| 1 | /* ========================================================================== |
| 2 | * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_intr.c $ |
| 3 | * $Revision: 1.6.2.1 $ |
| 4 | * $Date: 2009-04-22 03:48:22 $ |
| 5 | * $Change: 1117667 $ |
| 6 | * |
| 7 | * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, |
| 8 | * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless |
| 9 | * otherwise expressly agreed to in writing between Synopsys and you. |
| 10 | * |
| 11 | * The Software IS NOT an item of Licensed Software or Licensed Product under |
| 12 | * any End User Software License Agreement or Agreement for Licensed Product |
| 13 | * with Synopsys or any supplement thereto. You are permitted to use and |
| 14 | * redistribute this Software in source and binary forms, with or without |
| 15 | * modification, provided that redistributions of source code must retain this |
| 16 | * notice. You may not view, use, disclose, copy or distribute this file or |
| 17 | * any information contained herein except pursuant to this license grant from |
| 18 | * Synopsys. If you do not agree with this notice, including the disclaimer |
| 19 | * below, then you are not authorized to use the Software. |
| 20 | * |
| 21 | * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS |
| 22 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 24 | * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, |
| 25 | * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 26 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 27 | * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 28 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH |
| 31 | * DAMAGE. |
| 32 | * ========================================================================== */ |
| 33 | #ifndef DWC_DEVICE_ONLY |
| 34 | |
| 35 | #include <linux/version.h> |
| 36 | |
| 37 | #include "dwc_otg_driver.h" |
| 38 | #include "dwc_otg_hcd.h" |
| 39 | #include "dwc_otg_regs.h" |
| 40 | |
| 41 | /** @file |
| 42 | * This file contains the implementation of the HCD Interrupt handlers. |
| 43 | */ |
| 44 | |
| 45 | /** This function handles interrupts for the HCD. */ |
| 46 | int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd) |
| 47 | { |
| 48 | int retval = 0; |
| 49 | |
| 50 | dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if; |
| 51 | gintsts_data_t gintsts; |
| 52 | #ifdef DEBUG |
| 53 | dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; |
| 54 | #endif |
| 55 | |
| 56 | /* Check if HOST Mode */ |
| 57 | if (dwc_otg_is_host_mode(core_if)) { |
| 58 | gintsts.d32 = dwc_otg_read_core_intr(core_if); |
| 59 | if (!gintsts.d32) { |
| 60 | return 0; |
| 61 | } |
| 62 | |
| 63 | #ifdef DEBUG |
| 64 | /* Don't print debug message in the interrupt handler on SOF */ |
| 65 | # ifndef DEBUG_SOF |
| 66 | if (gintsts.d32 != DWC_SOF_INTR_MASK) |
| 67 | # endif |
| 68 | DWC_DEBUGPL(DBG_HCD, "\n"); |
| 69 | #endif |
| 70 | |
| 71 | #ifdef DEBUG |
| 72 | # ifndef DEBUG_SOF |
| 73 | if (gintsts.d32 != DWC_SOF_INTR_MASK) |
| 74 | # endif |
| 75 | DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32); |
| 76 | #endif |
| 77 | if (gintsts.b.usbreset) { |
| 78 | DWC_PRINT("Usb Reset In Host Mode\n"); |
| 79 | } |
| 80 | |
| 81 | |
| 82 | if (gintsts.b.sofintr) { |
| 83 | retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd); |
| 84 | } |
| 85 | if (gintsts.b.rxstsqlvl) { |
| 86 | retval |= dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd); |
| 87 | } |
| 88 | if (gintsts.b.nptxfempty) { |
| 89 | retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd); |
| 90 | } |
| 91 | if (gintsts.b.i2cintr) { |
| 92 | /** @todo Implement i2cintr handler. */ |
| 93 | } |
| 94 | if (gintsts.b.portintr) { |
| 95 | retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd); |
| 96 | } |
| 97 | if (gintsts.b.hcintr) { |
| 98 | retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd); |
| 99 | } |
| 100 | if (gintsts.b.ptxfempty) { |
| 101 | retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd); |
| 102 | } |
| 103 | #ifdef DEBUG |
| 104 | # ifndef DEBUG_SOF |
| 105 | if (gintsts.d32 != DWC_SOF_INTR_MASK) |
| 106 | # endif |
| 107 | { |
| 108 | DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n"); |
| 109 | DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n", |
| 110 | dwc_read_reg32(&global_regs->gintsts)); |
| 111 | DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n", |
| 112 | dwc_read_reg32(&global_regs->gintmsk)); |
| 113 | } |
| 114 | #endif |
| 115 | |
| 116 | #ifdef DEBUG |
| 117 | # ifndef DEBUG_SOF |
| 118 | if (gintsts.d32 != DWC_SOF_INTR_MASK) |
| 119 | # endif |
| 120 | DWC_DEBUGPL(DBG_HCD, "\n"); |
| 121 | #endif |
| 122 | |
| 123 | } |
| 124 | |
| 125 | S3C2410X_CLEAR_EINTPEND(); |
| 126 | |
| 127 | return retval; |
| 128 | } |
| 129 | |
| 130 | #ifdef DWC_TRACK_MISSED_SOFS |
| 131 | #warning Compiling code to track missed SOFs |
| 132 | #define FRAME_NUM_ARRAY_SIZE 1000 |
| 133 | /** |
| 134 | * This function is for debug only. |
| 135 | */ |
| 136 | static inline void track_missed_sofs(uint16_t curr_frame_number) |
| 137 | { |
| 138 | static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE]; |
| 139 | static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE]; |
| 140 | static int frame_num_idx = 0; |
| 141 | static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM; |
| 142 | static int dumped_frame_num_array = 0; |
| 143 | |
| 144 | if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) { |
| 145 | if (((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != curr_frame_number) { |
| 146 | frame_num_array[frame_num_idx] = curr_frame_number; |
| 147 | last_frame_num_array[frame_num_idx++] = last_frame_num; |
| 148 | } |
| 149 | } else if (!dumped_frame_num_array) { |
| 150 | int i; |
| 151 | printk(KERN_EMERG USB_DWC "Frame Last Frame\n"); |
| 152 | printk(KERN_EMERG USB_DWC "----- ----------\n"); |
| 153 | for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) { |
| 154 | printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n", |
| 155 | frame_num_array[i], last_frame_num_array[i]); |
| 156 | } |
| 157 | dumped_frame_num_array = 1; |
| 158 | } |
| 159 | last_frame_num = curr_frame_number; |
| 160 | } |
| 161 | #endif |
| 162 | |
| 163 | /** |
| 164 | * Handles the start-of-frame interrupt in host mode. Non-periodic |
| 165 | * transactions may be queued to the DWC_otg controller for the current |
| 166 | * (micro)frame. Periodic transactions may be queued to the controller for the |
| 167 | * next (micro)frame. |
| 168 | */ |
| 169 | int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *hcd) |
| 170 | { |
| 171 | hfnum_data_t hfnum; |
| 172 | struct list_head *qh_entry; |
| 173 | dwc_otg_qh_t *qh; |
| 174 | dwc_otg_transaction_type_e tr_type; |
| 175 | gintsts_data_t gintsts = {.d32 = 0}; |
| 176 | |
| 177 | hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum); |
| 178 | |
| 179 | #ifdef DEBUG_SOF |
| 180 | DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n"); |
| 181 | #endif |
| 182 | hcd->frame_number = hfnum.b.frnum; |
| 183 | |
| 184 | #ifdef DEBUG |
| 185 | hcd->frrem_accum += hfnum.b.frrem; |
| 186 | hcd->frrem_samples++; |
| 187 | #endif |
| 188 | |
| 189 | #ifdef DWC_TRACK_MISSED_SOFS |
| 190 | track_missed_sofs(hcd->frame_number); |
| 191 | #endif |
| 192 | |
| 193 | /* Determine whether any periodic QHs should be executed. */ |
| 194 | qh_entry = hcd->periodic_sched_inactive.next; |
| 195 | while (qh_entry != &hcd->periodic_sched_inactive) { |
| 196 | qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry); |
| 197 | qh_entry = qh_entry->next; |
| 198 | if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) { |
| 199 | /* |
| 200 | * Move QH to the ready list to be executed next |
| 201 | * (micro)frame. |
| 202 | */ |
| 203 | list_move(&qh->qh_list_entry, &hcd->periodic_sched_ready); |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | tr_type = dwc_otg_hcd_select_transactions(hcd); |
| 208 | if (tr_type != DWC_OTG_TRANSACTION_NONE) { |
| 209 | dwc_otg_hcd_queue_transactions(hcd, tr_type); |
| 210 | } |
| 211 | |
| 212 | /* Clear interrupt */ |
| 213 | gintsts.b.sofintr = 1; |
| 214 | dwc_write_reg32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32); |
| 215 | |
| 216 | return 1; |
| 217 | } |
| 218 | |
| 219 | /** Handles the Rx Status Queue Level Interrupt, which indicates that there is at |
| 220 | * least one packet in the Rx FIFO. The packets are moved from the FIFO to |
| 221 | * memory if the DWC_otg controller is operating in Slave mode. */ |
| 222 | int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd) |
| 223 | { |
| 224 | host_grxsts_data_t grxsts; |
| 225 | dwc_hc_t *hc = NULL; |
| 226 | |
| 227 | DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n"); |
| 228 | |
| 229 | grxsts.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp); |
| 230 | |
| 231 | hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum]; |
| 232 | |
| 233 | /* Packet Status */ |
| 234 | DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum); |
| 235 | DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt); |
| 236 | DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start); |
| 237 | DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts); |
| 238 | |
| 239 | switch (grxsts.b.pktsts) { |
| 240 | case DWC_GRXSTS_PKTSTS_IN: |
| 241 | /* Read the data into the host buffer. */ |
| 242 | if (grxsts.b.bcnt > 0) { |
| 243 | dwc_otg_read_packet(dwc_otg_hcd->core_if, |
| 244 | hc->xfer_buff, |
| 245 | grxsts.b.bcnt); |
| 246 | |
| 247 | /* Update the HC fields for the next packet received. */ |
| 248 | hc->xfer_count += grxsts.b.bcnt; |
| 249 | hc->xfer_buff += grxsts.b.bcnt; |
| 250 | } |
| 251 | |
| 252 | case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: |
| 253 | case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR: |
| 254 | case DWC_GRXSTS_PKTSTS_CH_HALTED: |
| 255 | /* Handled in interrupt, just ignore data */ |
| 256 | break; |
| 257 | default: |
| 258 | DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts); |
| 259 | break; |
| 260 | } |
| 261 | |
| 262 | return 1; |
| 263 | } |
| 264 | |
| 265 | /** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More |
| 266 | * data packets may be written to the FIFO for OUT transfers. More requests |
| 267 | * may be written to the non-periodic request queue for IN transfers. This |
| 268 | * interrupt is enabled only in Slave mode. */ |
| 269 | int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd) |
| 270 | { |
| 271 | DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n"); |
| 272 | dwc_otg_hcd_queue_transactions(dwc_otg_hcd, |
| 273 | DWC_OTG_TRANSACTION_NON_PERIODIC); |
| 274 | return 1; |
| 275 | } |
| 276 | |
| 277 | /** This interrupt occurs when the periodic Tx FIFO is half-empty. More data |
| 278 | * packets may be written to the FIFO for OUT transfers. More requests may be |
| 279 | * written to the periodic request queue for IN transfers. This interrupt is |
| 280 | * enabled only in Slave mode. */ |
| 281 | int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd) |
| 282 | { |
| 283 | DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n"); |
| 284 | dwc_otg_hcd_queue_transactions(dwc_otg_hcd, |
| 285 | DWC_OTG_TRANSACTION_PERIODIC); |
| 286 | return 1; |
| 287 | } |
| 288 | |
| 289 | /** There are multiple conditions that can cause a port interrupt. This function |
| 290 | * determines which interrupt conditions have occurred and handles them |
| 291 | * appropriately. */ |
| 292 | int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd) |
| 293 | { |
| 294 | int retval = 0; |
| 295 | hprt0_data_t hprt0; |
| 296 | hprt0_data_t hprt0_modify; |
| 297 | |
| 298 | hprt0.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0); |
| 299 | hprt0_modify.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0); |
| 300 | |
| 301 | /* Clear appropriate bits in HPRT0 to clear the interrupt bit in |
| 302 | * GINTSTS */ |
| 303 | |
| 304 | hprt0_modify.b.prtena = 0; |
| 305 | hprt0_modify.b.prtconndet = 0; |
| 306 | hprt0_modify.b.prtenchng = 0; |
| 307 | hprt0_modify.b.prtovrcurrchng = 0; |
| 308 | |
| 309 | /* Port Connect Detected |
| 310 | * Set flag and clear if detected */ |
| 311 | if (hprt0.b.prtconndet) { |
| 312 | DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x " |
| 313 | "Port Connect Detected--\n", hprt0.d32); |
| 314 | dwc_otg_hcd->flags.b.port_connect_status_change = 1; |
| 315 | dwc_otg_hcd->flags.b.port_connect_status = 1; |
| 316 | hprt0_modify.b.prtconndet = 1; |
| 317 | |
| 318 | /* B-Device has connected, Delete the connection timer. */ |
| 319 | del_timer( &dwc_otg_hcd->conn_timer ); |
| 320 | |
| 321 | /* The Hub driver asserts a reset when it sees port connect |
| 322 | * status change flag */ |
| 323 | retval |= 1; |
| 324 | } |
| 325 | |
| 326 | /* Port Enable Changed |
| 327 | * Clear if detected - Set internal flag if disabled */ |
| 328 | if (hprt0.b.prtenchng) { |
| 329 | DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " |
| 330 | "Port Enable Changed--\n", hprt0.d32); |
| 331 | hprt0_modify.b.prtenchng = 1; |
| 332 | if (hprt0.b.prtena == 1) { |
| 333 | int do_reset = 0; |
| 334 | dwc_otg_core_params_t *params = dwc_otg_hcd->core_if->core_params; |
| 335 | dwc_otg_core_global_regs_t *global_regs = dwc_otg_hcd->core_if->core_global_regs; |
| 336 | dwc_otg_host_if_t *host_if = dwc_otg_hcd->core_if->host_if; |
| 337 | |
| 338 | /* Check if we need to adjust the PHY clock speed for |
| 339 | * low power and adjust it */ |
| 340 | if (params->host_support_fs_ls_low_power) { |
| 341 | gusbcfg_data_t usbcfg; |
| 342 | |
| 343 | usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); |
| 344 | |
| 345 | if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED || |
| 346 | hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED) { |
| 347 | /* |
| 348 | * Low power |
| 349 | */ |
| 350 | hcfg_data_t hcfg; |
| 351 | if (usbcfg.b.phylpwrclksel == 0) { |
| 352 | /* Set PHY low power clock select for FS/LS devices */ |
| 353 | usbcfg.b.phylpwrclksel = 1; |
| 354 | dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); |
| 355 | do_reset = 1; |
| 356 | } |
| 357 | |
| 358 | hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg); |
| 359 | |
| 360 | if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED && |
| 361 | params->host_ls_low_power_phy_clk == |
| 362 | DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ) { |
| 363 | /* 6 MHZ */ |
| 364 | DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n"); |
| 365 | if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) { |
| 366 | hcfg.b.fslspclksel = DWC_HCFG_6_MHZ; |
| 367 | dwc_write_reg32(&host_if->host_global_regs->hcfg, |
| 368 | hcfg.d32); |
| 369 | do_reset = 1; |
| 370 | } |
| 371 | } else { |
| 372 | /* 48 MHZ */ |
| 373 | DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n"); |
| 374 | if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) { |
| 375 | hcfg.b.fslspclksel = DWC_HCFG_48_MHZ; |
| 376 | dwc_write_reg32(&host_if->host_global_regs->hcfg, |
| 377 | hcfg.d32); |
| 378 | do_reset = 1; |
| 379 | } |
| 380 | } |
| 381 | } else { |
| 382 | /* |
| 383 | * Not low power |
| 384 | */ |
| 385 | if (usbcfg.b.phylpwrclksel == 1) { |
| 386 | usbcfg.b.phylpwrclksel = 0; |
| 387 | dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); |
| 388 | do_reset = 1; |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | if (do_reset) { |
| 393 | tasklet_schedule(dwc_otg_hcd->reset_tasklet); |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | if (!do_reset) { |
| 398 | /* Port has been enabled set the reset change flag */ |
| 399 | dwc_otg_hcd->flags.b.port_reset_change = 1; |
| 400 | } |
| 401 | } else { |
| 402 | dwc_otg_hcd->flags.b.port_enable_change = 1; |
| 403 | } |
| 404 | retval |= 1; |
| 405 | } |
| 406 | |
| 407 | /** Overcurrent Change Interrupt */ |
| 408 | if (hprt0.b.prtovrcurrchng) { |
| 409 | DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " |
| 410 | "Port Overcurrent Changed--\n", hprt0.d32); |
| 411 | dwc_otg_hcd->flags.b.port_over_current_change = 1; |
| 412 | hprt0_modify.b.prtovrcurrchng = 1; |
| 413 | retval |= 1; |
| 414 | } |
| 415 | |
| 416 | /* Clear Port Interrupts */ |
| 417 | dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32); |
| 418 | |
| 419 | return retval; |
| 420 | } |
| 421 | |
| 422 | /** This interrupt indicates that one or more host channels has a pending |
| 423 | * interrupt. There are multiple conditions that can cause each host channel |
| 424 | * interrupt. This function determines which conditions have occurred for each |
| 425 | * host channel interrupt and handles them appropriately. */ |
| 426 | int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd) |
| 427 | { |
| 428 | int i; |
| 429 | int retval = 0; |
| 430 | haint_data_t haint; |
| 431 | |
| 432 | /* Clear appropriate bits in HCINTn to clear the interrupt bit in |
| 433 | * GINTSTS */ |
| 434 | |
| 435 | haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if); |
| 436 | |
| 437 | for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) { |
| 438 | if (haint.b2.chint & (1 << i)) { |
| 439 | retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i); |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | return retval; |
| 444 | } |
| 445 | |
| 446 | /* Macro used to clear one channel interrupt */ |
| 447 | #define clear_hc_int(_hc_regs_, _intr_) \ |
| 448 | do { \ |
| 449 | hcint_data_t hcint_clear = {.d32 = 0}; \ |
| 450 | hcint_clear.b._intr_ = 1; \ |
| 451 | dwc_write_reg32(&(_hc_regs_)->hcint, hcint_clear.d32); \ |
| 452 | } while (0) |
| 453 | |
| 454 | /* |
| 455 | * Macro used to disable one channel interrupt. Channel interrupts are |
| 456 | * disabled when the channel is halted or released by the interrupt handler. |
| 457 | * There is no need to handle further interrupts of that type until the |
| 458 | * channel is re-assigned. In fact, subsequent handling may cause crashes |
| 459 | * because the channel structures are cleaned up when the channel is released. |
| 460 | */ |
| 461 | #define disable_hc_int(_hc_regs_, _intr_) \ |
| 462 | do { \ |
| 463 | hcintmsk_data_t hcintmsk = {.d32 = 0}; \ |
| 464 | hcintmsk.b._intr_ = 1; \ |
| 465 | dwc_modify_reg32(&(_hc_regs_)->hcintmsk, hcintmsk.d32, 0); \ |
| 466 | } while (0) |
| 467 | |
| 468 | /** |
| 469 | * Gets the actual length of a transfer after the transfer halts. _halt_status |
| 470 | * holds the reason for the halt. |
| 471 | * |
| 472 | * For IN transfers where halt_status is DWC_OTG_HC_XFER_COMPLETE, |
| 473 | * *short_read is set to 1 upon return if less than the requested |
| 474 | * number of bytes were transferred. Otherwise, *short_read is set to 0 upon |
| 475 | * return. short_read may also be NULL on entry, in which case it remains |
| 476 | * unchanged. |
| 477 | */ |
| 478 | static uint32_t get_actual_xfer_length(dwc_hc_t *hc, |
| 479 | dwc_otg_hc_regs_t *hc_regs, |
| 480 | dwc_otg_qtd_t *qtd, |
| 481 | dwc_otg_halt_status_e halt_status, |
| 482 | int *short_read) |
| 483 | { |
| 484 | hctsiz_data_t hctsiz; |
| 485 | uint32_t length; |
| 486 | |
| 487 | if (short_read != NULL) { |
| 488 | *short_read = 0; |
| 489 | } |
| 490 | hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); |
| 491 | |
| 492 | if (halt_status == DWC_OTG_HC_XFER_COMPLETE) { |
| 493 | if (hc->ep_is_in) { |
| 494 | length = hc->xfer_len - hctsiz.b.xfersize; |
| 495 | if (short_read != NULL) { |
| 496 | *short_read = (hctsiz.b.xfersize != 0); |
| 497 | } |
| 498 | } else if (hc->qh->do_split) { |
| 499 | length = qtd->ssplit_out_xfer_count; |
| 500 | } else { |
| 501 | length = hc->xfer_len; |
| 502 | } |
| 503 | } else { |
| 504 | /* |
| 505 | * Must use the hctsiz.pktcnt field to determine how much data |
| 506 | * has been transferred. This field reflects the number of |
| 507 | * packets that have been transferred via the USB. This is |
| 508 | * always an integral number of packets if the transfer was |
| 509 | * halted before its normal completion. (Can't use the |
| 510 | * hctsiz.xfersize field because that reflects the number of |
| 511 | * bytes transferred via the AHB, not the USB). |
| 512 | */ |
| 513 | length = (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet; |
| 514 | } |
| 515 | |
| 516 | return length; |
| 517 | } |
| 518 | |
| 519 | /** |
| 520 | * Updates the state of the URB after a Transfer Complete interrupt on the |
| 521 | * host channel. Updates the actual_length field of the URB based on the |
| 522 | * number of bytes transferred via the host channel. Sets the URB status |
| 523 | * if the data transfer is finished. |
| 524 | * |
| 525 | * @return 1 if the data transfer specified by the URB is completely finished, |
| 526 | * 0 otherwise. |
| 527 | */ |
| 528 | static int update_urb_state_xfer_comp(dwc_hc_t *hc, |
| 529 | dwc_otg_hc_regs_t *hc_regs, |
| 530 | struct urb *urb, |
| 531 | dwc_otg_qtd_t *qtd) |
| 532 | { |
| 533 | int xfer_done = 0; |
| 534 | int short_read = 0; |
| 535 | int overflow_read=0; |
| 536 | uint32_t len = 0; |
| 537 | int max_packet; |
| 538 | |
| 539 | len = get_actual_xfer_length(hc, hc_regs, qtd, |
| 540 | DWC_OTG_HC_XFER_COMPLETE, |
| 541 | &short_read); |
| 542 | |
| 543 | /* Data overflow case: by Steven */ |
| 544 | if (len > urb->transfer_buffer_length) { |
| 545 | len = urb->transfer_buffer_length; |
| 546 | overflow_read = 1; |
| 547 | } |
| 548 | |
| 549 | /* non DWORD-aligned buffer case handling. */ |
| 550 | if (((uint32_t)hc->xfer_buff & 0x3) && len && hc->qh->dw_align_buf && hc->ep_is_in) { |
| 551 | memcpy(urb->transfer_buffer + urb->actual_length, hc->qh->dw_align_buf, len); |
| 552 | } |
| 553 | urb->actual_length +=len; |
| 554 | |
| 555 | max_packet = usb_maxpacket(urb->dev, urb->pipe, !usb_pipein(urb->pipe)); |
| 556 | if((len) && usb_pipebulk(urb->pipe) && |
| 557 | (urb->transfer_flags & URB_ZERO_PACKET) && |
| 558 | (urb->actual_length == urb->transfer_buffer_length) && |
| 559 | (!(urb->transfer_buffer_length % max_packet))) { |
| 560 | } else if (short_read || urb->actual_length == urb->transfer_buffer_length) { |
| 561 | xfer_done = 1; |
| 562 | if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK)) { |
| 563 | urb->status = -EREMOTEIO; |
| 564 | } else if (overflow_read) { |
| 565 | urb->status = -EOVERFLOW; |
| 566 | } else { |
| 567 | urb->status = 0; |
| 568 | } |
| 569 | } |
| 570 | |
| 571 | #ifdef DEBUG |
| 572 | { |
| 573 | hctsiz_data_t hctsiz; |
| 574 | hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); |
| 575 | DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", |
| 576 | __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num); |
| 577 | DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", hc->xfer_len); |
| 578 | DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", hctsiz.b.xfersize); |
| 579 | DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n", |
| 580 | urb->transfer_buffer_length); |
| 581 | DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length); |
| 582 | DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n", |
| 583 | short_read, xfer_done); |
| 584 | } |
| 585 | #endif |
| 586 | |
| 587 | return xfer_done; |
| 588 | } |
| 589 | |
| 590 | /* |
| 591 | * Save the starting data toggle for the next transfer. The data toggle is |
| 592 | * saved in the QH for non-control transfers and it's saved in the QTD for |
| 593 | * control transfers. |
| 594 | */ |
| 595 | static void save_data_toggle(dwc_hc_t *hc, |
| 596 | dwc_otg_hc_regs_t *hc_regs, |
| 597 | dwc_otg_qtd_t *qtd) |
| 598 | { |
| 599 | hctsiz_data_t hctsiz; |
| 600 | hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); |
| 601 | |
| 602 | if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) { |
| 603 | dwc_otg_qh_t *qh = hc->qh; |
| 604 | if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) { |
| 605 | qh->data_toggle = DWC_OTG_HC_PID_DATA0; |
| 606 | } else { |
| 607 | qh->data_toggle = DWC_OTG_HC_PID_DATA1; |
| 608 | } |
| 609 | } else { |
| 610 | if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) { |
| 611 | qtd->data_toggle = DWC_OTG_HC_PID_DATA0; |
| 612 | } else { |
| 613 | qtd->data_toggle = DWC_OTG_HC_PID_DATA1; |
| 614 | } |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | /** |
| 619 | * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic |
| 620 | * QHs, removes the QH from the active non-periodic schedule. If any QTDs are |
| 621 | * still linked to the QH, the QH is added to the end of the inactive |
| 622 | * non-periodic schedule. For periodic QHs, removes the QH from the periodic |
| 623 | * schedule if no more QTDs are linked to the QH. |
| 624 | */ |
| 625 | static void deactivate_qh(dwc_otg_hcd_t *hcd, |
| 626 | dwc_otg_qh_t *qh, |
| 627 | int free_qtd) |
| 628 | { |
| 629 | int continue_split = 0; |
| 630 | dwc_otg_qtd_t *qtd; |
| 631 | |
| 632 | DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd); |
| 633 | |
| 634 | qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); |
| 635 | |
| 636 | if (qtd->complete_split) { |
| 637 | continue_split = 1; |
| 638 | } else if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID || |
| 639 | qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END) { |
| 640 | continue_split = 1; |
| 641 | } |
| 642 | |
| 643 | if (free_qtd) { |
| 644 | dwc_otg_hcd_qtd_remove_and_free(hcd, qtd); |
| 645 | continue_split = 0; |
| 646 | } |
| 647 | |
| 648 | qh->channel = NULL; |
| 649 | qh->qtd_in_process = NULL; |
| 650 | dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split); |
| 651 | } |
| 652 | |
| 653 | /** |
| 654 | * Updates the state of an Isochronous URB when the transfer is stopped for |
| 655 | * any reason. The fields of the current entry in the frame descriptor array |
| 656 | * are set based on the transfer state and the input _halt_status. Completes |
| 657 | * the Isochronous URB if all the URB frames have been completed. |
| 658 | * |
| 659 | * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be |
| 660 | * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE. |
| 661 | */ |
| 662 | static dwc_otg_halt_status_e |
| 663 | update_isoc_urb_state(dwc_otg_hcd_t *hcd, |
| 664 | dwc_hc_t *hc, |
| 665 | dwc_otg_hc_regs_t *hc_regs, |
| 666 | dwc_otg_qtd_t *qtd, |
| 667 | dwc_otg_halt_status_e halt_status) |
| 668 | { |
| 669 | struct urb *urb = qtd->urb; |
| 670 | dwc_otg_halt_status_e ret_val = halt_status; |
| 671 | struct usb_iso_packet_descriptor *frame_desc; |
| 672 | |
| 673 | frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index]; |
| 674 | switch (halt_status) { |
| 675 | case DWC_OTG_HC_XFER_COMPLETE: |
| 676 | frame_desc->status = 0; |
| 677 | frame_desc->actual_length = |
| 678 | get_actual_xfer_length(hc, hc_regs, qtd, |
| 679 | halt_status, NULL); |
| 680 | |
| 681 | /* non DWORD-aligned buffer case handling. */ |
| 682 | if (frame_desc->actual_length && ((uint32_t)hc->xfer_buff & 0x3) && |
| 683 | hc->qh->dw_align_buf && hc->ep_is_in) { |
| 684 | memcpy(urb->transfer_buffer + frame_desc->offset + qtd->isoc_split_offset, |
| 685 | hc->qh->dw_align_buf, frame_desc->actual_length); |
| 686 | |
| 687 | } |
| 688 | |
| 689 | break; |
| 690 | case DWC_OTG_HC_XFER_FRAME_OVERRUN: |
| 691 | printk("DWC_OTG_HC_XFER_FRAME_OVERRUN: %d\n", halt_status); |
| 692 | urb->error_count++; |
| 693 | if (hc->ep_is_in) { |
| 694 | frame_desc->status = -ENOSR; |
| 695 | } else { |
| 696 | frame_desc->status = -ECOMM; |
| 697 | } |
| 698 | frame_desc->actual_length = 0; |
| 699 | break; |
| 700 | case DWC_OTG_HC_XFER_BABBLE_ERR: |
| 701 | printk("DWC_OTG_HC_XFER_BABBLE_ERR: %d\n", halt_status); |
| 702 | urb->error_count++; |
| 703 | frame_desc->status = -EOVERFLOW; |
| 704 | /* Don't need to update actual_length in this case. */ |
| 705 | break; |
| 706 | case DWC_OTG_HC_XFER_XACT_ERR: |
| 707 | printk("DWC_OTG_HC_XFER_XACT_ERR: %d\n", halt_status); |
| 708 | urb->error_count++; |
| 709 | frame_desc->status = -EPROTO; |
| 710 | frame_desc->actual_length = |
| 711 | get_actual_xfer_length(hc, hc_regs, qtd, |
| 712 | halt_status, NULL); |
| 713 | |
| 714 | /* non DWORD-aligned buffer case handling. */ |
| 715 | if (frame_desc->actual_length && ((uint32_t)hc->xfer_buff & 0x3) && |
| 716 | hc->qh->dw_align_buf && hc->ep_is_in) { |
| 717 | memcpy(urb->transfer_buffer + frame_desc->offset + qtd->isoc_split_offset, |
| 718 | hc->qh->dw_align_buf, frame_desc->actual_length); |
| 719 | |
| 720 | } |
| 721 | break; |
| 722 | default: |
| 723 | |
| 724 | DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__, |
| 725 | halt_status); |
| 726 | BUG(); |
| 727 | break; |
| 728 | } |
| 729 | |
| 730 | if (++qtd->isoc_frame_index == urb->number_of_packets) { |
| 731 | /* |
| 732 | * urb->status is not used for isoc transfers. |
| 733 | * The individual frame_desc statuses are used instead. |
| 734 | */ |
| 735 | dwc_otg_hcd_complete_urb(hcd, urb, 0); |
| 736 | ret_val = DWC_OTG_HC_XFER_URB_COMPLETE; |
| 737 | } else { |
| 738 | ret_val = DWC_OTG_HC_XFER_COMPLETE; |
| 739 | } |
| 740 | |
| 741 | return ret_val; |
| 742 | } |
| 743 | |
| 744 | /** |
| 745 | * Releases a host channel for use by other transfers. Attempts to select and |
| 746 | * queue more transactions since at least one host channel is available. |
| 747 | * |
| 748 | * @param hcd The HCD state structure. |
| 749 | * @param hc The host channel to release. |
| 750 | * @param qtd The QTD associated with the host channel. This QTD may be freed |
| 751 | * if the transfer is complete or an error has occurred. |
| 752 | * @param halt_status Reason the channel is being released. This status |
| 753 | * determines the actions taken by this function. |
| 754 | */ |
| 755 | static void release_channel(dwc_otg_hcd_t *hcd, |
| 756 | dwc_hc_t *hc, |
| 757 | dwc_otg_qtd_t *qtd, |
| 758 | dwc_otg_halt_status_e halt_status) |
| 759 | { |
| 760 | dwc_otg_transaction_type_e tr_type; |
| 761 | int free_qtd; |
| 762 | |
| 763 | DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n", |
| 764 | __func__, hc->hc_num, halt_status); |
| 765 | |
| 766 | switch (halt_status) { |
| 767 | case DWC_OTG_HC_XFER_URB_COMPLETE: |
| 768 | free_qtd = 1; |
| 769 | break; |
| 770 | case DWC_OTG_HC_XFER_AHB_ERR: |
| 771 | case DWC_OTG_HC_XFER_STALL: |
| 772 | case DWC_OTG_HC_XFER_BABBLE_ERR: |
| 773 | free_qtd = 1; |
| 774 | break; |
| 775 | case DWC_OTG_HC_XFER_XACT_ERR: |
| 776 | if (qtd->error_count >= 3) { |
| 777 | DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n"); |
| 778 | free_qtd = 1; |
| 779 | qtd->urb->status = -EPROTO; |
| 780 | dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO); |
| 781 | } else { |
| 782 | free_qtd = 0; |
| 783 | } |
| 784 | break; |
| 785 | case DWC_OTG_HC_XFER_URB_DEQUEUE: |
| 786 | /* |
| 787 | * The QTD has already been removed and the QH has been |
| 788 | * deactivated. Don't want to do anything except release the |
| 789 | * host channel and try to queue more transfers. |
| 790 | */ |
| 791 | goto cleanup; |
| 792 | case DWC_OTG_HC_XFER_NO_HALT_STATUS: |
| 793 | DWC_ERROR("%s: No halt_status, channel %d\n", __func__, hc->hc_num); |
| 794 | free_qtd = 0; |
| 795 | break; |
| 796 | default: |
| 797 | free_qtd = 0; |
| 798 | break; |
| 799 | } |
| 800 | |
| 801 | deactivate_qh(hcd, hc->qh, free_qtd); |
| 802 | |
| 803 | cleanup: |
| 804 | /* |
| 805 | * Release the host channel for use by other transfers. The cleanup |
| 806 | * function clears the channel interrupt enables and conditions, so |
| 807 | * there's no need to clear the Channel Halted interrupt separately. |
| 808 | */ |
| 809 | dwc_otg_hc_cleanup(hcd->core_if, hc); |
| 810 | list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list); |
| 811 | |
| 812 | switch (hc->ep_type) { |
| 813 | case DWC_OTG_EP_TYPE_CONTROL: |
| 814 | case DWC_OTG_EP_TYPE_BULK: |
| 815 | hcd->non_periodic_channels--; |
| 816 | break; |
| 817 | |
| 818 | default: |
| 819 | /* |
| 820 | * Don't release reservations for periodic channels here. |
| 821 | * That's done when a periodic transfer is descheduled (i.e. |
| 822 | * when the QH is removed from the periodic schedule). |
| 823 | */ |
| 824 | break; |
| 825 | } |
| 826 | |
| 827 | /* Try to queue more transfers now that there's a free channel. */ |
| 828 | tr_type = dwc_otg_hcd_select_transactions(hcd); |
| 829 | if (tr_type != DWC_OTG_TRANSACTION_NONE) { |
| 830 | dwc_otg_hcd_queue_transactions(hcd, tr_type); |
| 831 | } |
| 832 | } |
| 833 | |
| 834 | /** |
| 835 | * Halts a host channel. If the channel cannot be halted immediately because |
| 836 | * the request queue is full, this function ensures that the FIFO empty |
| 837 | * interrupt for the appropriate queue is enabled so that the halt request can |
| 838 | * be queued when there is space in the request queue. |
| 839 | * |
| 840 | * This function may also be called in DMA mode. In that case, the channel is |
| 841 | * simply released since the core always halts the channel automatically in |
| 842 | * DMA mode. |
| 843 | */ |
| 844 | static void halt_channel(dwc_otg_hcd_t *hcd, |
| 845 | dwc_hc_t *hc, |
| 846 | dwc_otg_qtd_t *qtd, |
| 847 | dwc_otg_halt_status_e halt_status) |
| 848 | { |
| 849 | if (hcd->core_if->dma_enable) { |
| 850 | release_channel(hcd, hc, qtd, halt_status); |
| 851 | return; |
| 852 | } |
| 853 | |
| 854 | /* Slave mode processing... */ |
| 855 | dwc_otg_hc_halt(hcd->core_if, hc, halt_status); |
| 856 | |
| 857 | if (hc->halt_on_queue) { |
| 858 | gintmsk_data_t gintmsk = {.d32 = 0}; |
| 859 | dwc_otg_core_global_regs_t *global_regs; |
| 860 | global_regs = hcd->core_if->core_global_regs; |
| 861 | |
| 862 | if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || |
| 863 | hc->ep_type == DWC_OTG_EP_TYPE_BULK) { |
| 864 | /* |
| 865 | * Make sure the Non-periodic Tx FIFO empty interrupt |
| 866 | * is enabled so that the non-periodic schedule will |
| 867 | * be processed. |
| 868 | */ |
| 869 | gintmsk.b.nptxfempty = 1; |
| 870 | dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); |
| 871 | } else { |
| 872 | /* |
| 873 | * Move the QH from the periodic queued schedule to |
| 874 | * the periodic assigned schedule. This allows the |
| 875 | * halt to be queued when the periodic schedule is |
| 876 | * processed. |
| 877 | */ |
| 878 | list_move(&hc->qh->qh_list_entry, |
| 879 | &hcd->periodic_sched_assigned); |
| 880 | |
| 881 | /* |
| 882 | * Make sure the Periodic Tx FIFO Empty interrupt is |
| 883 | * enabled so that the periodic schedule will be |
| 884 | * processed. |
| 885 | */ |
| 886 | gintmsk.b.ptxfempty = 1; |
| 887 | dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); |
| 888 | } |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | /** |
| 893 | * Performs common cleanup for non-periodic transfers after a Transfer |
| 894 | * Complete interrupt. This function should be called after any endpoint type |
| 895 | * specific handling is finished to release the host channel. |
| 896 | */ |
| 897 | static void complete_non_periodic_xfer(dwc_otg_hcd_t *hcd, |
| 898 | dwc_hc_t *hc, |
| 899 | dwc_otg_hc_regs_t *hc_regs, |
| 900 | dwc_otg_qtd_t *qtd, |
| 901 | dwc_otg_halt_status_e halt_status) |
| 902 | { |
| 903 | hcint_data_t hcint; |
| 904 | |
| 905 | qtd->error_count = 0; |
| 906 | |
| 907 | hcint.d32 = dwc_read_reg32(&hc_regs->hcint); |
| 908 | if (hcint.b.nyet) { |
| 909 | /* |
| 910 | * Got a NYET on the last transaction of the transfer. This |
| 911 | * means that the endpoint should be in the PING state at the |
| 912 | * beginning of the next transfer. |
| 913 | */ |
| 914 | hc->qh->ping_state = 1; |
| 915 | clear_hc_int(hc_regs, nyet); |
| 916 | } |
| 917 | |
| 918 | /* |
| 919 | * Always halt and release the host channel to make it available for |
| 920 | * more transfers. There may still be more phases for a control |
| 921 | * transfer or more data packets for a bulk transfer at this point, |
| 922 | * but the host channel is still halted. A channel will be reassigned |
| 923 | * to the transfer when the non-periodic schedule is processed after |
| 924 | * the channel is released. This allows transactions to be queued |
| 925 | * properly via dwc_otg_hcd_queue_transactions, which also enables the |
| 926 | * Tx FIFO Empty interrupt if necessary. |
| 927 | */ |
| 928 | if (hc->ep_is_in) { |
| 929 | /* |
| 930 | * IN transfers in Slave mode require an explicit disable to |
| 931 | * halt the channel. (In DMA mode, this call simply releases |
| 932 | * the channel.) |
| 933 | */ |
| 934 | halt_channel(hcd, hc, qtd, halt_status); |
| 935 | } else { |
| 936 | /* |
| 937 | * The channel is automatically disabled by the core for OUT |
| 938 | * transfers in Slave mode. |
| 939 | */ |
| 940 | release_channel(hcd, hc, qtd, halt_status); |
| 941 | } |
| 942 | } |
| 943 | |
| 944 | /** |
| 945 | * Performs common cleanup for periodic transfers after a Transfer Complete |
| 946 | * interrupt. This function should be called after any endpoint type specific |
| 947 | * handling is finished to release the host channel. |
| 948 | */ |
| 949 | static void complete_periodic_xfer(dwc_otg_hcd_t *hcd, |
| 950 | dwc_hc_t *hc, |
| 951 | dwc_otg_hc_regs_t *hc_regs, |
| 952 | dwc_otg_qtd_t *qtd, |
| 953 | dwc_otg_halt_status_e halt_status) |
| 954 | { |
| 955 | hctsiz_data_t hctsiz; |
| 956 | qtd->error_count = 0; |
| 957 | |
| 958 | hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); |
| 959 | if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) { |
| 960 | /* Core halts channel in these cases. */ |
| 961 | release_channel(hcd, hc, qtd, halt_status); |
| 962 | } else { |
| 963 | /* Flush any outstanding requests from the Tx queue. */ |
| 964 | halt_channel(hcd, hc, qtd, halt_status); |
| 965 | } |
| 966 | } |
| 967 | |
| 968 | /** |
| 969 | * Handles a host channel Transfer Complete interrupt. This handler may be |
| 970 | * called in either DMA mode or Slave mode. |
| 971 | */ |
| 972 | static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *hcd, |
| 973 | dwc_hc_t *hc, |
| 974 | dwc_otg_hc_regs_t *hc_regs, |
| 975 | dwc_otg_qtd_t *qtd) |
| 976 | { |
| 977 | int urb_xfer_done; |
| 978 | dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE; |
| 979 | struct urb *urb = qtd->urb; |
| 980 | int pipe_type = usb_pipetype(urb->pipe); |
| 981 | |
| 982 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 983 | "Transfer Complete--\n", hc->hc_num); |
| 984 | |
| 985 | /* |
| 986 | * Handle xfer complete on CSPLIT. |
| 987 | */ |
| 988 | if (hc->qh->do_split) { |
| 989 | qtd->complete_split = 0; |
| 990 | } |
| 991 | |
| 992 | /* Update the QTD and URB states. */ |
| 993 | switch (pipe_type) { |
| 994 | case PIPE_CONTROL: |
| 995 | switch (qtd->control_phase) { |
| 996 | case DWC_OTG_CONTROL_SETUP: |
| 997 | if (urb->transfer_buffer_length > 0) { |
| 998 | qtd->control_phase = DWC_OTG_CONTROL_DATA; |
| 999 | } else { |
| 1000 | qtd->control_phase = DWC_OTG_CONTROL_STATUS; |
| 1001 | } |
| 1002 | DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n"); |
| 1003 | halt_status = DWC_OTG_HC_XFER_COMPLETE; |
| 1004 | break; |
| 1005 | case DWC_OTG_CONTROL_DATA: { |
| 1006 | urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd); |
| 1007 | if (urb_xfer_done) { |
| 1008 | qtd->control_phase = DWC_OTG_CONTROL_STATUS; |
| 1009 | DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n"); |
| 1010 | } else { |
| 1011 | save_data_toggle(hc, hc_regs, qtd); |
| 1012 | } |
| 1013 | halt_status = DWC_OTG_HC_XFER_COMPLETE; |
| 1014 | break; |
| 1015 | } |
| 1016 | case DWC_OTG_CONTROL_STATUS: |
| 1017 | DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n"); |
| 1018 | if (urb->status == -EINPROGRESS) { |
| 1019 | urb->status = 0; |
| 1020 | } |
| 1021 | dwc_otg_hcd_complete_urb(hcd, urb, urb->status); |
| 1022 | halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; |
| 1023 | break; |
| 1024 | } |
| 1025 | |
| 1026 | complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status); |
| 1027 | break; |
| 1028 | case PIPE_BULK: |
| 1029 | DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n"); |
| 1030 | urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd); |
| 1031 | if (urb_xfer_done) { |
| 1032 | dwc_otg_hcd_complete_urb(hcd, urb, urb->status); |
| 1033 | halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; |
| 1034 | } else { |
| 1035 | halt_status = DWC_OTG_HC_XFER_COMPLETE; |
| 1036 | } |
| 1037 | |
| 1038 | save_data_toggle(hc, hc_regs, qtd); |
| 1039 | complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status); |
| 1040 | break; |
| 1041 | case PIPE_INTERRUPT: |
| 1042 | DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n"); |
| 1043 | update_urb_state_xfer_comp(hc, hc_regs, urb, qtd); |
| 1044 | |
| 1045 | /* |
| 1046 | * Interrupt URB is done on the first transfer complete |
| 1047 | * interrupt. |
| 1048 | */ |
| 1049 | dwc_otg_hcd_complete_urb(hcd, urb, urb->status); |
| 1050 | save_data_toggle(hc, hc_regs, qtd); |
| 1051 | complete_periodic_xfer(hcd, hc, hc_regs, qtd, |
| 1052 | DWC_OTG_HC_XFER_URB_COMPLETE); |
| 1053 | break; |
| 1054 | case PIPE_ISOCHRONOUS: |
| 1055 | DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n"); |
| 1056 | if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) { |
| 1057 | halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd, |
| 1058 | DWC_OTG_HC_XFER_COMPLETE); |
| 1059 | } |
| 1060 | complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status); |
| 1061 | break; |
| 1062 | } |
| 1063 | |
| 1064 | disable_hc_int(hc_regs, xfercompl); |
| 1065 | |
| 1066 | return 1; |
| 1067 | } |
| 1068 | |
| 1069 | /** |
| 1070 | * Handles a host channel STALL interrupt. This handler may be called in |
| 1071 | * either DMA mode or Slave mode. |
| 1072 | */ |
| 1073 | static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *hcd, |
| 1074 | dwc_hc_t *hc, |
| 1075 | dwc_otg_hc_regs_t *hc_regs, |
| 1076 | dwc_otg_qtd_t *qtd) |
| 1077 | { |
| 1078 | struct urb *urb = qtd->urb; |
| 1079 | int pipe_type = usb_pipetype(urb->pipe); |
| 1080 | |
| 1081 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1082 | "STALL Received--\n", hc->hc_num); |
| 1083 | |
| 1084 | if (pipe_type == PIPE_CONTROL) { |
| 1085 | dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE); |
| 1086 | } |
| 1087 | |
| 1088 | if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) { |
| 1089 | dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE); |
| 1090 | /* |
| 1091 | * USB protocol requires resetting the data toggle for bulk |
| 1092 | * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT) |
| 1093 | * setup command is issued to the endpoint. Anticipate the |
| 1094 | * CLEAR_FEATURE command since a STALL has occurred and reset |
| 1095 | * the data toggle now. |
| 1096 | */ |
| 1097 | hc->qh->data_toggle = 0; |
| 1098 | } |
| 1099 | |
| 1100 | halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL); |
| 1101 | |
| 1102 | disable_hc_int(hc_regs, stall); |
| 1103 | |
| 1104 | return 1; |
| 1105 | } |
| 1106 | |
| 1107 | /* |
| 1108 | * Updates the state of the URB when a transfer has been stopped due to an |
| 1109 | * abnormal condition before the transfer completes. Modifies the |
| 1110 | * actual_length field of the URB to reflect the number of bytes that have |
| 1111 | * actually been transferred via the host channel. |
| 1112 | */ |
| 1113 | static void update_urb_state_xfer_intr(dwc_hc_t *hc, |
| 1114 | dwc_otg_hc_regs_t *hc_regs, |
| 1115 | struct urb *urb, |
| 1116 | dwc_otg_qtd_t *qtd, |
| 1117 | dwc_otg_halt_status_e halt_status) |
| 1118 | { |
| 1119 | uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd, |
| 1120 | halt_status, NULL); |
| 1121 | urb->actual_length += bytes_transferred; |
| 1122 | |
| 1123 | #ifdef DEBUG |
| 1124 | { |
| 1125 | hctsiz_data_t hctsiz; |
| 1126 | hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); |
| 1127 | DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", |
| 1128 | __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num); |
| 1129 | DWC_DEBUGPL(DBG_HCDV, " hc->start_pkt_count %d\n", hc->start_pkt_count); |
| 1130 | DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt); |
| 1131 | DWC_DEBUGPL(DBG_HCDV, " hc->max_packet %d\n", hc->max_packet); |
| 1132 | DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", bytes_transferred); |
| 1133 | DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length); |
| 1134 | DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n", |
| 1135 | urb->transfer_buffer_length); |
| 1136 | } |
| 1137 | #endif |
| 1138 | } |
| 1139 | |
| 1140 | /** |
| 1141 | * Handles a host channel NAK interrupt. This handler may be called in either |
| 1142 | * DMA mode or Slave mode. |
| 1143 | */ |
| 1144 | static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *hcd, |
| 1145 | dwc_hc_t *hc, |
| 1146 | dwc_otg_hc_regs_t *hc_regs, |
| 1147 | dwc_otg_qtd_t *qtd) |
| 1148 | { |
| 1149 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1150 | "NAK Received--\n", hc->hc_num); |
| 1151 | |
| 1152 | /* |
| 1153 | * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and |
| 1154 | * interrupt. Re-start the SSPLIT transfer. |
| 1155 | */ |
| 1156 | if (hc->do_split) { |
| 1157 | if (hc->complete_split) { |
| 1158 | qtd->error_count = 0; |
| 1159 | } |
| 1160 | qtd->complete_split = 0; |
| 1161 | halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK); |
| 1162 | goto handle_nak_done; |
| 1163 | } |
| 1164 | |
| 1165 | switch (usb_pipetype(qtd->urb->pipe)) { |
| 1166 | case PIPE_CONTROL: |
| 1167 | case PIPE_BULK: |
| 1168 | if (hcd->core_if->dma_enable && hc->ep_is_in) { |
| 1169 | /* |
| 1170 | * NAK interrupts are enabled on bulk/control IN |
| 1171 | * transfers in DMA mode for the sole purpose of |
| 1172 | * resetting the error count after a transaction error |
| 1173 | * occurs. The core will continue transferring data. |
| 1174 | */ |
| 1175 | qtd->error_count = 0; |
| 1176 | goto handle_nak_done; |
| 1177 | } |
| 1178 | |
| 1179 | /* |
| 1180 | * NAK interrupts normally occur during OUT transfers in DMA |
| 1181 | * or Slave mode. For IN transfers, more requests will be |
| 1182 | * queued as request queue space is available. |
| 1183 | */ |
| 1184 | qtd->error_count = 0; |
| 1185 | |
| 1186 | if (!hc->qh->ping_state) { |
| 1187 | update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, |
| 1188 | qtd, DWC_OTG_HC_XFER_NAK); |
| 1189 | save_data_toggle(hc, hc_regs, qtd); |
| 1190 | if (qtd->urb->dev->speed == USB_SPEED_HIGH) { |
| 1191 | hc->qh->ping_state = 1; |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | /* |
| 1196 | * Halt the channel so the transfer can be re-started from |
| 1197 | * the appropriate point or the PING protocol will |
| 1198 | * start/continue. |
| 1199 | */ |
| 1200 | halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK); |
| 1201 | break; |
| 1202 | case PIPE_INTERRUPT: |
| 1203 | qtd->error_count = 0; |
| 1204 | halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK); |
| 1205 | break; |
| 1206 | case PIPE_ISOCHRONOUS: |
| 1207 | /* Should never get called for isochronous transfers. */ |
| 1208 | BUG(); |
| 1209 | break; |
| 1210 | } |
| 1211 | |
| 1212 | handle_nak_done: |
| 1213 | disable_hc_int(hc_regs, nak); |
| 1214 | |
| 1215 | return 1; |
| 1216 | } |
| 1217 | |
| 1218 | /** |
| 1219 | * Handles a host channel ACK interrupt. This interrupt is enabled when |
| 1220 | * performing the PING protocol in Slave mode, when errors occur during |
| 1221 | * either Slave mode or DMA mode, and during Start Split transactions. |
| 1222 | */ |
| 1223 | static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *hcd, |
| 1224 | dwc_hc_t *hc, |
| 1225 | dwc_otg_hc_regs_t *hc_regs, |
| 1226 | dwc_otg_qtd_t *qtd) |
| 1227 | { |
| 1228 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1229 | "ACK Received--\n", hc->hc_num); |
| 1230 | |
| 1231 | if (hc->do_split) { |
| 1232 | /* |
| 1233 | * Handle ACK on SSPLIT. |
| 1234 | * ACK should not occur in CSPLIT. |
| 1235 | */ |
| 1236 | if (!hc->ep_is_in && hc->data_pid_start != DWC_OTG_HC_PID_SETUP) { |
| 1237 | qtd->ssplit_out_xfer_count = hc->xfer_len; |
| 1238 | } |
| 1239 | if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) { |
| 1240 | /* Don't need complete for isochronous out transfers. */ |
| 1241 | qtd->complete_split = 1; |
| 1242 | } |
| 1243 | |
| 1244 | /* ISOC OUT */ |
| 1245 | if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) { |
| 1246 | switch (hc->xact_pos) { |
| 1247 | case DWC_HCSPLIT_XACTPOS_ALL: |
| 1248 | break; |
| 1249 | case DWC_HCSPLIT_XACTPOS_END: |
| 1250 | qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; |
| 1251 | qtd->isoc_split_offset = 0; |
| 1252 | break; |
| 1253 | case DWC_HCSPLIT_XACTPOS_BEGIN: |
| 1254 | case DWC_HCSPLIT_XACTPOS_MID: |
| 1255 | /* |
| 1256 | * For BEGIN or MID, calculate the length for |
| 1257 | * the next microframe to determine the correct |
| 1258 | * SSPLIT token, either MID or END. |
| 1259 | */ |
| 1260 | { |
| 1261 | struct usb_iso_packet_descriptor *frame_desc; |
| 1262 | |
| 1263 | frame_desc = &qtd->urb->iso_frame_desc[qtd->isoc_frame_index]; |
| 1264 | qtd->isoc_split_offset += 188; |
| 1265 | |
| 1266 | if ((frame_desc->length - qtd->isoc_split_offset) <= 188) { |
| 1267 | qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END; |
| 1268 | } else { |
| 1269 | qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID; |
| 1270 | } |
| 1271 | |
| 1272 | } |
| 1273 | break; |
| 1274 | } |
| 1275 | } else { |
| 1276 | halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK); |
| 1277 | } |
| 1278 | } else { |
| 1279 | qtd->error_count = 0; |
| 1280 | |
| 1281 | if (hc->qh->ping_state) { |
| 1282 | hc->qh->ping_state = 0; |
| 1283 | /* |
| 1284 | * Halt the channel so the transfer can be re-started |
| 1285 | * from the appropriate point. This only happens in |
| 1286 | * Slave mode. In DMA mode, the ping_state is cleared |
| 1287 | * when the transfer is started because the core |
| 1288 | * automatically executes the PING, then the transfer. |
| 1289 | */ |
| 1290 | halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK); |
| 1291 | } |
| 1292 | } |
| 1293 | |
| 1294 | /* |
| 1295 | * If the ACK occurred when _not_ in the PING state, let the channel |
| 1296 | * continue transferring data after clearing the error count. |
| 1297 | */ |
| 1298 | |
| 1299 | disable_hc_int(hc_regs, ack); |
| 1300 | |
| 1301 | return 1; |
| 1302 | } |
| 1303 | |
| 1304 | /** |
| 1305 | * Handles a host channel NYET interrupt. This interrupt should only occur on |
| 1306 | * Bulk and Control OUT endpoints and for complete split transactions. If a |
| 1307 | * NYET occurs at the same time as a Transfer Complete interrupt, it is |
| 1308 | * handled in the xfercomp interrupt handler, not here. This handler may be |
| 1309 | * called in either DMA mode or Slave mode. |
| 1310 | */ |
| 1311 | static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *hcd, |
| 1312 | dwc_hc_t *hc, |
| 1313 | dwc_otg_hc_regs_t *hc_regs, |
| 1314 | dwc_otg_qtd_t *qtd) |
| 1315 | { |
| 1316 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1317 | "NYET Received--\n", hc->hc_num); |
| 1318 | |
| 1319 | /* |
| 1320 | * NYET on CSPLIT |
| 1321 | * re-do the CSPLIT immediately on non-periodic |
| 1322 | */ |
| 1323 | if (hc->do_split && hc->complete_split) { |
| 1324 | if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || |
| 1325 | hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { |
| 1326 | int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd)); |
| 1327 | |
| 1328 | if (dwc_full_frame_num(frnum) != |
| 1329 | dwc_full_frame_num(hc->qh->sched_frame)) { |
| 1330 | /* |
| 1331 | * No longer in the same full speed frame. |
| 1332 | * Treat this as a transaction error. |
| 1333 | */ |
| 1334 | #if 0 |
| 1335 | /** @todo Fix system performance so this can |
| 1336 | * be treated as an error. Right now complete |
| 1337 | * splits cannot be scheduled precisely enough |
| 1338 | * due to other system activity, so this error |
| 1339 | * occurs regularly in Slave mode. |
| 1340 | */ |
| 1341 | qtd->error_count++; |
| 1342 | #endif |
| 1343 | qtd->complete_split = 0; |
| 1344 | halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR); |
| 1345 | /** @todo add support for isoc release */ |
| 1346 | goto handle_nyet_done; |
| 1347 | } |
| 1348 | } |
| 1349 | |
| 1350 | halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET); |
| 1351 | goto handle_nyet_done; |
| 1352 | } |
| 1353 | |
| 1354 | hc->qh->ping_state = 1; |
| 1355 | qtd->error_count = 0; |
| 1356 | |
| 1357 | update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd, |
| 1358 | DWC_OTG_HC_XFER_NYET); |
| 1359 | save_data_toggle(hc, hc_regs, qtd); |
| 1360 | |
| 1361 | /* |
| 1362 | * Halt the channel and re-start the transfer so the PING |
| 1363 | * protocol will start. |
| 1364 | */ |
| 1365 | halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET); |
| 1366 | |
| 1367 | handle_nyet_done: |
| 1368 | disable_hc_int(hc_regs, nyet); |
| 1369 | return 1; |
| 1370 | } |
| 1371 | |
| 1372 | /** |
| 1373 | * Handles a host channel babble interrupt. This handler may be called in |
| 1374 | * either DMA mode or Slave mode. |
| 1375 | */ |
| 1376 | static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *hcd, |
| 1377 | dwc_hc_t *hc, |
| 1378 | dwc_otg_hc_regs_t *hc_regs, |
| 1379 | dwc_otg_qtd_t *qtd) |
| 1380 | { |
| 1381 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1382 | "Babble Error--\n", hc->hc_num); |
| 1383 | if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { |
| 1384 | dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW); |
| 1385 | halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR); |
| 1386 | } else { |
| 1387 | dwc_otg_halt_status_e halt_status; |
| 1388 | halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd, |
| 1389 | DWC_OTG_HC_XFER_BABBLE_ERR); |
| 1390 | halt_channel(hcd, hc, qtd, halt_status); |
| 1391 | } |
| 1392 | disable_hc_int(hc_regs, bblerr); |
| 1393 | return 1; |
| 1394 | } |
| 1395 | |
| 1396 | /** |
| 1397 | * Handles a host channel AHB error interrupt. This handler is only called in |
| 1398 | * DMA mode. |
| 1399 | */ |
| 1400 | static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *hcd, |
| 1401 | dwc_hc_t *hc, |
| 1402 | dwc_otg_hc_regs_t *hc_regs, |
| 1403 | dwc_otg_qtd_t *qtd) |
| 1404 | { |
| 1405 | hcchar_data_t hcchar; |
| 1406 | hcsplt_data_t hcsplt; |
| 1407 | hctsiz_data_t hctsiz; |
| 1408 | uint32_t hcdma; |
| 1409 | struct urb *urb = qtd->urb; |
| 1410 | |
| 1411 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1412 | "AHB Error--\n", hc->hc_num); |
| 1413 | |
| 1414 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1415 | hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); |
| 1416 | hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); |
| 1417 | hcdma = dwc_read_reg32(&hc_regs->hcdma); |
| 1418 | |
| 1419 | DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num); |
| 1420 | DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32); |
| 1421 | DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma); |
| 1422 | DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n"); |
| 1423 | DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe)); |
| 1424 | DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), |
| 1425 | (usb_pipein(urb->pipe) ? "IN" : "OUT")); |
| 1426 | DWC_ERROR(" Endpoint type: %s\n", |
| 1427 | ({char *pipetype; |
| 1428 | switch (usb_pipetype(urb->pipe)) { |
| 1429 | case PIPE_CONTROL: pipetype = "CONTROL"; break; |
| 1430 | case PIPE_BULK: pipetype = "BULK"; break; |
| 1431 | case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break; |
| 1432 | case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break; |
| 1433 | default: pipetype = "UNKNOWN"; break; |
| 1434 | }; pipetype;})); |
| 1435 | DWC_ERROR(" Speed: %s\n", |
| 1436 | ({char *speed; |
| 1437 | switch (urb->dev->speed) { |
| 1438 | case USB_SPEED_HIGH: speed = "HIGH"; break; |
| 1439 | case USB_SPEED_FULL: speed = "FULL"; break; |
| 1440 | case USB_SPEED_LOW: speed = "LOW"; break; |
| 1441 | default: speed = "UNKNOWN"; break; |
| 1442 | }; speed;})); |
| 1443 | DWC_ERROR(" Max packet size: %d\n", |
| 1444 | usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); |
| 1445 | DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length); |
| 1446 | DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n", |
| 1447 | urb->transfer_buffer, (void *)urb->transfer_dma); |
| 1448 | DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n", |
| 1449 | urb->setup_packet, (void *)urb->setup_dma); |
| 1450 | DWC_ERROR(" Interval: %d\n", urb->interval); |
| 1451 | |
| 1452 | dwc_otg_hcd_complete_urb(hcd, urb, -EIO); |
| 1453 | |
| 1454 | /* |
| 1455 | * Force a channel halt. Don't call halt_channel because that won't |
| 1456 | * write to the HCCHARn register in DMA mode to force the halt. |
| 1457 | */ |
| 1458 | dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR); |
| 1459 | |
| 1460 | disable_hc_int(hc_regs, ahberr); |
| 1461 | return 1; |
| 1462 | } |
| 1463 | |
| 1464 | /** |
| 1465 | * Handles a host channel transaction error interrupt. This handler may be |
| 1466 | * called in either DMA mode or Slave mode. |
| 1467 | */ |
| 1468 | static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *hcd, |
| 1469 | dwc_hc_t *hc, |
| 1470 | dwc_otg_hc_regs_t *hc_regs, |
| 1471 | dwc_otg_qtd_t *qtd) |
| 1472 | { |
| 1473 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1474 | "Transaction Error--\n", hc->hc_num); |
| 1475 | |
| 1476 | switch (usb_pipetype(qtd->urb->pipe)) { |
| 1477 | case PIPE_CONTROL: |
| 1478 | case PIPE_BULK: |
| 1479 | qtd->error_count++; |
| 1480 | if (!hc->qh->ping_state) { |
| 1481 | update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, |
| 1482 | qtd, DWC_OTG_HC_XFER_XACT_ERR); |
| 1483 | save_data_toggle(hc, hc_regs, qtd); |
| 1484 | if (!hc->ep_is_in && qtd->urb->dev->speed == USB_SPEED_HIGH) { |
| 1485 | hc->qh->ping_state = 1; |
| 1486 | } |
| 1487 | } |
| 1488 | |
| 1489 | /* |
| 1490 | * Halt the channel so the transfer can be re-started from |
| 1491 | * the appropriate point or the PING protocol will start. |
| 1492 | */ |
| 1493 | halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR); |
| 1494 | break; |
| 1495 | case PIPE_INTERRUPT: |
| 1496 | qtd->error_count++; |
| 1497 | if (hc->do_split && hc->complete_split) { |
| 1498 | qtd->complete_split = 0; |
| 1499 | } |
| 1500 | halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR); |
| 1501 | break; |
| 1502 | case PIPE_ISOCHRONOUS: |
| 1503 | { |
| 1504 | dwc_otg_halt_status_e halt_status; |
| 1505 | halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd, |
| 1506 | DWC_OTG_HC_XFER_XACT_ERR); |
| 1507 | |
| 1508 | halt_channel(hcd, hc, qtd, halt_status); |
| 1509 | } |
| 1510 | break; |
| 1511 | } |
| 1512 | |
| 1513 | disable_hc_int(hc_regs, xacterr); |
| 1514 | |
| 1515 | return 1; |
| 1516 | } |
| 1517 | |
| 1518 | /** |
| 1519 | * Handles a host channel frame overrun interrupt. This handler may be called |
| 1520 | * in either DMA mode or Slave mode. |
| 1521 | */ |
| 1522 | static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *hcd, |
| 1523 | dwc_hc_t *hc, |
| 1524 | dwc_otg_hc_regs_t *hc_regs, |
| 1525 | dwc_otg_qtd_t *qtd) |
| 1526 | { |
| 1527 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1528 | "Frame Overrun--\n", hc->hc_num); |
| 1529 | |
| 1530 | switch (usb_pipetype(qtd->urb->pipe)) { |
| 1531 | case PIPE_CONTROL: |
| 1532 | case PIPE_BULK: |
| 1533 | break; |
| 1534 | case PIPE_INTERRUPT: |
| 1535 | halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN); |
| 1536 | break; |
| 1537 | case PIPE_ISOCHRONOUS: |
| 1538 | { |
| 1539 | dwc_otg_halt_status_e halt_status; |
| 1540 | halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd, |
| 1541 | DWC_OTG_HC_XFER_FRAME_OVERRUN); |
| 1542 | |
| 1543 | halt_channel(hcd, hc, qtd, halt_status); |
| 1544 | } |
| 1545 | break; |
| 1546 | } |
| 1547 | |
| 1548 | disable_hc_int(hc_regs, frmovrun); |
| 1549 | |
| 1550 | return 1; |
| 1551 | } |
| 1552 | |
| 1553 | /** |
| 1554 | * Handles a host channel data toggle error interrupt. This handler may be |
| 1555 | * called in either DMA mode or Slave mode. |
| 1556 | */ |
| 1557 | static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *hcd, |
| 1558 | dwc_hc_t *hc, |
| 1559 | dwc_otg_hc_regs_t *hc_regs, |
| 1560 | dwc_otg_qtd_t *qtd) |
| 1561 | { |
| 1562 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1563 | "Data Toggle Error--\n", hc->hc_num); |
| 1564 | |
| 1565 | if (hc->ep_is_in) { |
| 1566 | qtd->error_count = 0; |
| 1567 | } else { |
| 1568 | DWC_ERROR("Data Toggle Error on OUT transfer," |
| 1569 | "channel %d\n", hc->hc_num); |
| 1570 | } |
| 1571 | |
| 1572 | disable_hc_int(hc_regs, datatglerr); |
| 1573 | |
| 1574 | return 1; |
| 1575 | } |
| 1576 | |
| 1577 | #ifdef DEBUG |
| 1578 | /** |
| 1579 | * This function is for debug only. It checks that a valid halt status is set |
| 1580 | * and that HCCHARn.chdis is clear. If there's a problem, corrective action is |
| 1581 | * taken and a warning is issued. |
| 1582 | * @return 1 if halt status is ok, 0 otherwise. |
| 1583 | */ |
| 1584 | static inline int halt_status_ok(dwc_otg_hcd_t *hcd, |
| 1585 | dwc_hc_t *hc, |
| 1586 | dwc_otg_hc_regs_t *hc_regs, |
| 1587 | dwc_otg_qtd_t *qtd) |
| 1588 | { |
| 1589 | hcchar_data_t hcchar; |
| 1590 | hctsiz_data_t hctsiz; |
| 1591 | hcint_data_t hcint; |
| 1592 | hcintmsk_data_t hcintmsk; |
| 1593 | hcsplt_data_t hcsplt; |
| 1594 | |
| 1595 | if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) { |
| 1596 | /* |
| 1597 | * This code is here only as a check. This condition should |
| 1598 | * never happen. Ignore the halt if it does occur. |
| 1599 | */ |
| 1600 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1601 | hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); |
| 1602 | hcint.d32 = dwc_read_reg32(&hc_regs->hcint); |
| 1603 | hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); |
| 1604 | hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); |
| 1605 | DWC_WARN("%s: hc->halt_status == DWC_OTG" |
| 1606 | "channel %d, hcchar 0x%08x, hctsiz 0x%08x, " |
| 1607 | "hcint 0x%08x, hcintmsk 0x%08x, " |
| 1608 | "hcsplt 0x%08x, qtd->complete_split %d\n", |
| 1609 | __func__, hc->hc_num, hcchar.d32, hctsiz.d32, |
| 1610 | hcint.d32, hcintmsk.d32, |
| 1611 | hcsplt.d32, qtd->complete_split); |
| 1612 | |
| 1613 | DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n", |
| 1614 | __func__, hc->hc_num); |
| 1615 | DWC_WARN("\n"); |
| 1616 | clear_hc_int(hc_regs, chhltd); |
| 1617 | return 0; |
| 1618 | } |
| 1619 | |
| 1620 | /* |
| 1621 | * This code is here only as a check. hcchar.chdis should |
| 1622 | * never be set when the halt interrupt occurs. Halt the |
| 1623 | * channel again if it does occur. |
| 1624 | */ |
| 1625 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1626 | if (hcchar.b.chdis) { |
| 1627 | DWC_WARN("%s: hcchar.chdis set unexpectedly, " |
| 1628 | "hcchar 0x%08x, trying to halt again\n", |
| 1629 | __func__, hcchar.d32); |
| 1630 | clear_hc_int(hc_regs, chhltd); |
| 1631 | hc->halt_pending = 0; |
| 1632 | halt_channel(hcd, hc, qtd, hc->halt_status); |
| 1633 | return 0; |
| 1634 | } |
| 1635 | |
| 1636 | return 1; |
| 1637 | } |
| 1638 | #endif |
| 1639 | |
| 1640 | /** |
| 1641 | * Handles a host Channel Halted interrupt in DMA mode. This handler |
| 1642 | * determines the reason the channel halted and proceeds accordingly. |
| 1643 | */ |
| 1644 | static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *hcd, |
| 1645 | dwc_hc_t *hc, |
| 1646 | dwc_otg_hc_regs_t *hc_regs, |
| 1647 | dwc_otg_qtd_t *qtd) |
| 1648 | { |
| 1649 | hcint_data_t hcint; |
| 1650 | hcintmsk_data_t hcintmsk; |
| 1651 | int out_nak_enh = 0; |
| 1652 | |
| 1653 | /* For core with OUT NAK enhancement, the flow for high- |
| 1654 | * speed CONTROL/BULK OUT is handled a little differently. |
| 1655 | */ |
| 1656 | if (hcd->core_if->snpsid >= 0x4F54271A) { |
| 1657 | if (hc->speed == DWC_OTG_EP_SPEED_HIGH && !hc->ep_is_in && |
| 1658 | (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || |
| 1659 | hc->ep_type == DWC_OTG_EP_TYPE_BULK)) { |
| 1660 | printk(KERN_DEBUG "OUT NAK enhancement enabled\n"); |
| 1661 | out_nak_enh = 1; |
| 1662 | } else { |
| 1663 | printk(KERN_DEBUG "OUT NAK enhancement disabled, not HS Ctrl/Bulk OUT EP\n"); |
| 1664 | } |
| 1665 | } else { |
| 1666 | // printk(KERN_DEBUG "OUT NAK enhancement disabled, no core support\n"); |
| 1667 | } |
| 1668 | |
| 1669 | if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || |
| 1670 | hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) { |
| 1671 | /* |
| 1672 | * Just release the channel. A dequeue can happen on a |
| 1673 | * transfer timeout. In the case of an AHB Error, the channel |
| 1674 | * was forced to halt because there's no way to gracefully |
| 1675 | * recover. |
| 1676 | */ |
| 1677 | release_channel(hcd, hc, qtd, hc->halt_status); |
| 1678 | return; |
| 1679 | } |
| 1680 | |
| 1681 | /* Read the HCINTn register to determine the cause for the halt. */ |
| 1682 | hcint.d32 = dwc_read_reg32(&hc_regs->hcint); |
| 1683 | hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); |
| 1684 | |
| 1685 | if (hcint.b.xfercomp) { |
| 1686 | /** @todo This is here because of a possible hardware bug. Spec |
| 1687 | * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT |
| 1688 | * interrupt w/ACK bit set should occur, but I only see the |
| 1689 | * XFERCOMP bit, even with it masked out. This is a workaround |
| 1690 | * for that behavior. Should fix this when hardware is fixed. |
| 1691 | */ |
| 1692 | if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) { |
| 1693 | handle_hc_ack_intr(hcd, hc, hc_regs, qtd); |
| 1694 | } |
| 1695 | handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd); |
| 1696 | } else if (hcint.b.stall) { |
| 1697 | handle_hc_stall_intr(hcd, hc, hc_regs, qtd); |
| 1698 | } else if (hcint.b.xacterr) { |
| 1699 | if (out_nak_enh) { |
| 1700 | if (hcint.b.nyet || hcint.b.nak || hcint.b.ack) { |
| 1701 | printk(KERN_DEBUG "XactErr with NYET/NAK/ACK\n"); |
| 1702 | qtd->error_count = 0; |
| 1703 | } else { |
| 1704 | printk(KERN_DEBUG "XactErr without NYET/NAK/ACK\n"); |
| 1705 | } |
| 1706 | } |
| 1707 | |
| 1708 | /* |
| 1709 | * Must handle xacterr before nak or ack. Could get a xacterr |
| 1710 | * at the same time as either of these on a BULK/CONTROL OUT |
| 1711 | * that started with a PING. The xacterr takes precedence. |
| 1712 | */ |
| 1713 | handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd); |
| 1714 | } else if (!out_nak_enh) { |
| 1715 | if (hcint.b.nyet) { |
| 1716 | /* |
| 1717 | * Must handle nyet before nak or ack. Could get a nyet at the |
| 1718 | * same time as either of those on a BULK/CONTROL OUT that |
| 1719 | * started with a PING. The nyet takes precedence. |
| 1720 | */ |
| 1721 | handle_hc_nyet_intr(hcd, hc, hc_regs, qtd); |
| 1722 | } else if (hcint.b.bblerr) { |
| 1723 | handle_hc_babble_intr(hcd, hc, hc_regs, qtd); |
| 1724 | } else if (hcint.b.frmovrun) { |
| 1725 | handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd); |
| 1726 | } else if (hcint.b.nak && !hcintmsk.b.nak) { |
| 1727 | /* |
| 1728 | * If nak is not masked, it's because a non-split IN transfer |
| 1729 | * is in an error state. In that case, the nak is handled by |
| 1730 | * the nak interrupt handler, not here. Handle nak here for |
| 1731 | * BULK/CONTROL OUT transfers, which halt on a NAK to allow |
| 1732 | * rewinding the buffer pointer. |
| 1733 | */ |
| 1734 | handle_hc_nak_intr(hcd, hc, hc_regs, qtd); |
| 1735 | } else if (hcint.b.ack && !hcintmsk.b.ack) { |
| 1736 | /* |
| 1737 | * If ack is not masked, it's because a non-split IN transfer |
| 1738 | * is in an error state. In that case, the ack is handled by |
| 1739 | * the ack interrupt handler, not here. Handle ack here for |
| 1740 | * split transfers. Start splits halt on ACK. |
| 1741 | */ |
| 1742 | handle_hc_ack_intr(hcd, hc, hc_regs, qtd); |
| 1743 | } else { |
| 1744 | if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || |
| 1745 | hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { |
| 1746 | /* |
| 1747 | * A periodic transfer halted with no other channel |
| 1748 | * interrupts set. Assume it was halted by the core |
| 1749 | * because it could not be completed in its scheduled |
| 1750 | * (micro)frame. |
| 1751 | */ |
| 1752 | #ifdef DEBUG |
| 1753 | DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n", |
| 1754 | __func__, hc->hc_num); |
| 1755 | #endif |
| 1756 | halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE); |
| 1757 | } else { |
| 1758 | DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason " |
| 1759 | "for halting is unknown, hcint 0x%08x, intsts 0x%08x\n", |
| 1760 | __func__, hc->hc_num, hcint.d32, |
| 1761 | dwc_read_reg32(&hcd->core_if->core_global_regs->gintsts)); |
| 1762 | } |
| 1763 | } |
| 1764 | } else { |
| 1765 | printk(KERN_DEBUG "NYET/NAK/ACK/other in non-error case, 0x%08x\n", hcint.d32); |
| 1766 | } |
| 1767 | } |
| 1768 | |
| 1769 | /** |
| 1770 | * Handles a host channel Channel Halted interrupt. |
| 1771 | * |
| 1772 | * In slave mode, this handler is called only when the driver specifically |
| 1773 | * requests a halt. This occurs during handling other host channel interrupts |
| 1774 | * (e.g. nak, xacterr, stall, nyet, etc.). |
| 1775 | * |
| 1776 | * In DMA mode, this is the interrupt that occurs when the core has finished |
| 1777 | * processing a transfer on a channel. Other host channel interrupts (except |
| 1778 | * ahberr) are disabled in DMA mode. |
| 1779 | */ |
| 1780 | static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *hcd, |
| 1781 | dwc_hc_t *hc, |
| 1782 | dwc_otg_hc_regs_t *hc_regs, |
| 1783 | dwc_otg_qtd_t *qtd) |
| 1784 | { |
| 1785 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1786 | "Channel Halted--\n", hc->hc_num); |
| 1787 | |
| 1788 | if (hcd->core_if->dma_enable) { |
| 1789 | handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd); |
| 1790 | } else { |
| 1791 | #ifdef DEBUG |
| 1792 | if (!halt_status_ok(hcd, hc, hc_regs, qtd)) { |
| 1793 | return 1; |
| 1794 | } |
| 1795 | #endif |
| 1796 | release_channel(hcd, hc, qtd, hc->halt_status); |
| 1797 | } |
| 1798 | |
| 1799 | return 1; |
| 1800 | } |
| 1801 | |
| 1802 | /** Handles interrupt for a specific Host Channel */ |
| 1803 | int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num) |
| 1804 | { |
| 1805 | int retval = 0; |
| 1806 | hcint_data_t hcint; |
| 1807 | hcintmsk_data_t hcintmsk; |
| 1808 | dwc_hc_t *hc; |
| 1809 | dwc_otg_hc_regs_t *hc_regs; |
| 1810 | dwc_otg_qtd_t *qtd; |
| 1811 | |
| 1812 | DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", num); |
| 1813 | |
| 1814 | hc = dwc_otg_hcd->hc_ptr_array[num]; |
| 1815 | hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[num]; |
| 1816 | qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); |
| 1817 | |
| 1818 | hcint.d32 = dwc_read_reg32(&hc_regs->hcint); |
| 1819 | hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); |
| 1820 | DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n", |
| 1821 | hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32)); |
| 1822 | hcint.d32 = hcint.d32 & hcintmsk.d32; |
| 1823 | |
| 1824 | if (!dwc_otg_hcd->core_if->dma_enable) { |
| 1825 | if (hcint.b.chhltd && hcint.d32 != 0x2) { |
| 1826 | hcint.b.chhltd = 0; |
| 1827 | } |
| 1828 | } |
| 1829 | |
| 1830 | if (hcint.b.xfercomp) { |
| 1831 | retval |= handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd); |
| 1832 | /* |
| 1833 | * If NYET occurred at same time as Xfer Complete, the NYET is |
| 1834 | * handled by the Xfer Complete interrupt handler. Don't want |
| 1835 | * to call the NYET interrupt handler in this case. |
| 1836 | */ |
| 1837 | hcint.b.nyet = 0; |
| 1838 | } |
| 1839 | if (hcint.b.chhltd) { |
| 1840 | retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd); |
| 1841 | } |
| 1842 | if (hcint.b.ahberr) { |
| 1843 | retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd); |
| 1844 | } |
| 1845 | if (hcint.b.stall) { |
| 1846 | retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd); |
| 1847 | } |
| 1848 | if (hcint.b.nak) { |
| 1849 | retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd); |
| 1850 | } |
| 1851 | if (hcint.b.ack) { |
| 1852 | retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd); |
| 1853 | } |
| 1854 | if (hcint.b.nyet) { |
| 1855 | retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd); |
| 1856 | } |
| 1857 | if (hcint.b.xacterr) { |
| 1858 | retval |= handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd); |
| 1859 | } |
| 1860 | if (hcint.b.bblerr) { |
| 1861 | retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd); |
| 1862 | } |
| 1863 | if (hcint.b.frmovrun) { |
| 1864 | retval |= handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd); |
| 1865 | } |
| 1866 | if (hcint.b.datatglerr) { |
| 1867 | retval |= handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd); |
| 1868 | } |
| 1869 | |
| 1870 | return retval; |
| 1871 | } |
| 1872 | |
| 1873 | #endif /* DWC_DEVICE_ONLY */ |
| 1874 | |