIT4) |
| 922 | mvOsOutput("3, "); |
| 923 | if (dimmInfo.suportedCasLatencies & BIT5) |
| 924 | mvOsOutput("3.5, "); |
| 925 | } |
| 926 | else if (dimmInfo.memoryType == MEM_TYPE_DDR2) |
| 927 | { |
| 928 | if (dimmInfo.suportedCasLatencies & BIT2) |
| 929 | mvOsOutput("2, "); |
| 930 | if (dimmInfo.suportedCasLatencies & BIT3) |
| 931 | mvOsOutput("3, "); |
| 932 | if (dimmInfo.suportedCasLatencies & BIT4) |
| 933 | mvOsOutput("4, "); |
| 934 | if (dimmInfo.suportedCasLatencies & BIT5) |
| 935 | mvOsOutput("5, "); |
| 936 | } |
| 937 | else |
| 938 | mvOsOutput("?.?, "); |
| 939 | mvOsOutput("\n"); |
| 940 | break; |
| 941 | /*----------------------------------------------------------------------------*/ |
| 942 | |
| 943 | case 20: /* DDR2 DIMM type info */ |
| 944 | if (dimmInfo.memoryType == MEM_TYPE_DDR2) |
| 945 | { |
| 946 | if (dimmInfo.dimmTypeInfo & (BIT0 | BIT4)) |
| 947 | mvOsOutput("Registered DIMM (RDIMM)\n"); |
| 948 | else if (dimmInfo.dimmTypeInfo & (BIT1 | BIT5)) |
| 949 | mvOsOutput("Unbuffered DIMM (UDIMM)\n"); |
| 950 | else |
| 951 | mvOsOutput("Unknown DIMM type.\n"); |
| 952 | } |
| 953 | |
| 954 | break; |
| 955 | /*----------------------------------------------------------------------------*/ |
| 956 | |
| 957 | case 21: /* SDRAM Modules Attributes */ |
| 958 | mvOsOutput("\nModule Attributes (SPD Byte 21): \n"); |
| 959 | |
| 960 | if (dimmInfo.memoryType == MEM_TYPE_SDRAM) |
| 961 | { |
| 962 | if (dimmInfo.dimmAttributes & BIT0) |
| 963 | mvOsOutput(" Buffered Addr/Control Input: Yes\n"); |
| 964 | else |
| 965 | mvOsOutput(" Buffered Addr/Control Input: No\n"); |
| 966 | |
| 967 | if (dimmInfo.dimmAttributes & BIT1) |
| 968 | mvOsOutput(" Registered Addr/Control Input: Yes\n"); |
| 969 | else |
| 970 | mvOsOutput(" Registered Addr/Control Input: No\n"); |
| 971 | |
| 972 | if (dimmInfo.dimmAttributes & BIT2) |
| 973 | mvOsOutput(" On-Card PLL (clock): Yes \n"); |
| 974 | else |
| 975 | mvOsOutput(" On-Card PLL (clock): No \n"); |
| 976 | |
| 977 | if (dimmInfo.dimmAttributes & BIT3) |
| 978 | mvOsOutput(" Bufferd DQMB Input: Yes \n"); |
| 979 | else |
| 980 | mvOsOutput(" Bufferd DQMB Inputs: No \n"); |
| 981 | |
| 982 | if (dimmInfo.dimmAttributes & BIT4) |
| 983 | mvOsOutput(" Registered DQMB Inputs: Yes \n"); |
| 984 | else |
| 985 | mvOsOutput(" Registered DQMB Inputs: No \n"); |
| 986 | |
| 987 | if (dimmInfo.dimmAttributes & BIT5) |
| 988 | mvOsOutput(" Differential Clock Input: Yes \n"); |
| 989 | else |
| 990 | mvOsOutput(" Differential Clock Input: No \n"); |
| 991 | |
| 992 | if (dimmInfo.dimmAttributes & BIT6) |
| 993 | mvOsOutput(" redundant Row Addressing: Yes \n"); |
| 994 | else |
| 995 | mvOsOutput(" redundant Row Addressing: No \n"); |
| 996 | } |
| 997 | else if (dimmInfo.memoryType == MEM_TYPE_DDR1) |
| 998 | { |
| 999 | if (dimmInfo.dimmAttributes & BIT0) |
| 1000 | mvOsOutput(" Buffered Addr/Control Input: Yes\n"); |
| 1001 | else |
| 1002 | mvOsOutput(" Buffered Addr/Control Input: No\n"); |
| 1003 | |
| 1004 | if (dimmInfo.dimmAttributes & BIT1) |
| 1005 | mvOsOutput(" Registered Addr/Control Input: Yes\n"); |
| 1006 | else |
| 1007 | mvOsOutput(" Registered Addr/Control Input: No\n"); |
| 1008 | |
| 1009 | if (dimmInfo.dimmAttributes & BIT2) |
| 1010 | mvOsOutput(" On-Card PLL (clock): Yes \n"); |
| 1011 | else |
| 1012 | mvOsOutput(" On-Card PLL (clock): No \n"); |
| 1013 | |
| 1014 | if (dimmInfo.dimmAttributes & BIT3) |
| 1015 | mvOsOutput(" FET Switch On-Card Enabled: Yes \n"); |
| 1016 | else |
| 1017 | mvOsOutput(" FET Switch On-Card Enabled: No \n"); |
| 1018 | |
| 1019 | if (dimmInfo.dimmAttributes & BIT4) |
| 1020 | mvOsOutput(" FET Switch External Enabled: Yes \n"); |
| 1021 | else |
| 1022 | mvOsOutput(" FET Switch External Enabled: No \n"); |
| 1023 | |
| 1024 | if (dimmInfo.dimmAttributes & BIT5) |
| 1025 | mvOsOutput(" Differential Clock Input: Yes \n"); |
| 1026 | else |
| 1027 | mvOsOutput(" Differential Clock Input: No \n"); |
| 1028 | } |
| 1029 | else /* if (dimmInfo.memoryType == MEM_TYPE_DDR2) */ |
| 1030 | { |
| 1031 | mvOsOutput(" Number of Active Registers on the DIMM: %d\n", |
| 1032 | (dimmInfo.dimmAttributes & 0x3) + 1); |
| 1033 | |
| 1034 | mvOsOutput(" Number of PLLs on the DIMM: %d\n", |
| 1035 | ((dimmInfo.dimmAttributes) >> 2) & 0x3); |
| 1036 | |
| 1037 | if (dimmInfo.dimmAttributes & BIT4) |
| 1038 | mvOsOutput(" FET Switch External Enabled: Yes \n"); |
| 1039 | else |
| 1040 | mvOsOutput(" FET Switch External Enabled: No \n"); |
| 1041 | |
| 1042 | if (dimmInfo.dimmAttributes & BIT6) |
| 1043 | mvOsOutput(" Analysis probe installed: Yes \n"); |
| 1044 | else |
| 1045 | mvOsOutput(" Analysis probe installed: No \n"); |
| 1046 | } |
| 1047 | |
| 1048 | break; |
| 1049 | /*----------------------------------------------------------------------------*/ |
| 1050 | |
| 1051 | case 22: /* Suported AutoPreCharge */ |
| 1052 | mvOsOutput("\nModul Attributes (SPD Byte 22): \n"); |
| 1053 | if (dimmInfo.memoryType == MEM_TYPE_SDRAM) |
| 1054 | { |
| 1055 | if ( spdRawData[i] & BIT0 ) |
| 1056 | mvOsOutput(" Early Ras Precharge: Yes \n"); |
| 1057 | else |
| 1058 | mvOsOutput(" Early Ras Precharge: No \n"); |
| 1059 | |
| 1060 | if ( spdRawData[i] & BIT1 ) |
| 1061 | mvOsOutput(" AutoPreCharge: Yes \n"); |
| 1062 | else |
| 1063 | mvOsOutput(" AutoPreCharge: No \n"); |
| 1064 | |
| 1065 | if ( spdRawData[i] & BIT2 ) |
| 1066 | mvOsOutput(" Precharge All: Yes \n"); |
| 1067 | else |
| 1068 | mvOsOutput(" Precharge All: No \n"); |
| 1069 | |
| 1070 | if ( spdRawData[i] & BIT3 ) |
| 1071 | mvOsOutput(" Write 1/ReadBurst: Yes \n"); |
| 1072 | else |
| 1073 | mvOsOutput(" Write 1/ReadBurst: No \n"); |
| 1074 | |
| 1075 | if ( spdRawData[i] & BIT4 ) |
| 1076 | mvOsOutput(" lower VCC tolerance: 5%%\n"); |
| 1077 | else |
| 1078 | mvOsOutput(" lower VCC tolerance: 10%%\n"); |
| 1079 | |
| 1080 | if ( spdRawData[i] & BIT5 ) |
| 1081 | mvOsOutput(" upper VCC tolerance: 5%%\n"); |
| 1082 | else |
| 1083 | mvOsOutput(" upper VCC tolerance: 10%%\n"); |
| 1084 | } |
| 1085 | else if (dimmInfo.memoryType == MEM_TYPE_DDR1) |
| 1086 | { |
| 1087 | if ( spdRawData[i] & BIT0 ) |
| 1088 | mvOsOutput(" Supports Weak Driver: Yes \n"); |
| 1089 | else |
| 1090 | mvOsOutput(" Supports Weak Driver: No \n"); |
| 1091 | |
| 1092 | if ( !(spdRawData[i] & BIT4) ) |
| 1093 | mvOsOutput(" lower VCC tolerance: 0.2V\n"); |
| 1094 | |
| 1095 | if ( !(spdRawData[i] & BIT5) ) |
| 1096 | mvOsOutput(" upper VCC tolerance: 0.2V\n"); |
| 1097 | |
| 1098 | if ( spdRawData[i] & BIT6 ) |
| 1099 | mvOsOutput(" Concurrent Auto Preharge: Yes \n"); |
| 1100 | else |
| 1101 | mvOsOutput(" Concurrent Auto Preharge: No \n"); |
| 1102 | |
| 1103 | if ( spdRawData[i] & BIT7 ) |
| 1104 | mvOsOutput(" Supports Fast AP: Yes \n"); |
| 1105 | else |
| 1106 | mvOsOutput(" Supports Fast AP: No \n"); |
| 1107 | } |
| 1108 | else if (dimmInfo.memoryType == MEM_TYPE_DDR2) |
| 1109 | { |
| 1110 | if ( spdRawData[i] & BIT0 ) |
| 1111 | mvOsOutput(" Supports Weak Driver: Yes \n"); |
| 1112 | else |
| 1113 | mvOsOutput(" Supports Weak Driver: No \n"); |
| 1114 | } |
| 1115 | break; |
| 1116 | /*----------------------------------------------------------------------------*/ |
| 1117 | |
| 1118 | case 23: |
| 1119 | /* Minimum Cycle Time At Maximum Cas Latancy Minus 1 (2nd highest CL) */ |
| 1120 | leftOfPoint = (spdRawData[i] & 0xf0) >> 4; |
| 1121 | rightOfPoint = (spdRawData[i] & 0x0f) * 10; |
| 1122 | |
| 1123 | /* DDR2 addition of right of point */ |
| 1124 | if ((spdRawData[i] & 0x0f) == 0xA) |
| 1125 | { |
| 1126 | rightOfPoint = 25; |
| 1127 | } |
| 1128 | if ((spdRawData[i] & 0x0f) == 0xB) |
| 1129 | { |
| 1130 | rightOfPoint = 33; |
| 1131 | } |
| 1132 | if ((spdRawData[i] & 0x0f) == 0xC) |
| 1133 | { |
| 1134 | rightOfPoint = 66; |
| 1135 | } |
| 1136 | if ((spdRawData[i] & 0x0f) == 0xD) |
| 1137 | { |
| 1138 | rightOfPoint = 75; |
| 1139 | } |
| 1140 | |
| 1141 | mvOsOutput("Minimum Cycle Time At 2nd highest CasLatancy" |
| 1142 | "(0 = Not supported): %d.%d [ns]\n", |
| 1143 | leftOfPoint, rightOfPoint ); |
| 1144 | break; |
| 1145 | /*----------------------------------------------------------------------------*/ |
| 1146 | |
| 1147 | case 24: /* Clock To Data Out 2nd highest Cas Latency Value*/ |
| 1148 | div = (dimmInfo.memoryType == MEM_TYPE_SDRAM) ? 10:100; |
| 1149 | time_tmp = (((spdRawData[i] & 0xf0) >> 4)*10) + |
| 1150 | ((spdRawData[i] & 0x0f)); |
| 1151 | leftOfPoint = time_tmp / div; |
| 1152 | rightOfPoint = time_tmp % div; |
| 1153 | mvOsOutput("Clock To Data Out (2nd CL value): %d.%d [ns]\n", |
| 1154 | leftOfPoint, rightOfPoint); |
| 1155 | break; |
| 1156 | /*----------------------------------------------------------------------------*/ |
| 1157 | |
| 1158 | case 25: |
| 1159 | /* Minimum Cycle Time At Maximum Cas Latancy Minus 2 (3rd highest CL) */ |
| 1160 | if (dimmInfo.memoryType == MEM_TYPE_SDRAM) |
| 1161 | { |
| 1162 | leftOfPoint = (spdRawData[i] & 0xfc) >> 2; |
| 1163 | rightOfPoint = (spdRawData[i] & 0x3) * 25; |
| 1164 | } |
| 1165 | else /* DDR1 or DDR2 */ |
| 1166 | { |
| 1167 | leftOfPoint = (spdRawData[i] & 0xf0) >> 4; |
| 1168 | rightOfPoint = (spdRawData[i] & 0x0f) * 10; |
| 1169 | |
| 1170 | /* DDR2 addition of right of point */ |
| 1171 | if ((spdRawData[i] & 0x0f) == 0xA) |
| 1172 | { |
| 1173 | rightOfPoint = 25; |
| 1174 | } |
| 1175 | if ((spdRawData[i] & 0x0f) == 0xB) |
| 1176 | { |
| 1177 | rightOfPoint = 33; |
| 1178 | } |
| 1179 | if ((spdRawData[i] & 0x0f) == 0xC) |
| 1180 | { |
| 1181 | rightOfPoint = 66; |
| 1182 | } |
| 1183 | if ((spdRawData[i] & 0x0f) == 0xD) |
| 1184 | { |
| 1185 | rightOfPoint = 75; |
| 1186 | } |
| 1187 | } |
| 1188 | mvOsOutput("Minimum Cycle Time At 3rd highest CasLatancy" |
| 1189 | "(0 = Not supported): %d.%d [ns]\n", |
| 1190 | leftOfPoint, rightOfPoint ); |
| 1191 | break; |
| 1192 | /*----------------------------------------------------------------------------*/ |
| 1193 | |
| 1194 | case 26: /* Clock To Data Out 3rd highest Cas Latency Value*/ |
| 1195 | if (dimmInfo.memoryType == MEM_TYPE_SDRAM) |
| 1196 | { |
| 1197 | leftOfPoint = (spdRawData[i] & 0xfc) >> 2; |
| 1198 | rightOfPoint = (spdRawData[i] & 0x3) * 25; |
| 1199 | } |
| 1200 | else /* DDR1 or DDR2 */ |
| 1201 | { |
| 1202 | time_tmp = (((spdRawData[i] & 0xf0) >> 4)*10) + |
| 1203 | ((spdRawData[i] & 0x0f)); |
| 1204 | leftOfPoint = 0; |
| 1205 | rightOfPoint = time_tmp; |
| 1206 | } |
| 1207 | mvOsOutput("Clock To Data Out (3rd CL value): %d.%2d[ns]\n", |
| 1208 | leftOfPoint, rightOfPoint ); |
| 1209 | break; |
| 1210 | /*----------------------------------------------------------------------------*/ |
| 1211 | |
| 1212 | case 27: /* Minimum Row Precharge Time */ |
| 1213 | shift = (dimmInfo.memoryType == MEM_TYPE_SDRAM)? 0:2; |
| 1214 | maskLeftOfPoint = (dimmInfo.memoryType == MEM_TYPE_SDRAM) ? |
| 1215 | 0xff : 0xfc; |
| 1216 | maskRightOfPoint = (dimmInfo.memoryType == MEM_TYPE_SDRAM) ? |
| 1217 | 0x00 : 0x03; |
| 1218 | leftOfPoint = ((spdRawData[i] & maskLeftOfPoint) >> shift); |
| 1219 | rightOfPoint = (spdRawData[i] & maskRightOfPoint)*25; |
| 1220 | temp = ((leftOfPoint*100) + rightOfPoint);/* in 10ps Intervals*/ |
| 1221 | trp_clocks = (temp + (busClkPs-1)) / busClkPs; |
| 1222 | mvOsOutput("Minimum Row Precharge Time [ns]: %d.%d = " |
| 1223 | "in Clk cycles %d\n", |
| 1224 | leftOfPoint, rightOfPoint, trp_clocks); |
| 1225 | break; |
| 1226 | /*----------------------------------------------------------------------------*/ |
| 1227 | |
| 1228 | case 28: /* Minimum Row Active to Row Active Time */ |
| 1229 | shift = (dimmInfo.memoryType == MEM_TYPE_SDRAM)? 0:2; |
| 1230 | maskLeftOfPoint = (dimmInfo.memoryType == MEM_TYPE_SDRAM) ? |
| 1231 | 0xff : 0xfc; |
| 1232 | maskRightOfPoint = (dimmInfo.memoryType == MEM_TYPE_SDRAM) ? |
| 1233 | 0x00 : 0x03; |
| 1234 | leftOfPoint = ((spdRawData[i] & maskLeftOfPoint) >> shift); |
| 1235 | rightOfPoint = (spdRawData[i] & maskRightOfPoint)*25; |
| 1236 | temp = ((leftOfPoint*100) + rightOfPoint);/* in 100ns Interval*/ |
| 1237 | trrd_clocks = (temp + (busClkPs-1)) / busClkPs; |
| 1238 | mvOsOutput("Minimum Row Active -To- Row Active Delay [ns]: " |
| 1239 | "%d.%d = in Clk cycles %d\n", |
| 1240 | leftOfPoint, rightOfPoint, trp_clocks); |
| 1241 | break; |
| 1242 | /*----------------------------------------------------------------------------*/ |
| 1243 | |
| 1244 | case 29: /* Minimum Ras-To-Cas Delay */ |
| 1245 | shift = (dimmInfo.memoryType == MEM_TYPE_SDRAM)? 0:2; |
| 1246 | maskLeftOfPoint = (dimmInfo.memoryType == MEM_TYPE_SDRAM) ? |
| 1247 | 0xff : 0xfc; |
| 1248 | maskRightOfPoint = (dimmInfo.memoryType == MEM_TYPE_SDRAM) ? |
| 1249 | 0x00 : 0x03; |
| 1250 | leftOfPoint = ((spdRawData[i] & maskLeftOfPoint) >> shift); |
| 1251 | rightOfPoint = (spdRawData[i] & maskRightOfPoint)*25; |
| 1252 | temp = ((leftOfPoint*100) + rightOfPoint);/* in 100ns Interval*/ |
| 1253 | trcd_clocks = (temp + (busClkPs-1) )/ busClkPs; |
| 1254 | mvOsOutput("Minimum Ras-To-Cas Delay [ns]: %d.%d = " |
| 1255 | "in Clk cycles %d\n", |
| 1256 | leftOfPoint, rightOfPoint, trp_clocks); |
| 1257 | break; |
| 1258 | /*----------------------------------------------------------------------------*/ |
| 1259 | |
| 1260 | case 30: /* Minimum Ras Pulse Width */ |
| 1261 | tras_clocks = (cas2ps(spdRawData[i])+(busClkPs-1)) / busClkPs; |
| 1262 | mvOsOutput("Minimum Ras Pulse Width [ns]: %d = " |
| 1263 | "in Clk cycles %d\n", spdRawData[i], tras_clocks); |
| 1264 | break; |
| 1265 | /*----------------------------------------------------------------------------*/ |
| 1266 | |
| 1267 | case 31: /* Module Bank Density */ |
| 1268 | mvOsOutput("Module Bank Density (more than 1= Multisize-Module):"); |
| 1269 | |
| 1270 | if (dimmInfo.memoryType == MEM_TYPE_SDRAM) |
| 1271 | { |
| 1272 | if (dimmInfo.dimmBankDensity & BIT0) |
| 1273 | mvOsOutput("1GB, "); |
| 1274 | if (dimmInfo.dimmBankDensity & BIT1) |
| 1275 | mvOsOutput("8MB, "); |
| 1276 | if (dimmInfo.dimmBankDensity & BIT2) |
| 1277 | mvOsOutput("16MB, "); |
| 1278 | if (dimmInfo.dimmBankDensity & BIT3) |
| 1279 | mvOsOutput("32MB, "); |
| 1280 | if (dimmInfo.dimmBankDensity & BIT4) |
| 1281 | mvOsOutput("64MB, "); |
| 1282 | if (dimmInfo.dimmBankDensity & BIT5) |
| 1283 | mvOsOutput("128MB, "); |
| 1284 | if (dimmInfo.dimmBankDensity & BIT6) |
| 1285 | mvOsOutput("256MB, "); |
| 1286 | if (dimmInfo.dimmBankDensity & BIT7) |
| 1287 | mvOsOutput("512MB, "); |
| 1288 | } |
| 1289 | else if (dimmInfo.memoryType == MEM_TYPE_DDR1) |
| 1290 | { |
| 1291 | if (dimmInfo.dimmBankDensity & BIT0) |
| 1292 | mvOsOutput("1GB, "); |
| 1293 | if (dimmInfo.dimmBankDensity & BIT1) |
| 1294 | mvOsOutput("2GB, "); |
| 1295 | if (dimmInfo.dimmBankDensity & BIT2) |
| 1296 | mvOsOutput("16MB, "); |
| 1297 | if (dimmInfo.dimmBankDensity & BIT3) |
| 1298 | mvOsOutput("32MB, "); |
| 1299 | if (dimmInfo.dimmBankDensity & BIT4) |
| 1300 | mvOsOutput("64MB, "); |
| 1301 | if (dimmInfo.dimmBankDensity & BIT5) |
| 1302 | mvOsOutput("128MB, "); |
| 1303 | if (dimmInfo.dimmBankDensity & BIT6) |
| 1304 | mvOsOutput("256MB, "); |
| 1305 | if (dimmInfo.dimmBankDensity & BIT7) |
| 1306 | mvOsOutput("512MB, "); |
| 1307 | } |
| 1308 | else /* if (dimmInfo.memoryType == MEM_TYPE_DDR2) */ |
| 1309 | { |
| 1310 | if (dimmInfo.dimmBankDensity & BIT0) |
| 1311 | mvOsOutput("1GB, "); |
| 1312 | if (dimmInfo.dimmBankDensity & BIT1) |
| 1313 | mvOsOutput("2GB, "); |
| 1314 | if (dimmInfo.dimmBankDensity & BIT2) |
| 1315 | mvOsOutput("4GB, "); |
| 1316 | if (dimmInfo.dimmBankDensity & BIT3) |
| 1317 | mvOsOutput("8GB, "); |
| 1318 | if (dimmInfo.dimmBankDensity & BIT4) |
| 1319 | mvOsOutput("16GB, "); |
| 1320 | if (dimmInfo.dimmBankDensity & BIT5) |
| 1321 | mvOsOutput("128MB, "); |
| 1322 | if (dimmInfo.dimmBankDensity & BIT6) |
| 1323 | mvOsOutput("256MB, "); |
| 1324 | if (dimmInfo.dimmBankDensity & BIT7) |
| 1325 | mvOsOutput("512MB, "); |
| 1326 | } |
| 1327 | mvOsOutput("\n"); |
| 1328 | break; |
| 1329 | /*----------------------------------------------------------------------------*/ |
| 1330 | |
| 1331 | case 32: /* Address And Command Setup Time (measured in ns/1000) */ |
| 1332 | if (dimmInfo.memoryType == MEM_TYPE_SDRAM) |
| 1333 | { |
| 1334 | rightOfPoint = (spdRawData[i] & 0x0f); |
| 1335 | leftOfPoint = (spdRawData[i] & 0xf0) >> 4; |
| 1336 | if(leftOfPoint > 7) |
| 1337 | { |
| 1338 | leftOfPoint *= -1; |
| 1339 | } |
| 1340 | } |
| 1341 | else /* DDR1 or DDR2 */ |
| 1342 | { |
| 1343 | time_tmp = (((spdRawData[i] & 0xf0) >> 4)*10) + |
| 1344 | ((spdRawData[i] & 0x0f)); |
| 1345 | leftOfPoint = time_tmp / 100; |
| 1346 | rightOfPoint = time_tmp % 100; |
| 1347 | } |
| 1348 | mvOsOutput("Address And Command Setup Time [ns]: %d.%d\n", |
| 1349 | leftOfPoint, rightOfPoint); |
| 1350 | break; |
| 1351 | /*----------------------------------------------------------------------------*/ |
| 1352 | |
| 1353 | case 33: /* Address And Command Hold Time */ |
| 1354 | if (dimmInfo.memoryType == MEM_TYPE_SDRAM) |
| 1355 | { |
| 1356 | rightOfPoint = (spdRawData[i] & 0x0f); |
| 1357 | leftOfPoint = (spdRawData[i] & 0xf0) >> 4; |
| 1358 | if(leftOfPoint > 7) |
| 1359 | { |
| 1360 | leftOfPoint *= -1; |
| 1361 | } |
| 1362 | } |
| 1363 | else /* DDR1 or DDR2 */ |
| 1364 | { |
| 1365 | time_tmp = (((spdRawData[i] & 0xf0) >> 4)*10) + |
| 1366 | ((spdRawData[i] & 0x0f)); |
| 1367 | leftOfPoint = time_tmp / 100; |
| 1368 | rightOfPoint = time_tmp % 100; |
| 1369 | } |
| 1370 | mvOsOutput("Address And Command Hold Time [ns]: %d.%d\n", |
| 1371 | leftOfPoint, rightOfPoint); |
| 1372 | break; |
| 1373 | /*----------------------------------------------------------------------------*/ |
| 1374 | |
| 1375 | case 34: /* Data Input Setup Time */ |
| 1376 | if (dimmInfo.memoryType == MEM_TYPE_SDRAM) |
| 1377 | { |
| 1378 | rightOfPoint = (spdRawData[i] & 0x0f); |
| 1379 | leftOfPoint = (spdRawData[i] & 0xf0) >> 4; |
| 1380 | if(leftOfPoint > 7) |
| 1381 | { |
| 1382 | leftOfPoint *= -1; |
| 1383 | } |
| 1384 | } |
| 1385 | else /* DDR1 or DDR2 */ |
| 1386 | { |
| 1387 | time_tmp = (((spdRawData[i] & 0xf0) >> 4)*10) + |
| 1388 | ((spdRawData[i] & 0x0f)); |
| 1389 | leftOfPoint = time_tmp / 100; |
| 1390 | rightOfPoint = time_tmp % 100; |
| 1391 | } |
| 1392 | mvOsOutput("Data Input Setup Time [ns]: %d.%d\n", |
| 1393 | leftOfPoint, rightOfPoint); |
| 1394 | break; |
| 1395 | /*----------------------------------------------------------------------------*/ |
| 1396 | |
| 1397 | case 35: /* Data Input Hold Time */ |
| 1398 | if (dimmInfo.memoryType == MEM_TYPE_SDRAM) |
| 1399 | { |
| 1400 | rightOfPoint = (spdRawData[i] & 0x0f); |
| 1401 | leftOfPoint = (spdRawData[i] & 0xf0) >> 4; |
| 1402 | if(leftOfPoint > 7) |
| 1403 | { |
| 1404 | leftOfPoint *= -1; |
| 1405 | } |
| 1406 | } |
| 1407 | else /* DDR1 or DDR2 */ |
| 1408 | { |
| 1409 | time_tmp = (((spdRawData[i] & 0xf0) >> 4)*10) + |
| 1410 | ((spdRawData[i] & 0x0f)); |
| 1411 | leftOfPoint = time_tmp / 100; |
| 1412 | rightOfPoint = time_tmp % 100; |
| 1413 | } |
| 1414 | mvOsOutput("Data Input Hold Time [ns]: %d.%d\n\n", |
| 1415 | leftOfPoint, rightOfPoint); |
| 1416 | break; |
| 1417 | /*----------------------------------------------------------------------------*/ |
| 1418 | |
| 1419 | case 36: /* Relevant for DDR2 only: Write Recovery Time */ |
| 1420 | leftOfPoint = ((spdRawData[i] & maskLeftOfPoint) >> 2); |
| 1421 | rightOfPoint = (spdRawData[i] & maskRightOfPoint) * 25; |
| 1422 | mvOsOutput("Write Recovery Time [ns]: %d.%d\n", |
| 1423 | leftOfPoint, rightOfPoint); |
| 1424 | break; |
| 1425 | /*----------------------------------------------------------------------------*/ |
| 1426 | } |
| 1427 | |
| 1428 | } |
| 1429 | |
| 1430 | |
| 1431 | /* |
| 1432 | * translate ns.ns/10 coding of SPD timing values |
| 1433 | * into ps unit values |
| 1434 | */ |
| 1435 | /******************************************************************************* |
| 1436 | * cas2ps - Translate x.y ns parameter to pico-seconds values |
| 1437 | * |
| 1438 | * DESCRIPTION: |
| 1439 | * This function translates x.y nano seconds to its value in pico seconds. |
| 1440 | * For example 3.75ns will return 3750. |
| 1441 | * |
| 1442 | * INPUT: |
| 1443 | * spd_byte - DIMM SPD byte. |
| 1444 | * |
| 1445 | * OUTPUT: |
| 1446 | * None. |
| 1447 | * |
| 1448 | * RETURN: |
| 1449 | * value in pico seconds. |
| 1450 | * |
| 1451 | *******************************************************************************/ |
| 1452 | static MV_U32 cas2ps(MV_U8 spd_byte) |
| 1453 | { |
| 1454 | MV_U32 ns, ns10; |
| 1455 | |
| 1456 | /* isolate upper nibble */ |
| 1457 | ns = (spd_byte >> 4) & 0x0F; |
| 1458 | /* isolate lower nibble */ |
| 1459 | ns10 = (spd_byte & 0x0F); |
| 1460 | |
| 1461 | if( ns10 < 10 ) { |
| 1462 | ns10 *= 10; |
| 1463 | } |
| 1464 | else if( ns10 == 10 ) |
| 1465 | ns10 = 25; |
| 1466 | else if( ns10 == 11 ) |
| 1467 | ns10 = 33; |
| 1468 | else if( ns10 == 12 ) |
| 1469 | ns10 = 66; |
| 1470 | else if( ns10 == 13 ) |
| 1471 | ns10 = 75; |
| 1472 | else |
| 1473 | { |
| 1474 | mvOsOutput("cas2ps Err. unsupported cycle time.\n"); |
| 1475 | } |
| 1476 | |
| 1477 | return (ns*1000 + ns10*10); |
| 1478 | } |
| 1479 | |
| 1480 | |