Root/target/linux/ramips/files/drivers/usb/dwc_otg/dwc_otg_hcd_intr.c

1/* ==========================================================================
2 * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_intr.c $
3 * $Revision: 1.6.2.1 $
4 * $Date: 2009-04-22 03:48:22 $
5 * $Change: 1117667 $
6 *
7 * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
8 * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
9 * otherwise expressly agreed to in writing between Synopsys and you.
10 *
11 * The Software IS NOT an item of Licensed Software or Licensed Product under
12 * any End User Software License Agreement or Agreement for Licensed Product
13 * with Synopsys or any supplement thereto. You are permitted to use and
14 * redistribute this Software in source and binary forms, with or without
15 * modification, provided that redistributions of source code must retain this
16 * notice. You may not view, use, disclose, copy or distribute this file or
17 * any information contained herein except pursuant to this license grant from
18 * Synopsys. If you do not agree with this notice, including the disclaimer
19 * below, then you are not authorized to use the Software.
20 *
21 * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
25 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
31 * DAMAGE.
32 * ========================================================================== */
33#ifndef DWC_DEVICE_ONLY
34
35#include <linux/version.h>
36
37#include "dwc_otg_driver.h"
38#include "dwc_otg_hcd.h"
39#include "dwc_otg_regs.h"
40
41/** @file
42 * This file contains the implementation of the HCD Interrupt handlers.
43 */
44
45/** This function handles interrupts for the HCD. */
46int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd)
47{
48    int retval = 0;
49
50    dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
51    gintsts_data_t gintsts;
52#ifdef DEBUG
53    dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
54#endif
55
56    /* Check if HOST Mode */
57    if (dwc_otg_is_host_mode(core_if)) {
58        gintsts.d32 = dwc_otg_read_core_intr(core_if);
59        if (!gintsts.d32) {
60            return 0;
61        }
62
63#ifdef DEBUG
64        /* Don't print debug message in the interrupt handler on SOF */
65# ifndef DEBUG_SOF
66        if (gintsts.d32 != DWC_SOF_INTR_MASK)
67# endif
68            DWC_DEBUGPL(DBG_HCD, "\n");
69#endif
70
71#ifdef DEBUG
72# ifndef DEBUG_SOF
73        if (gintsts.d32 != DWC_SOF_INTR_MASK)
74# endif
75            DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32);
76#endif
77        if (gintsts.b.usbreset) {
78            DWC_PRINT("Usb Reset In Host Mode\n");
79        }
80
81
82        if (gintsts.b.sofintr) {
83            retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd);
84        }
85        if (gintsts.b.rxstsqlvl) {
86            retval |= dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd);
87        }
88        if (gintsts.b.nptxfempty) {
89            retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd);
90        }
91        if (gintsts.b.i2cintr) {
92            /** @todo Implement i2cintr handler. */
93        }
94        if (gintsts.b.portintr) {
95            retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd);
96        }
97        if (gintsts.b.hcintr) {
98            retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd);
99        }
100        if (gintsts.b.ptxfempty) {
101            retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd);
102        }
103#ifdef DEBUG
104# ifndef DEBUG_SOF
105        if (gintsts.d32 != DWC_SOF_INTR_MASK)
106# endif
107        {
108            DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n");
109            DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n",
110                    dwc_read_reg32(&global_regs->gintsts));
111            DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n",
112                    dwc_read_reg32(&global_regs->gintmsk));
113        }
114#endif
115
116#ifdef DEBUG
117# ifndef DEBUG_SOF
118    if (gintsts.d32 != DWC_SOF_INTR_MASK)
119# endif
120        DWC_DEBUGPL(DBG_HCD, "\n");
121#endif
122
123    }
124
125    S3C2410X_CLEAR_EINTPEND();
126
127    return retval;
128}
129
130#ifdef DWC_TRACK_MISSED_SOFS
131#warning Compiling code to track missed SOFs
132#define FRAME_NUM_ARRAY_SIZE 1000
133/**
134 * This function is for debug only.
135 */
136static inline void track_missed_sofs(uint16_t curr_frame_number)
137{
138    static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE];
139    static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE];
140    static int frame_num_idx = 0;
141    static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM;
142    static int dumped_frame_num_array = 0;
143
144    if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) {
145        if (((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != curr_frame_number) {
146            frame_num_array[frame_num_idx] = curr_frame_number;
147            last_frame_num_array[frame_num_idx++] = last_frame_num;
148        }
149    } else if (!dumped_frame_num_array) {
150        int i;
151        printk(KERN_EMERG USB_DWC "Frame Last Frame\n");
152        printk(KERN_EMERG USB_DWC "----- ----------\n");
153        for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) {
154            printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n",
155                   frame_num_array[i], last_frame_num_array[i]);
156        }
157        dumped_frame_num_array = 1;
158    }
159    last_frame_num = curr_frame_number;
160}
161#endif
162
163/**
164 * Handles the start-of-frame interrupt in host mode. Non-periodic
165 * transactions may be queued to the DWC_otg controller for the current
166 * (micro)frame. Periodic transactions may be queued to the controller for the
167 * next (micro)frame.
168 */
169int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *hcd)
170{
171    hfnum_data_t hfnum;
172    struct list_head *qh_entry;
173    dwc_otg_qh_t *qh;
174    dwc_otg_transaction_type_e tr_type;
175    gintsts_data_t gintsts = {.d32 = 0};
176
177    hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
178
179#ifdef DEBUG_SOF
180    DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n");
181#endif
182    hcd->frame_number = hfnum.b.frnum;
183
184#ifdef DEBUG
185    hcd->frrem_accum += hfnum.b.frrem;
186    hcd->frrem_samples++;
187#endif
188
189#ifdef DWC_TRACK_MISSED_SOFS
190    track_missed_sofs(hcd->frame_number);
191#endif
192
193    /* Determine whether any periodic QHs should be executed. */
194    qh_entry = hcd->periodic_sched_inactive.next;
195    while (qh_entry != &hcd->periodic_sched_inactive) {
196        qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry);
197        qh_entry = qh_entry->next;
198        if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) {
199            /*
200             * Move QH to the ready list to be executed next
201             * (micro)frame.
202             */
203            list_move(&qh->qh_list_entry, &hcd->periodic_sched_ready);
204        }
205    }
206
207    tr_type = dwc_otg_hcd_select_transactions(hcd);
208    if (tr_type != DWC_OTG_TRANSACTION_NONE) {
209        dwc_otg_hcd_queue_transactions(hcd, tr_type);
210    }
211
212    /* Clear interrupt */
213    gintsts.b.sofintr = 1;
214    dwc_write_reg32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32);
215
216    return 1;
217}
218
219/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at
220 * least one packet in the Rx FIFO. The packets are moved from the FIFO to
221 * memory if the DWC_otg controller is operating in Slave mode. */
222int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd)
223{
224    host_grxsts_data_t grxsts;
225    dwc_hc_t *hc = NULL;
226
227    DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n");
228
229    grxsts.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp);
230
231    hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum];
232
233    /* Packet Status */
234    DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum);
235    DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt);
236    DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start);
237    DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts);
238
239    switch (grxsts.b.pktsts) {
240    case DWC_GRXSTS_PKTSTS_IN:
241        /* Read the data into the host buffer. */
242        if (grxsts.b.bcnt > 0) {
243            dwc_otg_read_packet(dwc_otg_hcd->core_if,
244                        hc->xfer_buff,
245                        grxsts.b.bcnt);
246
247            /* Update the HC fields for the next packet received. */
248            hc->xfer_count += grxsts.b.bcnt;
249            hc->xfer_buff += grxsts.b.bcnt;
250        }
251
252    case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
253    case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
254    case DWC_GRXSTS_PKTSTS_CH_HALTED:
255        /* Handled in interrupt, just ignore data */
256        break;
257    default:
258        DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts);
259        break;
260    }
261
262    return 1;
263}
264
265/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More
266 * data packets may be written to the FIFO for OUT transfers. More requests
267 * may be written to the non-periodic request queue for IN transfers. This
268 * interrupt is enabled only in Slave mode. */
269int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd)
270{
271    DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n");
272    dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
273                       DWC_OTG_TRANSACTION_NON_PERIODIC);
274    return 1;
275}
276
277/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data
278 * packets may be written to the FIFO for OUT transfers. More requests may be
279 * written to the periodic request queue for IN transfers. This interrupt is
280 * enabled only in Slave mode. */
281int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd)
282{
283    DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n");
284    dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
285                       DWC_OTG_TRANSACTION_PERIODIC);
286    return 1;
287}
288
289/** There are multiple conditions that can cause a port interrupt. This function
290 * determines which interrupt conditions have occurred and handles them
291 * appropriately. */
292int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd)
293{
294    int retval = 0;
295    hprt0_data_t hprt0;
296    hprt0_data_t hprt0_modify;
297
298    hprt0.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
299    hprt0_modify.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
300
301    /* Clear appropriate bits in HPRT0 to clear the interrupt bit in
302     * GINTSTS */
303
304    hprt0_modify.b.prtena = 0;
305    hprt0_modify.b.prtconndet = 0;
306    hprt0_modify.b.prtenchng = 0;
307    hprt0_modify.b.prtovrcurrchng = 0;
308
309    /* Port Connect Detected
310     * Set flag and clear if detected */
311    if (hprt0.b.prtconndet) {
312        DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x "
313                "Port Connect Detected--\n", hprt0.d32);
314        dwc_otg_hcd->flags.b.port_connect_status_change = 1;
315        dwc_otg_hcd->flags.b.port_connect_status = 1;
316        hprt0_modify.b.prtconndet = 1;
317
318        /* B-Device has connected, Delete the connection timer. */
319        del_timer( &dwc_otg_hcd->conn_timer );
320
321        /* The Hub driver asserts a reset when it sees port connect
322         * status change flag */
323        retval |= 1;
324    }
325
326    /* Port Enable Changed
327     * Clear if detected - Set internal flag if disabled */
328    if (hprt0.b.prtenchng) {
329        DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
330                "Port Enable Changed--\n", hprt0.d32);
331        hprt0_modify.b.prtenchng = 1;
332        if (hprt0.b.prtena == 1) {
333            int do_reset = 0;
334            dwc_otg_core_params_t *params = dwc_otg_hcd->core_if->core_params;
335            dwc_otg_core_global_regs_t *global_regs = dwc_otg_hcd->core_if->core_global_regs;
336            dwc_otg_host_if_t *host_if = dwc_otg_hcd->core_if->host_if;
337
338            /* Check if we need to adjust the PHY clock speed for
339             * low power and adjust it */
340            if (params->host_support_fs_ls_low_power) {
341                gusbcfg_data_t usbcfg;
342
343                usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
344
345                if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED ||
346                    hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED) {
347                    /*
348                     * Low power
349                     */
350                    hcfg_data_t hcfg;
351                    if (usbcfg.b.phylpwrclksel == 0) {
352                        /* Set PHY low power clock select for FS/LS devices */
353                        usbcfg.b.phylpwrclksel = 1;
354                        dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
355                        do_reset = 1;
356                    }
357
358                    hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
359
360                    if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED &&
361                        params->host_ls_low_power_phy_clk ==
362                         DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ) {
363                        /* 6 MHZ */
364                        DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n");
365                        if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) {
366                            hcfg.b.fslspclksel = DWC_HCFG_6_MHZ;
367                            dwc_write_reg32(&host_if->host_global_regs->hcfg,
368                                    hcfg.d32);
369                            do_reset = 1;
370                        }
371                    } else {
372                        /* 48 MHZ */
373                        DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n");
374                        if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) {
375                            hcfg.b.fslspclksel = DWC_HCFG_48_MHZ;
376                            dwc_write_reg32(&host_if->host_global_regs->hcfg,
377                                    hcfg.d32);
378                            do_reset = 1;
379                        }
380                    }
381                } else {
382                    /*
383                     * Not low power
384                     */
385                    if (usbcfg.b.phylpwrclksel == 1) {
386                        usbcfg.b.phylpwrclksel = 0;
387                        dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
388                        do_reset = 1;
389                    }
390                }
391
392                if (do_reset) {
393                    tasklet_schedule(dwc_otg_hcd->reset_tasklet);
394                }
395            }
396
397            if (!do_reset) {
398                /* Port has been enabled set the reset change flag */
399                dwc_otg_hcd->flags.b.port_reset_change = 1;
400            }
401        } else {
402            dwc_otg_hcd->flags.b.port_enable_change = 1;
403        }
404        retval |= 1;
405    }
406
407    /** Overcurrent Change Interrupt */
408    if (hprt0.b.prtovrcurrchng) {
409        DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
410                "Port Overcurrent Changed--\n", hprt0.d32);
411        dwc_otg_hcd->flags.b.port_over_current_change = 1;
412        hprt0_modify.b.prtovrcurrchng = 1;
413        retval |= 1;
414    }
415
416    /* Clear Port Interrupts */
417    dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32);
418
419    return retval;
420}
421
422/** This interrupt indicates that one or more host channels has a pending
423 * interrupt. There are multiple conditions that can cause each host channel
424 * interrupt. This function determines which conditions have occurred for each
425 * host channel interrupt and handles them appropriately. */
426int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd)
427{
428    int i;
429    int retval = 0;
430    haint_data_t haint;
431
432    /* Clear appropriate bits in HCINTn to clear the interrupt bit in
433     * GINTSTS */
434
435    haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if);
436
437    for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) {
438        if (haint.b2.chint & (1 << i)) {
439            retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i);
440        }
441    }
442
443    return retval;
444}
445
446/* Macro used to clear one channel interrupt */
447#define clear_hc_int(_hc_regs_, _intr_) \
448do { \
449    hcint_data_t hcint_clear = {.d32 = 0}; \
450    hcint_clear.b._intr_ = 1; \
451    dwc_write_reg32(&(_hc_regs_)->hcint, hcint_clear.d32); \
452} while (0)
453
454/*
455 * Macro used to disable one channel interrupt. Channel interrupts are
456 * disabled when the channel is halted or released by the interrupt handler.
457 * There is no need to handle further interrupts of that type until the
458 * channel is re-assigned. In fact, subsequent handling may cause crashes
459 * because the channel structures are cleaned up when the channel is released.
460 */
461#define disable_hc_int(_hc_regs_, _intr_) \
462do { \
463    hcintmsk_data_t hcintmsk = {.d32 = 0}; \
464    hcintmsk.b._intr_ = 1; \
465    dwc_modify_reg32(&(_hc_regs_)->hcintmsk, hcintmsk.d32, 0); \
466} while (0)
467
468/**
469 * Gets the actual length of a transfer after the transfer halts. _halt_status
470 * holds the reason for the halt.
471 *
472 * For IN transfers where halt_status is DWC_OTG_HC_XFER_COMPLETE,
473 * *short_read is set to 1 upon return if less than the requested
474 * number of bytes were transferred. Otherwise, *short_read is set to 0 upon
475 * return. short_read may also be NULL on entry, in which case it remains
476 * unchanged.
477 */
478static uint32_t get_actual_xfer_length(dwc_hc_t *hc,
479                       dwc_otg_hc_regs_t *hc_regs,
480                       dwc_otg_qtd_t *qtd,
481                       dwc_otg_halt_status_e halt_status,
482                       int *short_read)
483{
484    hctsiz_data_t hctsiz;
485    uint32_t length;
486
487    if (short_read != NULL) {
488        *short_read = 0;
489    }
490    hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
491
492    if (halt_status == DWC_OTG_HC_XFER_COMPLETE) {
493        if (hc->ep_is_in) {
494            length = hc->xfer_len - hctsiz.b.xfersize;
495            if (short_read != NULL) {
496                *short_read = (hctsiz.b.xfersize != 0);
497            }
498        } else if (hc->qh->do_split) {
499            length = qtd->ssplit_out_xfer_count;
500        } else {
501            length = hc->xfer_len;
502        }
503    } else {
504        /*
505         * Must use the hctsiz.pktcnt field to determine how much data
506         * has been transferred. This field reflects the number of
507         * packets that have been transferred via the USB. This is
508         * always an integral number of packets if the transfer was
509         * halted before its normal completion. (Can't use the
510         * hctsiz.xfersize field because that reflects the number of
511         * bytes transferred via the AHB, not the USB).
512         */
513        length = (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet;
514    }
515
516    return length;
517}
518
519/**
520 * Updates the state of the URB after a Transfer Complete interrupt on the
521 * host channel. Updates the actual_length field of the URB based on the
522 * number of bytes transferred via the host channel. Sets the URB status
523 * if the data transfer is finished.
524 *
525 * @return 1 if the data transfer specified by the URB is completely finished,
526 * 0 otherwise.
527 */
528static int update_urb_state_xfer_comp(dwc_hc_t *hc,
529                      dwc_otg_hc_regs_t *hc_regs,
530                      struct urb *urb,
531                      dwc_otg_qtd_t *qtd)
532{
533    int xfer_done = 0;
534    int short_read = 0;
535    int overflow_read=0;
536    uint32_t len = 0;
537    int max_packet;
538
539    len = get_actual_xfer_length(hc, hc_regs, qtd,
540                     DWC_OTG_HC_XFER_COMPLETE,
541                     &short_read);
542
543    /* Data overflow case: by Steven */
544    if (len > urb->transfer_buffer_length) {
545        len = urb->transfer_buffer_length;
546        overflow_read = 1;
547    }
548
549    /* non DWORD-aligned buffer case handling. */
550    if (((uint32_t)hc->xfer_buff & 0x3) && len && hc->qh->dw_align_buf && hc->ep_is_in) {
551        memcpy(urb->transfer_buffer + urb->actual_length, hc->qh->dw_align_buf, len);
552    }
553    urb->actual_length +=len;
554
555    max_packet = usb_maxpacket(urb->dev, urb->pipe, !usb_pipein(urb->pipe));
556    if((len) && usb_pipebulk(urb->pipe) &&
557       (urb->transfer_flags & URB_ZERO_PACKET) &&
558       (urb->actual_length == urb->transfer_buffer_length) &&
559       (!(urb->transfer_buffer_length % max_packet))) {
560    } else if (short_read || urb->actual_length == urb->transfer_buffer_length) {
561        xfer_done = 1;
562        if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK)) {
563            urb->status = -EREMOTEIO;
564        } else if (overflow_read) {
565            urb->status = -EOVERFLOW;
566        } else {
567            urb->status = 0;
568        }
569    }
570
571#ifdef DEBUG
572    {
573        hctsiz_data_t hctsiz;
574        hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
575        DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
576                __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num);
577        DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", hc->xfer_len);
578        DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", hctsiz.b.xfersize);
579        DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
580                urb->transfer_buffer_length);
581        DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length);
582        DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n",
583                short_read, xfer_done);
584    }
585#endif
586
587    return xfer_done;
588}
589
590/*
591 * Save the starting data toggle for the next transfer. The data toggle is
592 * saved in the QH for non-control transfers and it's saved in the QTD for
593 * control transfers.
594 */
595static void save_data_toggle(dwc_hc_t *hc,
596                 dwc_otg_hc_regs_t *hc_regs,
597                 dwc_otg_qtd_t *qtd)
598{
599    hctsiz_data_t hctsiz;
600    hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
601
602    if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) {
603        dwc_otg_qh_t *qh = hc->qh;
604        if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
605            qh->data_toggle = DWC_OTG_HC_PID_DATA0;
606        } else {
607            qh->data_toggle = DWC_OTG_HC_PID_DATA1;
608        }
609    } else {
610        if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
611            qtd->data_toggle = DWC_OTG_HC_PID_DATA0;
612        } else {
613            qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
614        }
615    }
616}
617
618/**
619 * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic
620 * QHs, removes the QH from the active non-periodic schedule. If any QTDs are
621 * still linked to the QH, the QH is added to the end of the inactive
622 * non-periodic schedule. For periodic QHs, removes the QH from the periodic
623 * schedule if no more QTDs are linked to the QH.
624 */
625static void deactivate_qh(dwc_otg_hcd_t *hcd,
626              dwc_otg_qh_t *qh,
627              int free_qtd)
628{
629    int continue_split = 0;
630    dwc_otg_qtd_t *qtd;
631
632    DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd);
633
634    qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
635
636    if (qtd->complete_split) {
637        continue_split = 1;
638    } else if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID ||
639           qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END) {
640        continue_split = 1;
641    }
642
643    if (free_qtd) {
644        dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
645        continue_split = 0;
646    }
647
648    qh->channel = NULL;
649    qh->qtd_in_process = NULL;
650    dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split);
651}
652
653/**
654 * Updates the state of an Isochronous URB when the transfer is stopped for
655 * any reason. The fields of the current entry in the frame descriptor array
656 * are set based on the transfer state and the input _halt_status. Completes
657 * the Isochronous URB if all the URB frames have been completed.
658 *
659 * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be
660 * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE.
661 */
662static dwc_otg_halt_status_e
663update_isoc_urb_state(dwc_otg_hcd_t *hcd,
664              dwc_hc_t *hc,
665              dwc_otg_hc_regs_t *hc_regs,
666              dwc_otg_qtd_t *qtd,
667              dwc_otg_halt_status_e halt_status)
668{
669    struct urb *urb = qtd->urb;
670    dwc_otg_halt_status_e ret_val = halt_status;
671    struct usb_iso_packet_descriptor *frame_desc;
672
673    frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
674    switch (halt_status) {
675    case DWC_OTG_HC_XFER_COMPLETE:
676        frame_desc->status = 0;
677        frame_desc->actual_length =
678            get_actual_xfer_length(hc, hc_regs, qtd,
679                           halt_status, NULL);
680
681        /* non DWORD-aligned buffer case handling. */
682        if (frame_desc->actual_length && ((uint32_t)hc->xfer_buff & 0x3) &&
683                hc->qh->dw_align_buf && hc->ep_is_in) {
684            memcpy(urb->transfer_buffer + frame_desc->offset + qtd->isoc_split_offset,
685                hc->qh->dw_align_buf, frame_desc->actual_length);
686
687        }
688
689        break;
690    case DWC_OTG_HC_XFER_FRAME_OVERRUN:
691        printk("DWC_OTG_HC_XFER_FRAME_OVERRUN: %d\n", halt_status);
692        urb->error_count++;
693        if (hc->ep_is_in) {
694            frame_desc->status = -ENOSR;
695        } else {
696            frame_desc->status = -ECOMM;
697        }
698        frame_desc->actual_length = 0;
699        break;
700    case DWC_OTG_HC_XFER_BABBLE_ERR:
701        printk("DWC_OTG_HC_XFER_BABBLE_ERR: %d\n", halt_status);
702        urb->error_count++;
703        frame_desc->status = -EOVERFLOW;
704        /* Don't need to update actual_length in this case. */
705        break;
706    case DWC_OTG_HC_XFER_XACT_ERR:
707        printk("DWC_OTG_HC_XFER_XACT_ERR: %d\n", halt_status);
708        urb->error_count++;
709        frame_desc->status = -EPROTO;
710        frame_desc->actual_length =
711            get_actual_xfer_length(hc, hc_regs, qtd,
712                           halt_status, NULL);
713
714        /* non DWORD-aligned buffer case handling. */
715        if (frame_desc->actual_length && ((uint32_t)hc->xfer_buff & 0x3) &&
716                hc->qh->dw_align_buf && hc->ep_is_in) {
717            memcpy(urb->transfer_buffer + frame_desc->offset + qtd->isoc_split_offset,
718                hc->qh->dw_align_buf, frame_desc->actual_length);
719
720        }
721        break;
722    default:
723
724        DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__,
725              halt_status);
726        BUG();
727        break;
728    }
729
730    if (++qtd->isoc_frame_index == urb->number_of_packets) {
731        /*
732         * urb->status is not used for isoc transfers.
733         * The individual frame_desc statuses are used instead.
734         */
735        dwc_otg_hcd_complete_urb(hcd, urb, 0);
736        ret_val = DWC_OTG_HC_XFER_URB_COMPLETE;
737    } else {
738        ret_val = DWC_OTG_HC_XFER_COMPLETE;
739    }
740
741    return ret_val;
742}
743
744/**
745 * Releases a host channel for use by other transfers. Attempts to select and
746 * queue more transactions since at least one host channel is available.
747 *
748 * @param hcd The HCD state structure.
749 * @param hc The host channel to release.
750 * @param qtd The QTD associated with the host channel. This QTD may be freed
751 * if the transfer is complete or an error has occurred.
752 * @param halt_status Reason the channel is being released. This status
753 * determines the actions taken by this function.
754 */
755static void release_channel(dwc_otg_hcd_t *hcd,
756                dwc_hc_t *hc,
757                dwc_otg_qtd_t *qtd,
758                dwc_otg_halt_status_e halt_status)
759{
760    dwc_otg_transaction_type_e tr_type;
761    int free_qtd;
762
763    DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n",
764            __func__, hc->hc_num, halt_status);
765
766    switch (halt_status) {
767    case DWC_OTG_HC_XFER_URB_COMPLETE:
768        free_qtd = 1;
769        break;
770    case DWC_OTG_HC_XFER_AHB_ERR:
771    case DWC_OTG_HC_XFER_STALL:
772    case DWC_OTG_HC_XFER_BABBLE_ERR:
773        free_qtd = 1;
774        break;
775    case DWC_OTG_HC_XFER_XACT_ERR:
776        if (qtd->error_count >= 3) {
777            DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n");
778            free_qtd = 1;
779            qtd->urb->status = -EPROTO;
780            dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO);
781        } else {
782            free_qtd = 0;
783        }
784        break;
785    case DWC_OTG_HC_XFER_URB_DEQUEUE:
786        /*
787         * The QTD has already been removed and the QH has been
788         * deactivated. Don't want to do anything except release the
789         * host channel and try to queue more transfers.
790         */
791        goto cleanup;
792    case DWC_OTG_HC_XFER_NO_HALT_STATUS:
793        DWC_ERROR("%s: No halt_status, channel %d\n", __func__, hc->hc_num);
794        free_qtd = 0;
795        break;
796    default:
797        free_qtd = 0;
798        break;
799    }
800
801    deactivate_qh(hcd, hc->qh, free_qtd);
802
803 cleanup:
804    /*
805     * Release the host channel for use by other transfers. The cleanup
806     * function clears the channel interrupt enables and conditions, so
807     * there's no need to clear the Channel Halted interrupt separately.
808     */
809    dwc_otg_hc_cleanup(hcd->core_if, hc);
810    list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list);
811
812    switch (hc->ep_type) {
813    case DWC_OTG_EP_TYPE_CONTROL:
814    case DWC_OTG_EP_TYPE_BULK:
815        hcd->non_periodic_channels--;
816        break;
817
818    default:
819        /*
820         * Don't release reservations for periodic channels here.
821         * That's done when a periodic transfer is descheduled (i.e.
822         * when the QH is removed from the periodic schedule).
823         */
824        break;
825    }
826
827    /* Try to queue more transfers now that there's a free channel. */
828    tr_type = dwc_otg_hcd_select_transactions(hcd);
829    if (tr_type != DWC_OTG_TRANSACTION_NONE) {
830        dwc_otg_hcd_queue_transactions(hcd, tr_type);
831    }
832}
833
834/**
835 * Halts a host channel. If the channel cannot be halted immediately because
836 * the request queue is full, this function ensures that the FIFO empty
837 * interrupt for the appropriate queue is enabled so that the halt request can
838 * be queued when there is space in the request queue.
839 *
840 * This function may also be called in DMA mode. In that case, the channel is
841 * simply released since the core always halts the channel automatically in
842 * DMA mode.
843 */
844static void halt_channel(dwc_otg_hcd_t *hcd,
845             dwc_hc_t *hc,
846             dwc_otg_qtd_t *qtd,
847             dwc_otg_halt_status_e halt_status)
848{
849    if (hcd->core_if->dma_enable) {
850        release_channel(hcd, hc, qtd, halt_status);
851        return;
852    }
853
854    /* Slave mode processing... */
855    dwc_otg_hc_halt(hcd->core_if, hc, halt_status);
856
857    if (hc->halt_on_queue) {
858        gintmsk_data_t gintmsk = {.d32 = 0};
859        dwc_otg_core_global_regs_t *global_regs;
860        global_regs = hcd->core_if->core_global_regs;
861
862        if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
863            hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
864            /*
865             * Make sure the Non-periodic Tx FIFO empty interrupt
866             * is enabled so that the non-periodic schedule will
867             * be processed.
868             */
869            gintmsk.b.nptxfempty = 1;
870            dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
871        } else {
872            /*
873             * Move the QH from the periodic queued schedule to
874             * the periodic assigned schedule. This allows the
875             * halt to be queued when the periodic schedule is
876             * processed.
877             */
878            list_move(&hc->qh->qh_list_entry,
879                  &hcd->periodic_sched_assigned);
880
881            /*
882             * Make sure the Periodic Tx FIFO Empty interrupt is
883             * enabled so that the periodic schedule will be
884             * processed.
885             */
886            gintmsk.b.ptxfempty = 1;
887            dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
888        }
889    }
890}
891
892/**
893 * Performs common cleanup for non-periodic transfers after a Transfer
894 * Complete interrupt. This function should be called after any endpoint type
895 * specific handling is finished to release the host channel.
896 */
897static void complete_non_periodic_xfer(dwc_otg_hcd_t *hcd,
898                       dwc_hc_t *hc,
899                       dwc_otg_hc_regs_t *hc_regs,
900                       dwc_otg_qtd_t *qtd,
901                       dwc_otg_halt_status_e halt_status)
902{
903    hcint_data_t hcint;
904
905    qtd->error_count = 0;
906
907    hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
908    if (hcint.b.nyet) {
909        /*
910         * Got a NYET on the last transaction of the transfer. This
911         * means that the endpoint should be in the PING state at the
912         * beginning of the next transfer.
913         */
914        hc->qh->ping_state = 1;
915        clear_hc_int(hc_regs, nyet);
916    }
917
918    /*
919     * Always halt and release the host channel to make it available for
920     * more transfers. There may still be more phases for a control
921     * transfer or more data packets for a bulk transfer at this point,
922     * but the host channel is still halted. A channel will be reassigned
923     * to the transfer when the non-periodic schedule is processed after
924     * the channel is released. This allows transactions to be queued
925     * properly via dwc_otg_hcd_queue_transactions, which also enables the
926     * Tx FIFO Empty interrupt if necessary.
927     */
928    if (hc->ep_is_in) {
929        /*
930         * IN transfers in Slave mode require an explicit disable to
931         * halt the channel. (In DMA mode, this call simply releases
932         * the channel.)
933         */
934        halt_channel(hcd, hc, qtd, halt_status);
935    } else {
936        /*
937         * The channel is automatically disabled by the core for OUT
938         * transfers in Slave mode.
939         */
940        release_channel(hcd, hc, qtd, halt_status);
941    }
942}
943
944/**
945 * Performs common cleanup for periodic transfers after a Transfer Complete
946 * interrupt. This function should be called after any endpoint type specific
947 * handling is finished to release the host channel.
948 */
949static void complete_periodic_xfer(dwc_otg_hcd_t *hcd,
950                   dwc_hc_t *hc,
951                   dwc_otg_hc_regs_t *hc_regs,
952                   dwc_otg_qtd_t *qtd,
953                   dwc_otg_halt_status_e halt_status)
954{
955    hctsiz_data_t hctsiz;
956    qtd->error_count = 0;
957
958    hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
959    if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) {
960        /* Core halts channel in these cases. */
961        release_channel(hcd, hc, qtd, halt_status);
962    } else {
963        /* Flush any outstanding requests from the Tx queue. */
964        halt_channel(hcd, hc, qtd, halt_status);
965    }
966}
967
968/**
969 * Handles a host channel Transfer Complete interrupt. This handler may be
970 * called in either DMA mode or Slave mode.
971 */
972static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *hcd,
973                       dwc_hc_t *hc,
974                       dwc_otg_hc_regs_t *hc_regs,
975                       dwc_otg_qtd_t *qtd)
976{
977    int urb_xfer_done;
978    dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE;
979    struct urb *urb = qtd->urb;
980    int pipe_type = usb_pipetype(urb->pipe);
981
982    DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
983            "Transfer Complete--\n", hc->hc_num);
984
985    /*
986     * Handle xfer complete on CSPLIT.
987     */
988    if (hc->qh->do_split) {
989        qtd->complete_split = 0;
990    }
991
992    /* Update the QTD and URB states. */
993    switch (pipe_type) {
994    case PIPE_CONTROL:
995        switch (qtd->control_phase) {
996        case DWC_OTG_CONTROL_SETUP:
997            if (urb->transfer_buffer_length > 0) {
998                qtd->control_phase = DWC_OTG_CONTROL_DATA;
999            } else {
1000                qtd->control_phase = DWC_OTG_CONTROL_STATUS;
1001            }
1002            DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n");
1003            halt_status = DWC_OTG_HC_XFER_COMPLETE;
1004            break;
1005        case DWC_OTG_CONTROL_DATA: {
1006            urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
1007            if (urb_xfer_done) {
1008                qtd->control_phase = DWC_OTG_CONTROL_STATUS;
1009                DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n");
1010            } else {
1011                save_data_toggle(hc, hc_regs, qtd);
1012            }
1013            halt_status = DWC_OTG_HC_XFER_COMPLETE;
1014            break;
1015        }
1016        case DWC_OTG_CONTROL_STATUS:
1017            DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n");
1018            if (urb->status == -EINPROGRESS) {
1019                urb->status = 0;
1020            }
1021            dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
1022            halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
1023            break;
1024        }
1025
1026        complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
1027        break;
1028    case PIPE_BULK:
1029        DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n");
1030        urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
1031        if (urb_xfer_done) {
1032            dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
1033            halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
1034        } else {
1035            halt_status = DWC_OTG_HC_XFER_COMPLETE;
1036        }
1037
1038        save_data_toggle(hc, hc_regs, qtd);
1039        complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
1040        break;
1041    case PIPE_INTERRUPT:
1042        DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n");
1043        update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
1044
1045        /*
1046         * Interrupt URB is done on the first transfer complete
1047         * interrupt.
1048         */
1049        dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
1050        save_data_toggle(hc, hc_regs, qtd);
1051        complete_periodic_xfer(hcd, hc, hc_regs, qtd,
1052                       DWC_OTG_HC_XFER_URB_COMPLETE);
1053        break;
1054    case PIPE_ISOCHRONOUS:
1055        DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n");
1056        if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) {
1057            halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
1058                                DWC_OTG_HC_XFER_COMPLETE);
1059        }
1060        complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
1061        break;
1062    }
1063
1064    disable_hc_int(hc_regs, xfercompl);
1065
1066    return 1;
1067}
1068
1069/**
1070 * Handles a host channel STALL interrupt. This handler may be called in
1071 * either DMA mode or Slave mode.
1072 */
1073static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *hcd,
1074                    dwc_hc_t *hc,
1075                    dwc_otg_hc_regs_t *hc_regs,
1076                    dwc_otg_qtd_t *qtd)
1077{
1078    struct urb *urb = qtd->urb;
1079    int pipe_type = usb_pipetype(urb->pipe);
1080
1081    DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
1082            "STALL Received--\n", hc->hc_num);
1083
1084    if (pipe_type == PIPE_CONTROL) {
1085        dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE);
1086    }
1087
1088    if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) {
1089        dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE);
1090        /*
1091         * USB protocol requires resetting the data toggle for bulk
1092         * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT)
1093         * setup command is issued to the endpoint. Anticipate the
1094         * CLEAR_FEATURE command since a STALL has occurred and reset
1095         * the data toggle now.
1096         */
1097        hc->qh->data_toggle = 0;
1098    }
1099
1100    halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL);
1101
1102    disable_hc_int(hc_regs, stall);
1103
1104    return 1;
1105}
1106
1107/*
1108 * Updates the state of the URB when a transfer has been stopped due to an
1109 * abnormal condition before the transfer completes. Modifies the
1110 * actual_length field of the URB to reflect the number of bytes that have
1111 * actually been transferred via the host channel.
1112 */
1113static void update_urb_state_xfer_intr(dwc_hc_t *hc,
1114                       dwc_otg_hc_regs_t *hc_regs,
1115                       struct urb *urb,
1116                       dwc_otg_qtd_t *qtd,
1117                       dwc_otg_halt_status_e halt_status)
1118{
1119    uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd,
1120                                halt_status, NULL);
1121    urb->actual_length += bytes_transferred;
1122
1123#ifdef DEBUG
1124    {
1125        hctsiz_data_t hctsiz;
1126        hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
1127        DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
1128                __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num);
1129        DWC_DEBUGPL(DBG_HCDV, " hc->start_pkt_count %d\n", hc->start_pkt_count);
1130        DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt);
1131        DWC_DEBUGPL(DBG_HCDV, " hc->max_packet %d\n", hc->max_packet);
1132        DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", bytes_transferred);
1133        DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length);
1134        DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
1135                urb->transfer_buffer_length);
1136    }
1137#endif
1138}
1139
1140/**
1141 * Handles a host channel NAK interrupt. This handler may be called in either
1142 * DMA mode or Slave mode.
1143 */
1144static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *hcd,
1145                  dwc_hc_t *hc,
1146                  dwc_otg_hc_regs_t *hc_regs,
1147                  dwc_otg_qtd_t *qtd)
1148{
1149    DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
1150            "NAK Received--\n", hc->hc_num);
1151
1152    /*
1153     * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and
1154     * interrupt. Re-start the SSPLIT transfer.
1155     */
1156    if (hc->do_split) {
1157        if (hc->complete_split) {
1158            qtd->error_count = 0;
1159        }
1160        qtd->complete_split = 0;
1161        halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
1162        goto handle_nak_done;
1163    }
1164
1165    switch (usb_pipetype(qtd->urb->pipe)) {
1166    case PIPE_CONTROL:
1167    case PIPE_BULK:
1168        if (hcd->core_if->dma_enable && hc->ep_is_in) {
1169            /*
1170             * NAK interrupts are enabled on bulk/control IN
1171             * transfers in DMA mode for the sole purpose of
1172             * resetting the error count after a transaction error
1173             * occurs. The core will continue transferring data.
1174             */
1175            qtd->error_count = 0;
1176            goto handle_nak_done;
1177        }
1178
1179        /*
1180         * NAK interrupts normally occur during OUT transfers in DMA
1181         * or Slave mode. For IN transfers, more requests will be
1182         * queued as request queue space is available.
1183         */
1184        qtd->error_count = 0;
1185
1186        if (!hc->qh->ping_state) {
1187            update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
1188                           qtd, DWC_OTG_HC_XFER_NAK);
1189            save_data_toggle(hc, hc_regs, qtd);
1190            if (qtd->urb->dev->speed == USB_SPEED_HIGH) {
1191                hc->qh->ping_state = 1;
1192            }
1193        }
1194
1195        /*
1196         * Halt the channel so the transfer can be re-started from
1197         * the appropriate point or the PING protocol will
1198         * start/continue.
1199         */
1200        halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
1201        break;
1202    case PIPE_INTERRUPT:
1203        qtd->error_count = 0;
1204        halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
1205        break;
1206    case PIPE_ISOCHRONOUS:
1207        /* Should never get called for isochronous transfers. */
1208        BUG();
1209        break;
1210    }
1211
1212 handle_nak_done:
1213    disable_hc_int(hc_regs, nak);
1214
1215    return 1;
1216}
1217
1218/**
1219 * Handles a host channel ACK interrupt. This interrupt is enabled when
1220 * performing the PING protocol in Slave mode, when errors occur during
1221 * either Slave mode or DMA mode, and during Start Split transactions.
1222 */
1223static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *hcd,
1224                  dwc_hc_t *hc,
1225                  dwc_otg_hc_regs_t *hc_regs,
1226                  dwc_otg_qtd_t *qtd)
1227{
1228    DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
1229            "ACK Received--\n", hc->hc_num);
1230
1231    if (hc->do_split) {
1232        /*
1233         * Handle ACK on SSPLIT.
1234         * ACK should not occur in CSPLIT.
1235         */
1236        if (!hc->ep_is_in && hc->data_pid_start != DWC_OTG_HC_PID_SETUP) {
1237            qtd->ssplit_out_xfer_count = hc->xfer_len;
1238        }
1239        if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) {
1240            /* Don't need complete for isochronous out transfers. */
1241            qtd->complete_split = 1;
1242        }
1243
1244        /* ISOC OUT */
1245        if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
1246            switch (hc->xact_pos) {
1247            case DWC_HCSPLIT_XACTPOS_ALL:
1248                break;
1249            case DWC_HCSPLIT_XACTPOS_END:
1250                qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
1251                qtd->isoc_split_offset = 0;
1252                break;
1253            case DWC_HCSPLIT_XACTPOS_BEGIN:
1254            case DWC_HCSPLIT_XACTPOS_MID:
1255                /*
1256                 * For BEGIN or MID, calculate the length for
1257                 * the next microframe to determine the correct
1258                 * SSPLIT token, either MID or END.
1259                 */
1260                {
1261                    struct usb_iso_packet_descriptor *frame_desc;
1262
1263                    frame_desc = &qtd->urb->iso_frame_desc[qtd->isoc_frame_index];
1264                    qtd->isoc_split_offset += 188;
1265
1266                    if ((frame_desc->length - qtd->isoc_split_offset) <= 188) {
1267                        qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END;
1268                    } else {
1269                        qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID;
1270                    }
1271
1272                }
1273                break;
1274            }
1275        } else {
1276            halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
1277        }
1278    } else {
1279        qtd->error_count = 0;
1280
1281        if (hc->qh->ping_state) {
1282            hc->qh->ping_state = 0;
1283            /*
1284             * Halt the channel so the transfer can be re-started
1285             * from the appropriate point. This only happens in
1286             * Slave mode. In DMA mode, the ping_state is cleared
1287             * when the transfer is started because the core
1288             * automatically executes the PING, then the transfer.
1289             */
1290            halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
1291        }
1292    }
1293
1294    /*
1295     * If the ACK occurred when _not_ in the PING state, let the channel
1296     * continue transferring data after clearing the error count.
1297     */
1298
1299    disable_hc_int(hc_regs, ack);
1300
1301    return 1;
1302}
1303
1304/**
1305 * Handles a host channel NYET interrupt. This interrupt should only occur on
1306 * Bulk and Control OUT endpoints and for complete split transactions. If a
1307 * NYET occurs at the same time as a Transfer Complete interrupt, it is
1308 * handled in the xfercomp interrupt handler, not here. This handler may be
1309 * called in either DMA mode or Slave mode.
1310 */
1311static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *hcd,
1312                   dwc_hc_t *hc,
1313                   dwc_otg_hc_regs_t *hc_regs,
1314                   dwc_otg_qtd_t *qtd)
1315{
1316    DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
1317            "NYET Received--\n", hc->hc_num);
1318
1319    /*
1320     * NYET on CSPLIT
1321     * re-do the CSPLIT immediately on non-periodic
1322     */
1323    if (hc->do_split && hc->complete_split) {
1324        if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
1325            hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
1326            int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
1327
1328            if (dwc_full_frame_num(frnum) !=
1329                dwc_full_frame_num(hc->qh->sched_frame)) {
1330                /*
1331                 * No longer in the same full speed frame.
1332                 * Treat this as a transaction error.
1333                 */
1334#if 0
1335                /** @todo Fix system performance so this can
1336                 * be treated as an error. Right now complete
1337                 * splits cannot be scheduled precisely enough
1338                 * due to other system activity, so this error
1339                 * occurs regularly in Slave mode.
1340                 */
1341                qtd->error_count++;
1342#endif
1343                qtd->complete_split = 0;
1344                halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
1345                /** @todo add support for isoc release */
1346                goto handle_nyet_done;
1347            }
1348        }
1349
1350        halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
1351        goto handle_nyet_done;
1352    }
1353
1354    hc->qh->ping_state = 1;
1355    qtd->error_count = 0;
1356
1357    update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd,
1358                   DWC_OTG_HC_XFER_NYET);
1359    save_data_toggle(hc, hc_regs, qtd);
1360
1361    /*
1362     * Halt the channel and re-start the transfer so the PING
1363     * protocol will start.
1364     */
1365    halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
1366
1367handle_nyet_done:
1368    disable_hc_int(hc_regs, nyet);
1369    return 1;
1370}
1371
1372/**
1373 * Handles a host channel babble interrupt. This handler may be called in
1374 * either DMA mode or Slave mode.
1375 */
1376static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *hcd,
1377                     dwc_hc_t *hc,
1378                     dwc_otg_hc_regs_t *hc_regs,
1379                     dwc_otg_qtd_t *qtd)
1380{
1381    DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
1382            "Babble Error--\n", hc->hc_num);
1383    if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
1384        dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW);
1385        halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR);
1386    } else {
1387        dwc_otg_halt_status_e halt_status;
1388        halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
1389                            DWC_OTG_HC_XFER_BABBLE_ERR);
1390        halt_channel(hcd, hc, qtd, halt_status);
1391    }
1392    disable_hc_int(hc_regs, bblerr);
1393    return 1;
1394}
1395
1396/**
1397 * Handles a host channel AHB error interrupt. This handler is only called in
1398 * DMA mode.
1399 */
1400static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *hcd,
1401                     dwc_hc_t *hc,
1402                     dwc_otg_hc_regs_t *hc_regs,
1403                     dwc_otg_qtd_t *qtd)
1404{
1405    hcchar_data_t hcchar;
1406    hcsplt_data_t hcsplt;
1407    hctsiz_data_t hctsiz;
1408    uint32_t hcdma;
1409    struct urb *urb = qtd->urb;
1410
1411    DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
1412            "AHB Error--\n", hc->hc_num);
1413
1414    hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
1415    hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
1416    hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
1417    hcdma = dwc_read_reg32(&hc_regs->hcdma);
1418
1419    DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num);
1420    DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
1421    DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
1422          DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n");
1423    DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe));
1424    DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
1425          (usb_pipein(urb->pipe) ? "IN" : "OUT"));
1426    DWC_ERROR(" Endpoint type: %s\n",
1427          ({char *pipetype;
1428            switch (usb_pipetype(urb->pipe)) {
1429            case PIPE_CONTROL: pipetype = "CONTROL"; break;
1430            case PIPE_BULK: pipetype = "BULK"; break;
1431            case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
1432            case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
1433            default: pipetype = "UNKNOWN"; break;
1434           }; pipetype;}));
1435    DWC_ERROR(" Speed: %s\n",
1436          ({char *speed;
1437            switch (urb->dev->speed) {
1438            case USB_SPEED_HIGH: speed = "HIGH"; break;
1439            case USB_SPEED_FULL: speed = "FULL"; break;
1440            case USB_SPEED_LOW: speed = "LOW"; break;
1441            default: speed = "UNKNOWN"; break;
1442           }; speed;}));
1443    DWC_ERROR(" Max packet size: %d\n",
1444          usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
1445    DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length);
1446    DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n",
1447          urb->transfer_buffer, (void *)urb->transfer_dma);
1448    DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n",
1449          urb->setup_packet, (void *)urb->setup_dma);
1450    DWC_ERROR(" Interval: %d\n", urb->interval);
1451
1452    dwc_otg_hcd_complete_urb(hcd, urb, -EIO);
1453
1454    /*
1455     * Force a channel halt. Don't call halt_channel because that won't
1456     * write to the HCCHARn register in DMA mode to force the halt.
1457     */
1458    dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR);
1459
1460    disable_hc_int(hc_regs, ahberr);
1461    return 1;
1462}
1463
1464/**
1465 * Handles a host channel transaction error interrupt. This handler may be
1466 * called in either DMA mode or Slave mode.
1467 */
1468static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *hcd,
1469                      dwc_hc_t *hc,
1470                      dwc_otg_hc_regs_t *hc_regs,
1471                      dwc_otg_qtd_t *qtd)
1472{
1473    DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
1474            "Transaction Error--\n", hc->hc_num);
1475
1476    switch (usb_pipetype(qtd->urb->pipe)) {
1477    case PIPE_CONTROL:
1478    case PIPE_BULK:
1479        qtd->error_count++;
1480        if (!hc->qh->ping_state) {
1481            update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
1482                           qtd, DWC_OTG_HC_XFER_XACT_ERR);
1483            save_data_toggle(hc, hc_regs, qtd);
1484            if (!hc->ep_is_in && qtd->urb->dev->speed == USB_SPEED_HIGH) {
1485                hc->qh->ping_state = 1;
1486            }
1487        }
1488
1489        /*
1490         * Halt the channel so the transfer can be re-started from
1491         * the appropriate point or the PING protocol will start.
1492         */
1493        halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
1494        break;
1495    case PIPE_INTERRUPT:
1496        qtd->error_count++;
1497        if (hc->do_split && hc->complete_split) {
1498            qtd->complete_split = 0;
1499        }
1500        halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
1501        break;
1502    case PIPE_ISOCHRONOUS:
1503        {
1504            dwc_otg_halt_status_e halt_status;
1505            halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
1506                                DWC_OTG_HC_XFER_XACT_ERR);
1507
1508            halt_channel(hcd, hc, qtd, halt_status);
1509        }
1510        break;
1511    }
1512
1513    disable_hc_int(hc_regs, xacterr);
1514
1515    return 1;
1516}
1517
1518/**
1519 * Handles a host channel frame overrun interrupt. This handler may be called
1520 * in either DMA mode or Slave mode.
1521 */
1522static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *hcd,
1523                       dwc_hc_t *hc,
1524                       dwc_otg_hc_regs_t *hc_regs,
1525                       dwc_otg_qtd_t *qtd)
1526{
1527    DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
1528            "Frame Overrun--\n", hc->hc_num);
1529
1530    switch (usb_pipetype(qtd->urb->pipe)) {
1531    case PIPE_CONTROL:
1532    case PIPE_BULK:
1533        break;
1534    case PIPE_INTERRUPT:
1535        halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN);
1536        break;
1537    case PIPE_ISOCHRONOUS:
1538        {
1539            dwc_otg_halt_status_e halt_status;
1540            halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
1541                                DWC_OTG_HC_XFER_FRAME_OVERRUN);
1542
1543            halt_channel(hcd, hc, qtd, halt_status);
1544        }
1545        break;
1546    }
1547
1548    disable_hc_int(hc_regs, frmovrun);
1549
1550    return 1;
1551}
1552
1553/**
1554 * Handles a host channel data toggle error interrupt. This handler may be
1555 * called in either DMA mode or Slave mode.
1556 */
1557static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *hcd,
1558                     dwc_hc_t *hc,
1559                     dwc_otg_hc_regs_t *hc_regs,
1560                     dwc_otg_qtd_t *qtd)
1561{
1562    DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
1563            "Data Toggle Error--\n", hc->hc_num);
1564
1565    if (hc->ep_is_in) {
1566        qtd->error_count = 0;
1567    } else {
1568        DWC_ERROR("Data Toggle Error on OUT transfer,"
1569              "channel %d\n", hc->hc_num);
1570    }
1571
1572    disable_hc_int(hc_regs, datatglerr);
1573
1574    return 1;
1575}
1576
1577#ifdef DEBUG
1578/**
1579 * This function is for debug only. It checks that a valid halt status is set
1580 * and that HCCHARn.chdis is clear. If there's a problem, corrective action is
1581 * taken and a warning is issued.
1582 * @return 1 if halt status is ok, 0 otherwise.
1583 */
1584static inline int halt_status_ok(dwc_otg_hcd_t *hcd,
1585                 dwc_hc_t *hc,
1586                 dwc_otg_hc_regs_t *hc_regs,
1587                 dwc_otg_qtd_t *qtd)
1588{
1589    hcchar_data_t hcchar;
1590    hctsiz_data_t hctsiz;
1591    hcint_data_t hcint;
1592    hcintmsk_data_t hcintmsk;
1593    hcsplt_data_t hcsplt;
1594
1595    if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) {
1596        /*
1597         * This code is here only as a check. This condition should
1598         * never happen. Ignore the halt if it does occur.
1599         */
1600        hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
1601        hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
1602        hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
1603        hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
1604        hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
1605        DWC_WARN("%s: hc->halt_status == DWC_OTG"
1606             "channel %d, hcchar 0x%08x, hctsiz 0x%08x, "
1607             "hcint 0x%08x, hcintmsk 0x%08x, "
1608             "hcsplt 0x%08x, qtd->complete_split %d\n",
1609             __func__, hc->hc_num, hcchar.d32, hctsiz.d32,
1610             hcint.d32, hcintmsk.d32,
1611             hcsplt.d32, qtd->complete_split);
1612
1613        DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n",
1614             __func__, hc->hc_num);
1615        DWC_WARN("\n");
1616        clear_hc_int(hc_regs, chhltd);
1617        return 0;
1618    }
1619
1620    /*
1621     * This code is here only as a check. hcchar.chdis should
1622     * never be set when the halt interrupt occurs. Halt the
1623     * channel again if it does occur.
1624     */
1625    hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
1626    if (hcchar.b.chdis) {
1627        DWC_WARN("%s: hcchar.chdis set unexpectedly, "
1628             "hcchar 0x%08x, trying to halt again\n",
1629             __func__, hcchar.d32);
1630        clear_hc_int(hc_regs, chhltd);
1631        hc->halt_pending = 0;
1632        halt_channel(hcd, hc, qtd, hc->halt_status);
1633        return 0;
1634    }
1635
1636    return 1;
1637}
1638#endif
1639
1640/**
1641 * Handles a host Channel Halted interrupt in DMA mode. This handler
1642 * determines the reason the channel halted and proceeds accordingly.
1643 */
1644static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *hcd,
1645                      dwc_hc_t *hc,
1646                      dwc_otg_hc_regs_t *hc_regs,
1647                      dwc_otg_qtd_t *qtd)
1648{
1649    hcint_data_t hcint;
1650    hcintmsk_data_t hcintmsk;
1651    int out_nak_enh = 0;
1652
1653    /* For core with OUT NAK enhancement, the flow for high-
1654     * speed CONTROL/BULK OUT is handled a little differently.
1655     */
1656    if (hcd->core_if->snpsid >= 0x4F54271A) {
1657        if (hc->speed == DWC_OTG_EP_SPEED_HIGH && !hc->ep_is_in &&
1658            (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
1659             hc->ep_type == DWC_OTG_EP_TYPE_BULK)) {
1660            printk(KERN_DEBUG "OUT NAK enhancement enabled\n");
1661            out_nak_enh = 1;
1662        } else {
1663            printk(KERN_DEBUG "OUT NAK enhancement disabled, not HS Ctrl/Bulk OUT EP\n");
1664        }
1665    } else {
1666// printk(KERN_DEBUG "OUT NAK enhancement disabled, no core support\n");
1667    }
1668
1669    if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
1670        hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
1671        /*
1672         * Just release the channel. A dequeue can happen on a
1673         * transfer timeout. In the case of an AHB Error, the channel
1674         * was forced to halt because there's no way to gracefully
1675         * recover.
1676         */
1677        release_channel(hcd, hc, qtd, hc->halt_status);
1678        return;
1679    }
1680
1681    /* Read the HCINTn register to determine the cause for the halt. */
1682    hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
1683    hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
1684
1685    if (hcint.b.xfercomp) {
1686        /** @todo This is here because of a possible hardware bug. Spec
1687         * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT
1688         * interrupt w/ACK bit set should occur, but I only see the
1689         * XFERCOMP bit, even with it masked out. This is a workaround
1690         * for that behavior. Should fix this when hardware is fixed.
1691         */
1692        if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
1693            handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
1694        }
1695        handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd);
1696    } else if (hcint.b.stall) {
1697        handle_hc_stall_intr(hcd, hc, hc_regs, qtd);
1698    } else if (hcint.b.xacterr) {
1699        if (out_nak_enh) {
1700            if (hcint.b.nyet || hcint.b.nak || hcint.b.ack) {
1701                printk(KERN_DEBUG "XactErr with NYET/NAK/ACK\n");
1702                qtd->error_count = 0;
1703            } else {
1704                printk(KERN_DEBUG "XactErr without NYET/NAK/ACK\n");
1705            }
1706        }
1707
1708        /*
1709         * Must handle xacterr before nak or ack. Could get a xacterr
1710         * at the same time as either of these on a BULK/CONTROL OUT
1711         * that started with a PING. The xacterr takes precedence.
1712         */
1713        handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd);
1714    } else if (!out_nak_enh) {
1715        if (hcint.b.nyet) {
1716            /*
1717             * Must handle nyet before nak or ack. Could get a nyet at the
1718             * same time as either of those on a BULK/CONTROL OUT that
1719             * started with a PING. The nyet takes precedence.
1720             */
1721            handle_hc_nyet_intr(hcd, hc, hc_regs, qtd);
1722        } else if (hcint.b.bblerr) {
1723            handle_hc_babble_intr(hcd, hc, hc_regs, qtd);
1724        } else if (hcint.b.frmovrun) {
1725            handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd);
1726        } else if (hcint.b.nak && !hcintmsk.b.nak) {
1727            /*
1728             * If nak is not masked, it's because a non-split IN transfer
1729             * is in an error state. In that case, the nak is handled by
1730             * the nak interrupt handler, not here. Handle nak here for
1731             * BULK/CONTROL OUT transfers, which halt on a NAK to allow
1732             * rewinding the buffer pointer.
1733             */
1734            handle_hc_nak_intr(hcd, hc, hc_regs, qtd);
1735        } else if (hcint.b.ack && !hcintmsk.b.ack) {
1736            /*
1737             * If ack is not masked, it's because a non-split IN transfer
1738             * is in an error state. In that case, the ack is handled by
1739             * the ack interrupt handler, not here. Handle ack here for
1740             * split transfers. Start splits halt on ACK.
1741             */
1742            handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
1743        } else {
1744            if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
1745                hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
1746                /*
1747                 * A periodic transfer halted with no other channel
1748                 * interrupts set. Assume it was halted by the core
1749                 * because it could not be completed in its scheduled
1750                 * (micro)frame.
1751                 */
1752#ifdef DEBUG
1753                DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n",
1754                      __func__, hc->hc_num);
1755#endif
1756                halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE);
1757            } else {
1758                DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason "
1759                      "for halting is unknown, hcint 0x%08x, intsts 0x%08x\n",
1760                      __func__, hc->hc_num, hcint.d32,
1761                      dwc_read_reg32(&hcd->core_if->core_global_regs->gintsts));
1762            }
1763        }
1764    } else {
1765        printk(KERN_DEBUG "NYET/NAK/ACK/other in non-error case, 0x%08x\n", hcint.d32);
1766    }
1767}
1768
1769/**
1770 * Handles a host channel Channel Halted interrupt.
1771 *
1772 * In slave mode, this handler is called only when the driver specifically
1773 * requests a halt. This occurs during handling other host channel interrupts
1774 * (e.g. nak, xacterr, stall, nyet, etc.).
1775 *
1776 * In DMA mode, this is the interrupt that occurs when the core has finished
1777 * processing a transfer on a channel. Other host channel interrupts (except
1778 * ahberr) are disabled in DMA mode.
1779 */
1780static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *hcd,
1781                     dwc_hc_t *hc,
1782                     dwc_otg_hc_regs_t *hc_regs,
1783                     dwc_otg_qtd_t *qtd)
1784{
1785    DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
1786            "Channel Halted--\n", hc->hc_num);
1787
1788    if (hcd->core_if->dma_enable) {
1789        handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd);
1790    } else {
1791#ifdef DEBUG
1792        if (!halt_status_ok(hcd, hc, hc_regs, qtd)) {
1793            return 1;
1794        }
1795#endif
1796        release_channel(hcd, hc, qtd, hc->halt_status);
1797    }
1798
1799    return 1;
1800}
1801
1802/** Handles interrupt for a specific Host Channel */
1803int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num)
1804{
1805    int retval = 0;
1806    hcint_data_t hcint;
1807    hcintmsk_data_t hcintmsk;
1808    dwc_hc_t *hc;
1809    dwc_otg_hc_regs_t *hc_regs;
1810    dwc_otg_qtd_t *qtd;
1811
1812    DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", num);
1813
1814    hc = dwc_otg_hcd->hc_ptr_array[num];
1815    hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[num];
1816    qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
1817
1818    hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
1819    hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
1820    DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n",
1821            hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32));
1822    hcint.d32 = hcint.d32 & hcintmsk.d32;
1823
1824    if (!dwc_otg_hcd->core_if->dma_enable) {
1825        if (hcint.b.chhltd && hcint.d32 != 0x2) {
1826            hcint.b.chhltd = 0;
1827        }
1828    }
1829
1830    if (hcint.b.xfercomp) {
1831        retval |= handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd);
1832        /*
1833         * If NYET occurred at same time as Xfer Complete, the NYET is
1834         * handled by the Xfer Complete interrupt handler. Don't want
1835         * to call the NYET interrupt handler in this case.
1836         */
1837        hcint.b.nyet = 0;
1838    }
1839    if (hcint.b.chhltd) {
1840        retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd);
1841    }
1842    if (hcint.b.ahberr) {
1843        retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
1844    }
1845    if (hcint.b.stall) {
1846        retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd);
1847    }
1848    if (hcint.b.nak) {
1849        retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd);
1850    }
1851    if (hcint.b.ack) {
1852        retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd);
1853    }
1854    if (hcint.b.nyet) {
1855        retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd);
1856    }
1857    if (hcint.b.xacterr) {
1858        retval |= handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
1859    }
1860    if (hcint.b.bblerr) {
1861        retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd);
1862    }
1863    if (hcint.b.frmovrun) {
1864        retval |= handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd);
1865    }
1866    if (hcint.b.datatglerr) {
1867        retval |= handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
1868    }
1869
1870    return retval;
1871}
1872
1873#endif /* DWC_DEVICE_ONLY */
1874

Archive Download this file



interactive