| 1 | /* |
| 2 | * crypto/ocf/talitos/talitos.c |
| 3 | * |
| 4 | * An OCF-Linux module that uses Freescale's SEC to do the crypto. |
| 5 | * Based on crypto/ocf/hifn and crypto/ocf/safe OCF drivers |
| 6 | * |
| 7 | * Copyright (c) 2006 Freescale Semiconductor, Inc. |
| 8 | * |
| 9 | * This code written by Kim A. B. Phillips <kim.phillips@freescale.com> |
| 10 | * some code copied from files with the following: |
| 11 | * Copyright (C) 2004-2007 David McCullough <david_mccullough@mcafee.com> |
| 12 | * |
| 13 | * Redistribution and use in source and binary forms, with or without |
| 14 | * modification, are permitted provided that the following conditions |
| 15 | * are met: |
| 16 | * |
| 17 | * 1. Redistributions of source code must retain the above copyright |
| 18 | * notice, this list of conditions and the following disclaimer. |
| 19 | * 2. Redistributions in binary form must reproduce the above copyright |
| 20 | * notice, this list of conditions and the following disclaimer in the |
| 21 | * documentation and/or other materials provided with the distribution. |
| 22 | * 3. The name of the author may not be used to endorse or promote products |
| 23 | * derived from this software without specific prior written permission. |
| 24 | * |
| 25 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| 26 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 27 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| 28 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 29 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 30 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 31 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 32 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 33 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 34 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 35 | * |
| 36 | * --------------------------------------------------------------------------- |
| 37 | * |
| 38 | * NOTES: |
| 39 | * |
| 40 | * The Freescale SEC (also known as 'talitos') resides on the |
| 41 | * internal bus, and runs asynchronous to the processor core. It has |
| 42 | * a wide gamut of cryptographic acceleration features, including single- |
| 43 | * pass IPsec (also known as algorithm chaining). To properly utilize |
| 44 | * all of the SEC's performance enhancing features, further reworking |
| 45 | * of higher level code (framework, applications) will be necessary. |
| 46 | * |
| 47 | * The following table shows which SEC version is present in which devices: |
| 48 | * |
| 49 | * Devices SEC version |
| 50 | * |
| 51 | * 8272, 8248 SEC 1.0 |
| 52 | * 885, 875 SEC 1.2 |
| 53 | * 8555E, 8541E SEC 2.0 |
| 54 | * 8349E SEC 2.01 |
| 55 | * 8548E SEC 2.1 |
| 56 | * |
| 57 | * The following table shows the features offered by each SEC version: |
| 58 | * |
| 59 | * Max. chan- |
| 60 | * version Bus I/F Clock nels DEU AESU AFEU MDEU PKEU RNG KEU |
| 61 | * |
| 62 | * SEC 1.0 internal 64b 100MHz 4 1 1 1 1 1 1 0 |
| 63 | * SEC 1.2 internal 32b 66MHz 1 1 1 0 1 0 0 0 |
| 64 | * SEC 2.0 internal 64b 166MHz 4 1 1 1 1 1 1 0 |
| 65 | * SEC 2.01 internal 64b 166MHz 4 1 1 1 1 1 1 0 |
| 66 | * SEC 2.1 internal 64b 333MHz 4 1 1 1 1 1 1 1 |
| 67 | * |
| 68 | * Each execution unit in the SEC has two modes of execution; channel and |
| 69 | * slave/debug. This driver employs the channel infrastructure in the |
| 70 | * device for convenience. Only the RNG is directly accessed due to the |
| 71 | * convenience of its random fifo pool. The relationship between the |
| 72 | * channels and execution units is depicted in the following diagram: |
| 73 | * |
| 74 | * ------- ------------ |
| 75 | * ---| ch0 |---| | |
| 76 | * ------- | | |
| 77 | * | |------+-------+-------+-------+------------ |
| 78 | * ------- | | | | | | | |
| 79 | * ---| ch1 |---| | | | | | | |
| 80 | * ------- | | ------ ------ ------ ------ ------ |
| 81 | * |controller| |DEU | |AESU| |MDEU| |PKEU| ... |RNG | |
| 82 | * ------- | | ------ ------ ------ ------ ------ |
| 83 | * ---| ch2 |---| | | | | | | |
| 84 | * ------- | | | | | | | |
| 85 | * | |------+-------+-------+-------+------------ |
| 86 | * ------- | | |
| 87 | * ---| ch3 |---| | |
| 88 | * ------- ------------ |
| 89 | * |
| 90 | * Channel ch0 may drive an aes operation to the aes unit (AESU), |
| 91 | * and, at the same time, ch1 may drive a message digest operation |
| 92 | * to the mdeu. Each channel has an input descriptor FIFO, and the |
| 93 | * FIFO can contain, e.g. on the 8541E, up to 24 entries, before a |
| 94 | * a buffer overrun error is triggered. The controller is responsible |
| 95 | * for fetching the data from descriptor pointers, and passing the |
| 96 | * data to the appropriate EUs. The controller also writes the |
| 97 | * cryptographic operation's result to memory. The SEC notifies |
| 98 | * completion by triggering an interrupt and/or setting the 1st byte |
| 99 | * of the hdr field to 0xff. |
| 100 | * |
| 101 | * TODO: |
| 102 | * o support more algorithms |
| 103 | * o support more versions of the SEC |
| 104 | * o add support for linux 2.4 |
| 105 | * o scatter-gather (sg) support |
| 106 | * o add support for public key ops (PKEU) |
| 107 | * o add statistics |
| 108 | */ |
| 109 | |
| 110 | #include <linux/version.h> |
| 111 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,38) && !defined(AUTOCONF_INCLUDED) |
| 112 | #include <linux/config.h> |
| 113 | #endif |
| 114 | #include <linux/module.h> |
| 115 | #include <linux/init.h> |
| 116 | #include <linux/interrupt.h> |
| 117 | #include <linux/spinlock.h> |
| 118 | #include <linux/random.h> |
| 119 | #include <linux/skbuff.h> |
| 120 | #include <asm/scatterlist.h> |
| 121 | #include <linux/dma-mapping.h> /* dma_map_single() */ |
| 122 | #include <linux/moduleparam.h> |
| 123 | |
| 124 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,15) |
| 125 | #include <linux/platform_device.h> |
| 126 | #endif |
| 127 | |
| 128 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19) |
| 129 | #include <linux/of_platform.h> |
| 130 | #endif |
| 131 | |
| 132 | #include <cryptodev.h> |
| 133 | #include <uio.h> |
| 134 | |
| 135 | #define DRV_NAME "talitos" |
| 136 | |
| 137 | #include "talitos_dev.h" |
| 138 | #include "talitos_soft.h" |
| 139 | |
| 140 | #define read_random(p,l) get_random_bytes(p,l) |
| 141 | |
| 142 | const char talitos_driver_name[] = "Talitos OCF"; |
| 143 | const char talitos_driver_version[] = "0.2"; |
| 144 | |
| 145 | static int talitos_newsession(device_t dev, u_int32_t *sidp, |
| 146 | struct cryptoini *cri); |
| 147 | static int talitos_freesession(device_t dev, u_int64_t tid); |
| 148 | static int talitos_process(device_t dev, struct cryptop *crp, int hint); |
| 149 | static void dump_talitos_status(struct talitos_softc *sc); |
| 150 | static int talitos_submit(struct talitos_softc *sc, struct talitos_desc *td, |
| 151 | int chsel); |
| 152 | static void talitos_doneprocessing(struct talitos_softc *sc); |
| 153 | static void talitos_init_device(struct talitos_softc *sc); |
| 154 | static void talitos_reset_device_master(struct talitos_softc *sc); |
| 155 | static void talitos_reset_device(struct talitos_softc *sc); |
| 156 | static void talitos_errorprocessing(struct talitos_softc *sc); |
| 157 | #ifdef CONFIG_PPC_MERGE |
| 158 | static int talitos_probe(struct of_device *ofdev, const struct of_device_id *match); |
| 159 | static int talitos_remove(struct of_device *ofdev); |
| 160 | #else |
| 161 | static int talitos_probe(struct platform_device *pdev); |
| 162 | static int talitos_remove(struct platform_device *pdev); |
| 163 | #endif |
| 164 | #ifdef CONFIG_OCF_RANDOMHARVEST |
| 165 | static int talitos_read_random(void *arg, u_int32_t *buf, int maxwords); |
| 166 | static void talitos_rng_init(struct talitos_softc *sc); |
| 167 | #endif |
| 168 | |
| 169 | static device_method_t talitos_methods = { |
| 170 | /* crypto device methods */ |
| 171 | DEVMETHOD(cryptodev_newsession, talitos_newsession), |
| 172 | DEVMETHOD(cryptodev_freesession,talitos_freesession), |
| 173 | DEVMETHOD(cryptodev_process, talitos_process), |
| 174 | }; |
| 175 | |
| 176 | #define debug talitos_debug |
| 177 | int talitos_debug = 0; |
| 178 | module_param(talitos_debug, int, 0644); |
| 179 | MODULE_PARM_DESC(talitos_debug, "Enable debug"); |
| 180 | |
| 181 | static inline void talitos_write(volatile unsigned *addr, u32 val) |
| 182 | { |
| 183 | out_be32(addr, val); |
| 184 | } |
| 185 | |
| 186 | static inline u32 talitos_read(volatile unsigned *addr) |
| 187 | { |
| 188 | u32 val; |
| 189 | val = in_be32(addr); |
| 190 | return val; |
| 191 | } |
| 192 | |
| 193 | static void dump_talitos_status(struct talitos_softc *sc) |
| 194 | { |
| 195 | unsigned int v, v_hi, i, *ptr; |
| 196 | v = talitos_read(sc->sc_base_addr + TALITOS_MCR); |
| 197 | v_hi = talitos_read(sc->sc_base_addr + TALITOS_MCR_HI); |
| 198 | printk(KERN_INFO "%s: MCR 0x%08x_%08x\n", |
| 199 | device_get_nameunit(sc->sc_cdev), v, v_hi); |
| 200 | v = talitos_read(sc->sc_base_addr + TALITOS_IMR); |
| 201 | v_hi = talitos_read(sc->sc_base_addr + TALITOS_IMR_HI); |
| 202 | printk(KERN_INFO "%s: IMR 0x%08x_%08x\n", |
| 203 | device_get_nameunit(sc->sc_cdev), v, v_hi); |
| 204 | v = talitos_read(sc->sc_base_addr + TALITOS_ISR); |
| 205 | v_hi = talitos_read(sc->sc_base_addr + TALITOS_ISR_HI); |
| 206 | printk(KERN_INFO "%s: ISR 0x%08x_%08x\n", |
| 207 | device_get_nameunit(sc->sc_cdev), v, v_hi); |
| 208 | for (i = 0; i < sc->sc_num_channels; i++) { |
| 209 | v = talitos_read(sc->sc_base_addr + i*TALITOS_CH_OFFSET + |
| 210 | TALITOS_CH_CDPR); |
| 211 | v_hi = talitos_read(sc->sc_base_addr + i*TALITOS_CH_OFFSET + |
| 212 | TALITOS_CH_CDPR_HI); |
| 213 | printk(KERN_INFO "%s: CDPR ch%d 0x%08x_%08x\n", |
| 214 | device_get_nameunit(sc->sc_cdev), i, v, v_hi); |
| 215 | } |
| 216 | for (i = 0; i < sc->sc_num_channels; i++) { |
| 217 | v = talitos_read(sc->sc_base_addr + i*TALITOS_CH_OFFSET + |
| 218 | TALITOS_CH_CCPSR); |
| 219 | v_hi = talitos_read(sc->sc_base_addr + i*TALITOS_CH_OFFSET + |
| 220 | TALITOS_CH_CCPSR_HI); |
| 221 | printk(KERN_INFO "%s: CCPSR ch%d 0x%08x_%08x\n", |
| 222 | device_get_nameunit(sc->sc_cdev), i, v, v_hi); |
| 223 | } |
| 224 | ptr = sc->sc_base_addr + TALITOS_CH_DESCBUF; |
| 225 | for (i = 0; i < 16; i++) { |
| 226 | v = talitos_read(ptr++); v_hi = talitos_read(ptr++); |
| 227 | printk(KERN_INFO "%s: DESCBUF ch0 0x%08x_%08x (tdp%02d)\n", |
| 228 | device_get_nameunit(sc->sc_cdev), v, v_hi, i); |
| 229 | } |
| 230 | return; |
| 231 | } |
| 232 | |
| 233 | |
| 234 | #ifdef CONFIG_OCF_RANDOMHARVEST |
| 235 | /* |
| 236 | * pull random numbers off the RNG FIFO, not exceeding amount available |
| 237 | */ |
| 238 | static int |
| 239 | talitos_read_random(void *arg, u_int32_t *buf, int maxwords) |
| 240 | { |
| 241 | struct talitos_softc *sc = (struct talitos_softc *) arg; |
| 242 | int rc; |
| 243 | u_int32_t v; |
| 244 | |
| 245 | DPRINTF("%s()\n", __FUNCTION__); |
| 246 | |
| 247 | /* check for things like FIFO underflow */ |
| 248 | v = talitos_read(sc->sc_base_addr + TALITOS_RNGISR_HI); |
| 249 | if (unlikely(v)) { |
| 250 | printk(KERN_ERR "%s: RNGISR_HI error %08x\n", |
| 251 | device_get_nameunit(sc->sc_cdev), v); |
| 252 | return 0; |
| 253 | } |
| 254 | /* |
| 255 | * OFL is number of available 64-bit words, |
| 256 | * shift and convert to a 32-bit word count |
| 257 | */ |
| 258 | v = talitos_read(sc->sc_base_addr + TALITOS_RNGSR_HI); |
| 259 | v = (v & TALITOS_RNGSR_HI_OFL) >> (16 - 1); |
| 260 | if (maxwords > v) |
| 261 | maxwords = v; |
| 262 | for (rc = 0; rc < maxwords; rc++) { |
| 263 | buf[rc] = talitos_read(sc->sc_base_addr + |
| 264 | TALITOS_RNG_FIFO + rc*sizeof(u_int32_t)); |
| 265 | } |
| 266 | if (maxwords & 1) { |
| 267 | /* |
| 268 | * RNG will complain with an AE in the RNGISR |
| 269 | * if we don't complete the pairs of 32-bit reads |
| 270 | * to its 64-bit register based FIFO |
| 271 | */ |
| 272 | v = talitos_read(sc->sc_base_addr + |
| 273 | TALITOS_RNG_FIFO + rc*sizeof(u_int32_t)); |
| 274 | } |
| 275 | |
| 276 | return rc; |
| 277 | } |
| 278 | |
| 279 | static void |
| 280 | talitos_rng_init(struct talitos_softc *sc) |
| 281 | { |
| 282 | u_int32_t v; |
| 283 | |
| 284 | DPRINTF("%s()\n", __FUNCTION__); |
| 285 | /* reset RNG EU */ |
| 286 | v = talitos_read(sc->sc_base_addr + TALITOS_RNGRCR_HI); |
| 287 | v |= TALITOS_RNGRCR_HI_SR; |
| 288 | talitos_write(sc->sc_base_addr + TALITOS_RNGRCR_HI, v); |
| 289 | while ((talitos_read(sc->sc_base_addr + TALITOS_RNGSR_HI) |
| 290 | & TALITOS_RNGSR_HI_RD) == 0) |
| 291 | cpu_relax(); |
| 292 | /* |
| 293 | * we tell the RNG to start filling the RNG FIFO |
| 294 | * by writing the RNGDSR |
| 295 | */ |
| 296 | v = talitos_read(sc->sc_base_addr + TALITOS_RNGDSR_HI); |
| 297 | talitos_write(sc->sc_base_addr + TALITOS_RNGDSR_HI, v); |
| 298 | /* |
| 299 | * 64 bits of data will be pushed onto the FIFO every |
| 300 | * 256 SEC cycles until the FIFO is full. The RNG then |
| 301 | * attempts to keep the FIFO full. |
| 302 | */ |
| 303 | v = talitos_read(sc->sc_base_addr + TALITOS_RNGISR_HI); |
| 304 | if (v) { |
| 305 | printk(KERN_ERR "%s: RNGISR_HI error %08x\n", |
| 306 | device_get_nameunit(sc->sc_cdev), v); |
| 307 | return; |
| 308 | } |
| 309 | /* |
| 310 | * n.b. we need to add a FIPS test here - if the RNG is going |
| 311 | * to fail, it's going to fail at reset time |
| 312 | */ |
| 313 | return; |
| 314 | } |
| 315 | #endif /* CONFIG_OCF_RANDOMHARVEST */ |
| 316 | |
| 317 | /* |
| 318 | * Generate a new software session. |
| 319 | */ |
| 320 | static int |
| 321 | talitos_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri) |
| 322 | { |
| 323 | struct cryptoini *c, *encini = NULL, *macini = NULL; |
| 324 | struct talitos_softc *sc = device_get_softc(dev); |
| 325 | struct talitos_session *ses = NULL; |
| 326 | int sesn; |
| 327 | |
| 328 | DPRINTF("%s()\n", __FUNCTION__); |
| 329 | if (sidp == NULL || cri == NULL || sc == NULL) { |
| 330 | DPRINTF("%s,%d - EINVAL\n", __FILE__, __LINE__); |
| 331 | return EINVAL; |
| 332 | } |
| 333 | for (c = cri; c != NULL; c = c->cri_next) { |
| 334 | if (c->cri_alg == CRYPTO_MD5 || |
| 335 | c->cri_alg == CRYPTO_MD5_HMAC || |
| 336 | c->cri_alg == CRYPTO_SHA1 || |
| 337 | c->cri_alg == CRYPTO_SHA1_HMAC || |
| 338 | c->cri_alg == CRYPTO_NULL_HMAC) { |
| 339 | if (macini) |
| 340 | return EINVAL; |
| 341 | macini = c; |
| 342 | } else if (c->cri_alg == CRYPTO_DES_CBC || |
| 343 | c->cri_alg == CRYPTO_3DES_CBC || |
| 344 | c->cri_alg == CRYPTO_AES_CBC || |
| 345 | c->cri_alg == CRYPTO_NULL_CBC) { |
| 346 | if (encini) |
| 347 | return EINVAL; |
| 348 | encini = c; |
| 349 | } else { |
| 350 | DPRINTF("UNKNOWN c->cri_alg %d\n", encini->cri_alg); |
| 351 | return EINVAL; |
| 352 | } |
| 353 | } |
| 354 | if (encini == NULL && macini == NULL) |
| 355 | return EINVAL; |
| 356 | if (encini) { |
| 357 | /* validate key length */ |
| 358 | switch (encini->cri_alg) { |
| 359 | case CRYPTO_DES_CBC: |
| 360 | if (encini->cri_klen != 64) |
| 361 | return EINVAL; |
| 362 | break; |
| 363 | case CRYPTO_3DES_CBC: |
| 364 | if (encini->cri_klen != 192) { |
| 365 | return EINVAL; |
| 366 | } |
| 367 | break; |
| 368 | case CRYPTO_AES_CBC: |
| 369 | if (encini->cri_klen != 128 && |
| 370 | encini->cri_klen != 192 && |
| 371 | encini->cri_klen != 256) |
| 372 | return EINVAL; |
| 373 | break; |
| 374 | default: |
| 375 | DPRINTF("UNKNOWN encini->cri_alg %d\n", |
| 376 | encini->cri_alg); |
| 377 | return EINVAL; |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | if (sc->sc_sessions == NULL) { |
| 382 | ses = sc->sc_sessions = (struct talitos_session *) |
| 383 | kmalloc(sizeof(struct talitos_session), SLAB_ATOMIC); |
| 384 | if (ses == NULL) |
| 385 | return ENOMEM; |
| 386 | memset(ses, 0, sizeof(struct talitos_session)); |
| 387 | sesn = 0; |
| 388 | sc->sc_nsessions = 1; |
| 389 | } else { |
| 390 | for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { |
| 391 | if (sc->sc_sessions[sesn].ses_used == 0) { |
| 392 | ses = &sc->sc_sessions[sesn]; |
| 393 | break; |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | if (ses == NULL) { |
| 398 | /* allocating session */ |
| 399 | sesn = sc->sc_nsessions; |
| 400 | ses = (struct talitos_session *) kmalloc( |
| 401 | (sesn + 1) * sizeof(struct talitos_session), |
| 402 | SLAB_ATOMIC); |
| 403 | if (ses == NULL) |
| 404 | return ENOMEM; |
| 405 | memset(ses, 0, |
| 406 | (sesn + 1) * sizeof(struct talitos_session)); |
| 407 | memcpy(ses, sc->sc_sessions, |
| 408 | sesn * sizeof(struct talitos_session)); |
| 409 | memset(sc->sc_sessions, 0, |
| 410 | sesn * sizeof(struct talitos_session)); |
| 411 | kfree(sc->sc_sessions); |
| 412 | sc->sc_sessions = ses; |
| 413 | ses = &sc->sc_sessions[sesn]; |
| 414 | sc->sc_nsessions++; |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | ses->ses_used = 1; |
| 419 | |
| 420 | if (encini) { |
| 421 | ses->ses_klen = (encini->cri_klen + 7) / 8; |
| 422 | memcpy(ses->ses_key, encini->cri_key, ses->ses_klen); |
| 423 | if (macini) { |
| 424 | /* doing hash on top of cipher */ |
| 425 | ses->ses_hmac_len = (macini->cri_klen + 7) / 8; |
| 426 | memcpy(ses->ses_hmac, macini->cri_key, |
| 427 | ses->ses_hmac_len); |
| 428 | } |
| 429 | } else if (macini) { |
| 430 | /* doing hash */ |
| 431 | ses->ses_klen = (macini->cri_klen + 7) / 8; |
| 432 | memcpy(ses->ses_key, macini->cri_key, ses->ses_klen); |
| 433 | } |
| 434 | |
| 435 | /* back compat way of determining MSC result len */ |
| 436 | if (macini) { |
| 437 | ses->ses_mlen = macini->cri_mlen; |
| 438 | if (ses->ses_mlen == 0) { |
| 439 | if (macini->cri_alg == CRYPTO_MD5_HMAC) |
| 440 | ses->ses_mlen = MD5_HASH_LEN; |
| 441 | else |
| 442 | ses->ses_mlen = SHA1_HASH_LEN; |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | /* really should make up a template td here, |
| 447 | * and only fill things like i/o and direction in process() */ |
| 448 | |
| 449 | /* assign session ID */ |
| 450 | *sidp = TALITOS_SID(sc->sc_num, sesn); |
| 451 | return 0; |
| 452 | } |
| 453 | |
| 454 | /* |
| 455 | * Deallocate a session. |
| 456 | */ |
| 457 | static int |
| 458 | talitos_freesession(device_t dev, u_int64_t tid) |
| 459 | { |
| 460 | struct talitos_softc *sc = device_get_softc(dev); |
| 461 | int session, ret; |
| 462 | u_int32_t sid = ((u_int32_t) tid) & 0xffffffff; |
| 463 | |
| 464 | if (sc == NULL) |
| 465 | return EINVAL; |
| 466 | session = TALITOS_SESSION(sid); |
| 467 | if (session < sc->sc_nsessions) { |
| 468 | memset(&sc->sc_sessions[session], 0, |
| 469 | sizeof(sc->sc_sessions[session])); |
| 470 | ret = 0; |
| 471 | } else |
| 472 | ret = EINVAL; |
| 473 | return ret; |
| 474 | } |
| 475 | |
| 476 | /* |
| 477 | * launch device processing - it will come back with done notification |
| 478 | * in the form of an interrupt and/or HDR_DONE_BITS in header |
| 479 | */ |
| 480 | static int |
| 481 | talitos_submit( |
| 482 | struct talitos_softc *sc, |
| 483 | struct talitos_desc *td, |
| 484 | int chsel) |
| 485 | { |
| 486 | u_int32_t v; |
| 487 | |
| 488 | v = dma_map_single(NULL, td, sizeof(*td), DMA_TO_DEVICE); |
| 489 | talitos_write(sc->sc_base_addr + |
| 490 | chsel*TALITOS_CH_OFFSET + TALITOS_CH_FF, 0); |
| 491 | talitos_write(sc->sc_base_addr + |
| 492 | chsel*TALITOS_CH_OFFSET + TALITOS_CH_FF_HI, v); |
| 493 | return 0; |
| 494 | } |
| 495 | |
| 496 | static int |
| 497 | talitos_process(device_t dev, struct cryptop *crp, int hint) |
| 498 | { |
| 499 | int i, err = 0, ivsize; |
| 500 | struct talitos_softc *sc = device_get_softc(dev); |
| 501 | struct cryptodesc *crd1, *crd2, *maccrd, *enccrd; |
| 502 | caddr_t iv; |
| 503 | struct talitos_session *ses; |
| 504 | struct talitos_desc *td; |
| 505 | unsigned long flags; |
| 506 | /* descriptor mappings */ |
| 507 | int hmac_key, hmac_data, cipher_iv, cipher_key, |
| 508 | in_fifo, out_fifo, cipher_iv_out; |
| 509 | static int chsel = -1; |
| 510 | u_int32_t rand_iv[4]; |
| 511 | |
| 512 | DPRINTF("%s()\n", __FUNCTION__); |
| 513 | |
| 514 | if (crp == NULL || crp->crp_callback == NULL || sc == NULL) { |
| 515 | return EINVAL; |
| 516 | } |
| 517 | crp->crp_etype = 0; |
| 518 | if (TALITOS_SESSION(crp->crp_sid) >= sc->sc_nsessions) { |
| 519 | return EINVAL; |
| 520 | } |
| 521 | |
| 522 | ses = &sc->sc_sessions[TALITOS_SESSION(crp->crp_sid)]; |
| 523 | |
| 524 | /* enter the channel scheduler */ |
| 525 | spin_lock_irqsave(&sc->sc_chnfifolock[sc->sc_num_channels], flags); |
| 526 | |
| 527 | /* reuse channel that already had/has requests for the required EU */ |
| 528 | for (i = 0; i < sc->sc_num_channels; i++) { |
| 529 | if (sc->sc_chnlastalg[i] == crp->crp_desc->crd_alg) |
| 530 | break; |
| 531 | } |
| 532 | if (i == sc->sc_num_channels) { |
| 533 | /* |
| 534 | * haven't seen this algo the last sc_num_channels or more |
| 535 | * use round robin in this case |
| 536 | * nb: sc->sc_num_channels must be power of 2 |
| 537 | */ |
| 538 | chsel = (chsel + 1) & (sc->sc_num_channels - 1); |
| 539 | } else { |
| 540 | /* |
| 541 | * matches channel with same target execution unit; |
| 542 | * use same channel in this case |
| 543 | */ |
| 544 | chsel = i; |
| 545 | } |
| 546 | sc->sc_chnlastalg[chsel] = crp->crp_desc->crd_alg; |
| 547 | |
| 548 | /* release the channel scheduler lock */ |
| 549 | spin_unlock_irqrestore(&sc->sc_chnfifolock[sc->sc_num_channels], flags); |
| 550 | |
| 551 | /* acquire the selected channel fifo lock */ |
| 552 | spin_lock_irqsave(&sc->sc_chnfifolock[chsel], flags); |
| 553 | |
| 554 | /* find and reserve next available descriptor-cryptop pair */ |
| 555 | for (i = 0; i < sc->sc_chfifo_len; i++) { |
| 556 | if (sc->sc_chnfifo[chsel][i].cf_desc.hdr == 0) { |
| 557 | /* |
| 558 | * ensure correct descriptor formation by |
| 559 | * avoiding inadvertently setting "optional" entries |
| 560 | * e.g. not using "optional" dptr2 for MD/HMAC descs |
| 561 | */ |
| 562 | memset(&sc->sc_chnfifo[chsel][i].cf_desc, |
| 563 | 0, sizeof(*td)); |
| 564 | /* reserve it with done notification request bit */ |
| 565 | sc->sc_chnfifo[chsel][i].cf_desc.hdr |= |
| 566 | TALITOS_DONE_NOTIFY; |
| 567 | break; |
| 568 | } |
| 569 | } |
| 570 | spin_unlock_irqrestore(&sc->sc_chnfifolock[chsel], flags); |
| 571 | |
| 572 | if (i == sc->sc_chfifo_len) { |
| 573 | /* fifo full */ |
| 574 | err = ERESTART; |
| 575 | goto errout; |
| 576 | } |
| 577 | |
| 578 | td = &sc->sc_chnfifo[chsel][i].cf_desc; |
| 579 | sc->sc_chnfifo[chsel][i].cf_crp = crp; |
| 580 | |
| 581 | crd1 = crp->crp_desc; |
| 582 | if (crd1 == NULL) { |
| 583 | err = EINVAL; |
| 584 | goto errout; |
| 585 | } |
| 586 | crd2 = crd1->crd_next; |
| 587 | /* prevent compiler warning */ |
| 588 | hmac_key = 0; |
| 589 | hmac_data = 0; |
| 590 | if (crd2 == NULL) { |
| 591 | td->hdr |= TD_TYPE_COMMON_NONSNOOP_NO_AFEU; |
| 592 | /* assign descriptor dword ptr mappings for this desc. type */ |
| 593 | cipher_iv = 1; |
| 594 | cipher_key = 2; |
| 595 | in_fifo = 3; |
| 596 | cipher_iv_out = 5; |
| 597 | if (crd1->crd_alg == CRYPTO_MD5_HMAC || |
| 598 | crd1->crd_alg == CRYPTO_SHA1_HMAC || |
| 599 | crd1->crd_alg == CRYPTO_SHA1 || |
| 600 | crd1->crd_alg == CRYPTO_MD5) { |
| 601 | out_fifo = 5; |
| 602 | maccrd = crd1; |
| 603 | enccrd = NULL; |
| 604 | } else if (crd1->crd_alg == CRYPTO_DES_CBC || |
| 605 | crd1->crd_alg == CRYPTO_3DES_CBC || |
| 606 | crd1->crd_alg == CRYPTO_AES_CBC || |
| 607 | crd1->crd_alg == CRYPTO_ARC4) { |
| 608 | out_fifo = 4; |
| 609 | maccrd = NULL; |
| 610 | enccrd = crd1; |
| 611 | } else { |
| 612 | DPRINTF("UNKNOWN crd1->crd_alg %d\n", crd1->crd_alg); |
| 613 | err = EINVAL; |
| 614 | goto errout; |
| 615 | } |
| 616 | } else { |
| 617 | if (sc->sc_desc_types & TALITOS_HAS_DT_IPSEC_ESP) { |
| 618 | td->hdr |= TD_TYPE_IPSEC_ESP; |
| 619 | } else { |
| 620 | DPRINTF("unimplemented: multiple descriptor ipsec\n"); |
| 621 | err = EINVAL; |
| 622 | goto errout; |
| 623 | } |
| 624 | /* assign descriptor dword ptr mappings for this desc. type */ |
| 625 | hmac_key = 0; |
| 626 | hmac_data = 1; |
| 627 | cipher_iv = 2; |
| 628 | cipher_key = 3; |
| 629 | in_fifo = 4; |
| 630 | out_fifo = 5; |
| 631 | cipher_iv_out = 6; |
| 632 | if ((crd1->crd_alg == CRYPTO_MD5_HMAC || |
| 633 | crd1->crd_alg == CRYPTO_SHA1_HMAC || |
| 634 | crd1->crd_alg == CRYPTO_MD5 || |
| 635 | crd1->crd_alg == CRYPTO_SHA1) && |
| 636 | (crd2->crd_alg == CRYPTO_DES_CBC || |
| 637 | crd2->crd_alg == CRYPTO_3DES_CBC || |
| 638 | crd2->crd_alg == CRYPTO_AES_CBC || |
| 639 | crd2->crd_alg == CRYPTO_ARC4) && |
| 640 | ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) { |
| 641 | maccrd = crd1; |
| 642 | enccrd = crd2; |
| 643 | } else if ((crd1->crd_alg == CRYPTO_DES_CBC || |
| 644 | crd1->crd_alg == CRYPTO_ARC4 || |
| 645 | crd1->crd_alg == CRYPTO_3DES_CBC || |
| 646 | crd1->crd_alg == CRYPTO_AES_CBC) && |
| 647 | (crd2->crd_alg == CRYPTO_MD5_HMAC || |
| 648 | crd2->crd_alg == CRYPTO_SHA1_HMAC || |
| 649 | crd2->crd_alg == CRYPTO_MD5 || |
| 650 | crd2->crd_alg == CRYPTO_SHA1) && |
| 651 | (crd1->crd_flags & CRD_F_ENCRYPT)) { |
| 652 | enccrd = crd1; |
| 653 | maccrd = crd2; |
| 654 | } else { |
| 655 | /* We cannot order the SEC as requested */ |
| 656 | printk("%s: cannot do the order\n", |
| 657 | device_get_nameunit(sc->sc_cdev)); |
| 658 | err = EINVAL; |
| 659 | goto errout; |
| 660 | } |
| 661 | } |
| 662 | /* assign in_fifo and out_fifo based on input/output struct type */ |
| 663 | if (crp->crp_flags & CRYPTO_F_SKBUF) { |
| 664 | /* using SKB buffers */ |
| 665 | struct sk_buff *skb = (struct sk_buff *)crp->crp_buf; |
| 666 | if (skb_shinfo(skb)->nr_frags) { |
| 667 | printk("%s: skb frags unimplemented\n", |
| 668 | device_get_nameunit(sc->sc_cdev)); |
| 669 | err = EINVAL; |
| 670 | goto errout; |
| 671 | } |
| 672 | td->ptr[in_fifo].ptr = dma_map_single(NULL, skb->data, |
| 673 | skb->len, DMA_TO_DEVICE); |
| 674 | td->ptr[in_fifo].len = skb->len; |
| 675 | td->ptr[out_fifo].ptr = dma_map_single(NULL, skb->data, |
| 676 | skb->len, DMA_TO_DEVICE); |
| 677 | td->ptr[out_fifo].len = skb->len; |
| 678 | td->ptr[hmac_data].ptr = dma_map_single(NULL, skb->data, |
| 679 | skb->len, DMA_TO_DEVICE); |
| 680 | } else if (crp->crp_flags & CRYPTO_F_IOV) { |
| 681 | /* using IOV buffers */ |
| 682 | struct uio *uiop = (struct uio *)crp->crp_buf; |
| 683 | if (uiop->uio_iovcnt > 1) { |
| 684 | printk("%s: iov frags unimplemented\n", |
| 685 | device_get_nameunit(sc->sc_cdev)); |
| 686 | err = EINVAL; |
| 687 | goto errout; |
| 688 | } |
| 689 | td->ptr[in_fifo].ptr = dma_map_single(NULL, |
| 690 | uiop->uio_iov->iov_base, crp->crp_ilen, DMA_TO_DEVICE); |
| 691 | td->ptr[in_fifo].len = crp->crp_ilen; |
| 692 | /* crp_olen is never set; always use crp_ilen */ |
| 693 | td->ptr[out_fifo].ptr = dma_map_single(NULL, |
| 694 | uiop->uio_iov->iov_base, |
| 695 | crp->crp_ilen, DMA_TO_DEVICE); |
| 696 | td->ptr[out_fifo].len = crp->crp_ilen; |
| 697 | } else { |
| 698 | /* using contig buffers */ |
| 699 | td->ptr[in_fifo].ptr = dma_map_single(NULL, |
| 700 | crp->crp_buf, crp->crp_ilen, DMA_TO_DEVICE); |
| 701 | td->ptr[in_fifo].len = crp->crp_ilen; |
| 702 | td->ptr[out_fifo].ptr = dma_map_single(NULL, |
| 703 | crp->crp_buf, crp->crp_ilen, DMA_TO_DEVICE); |
| 704 | td->ptr[out_fifo].len = crp->crp_ilen; |
| 705 | } |
| 706 | if (enccrd) { |
| 707 | switch (enccrd->crd_alg) { |
| 708 | case CRYPTO_3DES_CBC: |
| 709 | td->hdr |= TALITOS_MODE0_DEU_3DES; |
| 710 | /* FALLTHROUGH */ |
| 711 | case CRYPTO_DES_CBC: |
| 712 | td->hdr |= TALITOS_SEL0_DEU |
| 713 | | TALITOS_MODE0_DEU_CBC; |
| 714 | if (enccrd->crd_flags & CRD_F_ENCRYPT) |
| 715 | td->hdr |= TALITOS_MODE0_DEU_ENC; |
| 716 | ivsize = 2*sizeof(u_int32_t); |
| 717 | DPRINTF("%cDES ses %d ch %d len %d\n", |
| 718 | (td->hdr & TALITOS_MODE0_DEU_3DES)?'3':'1', |
| 719 | (u32)TALITOS_SESSION(crp->crp_sid), |
| 720 | chsel, td->ptr[in_fifo].len); |
| 721 | break; |
| 722 | case CRYPTO_AES_CBC: |
| 723 | td->hdr |= TALITOS_SEL0_AESU |
| 724 | | TALITOS_MODE0_AESU_CBC; |
| 725 | if (enccrd->crd_flags & CRD_F_ENCRYPT) |
| 726 | td->hdr |= TALITOS_MODE0_AESU_ENC; |
| 727 | ivsize = 4*sizeof(u_int32_t); |
| 728 | DPRINTF("AES ses %d ch %d len %d\n", |
| 729 | (u32)TALITOS_SESSION(crp->crp_sid), |
| 730 | chsel, td->ptr[in_fifo].len); |
| 731 | break; |
| 732 | default: |
| 733 | printk("%s: unimplemented enccrd->crd_alg %d\n", |
| 734 | device_get_nameunit(sc->sc_cdev), enccrd->crd_alg); |
| 735 | err = EINVAL; |
| 736 | goto errout; |
| 737 | } |
| 738 | /* |
| 739 | * Setup encrypt/decrypt state. When using basic ops |
| 740 | * we can't use an inline IV because hash/crypt offset |
| 741 | * must be from the end of the IV to the start of the |
| 742 | * crypt data and this leaves out the preceding header |
| 743 | * from the hash calculation. Instead we place the IV |
| 744 | * in the state record and set the hash/crypt offset to |
| 745 | * copy both the header+IV. |
| 746 | */ |
| 747 | if (enccrd->crd_flags & CRD_F_ENCRYPT) { |
| 748 | td->hdr |= TALITOS_DIR_OUTBOUND; |
| 749 | if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) |
| 750 | iv = enccrd->crd_iv; |
| 751 | else |
| 752 | read_random((iv = (caddr_t) rand_iv), sizeof(rand_iv)); |
| 753 | if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) { |
| 754 | crypto_copyback(crp->crp_flags, crp->crp_buf, |
| 755 | enccrd->crd_inject, ivsize, iv); |
| 756 | } |
| 757 | } else { |
| 758 | td->hdr |= TALITOS_DIR_INBOUND; |
| 759 | if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) { |
| 760 | iv = enccrd->crd_iv; |
| 761 | } else { |
| 762 | iv = (caddr_t) rand_iv; |
| 763 | crypto_copydata(crp->crp_flags, crp->crp_buf, |
| 764 | enccrd->crd_inject, ivsize, iv); |
| 765 | } |
| 766 | } |
| 767 | td->ptr[cipher_iv].ptr = dma_map_single(NULL, iv, ivsize, |
| 768 | DMA_TO_DEVICE); |
| 769 | td->ptr[cipher_iv].len = ivsize; |
| 770 | /* |
| 771 | * we don't need the cipher iv out length/pointer |
| 772 | * field to do ESP IPsec. Therefore we set the len field as 0, |
| 773 | * which tells the SEC not to do anything with this len/ptr |
| 774 | * field. Previously, when length/pointer as pointing to iv, |
| 775 | * it gave us corruption of packets. |
| 776 | */ |
| 777 | td->ptr[cipher_iv_out].len = 0; |
| 778 | } |
| 779 | if (enccrd && maccrd) { |
| 780 | /* this is ipsec only for now */ |
| 781 | td->hdr |= TALITOS_SEL1_MDEU |
| 782 | | TALITOS_MODE1_MDEU_INIT |
| 783 | | TALITOS_MODE1_MDEU_PAD; |
| 784 | switch (maccrd->crd_alg) { |
| 785 | case CRYPTO_MD5: |
| 786 | td->hdr |= TALITOS_MODE1_MDEU_MD5; |
| 787 | break; |
| 788 | case CRYPTO_MD5_HMAC: |
| 789 | td->hdr |= TALITOS_MODE1_MDEU_MD5_HMAC; |
| 790 | break; |
| 791 | case CRYPTO_SHA1: |
| 792 | td->hdr |= TALITOS_MODE1_MDEU_SHA1; |
| 793 | break; |
| 794 | case CRYPTO_SHA1_HMAC: |
| 795 | td->hdr |= TALITOS_MODE1_MDEU_SHA1_HMAC; |
| 796 | break; |
| 797 | default: |
| 798 | /* We cannot order the SEC as requested */ |
| 799 | printk("%s: cannot do the order\n", |
| 800 | device_get_nameunit(sc->sc_cdev)); |
| 801 | err = EINVAL; |
| 802 | goto errout; |
| 803 | } |
| 804 | if ((maccrd->crd_alg == CRYPTO_MD5_HMAC) || |
| 805 | (maccrd->crd_alg == CRYPTO_SHA1_HMAC)) { |
| 806 | /* |
| 807 | * The offset from hash data to the start of |
| 808 | * crypt data is the difference in the skips. |
| 809 | */ |
| 810 | /* ipsec only for now */ |
| 811 | td->ptr[hmac_key].ptr = dma_map_single(NULL, |
| 812 | ses->ses_hmac, ses->ses_hmac_len, DMA_TO_DEVICE); |
| 813 | td->ptr[hmac_key].len = ses->ses_hmac_len; |
| 814 | td->ptr[in_fifo].ptr += enccrd->crd_skip; |
| 815 | td->ptr[in_fifo].len = enccrd->crd_len; |
| 816 | td->ptr[out_fifo].ptr += enccrd->crd_skip; |
| 817 | td->ptr[out_fifo].len = enccrd->crd_len; |
| 818 | /* bytes of HMAC to postpend to ciphertext */ |
| 819 | td->ptr[out_fifo].extent = ses->ses_mlen; |
| 820 | td->ptr[hmac_data].ptr += maccrd->crd_skip; |
| 821 | td->ptr[hmac_data].len = enccrd->crd_skip - maccrd->crd_skip; |
| 822 | } |
| 823 | if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT) { |
| 824 | printk("%s: CRD_F_KEY_EXPLICIT unimplemented\n", |
| 825 | device_get_nameunit(sc->sc_cdev)); |
| 826 | } |
| 827 | } |
| 828 | if (!enccrd && maccrd) { |
| 829 | /* single MD5 or SHA */ |
| 830 | td->hdr |= TALITOS_SEL0_MDEU |
| 831 | | TALITOS_MODE0_MDEU_INIT |
| 832 | | TALITOS_MODE0_MDEU_PAD; |
| 833 | switch (maccrd->crd_alg) { |
| 834 | case CRYPTO_MD5: |
| 835 | td->hdr |= TALITOS_MODE0_MDEU_MD5; |
| 836 | DPRINTF("MD5 ses %d ch %d len %d\n", |
| 837 | (u32)TALITOS_SESSION(crp->crp_sid), |
| 838 | chsel, td->ptr[in_fifo].len); |
| 839 | break; |
| 840 | case CRYPTO_MD5_HMAC: |
| 841 | td->hdr |= TALITOS_MODE0_MDEU_MD5_HMAC; |
| 842 | break; |
| 843 | case CRYPTO_SHA1: |
| 844 | td->hdr |= TALITOS_MODE0_MDEU_SHA1; |
| 845 | DPRINTF("SHA1 ses %d ch %d len %d\n", |
| 846 | (u32)TALITOS_SESSION(crp->crp_sid), |
| 847 | chsel, td->ptr[in_fifo].len); |
| 848 | break; |
| 849 | case CRYPTO_SHA1_HMAC: |
| 850 | td->hdr |= TALITOS_MODE0_MDEU_SHA1_HMAC; |
| 851 | break; |
| 852 | default: |
| 853 | /* We cannot order the SEC as requested */ |
| 854 | DPRINTF("cannot do the order\n"); |
| 855 | err = EINVAL; |
| 856 | goto errout; |
| 857 | } |
| 858 | |
| 859 | if (crp->crp_flags & CRYPTO_F_IOV) |
| 860 | td->ptr[out_fifo].ptr += maccrd->crd_inject; |
| 861 | |
| 862 | if ((maccrd->crd_alg == CRYPTO_MD5_HMAC) || |
| 863 | (maccrd->crd_alg == CRYPTO_SHA1_HMAC)) { |
| 864 | td->ptr[hmac_key].ptr = dma_map_single(NULL, |
| 865 | ses->ses_hmac, ses->ses_hmac_len, |
| 866 | DMA_TO_DEVICE); |
| 867 | td->ptr[hmac_key].len = ses->ses_hmac_len; |
| 868 | } |
| 869 | } |
| 870 | else { |
| 871 | /* using process key (session data has duplicate) */ |
| 872 | td->ptr[cipher_key].ptr = dma_map_single(NULL, |
| 873 | enccrd->crd_key, (enccrd->crd_klen + 7) / 8, |
| 874 | DMA_TO_DEVICE); |
| 875 | td->ptr[cipher_key].len = (enccrd->crd_klen + 7) / 8; |
| 876 | } |
| 877 | /* descriptor complete - GO! */ |
| 878 | return talitos_submit(sc, td, chsel); |
| 879 | |
| 880 | errout: |
| 881 | if (err != ERESTART) { |
| 882 | crp->crp_etype = err; |
| 883 | crypto_done(crp); |
| 884 | } |
| 885 | return err; |
| 886 | } |
| 887 | |
| 888 | /* go through all channels descriptors, notifying OCF what has |
| 889 | * _and_hasn't_ successfully completed and reset the device |
| 890 | * (otherwise it's up to decoding desc hdrs!) |
| 891 | */ |
| 892 | static void talitos_errorprocessing(struct talitos_softc *sc) |
| 893 | { |
| 894 | unsigned long flags; |
| 895 | int i, j; |
| 896 | |
| 897 | /* disable further scheduling until under control */ |
| 898 | spin_lock_irqsave(&sc->sc_chnfifolock[sc->sc_num_channels], flags); |
| 899 | |
| 900 | if (debug) dump_talitos_status(sc); |
| 901 | /* go through descriptors, try and salvage those successfully done, |
| 902 | * and EIO those that weren't |
| 903 | */ |
| 904 | for (i = 0; i < sc->sc_num_channels; i++) { |
| 905 | spin_lock_irqsave(&sc->sc_chnfifolock[i], flags); |
| 906 | for (j = 0; j < sc->sc_chfifo_len; j++) { |
| 907 | if (sc->sc_chnfifo[i][j].cf_desc.hdr) { |
| 908 | if ((sc->sc_chnfifo[i][j].cf_desc.hdr |
| 909 | & TALITOS_HDR_DONE_BITS) |
| 910 | != TALITOS_HDR_DONE_BITS) { |
| 911 | /* this one didn't finish */ |
| 912 | /* signify in crp->etype */ |
| 913 | sc->sc_chnfifo[i][j].cf_crp->crp_etype |
| 914 | = EIO; |
| 915 | } |
| 916 | } else |
| 917 | continue; /* free entry */ |
| 918 | /* either way, notify ocf */ |
| 919 | crypto_done(sc->sc_chnfifo[i][j].cf_crp); |
| 920 | /* and tag it available again |
| 921 | * |
| 922 | * memset to ensure correct descriptor formation by |
| 923 | * avoiding inadvertently setting "optional" entries |
| 924 | * e.g. not using "optional" dptr2 MD/HMAC processing |
| 925 | */ |
| 926 | memset(&sc->sc_chnfifo[i][j].cf_desc, |
| 927 | 0, sizeof(struct talitos_desc)); |
| 928 | } |
| 929 | spin_unlock_irqrestore(&sc->sc_chnfifolock[i], flags); |
| 930 | } |
| 931 | /* reset and initialize the SEC h/w device */ |
| 932 | talitos_reset_device(sc); |
| 933 | talitos_init_device(sc); |
| 934 | #ifdef CONFIG_OCF_RANDOMHARVEST |
| 935 | if (sc->sc_exec_units & TALITOS_HAS_EU_RNG) |
| 936 | talitos_rng_init(sc); |
| 937 | #endif |
| 938 | |
| 939 | /* Okay. Stand by. */ |
| 940 | spin_unlock_irqrestore(&sc->sc_chnfifolock[sc->sc_num_channels], flags); |
| 941 | |
| 942 | return; |
| 943 | } |
| 944 | |
| 945 | /* go through all channels descriptors, notifying OCF what's been done */ |
| 946 | static void talitos_doneprocessing(struct talitos_softc *sc) |
| 947 | { |
| 948 | unsigned long flags; |
| 949 | int i, j; |
| 950 | |
| 951 | /* go through descriptors looking for done bits */ |
| 952 | for (i = 0; i < sc->sc_num_channels; i++) { |
| 953 | spin_lock_irqsave(&sc->sc_chnfifolock[i], flags); |
| 954 | for (j = 0; j < sc->sc_chfifo_len; j++) { |
| 955 | /* descriptor has done bits set? */ |
| 956 | if ((sc->sc_chnfifo[i][j].cf_desc.hdr |
| 957 | & TALITOS_HDR_DONE_BITS) |
| 958 | == TALITOS_HDR_DONE_BITS) { |
| 959 | /* notify ocf */ |
| 960 | crypto_done(sc->sc_chnfifo[i][j].cf_crp); |
| 961 | /* and tag it available again |
| 962 | * |
| 963 | * memset to ensure correct descriptor formation by |
| 964 | * avoiding inadvertently setting "optional" entries |
| 965 | * e.g. not using "optional" dptr2 MD/HMAC processing |
| 966 | */ |
| 967 | memset(&sc->sc_chnfifo[i][j].cf_desc, |
| 968 | 0, sizeof(struct talitos_desc)); |
| 969 | } |
| 970 | } |
| 971 | spin_unlock_irqrestore(&sc->sc_chnfifolock[i], flags); |
| 972 | } |
| 973 | return; |
| 974 | } |
| 975 | |
| 976 | static irqreturn_t |
| 977 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19) |
| 978 | talitos_intr(int irq, void *arg) |
| 979 | #else |
| 980 | talitos_intr(int irq, void *arg, struct pt_regs *regs) |
| 981 | #endif |
| 982 | { |
| 983 | struct talitos_softc *sc = arg; |
| 984 | u_int32_t v, v_hi; |
| 985 | |
| 986 | /* ack */ |
| 987 | v = talitos_read(sc->sc_base_addr + TALITOS_ISR); |
| 988 | v_hi = talitos_read(sc->sc_base_addr + TALITOS_ISR_HI); |
| 989 | talitos_write(sc->sc_base_addr + TALITOS_ICR, v); |
| 990 | talitos_write(sc->sc_base_addr + TALITOS_ICR_HI, v_hi); |
| 991 | |
| 992 | if (unlikely(v & TALITOS_ISR_ERROR)) { |
| 993 | /* Okay, Houston, we've had a problem here. */ |
| 994 | printk(KERN_DEBUG "%s: got error interrupt - ISR 0x%08x_%08x\n", |
| 995 | device_get_nameunit(sc->sc_cdev), v, v_hi); |
| 996 | talitos_errorprocessing(sc); |
| 997 | } else |
| 998 | if (likely(v & TALITOS_ISR_DONE)) { |
| 999 | talitos_doneprocessing(sc); |
| 1000 | } |
| 1001 | return IRQ_HANDLED; |
| 1002 | } |
| 1003 | |
| 1004 | /* |
| 1005 | * Initialize registers we need to touch only once. |
| 1006 | */ |
| 1007 | static void |
| 1008 | talitos_init_device(struct talitos_softc *sc) |
| 1009 | { |
| 1010 | u_int32_t v; |
| 1011 | int i; |
| 1012 | |
| 1013 | DPRINTF("%s()\n", __FUNCTION__); |
| 1014 | |
| 1015 | /* init all channels */ |
| 1016 | for (i = 0; i < sc->sc_num_channels; i++) { |
| 1017 | v = talitos_read(sc->sc_base_addr + |
| 1018 | i*TALITOS_CH_OFFSET + TALITOS_CH_CCCR_HI); |
| 1019 | v |= TALITOS_CH_CCCR_HI_CDWE |
| 1020 | | TALITOS_CH_CCCR_HI_CDIE; /* invoke interrupt if done */ |
| 1021 | talitos_write(sc->sc_base_addr + |
| 1022 | i*TALITOS_CH_OFFSET + TALITOS_CH_CCCR_HI, v); |
| 1023 | } |
| 1024 | /* enable all interrupts */ |
| 1025 | v = talitos_read(sc->sc_base_addr + TALITOS_IMR); |
| 1026 | v |= TALITOS_IMR_ALL; |
| 1027 | talitos_write(sc->sc_base_addr + TALITOS_IMR, v); |
| 1028 | v = talitos_read(sc->sc_base_addr + TALITOS_IMR_HI); |
| 1029 | v |= TALITOS_IMR_HI_ERRONLY; |
| 1030 | talitos_write(sc->sc_base_addr + TALITOS_IMR_HI, v); |
| 1031 | return; |
| 1032 | } |
| 1033 | |
| 1034 | /* |
| 1035 | * set the master reset bit on the device. |
| 1036 | */ |
| 1037 | static void |
| 1038 | talitos_reset_device_master(struct talitos_softc *sc) |
| 1039 | { |
| 1040 | u_int32_t v; |
| 1041 | |
| 1042 | /* Reset the device by writing 1 to MCR:SWR and waiting 'til cleared */ |
| 1043 | v = talitos_read(sc->sc_base_addr + TALITOS_MCR); |
| 1044 | talitos_write(sc->sc_base_addr + TALITOS_MCR, v | TALITOS_MCR_SWR); |
| 1045 | |
| 1046 | while (talitos_read(sc->sc_base_addr + TALITOS_MCR) & TALITOS_MCR_SWR) |
| 1047 | cpu_relax(); |
| 1048 | |
| 1049 | return; |
| 1050 | } |
| 1051 | |
| 1052 | /* |
| 1053 | * Resets the device. Values in the registers are left as is |
| 1054 | * from the reset (i.e. initial values are assigned elsewhere). |
| 1055 | */ |
| 1056 | static void |
| 1057 | talitos_reset_device(struct talitos_softc *sc) |
| 1058 | { |
| 1059 | u_int32_t v; |
| 1060 | int i; |
| 1061 | |
| 1062 | DPRINTF("%s()\n", __FUNCTION__); |
| 1063 | |
| 1064 | /* |
| 1065 | * Master reset |
| 1066 | * errata documentation: warning: certain SEC interrupts |
| 1067 | * are not fully cleared by writing the MCR:SWR bit, |
| 1068 | * set bit twice to completely reset |
| 1069 | */ |
| 1070 | talitos_reset_device_master(sc); /* once */ |
| 1071 | talitos_reset_device_master(sc); /* and once again */ |
| 1072 | |
| 1073 | /* reset all channels */ |
| 1074 | for (i = 0; i < sc->sc_num_channels; i++) { |
| 1075 | v = talitos_read(sc->sc_base_addr + i*TALITOS_CH_OFFSET + |
| 1076 | TALITOS_CH_CCCR); |
| 1077 | talitos_write(sc->sc_base_addr + i*TALITOS_CH_OFFSET + |
| 1078 | TALITOS_CH_CCCR, v | TALITOS_CH_CCCR_RESET); |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | /* Set up the crypto device structure, private data, |
| 1083 | * and anything else we need before we start */ |
| 1084 | #ifdef CONFIG_PPC_MERGE |
| 1085 | static int talitos_probe(struct of_device *ofdev, const struct of_device_id *match) |
| 1086 | #else |
| 1087 | static int talitos_probe(struct platform_device *pdev) |
| 1088 | #endif |
| 1089 | { |
| 1090 | struct talitos_softc *sc = NULL; |
| 1091 | struct resource *r; |
| 1092 | #ifdef CONFIG_PPC_MERGE |
| 1093 | struct device *device = &ofdev->dev; |
| 1094 | struct device_node *np = ofdev->node; |
| 1095 | const unsigned int *prop; |
| 1096 | int err; |
| 1097 | struct resource res; |
| 1098 | #endif |
| 1099 | static int num_chips = 0; |
| 1100 | int rc; |
| 1101 | int i; |
| 1102 | |
| 1103 | DPRINTF("%s()\n", __FUNCTION__); |
| 1104 | |
| 1105 | sc = (struct talitos_softc *) kmalloc(sizeof(*sc), GFP_KERNEL); |
| 1106 | if (!sc) |
| 1107 | return -ENOMEM; |
| 1108 | memset(sc, 0, sizeof(*sc)); |
| 1109 | |
| 1110 | softc_device_init(sc, DRV_NAME, num_chips, talitos_methods); |
| 1111 | |
| 1112 | sc->sc_irq = -1; |
| 1113 | sc->sc_cid = -1; |
| 1114 | #ifndef CONFIG_PPC_MERGE |
| 1115 | sc->sc_dev = pdev; |
| 1116 | #endif |
| 1117 | sc->sc_num = num_chips++; |
| 1118 | |
| 1119 | #ifdef CONFIG_PPC_MERGE |
| 1120 | dev_set_drvdata(device, sc); |
| 1121 | #else |
| 1122 | platform_set_drvdata(sc->sc_dev, sc); |
| 1123 | #endif |
| 1124 | |
| 1125 | /* get the irq line */ |
| 1126 | #ifdef CONFIG_PPC_MERGE |
| 1127 | err = of_address_to_resource(np, 0, &res); |
| 1128 | if (err) |
| 1129 | return -EINVAL; |
| 1130 | r = &res; |
| 1131 | |
| 1132 | sc->sc_irq = irq_of_parse_and_map(np, 0); |
| 1133 | #else |
| 1134 | /* get a pointer to the register memory */ |
| 1135 | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 1136 | |
| 1137 | sc->sc_irq = platform_get_irq(pdev, 0); |
| 1138 | #endif |
| 1139 | rc = request_irq(sc->sc_irq, talitos_intr, 0, |
| 1140 | device_get_nameunit(sc->sc_cdev), sc); |
| 1141 | if (rc) { |
| 1142 | printk(KERN_ERR "%s: failed to hook irq %d\n", |
| 1143 | device_get_nameunit(sc->sc_cdev), sc->sc_irq); |
| 1144 | sc->sc_irq = -1; |
| 1145 | goto out; |
| 1146 | } |
| 1147 | |
| 1148 | sc->sc_base_addr = (ocf_iomem_t) ioremap(r->start, (r->end - r->start)); |
| 1149 | if (!sc->sc_base_addr) { |
| 1150 | printk(KERN_ERR "%s: failed to ioremap\n", |
| 1151 | device_get_nameunit(sc->sc_cdev)); |
| 1152 | goto out; |
| 1153 | } |
| 1154 | |
| 1155 | /* figure out our SEC's properties and capabilities */ |
| 1156 | sc->sc_chiprev = (u64)talitos_read(sc->sc_base_addr + TALITOS_ID) << 32 |
| 1157 | | talitos_read(sc->sc_base_addr + TALITOS_ID_HI); |
| 1158 | DPRINTF("sec id 0x%llx\n", sc->sc_chiprev); |
| 1159 | |
| 1160 | #ifdef CONFIG_PPC_MERGE |
| 1161 | /* get SEC properties from device tree, defaulting to SEC 2.0 */ |
| 1162 | |
| 1163 | prop = of_get_property(np, "num-channels", NULL); |
| 1164 | sc->sc_num_channels = prop ? *prop : TALITOS_NCHANNELS_SEC_2_0; |
| 1165 | |
| 1166 | prop = of_get_property(np, "channel-fifo-len", NULL); |
| 1167 | sc->sc_chfifo_len = prop ? *prop : TALITOS_CHFIFOLEN_SEC_2_0; |
| 1168 | |
| 1169 | prop = of_get_property(np, "exec-units-mask", NULL); |
| 1170 | sc->sc_exec_units = prop ? *prop : TALITOS_HAS_EUS_SEC_2_0; |
| 1171 | |
| 1172 | prop = of_get_property(np, "descriptor-types-mask", NULL); |
| 1173 | sc->sc_desc_types = prop ? *prop : TALITOS_HAS_DESCTYPES_SEC_2_0; |
| 1174 | #else |
| 1175 | /* bulk should go away with openfirmware flat device tree support */ |
| 1176 | if (sc->sc_chiprev & TALITOS_ID_SEC_2_0) { |
| 1177 | sc->sc_num_channels = TALITOS_NCHANNELS_SEC_2_0; |
| 1178 | sc->sc_chfifo_len = TALITOS_CHFIFOLEN_SEC_2_0; |
| 1179 | sc->sc_exec_units = TALITOS_HAS_EUS_SEC_2_0; |
| 1180 | sc->sc_desc_types = TALITOS_HAS_DESCTYPES_SEC_2_0; |
| 1181 | } else { |
| 1182 | printk(KERN_ERR "%s: failed to id device\n", |
| 1183 | device_get_nameunit(sc->sc_cdev)); |
| 1184 | goto out; |
| 1185 | } |
| 1186 | #endif |
| 1187 | |
| 1188 | /* + 1 is for the meta-channel lock used by the channel scheduler */ |
| 1189 | sc->sc_chnfifolock = (spinlock_t *) kmalloc( |
| 1190 | (sc->sc_num_channels + 1) * sizeof(spinlock_t), GFP_KERNEL); |
| 1191 | if (!sc->sc_chnfifolock) |
| 1192 | goto out; |
| 1193 | for (i = 0; i < sc->sc_num_channels + 1; i++) { |
| 1194 | spin_lock_init(&sc->sc_chnfifolock[i]); |
| 1195 | } |
| 1196 | |
| 1197 | sc->sc_chnlastalg = (int *) kmalloc( |
| 1198 | sc->sc_num_channels * sizeof(int), GFP_KERNEL); |
| 1199 | if (!sc->sc_chnlastalg) |
| 1200 | goto out; |
| 1201 | memset(sc->sc_chnlastalg, 0, sc->sc_num_channels * sizeof(int)); |
| 1202 | |
| 1203 | sc->sc_chnfifo = (struct desc_cryptop_pair **) kmalloc( |
| 1204 | sc->sc_num_channels * sizeof(struct desc_cryptop_pair *), |
| 1205 | GFP_KERNEL); |
| 1206 | if (!sc->sc_chnfifo) |
| 1207 | goto out; |
| 1208 | for (i = 0; i < sc->sc_num_channels; i++) { |
| 1209 | sc->sc_chnfifo[i] = (struct desc_cryptop_pair *) kmalloc( |
| 1210 | sc->sc_chfifo_len * sizeof(struct desc_cryptop_pair), |
| 1211 | GFP_KERNEL); |
| 1212 | if (!sc->sc_chnfifo[i]) |
| 1213 | goto out; |
| 1214 | memset(sc->sc_chnfifo[i], 0, |
| 1215 | sc->sc_chfifo_len * sizeof(struct desc_cryptop_pair)); |
| 1216 | } |
| 1217 | |
| 1218 | /* reset and initialize the SEC h/w device */ |
| 1219 | talitos_reset_device(sc); |
| 1220 | talitos_init_device(sc); |
| 1221 | |
| 1222 | sc->sc_cid = crypto_get_driverid(softc_get_device(sc),CRYPTOCAP_F_HARDWARE); |
| 1223 | if (sc->sc_cid < 0) { |
| 1224 | printk(KERN_ERR "%s: could not get crypto driver id\n", |
| 1225 | device_get_nameunit(sc->sc_cdev)); |
| 1226 | goto out; |
| 1227 | } |
| 1228 | |
| 1229 | /* register algorithms with the framework */ |
| 1230 | printk("%s:", device_get_nameunit(sc->sc_cdev)); |
| 1231 | |
| 1232 | if (sc->sc_exec_units & TALITOS_HAS_EU_RNG) { |
| 1233 | printk(" rng"); |
| 1234 | #ifdef CONFIG_OCF_RANDOMHARVEST |
| 1235 | talitos_rng_init(sc); |
| 1236 | crypto_rregister(sc->sc_cid, talitos_read_random, sc); |
| 1237 | #endif |
| 1238 | } |
| 1239 | if (sc->sc_exec_units & TALITOS_HAS_EU_DEU) { |
| 1240 | printk(" des/3des"); |
| 1241 | crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0); |
| 1242 | crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0); |
| 1243 | } |
| 1244 | if (sc->sc_exec_units & TALITOS_HAS_EU_AESU) { |
| 1245 | printk(" aes"); |
| 1246 | crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0); |
| 1247 | } |
| 1248 | if (sc->sc_exec_units & TALITOS_HAS_EU_MDEU) { |
| 1249 | printk(" md5"); |
| 1250 | crypto_register(sc->sc_cid, CRYPTO_MD5, 0, 0); |
| 1251 | /* HMAC support only with IPsec for now */ |
| 1252 | crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0); |
| 1253 | printk(" sha1"); |
| 1254 | crypto_register(sc->sc_cid, CRYPTO_SHA1, 0, 0); |
| 1255 | /* HMAC support only with IPsec for now */ |
| 1256 | crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0); |
| 1257 | } |
| 1258 | printk("\n"); |
| 1259 | return 0; |
| 1260 | |
| 1261 | out: |
| 1262 | #ifndef CONFIG_PPC_MERGE |
| 1263 | talitos_remove(pdev); |
| 1264 | #endif |
| 1265 | return -ENOMEM; |
| 1266 | } |
| 1267 | |
| 1268 | #ifdef CONFIG_PPC_MERGE |
| 1269 | static int talitos_remove(struct of_device *ofdev) |
| 1270 | #else |
| 1271 | static int talitos_remove(struct platform_device *pdev) |
| 1272 | #endif |
| 1273 | { |
| 1274 | #ifdef CONFIG_PPC_MERGE |
| 1275 | struct talitos_softc *sc = dev_get_drvdata(&ofdev->dev); |
| 1276 | #else |
| 1277 | struct talitos_softc *sc = platform_get_drvdata(pdev); |
| 1278 | #endif |
| 1279 | int i; |
| 1280 | |
| 1281 | DPRINTF("%s()\n", __FUNCTION__); |
| 1282 | if (sc->sc_cid >= 0) |
| 1283 | crypto_unregister_all(sc->sc_cid); |
| 1284 | if (sc->sc_chnfifo) { |
| 1285 | for (i = 0; i < sc->sc_num_channels; i++) |
| 1286 | if (sc->sc_chnfifo[i]) |
| 1287 | kfree(sc->sc_chnfifo[i]); |
| 1288 | kfree(sc->sc_chnfifo); |
| 1289 | } |
| 1290 | if (sc->sc_chnlastalg) |
| 1291 | kfree(sc->sc_chnlastalg); |
| 1292 | if (sc->sc_chnfifolock) |
| 1293 | kfree(sc->sc_chnfifolock); |
| 1294 | if (sc->sc_irq != -1) |
| 1295 | free_irq(sc->sc_irq, sc); |
| 1296 | if (sc->sc_base_addr) |
| 1297 | iounmap((void *) sc->sc_base_addr); |
| 1298 | kfree(sc); |
| 1299 | return 0; |
| 1300 | } |
| 1301 | |
| 1302 | #ifdef CONFIG_PPC_MERGE |
| 1303 | static struct of_device_id talitos_match[] = { |
| 1304 | { |
| 1305 | .type = "crypto", |
| 1306 | .compatible = "talitos", |
| 1307 | }, |
| 1308 | {}, |
| 1309 | }; |
| 1310 | |
| 1311 | MODULE_DEVICE_TABLE(of, talitos_match); |
| 1312 | |
| 1313 | static struct of_platform_driver talitos_driver = { |
| 1314 | .name = DRV_NAME, |
| 1315 | .match_table = talitos_match, |
| 1316 | .probe = talitos_probe, |
| 1317 | .remove = talitos_remove, |
| 1318 | }; |
| 1319 | |
| 1320 | static int __init talitos_init(void) |
| 1321 | { |
| 1322 | return of_register_platform_driver(&talitos_driver); |
| 1323 | } |
| 1324 | |
| 1325 | static void __exit talitos_exit(void) |
| 1326 | { |
| 1327 | of_unregister_platform_driver(&talitos_driver); |
| 1328 | } |
| 1329 | #else |
| 1330 | /* Structure for a platform device driver */ |
| 1331 | static struct platform_driver talitos_driver = { |
| 1332 | .probe = talitos_probe, |
| 1333 | .remove = talitos_remove, |
| 1334 | .driver = { |
| 1335 | .name = "fsl-sec2", |
| 1336 | } |
| 1337 | }; |
| 1338 | |
| 1339 | static int __init talitos_init(void) |
| 1340 | { |
| 1341 | return platform_driver_register(&talitos_driver); |
| 1342 | } |
| 1343 | |
| 1344 | static void __exit talitos_exit(void) |
| 1345 | { |
| 1346 | platform_driver_unregister(&talitos_driver); |
| 1347 | } |
| 1348 | #endif |
| 1349 | |
| 1350 | module_init(talitos_init); |
| 1351 | module_exit(talitos_exit); |
| 1352 | |
| 1353 | MODULE_LICENSE("Dual BSD/GPL"); |
| 1354 | MODULE_AUTHOR("kim.phillips@freescale.com"); |
| 1355 | MODULE_DESCRIPTION("OCF driver for Freescale SEC (talitos)"); |
| 1356 | |