| 1 | /* ========================================================================== |
| 2 | * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd_intr.c $ |
| 3 | * $Revision: 1.2 $ |
| 4 | * $Date: 2008-11-21 05:39:15 $ |
| 5 | * $Change: 1115682 $ |
| 6 | * |
| 7 | * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, |
| 8 | * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless |
| 9 | * otherwise expressly agreed to in writing between Synopsys and you. |
| 10 | * |
| 11 | * The Software IS NOT an item of Licensed Software or Licensed Product under |
| 12 | * any End User Software License Agreement or Agreement for Licensed Product |
| 13 | * with Synopsys or any supplement thereto. You are permitted to use and |
| 14 | * redistribute this Software in source and binary forms, with or without |
| 15 | * modification, provided that redistributions of source code must retain this |
| 16 | * notice. You may not view, use, disclose, copy or distribute this file or |
| 17 | * any information contained herein except pursuant to this license grant from |
| 18 | * Synopsys. If you do not agree with this notice, including the disclaimer |
| 19 | * below, then you are not authorized to use the Software. |
| 20 | * |
| 21 | * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS |
| 22 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 24 | * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, |
| 25 | * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 26 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 27 | * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 28 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH |
| 31 | * DAMAGE. |
| 32 | * ========================================================================== */ |
| 33 | #ifndef DWC_HOST_ONLY |
| 34 | #include <linux/interrupt.h> |
| 35 | #include <linux/dma-mapping.h> |
| 36 | #include <linux/version.h> |
| 37 | |
| 38 | #include "dwc_otg_driver.h" |
| 39 | #include "dwc_otg_pcd.h" |
| 40 | |
| 41 | |
| 42 | #define DEBUG_EP0 |
| 43 | |
| 44 | /* request functions defined in "dwc_otg_pcd.c" */ |
| 45 | |
| 46 | /** @file |
| 47 | * This file contains the implementation of the PCD Interrupt handlers. |
| 48 | * |
| 49 | * The PCD handles the device interrupts. Many conditions can cause a |
| 50 | * device interrupt. When an interrupt occurs, the device interrupt |
| 51 | * service routine determines the cause of the interrupt and |
| 52 | * dispatches handling to the appropriate function. These interrupt |
| 53 | * handling functions are described below. |
| 54 | * All interrupt registers are processed from LSB to MSB. |
| 55 | */ |
| 56 | |
| 57 | |
| 58 | /** |
| 59 | * This function prints the ep0 state for debug purposes. |
| 60 | */ |
| 61 | static inline void print_ep0_state(dwc_otg_pcd_t *pcd) |
| 62 | { |
| 63 | #ifdef DEBUG |
| 64 | char str[40]; |
| 65 | |
| 66 | switch (pcd->ep0state) { |
| 67 | case EP0_DISCONNECT: |
| 68 | strcpy(str, "EP0_DISCONNECT"); |
| 69 | break; |
| 70 | case EP0_IDLE: |
| 71 | strcpy(str, "EP0_IDLE"); |
| 72 | break; |
| 73 | case EP0_IN_DATA_PHASE: |
| 74 | strcpy(str, "EP0_IN_DATA_PHASE"); |
| 75 | break; |
| 76 | case EP0_OUT_DATA_PHASE: |
| 77 | strcpy(str, "EP0_OUT_DATA_PHASE"); |
| 78 | break; |
| 79 | case EP0_IN_STATUS_PHASE: |
| 80 | strcpy(str,"EP0_IN_STATUS_PHASE"); |
| 81 | break; |
| 82 | case EP0_OUT_STATUS_PHASE: |
| 83 | strcpy(str,"EP0_OUT_STATUS_PHASE"); |
| 84 | break; |
| 85 | case EP0_STALL: |
| 86 | strcpy(str,"EP0_STALL"); |
| 87 | break; |
| 88 | default: |
| 89 | strcpy(str,"EP0_INVALID"); |
| 90 | } |
| 91 | |
| 92 | DWC_DEBUGPL(DBG_ANY, "%s(%d)\n", str, pcd->ep0state); |
| 93 | #endif |
| 94 | } |
| 95 | |
| 96 | /** |
| 97 | * This function returns pointer to in ep struct with number ep_num |
| 98 | */ |
| 99 | static inline dwc_otg_pcd_ep_t* get_in_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num) |
| 100 | { |
| 101 | int i; |
| 102 | int num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps; |
| 103 | if(ep_num == 0) { |
| 104 | return &pcd->ep0; |
| 105 | } |
| 106 | else { |
| 107 | for(i = 0; i < num_in_eps; ++i) |
| 108 | { |
| 109 | if(pcd->in_ep[i].dwc_ep.num == ep_num) |
| 110 | return &pcd->in_ep[i]; |
| 111 | } |
| 112 | return 0; |
| 113 | } |
| 114 | } |
| 115 | /** |
| 116 | * This function returns pointer to out ep struct with number ep_num |
| 117 | */ |
| 118 | static inline dwc_otg_pcd_ep_t* get_out_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num) |
| 119 | { |
| 120 | int i; |
| 121 | int num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps; |
| 122 | if(ep_num == 0) { |
| 123 | return &pcd->ep0; |
| 124 | } |
| 125 | else { |
| 126 | for(i = 0; i < num_out_eps; ++i) |
| 127 | { |
| 128 | if(pcd->out_ep[i].dwc_ep.num == ep_num) |
| 129 | return &pcd->out_ep[i]; |
| 130 | } |
| 131 | return 0; |
| 132 | } |
| 133 | } |
| 134 | /** |
| 135 | * This functions gets a pointer to an EP from the wIndex address |
| 136 | * value of the control request. |
| 137 | */ |
| 138 | static dwc_otg_pcd_ep_t *get_ep_by_addr (dwc_otg_pcd_t *pcd, u16 wIndex) |
| 139 | { |
| 140 | dwc_otg_pcd_ep_t *ep; |
| 141 | |
| 142 | if ((wIndex & USB_ENDPOINT_NUMBER_MASK) == 0) |
| 143 | return &pcd->ep0; |
| 144 | list_for_each_entry(ep, &pcd->gadget.ep_list, ep.ep_list) |
| 145 | { |
| 146 | u8 bEndpointAddress; |
| 147 | |
| 148 | if (!ep->desc) |
| 149 | continue; |
| 150 | |
| 151 | bEndpointAddress = ep->desc->bEndpointAddress; |
| 152 | if((wIndex & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK)) |
| 153 | == (bEndpointAddress & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK))) |
| 154 | return ep; |
| 155 | } |
| 156 | return NULL; |
| 157 | } |
| 158 | |
| 159 | /** |
| 160 | * This function checks the EP request queue, if the queue is not |
| 161 | * empty the next request is started. |
| 162 | */ |
| 163 | void start_next_request(dwc_otg_pcd_ep_t *ep) |
| 164 | { |
| 165 | dwc_otg_pcd_request_t *req = 0; |
| 166 | uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size; |
| 167 | |
| 168 | if (!list_empty(&ep->queue)) { |
| 169 | req = list_entry(ep->queue.next, |
| 170 | dwc_otg_pcd_request_t, queue); |
| 171 | |
| 172 | /* Setup and start the Transfer */ |
| 173 | ep->dwc_ep.dma_addr = req->req.dma; |
| 174 | ep->dwc_ep.start_xfer_buff = req->req.buf; |
| 175 | ep->dwc_ep.xfer_buff = req->req.buf; |
| 176 | ep->dwc_ep.sent_zlp = 0; |
| 177 | ep->dwc_ep.total_len = req->req.length; |
| 178 | ep->dwc_ep.xfer_len = 0; |
| 179 | ep->dwc_ep.xfer_count = 0; |
| 180 | |
| 181 | if(max_transfer > MAX_TRANSFER_SIZE) { |
| 182 | ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket); |
| 183 | } else { |
| 184 | ep->dwc_ep.maxxfer = max_transfer; |
| 185 | } |
| 186 | |
| 187 | if(req->req.zero) { |
| 188 | if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0) |
| 189 | && (ep->dwc_ep.total_len != 0)) { |
| 190 | ep->dwc_ep.sent_zlp = 1; |
| 191 | } |
| 192 | |
| 193 | } |
| 194 | |
| 195 | dwc_otg_ep_start_transfer(GET_CORE_IF(ep->pcd), &ep->dwc_ep); |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | /** |
| 200 | * This function handles the SOF Interrupts. At this time the SOF |
| 201 | * Interrupt is disabled. |
| 202 | */ |
| 203 | int32_t dwc_otg_pcd_handle_sof_intr(dwc_otg_pcd_t *pcd) |
| 204 | { |
| 205 | dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); |
| 206 | |
| 207 | gintsts_data_t gintsts; |
| 208 | |
| 209 | DWC_DEBUGPL(DBG_PCD, "SOF\n"); |
| 210 | |
| 211 | /* Clear interrupt */ |
| 212 | gintsts.d32 = 0; |
| 213 | gintsts.b.sofintr = 1; |
| 214 | dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); |
| 215 | |
| 216 | return 1; |
| 217 | } |
| 218 | |
| 219 | |
| 220 | /** |
| 221 | * This function handles the Rx Status Queue Level Interrupt, which |
| 222 | * indicates that there is a least one packet in the Rx FIFO. The |
| 223 | * packets are moved from the FIFO to memory, where they will be |
| 224 | * processed when the Endpoint Interrupt Register indicates Transfer |
| 225 | * Complete or SETUP Phase Done. |
| 226 | * |
| 227 | * Repeat the following until the Rx Status Queue is empty: |
| 228 | * -# Read the Receive Status Pop Register (GRXSTSP) to get Packet |
| 229 | * info |
| 230 | * -# If Receive FIFO is empty then skip to step Clear the interrupt |
| 231 | * and exit |
| 232 | * -# If SETUP Packet call dwc_otg_read_setup_packet to copy the |
| 233 | * SETUP data to the buffer |
| 234 | * -# If OUT Data Packet call dwc_otg_read_packet to copy the data |
| 235 | * to the destination buffer |
| 236 | */ |
| 237 | int32_t dwc_otg_pcd_handle_rx_status_q_level_intr(dwc_otg_pcd_t *pcd) |
| 238 | { |
| 239 | dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); |
| 240 | dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; |
| 241 | gintmsk_data_t gintmask = {.d32=0}; |
| 242 | device_grxsts_data_t status; |
| 243 | dwc_otg_pcd_ep_t *ep; |
| 244 | gintsts_data_t gintsts; |
| 245 | #ifdef DEBUG |
| 246 | static char *dpid_str[] ={ "D0", "D2", "D1", "MDATA" }; |
| 247 | #endif |
| 248 | |
| 249 | //DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _pcd); |
| 250 | /* Disable the Rx Status Queue Level interrupt */ |
| 251 | gintmask.b.rxstsqlvl= 1; |
| 252 | dwc_modify_reg32(&global_regs->gintmsk, gintmask.d32, 0); |
| 253 | |
| 254 | /* Get the Status from the top of the FIFO */ |
| 255 | status.d32 = dwc_read_reg32(&global_regs->grxstsp); |
| 256 | |
| 257 | DWC_DEBUGPL(DBG_PCD, "EP:%d BCnt:%d DPID:%s " |
| 258 | "pktsts:%x Frame:%d(0x%0x)\n", |
| 259 | status.b.epnum, status.b.bcnt, |
| 260 | dpid_str[status.b.dpid], |
| 261 | status.b.pktsts, status.b.fn, status.b.fn); |
| 262 | /* Get pointer to EP structure */ |
| 263 | ep = get_out_ep(pcd, status.b.epnum); |
| 264 | |
| 265 | switch (status.b.pktsts) { |
| 266 | case DWC_DSTS_GOUT_NAK: |
| 267 | DWC_DEBUGPL(DBG_PCDV, "Global OUT NAK\n"); |
| 268 | break; |
| 269 | case DWC_STS_DATA_UPDT: |
| 270 | DWC_DEBUGPL(DBG_PCDV, "OUT Data Packet\n"); |
| 271 | if (status.b.bcnt && ep->dwc_ep.xfer_buff) { |
| 272 | /** @todo NGS Check for buffer overflow? */ |
| 273 | dwc_otg_read_packet(core_if, |
| 274 | ep->dwc_ep.xfer_buff, |
| 275 | status.b.bcnt); |
| 276 | ep->dwc_ep.xfer_count += status.b.bcnt; |
| 277 | ep->dwc_ep.xfer_buff += status.b.bcnt; |
| 278 | } |
| 279 | break; |
| 280 | case DWC_STS_XFER_COMP: |
| 281 | DWC_DEBUGPL(DBG_PCDV, "OUT Complete\n"); |
| 282 | break; |
| 283 | case DWC_DSTS_SETUP_COMP: |
| 284 | #ifdef DEBUG_EP0 |
| 285 | DWC_DEBUGPL(DBG_PCDV, "Setup Complete\n"); |
| 286 | #endif |
| 287 | break; |
| 288 | case DWC_DSTS_SETUP_UPDT: |
| 289 | dwc_otg_read_setup_packet(core_if, pcd->setup_pkt->d32); |
| 290 | #ifdef DEBUG_EP0 |
| 291 | DWC_DEBUGPL(DBG_PCD, |
| 292 | "SETUP PKT: %02x.%02x v%04x i%04x l%04x\n", |
| 293 | pcd->setup_pkt->req.bRequestType, |
| 294 | pcd->setup_pkt->req.bRequest, |
| 295 | pcd->setup_pkt->req.wValue, |
| 296 | pcd->setup_pkt->req.wIndex, |
| 297 | pcd->setup_pkt->req.wLength); |
| 298 | #endif |
| 299 | ep->dwc_ep.xfer_count += status.b.bcnt; |
| 300 | break; |
| 301 | default: |
| 302 | DWC_DEBUGPL(DBG_PCDV, "Invalid Packet Status (0x%0x)\n", |
| 303 | status.b.pktsts); |
| 304 | break; |
| 305 | } |
| 306 | |
| 307 | /* Enable the Rx Status Queue Level interrupt */ |
| 308 | dwc_modify_reg32(&global_regs->gintmsk, 0, gintmask.d32); |
| 309 | /* Clear interrupt */ |
| 310 | gintsts.d32 = 0; |
| 311 | gintsts.b.rxstsqlvl = 1; |
| 312 | dwc_write_reg32 (&global_regs->gintsts, gintsts.d32); |
| 313 | |
| 314 | //DWC_DEBUGPL(DBG_PCDV, "EXIT: %s\n", __func__); |
| 315 | return 1; |
| 316 | } |
| 317 | /** |
| 318 | * This function examines the Device IN Token Learning Queue to |
| 319 | * determine the EP number of the last IN token received. This |
| 320 | * implementation is for the Mass Storage device where there are only |
| 321 | * 2 IN EPs (Control-IN and BULK-IN). |
| 322 | * |
| 323 | * The EP numbers for the first six IN Tokens are in DTKNQR1 and there |
| 324 | * are 8 EP Numbers in each of the other possible DTKNQ Registers. |
| 325 | * |
| 326 | * @param core_if Programming view of DWC_otg controller. |
| 327 | * |
| 328 | */ |
| 329 | static inline int get_ep_of_last_in_token(dwc_otg_core_if_t *core_if) |
| 330 | { |
| 331 | dwc_otg_device_global_regs_t *dev_global_regs = |
| 332 | core_if->dev_if->dev_global_regs; |
| 333 | const uint32_t TOKEN_Q_DEPTH = core_if->hwcfg2.b.dev_token_q_depth; |
| 334 | /* Number of Token Queue Registers */ |
| 335 | const int DTKNQ_REG_CNT = (TOKEN_Q_DEPTH + 7) / 8; |
| 336 | dtknq1_data_t dtknqr1; |
| 337 | uint32_t in_tkn_epnums[4]; |
| 338 | int ndx = 0; |
| 339 | int i = 0; |
| 340 | volatile uint32_t *addr = &dev_global_regs->dtknqr1; |
| 341 | int epnum = 0; |
| 342 | |
| 343 | //DWC_DEBUGPL(DBG_PCD,"dev_token_q_depth=%d\n",TOKEN_Q_DEPTH); |
| 344 | |
| 345 | |
| 346 | /* Read the DTKNQ Registers */ |
| 347 | for (i = 0; i < DTKNQ_REG_CNT; i++) |
| 348 | { |
| 349 | in_tkn_epnums[ i ] = dwc_read_reg32(addr); |
| 350 | DWC_DEBUGPL(DBG_PCDV, "DTKNQR%d=0x%08x\n", i+1, |
| 351 | in_tkn_epnums[i]); |
| 352 | if (addr == &dev_global_regs->dvbusdis) { |
| 353 | addr = &dev_global_regs->dtknqr3_dthrctl; |
| 354 | } |
| 355 | else { |
| 356 | ++addr; |
| 357 | } |
| 358 | |
| 359 | } |
| 360 | |
| 361 | /* Copy the DTKNQR1 data to the bit field. */ |
| 362 | dtknqr1.d32 = in_tkn_epnums[0]; |
| 363 | /* Get the EP numbers */ |
| 364 | in_tkn_epnums[0] = dtknqr1.b.epnums0_5; |
| 365 | ndx = dtknqr1.b.intknwptr - 1; |
| 366 | |
| 367 | //DWC_DEBUGPL(DBG_PCDV,"ndx=%d\n",ndx); |
| 368 | if (ndx == -1) { |
| 369 | /** @todo Find a simpler way to calculate the max |
| 370 | * queue position.*/ |
| 371 | int cnt = TOKEN_Q_DEPTH; |
| 372 | if (TOKEN_Q_DEPTH <= 6) { |
| 373 | cnt = TOKEN_Q_DEPTH - 1; |
| 374 | } |
| 375 | else if (TOKEN_Q_DEPTH <= 14) { |
| 376 | cnt = TOKEN_Q_DEPTH - 7; |
| 377 | } |
| 378 | else if (TOKEN_Q_DEPTH <= 22) { |
| 379 | cnt = TOKEN_Q_DEPTH - 15; |
| 380 | } |
| 381 | else { |
| 382 | cnt = TOKEN_Q_DEPTH - 23; |
| 383 | } |
| 384 | epnum = (in_tkn_epnums[ DTKNQ_REG_CNT - 1 ] >> (cnt * 4)) & 0xF; |
| 385 | } |
| 386 | else { |
| 387 | if (ndx <= 5) { |
| 388 | epnum = (in_tkn_epnums[0] >> (ndx * 4)) & 0xF; |
| 389 | } |
| 390 | else if (ndx <= 13) { |
| 391 | ndx -= 6; |
| 392 | epnum = (in_tkn_epnums[1] >> (ndx * 4)) & 0xF; |
| 393 | } |
| 394 | else if (ndx <= 21) { |
| 395 | ndx -= 14; |
| 396 | epnum = (in_tkn_epnums[2] >> (ndx * 4)) & 0xF; |
| 397 | } |
| 398 | else if (ndx <= 29) { |
| 399 | ndx -= 22; |
| 400 | epnum = (in_tkn_epnums[3] >> (ndx * 4)) & 0xF; |
| 401 | } |
| 402 | } |
| 403 | //DWC_DEBUGPL(DBG_PCD,"epnum=%d\n",epnum); |
| 404 | return epnum; |
| 405 | } |
| 406 | |
| 407 | /** |
| 408 | * This interrupt occurs when the non-periodic Tx FIFO is half-empty. |
| 409 | * The active request is checked for the next packet to be loaded into |
| 410 | * the non-periodic Tx FIFO. |
| 411 | */ |
| 412 | int32_t dwc_otg_pcd_handle_np_tx_fifo_empty_intr(dwc_otg_pcd_t *pcd) |
| 413 | { |
| 414 | dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); |
| 415 | dwc_otg_core_global_regs_t *global_regs = |
| 416 | core_if->core_global_regs; |
| 417 | dwc_otg_dev_in_ep_regs_t *ep_regs; |
| 418 | gnptxsts_data_t txstatus = {.d32 = 0}; |
| 419 | gintsts_data_t gintsts; |
| 420 | |
| 421 | int epnum = 0; |
| 422 | dwc_otg_pcd_ep_t *ep = 0; |
| 423 | uint32_t len = 0; |
| 424 | int dwords; |
| 425 | |
| 426 | /* Get the epnum from the IN Token Learning Queue. */ |
| 427 | epnum = get_ep_of_last_in_token(core_if); |
| 428 | ep = get_in_ep(pcd, epnum); |
| 429 | |
| 430 | DWC_DEBUGPL(DBG_PCD, "NP TxFifo Empty: %s(%d) \n", ep->ep.name, epnum); |
| 431 | ep_regs = core_if->dev_if->in_ep_regs[epnum]; |
| 432 | |
| 433 | len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; |
| 434 | if (len > ep->dwc_ep.maxpacket) { |
| 435 | len = ep->dwc_ep.maxpacket; |
| 436 | } |
| 437 | dwords = (len + 3)/4; |
| 438 | |
| 439 | |
| 440 | /* While there is space in the queue and space in the FIFO and |
| 441 | * More data to tranfer, Write packets to the Tx FIFO */ |
| 442 | txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts); |
| 443 | DWC_DEBUGPL(DBG_PCDV, "b4 GNPTXSTS=0x%08x\n",txstatus.d32); |
| 444 | |
| 445 | while (txstatus.b.nptxqspcavail > 0 && |
| 446 | txstatus.b.nptxfspcavail > dwords && |
| 447 | ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len) { |
| 448 | /* Write the FIFO */ |
| 449 | dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0); |
| 450 | len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; |
| 451 | |
| 452 | if (len > ep->dwc_ep.maxpacket) { |
| 453 | len = ep->dwc_ep.maxpacket; |
| 454 | } |
| 455 | |
| 456 | dwords = (len + 3)/4; |
| 457 | txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts); |
| 458 | DWC_DEBUGPL(DBG_PCDV,"GNPTXSTS=0x%08x\n",txstatus.d32); |
| 459 | } |
| 460 | |
| 461 | DWC_DEBUGPL(DBG_PCDV, "GNPTXSTS=0x%08x\n", |
| 462 | dwc_read_reg32(&global_regs->gnptxsts)); |
| 463 | |
| 464 | /* Clear interrupt */ |
| 465 | gintsts.d32 = 0; |
| 466 | gintsts.b.nptxfempty = 1; |
| 467 | dwc_write_reg32 (&global_regs->gintsts, gintsts.d32); |
| 468 | |
| 469 | return 1; |
| 470 | } |
| 471 | |
| 472 | /** |
| 473 | * This function is called when dedicated Tx FIFO Empty interrupt occurs. |
| 474 | * The active request is checked for the next packet to be loaded into |
| 475 | * apropriate Tx FIFO. |
| 476 | */ |
| 477 | static int32_t write_empty_tx_fifo(dwc_otg_pcd_t *pcd, uint32_t epnum) |
| 478 | { |
| 479 | dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); |
| 480 | dwc_otg_dev_if_t* dev_if = core_if->dev_if; |
| 481 | dwc_otg_dev_in_ep_regs_t *ep_regs; |
| 482 | dtxfsts_data_t txstatus = {.d32 = 0}; |
| 483 | dwc_otg_pcd_ep_t *ep = 0; |
| 484 | uint32_t len = 0; |
| 485 | int dwords; |
| 486 | |
| 487 | ep = get_in_ep(pcd, epnum); |
| 488 | |
| 489 | DWC_DEBUGPL(DBG_PCD, "Dedicated TxFifo Empty: %s(%d) \n", ep->ep.name, epnum); |
| 490 | |
| 491 | ep_regs = core_if->dev_if->in_ep_regs[epnum]; |
| 492 | |
| 493 | len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; |
| 494 | |
| 495 | if (len > ep->dwc_ep.maxpacket) { |
| 496 | len = ep->dwc_ep.maxpacket; |
| 497 | } |
| 498 | |
| 499 | dwords = (len + 3)/4; |
| 500 | |
| 501 | /* While there is space in the queue and space in the FIFO and |
| 502 | * More data to tranfer, Write packets to the Tx FIFO */ |
| 503 | txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts); |
| 504 | DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,txstatus.d32); |
| 505 | |
| 506 | while (txstatus.b.txfspcavail > dwords && |
| 507 | ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len && |
| 508 | ep->dwc_ep.xfer_len != 0) { |
| 509 | /* Write the FIFO */ |
| 510 | dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0); |
| 511 | |
| 512 | len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; |
| 513 | if (len > ep->dwc_ep.maxpacket) { |
| 514 | len = ep->dwc_ep.maxpacket; |
| 515 | } |
| 516 | |
| 517 | dwords = (len + 3)/4; |
| 518 | txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts); |
| 519 | DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", epnum, txstatus.d32); |
| 520 | } |
| 521 | |
| 522 | DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts)); |
| 523 | |
| 524 | return 1; |
| 525 | } |
| 526 | |
| 527 | |
| 528 | /** |
| 529 | * This function is called when the Device is disconnected. It stops |
| 530 | * any active requests and informs the Gadget driver of the |
| 531 | * disconnect. |
| 532 | */ |
| 533 | void dwc_otg_pcd_stop(dwc_otg_pcd_t *pcd) |
| 534 | { |
| 535 | int i, num_in_eps, num_out_eps; |
| 536 | dwc_otg_pcd_ep_t *ep; |
| 537 | |
| 538 | gintmsk_data_t intr_mask = {.d32 = 0}; |
| 539 | |
| 540 | num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps; |
| 541 | num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps; |
| 542 | |
| 543 | DWC_DEBUGPL(DBG_PCDV, "%s() \n", __func__); |
| 544 | /* don't disconnect drivers more than once */ |
| 545 | if (pcd->ep0state == EP0_DISCONNECT) { |
| 546 | DWC_DEBUGPL(DBG_ANY, "%s() Already Disconnected\n", __func__); |
| 547 | return; |
| 548 | } |
| 549 | pcd->ep0state = EP0_DISCONNECT; |
| 550 | |
| 551 | /* Reset the OTG state. */ |
| 552 | dwc_otg_pcd_update_otg(pcd, 1); |
| 553 | |
| 554 | /* Disable the NP Tx Fifo Empty Interrupt. */ |
| 555 | intr_mask.b.nptxfempty = 1; |
| 556 | dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, |
| 557 | intr_mask.d32, 0); |
| 558 | |
| 559 | /* Flush the FIFOs */ |
| 560 | /**@todo NGS Flush Periodic FIFOs */ |
| 561 | dwc_otg_flush_tx_fifo(GET_CORE_IF(pcd), 0x10); |
| 562 | dwc_otg_flush_rx_fifo(GET_CORE_IF(pcd)); |
| 563 | |
| 564 | /* prevent new request submissions, kill any outstanding requests */ |
| 565 | ep = &pcd->ep0; |
| 566 | dwc_otg_request_nuke(ep); |
| 567 | /* prevent new request submissions, kill any outstanding requests */ |
| 568 | for (i = 0; i < num_in_eps; i++) |
| 569 | { |
| 570 | dwc_otg_pcd_ep_t *ep = &pcd->in_ep[i]; |
| 571 | dwc_otg_request_nuke(ep); |
| 572 | } |
| 573 | /* prevent new request submissions, kill any outstanding requests */ |
| 574 | for (i = 0; i < num_out_eps; i++) |
| 575 | { |
| 576 | dwc_otg_pcd_ep_t *ep = &pcd->out_ep[i]; |
| 577 | dwc_otg_request_nuke(ep); |
| 578 | } |
| 579 | |
| 580 | /* report disconnect; the driver is already quiesced */ |
| 581 | if (pcd->driver && pcd->driver->disconnect) { |
| 582 | SPIN_UNLOCK(&pcd->lock); |
| 583 | pcd->driver->disconnect(&pcd->gadget); |
| 584 | SPIN_LOCK(&pcd->lock); |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | /** |
| 589 | * This interrupt indicates that ... |
| 590 | */ |
| 591 | int32_t dwc_otg_pcd_handle_i2c_intr(dwc_otg_pcd_t *pcd) |
| 592 | { |
| 593 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 594 | gintsts_data_t gintsts; |
| 595 | |
| 596 | DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "i2cintr"); |
| 597 | intr_mask.b.i2cintr = 1; |
| 598 | dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, |
| 599 | intr_mask.d32, 0); |
| 600 | |
| 601 | /* Clear interrupt */ |
| 602 | gintsts.d32 = 0; |
| 603 | gintsts.b.i2cintr = 1; |
| 604 | dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts, |
| 605 | gintsts.d32); |
| 606 | return 1; |
| 607 | } |
| 608 | |
| 609 | |
| 610 | /** |
| 611 | * This interrupt indicates that ... |
| 612 | */ |
| 613 | int32_t dwc_otg_pcd_handle_early_suspend_intr(dwc_otg_pcd_t *pcd) |
| 614 | { |
| 615 | gintsts_data_t gintsts; |
| 616 | #if defined(VERBOSE) |
| 617 | DWC_PRINT("Early Suspend Detected\n"); |
| 618 | #endif |
| 619 | /* Clear interrupt */ |
| 620 | gintsts.d32 = 0; |
| 621 | gintsts.b.erlysuspend = 1; |
| 622 | dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, |
| 623 | gintsts.d32); |
| 624 | return 1; |
| 625 | } |
| 626 | |
| 627 | /** |
| 628 | * This function configures EPO to receive SETUP packets. |
| 629 | * |
| 630 | * @todo NGS: Update the comments from the HW FS. |
| 631 | * |
| 632 | * -# Program the following fields in the endpoint specific registers |
| 633 | * for Control OUT EP 0, in order to receive a setup packet |
| 634 | * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back |
| 635 | * setup packets) |
| 636 | * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back |
| 637 | * to back setup packets) |
| 638 | * - In DMA mode, DOEPDMA0 Register with a memory address to |
| 639 | * store any setup packets received |
| 640 | * |
| 641 | * @param core_if Programming view of DWC_otg controller. |
| 642 | * @param pcd Programming view of the PCD. |
| 643 | */ |
| 644 | static inline void ep0_out_start(dwc_otg_core_if_t *core_if, dwc_otg_pcd_t *pcd) |
| 645 | { |
| 646 | dwc_otg_dev_if_t *dev_if = core_if->dev_if; |
| 647 | deptsiz0_data_t doeptsize0 = { .d32 = 0}; |
| 648 | dwc_otg_dma_desc_t* dma_desc; |
| 649 | depctl_data_t doepctl = { .d32 = 0 }; |
| 650 | |
| 651 | #ifdef VERBOSE |
| 652 | DWC_DEBUGPL(DBG_PCDV,"%s() doepctl0=%0x\n", __func__, |
| 653 | dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); |
| 654 | #endif |
| 655 | |
| 656 | doeptsize0.b.supcnt = 3; |
| 657 | doeptsize0.b.pktcnt = 1; |
| 658 | doeptsize0.b.xfersize = 8*3; |
| 659 | |
| 660 | |
| 661 | if (core_if->dma_enable) { |
| 662 | if (!core_if->dma_desc_enable) { |
| 663 | /** put here as for Hermes mode deptisz register should not be written */ |
| 664 | dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz, |
| 665 | doeptsize0.d32); |
| 666 | |
| 667 | /** @todo dma needs to handle multiple setup packets (up to 3) */ |
| 668 | dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma, |
| 669 | pcd->setup_pkt_dma_handle); |
| 670 | } else { |
| 671 | dev_if->setup_desc_index = (dev_if->setup_desc_index + 1) & 1; |
| 672 | dma_desc = dev_if->setup_desc_addr[dev_if->setup_desc_index]; |
| 673 | |
| 674 | /** DMA Descriptor Setup */ |
| 675 | dma_desc->status.b.bs = BS_HOST_BUSY; |
| 676 | dma_desc->status.b.l = 1; |
| 677 | dma_desc->status.b.ioc = 1; |
| 678 | dma_desc->status.b.bytes = pcd->ep0.dwc_ep.maxpacket; |
| 679 | dma_desc->buf = pcd->setup_pkt_dma_handle; |
| 680 | dma_desc->status.b.bs = BS_HOST_READY; |
| 681 | |
| 682 | /** DOEPDMA0 Register write */ |
| 683 | dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma, dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]); |
| 684 | } |
| 685 | |
| 686 | } else { |
| 687 | /** put here as for Hermes mode deptisz register should not be written */ |
| 688 | dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz, |
| 689 | doeptsize0.d32); |
| 690 | } |
| 691 | |
| 692 | /** DOEPCTL0 Register write */ |
| 693 | doepctl.b.epena = 1; |
| 694 | doepctl.b.cnak = 1; |
| 695 | dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32); |
| 696 | |
| 697 | #ifdef VERBOSE |
| 698 | DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n", |
| 699 | dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); |
| 700 | DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n", |
| 701 | dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl)); |
| 702 | #endif |
| 703 | } |
| 704 | |
| 705 | |
| 706 | /** |
| 707 | * This interrupt occurs when a USB Reset is detected. When the USB |
| 708 | * Reset Interrupt occurs the device state is set to DEFAULT and the |
| 709 | * EP0 state is set to IDLE. |
| 710 | * -# Set the NAK bit for all OUT endpoints (DOEPCTLn.SNAK = 1) |
| 711 | * -# Unmask the following interrupt bits |
| 712 | * - DAINTMSK.INEP0 = 1 (Control 0 IN endpoint) |
| 713 | * - DAINTMSK.OUTEP0 = 1 (Control 0 OUT endpoint) |
| 714 | * - DOEPMSK.SETUP = 1 |
| 715 | * - DOEPMSK.XferCompl = 1 |
| 716 | * - DIEPMSK.XferCompl = 1 |
| 717 | * - DIEPMSK.TimeOut = 1 |
| 718 | * -# Program the following fields in the endpoint specific registers |
| 719 | * for Control OUT EP 0, in order to receive a setup packet |
| 720 | * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back |
| 721 | * setup packets) |
| 722 | * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back |
| 723 | * to back setup packets) |
| 724 | * - In DMA mode, DOEPDMA0 Register with a memory address to |
| 725 | * store any setup packets received |
| 726 | * At this point, all the required initialization, except for enabling |
| 727 | * the control 0 OUT endpoint is done, for receiving SETUP packets. |
| 728 | */ |
| 729 | int32_t dwc_otg_pcd_handle_usb_reset_intr(dwc_otg_pcd_t * pcd) |
| 730 | { |
| 731 | dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); |
| 732 | dwc_otg_dev_if_t *dev_if = core_if->dev_if; |
| 733 | depctl_data_t doepctl = { .d32 = 0}; |
| 734 | |
| 735 | daint_data_t daintmsk = { .d32 = 0}; |
| 736 | doepmsk_data_t doepmsk = { .d32 = 0}; |
| 737 | diepmsk_data_t diepmsk = { .d32 = 0}; |
| 738 | |
| 739 | dcfg_data_t dcfg = { .d32=0 }; |
| 740 | grstctl_t resetctl = { .d32=0 }; |
| 741 | dctl_data_t dctl = {.d32=0}; |
| 742 | int i = 0; |
| 743 | gintsts_data_t gintsts; |
| 744 | |
| 745 | DWC_PRINT("USB RESET\n"); |
| 746 | #ifdef DWC_EN_ISOC |
| 747 | for(i = 1;i < 16; ++i) |
| 748 | { |
| 749 | dwc_otg_pcd_ep_t *ep; |
| 750 | dwc_ep_t *dwc_ep; |
| 751 | ep = get_in_ep(pcd,i); |
| 752 | if(ep != 0){ |
| 753 | dwc_ep = &ep->dwc_ep; |
| 754 | dwc_ep->next_frame = 0xffffffff; |
| 755 | } |
| 756 | } |
| 757 | #endif /* DWC_EN_ISOC */ |
| 758 | |
| 759 | /* reset the HNP settings */ |
| 760 | dwc_otg_pcd_update_otg(pcd, 1); |
| 761 | |
| 762 | /* Clear the Remote Wakeup Signalling */ |
| 763 | dctl.b.rmtwkupsig = 1; |
| 764 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, |
| 765 | dctl.d32, 0); |
| 766 | |
| 767 | /* Set NAK for all OUT EPs */ |
| 768 | doepctl.b.snak = 1; |
| 769 | for (i=0; i <= dev_if->num_out_eps; i++) |
| 770 | { |
| 771 | dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, |
| 772 | doepctl.d32); |
| 773 | } |
| 774 | |
| 775 | /* Flush the NP Tx FIFO */ |
| 776 | dwc_otg_flush_tx_fifo(core_if, 0x10); |
| 777 | /* Flush the Learning Queue */ |
| 778 | resetctl.b.intknqflsh = 1; |
| 779 | dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32); |
| 780 | |
| 781 | if(core_if->multiproc_int_enable) { |
| 782 | daintmsk.b.inep0 = 1; |
| 783 | daintmsk.b.outep0 = 1; |
| 784 | dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, daintmsk.d32); |
| 785 | |
| 786 | doepmsk.b.setup = 1; |
| 787 | doepmsk.b.xfercompl = 1; |
| 788 | doepmsk.b.ahberr = 1; |
| 789 | doepmsk.b.epdisabled = 1; |
| 790 | |
| 791 | if(core_if->dma_desc_enable) { |
| 792 | doepmsk.b.stsphsercvd = 1; |
| 793 | doepmsk.b.bna = 1; |
| 794 | } |
| 795 | /* |
| 796 | doepmsk.b.babble = 1; |
| 797 | doepmsk.b.nyet = 1; |
| 798 | |
| 799 | if(core_if->dma_enable) { |
| 800 | doepmsk.b.nak = 1; |
| 801 | } |
| 802 | */ |
| 803 | dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[0], doepmsk.d32); |
| 804 | |
| 805 | diepmsk.b.xfercompl = 1; |
| 806 | diepmsk.b.timeout = 1; |
| 807 | diepmsk.b.epdisabled = 1; |
| 808 | diepmsk.b.ahberr = 1; |
| 809 | diepmsk.b.intknepmis = 1; |
| 810 | |
| 811 | if(core_if->dma_desc_enable) { |
| 812 | diepmsk.b.bna = 1; |
| 813 | } |
| 814 | /* |
| 815 | if(core_if->dma_enable) { |
| 816 | diepmsk.b.nak = 1; |
| 817 | } |
| 818 | */ |
| 819 | dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], diepmsk.d32); |
| 820 | } else{ |
| 821 | daintmsk.b.inep0 = 1; |
| 822 | daintmsk.b.outep0 = 1; |
| 823 | dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, daintmsk.d32); |
| 824 | |
| 825 | doepmsk.b.setup = 1; |
| 826 | doepmsk.b.xfercompl = 1; |
| 827 | doepmsk.b.ahberr = 1; |
| 828 | doepmsk.b.epdisabled = 1; |
| 829 | |
| 830 | if(core_if->dma_desc_enable) { |
| 831 | doepmsk.b.stsphsercvd = 1; |
| 832 | doepmsk.b.bna = 1; |
| 833 | } |
| 834 | /* |
| 835 | doepmsk.b.babble = 1; |
| 836 | doepmsk.b.nyet = 1; |
| 837 | doepmsk.b.nak = 1; |
| 838 | */ |
| 839 | dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, doepmsk.d32); |
| 840 | |
| 841 | diepmsk.b.xfercompl = 1; |
| 842 | diepmsk.b.timeout = 1; |
| 843 | diepmsk.b.epdisabled = 1; |
| 844 | diepmsk.b.ahberr = 1; |
| 845 | diepmsk.b.intknepmis = 1; |
| 846 | |
| 847 | if(core_if->dma_desc_enable) { |
| 848 | diepmsk.b.bna = 1; |
| 849 | } |
| 850 | |
| 851 | // diepmsk.b.nak = 1; |
| 852 | |
| 853 | dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32); |
| 854 | } |
| 855 | |
| 856 | /* Reset Device Address */ |
| 857 | dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg); |
| 858 | dcfg.b.devaddr = 0; |
| 859 | dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32); |
| 860 | |
| 861 | /* setup EP0 to receive SETUP packets */ |
| 862 | ep0_out_start(core_if, pcd); |
| 863 | |
| 864 | /* Clear interrupt */ |
| 865 | gintsts.d32 = 0; |
| 866 | gintsts.b.usbreset = 1; |
| 867 | dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); |
| 868 | |
| 869 | return 1; |
| 870 | } |
| 871 | |
| 872 | /** |
| 873 | * Get the device speed from the device status register and convert it |
| 874 | * to USB speed constant. |
| 875 | * |
| 876 | * @param core_if Programming view of DWC_otg controller. |
| 877 | */ |
| 878 | static int get_device_speed(dwc_otg_core_if_t *core_if) |
| 879 | { |
| 880 | dsts_data_t dsts; |
| 881 | enum usb_device_speed speed = USB_SPEED_UNKNOWN; |
| 882 | dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); |
| 883 | |
| 884 | switch (dsts.b.enumspd) { |
| 885 | case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ: |
| 886 | speed = USB_SPEED_HIGH; |
| 887 | break; |
| 888 | case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ: |
| 889 | case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ: |
| 890 | speed = USB_SPEED_FULL; |
| 891 | break; |
| 892 | |
| 893 | case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ: |
| 894 | speed = USB_SPEED_LOW; |
| 895 | break; |
| 896 | } |
| 897 | |
| 898 | return speed; |
| 899 | } |
| 900 | |
| 901 | /** |
| 902 | * Read the device status register and set the device speed in the |
| 903 | * data structure. |
| 904 | * Set up EP0 to receive SETUP packets by calling dwc_ep0_activate. |
| 905 | */ |
| 906 | int32_t dwc_otg_pcd_handle_enum_done_intr(dwc_otg_pcd_t *pcd) |
| 907 | { |
| 908 | dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; |
| 909 | gintsts_data_t gintsts; |
| 910 | gusbcfg_data_t gusbcfg; |
| 911 | dwc_otg_core_global_regs_t *global_regs = |
| 912 | GET_CORE_IF(pcd)->core_global_regs; |
| 913 | uint8_t utmi16b, utmi8b; |
| 914 | DWC_DEBUGPL(DBG_PCD, "SPEED ENUM\n"); |
| 915 | |
| 916 | if (GET_CORE_IF(pcd)->snpsid >= 0x4F54260A) { |
| 917 | utmi16b = 6; |
| 918 | utmi8b = 9; |
| 919 | } else { |
| 920 | utmi16b = 4; |
| 921 | utmi8b = 8; |
| 922 | } |
| 923 | dwc_otg_ep0_activate(GET_CORE_IF(pcd), &ep0->dwc_ep); |
| 924 | |
| 925 | #ifdef DEBUG_EP0 |
| 926 | print_ep0_state(pcd); |
| 927 | #endif |
| 928 | |
| 929 | if (pcd->ep0state == EP0_DISCONNECT) { |
| 930 | pcd->ep0state = EP0_IDLE; |
| 931 | } |
| 932 | else if (pcd->ep0state == EP0_STALL) { |
| 933 | pcd->ep0state = EP0_IDLE; |
| 934 | } |
| 935 | |
| 936 | pcd->ep0state = EP0_IDLE; |
| 937 | |
| 938 | ep0->stopped = 0; |
| 939 | |
| 940 | pcd->gadget.speed = get_device_speed(GET_CORE_IF(pcd)); |
| 941 | |
| 942 | /* Set USB turnaround time based on device speed and PHY interface. */ |
| 943 | gusbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); |
| 944 | if (pcd->gadget.speed == USB_SPEED_HIGH) { |
| 945 | if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_ULPI) { |
| 946 | /* ULPI interface */ |
| 947 | gusbcfg.b.usbtrdtim = 9; |
| 948 | } |
| 949 | if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI) { |
| 950 | /* UTMI+ interface */ |
| 951 | if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 0) { |
| 952 | gusbcfg.b.usbtrdtim = utmi8b; |
| 953 | } |
| 954 | else if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 1) { |
| 955 | gusbcfg.b.usbtrdtim = utmi16b; |
| 956 | } |
| 957 | else if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 8) { |
| 958 | gusbcfg.b.usbtrdtim = utmi8b; |
| 959 | } |
| 960 | else { |
| 961 | gusbcfg.b.usbtrdtim = utmi16b; |
| 962 | } |
| 963 | } |
| 964 | if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI) { |
| 965 | /* UTMI+ OR ULPI interface */ |
| 966 | if (gusbcfg.b.ulpi_utmi_sel == 1) { |
| 967 | /* ULPI interface */ |
| 968 | gusbcfg.b.usbtrdtim = 9; |
| 969 | } |
| 970 | else { |
| 971 | /* UTMI+ interface */ |
| 972 | if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 16) { |
| 973 | gusbcfg.b.usbtrdtim = utmi16b; |
| 974 | } |
| 975 | else { |
| 976 | gusbcfg.b.usbtrdtim = utmi8b; |
| 977 | } |
| 978 | } |
| 979 | } |
| 980 | } |
| 981 | else { |
| 982 | /* Full or low speed */ |
| 983 | gusbcfg.b.usbtrdtim = 9; |
| 984 | } |
| 985 | dwc_write_reg32(&global_regs->gusbcfg, gusbcfg.d32); |
| 986 | |
| 987 | /* Clear interrupt */ |
| 988 | gintsts.d32 = 0; |
| 989 | gintsts.b.enumdone = 1; |
| 990 | dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, |
| 991 | gintsts.d32); |
| 992 | return 1; |
| 993 | } |
| 994 | |
| 995 | /** |
| 996 | * This interrupt indicates that the ISO OUT Packet was dropped due to |
| 997 | * Rx FIFO full or Rx Status Queue Full. If this interrupt occurs |
| 998 | * read all the data from the Rx FIFO. |
| 999 | */ |
| 1000 | int32_t dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(dwc_otg_pcd_t *pcd) |
| 1001 | { |
| 1002 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 1003 | gintsts_data_t gintsts; |
| 1004 | |
| 1005 | DWC_PRINT("INTERRUPT Handler not implemented for %s\n", |
| 1006 | "ISOC Out Dropped"); |
| 1007 | |
| 1008 | intr_mask.b.isooutdrop = 1; |
| 1009 | dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, |
| 1010 | intr_mask.d32, 0); |
| 1011 | |
| 1012 | /* Clear interrupt */ |
| 1013 | |
| 1014 | gintsts.d32 = 0; |
| 1015 | gintsts.b.isooutdrop = 1; |
| 1016 | dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, |
| 1017 | gintsts.d32); |
| 1018 | |
| 1019 | return 1; |
| 1020 | } |
| 1021 | |
| 1022 | /** |
| 1023 | * This interrupt indicates the end of the portion of the micro-frame |
| 1024 | * for periodic transactions. If there is a periodic transaction for |
| 1025 | * the next frame, load the packets into the EP periodic Tx FIFO. |
| 1026 | */ |
| 1027 | int32_t dwc_otg_pcd_handle_end_periodic_frame_intr(dwc_otg_pcd_t *pcd) |
| 1028 | { |
| 1029 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 1030 | gintsts_data_t gintsts; |
| 1031 | DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "EOP"); |
| 1032 | |
| 1033 | intr_mask.b.eopframe = 1; |
| 1034 | dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, |
| 1035 | intr_mask.d32, 0); |
| 1036 | |
| 1037 | /* Clear interrupt */ |
| 1038 | gintsts.d32 = 0; |
| 1039 | gintsts.b.eopframe = 1; |
| 1040 | dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, gintsts.d32); |
| 1041 | |
| 1042 | return 1; |
| 1043 | } |
| 1044 | |
| 1045 | /** |
| 1046 | * This interrupt indicates that EP of the packet on the top of the |
| 1047 | * non-periodic Tx FIFO does not match EP of the IN Token received. |
| 1048 | * |
| 1049 | * The "Device IN Token Queue" Registers are read to determine the |
| 1050 | * order the IN Tokens have been received. The non-periodic Tx FIFO |
| 1051 | * is flushed, so it can be reloaded in the order seen in the IN Token |
| 1052 | * Queue. |
| 1053 | */ |
| 1054 | int32_t dwc_otg_pcd_handle_ep_mismatch_intr(dwc_otg_core_if_t *core_if) |
| 1055 | { |
| 1056 | gintsts_data_t gintsts; |
| 1057 | DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, core_if); |
| 1058 | |
| 1059 | /* Clear interrupt */ |
| 1060 | gintsts.d32 = 0; |
| 1061 | gintsts.b.epmismatch = 1; |
| 1062 | dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); |
| 1063 | |
| 1064 | return 1; |
| 1065 | } |
| 1066 | |
| 1067 | /** |
| 1068 | * This funcion stalls EP0. |
| 1069 | */ |
| 1070 | static inline void ep0_do_stall(dwc_otg_pcd_t *pcd, const int err_val) |
| 1071 | { |
| 1072 | dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; |
| 1073 | struct usb_ctrlrequest *ctrl = &pcd->setup_pkt->req; |
| 1074 | DWC_WARN("req %02x.%02x protocol STALL; err %d\n", |
| 1075 | ctrl->bRequestType, ctrl->bRequest, err_val); |
| 1076 | |
| 1077 | ep0->dwc_ep.is_in = 1; |
| 1078 | dwc_otg_ep_set_stall(pcd->otg_dev->core_if, &ep0->dwc_ep); |
| 1079 | pcd->ep0.stopped = 1; |
| 1080 | pcd->ep0state = EP0_IDLE; |
| 1081 | ep0_out_start(GET_CORE_IF(pcd), pcd); |
| 1082 | } |
| 1083 | |
| 1084 | /** |
| 1085 | * This functions delegates the setup command to the gadget driver. |
| 1086 | */ |
| 1087 | static inline void do_gadget_setup(dwc_otg_pcd_t *pcd, |
| 1088 | struct usb_ctrlrequest * ctrl) |
| 1089 | { |
| 1090 | int ret = 0; |
| 1091 | if (pcd->driver && pcd->driver->setup) { |
| 1092 | SPIN_UNLOCK(&pcd->lock); |
| 1093 | ret = pcd->driver->setup(&pcd->gadget, ctrl); |
| 1094 | SPIN_LOCK(&pcd->lock); |
| 1095 | if (ret < 0) { |
| 1096 | ep0_do_stall(pcd, ret); |
| 1097 | } |
| 1098 | |
| 1099 | /** @todo This is a g_file_storage gadget driver specific |
| 1100 | * workaround: a DELAYED_STATUS result from the fsg_setup |
| 1101 | * routine will result in the gadget queueing a EP0 IN status |
| 1102 | * phase for a two-stage control transfer. Exactly the same as |
| 1103 | * a SET_CONFIGURATION/SET_INTERFACE except that this is a class |
| 1104 | * specific request. Need a generic way to know when the gadget |
| 1105 | * driver will queue the status phase. Can we assume when we |
| 1106 | * call the gadget driver setup() function that it will always |
| 1107 | * queue and require the following flag? Need to look into |
| 1108 | * this. |
| 1109 | */ |
| 1110 | |
| 1111 | if (ret == 256 + 999) { |
| 1112 | pcd->request_config = 1; |
| 1113 | } |
| 1114 | } |
| 1115 | } |
| 1116 | |
| 1117 | /** |
| 1118 | * This function starts the Zero-Length Packet for the IN status phase |
| 1119 | * of a 2 stage control transfer. |
| 1120 | */ |
| 1121 | static inline void do_setup_in_status_phase(dwc_otg_pcd_t *pcd) |
| 1122 | { |
| 1123 | dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; |
| 1124 | if (pcd->ep0state == EP0_STALL) { |
| 1125 | return; |
| 1126 | } |
| 1127 | |
| 1128 | pcd->ep0state = EP0_IN_STATUS_PHASE; |
| 1129 | |
| 1130 | /* Prepare for more SETUP Packets */ |
| 1131 | DWC_DEBUGPL(DBG_PCD, "EP0 IN ZLP\n"); |
| 1132 | ep0->dwc_ep.xfer_len = 0; |
| 1133 | ep0->dwc_ep.xfer_count = 0; |
| 1134 | ep0->dwc_ep.is_in = 1; |
| 1135 | ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle; |
| 1136 | dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep); |
| 1137 | |
| 1138 | /* Prepare for more SETUP Packets */ |
| 1139 | // if(GET_CORE_IF(pcd)->dma_enable == 0) ep0_out_start(GET_CORE_IF(pcd), pcd); |
| 1140 | } |
| 1141 | |
| 1142 | /** |
| 1143 | * This function starts the Zero-Length Packet for the OUT status phase |
| 1144 | * of a 2 stage control transfer. |
| 1145 | */ |
| 1146 | static inline void do_setup_out_status_phase(dwc_otg_pcd_t *pcd) |
| 1147 | { |
| 1148 | dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; |
| 1149 | if (pcd->ep0state == EP0_STALL) { |
| 1150 | DWC_DEBUGPL(DBG_PCD, "EP0 STALLED\n"); |
| 1151 | return; |
| 1152 | } |
| 1153 | pcd->ep0state = EP0_OUT_STATUS_PHASE; |
| 1154 | |
| 1155 | DWC_DEBUGPL(DBG_PCD, "EP0 OUT ZLP\n"); |
| 1156 | ep0->dwc_ep.xfer_len = 0; |
| 1157 | ep0->dwc_ep.xfer_count = 0; |
| 1158 | ep0->dwc_ep.is_in = 0; |
| 1159 | ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle; |
| 1160 | dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep); |
| 1161 | |
| 1162 | /* Prepare for more SETUP Packets */ |
| 1163 | if(GET_CORE_IF(pcd)->dma_enable == 0) { |
| 1164 | ep0_out_start(GET_CORE_IF(pcd), pcd); |
| 1165 | } |
| 1166 | } |
| 1167 | |
| 1168 | /** |
| 1169 | * Clear the EP halt (STALL) and if pending requests start the |
| 1170 | * transfer. |
| 1171 | */ |
| 1172 | static inline void pcd_clear_halt(dwc_otg_pcd_t *pcd, dwc_otg_pcd_ep_t *ep) |
| 1173 | { |
| 1174 | if(ep->dwc_ep.stall_clear_flag == 0) |
| 1175 | dwc_otg_ep_clear_stall(GET_CORE_IF(pcd), &ep->dwc_ep); |
| 1176 | |
| 1177 | /* Reactive the EP */ |
| 1178 | dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep); |
| 1179 | if (ep->stopped) { |
| 1180 | ep->stopped = 0; |
| 1181 | /* If there is a request in the EP queue start it */ |
| 1182 | |
| 1183 | /** @todo FIXME: this causes an EP mismatch in DMA mode. |
| 1184 | * epmismatch not yet implemented. */ |
| 1185 | |
| 1186 | /* |
| 1187 | * Above fixme is solved by implmenting a tasklet to call the |
| 1188 | * start_next_request(), outside of interrupt context at some |
| 1189 | * time after the current time, after a clear-halt setup packet. |
| 1190 | * Still need to implement ep mismatch in the future if a gadget |
| 1191 | * ever uses more than one endpoint at once |
| 1192 | */ |
| 1193 | ep->queue_sof = 1; |
| 1194 | tasklet_schedule (pcd->start_xfer_tasklet); |
| 1195 | } |
| 1196 | /* Start Control Status Phase */ |
| 1197 | do_setup_in_status_phase(pcd); |
| 1198 | } |
| 1199 | |
| 1200 | /** |
| 1201 | * This function is called when the SET_FEATURE TEST_MODE Setup packet |
| 1202 | * is sent from the host. The Device Control register is written with |
| 1203 | * the Test Mode bits set to the specified Test Mode. This is done as |
| 1204 | * a tasklet so that the "Status" phase of the control transfer |
| 1205 | * completes before transmitting the TEST packets. |
| 1206 | * |
| 1207 | * @todo This has not been tested since the tasklet struct was put |
| 1208 | * into the PCD struct! |
| 1209 | * |
| 1210 | */ |
| 1211 | static void do_test_mode(unsigned long data) |
| 1212 | { |
| 1213 | dctl_data_t dctl; |
| 1214 | dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)data; |
| 1215 | dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); |
| 1216 | int test_mode = pcd->test_mode; |
| 1217 | |
| 1218 | |
| 1219 | // DWC_WARN("%s() has not been tested since being rewritten!\n", __func__); |
| 1220 | |
| 1221 | dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl); |
| 1222 | switch (test_mode) { |
| 1223 | case 1: // TEST_J |
| 1224 | dctl.b.tstctl = 1; |
| 1225 | break; |
| 1226 | |
| 1227 | case 2: // TEST_K |
| 1228 | dctl.b.tstctl = 2; |
| 1229 | break; |
| 1230 | |
| 1231 | case 3: // TEST_SE0_NAK |
| 1232 | dctl.b.tstctl = 3; |
| 1233 | break; |
| 1234 | |
| 1235 | case 4: // TEST_PACKET |
| 1236 | dctl.b.tstctl = 4; |
| 1237 | break; |
| 1238 | |
| 1239 | case 5: // TEST_FORCE_ENABLE |
| 1240 | dctl.b.tstctl = 5; |
| 1241 | break; |
| 1242 | } |
| 1243 | dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32); |
| 1244 | } |
| 1245 | |
| 1246 | /** |
| 1247 | * This function process the GET_STATUS Setup Commands. |
| 1248 | */ |
| 1249 | static inline void do_get_status(dwc_otg_pcd_t *pcd) |
| 1250 | { |
| 1251 | struct usb_ctrlrequest ctrl = pcd->setup_pkt->req; |
| 1252 | dwc_otg_pcd_ep_t *ep; |
| 1253 | dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; |
| 1254 | uint16_t *status = pcd->status_buf; |
| 1255 | |
| 1256 | #ifdef DEBUG_EP0 |
| 1257 | DWC_DEBUGPL(DBG_PCD, |
| 1258 | "GET_STATUS %02x.%02x v%04x i%04x l%04x\n", |
| 1259 | ctrl.bRequestType, ctrl.bRequest, |
| 1260 | ctrl.wValue, ctrl.wIndex, ctrl.wLength); |
| 1261 | #endif |
| 1262 | |
| 1263 | switch (ctrl.bRequestType & USB_RECIP_MASK) { |
| 1264 | case USB_RECIP_DEVICE: |
| 1265 | *status = 0x1; /* Self powered */ |
| 1266 | *status |= pcd->remote_wakeup_enable << 1; |
| 1267 | break; |
| 1268 | |
| 1269 | case USB_RECIP_INTERFACE: |
| 1270 | *status = 0; |
| 1271 | break; |
| 1272 | |
| 1273 | case USB_RECIP_ENDPOINT: |
| 1274 | ep = get_ep_by_addr(pcd, ctrl.wIndex); |
| 1275 | if (ep == 0 || ctrl.wLength > 2) { |
| 1276 | ep0_do_stall(pcd, -EOPNOTSUPP); |
| 1277 | return; |
| 1278 | } |
| 1279 | /** @todo check for EP stall */ |
| 1280 | *status = ep->stopped; |
| 1281 | break; |
| 1282 | } |
| 1283 | pcd->ep0_pending = 1; |
| 1284 | ep0->dwc_ep.start_xfer_buff = (uint8_t *)status; |
| 1285 | ep0->dwc_ep.xfer_buff = (uint8_t *)status; |
| 1286 | ep0->dwc_ep.dma_addr = pcd->status_buf_dma_handle; |
| 1287 | ep0->dwc_ep.xfer_len = 2; |
| 1288 | ep0->dwc_ep.xfer_count = 0; |
| 1289 | ep0->dwc_ep.total_len = ep0->dwc_ep.xfer_len; |
| 1290 | dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep); |
| 1291 | } |
| 1292 | /** |
| 1293 | * This function process the SET_FEATURE Setup Commands. |
| 1294 | */ |
| 1295 | static inline void do_set_feature(dwc_otg_pcd_t *pcd) |
| 1296 | { |
| 1297 | dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); |
| 1298 | dwc_otg_core_global_regs_t *global_regs = |
| 1299 | core_if->core_global_regs; |
| 1300 | struct usb_ctrlrequest ctrl = pcd->setup_pkt->req; |
| 1301 | dwc_otg_pcd_ep_t *ep = 0; |
| 1302 | int32_t otg_cap_param = core_if->core_params->otg_cap; |
| 1303 | gotgctl_data_t gotgctl = { .d32 = 0 }; |
| 1304 | |
| 1305 | DWC_DEBUGPL(DBG_PCD, "SET_FEATURE:%02x.%02x v%04x i%04x l%04x\n", |
| 1306 | ctrl.bRequestType, ctrl.bRequest, |
| 1307 | ctrl.wValue, ctrl.wIndex, ctrl.wLength); |
| 1308 | DWC_DEBUGPL(DBG_PCD,"otg_cap=%d\n", otg_cap_param); |
| 1309 | |
| 1310 | |
| 1311 | switch (ctrl.bRequestType & USB_RECIP_MASK) { |
| 1312 | case USB_RECIP_DEVICE: |
| 1313 | switch (ctrl.wValue) { |
| 1314 | case USB_DEVICE_REMOTE_WAKEUP: |
| 1315 | pcd->remote_wakeup_enable = 1; |
| 1316 | break; |
| 1317 | |
| 1318 | case USB_DEVICE_TEST_MODE: |
| 1319 | /* Setup the Test Mode tasklet to do the Test |
| 1320 | * Packet generation after the SETUP Status |
| 1321 | * phase has completed. */ |
| 1322 | |
| 1323 | /** @todo This has not been tested since the |
| 1324 | * tasklet struct was put into the PCD |
| 1325 | * struct! */ |
| 1326 | pcd->test_mode_tasklet.next = 0; |
| 1327 | pcd->test_mode_tasklet.state = 0; |
| 1328 | atomic_set(&pcd->test_mode_tasklet.count, 0); |
| 1329 | pcd->test_mode_tasklet.func = do_test_mode; |
| 1330 | pcd->test_mode_tasklet.data = (unsigned long)pcd; |
| 1331 | pcd->test_mode = ctrl.wIndex >> 8; |
| 1332 | tasklet_schedule(&pcd->test_mode_tasklet); |
| 1333 | break; |
| 1334 | |
| 1335 | case USB_DEVICE_B_HNP_ENABLE: |
| 1336 | DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_B_HNP_ENABLE\n"); |
| 1337 | |
| 1338 | /* dev may initiate HNP */ |
| 1339 | if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) { |
| 1340 | pcd->b_hnp_enable = 1; |
| 1341 | dwc_otg_pcd_update_otg(pcd, 0); |
| 1342 | DWC_DEBUGPL(DBG_PCD, "Request B HNP\n"); |
| 1343 | /**@todo Is the gotgctl.devhnpen cleared |
| 1344 | * by a USB Reset? */ |
| 1345 | gotgctl.b.devhnpen = 1; |
| 1346 | gotgctl.b.hnpreq = 1; |
| 1347 | dwc_write_reg32(&global_regs->gotgctl, gotgctl.d32); |
| 1348 | } |
| 1349 | else { |
| 1350 | ep0_do_stall(pcd, -EOPNOTSUPP); |
| 1351 | } |
| 1352 | break; |
| 1353 | |
| 1354 | case USB_DEVICE_A_HNP_SUPPORT: |
| 1355 | /* RH port supports HNP */ |
| 1356 | DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_HNP_SUPPORT\n"); |
| 1357 | if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) { |
| 1358 | pcd->a_hnp_support = 1; |
| 1359 | dwc_otg_pcd_update_otg(pcd, 0); |
| 1360 | } |
| 1361 | else { |
| 1362 | ep0_do_stall(pcd, -EOPNOTSUPP); |
| 1363 | } |
| 1364 | break; |
| 1365 | |
| 1366 | case USB_DEVICE_A_ALT_HNP_SUPPORT: |
| 1367 | /* other RH port does */ |
| 1368 | DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_ALT_HNP_SUPPORT\n"); |
| 1369 | if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) { |
| 1370 | pcd->a_alt_hnp_support = 1; |
| 1371 | dwc_otg_pcd_update_otg(pcd, 0); |
| 1372 | } |
| 1373 | else { |
| 1374 | ep0_do_stall(pcd, -EOPNOTSUPP); |
| 1375 | } |
| 1376 | break; |
| 1377 | } |
| 1378 | do_setup_in_status_phase(pcd); |
| 1379 | break; |
| 1380 | |
| 1381 | case USB_RECIP_INTERFACE: |
| 1382 | do_gadget_setup(pcd, &ctrl); |
| 1383 | break; |
| 1384 | |
| 1385 | case USB_RECIP_ENDPOINT: |
| 1386 | if (ctrl.wValue == USB_ENDPOINT_HALT) { |
| 1387 | ep = get_ep_by_addr(pcd, ctrl.wIndex); |
| 1388 | if (ep == 0) { |
| 1389 | ep0_do_stall(pcd, -EOPNOTSUPP); |
| 1390 | return; |
| 1391 | } |
| 1392 | ep->stopped = 1; |
| 1393 | dwc_otg_ep_set_stall(core_if, &ep->dwc_ep); |
| 1394 | } |
| 1395 | do_setup_in_status_phase(pcd); |
| 1396 | break; |
| 1397 | } |
| 1398 | } |
| 1399 | |
| 1400 | /** |
| 1401 | * This function process the CLEAR_FEATURE Setup Commands. |
| 1402 | */ |
| 1403 | static inline void do_clear_feature(dwc_otg_pcd_t *pcd) |
| 1404 | { |
| 1405 | struct usb_ctrlrequest ctrl = pcd->setup_pkt->req; |
| 1406 | dwc_otg_pcd_ep_t *ep = 0; |
| 1407 | |
| 1408 | DWC_DEBUGPL(DBG_PCD, |
| 1409 | "CLEAR_FEATURE:%02x.%02x v%04x i%04x l%04x\n", |
| 1410 | ctrl.bRequestType, ctrl.bRequest, |
| 1411 | ctrl.wValue, ctrl.wIndex, ctrl.wLength); |
| 1412 | |
| 1413 | switch (ctrl.bRequestType & USB_RECIP_MASK) { |
| 1414 | case USB_RECIP_DEVICE: |
| 1415 | switch (ctrl.wValue) { |
| 1416 | case USB_DEVICE_REMOTE_WAKEUP: |
| 1417 | pcd->remote_wakeup_enable = 0; |
| 1418 | break; |
| 1419 | |
| 1420 | case USB_DEVICE_TEST_MODE: |
| 1421 | /** @todo Add CLEAR_FEATURE for TEST modes. */ |
| 1422 | break; |
| 1423 | } |
| 1424 | do_setup_in_status_phase(pcd); |
| 1425 | break; |
| 1426 | |
| 1427 | case USB_RECIP_ENDPOINT: |
| 1428 | ep = get_ep_by_addr(pcd, ctrl.wIndex); |
| 1429 | if (ep == 0) { |
| 1430 | ep0_do_stall(pcd, -EOPNOTSUPP); |
| 1431 | return; |
| 1432 | } |
| 1433 | |
| 1434 | pcd_clear_halt(pcd, ep); |
| 1435 | |
| 1436 | break; |
| 1437 | } |
| 1438 | } |
| 1439 | |
| 1440 | /** |
| 1441 | * This function process the SET_ADDRESS Setup Commands. |
| 1442 | */ |
| 1443 | static inline void do_set_address(dwc_otg_pcd_t *pcd) |
| 1444 | { |
| 1445 | dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if; |
| 1446 | struct usb_ctrlrequest ctrl = pcd->setup_pkt->req; |
| 1447 | |
| 1448 | if (ctrl.bRequestType == USB_RECIP_DEVICE) { |
| 1449 | dcfg_data_t dcfg = {.d32=0}; |
| 1450 | |
| 1451 | #ifdef DEBUG_EP0 |
| 1452 | // DWC_DEBUGPL(DBG_PCDV, "SET_ADDRESS:%d\n", ctrl.wValue); |
| 1453 | #endif |
| 1454 | dcfg.b.devaddr = ctrl.wValue; |
| 1455 | dwc_modify_reg32(&dev_if->dev_global_regs->dcfg, 0, dcfg.d32); |
| 1456 | do_setup_in_status_phase(pcd); |
| 1457 | } |
| 1458 | } |
| 1459 | |
| 1460 | /** |
| 1461 | * This function processes SETUP commands. In Linux, the USB Command |
| 1462 | * processing is done in two places - the first being the PCD and the |
| 1463 | * second in the Gadget Driver (for example, the File-Backed Storage |
| 1464 | * Gadget Driver). |
| 1465 | * |
| 1466 | * <table> |
| 1467 | * <tr><td>Command </td><td>Driver </td><td>Description</td></tr> |
| 1468 | * |
| 1469 | * <tr><td>GET_STATUS </td><td>PCD </td><td>Command is processed as |
| 1470 | * defined in chapter 9 of the USB 2.0 Specification chapter 9 |
| 1471 | * </td></tr> |
| 1472 | * |
| 1473 | * <tr><td>CLEAR_FEATURE </td><td>PCD </td><td>The Device and Endpoint |
| 1474 | * requests are the ENDPOINT_HALT feature is procesed, all others the |
| 1475 | * interface requests are ignored.</td></tr> |
| 1476 | * |
| 1477 | * <tr><td>SET_FEATURE </td><td>PCD </td><td>The Device and Endpoint |
| 1478 | * requests are processed by the PCD. Interface requests are passed |
| 1479 | * to the Gadget Driver.</td></tr> |
| 1480 | * |
| 1481 | * <tr><td>SET_ADDRESS </td><td>PCD </td><td>Program the DCFG reg, |
| 1482 | * with device address received </td></tr> |
| 1483 | * |
| 1484 | * <tr><td>GET_DESCRIPTOR </td><td>Gadget Driver </td><td>Return the |
| 1485 | * requested descriptor</td></tr> |
| 1486 | * |
| 1487 | * <tr><td>SET_DESCRIPTOR </td><td>Gadget Driver </td><td>Optional - |
| 1488 | * not implemented by any of the existing Gadget Drivers.</td></tr> |
| 1489 | * |
| 1490 | * <tr><td>SET_CONFIGURATION </td><td>Gadget Driver </td><td>Disable |
| 1491 | * all EPs and enable EPs for new configuration.</td></tr> |
| 1492 | * |
| 1493 | * <tr><td>GET_CONFIGURATION </td><td>Gadget Driver </td><td>Return |
| 1494 | * the current configuration</td></tr> |
| 1495 | * |
| 1496 | * <tr><td>SET_INTERFACE </td><td>Gadget Driver </td><td>Disable all |
| 1497 | * EPs and enable EPs for new configuration.</td></tr> |
| 1498 | * |
| 1499 | * <tr><td>GET_INTERFACE </td><td>Gadget Driver </td><td>Return the |
| 1500 | * current interface.</td></tr> |
| 1501 | * |
| 1502 | * <tr><td>SYNC_FRAME </td><td>PCD </td><td>Display debug |
| 1503 | * message.</td></tr> |
| 1504 | * </table> |
| 1505 | * |
| 1506 | * When the SETUP Phase Done interrupt occurs, the PCD SETUP commands are |
| 1507 | * processed by pcd_setup. Calling the Function Driver's setup function from |
| 1508 | * pcd_setup processes the gadget SETUP commands. |
| 1509 | */ |
| 1510 | static inline void pcd_setup(dwc_otg_pcd_t *pcd) |
| 1511 | { |
| 1512 | dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); |
| 1513 | dwc_otg_dev_if_t *dev_if = core_if->dev_if; |
| 1514 | struct usb_ctrlrequest ctrl = pcd->setup_pkt->req; |
| 1515 | dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; |
| 1516 | |
| 1517 | deptsiz0_data_t doeptsize0 = { .d32 = 0}; |
| 1518 | |
| 1519 | #ifdef DEBUG_EP0 |
| 1520 | DWC_DEBUGPL(DBG_PCD, "SETUP %02x.%02x v%04x i%04x l%04x\n", |
| 1521 | ctrl.bRequestType, ctrl.bRequest, |
| 1522 | ctrl.wValue, ctrl.wIndex, ctrl.wLength); |
| 1523 | #endif |
| 1524 | |
| 1525 | doeptsize0.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doeptsiz); |
| 1526 | |
| 1527 | /** @todo handle > 1 setup packet , assert error for now */ |
| 1528 | |
| 1529 | if (core_if->dma_enable && core_if->dma_desc_enable == 0 && (doeptsize0.b.supcnt < 2)) { |
| 1530 | DWC_ERROR ("\n\n----------- CANNOT handle > 1 setup packet in DMA mode\n\n"); |
| 1531 | } |
| 1532 | |
| 1533 | /* Clean up the request queue */ |
| 1534 | dwc_otg_request_nuke(ep0); |
| 1535 | ep0->stopped = 0; |
| 1536 | |
| 1537 | if (ctrl.bRequestType & USB_DIR_IN) { |
| 1538 | ep0->dwc_ep.is_in = 1; |
| 1539 | pcd->ep0state = EP0_IN_DATA_PHASE; |
| 1540 | } |
| 1541 | else { |
| 1542 | ep0->dwc_ep.is_in = 0; |
| 1543 | pcd->ep0state = EP0_OUT_DATA_PHASE; |
| 1544 | } |
| 1545 | |
| 1546 | if(ctrl.wLength == 0) { |
| 1547 | ep0->dwc_ep.is_in = 1; |
| 1548 | pcd->ep0state = EP0_IN_STATUS_PHASE; |
| 1549 | } |
| 1550 | |
| 1551 | if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) { |
| 1552 | /* handle non-standard (class/vendor) requests in the gadget driver */ |
| 1553 | do_gadget_setup(pcd, &ctrl); |
| 1554 | return; |
| 1555 | } |
| 1556 | |
| 1557 | /** @todo NGS: Handle bad setup packet? */ |
| 1558 | |
| 1559 | /////////////////////////////////////////// |
| 1560 | //// --- Standard Request handling --- //// |
| 1561 | |
| 1562 | switch (ctrl.bRequest) { |
| 1563 | case USB_REQ_GET_STATUS: |
| 1564 | do_get_status(pcd); |
| 1565 | break; |
| 1566 | |
| 1567 | case USB_REQ_CLEAR_FEATURE: |
| 1568 | do_clear_feature(pcd); |
| 1569 | break; |
| 1570 | |
| 1571 | case USB_REQ_SET_FEATURE: |
| 1572 | do_set_feature(pcd); |
| 1573 | break; |
| 1574 | |
| 1575 | case USB_REQ_SET_ADDRESS: |
| 1576 | do_set_address(pcd); |
| 1577 | break; |
| 1578 | |
| 1579 | case USB_REQ_SET_INTERFACE: |
| 1580 | case USB_REQ_SET_CONFIGURATION: |
| 1581 | // _pcd->request_config = 1; /* Configuration changed */ |
| 1582 | do_gadget_setup(pcd, &ctrl); |
| 1583 | break; |
| 1584 | |
| 1585 | case USB_REQ_SYNCH_FRAME: |
| 1586 | do_gadget_setup(pcd, &ctrl); |
| 1587 | break; |
| 1588 | |
| 1589 | default: |
| 1590 | /* Call the Gadget Driver's setup functions */ |
| 1591 | do_gadget_setup(pcd, &ctrl); |
| 1592 | break; |
| 1593 | } |
| 1594 | } |
| 1595 | |
| 1596 | /** |
| 1597 | * This function completes the ep0 control transfer. |
| 1598 | */ |
| 1599 | static int32_t ep0_complete_request(dwc_otg_pcd_ep_t *ep) |
| 1600 | { |
| 1601 | dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd); |
| 1602 | dwc_otg_dev_if_t *dev_if = core_if->dev_if; |
| 1603 | dwc_otg_dev_in_ep_regs_t *in_ep_regs = |
| 1604 | dev_if->in_ep_regs[ep->dwc_ep.num]; |
| 1605 | #ifdef DEBUG_EP0 |
| 1606 | dwc_otg_dev_out_ep_regs_t *out_ep_regs = |
| 1607 | dev_if->out_ep_regs[ep->dwc_ep.num]; |
| 1608 | #endif |
| 1609 | deptsiz0_data_t deptsiz; |
| 1610 | desc_sts_data_t desc_sts; |
| 1611 | dwc_otg_pcd_request_t *req; |
| 1612 | int is_last = 0; |
| 1613 | dwc_otg_pcd_t *pcd = ep->pcd; |
| 1614 | |
| 1615 | //DWC_DEBUGPL(DBG_PCDV, "%s() %s\n", __func__, _ep->ep.name); |
| 1616 | |
| 1617 | if (pcd->ep0_pending && list_empty(&ep->queue)) { |
| 1618 | if (ep->dwc_ep.is_in) { |
| 1619 | #ifdef DEBUG_EP0 |
| 1620 | DWC_DEBUGPL(DBG_PCDV, "Do setup OUT status phase\n"); |
| 1621 | #endif |
| 1622 | do_setup_out_status_phase(pcd); |
| 1623 | } |
| 1624 | else { |
| 1625 | #ifdef DEBUG_EP0 |
| 1626 | DWC_DEBUGPL(DBG_PCDV, "Do setup IN status phase\n"); |
| 1627 | #endif |
| 1628 | do_setup_in_status_phase(pcd); |
| 1629 | } |
| 1630 | pcd->ep0_pending = 0; |
| 1631 | return 1; |
| 1632 | } |
| 1633 | |
| 1634 | if (list_empty(&ep->queue)) { |
| 1635 | return 0; |
| 1636 | } |
| 1637 | req = list_entry(ep->queue.next, dwc_otg_pcd_request_t, queue); |
| 1638 | |
| 1639 | |
| 1640 | if (pcd->ep0state == EP0_OUT_STATUS_PHASE || pcd->ep0state == EP0_IN_STATUS_PHASE) { |
| 1641 | is_last = 1; |
| 1642 | } |
| 1643 | else if (ep->dwc_ep.is_in) { |
| 1644 | deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz); |
| 1645 | if(core_if->dma_desc_enable != 0) |
| 1646 | desc_sts.d32 = readl(dev_if->in_desc_addr); |
| 1647 | #ifdef DEBUG_EP0 |
| 1648 | DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n", |
| 1649 | ep->ep.name, ep->dwc_ep.xfer_len, |
| 1650 | deptsiz.b.xfersize, deptsiz.b.pktcnt); |
| 1651 | #endif |
| 1652 | |
| 1653 | if (((core_if->dma_desc_enable == 0) && (deptsiz.b.xfersize == 0)) || |
| 1654 | ((core_if->dma_desc_enable != 0) && (desc_sts.b.bytes == 0))) { |
| 1655 | req->req.actual = ep->dwc_ep.xfer_count; |
| 1656 | /* Is a Zero Len Packet needed? */ |
| 1657 | if (req->req.zero) { |
| 1658 | #ifdef DEBUG_EP0 |
| 1659 | DWC_DEBUGPL(DBG_PCD, "Setup Rx ZLP\n"); |
| 1660 | #endif |
| 1661 | req->req.zero = 0; |
| 1662 | } |
| 1663 | do_setup_out_status_phase(pcd); |
| 1664 | } |
| 1665 | } |
| 1666 | else { |
| 1667 | /* ep0-OUT */ |
| 1668 | #ifdef DEBUG_EP0 |
| 1669 | deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz); |
| 1670 | DWC_DEBUGPL(DBG_PCDV, "%s len=%d xsize=%d pktcnt=%d\n", |
| 1671 | ep->ep.name, ep->dwc_ep.xfer_len, |
| 1672 | deptsiz.b.xfersize, |
| 1673 | deptsiz.b.pktcnt); |
| 1674 | #endif |
| 1675 | req->req.actual = ep->dwc_ep.xfer_count; |
| 1676 | /* Is a Zero Len Packet needed? */ |
| 1677 | if (req->req.zero) { |
| 1678 | #ifdef DEBUG_EP0 |
| 1679 | DWC_DEBUGPL(DBG_PCDV, "Setup Tx ZLP\n"); |
| 1680 | #endif |
| 1681 | req->req.zero = 0; |
| 1682 | } |
| 1683 | if(core_if->dma_desc_enable == 0) |
| 1684 | do_setup_in_status_phase(pcd); |
| 1685 | } |
| 1686 | |
| 1687 | /* Complete the request */ |
| 1688 | if (is_last) { |
| 1689 | dwc_otg_request_done(ep, req, 0); |
| 1690 | ep->dwc_ep.start_xfer_buff = 0; |
| 1691 | ep->dwc_ep.xfer_buff = 0; |
| 1692 | ep->dwc_ep.xfer_len = 0; |
| 1693 | return 1; |
| 1694 | } |
| 1695 | return 0; |
| 1696 | } |
| 1697 | |
| 1698 | /** |
| 1699 | * This function completes the request for the EP. If there are |
| 1700 | * additional requests for the EP in the queue they will be started. |
| 1701 | */ |
| 1702 | static void complete_ep(dwc_otg_pcd_ep_t *ep) |
| 1703 | { |
| 1704 | dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd); |
| 1705 | dwc_otg_dev_if_t *dev_if = core_if->dev_if; |
| 1706 | dwc_otg_dev_in_ep_regs_t *in_ep_regs = |
| 1707 | dev_if->in_ep_regs[ep->dwc_ep.num]; |
| 1708 | deptsiz_data_t deptsiz; |
| 1709 | desc_sts_data_t desc_sts; |
| 1710 | dwc_otg_pcd_request_t *req = 0; |
| 1711 | dwc_otg_dma_desc_t* dma_desc; |
| 1712 | uint32_t byte_count = 0; |
| 1713 | int is_last = 0; |
| 1714 | int i; |
| 1715 | |
| 1716 | DWC_DEBUGPL(DBG_PCDV,"%s() %s-%s\n", __func__, ep->ep.name, |
| 1717 | (ep->dwc_ep.is_in?"IN":"OUT")); |
| 1718 | |
| 1719 | /* Get any pending requests */ |
| 1720 | if (!list_empty(&ep->queue)) { |
| 1721 | req = list_entry(ep->queue.next, dwc_otg_pcd_request_t, |
| 1722 | queue); |
| 1723 | if (!req) { |
| 1724 | printk("complete_ep 0x%p, req = NULL!\n", ep); |
| 1725 | return; |
| 1726 | } |
| 1727 | } |
| 1728 | else { |
| 1729 | printk("complete_ep 0x%p, ep->queue empty!\n", ep); |
| 1730 | return; |
| 1731 | } |
| 1732 | DWC_DEBUGPL(DBG_PCD, "Requests %d\n", ep->pcd->request_pending); |
| 1733 | |
| 1734 | if (ep->dwc_ep.is_in) { |
| 1735 | deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz); |
| 1736 | |
| 1737 | if (core_if->dma_enable) { |
| 1738 | if(core_if->dma_desc_enable == 0) { |
| 1739 | if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) { |
| 1740 | byte_count = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; |
| 1741 | |
| 1742 | ep->dwc_ep.xfer_buff += byte_count; |
| 1743 | ep->dwc_ep.dma_addr += byte_count; |
| 1744 | ep->dwc_ep.xfer_count += byte_count; |
| 1745 | |
| 1746 | DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n", |
| 1747 | ep->ep.name, ep->dwc_ep.xfer_len, |
| 1748 | deptsiz.b.xfersize, deptsiz.b.pktcnt); |
| 1749 | |
| 1750 | |
| 1751 | if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) { |
| 1752 | dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep); |
| 1753 | } else if(ep->dwc_ep.sent_zlp) { |
| 1754 | /* |
| 1755 | * This fragment of code should initiate 0 |
| 1756 | * length trasfer in case if it is queued |
| 1757 | * a trasfer with size divisible to EPs max |
| 1758 | * packet size and with usb_request zero field |
| 1759 | * is set, which means that after data is transfered, |
| 1760 | * it is also should be transfered |
| 1761 | * a 0 length packet at the end. For Slave and |
| 1762 | * Buffer DMA modes in this case SW has |
| 1763 | * to initiate 2 transfers one with transfer size, |
| 1764 | * and the second with 0 size. For Desriptor |
| 1765 | * DMA mode SW is able to initiate a transfer, |
| 1766 | * which will handle all the packets including |
| 1767 | * the last 0 legth. |
| 1768 | */ |
| 1769 | ep->dwc_ep.sent_zlp = 0; |
| 1770 | dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep); |
| 1771 | } else { |
| 1772 | is_last = 1; |
| 1773 | } |
| 1774 | } else { |
| 1775 | DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n", |
| 1776 | ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"), |
| 1777 | deptsiz.b.xfersize, deptsiz.b.pktcnt); |
| 1778 | } |
| 1779 | } else { |
| 1780 | dma_desc = ep->dwc_ep.desc_addr; |
| 1781 | byte_count = 0; |
| 1782 | ep->dwc_ep.sent_zlp = 0; |
| 1783 | |
| 1784 | for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) { |
| 1785 | desc_sts.d32 = readl(dma_desc); |
| 1786 | byte_count += desc_sts.b.bytes; |
| 1787 | dma_desc++; |
| 1788 | } |
| 1789 | |
| 1790 | if(byte_count == 0) { |
| 1791 | ep->dwc_ep.xfer_count = ep->dwc_ep.total_len; |
| 1792 | is_last = 1; |
| 1793 | } else { |
| 1794 | DWC_WARN("Incomplete transfer\n"); |
| 1795 | } |
| 1796 | } |
| 1797 | } else { |
| 1798 | if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) { |
| 1799 | /* Check if the whole transfer was completed, |
| 1800 | * if no, setup transfer for next portion of data |
| 1801 | */ |
| 1802 | DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n", |
| 1803 | ep->ep.name, ep->dwc_ep.xfer_len, |
| 1804 | deptsiz.b.xfersize, deptsiz.b.pktcnt); |
| 1805 | if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) { |
| 1806 | dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep); |
| 1807 | } else if(ep->dwc_ep.sent_zlp) { |
| 1808 | /* |
| 1809 | * This fragment of code should initiate 0 |
| 1810 | * length trasfer in case if it is queued |
| 1811 | * a trasfer with size divisible to EPs max |
| 1812 | * packet size and with usb_request zero field |
| 1813 | * is set, which means that after data is transfered, |
| 1814 | * it is also should be transfered |
| 1815 | * a 0 length packet at the end. For Slave and |
| 1816 | * Buffer DMA modes in this case SW has |
| 1817 | * to initiate 2 transfers one with transfer size, |
| 1818 | * and the second with 0 size. For Desriptor |
| 1819 | * DMA mode SW is able to initiate a transfer, |
| 1820 | * which will handle all the packets including |
| 1821 | * the last 0 legth. |
| 1822 | */ |
| 1823 | ep->dwc_ep.sent_zlp = 0; |
| 1824 | dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep); |
| 1825 | } else { |
| 1826 | is_last = 1; |
| 1827 | } |
| 1828 | } |
| 1829 | else { |
| 1830 | DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n", |
| 1831 | ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"), |
| 1832 | deptsiz.b.xfersize, deptsiz.b.pktcnt); |
| 1833 | } |
| 1834 | } |
| 1835 | } else { |
| 1836 | dwc_otg_dev_out_ep_regs_t *out_ep_regs = |
| 1837 | dev_if->out_ep_regs[ep->dwc_ep.num]; |
| 1838 | desc_sts.d32 = 0; |
| 1839 | if(core_if->dma_enable) { |
| 1840 | if(core_if->dma_desc_enable) { |
| 1841 | dma_desc = ep->dwc_ep.desc_addr; |
| 1842 | byte_count = 0; |
| 1843 | ep->dwc_ep.sent_zlp = 0; |
| 1844 | for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) { |
| 1845 | desc_sts.d32 = readl(dma_desc); |
| 1846 | byte_count += desc_sts.b.bytes; |
| 1847 | dma_desc++; |
| 1848 | } |
| 1849 | |
| 1850 | ep->dwc_ep.xfer_count = ep->dwc_ep.total_len |
| 1851 | - byte_count + ((4 - (ep->dwc_ep.total_len & 0x3)) & 0x3); |
| 1852 | is_last = 1; |
| 1853 | } else { |
| 1854 | deptsiz.d32 = 0; |
| 1855 | deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz); |
| 1856 | |
| 1857 | byte_count = (ep->dwc_ep.xfer_len - |
| 1858 | ep->dwc_ep.xfer_count - deptsiz.b.xfersize); |
| 1859 | ep->dwc_ep.xfer_buff += byte_count; |
| 1860 | ep->dwc_ep.dma_addr += byte_count; |
| 1861 | ep->dwc_ep.xfer_count += byte_count; |
| 1862 | |
| 1863 | /* Check if the whole transfer was completed, |
| 1864 | * if no, setup transfer for next portion of data |
| 1865 | */ |
| 1866 | if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) { |
| 1867 | dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep); |
| 1868 | } |
| 1869 | else if(ep->dwc_ep.sent_zlp) { |
| 1870 | /* |
| 1871 | * This fragment of code should initiate 0 |
| 1872 | * length trasfer in case if it is queued |
| 1873 | * a trasfer with size divisible to EPs max |
| 1874 | * packet size and with usb_request zero field |
| 1875 | * is set, which means that after data is transfered, |
| 1876 | * it is also should be transfered |
| 1877 | * a 0 length packet at the end. For Slave and |
| 1878 | * Buffer DMA modes in this case SW has |
| 1879 | * to initiate 2 transfers one with transfer size, |
| 1880 | * and the second with 0 size. For Desriptor |
| 1881 | * DMA mode SW is able to initiate a transfer, |
| 1882 | * which will handle all the packets including |
| 1883 | * the last 0 legth. |
| 1884 | */ |
| 1885 | ep->dwc_ep.sent_zlp = 0; |
| 1886 | dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep); |
| 1887 | } else { |
| 1888 | is_last = 1; |
| 1889 | } |
| 1890 | } |
| 1891 | } else { |
| 1892 | /* Check if the whole transfer was completed, |
| 1893 | * if no, setup transfer for next portion of data |
| 1894 | */ |
| 1895 | if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) { |
| 1896 | dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep); |
| 1897 | } |
| 1898 | else if(ep->dwc_ep.sent_zlp) { |
| 1899 | /* |
| 1900 | * This fragment of code should initiate 0 |
| 1901 | * length trasfer in case if it is queued |
| 1902 | * a trasfer with size divisible to EPs max |
| 1903 | * packet size and with usb_request zero field |
| 1904 | * is set, which means that after data is transfered, |
| 1905 | * it is also should be transfered |
| 1906 | * a 0 length packet at the end. For Slave and |
| 1907 | * Buffer DMA modes in this case SW has |
| 1908 | * to initiate 2 transfers one with transfer size, |
| 1909 | * and the second with 0 size. For Desriptor |
| 1910 | * DMA mode SW is able to initiate a transfer, |
| 1911 | * which will handle all the packets including |
| 1912 | * the last 0 legth. |
| 1913 | */ |
| 1914 | ep->dwc_ep.sent_zlp = 0; |
| 1915 | dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep); |
| 1916 | } else { |
| 1917 | is_last = 1; |
| 1918 | } |
| 1919 | } |
| 1920 | |
| 1921 | #ifdef DEBUG |
| 1922 | |
| 1923 | DWC_DEBUGPL(DBG_PCDV, "addr %p, %s len=%d cnt=%d xsize=%d pktcnt=%d\n", |
| 1924 | &out_ep_regs->doeptsiz, ep->ep.name, ep->dwc_ep.xfer_len, |
| 1925 | ep->dwc_ep.xfer_count, |
| 1926 | deptsiz.b.xfersize, |
| 1927 | deptsiz.b.pktcnt); |
| 1928 | #endif |
| 1929 | } |
| 1930 | |
| 1931 | /* Complete the request */ |
| 1932 | if (is_last) { |
| 1933 | req->req.actual = ep->dwc_ep.xfer_count; |
| 1934 | |
| 1935 | dwc_otg_request_done(ep, req, 0); |
| 1936 | |
| 1937 | ep->dwc_ep.start_xfer_buff = 0; |
| 1938 | ep->dwc_ep.xfer_buff = 0; |
| 1939 | ep->dwc_ep.xfer_len = 0; |
| 1940 | |
| 1941 | /* If there is a request in the queue start it.*/ |
| 1942 | start_next_request(ep); |
| 1943 | } |
| 1944 | } |
| 1945 | |
| 1946 | |
| 1947 | #ifdef DWC_EN_ISOC |
| 1948 | |
| 1949 | /** |
| 1950 | * This function BNA interrupt for Isochronous EPs |
| 1951 | * |
| 1952 | */ |
| 1953 | static void dwc_otg_pcd_handle_iso_bna(dwc_otg_pcd_ep_t *ep) |
| 1954 | { |
| 1955 | dwc_ep_t *dwc_ep = &ep->dwc_ep; |
| 1956 | volatile uint32_t *addr; |
| 1957 | depctl_data_t depctl = {.d32 = 0}; |
| 1958 | dwc_otg_pcd_t *pcd = ep->pcd; |
| 1959 | dwc_otg_dma_desc_t *dma_desc; |
| 1960 | int i; |
| 1961 | |
| 1962 | dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * (dwc_ep->proc_buf_num); |
| 1963 | |
| 1964 | if(dwc_ep->is_in) { |
| 1965 | desc_sts_data_t sts = {.d32 = 0}; |
| 1966 | for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc) |
| 1967 | { |
| 1968 | sts.d32 = readl(&dma_desc->status); |
| 1969 | sts.b_iso_in.bs = BS_HOST_READY; |
| 1970 | writel(sts.d32,&dma_desc->status); |
| 1971 | } |
| 1972 | } |
| 1973 | else { |
| 1974 | desc_sts_data_t sts = {.d32 = 0}; |
| 1975 | for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc) |
| 1976 | { |
| 1977 | sts.d32 = readl(&dma_desc->status); |
| 1978 | sts.b_iso_out.bs = BS_HOST_READY; |
| 1979 | writel(sts.d32,&dma_desc->status); |
| 1980 | } |
| 1981 | } |
| 1982 | |
| 1983 | if(dwc_ep->is_in == 0){ |
| 1984 | addr = &GET_CORE_IF(pcd)->dev_if->out_ep_regs[dwc_ep->num]->doepctl; |
| 1985 | } |
| 1986 | else{ |
| 1987 | addr = &GET_CORE_IF(pcd)->dev_if->in_ep_regs[dwc_ep->num]->diepctl; |
| 1988 | } |
| 1989 | depctl.b.epena = 1; |
| 1990 | dwc_modify_reg32(addr,depctl.d32,depctl.d32); |
| 1991 | } |
| 1992 | |
| 1993 | /** |
| 1994 | * This function sets latest iso packet information(non-PTI mode) |
| 1995 | * |
| 1996 | * @param core_if Programming view of DWC_otg controller. |
| 1997 | * @param ep The EP to start the transfer on. |
| 1998 | * |
| 1999 | */ |
| 2000 | void set_current_pkt_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) |
| 2001 | { |
| 2002 | deptsiz_data_t deptsiz = { .d32 = 0 }; |
| 2003 | dma_addr_t dma_addr; |
| 2004 | uint32_t offset; |
| 2005 | |
| 2006 | if(ep->proc_buf_num) |
| 2007 | dma_addr = ep->dma_addr1; |
| 2008 | else |
| 2009 | dma_addr = ep->dma_addr0; |
| 2010 | |
| 2011 | |
| 2012 | if(ep->is_in) { |
| 2013 | deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz); |
| 2014 | offset = ep->data_per_frame; |
| 2015 | } else { |
| 2016 | deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz); |
| 2017 | offset = ep->data_per_frame + (0x4 & (0x4 - (ep->data_per_frame & 0x3))); |
| 2018 | } |
| 2019 | |
| 2020 | if(!deptsiz.b.xfersize) { |
| 2021 | ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame; |
| 2022 | ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr; |
| 2023 | ep->pkt_info[ep->cur_pkt].status = 0; |
| 2024 | } else { |
| 2025 | ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame; |
| 2026 | ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr; |
| 2027 | ep->pkt_info[ep->cur_pkt].status = -ENODATA; |
| 2028 | } |
| 2029 | ep->cur_pkt_addr += offset; |
| 2030 | ep->cur_pkt_dma_addr += offset; |
| 2031 | ep->cur_pkt++; |
| 2032 | } |
| 2033 | |
| 2034 | /** |
| 2035 | * This function sets latest iso packet information(DDMA mode) |
| 2036 | * |
| 2037 | * @param core_if Programming view of DWC_otg controller. |
| 2038 | * @param dwc_ep The EP to start the transfer on. |
| 2039 | * |
| 2040 | */ |
| 2041 | static void set_ddma_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep) |
| 2042 | { |
| 2043 | dwc_otg_dma_desc_t* dma_desc; |
| 2044 | desc_sts_data_t sts = {.d32 = 0}; |
| 2045 | iso_pkt_info_t *iso_packet; |
| 2046 | uint32_t data_per_desc; |
| 2047 | uint32_t offset; |
| 2048 | int i, j; |
| 2049 | |
| 2050 | iso_packet = dwc_ep->pkt_info; |
| 2051 | |
| 2052 | /** Reinit closed DMA Descriptors*/ |
| 2053 | /** ISO OUT EP */ |
| 2054 | if(dwc_ep->is_in == 0) { |
| 2055 | dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num; |
| 2056 | offset = 0; |
| 2057 | |
| 2058 | for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm) |
| 2059 | { |
| 2060 | for(j = 0; j < dwc_ep->pkt_per_frm; ++j) |
| 2061 | { |
| 2062 | data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? |
| 2063 | dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; |
| 2064 | data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; |
| 2065 | |
| 2066 | sts.d32 = readl(&dma_desc->status); |
| 2067 | |
| 2068 | /* Write status in iso_packet_decsriptor */ |
| 2069 | iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE); |
| 2070 | if(iso_packet->status) { |
| 2071 | iso_packet->status = -ENODATA; |
| 2072 | } |
| 2073 | |
| 2074 | /* Received data length */ |
| 2075 | if(!sts.b_iso_out.rxbytes){ |
| 2076 | iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes; |
| 2077 | } else { |
| 2078 | iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes + |
| 2079 | (4 - dwc_ep->data_per_frame % 4); |
| 2080 | } |
| 2081 | |
| 2082 | iso_packet->offset = offset; |
| 2083 | |
| 2084 | offset += data_per_desc; |
| 2085 | dma_desc ++; |
| 2086 | iso_packet ++; |
| 2087 | } |
| 2088 | } |
| 2089 | |
| 2090 | for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j) |
| 2091 | { |
| 2092 | data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? |
| 2093 | dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; |
| 2094 | data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; |
| 2095 | |
| 2096 | sts.d32 = readl(&dma_desc->status); |
| 2097 | |
| 2098 | /* Write status in iso_packet_decsriptor */ |
| 2099 | iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE); |
| 2100 | if(iso_packet->status) { |
| 2101 | iso_packet->status = -ENODATA; |
| 2102 | } |
| 2103 | |
| 2104 | /* Received data length */ |
| 2105 | iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes; |
| 2106 | |
| 2107 | iso_packet->offset = offset; |
| 2108 | |
| 2109 | offset += data_per_desc; |
| 2110 | iso_packet++; |
| 2111 | dma_desc++; |
| 2112 | } |
| 2113 | |
| 2114 | sts.d32 = readl(&dma_desc->status); |
| 2115 | |
| 2116 | /* Write status in iso_packet_decsriptor */ |
| 2117 | iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE); |
| 2118 | if(iso_packet->status) { |
| 2119 | iso_packet->status = -ENODATA; |
| 2120 | } |
| 2121 | /* Received data length */ |
| 2122 | if(!sts.b_iso_out.rxbytes){ |
| 2123 | iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes; |
| 2124 | } else { |
| 2125 | iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes + |
| 2126 | (4 - dwc_ep->data_per_frame % 4); |
| 2127 | } |
| 2128 | |
| 2129 | iso_packet->offset = offset; |
| 2130 | } |
| 2131 | else /** ISO IN EP */ |
| 2132 | { |
| 2133 | dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num; |
| 2134 | |
| 2135 | for(i = 0; i < dwc_ep->desc_cnt - 1; i++) |
| 2136 | { |
| 2137 | sts.d32 = readl(&dma_desc->status); |
| 2138 | |
| 2139 | /* Write status in iso packet descriptor */ |
| 2140 | iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE); |
| 2141 | if(iso_packet->status != 0) { |
| 2142 | iso_packet->status = -ENODATA; |
| 2143 | |
| 2144 | } |
| 2145 | /* Bytes has been transfered */ |
| 2146 | iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes; |
| 2147 | |
| 2148 | dma_desc ++; |
| 2149 | iso_packet++; |
| 2150 | } |
| 2151 | |
| 2152 | sts.d32 = readl(&dma_desc->status); |
| 2153 | while(sts.b_iso_in.bs == BS_DMA_BUSY) { |
| 2154 | sts.d32 = readl(&dma_desc->status); |
| 2155 | } |
| 2156 | |
| 2157 | /* Write status in iso packet descriptor ??? do be done with ERROR codes*/ |
| 2158 | iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE); |
| 2159 | if(iso_packet->status != 0) { |
| 2160 | iso_packet->status = -ENODATA; |
| 2161 | } |
| 2162 | |
| 2163 | /* Bytes has been transfered */ |
| 2164 | iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes; |
| 2165 | } |
| 2166 | } |
| 2167 | |
| 2168 | /** |
| 2169 | * This function reinitialize DMA Descriptors for Isochronous transfer |
| 2170 | * |
| 2171 | * @param core_if Programming view of DWC_otg controller. |
| 2172 | * @param dwc_ep The EP to start the transfer on. |
| 2173 | * |
| 2174 | */ |
| 2175 | static void reinit_ddma_iso_xfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep) |
| 2176 | { |
| 2177 | int i, j; |
| 2178 | dwc_otg_dma_desc_t* dma_desc; |
| 2179 | dma_addr_t dma_ad; |
| 2180 | volatile uint32_t *addr; |
| 2181 | desc_sts_data_t sts = { .d32 =0 }; |
| 2182 | uint32_t data_per_desc; |
| 2183 | |
| 2184 | if(dwc_ep->is_in == 0) { |
| 2185 | addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl; |
| 2186 | } |
| 2187 | else { |
| 2188 | addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl; |
| 2189 | } |
| 2190 | |
| 2191 | |
| 2192 | if(dwc_ep->proc_buf_num == 0) { |
| 2193 | /** Buffer 0 descriptors setup */ |
| 2194 | dma_ad = dwc_ep->dma_addr0; |
| 2195 | } |
| 2196 | else { |
| 2197 | /** Buffer 1 descriptors setup */ |
| 2198 | dma_ad = dwc_ep->dma_addr1; |
| 2199 | } |
| 2200 | |
| 2201 | |
| 2202 | /** Reinit closed DMA Descriptors*/ |
| 2203 | /** ISO OUT EP */ |
| 2204 | if(dwc_ep->is_in == 0) { |
| 2205 | dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num; |
| 2206 | |
| 2207 | sts.b_iso_out.bs = BS_HOST_READY; |
| 2208 | sts.b_iso_out.rxsts = 0; |
| 2209 | sts.b_iso_out.l = 0; |
| 2210 | sts.b_iso_out.sp = 0; |
| 2211 | sts.b_iso_out.ioc = 0; |
| 2212 | sts.b_iso_out.pid = 0; |
| 2213 | sts.b_iso_out.framenum = 0; |
| 2214 | |
| 2215 | for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm) |
| 2216 | { |
| 2217 | for(j = 0; j < dwc_ep->pkt_per_frm; ++j) |
| 2218 | { |
| 2219 | data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? |
| 2220 | dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; |
| 2221 | data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; |
| 2222 | sts.b_iso_out.rxbytes = data_per_desc; |
| 2223 | writel((uint32_t)dma_ad, &dma_desc->buf); |
| 2224 | writel(sts.d32, &dma_desc->status); |
| 2225 | |
| 2226 | (uint32_t)dma_ad += data_per_desc; |
| 2227 | dma_desc ++; |
| 2228 | } |
| 2229 | } |
| 2230 | |
| 2231 | for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j) |
| 2232 | { |
| 2233 | |
| 2234 | data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? |
| 2235 | dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; |
| 2236 | data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; |
| 2237 | sts.b_iso_out.rxbytes = data_per_desc; |
| 2238 | |
| 2239 | writel((uint32_t)dma_ad, &dma_desc->buf); |
| 2240 | writel(sts.d32, &dma_desc->status); |
| 2241 | |
| 2242 | dma_desc++; |
| 2243 | (uint32_t)dma_ad += data_per_desc; |
| 2244 | } |
| 2245 | |
| 2246 | sts.b_iso_out.ioc = 1; |
| 2247 | sts.b_iso_out.l = dwc_ep->proc_buf_num; |
| 2248 | |
| 2249 | data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? |
| 2250 | dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; |
| 2251 | data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; |
| 2252 | sts.b_iso_out.rxbytes = data_per_desc; |
| 2253 | |
| 2254 | writel((uint32_t)dma_ad, &dma_desc->buf); |
| 2255 | writel(sts.d32, &dma_desc->status); |
| 2256 | } |
| 2257 | else /** ISO IN EP */ |
| 2258 | { |
| 2259 | dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num; |
| 2260 | |
| 2261 | sts.b_iso_in.bs = BS_HOST_READY; |
| 2262 | sts.b_iso_in.txsts = 0; |
| 2263 | sts.b_iso_in.sp = 0; |
| 2264 | sts.b_iso_in.ioc = 0; |
| 2265 | sts.b_iso_in.pid = dwc_ep->pkt_per_frm; |
| 2266 | sts.b_iso_in.framenum = dwc_ep->next_frame; |
| 2267 | sts.b_iso_in.txbytes = dwc_ep->data_per_frame; |
| 2268 | sts.b_iso_in.l = 0; |
| 2269 | |
| 2270 | for(i = 0; i < dwc_ep->desc_cnt - 1; i++) |
| 2271 | { |
| 2272 | writel((uint32_t)dma_ad, &dma_desc->buf); |
| 2273 | writel(sts.d32, &dma_desc->status); |
| 2274 | |
| 2275 | sts.b_iso_in.framenum += dwc_ep->bInterval; |
| 2276 | (uint32_t)dma_ad += dwc_ep->data_per_frame; |
| 2277 | dma_desc ++; |
| 2278 | } |
| 2279 | |
| 2280 | sts.b_iso_in.ioc = 1; |
| 2281 | sts.b_iso_in.l = dwc_ep->proc_buf_num; |
| 2282 | |
| 2283 | writel((uint32_t)dma_ad, &dma_desc->buf); |
| 2284 | writel(sts.d32, &dma_desc->status); |
| 2285 | |
| 2286 | dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval * 1; |
| 2287 | } |
| 2288 | dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; |
| 2289 | } |
| 2290 | |
| 2291 | |
| 2292 | /** |
| 2293 | * This function is to handle Iso EP transfer complete interrupt |
| 2294 | * in case Iso out packet was dropped |
| 2295 | * |
| 2296 | * @param core_if Programming view of DWC_otg controller. |
| 2297 | * @param dwc_ep The EP for wihich transfer complete was asserted |
| 2298 | * |
| 2299 | */ |
| 2300 | static uint32_t handle_iso_out_pkt_dropped(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep) |
| 2301 | { |
| 2302 | uint32_t dma_addr; |
| 2303 | uint32_t drp_pkt; |
| 2304 | uint32_t drp_pkt_cnt; |
| 2305 | deptsiz_data_t deptsiz = { .d32 = 0 }; |
| 2306 | depctl_data_t depctl = { .d32 = 0 }; |
| 2307 | int i; |
| 2308 | |
| 2309 | deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz); |
| 2310 | |
| 2311 | drp_pkt = dwc_ep->pkt_cnt - deptsiz.b.pktcnt; |
| 2312 | drp_pkt_cnt = dwc_ep->pkt_per_frm - (drp_pkt % dwc_ep->pkt_per_frm); |
| 2313 | |
| 2314 | /* Setting dropped packets status */ |
| 2315 | for(i = 0; i < drp_pkt_cnt; ++i) { |
| 2316 | dwc_ep->pkt_info[drp_pkt].status = -ENODATA; |
| 2317 | drp_pkt ++; |
| 2318 | deptsiz.b.pktcnt--; |
| 2319 | } |
| 2320 | |
| 2321 | |
| 2322 | if(deptsiz.b.pktcnt > 0) { |
| 2323 | deptsiz.b.xfersize = dwc_ep->xfer_len - (dwc_ep->pkt_cnt - deptsiz.b.pktcnt) * dwc_ep->maxpacket; |
| 2324 | } else { |
| 2325 | deptsiz.b.xfersize = 0; |
| 2326 | deptsiz.b.pktcnt = 0; |
| 2327 | } |
| 2328 | |
| 2329 | dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz, deptsiz.d32); |
| 2330 | |
| 2331 | if(deptsiz.b.pktcnt > 0) { |
| 2332 | if(dwc_ep->proc_buf_num) { |
| 2333 | dma_addr = dwc_ep->dma_addr1 + dwc_ep->xfer_len - deptsiz.b.xfersize; |
| 2334 | } else { |
| 2335 | dma_addr = dwc_ep->dma_addr0 + dwc_ep->xfer_len - deptsiz.b.xfersize;; |
| 2336 | } |
| 2337 | |
| 2338 | dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepdma, dma_addr); |
| 2339 | |
| 2340 | /** Re-enable endpoint, clear nak */ |
| 2341 | depctl.d32 = 0; |
| 2342 | depctl.b.epena = 1; |
| 2343 | depctl.b.cnak = 1; |
| 2344 | |
| 2345 | dwc_modify_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl, |
| 2346 | depctl.d32,depctl.d32); |
| 2347 | return 0; |
| 2348 | } else { |
| 2349 | return 1; |
| 2350 | } |
| 2351 | } |
| 2352 | |
| 2353 | /** |
| 2354 | * This function sets iso packets information(PTI mode) |
| 2355 | * |
| 2356 | * @param core_if Programming view of DWC_otg controller. |
| 2357 | * @param ep The EP to start the transfer on. |
| 2358 | * |
| 2359 | */ |
| 2360 | static uint32_t set_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) |
| 2361 | { |
| 2362 | int i, j; |
| 2363 | dma_addr_t dma_ad; |
| 2364 | iso_pkt_info_t *packet_info = ep->pkt_info; |
| 2365 | uint32_t offset; |
| 2366 | uint32_t frame_data; |
| 2367 | deptsiz_data_t deptsiz; |
| 2368 | |
| 2369 | if(ep->proc_buf_num == 0) { |
| 2370 | /** Buffer 0 descriptors setup */ |
| 2371 | dma_ad = ep->dma_addr0; |
| 2372 | } |
| 2373 | else { |
| 2374 | /** Buffer 1 descriptors setup */ |
| 2375 | dma_ad = ep->dma_addr1; |
| 2376 | } |
| 2377 | |
| 2378 | |
| 2379 | if(ep->is_in) { |
| 2380 | deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz); |
| 2381 | } else { |
| 2382 | deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz); |
| 2383 | } |
| 2384 | |
| 2385 | if(!deptsiz.b.xfersize) { |
| 2386 | offset = 0; |
| 2387 | for(i = 0; i < ep->pkt_cnt; i += ep->pkt_per_frm) |
| 2388 | { |
| 2389 | frame_data = ep->data_per_frame; |
| 2390 | for(j = 0; j < ep->pkt_per_frm; ++j) { |
| 2391 | |
| 2392 | /* Packet status - is not set as initially |
| 2393 | * it is set to 0 and if packet was sent |
| 2394 | successfully, status field will remain 0*/ |
| 2395 | |
| 2396 | |
| 2397 | /* Bytes has been transfered */ |
| 2398 | packet_info->length = (ep->maxpacket < frame_data) ? |
| 2399 | ep->maxpacket : frame_data; |
| 2400 | |
| 2401 | /* Received packet offset */ |
| 2402 | packet_info->offset = offset; |
| 2403 | offset += packet_info->length; |
| 2404 | frame_data -= packet_info->length; |
| 2405 | |
| 2406 | packet_info ++; |
| 2407 | } |
| 2408 | } |
| 2409 | return 1; |
| 2410 | } else { |
| 2411 | /* This is a workaround for in case of Transfer Complete with |
| 2412 | * PktDrpSts interrupts merging - in this case Transfer complete |
| 2413 | * interrupt for Isoc Out Endpoint is asserted without PktDrpSts |
| 2414 | * set and with DOEPTSIZ register non zero. Investigations showed, |
| 2415 | * that this happens when Out packet is dropped, but because of |
| 2416 | * interrupts merging during first interrupt handling PktDrpSts |
| 2417 | * bit is cleared and for next merged interrupts it is not reset. |
| 2418 | * In this case SW hadles the interrupt as if PktDrpSts bit is set. |
| 2419 | */ |
| 2420 | if(ep->is_in) { |
| 2421 | return 1; |
| 2422 | } else { |
| 2423 | return handle_iso_out_pkt_dropped(core_if, ep); |
| 2424 | } |
| 2425 | } |
| 2426 | } |
| 2427 | |
| 2428 | /** |
| 2429 | * This function is to handle Iso EP transfer complete interrupt |
| 2430 | * |
| 2431 | * @param ep The EP for which transfer complete was asserted |
| 2432 | * |
| 2433 | */ |
| 2434 | static void complete_iso_ep(dwc_otg_pcd_ep_t *ep) |
| 2435 | { |
| 2436 | dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd); |
| 2437 | dwc_ep_t *dwc_ep = &ep->dwc_ep; |
| 2438 | uint8_t is_last = 0; |
| 2439 | |
| 2440 | if(core_if->dma_enable) { |
| 2441 | if(core_if->dma_desc_enable) { |
| 2442 | set_ddma_iso_pkts_info(core_if, dwc_ep); |
| 2443 | reinit_ddma_iso_xfer(core_if, dwc_ep); |
| 2444 | is_last = 1; |
| 2445 | } else { |
| 2446 | if(core_if->pti_enh_enable) { |
| 2447 | if(set_iso_pkts_info(core_if, dwc_ep)) { |
| 2448 | dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; |
| 2449 | dwc_otg_iso_ep_start_buf_transfer(core_if, dwc_ep); |
| 2450 | is_last = 1; |
| 2451 | } |
| 2452 | } else { |
| 2453 | set_current_pkt_info(core_if, dwc_ep); |
| 2454 | if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) { |
| 2455 | is_last = 1; |
| 2456 | dwc_ep->cur_pkt = 0; |
| 2457 | dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; |
| 2458 | if(dwc_ep->proc_buf_num) { |
| 2459 | dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1; |
| 2460 | dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1; |
| 2461 | } else { |
| 2462 | dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0; |
| 2463 | dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0; |
| 2464 | } |
| 2465 | |
| 2466 | } |
| 2467 | dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep); |
| 2468 | } |
| 2469 | } |
| 2470 | } else { |
| 2471 | set_current_pkt_info(core_if, dwc_ep); |
| 2472 | if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) { |
| 2473 | is_last = 1; |
| 2474 | dwc_ep->cur_pkt = 0; |
| 2475 | dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; |
| 2476 | if(dwc_ep->proc_buf_num) { |
| 2477 | dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1; |
| 2478 | dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1; |
| 2479 | } else { |
| 2480 | dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0; |
| 2481 | dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0; |
| 2482 | } |
| 2483 | |
| 2484 | } |
| 2485 | dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep); |
| 2486 | } |
| 2487 | if(is_last) |
| 2488 | dwc_otg_iso_buffer_done(ep, ep->iso_req); |
| 2489 | } |
| 2490 | |
| 2491 | #endif //DWC_EN_ISOC |
| 2492 | |
| 2493 | |
| 2494 | /** |
| 2495 | * This function handles EP0 Control transfers. |
| 2496 | * |
| 2497 | * The state of the control tranfers are tracked in |
| 2498 | * <code>ep0state</code>. |
| 2499 | */ |
| 2500 | static void handle_ep0(dwc_otg_pcd_t *pcd) |
| 2501 | { |
| 2502 | dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); |
| 2503 | dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; |
| 2504 | desc_sts_data_t desc_sts; |
| 2505 | deptsiz0_data_t deptsiz; |
| 2506 | uint32_t byte_count; |
| 2507 | |
| 2508 | #ifdef DEBUG_EP0 |
| 2509 | DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__); |
| 2510 | print_ep0_state(pcd); |
| 2511 | #endif |
| 2512 | |
| 2513 | switch (pcd->ep0state) { |
| 2514 | case EP0_DISCONNECT: |
| 2515 | break; |
| 2516 | |
| 2517 | case EP0_IDLE: |
| 2518 | pcd->request_config = 0; |
| 2519 | |
| 2520 | pcd_setup(pcd); |
| 2521 | break; |
| 2522 | |
| 2523 | case EP0_IN_DATA_PHASE: |
| 2524 | #ifdef DEBUG_EP0 |
| 2525 | DWC_DEBUGPL(DBG_PCD, "DATA_IN EP%d-%s: type=%d, mps=%d\n", |
| 2526 | ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"), |
| 2527 | ep0->dwc_ep.type, ep0->dwc_ep.maxpacket); |
| 2528 | #endif |
| 2529 | |
| 2530 | if (core_if->dma_enable != 0) { |
| 2531 | /* |
| 2532 | * For EP0 we can only program 1 packet at a time so we |
| 2533 | * need to do the make calculations after each complete. |
| 2534 | * Call write_packet to make the calculations, as in |
| 2535 | * slave mode, and use those values to determine if we |
| 2536 | * can complete. |
| 2537 | */ |
| 2538 | if(core_if->dma_desc_enable == 0) { |
| 2539 | deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->dieptsiz); |
| 2540 | byte_count = ep0->dwc_ep.xfer_len - deptsiz.b.xfersize; |
| 2541 | } |
| 2542 | else { |
| 2543 | desc_sts.d32 = readl(core_if->dev_if->in_desc_addr); |
| 2544 | byte_count = ep0->dwc_ep.xfer_len - desc_sts.b.bytes; |
| 2545 | } |
| 2546 | ep0->dwc_ep.xfer_count += byte_count; |
| 2547 | ep0->dwc_ep.xfer_buff += byte_count; |
| 2548 | ep0->dwc_ep.dma_addr += byte_count; |
| 2549 | } |
| 2550 | if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) { |
| 2551 | dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep); |
| 2552 | DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n"); |
| 2553 | } |
| 2554 | else if(ep0->dwc_ep.sent_zlp) { |
| 2555 | dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep); |
| 2556 | ep0->dwc_ep.sent_zlp = 0; |
| 2557 | DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n"); |
| 2558 | } |
| 2559 | else { |
| 2560 | ep0_complete_request(ep0); |
| 2561 | DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n"); |
| 2562 | } |
| 2563 | break; |
| 2564 | case EP0_OUT_DATA_PHASE: |
| 2565 | #ifdef DEBUG_EP0 |
| 2566 | DWC_DEBUGPL(DBG_PCD, "DATA_OUT EP%d-%s: type=%d, mps=%d\n", |
| 2567 | ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"), |
| 2568 | ep0->dwc_ep.type, ep0->dwc_ep.maxpacket); |
| 2569 | #endif |
| 2570 | if (core_if->dma_enable != 0) { |
| 2571 | if(core_if->dma_desc_enable == 0) { |
| 2572 | deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[0]->doeptsiz); |
| 2573 | byte_count = ep0->dwc_ep.maxpacket - deptsiz.b.xfersize; |
| 2574 | } |
| 2575 | else { |
| 2576 | desc_sts.d32 = readl(core_if->dev_if->out_desc_addr); |
| 2577 | byte_count = ep0->dwc_ep.maxpacket - desc_sts.b.bytes; |
| 2578 | } |
| 2579 | ep0->dwc_ep.xfer_count += byte_count; |
| 2580 | ep0->dwc_ep.xfer_buff += byte_count; |
| 2581 | ep0->dwc_ep.dma_addr += byte_count; |
| 2582 | } |
| 2583 | if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) { |
| 2584 | dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep); |
| 2585 | DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n"); |
| 2586 | } |
| 2587 | else if(ep0->dwc_ep.sent_zlp) { |
| 2588 | dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep); |
| 2589 | ep0->dwc_ep.sent_zlp = 0; |
| 2590 | DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n"); |
| 2591 | } |
| 2592 | else { |
| 2593 | ep0_complete_request(ep0); |
| 2594 | DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n"); |
| 2595 | } |
| 2596 | break; |
| 2597 | |
| 2598 | |
| 2599 | case EP0_IN_STATUS_PHASE: |
| 2600 | case EP0_OUT_STATUS_PHASE: |
| 2601 | DWC_DEBUGPL(DBG_PCD, "CASE: EP0_STATUS\n"); |
| 2602 | ep0_complete_request(ep0); |
| 2603 | pcd->ep0state = EP0_IDLE; |
| 2604 | ep0->stopped = 1; |
| 2605 | ep0->dwc_ep.is_in = 0; /* OUT for next SETUP */ |
| 2606 | |
| 2607 | /* Prepare for more SETUP Packets */ |
| 2608 | if(core_if->dma_enable) { |
| 2609 | ep0_out_start(core_if, pcd); |
| 2610 | } |
| 2611 | break; |
| 2612 | |
| 2613 | case EP0_STALL: |
| 2614 | DWC_ERROR("EP0 STALLed, should not get here pcd_setup()\n"); |
| 2615 | break; |
| 2616 | } |
| 2617 | #ifdef DEBUG_EP0 |
| 2618 | print_ep0_state(pcd); |
| 2619 | #endif |
| 2620 | } |
| 2621 | |
| 2622 | |
| 2623 | /** |
| 2624 | * Restart transfer |
| 2625 | */ |
| 2626 | static void restart_transfer(dwc_otg_pcd_t *pcd, const uint32_t epnum) |
| 2627 | { |
| 2628 | dwc_otg_core_if_t *core_if; |
| 2629 | dwc_otg_dev_if_t *dev_if; |
| 2630 | deptsiz_data_t dieptsiz = {.d32=0}; |
| 2631 | dwc_otg_pcd_ep_t *ep; |
| 2632 | |
| 2633 | ep = get_in_ep(pcd, epnum); |
| 2634 | |
| 2635 | #ifdef DWC_EN_ISOC |
| 2636 | if(ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) { |
| 2637 | return; |
| 2638 | } |
| 2639 | #endif /* DWC_EN_ISOC */ |
| 2640 | |
| 2641 | core_if = GET_CORE_IF(pcd); |
| 2642 | dev_if = core_if->dev_if; |
| 2643 | |
| 2644 | dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz); |
| 2645 | |
| 2646 | DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x xfer_len=%0x" |
| 2647 | " stopped=%d\n", ep->dwc_ep.xfer_buff, |
| 2648 | ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len , |
| 2649 | ep->stopped); |
| 2650 | /* |
| 2651 | * If xfersize is 0 and pktcnt in not 0, resend the last packet. |
| 2652 | */ |
| 2653 | if (dieptsiz.b.pktcnt && dieptsiz.b.xfersize == 0 && |
| 2654 | ep->dwc_ep.start_xfer_buff != 0) { |
| 2655 | if (ep->dwc_ep.total_len <= ep->dwc_ep.maxpacket) { |
| 2656 | ep->dwc_ep.xfer_count = 0; |
| 2657 | ep->dwc_ep.xfer_buff = ep->dwc_ep.start_xfer_buff; |
| 2658 | ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count; |
| 2659 | } |
| 2660 | else { |
| 2661 | ep->dwc_ep.xfer_count -= ep->dwc_ep.maxpacket; |
| 2662 | /* convert packet size to dwords. */ |
| 2663 | ep->dwc_ep.xfer_buff -= ep->dwc_ep.maxpacket; |
| 2664 | ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count; |
| 2665 | } |
| 2666 | ep->stopped = 0; |
| 2667 | DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x " |
| 2668 | "xfer_len=%0x stopped=%d\n", |
| 2669 | ep->dwc_ep.xfer_buff, |
| 2670 | ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len , |
| 2671 | ep->stopped |
| 2672 | ); |
| 2673 | if (epnum == 0) { |
| 2674 | dwc_otg_ep0_start_transfer(core_if, &ep->dwc_ep); |
| 2675 | } |
| 2676 | else { |
| 2677 | dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep); |
| 2678 | } |
| 2679 | } |
| 2680 | } |
| 2681 | |
| 2682 | |
| 2683 | /** |
| 2684 | * handle the IN EP disable interrupt. |
| 2685 | */ |
| 2686 | static inline void handle_in_ep_disable_intr(dwc_otg_pcd_t *pcd, |
| 2687 | const uint32_t epnum) |
| 2688 | { |
| 2689 | dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); |
| 2690 | dwc_otg_dev_if_t *dev_if = core_if->dev_if; |
| 2691 | deptsiz_data_t dieptsiz = {.d32=0}; |
| 2692 | dctl_data_t dctl = {.d32=0}; |
| 2693 | dwc_otg_pcd_ep_t *ep; |
| 2694 | dwc_ep_t *dwc_ep; |
| 2695 | |
| 2696 | ep = get_in_ep(pcd, epnum); |
| 2697 | dwc_ep = &ep->dwc_ep; |
| 2698 | |
| 2699 | if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) { |
| 2700 | dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num); |
| 2701 | return; |
| 2702 | } |
| 2703 | |
| 2704 | DWC_DEBUGPL(DBG_PCD,"diepctl%d=%0x\n", epnum, |
| 2705 | dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl)); |
| 2706 | dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz); |
| 2707 | |
| 2708 | DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n", |
| 2709 | dieptsiz.b.pktcnt, |
| 2710 | dieptsiz.b.xfersize); |
| 2711 | |
| 2712 | if (ep->stopped) { |
| 2713 | /* Flush the Tx FIFO */ |
| 2714 | dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num); |
| 2715 | /* Clear the Global IN NP NAK */ |
| 2716 | dctl.d32 = 0; |
| 2717 | dctl.b.cgnpinnak = 1; |
| 2718 | dwc_modify_reg32(&dev_if->dev_global_regs->dctl, |
| 2719 | dctl.d32, 0); |
| 2720 | /* Restart the transaction */ |
| 2721 | if (dieptsiz.b.pktcnt != 0 || |
| 2722 | dieptsiz.b.xfersize != 0) { |
| 2723 | restart_transfer(pcd, epnum); |
| 2724 | } |
| 2725 | } |
| 2726 | else { |
| 2727 | /* Restart the transaction */ |
| 2728 | if (dieptsiz.b.pktcnt != 0 || |
| 2729 | dieptsiz.b.xfersize != 0) { |
| 2730 | restart_transfer(pcd, epnum); |
| 2731 | } |
| 2732 | DWC_DEBUGPL(DBG_ANY, "STOPPED!!!\n"); |
| 2733 | } |
| 2734 | } |
| 2735 | |
| 2736 | /** |
| 2737 | * Handler for the IN EP timeout handshake interrupt. |
| 2738 | */ |
| 2739 | static inline void handle_in_ep_timeout_intr(dwc_otg_pcd_t *pcd, |
| 2740 | const uint32_t epnum) |
| 2741 | { |
| 2742 | dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); |
| 2743 | dwc_otg_dev_if_t *dev_if = core_if->dev_if; |
| 2744 | |
| 2745 | #ifdef DEBUG |
| 2746 | deptsiz_data_t dieptsiz = {.d32=0}; |
| 2747 | uint32_t num = 0; |
| 2748 | #endif |
| 2749 | dctl_data_t dctl = {.d32=0}; |
| 2750 | dwc_otg_pcd_ep_t *ep; |
| 2751 | |
| 2752 | gintmsk_data_t intr_mask = {.d32 = 0}; |
| 2753 | |
| 2754 | ep = get_in_ep(pcd, epnum); |
| 2755 | |
| 2756 | /* Disable the NP Tx Fifo Empty Interrrupt */ |
| 2757 | if (!core_if->dma_enable) { |
| 2758 | intr_mask.b.nptxfempty = 1; |
| 2759 | dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0); |
| 2760 | } |
| 2761 | /** @todo NGS Check EP type. |
| 2762 | * Implement for Periodic EPs */ |
| 2763 | /* |
| 2764 | * Non-periodic EP |
| 2765 | */ |
| 2766 | /* Enable the Global IN NAK Effective Interrupt */ |
| 2767 | intr_mask.b.ginnakeff = 1; |
| 2768 | dwc_modify_reg32(&core_if->core_global_regs->gintmsk, |
| 2769 | 0, intr_mask.d32); |
| 2770 | |
| 2771 | /* Set Global IN NAK */ |
| 2772 | dctl.b.sgnpinnak = 1; |
| 2773 | dwc_modify_reg32(&dev_if->dev_global_regs->dctl, |
| 2774 | dctl.d32, dctl.d32); |
| 2775 | |
| 2776 | ep->stopped = 1; |
| 2777 | |
| 2778 | #ifdef DEBUG |
| 2779 | dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[num]->dieptsiz); |
| 2780 | DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n", |
| 2781 | dieptsiz.b.pktcnt, |
| 2782 | dieptsiz.b.xfersize); |
| 2783 | #endif |
| 2784 | |
| 2785 | #ifdef DISABLE_PERIODIC_EP |
| 2786 | /* |
| 2787 | * Set the NAK bit for this EP to |
| 2788 | * start the disable process. |
| 2789 | */ |
| 2790 | diepctl.d32 = 0; |
| 2791 | diepctl.b.snak = 1; |
| 2792 | dwc_modify_reg32(&dev_if->in_ep_regs[num]->diepctl, diepctl.d32, diepctl.d32); |
| 2793 | ep->disabling = 1; |
| 2794 | ep->stopped = 1; |
| 2795 | #endif |
| 2796 | } |
| 2797 | |
| 2798 | /** |
| 2799 | * Handler for the IN EP NAK interrupt. |
| 2800 | */ |
| 2801 | static inline int32_t handle_in_ep_nak_intr(dwc_otg_pcd_t *pcd, |
| 2802 | const uint32_t epnum) |
| 2803 | { |
| 2804 | /** @todo implement ISR */ |
| 2805 | dwc_otg_core_if_t* core_if; |
| 2806 | diepmsk_data_t intr_mask = { .d32 = 0}; |
| 2807 | |
| 2808 | DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "IN EP NAK"); |
| 2809 | core_if = GET_CORE_IF(pcd); |
| 2810 | intr_mask.b.nak = 1; |
| 2811 | |
| 2812 | if(core_if->multiproc_int_enable) { |
| 2813 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[epnum], |
| 2814 | intr_mask.d32, 0); |
| 2815 | } else { |
| 2816 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepmsk, |
| 2817 | intr_mask.d32, 0); |
| 2818 | } |
| 2819 | |
| 2820 | return 1; |
| 2821 | } |
| 2822 | |
| 2823 | /** |
| 2824 | * Handler for the OUT EP Babble interrupt. |
| 2825 | */ |
| 2826 | static inline int32_t handle_out_ep_babble_intr(dwc_otg_pcd_t *pcd, |
| 2827 | const uint32_t epnum) |
| 2828 | { |
| 2829 | /** @todo implement ISR */ |
| 2830 | dwc_otg_core_if_t* core_if; |
| 2831 | doepmsk_data_t intr_mask = { .d32 = 0}; |
| 2832 | |
| 2833 | DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP Babble"); |
| 2834 | core_if = GET_CORE_IF(pcd); |
| 2835 | intr_mask.b.babble = 1; |
| 2836 | |
| 2837 | if(core_if->multiproc_int_enable) { |
| 2838 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum], |
| 2839 | intr_mask.d32, 0); |
| 2840 | } else { |
| 2841 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk, |
| 2842 | intr_mask.d32, 0); |
| 2843 | } |
| 2844 | |
| 2845 | return 1; |
| 2846 | } |
| 2847 | |
| 2848 | /** |
| 2849 | * Handler for the OUT EP NAK interrupt. |
| 2850 | */ |
| 2851 | static inline int32_t handle_out_ep_nak_intr(dwc_otg_pcd_t *pcd, |
| 2852 | const uint32_t epnum) |
| 2853 | { |
| 2854 | /** @todo implement ISR */ |
| 2855 | dwc_otg_core_if_t* core_if; |
| 2856 | doepmsk_data_t intr_mask = { .d32 = 0}; |
| 2857 | |
| 2858 | DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NAK"); |
| 2859 | core_if = GET_CORE_IF(pcd); |
| 2860 | intr_mask.b.nak = 1; |
| 2861 | |
| 2862 | if(core_if->multiproc_int_enable) { |
| 2863 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum], |
| 2864 | intr_mask.d32, 0); |
| 2865 | } else { |
| 2866 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk, |
| 2867 | intr_mask.d32, 0); |
| 2868 | } |
| 2869 | |
| 2870 | return 1; |
| 2871 | } |
| 2872 | |
| 2873 | /** |
| 2874 | * Handler for the OUT EP NYET interrupt. |
| 2875 | */ |
| 2876 | static inline int32_t handle_out_ep_nyet_intr(dwc_otg_pcd_t *pcd, |
| 2877 | const uint32_t epnum) |
| 2878 | { |
| 2879 | /** @todo implement ISR */ |
| 2880 | dwc_otg_core_if_t* core_if; |
| 2881 | doepmsk_data_t intr_mask = { .d32 = 0}; |
| 2882 | |
| 2883 | DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NYET"); |
| 2884 | core_if = GET_CORE_IF(pcd); |
| 2885 | intr_mask.b.nyet = 1; |
| 2886 | |
| 2887 | if(core_if->multiproc_int_enable) { |
| 2888 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum], |
| 2889 | intr_mask.d32, 0); |
| 2890 | } else { |
| 2891 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk, |
| 2892 | intr_mask.d32, 0); |
| 2893 | } |
| 2894 | |
| 2895 | return 1; |
| 2896 | } |
| 2897 | |
| 2898 | /** |
| 2899 | * This interrupt indicates that an IN EP has a pending Interrupt. |
| 2900 | * The sequence for handling the IN EP interrupt is shown below: |
| 2901 | * -# Read the Device All Endpoint Interrupt register |
| 2902 | * -# Repeat the following for each IN EP interrupt bit set (from |
| 2903 | * LSB to MSB). |
| 2904 | * -# Read the Device Endpoint Interrupt (DIEPINTn) register |
| 2905 | * -# If "Transfer Complete" call the request complete function |
| 2906 | * -# If "Endpoint Disabled" complete the EP disable procedure. |
| 2907 | * -# If "AHB Error Interrupt" log error |
| 2908 | * -# If "Time-out Handshake" log error |
| 2909 | * -# If "IN Token Received when TxFIFO Empty" write packet to Tx |
| 2910 | * FIFO. |
| 2911 | * -# If "IN Token EP Mismatch" (disable, this is handled by EP |
| 2912 | * Mismatch Interrupt) |
| 2913 | */ |
| 2914 | static int32_t dwc_otg_pcd_handle_in_ep_intr(dwc_otg_pcd_t *pcd) |
| 2915 | { |
| 2916 | #define CLEAR_IN_EP_INTR(__core_if,__epnum,__intr) \ |
| 2917 | do { \ |
| 2918 | diepint_data_t diepint = {.d32=0}; \ |
| 2919 | diepint.b.__intr = 1; \ |
| 2920 | dwc_write_reg32(&__core_if->dev_if->in_ep_regs[__epnum]->diepint, \ |
| 2921 | diepint.d32); \ |
| 2922 | } while (0) |
| 2923 | |
| 2924 | dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); |
| 2925 | dwc_otg_dev_if_t *dev_if = core_if->dev_if; |
| 2926 | diepint_data_t diepint = {.d32=0}; |
| 2927 | dctl_data_t dctl = {.d32=0}; |
| 2928 | depctl_data_t depctl = {.d32=0}; |
| 2929 | uint32_t ep_intr; |
| 2930 | uint32_t epnum = 0; |
| 2931 | dwc_otg_pcd_ep_t *ep; |
| 2932 | dwc_ep_t *dwc_ep; |
| 2933 | gintmsk_data_t intr_mask = {.d32 = 0}; |
| 2934 | |
| 2935 | |
| 2936 | |
| 2937 | DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd); |
| 2938 | |
| 2939 | /* Read in the device interrupt bits */ |
| 2940 | ep_intr = dwc_otg_read_dev_all_in_ep_intr(core_if); |
| 2941 | |
| 2942 | /* Service the Device IN interrupts for each endpoint */ |
| 2943 | while(ep_intr) { |
| 2944 | if (ep_intr&0x1) { |
| 2945 | uint32_t empty_msk; |
| 2946 | /* Get EP pointer */ |
| 2947 | ep = get_in_ep(pcd, epnum); |
| 2948 | dwc_ep = &ep->dwc_ep; |
| 2949 | |
| 2950 | depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl); |
| 2951 | empty_msk = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk); |
| 2952 | |
| 2953 | DWC_DEBUGPL(DBG_PCDV, |
| 2954 | "IN EP INTERRUPT - %d\nepmty_msk - %8x diepctl - %8x\n", |
| 2955 | epnum, |
| 2956 | empty_msk, |
| 2957 | depctl.d32); |
| 2958 | |
| 2959 | DWC_DEBUGPL(DBG_PCD, |
| 2960 | "EP%d-%s: type=%d, mps=%d\n", |
| 2961 | dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"), |
| 2962 | dwc_ep->type, dwc_ep->maxpacket); |
| 2963 | |
| 2964 | diepint.d32 = dwc_otg_read_dev_in_ep_intr(core_if, dwc_ep); |
| 2965 | |
| 2966 | DWC_DEBUGPL(DBG_PCDV, "EP %d Interrupt Register - 0x%x\n", epnum, diepint.d32); |
| 2967 | /* Transfer complete */ |
| 2968 | if (diepint.b.xfercompl) { |
| 2969 | /* Disable the NP Tx FIFO Empty |
| 2970 | * Interrrupt */ |
| 2971 | if(core_if->en_multiple_tx_fifo == 0) { |
| 2972 | intr_mask.b.nptxfempty = 1; |
| 2973 | dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0); |
| 2974 | } |
| 2975 | else { |
| 2976 | /* Disable the Tx FIFO Empty Interrupt for this EP */ |
| 2977 | uint32_t fifoemptymsk = 0x1 << dwc_ep->num; |
| 2978 | dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, |
| 2979 | fifoemptymsk, 0); |
| 2980 | } |
| 2981 | /* Clear the bit in DIEPINTn for this interrupt */ |
| 2982 | CLEAR_IN_EP_INTR(core_if,epnum,xfercompl); |
| 2983 | |
| 2984 | /* Complete the transfer */ |
| 2985 | if (epnum == 0) { |
| 2986 | handle_ep0(pcd); |
| 2987 | } |
| 2988 | #ifdef DWC_EN_ISOC |
| 2989 | else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) { |
| 2990 | if(!ep->stopped) |
| 2991 | complete_iso_ep(ep); |
| 2992 | } |
| 2993 | #endif //DWC_EN_ISOC |
| 2994 | else { |
| 2995 | |
| 2996 | complete_ep(ep); |
| 2997 | } |
| 2998 | } |
| 2999 | /* Endpoint disable */ |
| 3000 | if (diepint.b.epdisabled) { |
| 3001 | DWC_DEBUGPL(DBG_ANY,"EP%d IN disabled\n", epnum); |
| 3002 | handle_in_ep_disable_intr(pcd, epnum); |
| 3003 | |
| 3004 | /* Clear the bit in DIEPINTn for this interrupt */ |
| 3005 | CLEAR_IN_EP_INTR(core_if,epnum,epdisabled); |
| 3006 | } |
| 3007 | /* AHB Error */ |
| 3008 | if (diepint.b.ahberr) { |
| 3009 | DWC_DEBUGPL(DBG_ANY,"EP%d IN AHB Error\n", epnum); |
| 3010 | /* Clear the bit in DIEPINTn for this interrupt */ |
| 3011 | CLEAR_IN_EP_INTR(core_if,epnum,ahberr); |
| 3012 | } |
| 3013 | /* TimeOUT Handshake (non-ISOC IN EPs) */ |
| 3014 | if (diepint.b.timeout) { |
| 3015 | DWC_DEBUGPL(DBG_ANY,"EP%d IN Time-out\n", epnum); |
| 3016 | handle_in_ep_timeout_intr(pcd, epnum); |
| 3017 | |
| 3018 | CLEAR_IN_EP_INTR(core_if,epnum,timeout); |
| 3019 | } |
| 3020 | /** IN Token received with TxF Empty */ |
| 3021 | if (diepint.b.intktxfemp) { |
| 3022 | DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN TxFifo Empty\n", |
| 3023 | epnum); |
| 3024 | if (!ep->stopped && epnum != 0) { |
| 3025 | |
| 3026 | diepmsk_data_t diepmsk = { .d32 = 0}; |
| 3027 | diepmsk.b.intktxfemp = 1; |
| 3028 | |
| 3029 | if(core_if->multiproc_int_enable) { |
| 3030 | dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[epnum], |
| 3031 | diepmsk.d32, 0); |
| 3032 | } else { |
| 3033 | dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32, 0); |
| 3034 | } |
| 3035 | start_next_request(ep); |
| 3036 | } |
| 3037 | else if(core_if->dma_desc_enable && epnum == 0 && |
| 3038 | pcd->ep0state == EP0_OUT_STATUS_PHASE) { |
| 3039 | // EP0 IN set STALL |
| 3040 | depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl); |
| 3041 | |
| 3042 | /* set the disable and stall bits */ |
| 3043 | if (depctl.b.epena) { |
| 3044 | depctl.b.epdis = 1; |
| 3045 | } |
| 3046 | depctl.b.stall = 1; |
| 3047 | dwc_write_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32); |
| 3048 | } |
| 3049 | CLEAR_IN_EP_INTR(core_if,epnum,intktxfemp); |
| 3050 | } |
| 3051 | /** IN Token Received with EP mismatch */ |
| 3052 | if (diepint.b.intknepmis) { |
| 3053 | DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN EP Mismatch\n", epnum); |
| 3054 | CLEAR_IN_EP_INTR(core_if,epnum,intknepmis); |
| 3055 | } |
| 3056 | /** IN Endpoint NAK Effective */ |
| 3057 | if (diepint.b.inepnakeff) { |
| 3058 | DWC_DEBUGPL(DBG_ANY,"EP%d IN EP NAK Effective\n", epnum); |
| 3059 | /* Periodic EP */ |
| 3060 | if (ep->disabling) { |
| 3061 | depctl.d32 = 0; |
| 3062 | depctl.b.snak = 1; |
| 3063 | depctl.b.epdis = 1; |
| 3064 | dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32); |
| 3065 | } |
| 3066 | CLEAR_IN_EP_INTR(core_if,epnum,inepnakeff); |
| 3067 | |
| 3068 | } |
| 3069 | |
| 3070 | /** IN EP Tx FIFO Empty Intr */ |
| 3071 | if (diepint.b.emptyintr) { |
| 3072 | DWC_DEBUGPL(DBG_ANY,"EP%d Tx FIFO Empty Intr \n", epnum); |
| 3073 | write_empty_tx_fifo(pcd, epnum); |
| 3074 | |
| 3075 | CLEAR_IN_EP_INTR(core_if,epnum,emptyintr); |
| 3076 | |
| 3077 | } |
| 3078 | |
| 3079 | /** IN EP BNA Intr */ |
| 3080 | if (diepint.b.bna) { |
| 3081 | CLEAR_IN_EP_INTR(core_if,epnum,bna); |
| 3082 | if(core_if->dma_desc_enable) { |
| 3083 | #ifdef DWC_EN_ISOC |
| 3084 | if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) { |
| 3085 | /* |
| 3086 | * This checking is performed to prevent first "false" BNA |
| 3087 | * handling occuring right after reconnect |
| 3088 | */ |
| 3089 | if(dwc_ep->next_frame != 0xffffffff) |
| 3090 | dwc_otg_pcd_handle_iso_bna(ep); |
| 3091 | } |
| 3092 | else |
| 3093 | #endif //DWC_EN_ISOC |
| 3094 | { |
| 3095 | dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl); |
| 3096 | |
| 3097 | /* If Global Continue on BNA is disabled - disable EP */ |
| 3098 | if(!dctl.b.gcontbna) { |
| 3099 | depctl.d32 = 0; |
| 3100 | depctl.b.snak = 1; |
| 3101 | depctl.b.epdis = 1; |
| 3102 | dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32); |
| 3103 | } else { |
| 3104 | start_next_request(ep); |
| 3105 | } |
| 3106 | } |
| 3107 | } |
| 3108 | } |
| 3109 | /* NAK Interrutp */ |
| 3110 | if (diepint.b.nak) { |
| 3111 | DWC_DEBUGPL(DBG_ANY,"EP%d IN NAK Interrupt\n", epnum); |
| 3112 | handle_in_ep_nak_intr(pcd, epnum); |
| 3113 | |
| 3114 | CLEAR_IN_EP_INTR(core_if,epnum,nak); |
| 3115 | } |
| 3116 | } |
| 3117 | epnum++; |
| 3118 | ep_intr >>=1; |
| 3119 | } |
| 3120 | |
| 3121 | return 1; |
| 3122 | #undef CLEAR_IN_EP_INTR |
| 3123 | } |
| 3124 | |
| 3125 | /** |
| 3126 | * This interrupt indicates that an OUT EP has a pending Interrupt. |
| 3127 | * The sequence for handling the OUT EP interrupt is shown below: |
| 3128 | * -# Read the Device All Endpoint Interrupt register |
| 3129 | * -# Repeat the following for each OUT EP interrupt bit set (from |
| 3130 | * LSB to MSB). |
| 3131 | * -# Read the Device Endpoint Interrupt (DOEPINTn) register |
| 3132 | * -# If "Transfer Complete" call the request complete function |
| 3133 | * -# If "Endpoint Disabled" complete the EP disable procedure. |
| 3134 | * -# If "AHB Error Interrupt" log error |
| 3135 | * -# If "Setup Phase Done" process Setup Packet (See Standard USB |
| 3136 | * Command Processing) |
| 3137 | */ |
| 3138 | static int32_t dwc_otg_pcd_handle_out_ep_intr(dwc_otg_pcd_t *pcd) |
| 3139 | { |
| 3140 | #define CLEAR_OUT_EP_INTR(__core_if,__epnum,__intr) \ |
| 3141 | do { \ |
| 3142 | doepint_data_t doepint = {.d32=0}; \ |
| 3143 | doepint.b.__intr = 1; \ |
| 3144 | dwc_write_reg32(&__core_if->dev_if->out_ep_regs[__epnum]->doepint, \ |
| 3145 | doepint.d32); \ |
| 3146 | } while (0) |
| 3147 | |
| 3148 | dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); |
| 3149 | dwc_otg_dev_if_t *dev_if = core_if->dev_if; |
| 3150 | uint32_t ep_intr; |
| 3151 | doepint_data_t doepint = {.d32=0}; |
| 3152 | dctl_data_t dctl = {.d32=0}; |
| 3153 | depctl_data_t doepctl = {.d32=0}; |
| 3154 | uint32_t epnum = 0; |
| 3155 | dwc_otg_pcd_ep_t *ep; |
| 3156 | dwc_ep_t *dwc_ep; |
| 3157 | |
| 3158 | DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__); |
| 3159 | |
| 3160 | /* Read in the device interrupt bits */ |
| 3161 | ep_intr = dwc_otg_read_dev_all_out_ep_intr(core_if); |
| 3162 | |
| 3163 | while(ep_intr) { |
| 3164 | if (ep_intr&0x1) { |
| 3165 | /* Get EP pointer */ |
| 3166 | ep = get_out_ep(pcd, epnum); |
| 3167 | dwc_ep = &ep->dwc_ep; |
| 3168 | |
| 3169 | #ifdef VERBOSE |
| 3170 | DWC_DEBUGPL(DBG_PCDV, |
| 3171 | "EP%d-%s: type=%d, mps=%d\n", |
| 3172 | dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"), |
| 3173 | dwc_ep->type, dwc_ep->maxpacket); |
| 3174 | #endif |
| 3175 | doepint.d32 = dwc_otg_read_dev_out_ep_intr(core_if, dwc_ep); |
| 3176 | |
| 3177 | /* Transfer complete */ |
| 3178 | if (doepint.b.xfercompl) { |
| 3179 | |
| 3180 | if (epnum == 0) { |
| 3181 | /* Clear the bit in DOEPINTn for this interrupt */ |
| 3182 | CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl); |
| 3183 | if(core_if->dma_desc_enable == 0 || pcd->ep0state != EP0_IDLE) |
| 3184 | handle_ep0(pcd); |
| 3185 | #ifdef DWC_EN_ISOC |
| 3186 | } else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) { |
| 3187 | if (doepint.b.pktdrpsts == 0) { |
| 3188 | /* Clear the bit in DOEPINTn for this interrupt */ |
| 3189 | CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl); |
| 3190 | complete_iso_ep(ep); |
| 3191 | } else { |
| 3192 | |
| 3193 | doepint_data_t doepint = {.d32=0}; |
| 3194 | doepint.b.xfercompl = 1; |
| 3195 | doepint.b.pktdrpsts = 1; |
| 3196 | dwc_write_reg32(&core_if->dev_if->out_ep_regs[epnum]->doepint, |
| 3197 | doepint.d32); |
| 3198 | if(handle_iso_out_pkt_dropped(core_if,dwc_ep)) { |
| 3199 | complete_iso_ep(ep); |
| 3200 | } |
| 3201 | } |
| 3202 | #endif //DWC_EN_ISOC |
| 3203 | } else { |
| 3204 | /* Clear the bit in DOEPINTn for this interrupt */ |
| 3205 | CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl); |
| 3206 | complete_ep(ep); |
| 3207 | } |
| 3208 | |
| 3209 | } |
| 3210 | |
| 3211 | /* Endpoint disable */ |
| 3212 | if (doepint.b.epdisabled) { |
| 3213 | |
| 3214 | /* Clear the bit in DOEPINTn for this interrupt */ |
| 3215 | CLEAR_OUT_EP_INTR(core_if,epnum,epdisabled); |
| 3216 | } |
| 3217 | /* AHB Error */ |
| 3218 | if (doepint.b.ahberr) { |
| 3219 | DWC_DEBUGPL(DBG_PCD,"EP%d OUT AHB Error\n", epnum); |
| 3220 | DWC_DEBUGPL(DBG_PCD,"EP DMA REG %d \n", core_if->dev_if->out_ep_regs[epnum]->doepdma); |
| 3221 | CLEAR_OUT_EP_INTR(core_if,epnum,ahberr); |
| 3222 | } |
| 3223 | /* Setup Phase Done (contorl EPs) */ |
| 3224 | if (doepint.b.setup) { |
| 3225 | #ifdef DEBUG_EP0 |
| 3226 | DWC_DEBUGPL(DBG_PCD,"EP%d SETUP Done\n", |
| 3227 | epnum); |
| 3228 | #endif |
| 3229 | CLEAR_OUT_EP_INTR(core_if,epnum,setup); |
| 3230 | |
| 3231 | handle_ep0(pcd); |
| 3232 | } |
| 3233 | |
| 3234 | /** OUT EP BNA Intr */ |
| 3235 | if (doepint.b.bna) { |
| 3236 | CLEAR_OUT_EP_INTR(core_if,epnum,bna); |
| 3237 | if(core_if->dma_desc_enable) { |
| 3238 | #ifdef DWC_EN_ISOC |
| 3239 | if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) { |
| 3240 | /* |
| 3241 | * This checking is performed to prevent first "false" BNA |
| 3242 | * handling occuring right after reconnect |
| 3243 | */ |
| 3244 | if(dwc_ep->next_frame != 0xffffffff) |
| 3245 | dwc_otg_pcd_handle_iso_bna(ep); |
| 3246 | } |
| 3247 | else |
| 3248 | #endif //DWC_EN_ISOC |
| 3249 | { |
| 3250 | dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl); |
| 3251 | |
| 3252 | /* If Global Continue on BNA is disabled - disable EP*/ |
| 3253 | if(!dctl.b.gcontbna) { |
| 3254 | doepctl.d32 = 0; |
| 3255 | doepctl.b.snak = 1; |
| 3256 | doepctl.b.epdis = 1; |
| 3257 | dwc_modify_reg32(&dev_if->out_ep_regs[epnum]->doepctl, doepctl.d32, doepctl.d32); |
| 3258 | } else { |
| 3259 | start_next_request(ep); |
| 3260 | } |
| 3261 | } |
| 3262 | } |
| 3263 | } |
| 3264 | if (doepint.b.stsphsercvd) { |
| 3265 | CLEAR_OUT_EP_INTR(core_if,epnum,stsphsercvd); |
| 3266 | if(core_if->dma_desc_enable) { |
| 3267 | do_setup_in_status_phase(pcd); |
| 3268 | } |
| 3269 | } |
| 3270 | /* Babble Interrutp */ |
| 3271 | if (doepint.b.babble) { |
| 3272 | DWC_DEBUGPL(DBG_ANY,"EP%d OUT Babble\n", epnum); |
| 3273 | handle_out_ep_babble_intr(pcd, epnum); |
| 3274 | |
| 3275 | CLEAR_OUT_EP_INTR(core_if,epnum,babble); |
| 3276 | } |
| 3277 | /* NAK Interrutp */ |
| 3278 | if (doepint.b.nak) { |
| 3279 | DWC_DEBUGPL(DBG_ANY,"EP%d OUT NAK\n", epnum); |
| 3280 | handle_out_ep_nak_intr(pcd, epnum); |
| 3281 | |
| 3282 | CLEAR_OUT_EP_INTR(core_if,epnum,nak); |
| 3283 | } |
| 3284 | /* NYET Interrutp */ |
| 3285 | if (doepint.b.nyet) { |
| 3286 | DWC_DEBUGPL(DBG_ANY,"EP%d OUT NYET\n", epnum); |
| 3287 | handle_out_ep_nyet_intr(pcd, epnum); |
| 3288 | |
| 3289 | CLEAR_OUT_EP_INTR(core_if,epnum,nyet); |
| 3290 | } |
| 3291 | } |
| 3292 | |
| 3293 | epnum++; |
| 3294 | ep_intr >>=1; |
| 3295 | } |
| 3296 | |
| 3297 | return 1; |
| 3298 | |
| 3299 | #undef CLEAR_OUT_EP_INTR |
| 3300 | } |
| 3301 | |
| 3302 | |
| 3303 | /** |
| 3304 | * Incomplete ISO IN Transfer Interrupt. |
| 3305 | * This interrupt indicates one of the following conditions occurred |
| 3306 | * while transmitting an ISOC transaction. |
| 3307 | * - Corrupted IN Token for ISOC EP. |
| 3308 | * - Packet not complete in FIFO. |
| 3309 | * The follow actions will be taken: |
| 3310 | * -# Determine the EP |
| 3311 | * -# Set incomplete flag in dwc_ep structure |
| 3312 | * -# Disable EP; when "Endpoint Disabled" interrupt is received |
| 3313 | * Flush FIFO |
| 3314 | */ |
| 3315 | int32_t dwc_otg_pcd_handle_incomplete_isoc_in_intr(dwc_otg_pcd_t *pcd) |
| 3316 | { |
| 3317 | gintsts_data_t gintsts; |
| 3318 | |
| 3319 | |
| 3320 | #ifdef DWC_EN_ISOC |
| 3321 | dwc_otg_dev_if_t *dev_if; |
| 3322 | deptsiz_data_t deptsiz = { .d32 = 0}; |
| 3323 | depctl_data_t depctl = { .d32 = 0}; |
| 3324 | dsts_data_t dsts = { .d32 = 0}; |
| 3325 | dwc_ep_t *dwc_ep; |
| 3326 | int i; |
| 3327 | |
| 3328 | dev_if = GET_CORE_IF(pcd)->dev_if; |
| 3329 | |
| 3330 | for(i = 1; i <= dev_if->num_in_eps; ++i) { |
| 3331 | dwc_ep = &pcd->in_ep[i].dwc_ep; |
| 3332 | if(dwc_ep->active && |
| 3333 | dwc_ep->type == USB_ENDPOINT_XFER_ISOC) |
| 3334 | { |
| 3335 | deptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->dieptsiz); |
| 3336 | depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl); |
| 3337 | |
| 3338 | if(depctl.b.epdis && deptsiz.d32) { |
| 3339 | set_current_pkt_info(GET_CORE_IF(pcd), dwc_ep); |
| 3340 | if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) { |
| 3341 | dwc_ep->cur_pkt = 0; |
| 3342 | dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; |
| 3343 | |
| 3344 | if(dwc_ep->proc_buf_num) { |
| 3345 | dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1; |
| 3346 | dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1; |
| 3347 | } else { |
| 3348 | dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0; |
| 3349 | dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0; |
| 3350 | } |
| 3351 | |
| 3352 | } |
| 3353 | |
| 3354 | dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts); |
| 3355 | dwc_ep->next_frame = dsts.b.soffn; |
| 3356 | |
| 3357 | dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep); |
| 3358 | } |
| 3359 | } |
| 3360 | } |
| 3361 | |
| 3362 | #else |
| 3363 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 3364 | DWC_PRINT("INTERRUPT Handler not implemented for %s\n", |
| 3365 | "IN ISOC Incomplete"); |
| 3366 | |
| 3367 | intr_mask.b.incomplisoin = 1; |
| 3368 | dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, |
| 3369 | intr_mask.d32, 0); |
| 3370 | #endif //DWC_EN_ISOC |
| 3371 | |
| 3372 | /* Clear interrupt */ |
| 3373 | gintsts.d32 = 0; |
| 3374 | gintsts.b.incomplisoin = 1; |
| 3375 | dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts, |
| 3376 | gintsts.d32); |
| 3377 | |
| 3378 | return 1; |
| 3379 | } |
| 3380 | |
| 3381 | /** |
| 3382 | * Incomplete ISO OUT Transfer Interrupt. |
| 3383 | * |
| 3384 | * This interrupt indicates that the core has dropped an ISO OUT |
| 3385 | * packet. The following conditions can be the cause: |
| 3386 | * - FIFO Full, the entire packet would not fit in the FIFO. |
| 3387 | * - CRC Error |
| 3388 | * - Corrupted Token |
| 3389 | * The follow actions will be taken: |
| 3390 | * -# Determine the EP |
| 3391 | * -# Set incomplete flag in dwc_ep structure |
| 3392 | * -# Read any data from the FIFO |
| 3393 | * -# Disable EP. when "Endpoint Disabled" interrupt is received |
| 3394 | * re-enable EP. |
| 3395 | */ |
| 3396 | int32_t dwc_otg_pcd_handle_incomplete_isoc_out_intr(dwc_otg_pcd_t *pcd) |
| 3397 | { |
| 3398 | /* @todo implement ISR */ |
| 3399 | gintsts_data_t gintsts; |
| 3400 | |
| 3401 | #ifdef DWC_EN_ISOC |
| 3402 | dwc_otg_dev_if_t *dev_if; |
| 3403 | deptsiz_data_t deptsiz = { .d32 = 0}; |
| 3404 | depctl_data_t depctl = { .d32 = 0}; |
| 3405 | dsts_data_t dsts = { .d32 = 0}; |
| 3406 | dwc_ep_t *dwc_ep; |
| 3407 | int i; |
| 3408 | |
| 3409 | dev_if = GET_CORE_IF(pcd)->dev_if; |
| 3410 | |
| 3411 | for(i = 1; i <= dev_if->num_out_eps; ++i) { |
| 3412 | dwc_ep = &pcd->in_ep[i].dwc_ep; |
| 3413 | if(pcd->out_ep[i].dwc_ep.active && |
| 3414 | pcd->out_ep[i].dwc_ep.type == USB_ENDPOINT_XFER_ISOC) |
| 3415 | { |
| 3416 | deptsiz.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doeptsiz); |
| 3417 | depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl); |
| 3418 | |
| 3419 | if(depctl.b.epdis && deptsiz.d32) { |
| 3420 | set_current_pkt_info(GET_CORE_IF(pcd), &pcd->out_ep[i].dwc_ep); |
| 3421 | if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) { |
| 3422 | dwc_ep->cur_pkt = 0; |
| 3423 | dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; |
| 3424 | |
| 3425 | if(dwc_ep->proc_buf_num) { |
| 3426 | dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1; |
| 3427 | dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1; |
| 3428 | } else { |
| 3429 | dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0; |
| 3430 | dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0; |
| 3431 | } |
| 3432 | |
| 3433 | } |
| 3434 | |
| 3435 | dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts); |
| 3436 | dwc_ep->next_frame = dsts.b.soffn; |
| 3437 | |
| 3438 | dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep); |
| 3439 | } |
| 3440 | } |
| 3441 | } |
| 3442 | #else |
| 3443 | /** @todo implement ISR */ |
| 3444 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 3445 | |
| 3446 | DWC_PRINT("INTERRUPT Handler not implemented for %s\n", |
| 3447 | "OUT ISOC Incomplete"); |
| 3448 | |
| 3449 | intr_mask.b.incomplisoout = 1; |
| 3450 | dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, |
| 3451 | intr_mask.d32, 0); |
| 3452 | |
| 3453 | #endif // DWC_EN_ISOC |
| 3454 | |
| 3455 | /* Clear interrupt */ |
| 3456 | gintsts.d32 = 0; |
| 3457 | gintsts.b.incomplisoout = 1; |
| 3458 | dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts, |
| 3459 | gintsts.d32); |
| 3460 | |
| 3461 | return 1; |
| 3462 | } |
| 3463 | |
| 3464 | /** |
| 3465 | * This function handles the Global IN NAK Effective interrupt. |
| 3466 | * |
| 3467 | */ |
| 3468 | int32_t dwc_otg_pcd_handle_in_nak_effective(dwc_otg_pcd_t *pcd) |
| 3469 | { |
| 3470 | dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if; |
| 3471 | depctl_data_t diepctl = { .d32 = 0}; |
| 3472 | depctl_data_t diepctl_rd = { .d32 = 0}; |
| 3473 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 3474 | gintsts_data_t gintsts; |
| 3475 | int i; |
| 3476 | |
| 3477 | DWC_DEBUGPL(DBG_PCD, "Global IN NAK Effective\n"); |
| 3478 | |
| 3479 | /* Disable all active IN EPs */ |
| 3480 | diepctl.b.epdis = 1; |
| 3481 | diepctl.b.snak = 1; |
| 3482 | |
| 3483 | for (i=0; i <= dev_if->num_in_eps; i++) |
| 3484 | { |
| 3485 | diepctl_rd.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl); |
| 3486 | if (diepctl_rd.b.epena) { |
| 3487 | dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, |
| 3488 | diepctl.d32); |
| 3489 | } |
| 3490 | } |
| 3491 | /* Disable the Global IN NAK Effective Interrupt */ |
| 3492 | intr_mask.b.ginnakeff = 1; |
| 3493 | dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, |
| 3494 | intr_mask.d32, 0); |
| 3495 | |
| 3496 | /* Clear interrupt */ |
| 3497 | gintsts.d32 = 0; |
| 3498 | gintsts.b.ginnakeff = 1; |
| 3499 | dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, |
| 3500 | gintsts.d32); |
| 3501 | |
| 3502 | return 1; |
| 3503 | } |
| 3504 | |
| 3505 | /** |
| 3506 | * OUT NAK Effective. |
| 3507 | * |
| 3508 | */ |
| 3509 | int32_t dwc_otg_pcd_handle_out_nak_effective(dwc_otg_pcd_t *pcd) |
| 3510 | { |
| 3511 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 3512 | gintsts_data_t gintsts; |
| 3513 | |
| 3514 | DWC_PRINT("INTERRUPT Handler not implemented for %s\n", |
| 3515 | "Global IN NAK Effective\n"); |
| 3516 | /* Disable the Global IN NAK Effective Interrupt */ |
| 3517 | intr_mask.b.goutnakeff = 1; |
| 3518 | dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, |
| 3519 | intr_mask.d32, 0); |
| 3520 | |
| 3521 | /* Clear interrupt */ |
| 3522 | gintsts.d32 = 0; |
| 3523 | gintsts.b.goutnakeff = 1; |
| 3524 | dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts, |
| 3525 | gintsts.d32); |
| 3526 | |
| 3527 | return 1; |
| 3528 | } |
| 3529 | |
| 3530 | |
| 3531 | /** |
| 3532 | * PCD interrupt handler. |
| 3533 | * |
| 3534 | * The PCD handles the device interrupts. Many conditions can cause a |
| 3535 | * device interrupt. When an interrupt occurs, the device interrupt |
| 3536 | * service routine determines the cause of the interrupt and |
| 3537 | * dispatches handling to the appropriate function. These interrupt |
| 3538 | * handling functions are described below. |
| 3539 | * |
| 3540 | * All interrupt registers are processed from LSB to MSB. |
| 3541 | * |
| 3542 | */ |
| 3543 | int32_t dwc_otg_pcd_handle_intr(dwc_otg_pcd_t *pcd) |
| 3544 | { |
| 3545 | dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); |
| 3546 | #ifdef VERBOSE |
| 3547 | dwc_otg_core_global_regs_t *global_regs = |
| 3548 | core_if->core_global_regs; |
| 3549 | #endif |
| 3550 | gintsts_data_t gintr_status; |
| 3551 | int32_t retval = 0; |
| 3552 | |
| 3553 | |
| 3554 | #ifdef VERBOSE |
| 3555 | DWC_DEBUGPL(DBG_ANY, "%s() gintsts=%08x gintmsk=%08x\n", |
| 3556 | __func__, |
| 3557 | dwc_read_reg32(&global_regs->gintsts), |
| 3558 | dwc_read_reg32(&global_regs->gintmsk)); |
| 3559 | #endif |
| 3560 | |
| 3561 | if (dwc_otg_is_device_mode(core_if)) { |
| 3562 | SPIN_LOCK(&pcd->lock); |
| 3563 | #ifdef VERBOSE |
| 3564 | DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%08x gintmsk=%08x\n", |
| 3565 | __func__, |
| 3566 | dwc_read_reg32(&global_regs->gintsts), |
| 3567 | dwc_read_reg32(&global_regs->gintmsk)); |
| 3568 | #endif |
| 3569 | |
| 3570 | gintr_status.d32 = dwc_otg_read_core_intr(core_if); |
| 3571 | |
| 3572 | /* |
| 3573 | if (!gintr_status.d32) { |
| 3574 | SPIN_UNLOCK(&pcd->lock); |
| 3575 | return 0; |
| 3576 | } |
| 3577 | */ |
| 3578 | DWC_DEBUGPL(DBG_PCDV, "%s: gintsts&gintmsk=%08x\n", |
| 3579 | __func__, gintr_status.d32); |
| 3580 | |
| 3581 | if (gintr_status.b.sofintr) { |
| 3582 | retval |= dwc_otg_pcd_handle_sof_intr(pcd); |
| 3583 | } |
| 3584 | if (gintr_status.b.rxstsqlvl) { |
| 3585 | retval |= dwc_otg_pcd_handle_rx_status_q_level_intr(pcd); |
| 3586 | } |
| 3587 | if (gintr_status.b.nptxfempty) { |
| 3588 | retval |= dwc_otg_pcd_handle_np_tx_fifo_empty_intr(pcd); |
| 3589 | } |
| 3590 | if (gintr_status.b.ginnakeff) { |
| 3591 | retval |= dwc_otg_pcd_handle_in_nak_effective(pcd); |
| 3592 | } |
| 3593 | if (gintr_status.b.goutnakeff) { |
| 3594 | retval |= dwc_otg_pcd_handle_out_nak_effective(pcd); |
| 3595 | } |
| 3596 | if (gintr_status.b.i2cintr) { |
| 3597 | retval |= dwc_otg_pcd_handle_i2c_intr(pcd); |
| 3598 | } |
| 3599 | if (gintr_status.b.erlysuspend) { |
| 3600 | retval |= dwc_otg_pcd_handle_early_suspend_intr(pcd); |
| 3601 | } |
| 3602 | if (gintr_status.b.usbreset) { |
| 3603 | retval |= dwc_otg_pcd_handle_usb_reset_intr(pcd); |
| 3604 | } |
| 3605 | if (gintr_status.b.enumdone) { |
| 3606 | retval |= dwc_otg_pcd_handle_enum_done_intr(pcd); |
| 3607 | } |
| 3608 | if (gintr_status.b.isooutdrop) { |
| 3609 | retval |= dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(pcd); |
| 3610 | } |
| 3611 | if (gintr_status.b.eopframe) { |
| 3612 | retval |= dwc_otg_pcd_handle_end_periodic_frame_intr(pcd); |
| 3613 | } |
| 3614 | if (gintr_status.b.epmismatch) { |
| 3615 | retval |= dwc_otg_pcd_handle_ep_mismatch_intr(core_if); |
| 3616 | } |
| 3617 | if (gintr_status.b.inepint) { |
| 3618 | if(!core_if->multiproc_int_enable) { |
| 3619 | retval |= dwc_otg_pcd_handle_in_ep_intr(pcd); |
| 3620 | } |
| 3621 | } |
| 3622 | if (gintr_status.b.outepintr) { |
| 3623 | if(!core_if->multiproc_int_enable) { |
| 3624 | retval |= dwc_otg_pcd_handle_out_ep_intr(pcd); |
| 3625 | } |
| 3626 | } |
| 3627 | if (gintr_status.b.incomplisoin) { |
| 3628 | retval |= dwc_otg_pcd_handle_incomplete_isoc_in_intr(pcd); |
| 3629 | } |
| 3630 | if (gintr_status.b.incomplisoout) { |
| 3631 | retval |= dwc_otg_pcd_handle_incomplete_isoc_out_intr(pcd); |
| 3632 | } |
| 3633 | |
| 3634 | /* In MPI mode De vice Endpoints intterrupts are asserted |
| 3635 | * without setting outepintr and inepint bits set, so these |
| 3636 | * Interrupt handlers are called without checking these bit-fields |
| 3637 | */ |
| 3638 | if(core_if->multiproc_int_enable) { |
| 3639 | retval |= dwc_otg_pcd_handle_in_ep_intr(pcd); |
| 3640 | retval |= dwc_otg_pcd_handle_out_ep_intr(pcd); |
| 3641 | } |
| 3642 | #ifdef VERBOSE |
| 3643 | DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%0x\n", __func__, |
| 3644 | dwc_read_reg32(&global_regs->gintsts)); |
| 3645 | #endif |
| 3646 | SPIN_UNLOCK(&pcd->lock); |
| 3647 | } |
| 3648 | |
| 3649 | S3C2410X_CLEAR_EINTPEND(); |
| 3650 | |
| 3651 | return retval; |
| 3652 | } |
| 3653 | |
| 3654 | #endif /* DWC_HOST_ONLY */ |
| 3655 | |