Root/target/linux/ramips/files/drivers/usb/dwc_otg/dwc_otg_hcd.h

1/* ==========================================================================
2 * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.h $
3 * $Revision: 1.3 $
4 * $Date: 2008-12-15 06:51:32 $
5 * $Change: 1064918 $
6 *
7 * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
8 * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
9 * otherwise expressly agreed to in writing between Synopsys and you.
10 *
11 * The Software IS NOT an item of Licensed Software or Licensed Product under
12 * any End User Software License Agreement or Agreement for Licensed Product
13 * with Synopsys or any supplement thereto. You are permitted to use and
14 * redistribute this Software in source and binary forms, with or without
15 * modification, provided that redistributions of source code must retain this
16 * notice. You may not view, use, disclose, copy or distribute this file or
17 * any information contained herein except pursuant to this license grant from
18 * Synopsys. If you do not agree with this notice, including the disclaimer
19 * below, then you are not authorized to use the Software.
20 *
21 * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
25 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
31 * DAMAGE.
32 * ========================================================================== */
33#ifndef DWC_DEVICE_ONLY
34#ifndef __DWC_HCD_H__
35#define __DWC_HCD_H__
36
37#include <linux/list.h>
38#include <linux/usb.h>
39#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35)
40#include <linux/usb/hcd.h>
41#else
42#include <../drivers/usb/core/hcd.h>
43#endif
44
45struct dwc_otg_device;
46
47#include "dwc_otg_cil.h"
48
49/**
50 * @file
51 *
52 * This file contains the structures, constants, and interfaces for
53 * the Host Contoller Driver (HCD).
54 *
55 * The Host Controller Driver (HCD) is responsible for translating requests
56 * from the USB Driver into the appropriate actions on the DWC_otg controller.
57 * It isolates the USBD from the specifics of the controller by providing an
58 * API to the USBD.
59 */
60
61/**
62 * Phases for control transfers.
63 */
64typedef enum dwc_otg_control_phase {
65    DWC_OTG_CONTROL_SETUP,
66    DWC_OTG_CONTROL_DATA,
67    DWC_OTG_CONTROL_STATUS
68} dwc_otg_control_phase_e;
69
70/** Transaction types. */
71typedef enum dwc_otg_transaction_type {
72    DWC_OTG_TRANSACTION_NONE,
73    DWC_OTG_TRANSACTION_PERIODIC,
74    DWC_OTG_TRANSACTION_NON_PERIODIC,
75    DWC_OTG_TRANSACTION_ALL
76} dwc_otg_transaction_type_e;
77
78/**
79 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
80 * interrupt, or isochronous transfer. A single QTD is created for each URB
81 * (of one of these types) submitted to the HCD. The transfer associated with
82 * a QTD may require one or multiple transactions.
83 *
84 * A QTD is linked to a Queue Head, which is entered in either the
85 * non-periodic or periodic schedule for execution. When a QTD is chosen for
86 * execution, some or all of its transactions may be executed. After
87 * execution, the state of the QTD is updated. The QTD may be retired if all
88 * its transactions are complete or if an error occurred. Otherwise, it
89 * remains in the schedule so more transactions can be executed later.
90 */
91typedef struct dwc_otg_qtd {
92    /**
93     * Determines the PID of the next data packet for the data phase of
94     * control transfers. Ignored for other transfer types.<br>
95     * One of the following values:
96     * - DWC_OTG_HC_PID_DATA0
97     * - DWC_OTG_HC_PID_DATA1
98     */
99    uint8_t data_toggle;
100
101    /** Current phase for control transfers (Setup, Data, or Status). */
102    dwc_otg_control_phase_e control_phase;
103
104    /** Keep track of the current split type
105     * for FS/LS endpoints on a HS Hub */
106    uint8_t complete_split;
107
108    /** How many bytes transferred during SSPLIT OUT */
109    uint32_t ssplit_out_xfer_count;
110
111    /**
112     * Holds the number of bus errors that have occurred for a transaction
113     * within this transfer.
114     */
115    uint8_t error_count;
116
117    /**
118     * Index of the next frame descriptor for an isochronous transfer. A
119     * frame descriptor describes the buffer position and length of the
120     * data to be transferred in the next scheduled (micro)frame of an
121     * isochronous transfer. It also holds status for that transaction.
122     * The frame index starts at 0.
123     */
124    int isoc_frame_index;
125
126    /** Position of the ISOC split on full/low speed */
127    uint8_t isoc_split_pos;
128
129    /** Position of the ISOC split in the buffer for the current frame */
130    uint16_t isoc_split_offset;
131
132    /** URB for this transfer */
133    struct urb *urb;
134
135    /** This list of QTDs */
136    struct list_head qtd_list_entry;
137
138} dwc_otg_qtd_t;
139
140/**
141 * A Queue Head (QH) holds the static characteristics of an endpoint and
142 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
143 * be entered in either the non-periodic or periodic schedule.
144 */
145typedef struct dwc_otg_qh {
146    /**
147     * Endpoint type.
148     * One of the following values:
149     * - USB_ENDPOINT_XFER_CONTROL
150     * - USB_ENDPOINT_XFER_ISOC
151     * - USB_ENDPOINT_XFER_BULK
152     * - USB_ENDPOINT_XFER_INT
153     */
154    uint8_t ep_type;
155    uint8_t ep_is_in;
156
157    /** wMaxPacketSize Field of Endpoint Descriptor. */
158    uint16_t maxp;
159
160    /**
161     * Determines the PID of the next data packet for non-control
162     * transfers. Ignored for control transfers.<br>
163     * One of the following values:
164     * - DWC_OTG_HC_PID_DATA0
165     * - DWC_OTG_HC_PID_DATA1
166     */
167    uint8_t data_toggle;
168
169    /** Ping state if 1. */
170    uint8_t ping_state;
171
172    /**
173     * List of QTDs for this QH.
174     */
175    struct list_head qtd_list;
176
177    /** Host channel currently processing transfers for this QH. */
178    dwc_hc_t *channel;
179
180    /** QTD currently assigned to a host channel for this QH. */
181    dwc_otg_qtd_t *qtd_in_process;
182
183    /** Full/low speed endpoint on high-speed hub requires split. */
184    uint8_t do_split;
185
186    /** @name Periodic schedule information */
187    /** @{ */
188
189    /** Bandwidth in microseconds per (micro)frame. */
190    uint8_t usecs;
191
192    /** Interval between transfers in (micro)frames. */
193    uint16_t interval;
194
195    /**
196     * (micro)frame to initialize a periodic transfer. The transfer
197     * executes in the following (micro)frame.
198     */
199    uint16_t sched_frame;
200
201    /** (micro)frame at which last start split was initialized. */
202    uint16_t start_split_frame;
203
204    /** @} */
205
206    /** Entry for QH in either the periodic or non-periodic schedule. */
207    struct list_head qh_list_entry;
208
209    /* For non-dword aligned buffer support */
210    uint8_t *dw_align_buf;
211    dma_addr_t dw_align_buf_dma;
212} dwc_otg_qh_t;
213
214/**
215 * This structure holds the state of the HCD, including the non-periodic and
216 * periodic schedules.
217 */
218typedef struct dwc_otg_hcd {
219    /** The DWC otg device pointer */
220    struct dwc_otg_device *otg_dev;
221
222    /** DWC OTG Core Interface Layer */
223    dwc_otg_core_if_t *core_if;
224
225    /** Internal DWC HCD Flags */
226    volatile union dwc_otg_hcd_internal_flags {
227        uint32_t d32;
228        struct {
229            unsigned port_connect_status_change : 1;
230            unsigned port_connect_status : 1;
231            unsigned port_reset_change : 1;
232            unsigned port_enable_change : 1;
233            unsigned port_suspend_change : 1;
234            unsigned port_over_current_change : 1;
235            unsigned reserved : 27;
236        } b;
237    } flags;
238
239    /**
240     * Inactive items in the non-periodic schedule. This is a list of
241     * Queue Heads. Transfers associated with these Queue Heads are not
242     * currently assigned to a host channel.
243     */
244    struct list_head non_periodic_sched_inactive;
245
246    /**
247     * Active items in the non-periodic schedule. This is a list of
248     * Queue Heads. Transfers associated with these Queue Heads are
249     * currently assigned to a host channel.
250     */
251    struct list_head non_periodic_sched_active;
252
253    /**
254     * Pointer to the next Queue Head to process in the active
255     * non-periodic schedule.
256     */
257    struct list_head *non_periodic_qh_ptr;
258
259    /**
260     * Inactive items in the periodic schedule. This is a list of QHs for
261     * periodic transfers that are _not_ scheduled for the next frame.
262     * Each QH in the list has an interval counter that determines when it
263     * needs to be scheduled for execution. This scheduling mechanism
264     * allows only a simple calculation for periodic bandwidth used (i.e.
265     * must assume that all periodic transfers may need to execute in the
266     * same frame). However, it greatly simplifies scheduling and should
267     * be sufficient for the vast majority of OTG hosts, which need to
268     * connect to a small number of peripherals at one time.
269     *
270     * Items move from this list to periodic_sched_ready when the QH
271     * interval counter is 0 at SOF.
272     */
273    struct list_head periodic_sched_inactive;
274
275    /**
276     * List of periodic QHs that are ready for execution in the next
277     * frame, but have not yet been assigned to host channels.
278     *
279     * Items move from this list to periodic_sched_assigned as host
280     * channels become available during the current frame.
281     */
282    struct list_head periodic_sched_ready;
283
284    /**
285     * List of periodic QHs to be executed in the next frame that are
286     * assigned to host channels.
287     *
288     * Items move from this list to periodic_sched_queued as the
289     * transactions for the QH are queued to the DWC_otg controller.
290     */
291    struct list_head periodic_sched_assigned;
292
293    /**
294     * List of periodic QHs that have been queued for execution.
295     *
296     * Items move from this list to either periodic_sched_inactive or
297     * periodic_sched_ready when the channel associated with the transfer
298     * is released. If the interval for the QH is 1, the item moves to
299     * periodic_sched_ready because it must be rescheduled for the next
300     * frame. Otherwise, the item moves to periodic_sched_inactive.
301     */
302    struct list_head periodic_sched_queued;
303
304    /**
305     * Total bandwidth claimed so far for periodic transfers. This value
306     * is in microseconds per (micro)frame. The assumption is that all
307     * periodic transfers may occur in the same (micro)frame.
308     */
309    uint16_t periodic_usecs;
310
311    /**
312     * Frame number read from the core at SOF. The value ranges from 0 to
313     * DWC_HFNUM_MAX_FRNUM.
314     */
315    uint16_t frame_number;
316
317    /**
318     * Free host channels in the controller. This is a list of
319     * dwc_hc_t items.
320     */
321    struct list_head free_hc_list;
322
323    /**
324     * Number of host channels assigned to periodic transfers. Currently
325     * assuming that there is a dedicated host channel for each periodic
326     * transaction and at least one host channel available for
327     * non-periodic transactions.
328     */
329    int periodic_channels;
330
331    /**
332     * Number of host channels assigned to non-periodic transfers.
333     */
334    int non_periodic_channels;
335
336    /**
337     * Array of pointers to the host channel descriptors. Allows accessing
338     * a host channel descriptor given the host channel number. This is
339     * useful in interrupt handlers.
340     */
341    dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS];
342
343    /**
344     * Buffer to use for any data received during the status phase of a
345     * control transfer. Normally no data is transferred during the status
346     * phase. This buffer is used as a bit bucket.
347     */
348    uint8_t *status_buf;
349
350    /**
351     * DMA address for status_buf.
352     */
353    dma_addr_t status_buf_dma;
354#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
355
356    /**
357     * Structure to allow starting the HCD in a non-interrupt context
358     * during an OTG role change.
359     */
360#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
361    struct work_struct start_work;
362#else
363    struct delayed_work start_work;
364#endif
365
366    /**
367     * Connection timer. An OTG host must display a message if the device
368     * does not connect. Started when the VBus power is turned on via
369     * sysfs attribute "buspower".
370     */
371    struct timer_list conn_timer;
372
373    /* Tasket to do a reset */
374    struct tasklet_struct *reset_tasklet;
375
376    /* */
377    spinlock_t lock;
378
379#ifdef DEBUG
380    uint32_t frrem_samples;
381    uint64_t frrem_accum;
382
383    uint32_t hfnum_7_samples_a;
384    uint64_t hfnum_7_frrem_accum_a;
385    uint32_t hfnum_0_samples_a;
386    uint64_t hfnum_0_frrem_accum_a;
387    uint32_t hfnum_other_samples_a;
388    uint64_t hfnum_other_frrem_accum_a;
389
390    uint32_t hfnum_7_samples_b;
391    uint64_t hfnum_7_frrem_accum_b;
392    uint32_t hfnum_0_samples_b;
393    uint64_t hfnum_0_frrem_accum_b;
394    uint32_t hfnum_other_samples_b;
395    uint64_t hfnum_other_frrem_accum_b;
396#endif
397} dwc_otg_hcd_t;
398
399/** Gets the dwc_otg_hcd from a struct usb_hcd */
400static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
401{
402    return (dwc_otg_hcd_t *)(hcd->hcd_priv);
403}
404
405/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */
406static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd)
407{
408    return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv);
409}
410
411/** @name HCD Create/Destroy Functions */
412/** @{ */
413extern int dwc_otg_hcd_init(struct device *dev);
414extern void dwc_otg_hcd_remove(struct device *dev);
415/** @} */
416
417/** @name Linux HC Driver API Functions */
418/** @{ */
419
420extern int dwc_otg_hcd_start(struct usb_hcd *hcd);
421extern void dwc_otg_hcd_stop(struct usb_hcd *hcd);
422extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
423extern void dwc_otg_hcd_free(struct usb_hcd *hcd);
424extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
425                   struct urb *urb,
426#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
427                   int mem_flags
428#else
429                   gfp_t mem_flags
430#endif
431                  );
432extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
433#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
434#endif
435                   struct urb *urb, int status);
436extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
437                     struct usb_host_endpoint *ep);
438extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd
439#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
440                   , struct pt_regs *regs
441#endif
442                  );
443extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd,
444                       char *buf);
445extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
446                   u16 typeReq,
447                   u16 wValue,
448                   u16 wIndex,
449                   char *buf,
450                   u16 wLength);
451
452/** @} */
453
454/** @name Transaction Execution Functions */
455/** @{ */
456extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd);
457extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
458                       dwc_otg_transaction_type_e tr_type);
459extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *urb,
460                     int status);
461/** @} */
462
463/** @name Interrupt Handler Functions */
464/** @{ */
465extern int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd);
466extern int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *dwc_otg_hcd);
467extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd);
468extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd);
469extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd);
470extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *dwc_otg_hcd);
471extern int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd);
472extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(dwc_otg_hcd_t *dwc_otg_hcd);
473extern int32_t dwc_otg_hcd_handle_disconnect_intr(dwc_otg_hcd_t *dwc_otg_hcd);
474extern int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd);
475extern int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num);
476extern int32_t dwc_otg_hcd_handle_session_req_intr(dwc_otg_hcd_t *dwc_otg_hcd);
477extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(dwc_otg_hcd_t *dwc_otg_hcd);
478/** @} */
479
480
481/** @name Schedule Queue Functions */
482/** @{ */
483
484/* Implemented in dwc_otg_hcd_queue.c */
485extern dwc_otg_qh_t *dwc_otg_hcd_qh_create(dwc_otg_hcd_t *hcd, struct urb *urb);
486extern void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb);
487extern void dwc_otg_hcd_qh_free(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
488extern int dwc_otg_hcd_qh_add(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
489extern void dwc_otg_hcd_qh_remove(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
490extern void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_csplit);
491
492/** Remove and free a QH */
493static inline void dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd_t *hcd,
494                          dwc_otg_qh_t *qh)
495{
496    dwc_otg_hcd_qh_remove(hcd, qh);
497    dwc_otg_hcd_qh_free(hcd, qh);
498}
499
500/** Allocates memory for a QH structure.
501 * @return Returns the memory allocate or NULL on error. */
502static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc(void)
503{
504    return (dwc_otg_qh_t *) kmalloc(sizeof(dwc_otg_qh_t), GFP_KERNEL);
505}
506
507extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create(struct urb *urb);
508extern void dwc_otg_hcd_qtd_init(dwc_otg_qtd_t *qtd, struct urb *urb);
509extern int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd);
510
511/** Allocates memory for a QTD structure.
512 * @return Returns the memory allocate or NULL on error. */
513static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc(void)
514{
515    return (dwc_otg_qtd_t *) kmalloc(sizeof(dwc_otg_qtd_t), GFP_KERNEL);
516}
517
518/** Frees the memory for a QTD structure. QTD should already be removed from
519 * list.
520 * @param[in] qtd QTD to free.*/
521static inline void dwc_otg_hcd_qtd_free(dwc_otg_qtd_t *qtd)
522{
523    kfree(qtd);
524}
525
526/** Removes a QTD from list.
527 * @param[in] hcd HCD instance.
528 * @param[in] qtd QTD to remove from list. */
529static inline void dwc_otg_hcd_qtd_remove(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd)
530{
531    unsigned long flags;
532    SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
533    list_del(&qtd->qtd_list_entry);
534    SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
535}
536
537/** Remove and free a QTD */
538static inline void dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd)
539{
540    dwc_otg_hcd_qtd_remove(hcd, qtd);
541    dwc_otg_hcd_qtd_free(qtd);
542}
543
544/** @} */
545
546
547/** @name Internal Functions */
548/** @{ */
549dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb);
550void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd);
551void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd);
552/** @} */
553
554/** Gets the usb_host_endpoint associated with an URB. */
555static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *urb)
556{
557    struct usb_device *dev = urb->dev;
558    int ep_num = usb_pipeendpoint(urb->pipe);
559
560    if (usb_pipein(urb->pipe))
561        return dev->ep_in[ep_num];
562    else
563        return dev->ep_out[ep_num];
564}
565
566/**
567 * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is
568 * qualified with its direction (possible 32 endpoints per device).
569 */
570#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
571                             ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
572
573/** Gets the QH that contains the list_head */
574#define dwc_list_to_qh(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qh_t, qh_list_entry)
575
576/** Gets the QTD that contains the list_head */
577#define dwc_list_to_qtd(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qtd_t, qtd_list_entry)
578
579/** Check if QH is non-periodic */
580#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \
581                     (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
582
583/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
584#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
585
586/** Packet size for any kind of endpoint descriptor */
587#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
588
589/**
590 * Returns true if _frame1 is less than or equal to _frame2. The comparison is
591 * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
592 * frame number when the max frame number is reached.
593 */
594static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2)
595{
596    return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <=
597        (DWC_HFNUM_MAX_FRNUM >> 1);
598}
599
600/**
601 * Returns true if _frame1 is greater than _frame2. The comparison is done
602 * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
603 * number when the max frame number is reached.
604 */
605static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2)
606{
607    return (frame1 != frame2) &&
608        (((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) <
609         (DWC_HFNUM_MAX_FRNUM >> 1));
610}
611
612/**
613 * Increments _frame by the amount specified by _inc. The addition is done
614 * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
615 */
616static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc)
617{
618    return (frame + inc) & DWC_HFNUM_MAX_FRNUM;
619}
620
621static inline uint16_t dwc_full_frame_num(uint16_t frame)
622{
623    return (frame & DWC_HFNUM_MAX_FRNUM) >> 3;
624}
625
626static inline uint16_t dwc_micro_frame_num(uint16_t frame)
627{
628    return frame & 0x7;
629}
630
631#ifdef DEBUG
632/**
633 * Macro to sample the remaining PHY clocks left in the current frame. This
634 * may be used during debugging to determine the average time it takes to
635 * execute sections of code. There are two possible sample points, "a" and
636 * "b", so the _letter argument must be one of these values.
637 *
638 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
639 * example, "cat /sys/devices/lm0/hcd_frrem".
640 */
641#define dwc_sample_frrem(_hcd, _qh, _letter) \
642{ \
643    hfnum_data_t hfnum; \
644    dwc_otg_qtd_t *qtd; \
645    qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \
646    if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \
647        hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
648        switch (hfnum.b.frnum & 0x7) { \
649        case 7: \
650            _hcd->hfnum_7_samples_##_letter++; \
651            _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
652            break; \
653        case 0: \
654            _hcd->hfnum_0_samples_##_letter++; \
655            _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
656            break; \
657        default: \
658            _hcd->hfnum_other_samples_##_letter++; \
659            _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \
660            break; \
661        } \
662    } \
663}
664#else
665#define dwc_sample_frrem(_hcd, _qh, _letter)
666#endif
667#endif
668#endif /* DWC_DEVICE_ONLY */
669

Archive Download this file



interactive