| 1 | /******************************************************************************/ |
| 2 | /* */ |
| 3 | /* Broadcom BCM5700 Linux Network Driver, Copyright (c) 2000 - 2005 Broadcom */ |
| 4 | /* Corporation. */ |
| 5 | /* All rights reserved. */ |
| 6 | /* */ |
| 7 | /* This program is free software; you can redistribute it and/or modify */ |
| 8 | /* it under the terms of the GNU General Public License as published by */ |
| 9 | /* the Free Software Foundation, located in the file LICENSE. */ |
| 10 | /* */ |
| 11 | /* History: */ |
| 12 | /******************************************************************************/ |
| 13 | |
| 14 | |
| 15 | #include "mm.h" |
| 16 | #include "typedefs.h" |
| 17 | #include "osl.h" |
| 18 | #include "bcmdefs.h" |
| 19 | #include "bcmdevs.h" |
| 20 | #include "sbutils.h" |
| 21 | #include "bcmrobo.h" |
| 22 | #include "proto/ethernet.h" |
| 23 | |
| 24 | /******************************************************************************/ |
| 25 | /* Local functions. */ |
| 26 | /******************************************************************************/ |
| 27 | |
| 28 | LM_STATUS LM_Abort(PLM_DEVICE_BLOCK pDevice); |
| 29 | LM_STATUS LM_QueueRxPackets(PLM_DEVICE_BLOCK pDevice); |
| 30 | |
| 31 | static LM_STATUS LM_InitBcm540xPhy(PLM_DEVICE_BLOCK pDevice); |
| 32 | static LM_VOID LM_PhyTapPowerMgmt(LM_DEVICE_BLOCK *pDevice); |
| 33 | |
| 34 | LM_VOID LM_ServiceRxInterrupt(PLM_DEVICE_BLOCK pDevice); |
| 35 | LM_VOID LM_ServiceTxInterrupt(PLM_DEVICE_BLOCK pDevice); |
| 36 | |
| 37 | static LM_STATUS LM_ForceAutoNeg(PLM_DEVICE_BLOCK pDevice); |
| 38 | static LM_UINT32 GetPhyAdFlowCntrlSettings(PLM_DEVICE_BLOCK pDevice); |
| 39 | STATIC LM_STATUS LM_SetFlowControl(PLM_DEVICE_BLOCK pDevice, |
| 40 | LM_UINT32 LocalPhyAd, LM_UINT32 RemotePhyAd); |
| 41 | #ifdef INCLUDE_TBI_SUPPORT |
| 42 | STATIC LM_STATUS LM_SetupFiberPhy(PLM_DEVICE_BLOCK pDevice); |
| 43 | STATIC LM_STATUS LM_InitBcm800xPhy(PLM_DEVICE_BLOCK pDevice); |
| 44 | #endif |
| 45 | STATIC LM_STATUS LM_SetupCopperPhy(PLM_DEVICE_BLOCK pDevice); |
| 46 | STATIC LM_VOID LM_SetEthWireSpeed(LM_DEVICE_BLOCK *pDevice); |
| 47 | STATIC LM_STATUS LM_PhyAdvertiseAll(LM_DEVICE_BLOCK *pDevice); |
| 48 | STATIC PLM_ADAPTER_INFO LM_GetAdapterInfoBySsid(LM_UINT16 Svid, LM_UINT16 Ssid); |
| 49 | LM_VOID LM_SwitchVaux(PLM_DEVICE_BLOCK pDevice, PLM_DEVICE_BLOCK pDevice2); |
| 50 | STATIC LM_STATUS LM_DmaTest(PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt, |
| 51 | LM_PHYSICAL_ADDRESS BufferPhy, LM_UINT32 BufferSize); |
| 52 | STATIC LM_STATUS LM_DisableChip(PLM_DEVICE_BLOCK pDevice); |
| 53 | STATIC LM_STATUS LM_ResetChip(PLM_DEVICE_BLOCK pDevice); |
| 54 | STATIC LM_STATUS LM_DisableFW(PLM_DEVICE_BLOCK pDevice); |
| 55 | STATIC LM_STATUS LM_Test4GBoundary(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket, |
| 56 | PT3_SND_BD pSendBd); |
| 57 | STATIC LM_VOID LM_WritePreResetSignatures(LM_DEVICE_BLOCK *pDevice, |
| 58 | LM_RESET_TYPE Mode); |
| 59 | STATIC LM_VOID LM_WritePostResetSignatures(LM_DEVICE_BLOCK *pDevice, |
| 60 | LM_RESET_TYPE Mode); |
| 61 | STATIC LM_VOID LM_WriteLegacySignatures(LM_DEVICE_BLOCK *pDevice, |
| 62 | LM_RESET_TYPE Mode); |
| 63 | STATIC void LM_GetPhyId(LM_DEVICE_BLOCK *pDevice); |
| 64 | |
| 65 | /******************************************************************************/ |
| 66 | /* External functions. */ |
| 67 | /******************************************************************************/ |
| 68 | |
| 69 | LM_STATUS LM_LoadRlsFirmware(PLM_DEVICE_BLOCK pDevice); |
| 70 | #ifdef INCLUDE_TCP_SEG_SUPPORT |
| 71 | LM_STATUS LM_LoadStkOffLdFirmware(PLM_DEVICE_BLOCK pDevice); |
| 72 | LM_UINT32 LM_GetStkOffLdFirmwareSize(PLM_DEVICE_BLOCK pDevice); |
| 73 | #endif |
| 74 | |
| 75 | LM_UINT32 |
| 76 | LM_RegRd(PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register) |
| 77 | { |
| 78 | #ifdef PCIX_TARGET_WORKAROUND |
| 79 | if (pDevice->Flags & UNDI_FIX_FLAG) |
| 80 | { |
| 81 | return (LM_RegRdInd(pDevice, Register)); |
| 82 | } |
| 83 | else |
| 84 | #endif |
| 85 | { |
| 86 | return (REG_RD_OFFSET(pDevice, Register)); |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | /* Mainly used to flush posted write before delaying */ |
| 91 | LM_VOID |
| 92 | LM_RegRdBack(PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register) |
| 93 | { |
| 94 | LM_UINT32 dummy; |
| 95 | |
| 96 | #ifdef PCIX_TARGET_WORKAROUND |
| 97 | if (pDevice->Flags & ENABLE_PCIX_FIX_FLAG) |
| 98 | { |
| 99 | return; |
| 100 | } |
| 101 | else |
| 102 | #endif |
| 103 | { |
| 104 | if (pDevice->Flags & REG_RD_BACK_FLAG) |
| 105 | return; |
| 106 | |
| 107 | dummy = REG_RD_OFFSET(pDevice, Register); |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | LM_VOID |
| 112 | LM_RegWr(PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register, LM_UINT32 Value32, |
| 113 | LM_UINT32 ReadBack) |
| 114 | { |
| 115 | #ifdef PCIX_TARGET_WORKAROUND |
| 116 | if (pDevice->Flags & ENABLE_PCIX_FIX_FLAG) |
| 117 | { |
| 118 | LM_RegWrInd(pDevice, Register, Value32); |
| 119 | } |
| 120 | else |
| 121 | #endif |
| 122 | { |
| 123 | LM_UINT32 dummy; |
| 124 | |
| 125 | REG_WR_OFFSET(pDevice, Register, Value32); |
| 126 | if (ReadBack && (pDevice->Flags & REG_RD_BACK_FLAG)) |
| 127 | { |
| 128 | dummy = REG_RD_OFFSET(pDevice, Register); |
| 129 | } |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | /******************************************************************************/ |
| 134 | /* Description: */ |
| 135 | /* */ |
| 136 | /* Return: */ |
| 137 | /******************************************************************************/ |
| 138 | LM_UINT32 |
| 139 | LM_RegRdInd( |
| 140 | PLM_DEVICE_BLOCK pDevice, |
| 141 | LM_UINT32 Register) { |
| 142 | LM_UINT32 Value32; |
| 143 | |
| 144 | MM_ACQUIRE_UNDI_LOCK(pDevice); |
| 145 | MM_WriteConfig32(pDevice, T3_PCI_REG_ADDR_REG, Register); |
| 146 | MM_ReadConfig32(pDevice, T3_PCI_REG_DATA_REG, &Value32); |
| 147 | MM_RELEASE_UNDI_LOCK(pDevice); |
| 148 | |
| 149 | return MM_SWAP_LE32(Value32); |
| 150 | } /* LM_RegRdInd */ |
| 151 | |
| 152 | |
| 153 | |
| 154 | /******************************************************************************/ |
| 155 | /* Description: */ |
| 156 | /* */ |
| 157 | /* Return: */ |
| 158 | /******************************************************************************/ |
| 159 | LM_VOID |
| 160 | LM_RegWrInd( |
| 161 | PLM_DEVICE_BLOCK pDevice, |
| 162 | LM_UINT32 Register, |
| 163 | LM_UINT32 Value32) { |
| 164 | |
| 165 | MM_ACQUIRE_UNDI_LOCK(pDevice); |
| 166 | MM_WriteConfig32(pDevice, T3_PCI_REG_ADDR_REG, Register); |
| 167 | MM_WriteConfig32(pDevice, T3_PCI_REG_DATA_REG, MM_SWAP_LE32(Value32)); |
| 168 | MM_RELEASE_UNDI_LOCK(pDevice); |
| 169 | } /* LM_RegWrInd */ |
| 170 | |
| 171 | |
| 172 | |
| 173 | /******************************************************************************/ |
| 174 | /* Description: */ |
| 175 | /* */ |
| 176 | /* Return: */ |
| 177 | /******************************************************************************/ |
| 178 | LM_UINT32 |
| 179 | LM_MemRdInd( |
| 180 | PLM_DEVICE_BLOCK pDevice, |
| 181 | LM_UINT32 MemAddr) { |
| 182 | LM_UINT32 Value32; |
| 183 | |
| 184 | MM_ACQUIRE_UNDI_LOCK(pDevice); |
| 185 | MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr); |
| 186 | MM_ReadConfig32(pDevice, T3_PCI_MEM_WIN_DATA_REG, &Value32); |
| 187 | MM_RELEASE_UNDI_LOCK(pDevice); |
| 188 | |
| 189 | return MM_SWAP_LE32(Value32); |
| 190 | } /* LM_MemRdInd */ |
| 191 | |
| 192 | |
| 193 | |
| 194 | /******************************************************************************/ |
| 195 | /* Description: */ |
| 196 | /* */ |
| 197 | /* Return: */ |
| 198 | /******************************************************************************/ |
| 199 | LM_VOID |
| 200 | LM_MemWrInd( |
| 201 | PLM_DEVICE_BLOCK pDevice, |
| 202 | LM_UINT32 MemAddr, |
| 203 | LM_UINT32 Value32) { |
| 204 | MM_ACQUIRE_UNDI_LOCK(pDevice); |
| 205 | MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr); |
| 206 | MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_DATA_REG, MM_SWAP_LE32(Value32)); |
| 207 | MM_RELEASE_UNDI_LOCK(pDevice); |
| 208 | } /* LM_MemWrInd */ |
| 209 | |
| 210 | |
| 211 | /******************************************************************************/ |
| 212 | /* Description: */ |
| 213 | /* */ |
| 214 | /* Return: */ |
| 215 | /******************************************************************************/ |
| 216 | LM_STATUS |
| 217 | LM_QueueRxPackets( |
| 218 | PLM_DEVICE_BLOCK pDevice) { |
| 219 | LM_STATUS Lmstatus; |
| 220 | PLM_PACKET pPacket; |
| 221 | PT3_RCV_BD pRcvBd = 0; |
| 222 | LM_UINT32 StdBdAdded = 0; |
| 223 | #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| 224 | LM_UINT32 JumboBdAdded = 0; |
| 225 | #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| 226 | LM_UINT32 ConIdx, Idx; |
| 227 | LM_UINT32 Diff = 0; |
| 228 | |
| 229 | Lmstatus = LM_STATUS_SUCCESS; |
| 230 | |
| 231 | if (pDevice->Flags & RX_BD_LIMIT_64_FLAG) |
| 232 | { |
| 233 | ConIdx = pDevice->pStatusBlkVirt->RcvStdConIdx; |
| 234 | Diff = (pDevice->RxStdProdIdx - ConIdx) & |
| 235 | T3_STD_RCV_RCB_ENTRY_COUNT_MASK; |
| 236 | if (Diff >= 56) |
| 237 | { |
| 238 | if (QQ_GetEntryCnt(&pDevice->RxPacketFreeQ.Container)) |
| 239 | { |
| 240 | pDevice->QueueAgain = TRUE; |
| 241 | } |
| 242 | return LM_STATUS_SUCCESS; |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | pDevice->QueueAgain = FALSE; |
| 247 | |
| 248 | pPacket = (PLM_PACKET) QQ_PopHead(&pDevice->RxPacketFreeQ.Container); |
| 249 | while(pPacket) { |
| 250 | switch(pPacket->u.Rx.RcvProdRing) { |
| 251 | #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| 252 | case T3_JUMBO_RCV_PROD_RING: /* Jumbo Receive Ring. */ |
| 253 | /* Initialize the buffer descriptor. */ |
| 254 | Idx = pDevice->RxJumboProdIdx; |
| 255 | pRcvBd = &pDevice->pRxJumboBdVirt[Idx]; |
| 256 | |
| 257 | pPacket->u.Rx.RcvRingProdIdx = Idx; |
| 258 | pDevice->RxJumboRing[Idx] = pPacket; |
| 259 | /* Update the producer index. */ |
| 260 | pDevice->RxJumboProdIdx = (Idx + 1) & |
| 261 | T3_JUMBO_RCV_RCB_ENTRY_COUNT_MASK; |
| 262 | |
| 263 | JumboBdAdded++; |
| 264 | break; |
| 265 | #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| 266 | |
| 267 | case T3_STD_RCV_PROD_RING: /* Standard Receive Ring. */ |
| 268 | /* Initialize the buffer descriptor. */ |
| 269 | Idx = pDevice->RxStdProdIdx; |
| 270 | pRcvBd = &pDevice->pRxStdBdVirt[Idx]; |
| 271 | |
| 272 | pPacket->u.Rx.RcvRingProdIdx = Idx; |
| 273 | pDevice->RxStdRing[Idx] = pPacket; |
| 274 | /* Update the producer index. */ |
| 275 | pDevice->RxStdProdIdx = (Idx + 1) & |
| 276 | T3_STD_RCV_RCB_ENTRY_COUNT_MASK; |
| 277 | |
| 278 | StdBdAdded++; |
| 279 | break; |
| 280 | |
| 281 | case T3_UNKNOWN_RCV_PROD_RING: |
| 282 | default: |
| 283 | Lmstatus = LM_STATUS_FAILURE; |
| 284 | break; |
| 285 | } /* switch */ |
| 286 | |
| 287 | /* Bail out if there is any error. */ |
| 288 | if(Lmstatus != LM_STATUS_SUCCESS) |
| 289 | { |
| 290 | break; |
| 291 | } |
| 292 | |
| 293 | /* Initialize the receive buffer pointer */ |
| 294 | MM_MapRxDma(pDevice, pPacket, &pRcvBd->HostAddr); |
| 295 | |
| 296 | /* The opaque field may point to an offset from a fix addr. */ |
| 297 | pRcvBd->Opaque = (LM_UINT32) (MM_UINT_PTR(pPacket) - |
| 298 | MM_UINT_PTR(pDevice->pPacketDescBase)); |
| 299 | |
| 300 | if ((pDevice->Flags & RX_BD_LIMIT_64_FLAG) && |
| 301 | ((Diff + StdBdAdded) >= 63)) |
| 302 | { |
| 303 | if (QQ_GetEntryCnt(&pDevice->RxPacketFreeQ.Container)) |
| 304 | { |
| 305 | pDevice->QueueAgain = TRUE; |
| 306 | } |
| 307 | break; |
| 308 | } |
| 309 | pPacket = (PLM_PACKET) QQ_PopHead(&pDevice->RxPacketFreeQ.Container); |
| 310 | } /* while */ |
| 311 | |
| 312 | MM_WMB(); |
| 313 | /* Update the procedure index. */ |
| 314 | if(StdBdAdded) |
| 315 | { |
| 316 | MB_REG_WR(pDevice, Mailbox.RcvStdProdIdx.Low, |
| 317 | pDevice->RxStdProdIdx); |
| 318 | if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG) |
| 319 | { |
| 320 | MB_REG_RD(pDevice, Mailbox.RcvStdProdIdx.Low); |
| 321 | } |
| 322 | } |
| 323 | #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| 324 | if(JumboBdAdded) |
| 325 | { |
| 326 | MB_REG_WR(pDevice, Mailbox.RcvJumboProdIdx.Low, |
| 327 | pDevice->RxJumboProdIdx); |
| 328 | if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG) |
| 329 | { |
| 330 | MB_REG_RD(pDevice, Mailbox.RcvJumboProdIdx.Low); |
| 331 | } |
| 332 | } |
| 333 | #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| 334 | |
| 335 | return Lmstatus; |
| 336 | } /* LM_QueueRxPackets */ |
| 337 | |
| 338 | |
| 339 | |
| 340 | |
| 341 | #define EEPROM_CMD_TIMEOUT 100000 |
| 342 | #define NVRAM_CMD_TIMEOUT 100000 |
| 343 | |
| 344 | |
| 345 | /******************************************************************************/ |
| 346 | /* Description: */ |
| 347 | /* */ |
| 348 | /* Return: */ |
| 349 | /******************************************************************************/ |
| 350 | STATIC LM_STATUS LM_NVRAM_AcquireLock( PLM_DEVICE_BLOCK pDevice ) |
| 351 | { |
| 352 | LM_UINT i; |
| 353 | LM_UINT32 value32; |
| 354 | LM_STATUS status; |
| 355 | |
| 356 | status = LM_STATUS_SUCCESS; |
| 357 | |
| 358 | /* BCM4785: Avoid all access to NVRAM & EEPROM. */ |
| 359 | if (pDevice->Flags & SB_CORE_FLAG) |
| 360 | return status; |
| 361 | |
| 362 | /* Request access to the flash interface. */ |
| 363 | REG_WR( pDevice, Nvram.SwArb, SW_ARB_REQ_SET1 ); |
| 364 | |
| 365 | /* |
| 366 | * The worst case wait time for Nvram arbitration |
| 367 | * using serial eprom is about 45 msec on a 5704 |
| 368 | * with the other channel loading boot code. |
| 369 | */ |
| 370 | for( i = 0; i < NVRAM_CMD_TIMEOUT; i++ ) |
| 371 | { |
| 372 | value32 = REG_RD( pDevice, Nvram.SwArb ); |
| 373 | if( value32 & SW_ARB_GNT1 ) |
| 374 | { |
| 375 | break; |
| 376 | } |
| 377 | MM_Wait(20); |
| 378 | } |
| 379 | |
| 380 | |
| 381 | return status; |
| 382 | } /* LM_NVRAM_AcquireLock */ |
| 383 | |
| 384 | |
| 385 | |
| 386 | /******************************************************************************/ |
| 387 | /* Description: */ |
| 388 | /* */ |
| 389 | /* Return: */ |
| 390 | /******************************************************************************/ |
| 391 | STATIC LM_STATUS LM_NVRAM_ReleaseLock( PLM_DEVICE_BLOCK pDevice ) |
| 392 | { |
| 393 | /* BCM4785: Avoid all access to NVRAM & EEPROM. */ |
| 394 | if (pDevice->Flags & SB_CORE_FLAG) |
| 395 | return LM_STATUS_SUCCESS; |
| 396 | |
| 397 | /* Relinquish nvram interface. */ |
| 398 | REG_WR( pDevice, Nvram.SwArb, SW_ARB_REQ_CLR1 ); |
| 399 | REG_RD_BACK( pDevice, Nvram.SwArb ); |
| 400 | |
| 401 | return LM_STATUS_SUCCESS; |
| 402 | } /* LM_NVRAM_ReleaseLock */ |
| 403 | |
| 404 | |
| 405 | |
| 406 | /******************************************************************************/ |
| 407 | /* Description: */ |
| 408 | /* */ |
| 409 | /* Return: */ |
| 410 | /******************************************************************************/ |
| 411 | STATIC LM_STATUS |
| 412 | LM_EEPROM_ExecuteCommand( PLM_DEVICE_BLOCK pDevice, LM_UINT32 cmd ) |
| 413 | { |
| 414 | LM_UINT32 i; |
| 415 | LM_UINT32 value32; |
| 416 | LM_STATUS status; |
| 417 | |
| 418 | status = LM_STATUS_SUCCESS; |
| 419 | |
| 420 | REG_WR( pDevice, Grc.EepromAddr, cmd ); |
| 421 | |
| 422 | for( i = 0; i < EEPROM_CMD_TIMEOUT; i++ ) |
| 423 | { |
| 424 | value32 = REG_RD( pDevice, Grc.EepromAddr ); |
| 425 | if( value32 & SEEPROM_ADDR_COMPLETE ) |
| 426 | { |
| 427 | break; |
| 428 | } |
| 429 | MM_Wait(20); |
| 430 | } |
| 431 | |
| 432 | if( i == EEPROM_CMD_TIMEOUT ) |
| 433 | { |
| 434 | B57_ERR(("EEPROM command (0x%x) timed out!\n", cmd)); |
| 435 | status = LM_STATUS_FAILURE; |
| 436 | } |
| 437 | |
| 438 | return status; |
| 439 | } /* LM_EEPROM_ExecuteCommand */ |
| 440 | |
| 441 | |
| 442 | |
| 443 | /******************************************************************************/ |
| 444 | /* Description: */ |
| 445 | /* */ |
| 446 | /* Return: */ |
| 447 | /******************************************************************************/ |
| 448 | STATIC LM_STATUS |
| 449 | LM_NVRAM_ExecuteCommand( PLM_DEVICE_BLOCK pDevice, LM_UINT32 cmd ) |
| 450 | { |
| 451 | LM_UINT32 i; |
| 452 | LM_UINT32 value32; |
| 453 | LM_STATUS status; |
| 454 | |
| 455 | status = LM_STATUS_SUCCESS; |
| 456 | |
| 457 | REG_WR( pDevice, Nvram.Cmd, cmd ); |
| 458 | REG_RD_BACK( pDevice, Nvram.Cmd ); |
| 459 | MM_Wait(10); |
| 460 | |
| 461 | /* Wait for the command to complete. */ |
| 462 | for( i = 0; i < NVRAM_CMD_TIMEOUT; i++ ) |
| 463 | { |
| 464 | value32 = REG_RD( pDevice, Nvram.Cmd ); |
| 465 | if( value32 & NVRAM_CMD_DONE ) |
| 466 | { |
| 467 | break; |
| 468 | } |
| 469 | MM_Wait(1); |
| 470 | } |
| 471 | |
| 472 | if( i == NVRAM_CMD_TIMEOUT ) |
| 473 | { |
| 474 | B57_ERR(("NVRAM command (0x%x) timed out!\n", cmd)); |
| 475 | status = LM_STATUS_FAILURE; |
| 476 | } |
| 477 | |
| 478 | return status; |
| 479 | } /* LM_NVRAM_ExecuteCommand */ |
| 480 | |
| 481 | |
| 482 | |
| 483 | /******************************************************************************/ |
| 484 | /* Description: */ |
| 485 | /* */ |
| 486 | /* Return: */ |
| 487 | /******************************************************************************/ |
| 488 | STATIC LM_STATUS |
| 489 | LM_EEPROM_Read_UINT32( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset, |
| 490 | LM_UINT32 * data ) |
| 491 | { |
| 492 | LM_UINT32 value32; |
| 493 | LM_UINT32 Addr; |
| 494 | LM_UINT32 Dev; |
| 495 | LM_STATUS status; |
| 496 | |
| 497 | Dev = offset / pDevice->flashinfo.chipsize; |
| 498 | Addr = offset % pDevice->flashinfo.chipsize; |
| 499 | |
| 500 | value32 = REG_RD( pDevice, Grc.EepromAddr ); |
| 501 | value32 &= ~(SEEPROM_ADDR_DEV_ID_MASK | SEEPROM_ADDR_ADDRESS_MASK | |
| 502 | SEEPROM_ADDR_RW_MASK); |
| 503 | value32 |= SEEPROM_ADDR_DEV_ID(Dev) | SEEPROM_ADDR_ADDRESS(Addr) | |
| 504 | SEEPROM_ADDR_START | SEEPROM_ADDR_READ; |
| 505 | |
| 506 | status = LM_EEPROM_ExecuteCommand( pDevice, value32 ); |
| 507 | if( status == LM_STATUS_SUCCESS ) |
| 508 | { |
| 509 | value32 = REG_RD( pDevice, Grc.EepromData ); |
| 510 | |
| 511 | /* The endianess of the eeprom and flash interface is different */ |
| 512 | *data = MM_SWAP_LE32( value32 ); |
| 513 | } |
| 514 | |
| 515 | return status; |
| 516 | } /* LM_EEPROM_Read_UINT32 */ |
| 517 | |
| 518 | |
| 519 | |
| 520 | /******************************************************************************/ |
| 521 | /* Description: */ |
| 522 | /* */ |
| 523 | /* Return: */ |
| 524 | /******************************************************************************/ |
| 525 | STATIC LM_STATUS |
| 526 | LM_NVRAM_Read_UINT32( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset, |
| 527 | LM_UINT32 * data ) |
| 528 | { |
| 529 | LM_UINT32 physaddr; |
| 530 | LM_UINT32 ctrlreg; |
| 531 | LM_UINT32 value32; |
| 532 | LM_STATUS status; |
| 533 | |
| 534 | if( pDevice->flashinfo.jedecnum == JEDEC_ATMEL && |
| 535 | pDevice->flashinfo.buffered == TRUE ) |
| 536 | { |
| 537 | /* |
| 538 | * One supported flash part has 9 address bits to address a |
| 539 | * particular page and another 9 address bits to address a |
| 540 | * particular byte within that page. |
| 541 | */ |
| 542 | LM_UINT32 pagenmbr; |
| 543 | |
| 544 | pagenmbr = offset / pDevice->flashinfo.pagesize; |
| 545 | pagenmbr = pagenmbr << ATMEL_AT45DB0X1B_PAGE_POS; |
| 546 | |
| 547 | physaddr = pagenmbr + (offset % pDevice->flashinfo.pagesize); |
| 548 | } |
| 549 | else |
| 550 | { |
| 551 | physaddr = offset; |
| 552 | } |
| 553 | |
| 554 | REG_WR( pDevice, Nvram.Addr, physaddr ); |
| 555 | |
| 556 | ctrlreg = NVRAM_CMD_DONE | NVRAM_CMD_DO_IT | |
| 557 | NVRAM_CMD_LAST | NVRAM_CMD_FIRST | NVRAM_CMD_RD; |
| 558 | |
| 559 | status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg ); |
| 560 | if( status == LM_STATUS_SUCCESS ) |
| 561 | { |
| 562 | value32 = REG_RD( pDevice, Nvram.ReadData ); |
| 563 | |
| 564 | /* |
| 565 | * Data is swapped so that the byte stream is the same |
| 566 | * in big and little endian systems. Caller will do |
| 567 | * additional swapping depending on how it wants to |
| 568 | * look at the data. |
| 569 | */ |
| 570 | *data = MM_SWAP_BE32( value32 ); |
| 571 | } |
| 572 | |
| 573 | return status; |
| 574 | } /* LM_NVRAM_Read_UINT32 */ |
| 575 | |
| 576 | |
| 577 | /******************************************************************************/ |
| 578 | /* Description: */ |
| 579 | /* */ |
| 580 | /* Return: */ |
| 581 | /******************************************************************************/ |
| 582 | STATIC LM_VOID |
| 583 | LM_EEPROM_ReadSize( PLM_DEVICE_BLOCK pDevice, LM_UINT32 * size ) |
| 584 | { |
| 585 | LM_UINT32 cursize; |
| 586 | LM_UINT32 value32; |
| 587 | LM_STATUS status; |
| 588 | |
| 589 | /* |
| 590 | * Initialize the chipsize to the largest EEPROM size we support. |
| 591 | * This will intentionally restrict our sizing operations to the |
| 592 | * first EEPROM chip. |
| 593 | */ |
| 594 | pDevice->flashinfo.chipsize = ATMEL_AT24C512_CHIP_SIZE; |
| 595 | |
| 596 | value32 = 0; |
| 597 | |
| 598 | /* If anything fails, use the smallest chip as the default chip size. */ |
| 599 | cursize = ATMEL_AT24C64_CHIP_SIZE; |
| 600 | |
| 601 | status = LM_NvramRead(pDevice, 0, &value32); |
| 602 | if( status != LM_STATUS_SUCCESS ) |
| 603 | { |
| 604 | goto done; |
| 605 | } |
| 606 | |
| 607 | value32 = MM_SWAP_BE32(value32); |
| 608 | if( value32 != 0x669955aa ) |
| 609 | { |
| 610 | goto done; |
| 611 | } |
| 612 | |
| 613 | /* |
| 614 | * Size the chip by reading offsets at increasing powers of two. |
| 615 | * When we encounter our validation signature, we know the addressing |
| 616 | * has wrapped around, and thus have our chip size. |
| 617 | */ |
| 618 | while( cursize < ATMEL_AT24C64_CHIP_SIZE ) |
| 619 | { |
| 620 | status = LM_NvramRead(pDevice, cursize, &value32); |
| 621 | if( status != LM_STATUS_SUCCESS ) |
| 622 | { |
| 623 | cursize = ATMEL_AT24C64_CHIP_SIZE; |
| 624 | break; |
| 625 | } |
| 626 | |
| 627 | value32 = MM_SWAP_BE32(value32); |
| 628 | if( value32 == 0x669955aa ) |
| 629 | { |
| 630 | break; |
| 631 | } |
| 632 | cursize <<= 1; |
| 633 | } |
| 634 | |
| 635 | done: |
| 636 | |
| 637 | *size = cursize; |
| 638 | pDevice->flashinfo.pagesize = cursize; |
| 639 | |
| 640 | |
| 641 | } /* LM_EEPROM_ReadSize */ |
| 642 | |
| 643 | /******************************************************************************/ |
| 644 | /* Description: */ |
| 645 | /* */ |
| 646 | /* Return: */ |
| 647 | /******************************************************************************/ |
| 648 | STATIC LM_STATUS |
| 649 | LM_FLASH_Atmel_Buffered_ReadSize( PLM_DEVICE_BLOCK pDevice, LM_UINT32 * size ) |
| 650 | { |
| 651 | LM_UINT32 config3; |
| 652 | LM_UINT32 value32; |
| 653 | LM_STATUS status; |
| 654 | |
| 655 | /* Temporarily replace the read command with a "read ID" command. */ |
| 656 | config3 = REG_RD( pDevice, Nvram.Config3 ); |
| 657 | value32 = config3 & ~NVRAM_READ_COMMAND(NVRAM_COMMAND_MASK); |
| 658 | value32 |= NVRAM_READ_COMMAND(0x57); |
| 659 | REG_WR( pDevice, Nvram.Config3, value32 ); |
| 660 | |
| 661 | REG_WR( pDevice, Nvram.Addr, 0x0 ); |
| 662 | |
| 663 | status = LM_NVRAM_Read_UINT32(pDevice, 0x0, &value32); |
| 664 | |
| 665 | /* Restore the original read command. */ |
| 666 | REG_WR( pDevice, Nvram.Config3, config3 ); |
| 667 | if( status == LM_STATUS_SUCCESS ) |
| 668 | { |
| 669 | switch( value32 & 0x3c ) |
| 670 | { |
| 671 | case 0x0c: |
| 672 | *size = (1 * (1<<20))/8; |
| 673 | break; |
| 674 | case 0x14: |
| 675 | *size = (2 * (1<<20))/8; |
| 676 | break; |
| 677 | case 0x1c: |
| 678 | *size = (4 * (1<<20))/8; |
| 679 | break; |
| 680 | case 0x24: |
| 681 | *size = (8 * (1<<20))/8; |
| 682 | break; |
| 683 | } |
| 684 | } |
| 685 | |
| 686 | return status; |
| 687 | } /* LM_FLASH_Atmel_Buffered_ReadSize */ |
| 688 | |
| 689 | |
| 690 | |
| 691 | /******************************************************************************/ |
| 692 | /* Description: */ |
| 693 | /* */ |
| 694 | /* Return: */ |
| 695 | /******************************************************************************/ |
| 696 | STATIC LM_STATUS |
| 697 | LM_FLASH_ST_ReadSize( PLM_DEVICE_BLOCK pDevice, LM_UINT32 * size ) |
| 698 | { |
| 699 | LM_STATUS status; |
| 700 | LM_UINT32 i; |
| 701 | LM_UINT32 ctrlreg; |
| 702 | LM_UINT32 value32; |
| 703 | LM_UINT32 config1; |
| 704 | |
| 705 | /* We need to get the size through pass-thru mode. */ |
| 706 | config1 = REG_RD( pDevice, Nvram.Config1 ); |
| 707 | value32 = config1 | FLASH_PASS_THRU_MODE; |
| 708 | REG_WR( pDevice, Nvram.Config1, value32 ); |
| 709 | |
| 710 | /* Issue the "read ID" command. */ |
| 711 | REG_WR( pDevice, Nvram.WriteData, 0x9f ); |
| 712 | |
| 713 | ctrlreg = NVRAM_CMD_DO_IT | NVRAM_CMD_DONE | NVRAM_CMD_FIRST | NVRAM_CMD_WR; |
| 714 | status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg ); |
| 715 | if( status == LM_STATUS_FAILURE ) |
| 716 | { |
| 717 | goto done; |
| 718 | } |
| 719 | |
| 720 | /* Read in the "read ID" response. */ |
| 721 | ctrlreg = NVRAM_CMD_DO_IT | NVRAM_CMD_DONE; |
| 722 | |
| 723 | /* Discard the first three bytes. */ |
| 724 | for( i = 0; i < 2; i++ ) |
| 725 | { |
| 726 | status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg ); |
| 727 | if( status == LM_STATUS_FAILURE ) |
| 728 | { |
| 729 | goto done; |
| 730 | } |
| 731 | |
| 732 | value32 = REG_RD(pDevice, Nvram.ReadData); |
| 733 | } |
| 734 | |
| 735 | ctrlreg |= NVRAM_CMD_LAST; |
| 736 | |
| 737 | status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg ); |
| 738 | if( status == LM_STATUS_SUCCESS ) |
| 739 | { |
| 740 | value32 = REG_RD(pDevice, Nvram.ReadData) & 0xff; |
| 741 | switch( value32 ) |
| 742 | { |
| 743 | case 0x11: |
| 744 | *size = (1 * (1<<20)) / 8; |
| 745 | break; |
| 746 | case 0x12: |
| 747 | *size = (2 * (1<<20)) / 8; |
| 748 | break; |
| 749 | case 0x13: |
| 750 | *size = (4 * (1<<20)) / 8; |
| 751 | break; |
| 752 | case 0x14: |
| 753 | *size = (8 * (1<<20)) / 8; |
| 754 | break; |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | done: |
| 759 | |
| 760 | /* Restore the previous flash mode. */ |
| 761 | REG_WR( pDevice, Nvram.Config1, config1 ); |
| 762 | |
| 763 | return status; |
| 764 | } /* LM_FLASH_ST_ReadSize */ |
| 765 | |
| 766 | |
| 767 | |
| 768 | /******************************************************************************/ |
| 769 | /* Description: */ |
| 770 | /* */ |
| 771 | /* Return: */ |
| 772 | /******************************************************************************/ |
| 773 | STATIC LM_STATUS |
| 774 | LM_FLASH_Saifun_ReadSize( PLM_DEVICE_BLOCK pDevice, LM_UINT32 * size ) |
| 775 | { |
| 776 | LM_UINT32 config3; |
| 777 | LM_UINT32 value32; |
| 778 | LM_STATUS status; |
| 779 | |
| 780 | /* Temporarily replace the read command with a "read ID" command. */ |
| 781 | config3 = REG_RD( pDevice, Nvram.Config3 ); |
| 782 | value32 = config3 & ~NVRAM_READ_COMMAND(NVRAM_COMMAND_MASK); |
| 783 | value32 |= NVRAM_READ_COMMAND(0xab); |
| 784 | REG_WR( pDevice, Nvram.Config3, value32 ); |
| 785 | |
| 786 | REG_WR( pDevice, Nvram.Addr, 0x0 ); |
| 787 | |
| 788 | status = LM_NVRAM_Read_UINT32(pDevice, 0x0, &value32); |
| 789 | |
| 790 | /* Restore the original read command. */ |
| 791 | REG_WR( pDevice, Nvram.Config3, config3 ); |
| 792 | |
| 793 | if( status == LM_STATUS_SUCCESS ) |
| 794 | { |
| 795 | switch( value32 & 0xff ) |
| 796 | { |
| 797 | case 0x05: |
| 798 | *size = (512 * (1<<10)/8); |
| 799 | break; |
| 800 | case 0x10: |
| 801 | *size = (1 * (1<<20)/8); |
| 802 | break; |
| 803 | case 0x11: |
| 804 | *size = (2 * (1<<20)/8); |
| 805 | break; |
| 806 | } |
| 807 | } |
| 808 | |
| 809 | return status; |
| 810 | } /* LM_FLASH_Saifun_ReadSize */ |
| 811 | |
| 812 | |
| 813 | |
| 814 | /******************************************************************************/ |
| 815 | /* Description: */ |
| 816 | /* */ |
| 817 | /* Return: */ |
| 818 | /******************************************************************************/ |
| 819 | STATIC LM_STATUS |
| 820 | LM_FLASH_ReadSize( PLM_DEVICE_BLOCK pDevice, LM_UINT32 * size ) |
| 821 | { |
| 822 | LM_UINT32 value32; |
| 823 | LM_STATUS status; |
| 824 | |
| 825 | status = LM_NVRAM_AcquireLock( pDevice ); |
| 826 | if( status == LM_STATUS_FAILURE ) |
| 827 | { |
| 828 | return status; |
| 829 | } |
| 830 | |
| 831 | if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 832 | { |
| 833 | if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0) |
| 834 | { |
| 835 | value32 = REG_RD( pDevice, Nvram.NvmAccess ); |
| 836 | value32 |= NVRAM_ACCESS_ENABLE | NVRAM_ACCESS_WRITE_ENABLE; |
| 837 | REG_WR( pDevice, Nvram.NvmAccess, value32 ); |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | switch( pDevice->flashinfo.jedecnum ) |
| 842 | { |
| 843 | case JEDEC_ST: |
| 844 | status = LM_FLASH_ST_ReadSize( pDevice, size ); |
| 845 | break; |
| 846 | case JEDEC_ATMEL: |
| 847 | if( pDevice->flashinfo.buffered == TRUE ) |
| 848 | { |
| 849 | status = LM_FLASH_Atmel_Buffered_ReadSize( pDevice, size ); |
| 850 | } |
| 851 | else |
| 852 | { |
| 853 | status = LM_STATUS_FAILURE; |
| 854 | } |
| 855 | break; |
| 856 | case JEDEC_SAIFUN: |
| 857 | status = LM_FLASH_Saifun_ReadSize( pDevice, size ); |
| 858 | break; |
| 859 | case JEDEC_SST: |
| 860 | default: |
| 861 | status = LM_STATUS_FAILURE; |
| 862 | } |
| 863 | |
| 864 | if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 865 | { |
| 866 | if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0) |
| 867 | { |
| 868 | value32 = REG_RD( pDevice, Nvram.NvmAccess ); |
| 869 | value32 &= ~(NVRAM_ACCESS_ENABLE | NVRAM_ACCESS_WRITE_ENABLE); |
| 870 | REG_WR( pDevice, Nvram.NvmAccess, value32 ); |
| 871 | } |
| 872 | } |
| 873 | |
| 874 | LM_NVRAM_ReleaseLock( pDevice ); |
| 875 | |
| 876 | return status; |
| 877 | } /* LM_FLASH_ReadSize */ |
| 878 | |
| 879 | STATIC LM_VOID LM_NVRAM_Detect_570X( PLM_DEVICE_BLOCK pDevice ) |
| 880 | { |
| 881 | LM_UINT32 value32; |
| 882 | |
| 883 | value32 = REG_RD(pDevice, Nvram.Config1); |
| 884 | |
| 885 | if( (value32 & FLASH_INTERFACE_ENABLE) == 0 ) |
| 886 | { |
| 887 | pDevice->flashinfo.romtype = ROM_TYPE_EEPROM; |
| 888 | } |
| 889 | else |
| 890 | { |
| 891 | /* |
| 892 | * 5705 and older products do not have bits 24 and 25 defined. |
| 893 | * If we've gotten here, then we can guarantee the flash is |
| 894 | * an Atmel AT45DB011DB. |
| 895 | */ |
| 896 | pDevice->flashinfo.jedecnum = JEDEC_ATMEL; |
| 897 | pDevice->flashinfo.romtype = ROM_TYPE_FLASH; |
| 898 | pDevice->flashinfo.pagesize = ATMEL_AT45DB0X1B_PAGE_SIZE; |
| 899 | pDevice->flashinfo.buffered = TRUE; |
| 900 | } |
| 901 | } /* LM_NVRAM_Detect_570X */ |
| 902 | |
| 903 | STATIC LM_VOID LM_NVRAM_Detect_5750( PLM_DEVICE_BLOCK pDevice ) |
| 904 | { |
| 905 | LM_UINT32 value32; |
| 906 | |
| 907 | value32 = REG_RD(pDevice, Nvram.Config1); |
| 908 | |
| 909 | if( (value32 & FLASH_INTERFACE_ENABLE) == 0 ) |
| 910 | { |
| 911 | pDevice->flashinfo.romtype = ROM_TYPE_EEPROM; |
| 912 | return; |
| 913 | } |
| 914 | |
| 915 | pDevice->flashinfo.romtype = ROM_TYPE_FLASH; |
| 916 | |
| 917 | switch( value32 & FLASH_PART_5750_TYPEMASK ) |
| 918 | { |
| 919 | case FLASH_VENDOR_ATMEL_FLASH_BUFFERED: |
| 920 | pDevice->flashinfo.jedecnum = JEDEC_ATMEL; |
| 921 | pDevice->flashinfo.pagesize = ATMEL_AT45DB0X1B_PAGE_SIZE; |
| 922 | pDevice->flashinfo.buffered = TRUE; |
| 923 | break; |
| 924 | case FLASH_VENDOR_ATMEL_FLASH_UNBUFFERED: |
| 925 | pDevice->flashinfo.jedecnum = JEDEC_ATMEL; |
| 926 | pDevice->flashinfo.pagesize = ATMEL_AT25F512_PAGE_SIZE; |
| 927 | pDevice->flashinfo.buffered = FALSE; |
| 928 | break; |
| 929 | case FLASH_VENDOR_ST: |
| 930 | pDevice->flashinfo.jedecnum = JEDEC_ST; |
| 931 | pDevice->flashinfo.pagesize = ST_M45PEX0_PAGE_SIZE; |
| 932 | pDevice->flashinfo.buffered = TRUE; |
| 933 | break; |
| 934 | case FLASH_VENDOR_SAIFUN: |
| 935 | pDevice->flashinfo.jedecnum = JEDEC_SAIFUN; |
| 936 | pDevice->flashinfo.pagesize = SAIFUN_SA25F0XX_PAGE_SIZE; |
| 937 | pDevice->flashinfo.buffered = FALSE; |
| 938 | break; |
| 939 | case FLASH_VENDOR_SST_SMALL: |
| 940 | case FLASH_VENDOR_SST_LARGE: |
| 941 | pDevice->flashinfo.jedecnum = JEDEC_SST; |
| 942 | pDevice->flashinfo.pagesize = SST_25VF0X0_PAGE_SIZE; |
| 943 | pDevice->flashinfo.buffered = FALSE; |
| 944 | break; |
| 945 | default: |
| 946 | B57_ERR(("bcm57xx : Unknown NVRAM type.\n")); |
| 947 | pDevice->flashinfo.jedecnum = 0; |
| 948 | pDevice->flashinfo.romtype = 0; |
| 949 | pDevice->flashinfo.buffered = FALSE; |
| 950 | pDevice->flashinfo.pagesize = 0; |
| 951 | } |
| 952 | } /* LM_NVRAM_Detect_5750 */ |
| 953 | |
| 954 | STATIC LM_VOID LM_NVRAM_Detect_5752( PLM_DEVICE_BLOCK pDevice ) |
| 955 | { |
| 956 | LM_BOOL supported; |
| 957 | LM_UINT32 value32; |
| 958 | |
| 959 | supported = FALSE; |
| 960 | |
| 961 | value32 = REG_RD(pDevice, Nvram.Config1); |
| 962 | |
| 963 | if(value32 & BIT_27) |
| 964 | pDevice->Flags |= PROTECTED_NVRAM_FLAG; |
| 965 | |
| 966 | switch( value32 & FLASH_PART_5752_TYPEMASK ) |
| 967 | { |
| 968 | case FLASH_PART_5752_EEPROM_ATMEL_64K: |
| 969 | pDevice->flashinfo.jedecnum = JEDEC_ATMEL; |
| 970 | pDevice->flashinfo.romtype = ROM_TYPE_EEPROM; |
| 971 | pDevice->flashinfo.buffered = FALSE; |
| 972 | pDevice->flashinfo.chipsize = (64 * (1<<10)/8); |
| 973 | supported = TRUE; |
| 974 | break; |
| 975 | |
| 976 | case FLASH_PART_5752_EEPROM_ATMEL_376K: |
| 977 | pDevice->flashinfo.jedecnum = JEDEC_ATMEL; |
| 978 | pDevice->flashinfo.romtype = ROM_TYPE_EEPROM; |
| 979 | pDevice->flashinfo.buffered = FALSE; |
| 980 | pDevice->flashinfo.chipsize = (512 * (1<<10)/8); |
| 981 | supported = TRUE; |
| 982 | break; |
| 983 | |
| 984 | case FLASH_PART_5752_FLASH_ATMEL_AT45DB041: |
| 985 | pDevice->flashinfo.jedecnum = JEDEC_ATMEL; |
| 986 | pDevice->flashinfo.romtype = ROM_TYPE_FLASH; |
| 987 | pDevice->flashinfo.buffered = TRUE; |
| 988 | pDevice->flashinfo.chipsize = (4 * (1<<20)) / 8; |
| 989 | supported = TRUE; |
| 990 | break; |
| 991 | |
| 992 | case FLASH_PART_5752_FLASH_ATMEL_AT25F512: |
| 993 | pDevice->flashinfo.jedecnum = JEDEC_ATMEL; |
| 994 | pDevice->flashinfo.romtype = ROM_TYPE_FLASH; |
| 995 | pDevice->flashinfo.buffered = FALSE; |
| 996 | pDevice->flashinfo.chipsize = (512 * (1<<10)/8); |
| 997 | supported = TRUE; |
| 998 | break; |
| 999 | |
| 1000 | case FLASH_PART_5752_FLASH_ST_M25P10A: |
| 1001 | pDevice->flashinfo.jedecnum = JEDEC_ST; |
| 1002 | pDevice->flashinfo.romtype = ROM_TYPE_FLASH; |
| 1003 | pDevice->flashinfo.buffered = TRUE; |
| 1004 | pDevice->flashinfo.chipsize = (1 * (1<<20)) / 8; |
| 1005 | supported = TRUE; |
| 1006 | break; |
| 1007 | case FLASH_PART_5752_FLASH_ST_M25P05A: |
| 1008 | pDevice->flashinfo.jedecnum = JEDEC_ST; |
| 1009 | pDevice->flashinfo.romtype = ROM_TYPE_FLASH; |
| 1010 | pDevice->flashinfo.buffered = TRUE; |
| 1011 | pDevice->flashinfo.chipsize = (512 * (1<<10)/8); |
| 1012 | supported = TRUE; |
| 1013 | break; |
| 1014 | |
| 1015 | case FLASH_PART_5752_FLASH_ST_M45PE10: |
| 1016 | pDevice->flashinfo.jedecnum = JEDEC_ST; |
| 1017 | pDevice->flashinfo.romtype = ROM_TYPE_FLASH; |
| 1018 | pDevice->flashinfo.buffered = TRUE; |
| 1019 | pDevice->flashinfo.chipsize = (1 * (1<<20)) / 8; |
| 1020 | supported = TRUE; |
| 1021 | break; |
| 1022 | |
| 1023 | case FLASH_PART_5752_FLASH_ST_M45PE20: |
| 1024 | pDevice->flashinfo.jedecnum = JEDEC_ST; |
| 1025 | pDevice->flashinfo.romtype = ROM_TYPE_FLASH; |
| 1026 | pDevice->flashinfo.buffered = TRUE; |
| 1027 | pDevice->flashinfo.chipsize = (2 * (1<<20)) / 8; |
| 1028 | supported = TRUE; |
| 1029 | break; |
| 1030 | |
| 1031 | case FLASH_PART_5752_FLASH_ST_M45PE40: |
| 1032 | pDevice->flashinfo.jedecnum = JEDEC_ST; |
| 1033 | pDevice->flashinfo.romtype = ROM_TYPE_FLASH; |
| 1034 | pDevice->flashinfo.buffered = TRUE; |
| 1035 | pDevice->flashinfo.chipsize = (4 * (1<<20)) / 8; |
| 1036 | supported = TRUE; |
| 1037 | break; |
| 1038 | default: |
| 1039 | B57_ERR(("bcm57xx : Unknown NVRAM type.\n")); |
| 1040 | } |
| 1041 | |
| 1042 | if( pDevice->flashinfo.romtype == ROM_TYPE_FLASH ) |
| 1043 | { |
| 1044 | switch( value32 & FLASH_PART_5752_PAGEMASK ) |
| 1045 | { |
| 1046 | case FLASH_PART_5752_PAGE_SIZE_256B: |
| 1047 | pDevice->flashinfo.pagesize = 256; |
| 1048 | break; |
| 1049 | case FLASH_PART_5752_PAGE_SIZE_512B: |
| 1050 | pDevice->flashinfo.pagesize = 512; |
| 1051 | break; |
| 1052 | case FLASH_PART_5752_PAGE_SIZE_1K: |
| 1053 | pDevice->flashinfo.pagesize = 1024; |
| 1054 | break; |
| 1055 | case FLASH_PART_5752_PAGE_SIZE_2K: |
| 1056 | pDevice->flashinfo.pagesize = 2048; |
| 1057 | break; |
| 1058 | case FLASH_PART_5752_PAGE_SIZE_4K: |
| 1059 | pDevice->flashinfo.pagesize = 4096; |
| 1060 | break; |
| 1061 | case FLASH_PART_5752_PAGE_SIZE_264B: |
| 1062 | pDevice->flashinfo.pagesize = 264; |
| 1063 | break; |
| 1064 | default: |
| 1065 | B57_ERR(("bcm57xx : Unknown NVRAM page size.\n")); |
| 1066 | supported = FALSE; |
| 1067 | } |
| 1068 | } |
| 1069 | |
| 1070 | if( supported != TRUE ) |
| 1071 | { |
| 1072 | B57_ERR(("Flash type unsupported!!!\n")); |
| 1073 | pDevice->flashinfo.jedecnum = 0; |
| 1074 | pDevice->flashinfo.romtype = 0; |
| 1075 | pDevice->flashinfo.buffered = FALSE; |
| 1076 | pDevice->flashinfo.pagesize = 0; |
| 1077 | } |
| 1078 | |
| 1079 | |
| 1080 | } /* LM_NVRAM_Detect_5752 */ |
| 1081 | |
| 1082 | |
| 1083 | /******************************************************************************/ |
| 1084 | /* Description: */ |
| 1085 | /* */ |
| 1086 | /* Return: */ |
| 1087 | /******************************************************************************/ |
| 1088 | STATIC LM_VOID LM_NVRAM_Init( PLM_DEVICE_BLOCK pDevice ) |
| 1089 | { |
| 1090 | LM_UINT32 Value32; |
| 1091 | |
| 1092 | /* BCM4785: Avoid all access to NVRAM & EEPROM. */ |
| 1093 | if (pDevice->Flags & SB_CORE_FLAG) |
| 1094 | return; |
| 1095 | |
| 1096 | pDevice->NvramSize = 0; |
| 1097 | |
| 1098 | /* Intialize clock period and state machine. */ |
| 1099 | Value32 = SEEPROM_ADDR_CLK_PERD(SEEPROM_CLOCK_PERIOD) | |
| 1100 | SEEPROM_ADDR_FSM_RESET; |
| 1101 | REG_WR(pDevice, Grc.EepromAddr, Value32); |
| 1102 | REG_RD_BACK(pDevice, Grc.EepromAddr); |
| 1103 | |
| 1104 | MM_Wait(100); |
| 1105 | |
| 1106 | /* Serial eeprom access using the Grc.EepromAddr/EepromData registers. */ |
| 1107 | Value32 = REG_RD(pDevice, Grc.LocalCtrl); |
| 1108 | REG_WR(pDevice, Grc.LocalCtrl, Value32 | GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM); |
| 1109 | |
| 1110 | switch( T3_ASIC_REV(pDevice->ChipRevId) ) |
| 1111 | { |
| 1112 | case T3_ASIC_REV_5700: |
| 1113 | case T3_ASIC_REV_5701: |
| 1114 | pDevice->flashinfo.romtype = ROM_TYPE_EEPROM; |
| 1115 | break; |
| 1116 | case T3_ASIC_REV_5752: |
| 1117 | LM_NVRAM_Detect_5752(pDevice); |
| 1118 | break; |
| 1119 | case T3_ASIC_REV_5714_A0: |
| 1120 | case T3_ASIC_REV_5780: |
| 1121 | case T3_ASIC_REV_5714: |
| 1122 | case T3_ASIC_REV_5750: |
| 1123 | LM_NVRAM_Detect_5750(pDevice); |
| 1124 | break; |
| 1125 | default: |
| 1126 | LM_NVRAM_Detect_570X(pDevice); |
| 1127 | } |
| 1128 | |
| 1129 | /* Set the 5701 compatibility mode if we are using EEPROM. */ |
| 1130 | if( T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 && |
| 1131 | T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701 && |
| 1132 | pDevice->flashinfo.romtype == ROM_TYPE_EEPROM ) |
| 1133 | { |
| 1134 | Value32 = REG_RD(pDevice, Nvram.Config1); |
| 1135 | |
| 1136 | if( T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 1137 | { |
| 1138 | if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0) |
| 1139 | { |
| 1140 | REG_WR(pDevice, Nvram.NvmAccess, |
| 1141 | REG_RD(pDevice, Nvram.NvmAccess) | ACCESS_EN); |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | /* Use the new interface to read EEPROM. */ |
| 1146 | Value32 &= ~FLASH_COMPAT_BYPASS; |
| 1147 | |
| 1148 | REG_WR(pDevice, Nvram.Config1, Value32); |
| 1149 | |
| 1150 | if( T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 1151 | { |
| 1152 | if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0) |
| 1153 | { |
| 1154 | REG_WR(pDevice, Nvram.NvmAccess, |
| 1155 | REG_RD(pDevice, Nvram.NvmAccess) & ~ACCESS_EN); |
| 1156 | } |
| 1157 | } |
| 1158 | } |
| 1159 | |
| 1160 | if( !(T3_ASIC_5752(pDevice->ChipRevId)) ) |
| 1161 | { |
| 1162 | if( pDevice->flashinfo.romtype == ROM_TYPE_EEPROM ) |
| 1163 | { |
| 1164 | /* The only EEPROM we support is an ATMEL */ |
| 1165 | pDevice->flashinfo.jedecnum = JEDEC_ATMEL; |
| 1166 | pDevice->flashinfo.pagesize = 0; |
| 1167 | pDevice->flashinfo.buffered = FALSE; |
| 1168 | |
| 1169 | LM_EEPROM_ReadSize( pDevice, &pDevice->flashinfo.chipsize ); |
| 1170 | } |
| 1171 | else |
| 1172 | { |
| 1173 | LM_FLASH_ReadSize( pDevice, &pDevice->flashinfo.chipsize ); |
| 1174 | pDevice->Flags |= FLASH_DETECTED_FLAG; |
| 1175 | } |
| 1176 | } |
| 1177 | |
| 1178 | pDevice->NvramSize = pDevice->flashinfo.chipsize; |
| 1179 | |
| 1180 | B57_INFO(("*nvram:size=0x%x jnum=0x%x page=0x%x buff=0x%x \n", |
| 1181 | pDevice->NvramSize, pDevice->flashinfo.jedecnum, |
| 1182 | pDevice->flashinfo.pagesize, pDevice->flashinfo.buffered)); |
| 1183 | |
| 1184 | } /* LM_NVRAM_Init */ |
| 1185 | |
| 1186 | |
| 1187 | |
| 1188 | /******************************************************************************/ |
| 1189 | /* Description: */ |
| 1190 | /* */ |
| 1191 | /* Return: */ |
| 1192 | /******************************************************************************/ |
| 1193 | LM_STATUS |
| 1194 | LM_NvramRead( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset, LM_UINT32 * data ) |
| 1195 | { |
| 1196 | LM_UINT32 value32; |
| 1197 | LM_STATUS status; |
| 1198 | |
| 1199 | /* BCM4785: Avoid all access to NVRAM & EEPROM. */ |
| 1200 | if (pDevice->Flags & SB_CORE_FLAG) { |
| 1201 | *data = 0xffffffff; |
| 1202 | return LM_STATUS_FAILURE; |
| 1203 | } |
| 1204 | |
| 1205 | if( offset >= pDevice->flashinfo.chipsize ) |
| 1206 | { |
| 1207 | return LM_STATUS_FAILURE; |
| 1208 | } |
| 1209 | |
| 1210 | if( T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| 1211 | T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 ) |
| 1212 | { |
| 1213 | status = LM_EEPROM_Read_UINT32( pDevice, offset, data ); |
| 1214 | } |
| 1215 | else |
| 1216 | { |
| 1217 | status = LM_NVRAM_AcquireLock( pDevice ); |
| 1218 | if( status == LM_STATUS_FAILURE ) |
| 1219 | { |
| 1220 | return status; |
| 1221 | } |
| 1222 | |
| 1223 | if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 1224 | { |
| 1225 | if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0) |
| 1226 | { |
| 1227 | value32 = REG_RD( pDevice, Nvram.NvmAccess ); |
| 1228 | value32 |= NVRAM_ACCESS_ENABLE; |
| 1229 | REG_WR( pDevice, Nvram.NvmAccess, value32 ); |
| 1230 | } |
| 1231 | } |
| 1232 | |
| 1233 | status = LM_NVRAM_Read_UINT32(pDevice, offset, data); |
| 1234 | |
| 1235 | if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 1236 | { |
| 1237 | if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0) |
| 1238 | { |
| 1239 | value32 = REG_RD( pDevice, Nvram.NvmAccess ); |
| 1240 | value32 &= ~NVRAM_ACCESS_ENABLE; |
| 1241 | REG_WR( pDevice, Nvram.NvmAccess, value32 ); |
| 1242 | } |
| 1243 | } |
| 1244 | |
| 1245 | LM_NVRAM_ReleaseLock( pDevice ); |
| 1246 | } |
| 1247 | |
| 1248 | return status; |
| 1249 | } /* LM_NvramRead */ |
| 1250 | |
| 1251 | |
| 1252 | |
| 1253 | #ifdef ETHTOOL_SEEPROM |
| 1254 | |
| 1255 | /******************************************************************************/ |
| 1256 | /* Description: */ |
| 1257 | /* */ |
| 1258 | /* Return: */ |
| 1259 | /******************************************************************************/ |
| 1260 | STATIC LM_STATUS |
| 1261 | LM_NVRAM_ReadBlock(PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset, |
| 1262 | LM_UINT8 *data, LM_UINT32 size) |
| 1263 | { |
| 1264 | LM_STATUS status; |
| 1265 | LM_UINT32 value32; |
| 1266 | LM_UINT32 bytecnt; |
| 1267 | LM_UINT8 * srcptr; |
| 1268 | |
| 1269 | status = LM_STATUS_SUCCESS; |
| 1270 | |
| 1271 | while( size > 0 ) |
| 1272 | { |
| 1273 | /* Make sure the read is word aligned. */ |
| 1274 | value32 = offset & 0x3; |
| 1275 | if( value32 ) |
| 1276 | { |
| 1277 | bytecnt = sizeof(LM_UINT32) - value32; |
| 1278 | offset -= value32; |
| 1279 | srcptr = (LM_UINT8 *)(&value32) + value32; |
| 1280 | } |
| 1281 | else |
| 1282 | { |
| 1283 | bytecnt = sizeof(LM_UINT32); |
| 1284 | srcptr = (LM_UINT8 *)(&value32); |
| 1285 | } |
| 1286 | |
| 1287 | if( bytecnt > size ) |
| 1288 | { |
| 1289 | bytecnt = size; |
| 1290 | } |
| 1291 | |
| 1292 | if( T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 && |
| 1293 | T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701 ) |
| 1294 | { |
| 1295 | status = LM_NVRAM_Read_UINT32( pDevice, offset, &value32 ); |
| 1296 | } |
| 1297 | else |
| 1298 | { |
| 1299 | status = LM_EEPROM_Read_UINT32( pDevice, offset, &value32 ); |
| 1300 | } |
| 1301 | |
| 1302 | if( status != LM_STATUS_SUCCESS ) |
| 1303 | { |
| 1304 | break; |
| 1305 | } |
| 1306 | |
| 1307 | memcpy( data, srcptr, bytecnt ); |
| 1308 | |
| 1309 | offset += sizeof(LM_UINT32); |
| 1310 | data += bytecnt; |
| 1311 | size -= bytecnt; |
| 1312 | } |
| 1313 | |
| 1314 | return status; |
| 1315 | } /* LM_NVRAM_ReadBlock */ |
| 1316 | |
| 1317 | /******************************************************************************/ |
| 1318 | /* Description: */ |
| 1319 | /* */ |
| 1320 | /* Return: */ |
| 1321 | /******************************************************************************/ |
| 1322 | STATIC LM_STATUS |
| 1323 | LM_EEPROM_WriteBlock( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset, |
| 1324 | LM_UINT8 * data, LM_UINT32 size ) |
| 1325 | { |
| 1326 | LM_UINT8 * dstptr; |
| 1327 | LM_UINT32 value32; |
| 1328 | LM_UINT32 bytecnt; |
| 1329 | LM_UINT32 subword1; |
| 1330 | LM_UINT32 subword2; |
| 1331 | LM_UINT32 Addr; |
| 1332 | LM_UINT32 Dev; |
| 1333 | LM_STATUS status; |
| 1334 | |
| 1335 | if( offset > pDevice->flashinfo.chipsize ) |
| 1336 | { |
| 1337 | return LM_STATUS_FAILURE; |
| 1338 | } |
| 1339 | |
| 1340 | status = LM_STATUS_SUCCESS; |
| 1341 | |
| 1342 | if( size == 0 ) |
| 1343 | { |
| 1344 | return status; |
| 1345 | } |
| 1346 | |
| 1347 | if( offset & 0x3 ) |
| 1348 | { |
| 1349 | /* |
| 1350 | * If our initial offset does not fall on a word boundary, we |
| 1351 | * have to do a read / modify / write to preserve the |
| 1352 | * preceding bits we are not interested in. |
| 1353 | */ |
| 1354 | status = LM_EEPROM_Read_UINT32(pDevice, offset & ~0x3, &subword1); |
| 1355 | if( status == LM_STATUS_FAILURE ) |
| 1356 | { |
| 1357 | return status; |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | if( (offset + size) & 0x3 ) |
| 1362 | { |
| 1363 | /* |
| 1364 | * Likewise, if our ending offset does not fall on a word |
| 1365 | * boundary, we have to do a read / modify / write to |
| 1366 | * preserve the trailing bits we are not interested in. |
| 1367 | */ |
| 1368 | status = LM_EEPROM_Read_UINT32( pDevice, (offset + size) & ~0x3, |
| 1369 | &subword2 ); |
| 1370 | if( status == LM_STATUS_FAILURE ) |
| 1371 | { |
| 1372 | return status; |
| 1373 | } |
| 1374 | } |
| 1375 | |
| 1376 | /* Enable EEPROM write. */ |
| 1377 | if( pDevice->Flags & EEPROM_WP_FLAG ) |
| 1378 | { |
| 1379 | REG_WR( pDevice, Grc.LocalCtrl, |
| 1380 | pDevice->GrcLocalCtrl | GRC_MISC_LOCAL_CTRL_GPIO_OE1 ); |
| 1381 | REG_RD_BACK( pDevice, Grc.LocalCtrl ); |
| 1382 | MM_Wait(40); |
| 1383 | |
| 1384 | value32 = REG_RD( pDevice, Grc.LocalCtrl ); |
| 1385 | if( value32 & GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 ) |
| 1386 | { |
| 1387 | return LM_STATUS_FAILURE; |
| 1388 | } |
| 1389 | } |
| 1390 | |
| 1391 | while( size > 0 ) |
| 1392 | { |
| 1393 | value32 = offset & 0x3; |
| 1394 | if( value32 ) |
| 1395 | { |
| 1396 | /* |
| 1397 | * We have to read / modify / write the data to |
| 1398 | * preserve the flash contents preceding the offset. |
| 1399 | */ |
| 1400 | offset &= ~0x3; |
| 1401 | |
| 1402 | dstptr = ((LM_UINT8 *)(&value32)) + value32; |
| 1403 | bytecnt = sizeof(LM_UINT32) - value32; |
| 1404 | value32 = subword1; |
| 1405 | } |
| 1406 | else if( size < sizeof(LM_UINT32) ) |
| 1407 | { |
| 1408 | dstptr = (LM_UINT8 *)(&value32); |
| 1409 | bytecnt = size; |
| 1410 | value32 = subword2; |
| 1411 | } |
| 1412 | else |
| 1413 | { |
| 1414 | dstptr = (LM_UINT8 *)(&value32); |
| 1415 | bytecnt = sizeof(LM_UINT32); |
| 1416 | } |
| 1417 | |
| 1418 | if( size < bytecnt ) |
| 1419 | { |
| 1420 | bytecnt = size; |
| 1421 | } |
| 1422 | |
| 1423 | memcpy( dstptr, (void *)data, bytecnt ); |
| 1424 | |
| 1425 | data += bytecnt; |
| 1426 | size -= bytecnt; |
| 1427 | |
| 1428 | /* |
| 1429 | * Swap the data so that the byte stream will be |
| 1430 | * written the same in little and big endian systems. |
| 1431 | */ |
| 1432 | value32 = MM_SWAP_LE32(value32); |
| 1433 | |
| 1434 | /* Set the write value to the eeprom */ |
| 1435 | REG_WR( pDevice, Grc.EepromData, value32 ); |
| 1436 | |
| 1437 | Dev = offset / pDevice->flashinfo.chipsize; |
| 1438 | Addr = offset % pDevice->flashinfo.chipsize; |
| 1439 | |
| 1440 | value32 = REG_RD( pDevice, Grc.EepromAddr ); |
| 1441 | value32 &= ~(SEEPROM_ADDR_DEV_ID_MASK | SEEPROM_ADDR_ADDRESS_MASK | |
| 1442 | SEEPROM_ADDR_RW_MASK); |
| 1443 | value32 |= SEEPROM_ADDR_DEV_ID(Dev) | SEEPROM_ADDR_ADDRESS(Addr) | |
| 1444 | SEEPROM_ADDR_START | SEEPROM_ADDR_WRITE; |
| 1445 | |
| 1446 | status = LM_EEPROM_ExecuteCommand( pDevice, value32 ); |
| 1447 | if( status != LM_STATUS_SUCCESS ) |
| 1448 | { |
| 1449 | break; |
| 1450 | } |
| 1451 | |
| 1452 | offset += sizeof(LM_UINT32); |
| 1453 | } |
| 1454 | |
| 1455 | /* Write-protect EEPROM. */ |
| 1456 | if( pDevice->Flags & EEPROM_WP_FLAG ) |
| 1457 | { |
| 1458 | REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl | |
| 1459 | GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| 1460 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1); |
| 1461 | REG_RD_BACK(pDevice, Grc.LocalCtrl); |
| 1462 | MM_Wait(40); |
| 1463 | } |
| 1464 | |
| 1465 | return status; |
| 1466 | } /* LM_EEPROM_WriteBlock */ |
| 1467 | |
| 1468 | |
| 1469 | |
| 1470 | /******************************************************************************/ |
| 1471 | /* Description: */ |
| 1472 | /* */ |
| 1473 | /* Return: */ |
| 1474 | /******************************************************************************/ |
| 1475 | STATIC LM_STATUS |
| 1476 | LM_NVRAM_WriteBlockUnBuffered( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset, |
| 1477 | LM_UINT8 * data, LM_UINT32 size ) |
| 1478 | { |
| 1479 | LM_UINT i; |
| 1480 | LM_STATUS status; |
| 1481 | LM_UINT32 tgtoff; |
| 1482 | LM_UINT32 value32; |
| 1483 | LM_UINT32 ctrlreg; |
| 1484 | LM_UINT32 pagesize; |
| 1485 | LM_UINT32 pagemask; |
| 1486 | LM_UINT32 physaddr; |
| 1487 | |
| 1488 | /* Cache the pagesize. */ |
| 1489 | pagesize = pDevice->flashinfo.pagesize; |
| 1490 | |
| 1491 | if( pDevice->flashinfo.jedecnum == JEDEC_SAIFUN ) |
| 1492 | { |
| 1493 | /* Config2 = 0x500d8 */ |
| 1494 | /* Config3 = 0x3840253 */ |
| 1495 | /* Write1 = 0xaf000400 */ |
| 1496 | |
| 1497 | /* Configure the erase command to be "page erase". */ |
| 1498 | /* Configure the status command to be "read status register". */ |
| 1499 | value32 = REG_RD( pDevice, Nvram.Config2 ); |
| 1500 | value32 &= ~(NVRAM_STATUS_COMMAND( NVRAM_COMMAND_MASK ) | |
| 1501 | NVRAM_ERASE_COMMAND( NVRAM_COMMAND_MASK )); |
| 1502 | value32 |= NVRAM_STATUS_COMMAND( SAIFUN_SA25F0XX_READ_STATUS_CMD ) | |
| 1503 | NVRAM_ERASE_COMMAND( SAIFUN_SA25F0XX_PAGE_ERASE_CMD ); |
| 1504 | REG_WR( pDevice, Nvram.Config2, value32 ); |
| 1505 | |
| 1506 | /* Configure the write command to be "page write". */ |
| 1507 | value32 = REG_RD( pDevice, Nvram.Config3 ); |
| 1508 | value32 &= ~NVRAM_WRITE_UNBUFFERED_COMMAND( NVRAM_COMMAND_MASK ); |
| 1509 | value32 |= NVRAM_WRITE_UNBUFFERED_COMMAND( SAIFUN_SA25F0XX_PAGE_WRITE_CMD ); |
| 1510 | REG_WR( pDevice, Nvram.Config3, value32 ); |
| 1511 | |
| 1512 | /* Make sure the "write enable" command is correct. */ |
| 1513 | value32 = REG_RD( pDevice, Nvram.Write1 ); |
| 1514 | value32 &= ~NVRAM_WRITE1_WRENA_CMD( NVRAM_COMMAND_MASK ); |
| 1515 | value32 |= NVRAM_WRITE1_WRENA_CMD( SAIFUN_SA25F0XX_WRENA_CMD ); |
| 1516 | REG_WR( pDevice, Nvram.Write1, value32 ); |
| 1517 | |
| 1518 | pagemask = SAIFUN_SA25F0XX_PAGE_MASK; |
| 1519 | } |
| 1520 | else |
| 1521 | { |
| 1522 | /* Unsupported flash type */ |
| 1523 | return LM_STATUS_FAILURE; |
| 1524 | } |
| 1525 | |
| 1526 | if( size == 0 ) |
| 1527 | { |
| 1528 | status = LM_STATUS_SUCCESS; |
| 1529 | goto done; |
| 1530 | } |
| 1531 | |
| 1532 | while( size > 0 ) |
| 1533 | { |
| 1534 | /* Align the offset to a page boundary. */ |
| 1535 | physaddr = offset & ~pagemask; |
| 1536 | |
| 1537 | status = LM_NVRAM_ReadBlock( pDevice, physaddr, |
| 1538 | pDevice->flashbuffer, |
| 1539 | pagesize ); |
| 1540 | if( status == LM_STATUS_FAILURE ) |
| 1541 | { |
| 1542 | break; |
| 1543 | } |
| 1544 | |
| 1545 | /* Calculate the target index. */ |
| 1546 | tgtoff = offset & pagemask; |
| 1547 | |
| 1548 | /* Copy the new data into the save buffer. */ |
| 1549 | for( i = tgtoff; i < pagesize && size > 0; i++ ) |
| 1550 | { |
| 1551 | pDevice->flashbuffer[i] = *data++; |
| 1552 | size--; |
| 1553 | } |
| 1554 | |
| 1555 | /* Move the offset to the next page. */ |
| 1556 | offset = offset + (pagesize - tgtoff); |
| 1557 | |
| 1558 | /* |
| 1559 | * The LM_NVRAM_ReadBlock() function releases |
| 1560 | * the access enable bit. Reacquire it. |
| 1561 | */ |
| 1562 | if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0) |
| 1563 | REG_WR(pDevice, Nvram.NvmAccess, NVRAM_ACCESS_ENABLE); |
| 1564 | |
| 1565 | |
| 1566 | /* |
| 1567 | * Before we can erase the flash page, we need |
| 1568 | * to issue a special "write enable" command. |
| 1569 | */ |
| 1570 | ctrlreg = NVRAM_CMD_WRITE_ENABLE | NVRAM_CMD_DO_IT | NVRAM_CMD_DONE; |
| 1571 | |
| 1572 | status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg ); |
| 1573 | if( status == LM_STATUS_FAILURE ) |
| 1574 | { |
| 1575 | break; |
| 1576 | } |
| 1577 | |
| 1578 | /* Erase the target page */ |
| 1579 | REG_WR(pDevice, Nvram.Addr, physaddr); |
| 1580 | |
| 1581 | ctrlreg = NVRAM_CMD_DO_IT | NVRAM_CMD_DONE | NVRAM_CMD_WR | |
| 1582 | NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_ERASE; |
| 1583 | |
| 1584 | status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg ); |
| 1585 | if( status == LM_STATUS_FAILURE ) |
| 1586 | { |
| 1587 | break; |
| 1588 | } |
| 1589 | |
| 1590 | /* Issue another write enable to start the write. */ |
| 1591 | ctrlreg = NVRAM_CMD_WRITE_ENABLE | NVRAM_CMD_DO_IT | NVRAM_CMD_DONE; |
| 1592 | |
| 1593 | status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg ); |
| 1594 | if( status == LM_STATUS_FAILURE ) |
| 1595 | { |
| 1596 | break; |
| 1597 | } |
| 1598 | |
| 1599 | /* Copy the data into our NIC's buffers. */ |
| 1600 | for( i = 0; i < pagesize; i+= 4 ) |
| 1601 | { |
| 1602 | value32 = *((LM_UINT32 *)(&pDevice->flashbuffer[i])); |
| 1603 | value32 = MM_SWAP_BE32( value32 ); |
| 1604 | |
| 1605 | /* Write the location we wish to write to. */ |
| 1606 | REG_WR( pDevice, Nvram.Addr, physaddr ); |
| 1607 | |
| 1608 | /* Write the data we wish to write. */ |
| 1609 | REG_WR( pDevice, Nvram.WriteData, value32 ); |
| 1610 | |
| 1611 | ctrlreg = NVRAM_CMD_DO_IT | NVRAM_CMD_DONE | NVRAM_CMD_WR; |
| 1612 | |
| 1613 | if( i == 0 ) |
| 1614 | { |
| 1615 | ctrlreg |= NVRAM_CMD_FIRST; |
| 1616 | } |
| 1617 | else if( i == (pagesize - 4) ) |
| 1618 | { |
| 1619 | ctrlreg |= NVRAM_CMD_LAST; |
| 1620 | } |
| 1621 | |
| 1622 | status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg ); |
| 1623 | if( status == LM_STATUS_FAILURE ) |
| 1624 | { |
| 1625 | size = 0; |
| 1626 | break; |
| 1627 | } |
| 1628 | |
| 1629 | physaddr += sizeof(LM_UINT32); |
| 1630 | } |
| 1631 | } |
| 1632 | |
| 1633 | /* Paranoia. Turn off the "write enable" flag. */ |
| 1634 | ctrlreg = NVRAM_CMD_WRITE_DISABLE | NVRAM_CMD_DO_IT | NVRAM_CMD_DONE; |
| 1635 | |
| 1636 | status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg ); |
| 1637 | |
| 1638 | done: |
| 1639 | |
| 1640 | return status; |
| 1641 | } /* LM_NVRAM_WriteBlockUnBuffered */ |
| 1642 | |
| 1643 | |
| 1644 | |
| 1645 | /******************************************************************************/ |
| 1646 | /* Description: */ |
| 1647 | /* */ |
| 1648 | /* Return: */ |
| 1649 | /******************************************************************************/ |
| 1650 | STATIC LM_STATUS |
| 1651 | LM_NVRAM_WriteBlockBuffered( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset, |
| 1652 | LM_UINT8 * data, LM_UINT32 size ) |
| 1653 | { |
| 1654 | LM_STATUS status; |
| 1655 | LM_UINT32 value32; |
| 1656 | LM_UINT32 bytecnt; |
| 1657 | LM_UINT32 ctrlreg; |
| 1658 | LM_UINT32 pageoff; |
| 1659 | LM_UINT32 physaddr; |
| 1660 | LM_UINT32 subword1; |
| 1661 | LM_UINT32 subword2; |
| 1662 | LM_UINT8 * dstptr; |
| 1663 | |
| 1664 | if(T3_ASIC_5752(pDevice->ChipRevId) && |
| 1665 | (pDevice->flashinfo.jedecnum == JEDEC_ST || |
| 1666 | pDevice->flashinfo.jedecnum == JEDEC_ATMEL )) |
| 1667 | { |
| 1668 | /* Do nothing as the 5752 does will take care of it */ |
| 1669 | } |
| 1670 | else if( pDevice->flashinfo.jedecnum == JEDEC_ST ) |
| 1671 | { |
| 1672 | /* |
| 1673 | * Program our chip to look at bit0 of the NVRAM's status |
| 1674 | * register when polling the write or erase operation status. |
| 1675 | */ |
| 1676 | value32 = REG_RD(pDevice, Nvram.Config1); |
| 1677 | value32 &= ~FLASH_STATUS_BITS_MASK; |
| 1678 | REG_WR( pDevice, Nvram.Config1, value32 ); |
| 1679 | |
| 1680 | /* Program the "read status" and "page erase" commands. */ |
| 1681 | value32 = NVRAM_STATUS_COMMAND( ST_M45PEX0_READ_STATUS_CMD ) | |
| 1682 | NVRAM_ERASE_COMMAND( ST_M45PEX0_PAGE_ERASE_CMD ); |
| 1683 | REG_WR( pDevice, Nvram.Config2, value32 ); |
| 1684 | |
| 1685 | /* Set the write command to be "page program". */ |
| 1686 | value32 = REG_RD(pDevice, Nvram.Config3); /* default = 0x03840a53 */ |
| 1687 | value32 &= ~NVRAM_WRITE_UNBUFFERED_COMMAND( NVRAM_COMMAND_MASK ); |
| 1688 | value32 |= NVRAM_WRITE_UNBUFFERED_COMMAND( ST_M45PEX0_PAGE_PRGM_CMD ); |
| 1689 | REG_WR( pDevice, Nvram.Config3, value32 ); |
| 1690 | |
| 1691 | /* Set the "write enable" and "write disable" commands. */ |
| 1692 | value32 = NVRAM_WRITE1_WRENA_CMD( ST_M45PEX0_WRENA_CMD ) | |
| 1693 | NVRAM_WRITE1_WRDIS_CMD( ST_M45PEX0_WRDIS_CMD ); |
| 1694 | REG_WR( pDevice, Nvram.Write1, value32 ); |
| 1695 | } |
| 1696 | else if( pDevice->flashinfo.jedecnum == JEDEC_ATMEL ) |
| 1697 | { |
| 1698 | if( pDevice->flashinfo.romtype == ROM_TYPE_EEPROM ) |
| 1699 | { |
| 1700 | #if 0 |
| 1701 | Config1 = 0x2008200 |
| 1702 | Config2 = 0x9f0081 |
| 1703 | Config3 = 0xa184a053 |
| 1704 | Write1 = 0xaf000400 |
| 1705 | #endif |
| 1706 | } |
| 1707 | else if( pDevice->flashinfo.buffered == TRUE ) |
| 1708 | { |
| 1709 | /* |
| 1710 | * Program our chip to look at bit7 of the NVRAM's status |
| 1711 | * register when polling the write operation status. |
| 1712 | */ |
| 1713 | value32 = REG_RD(pDevice, Nvram.Config1); |
| 1714 | value32 |= FLASH_STATUS_BITS_MASK; |
| 1715 | REG_WR( pDevice, Nvram.Config1, value32 ); |
| 1716 | |
| 1717 | /* Set the write command to be "page program". */ |
| 1718 | value32 = REG_RD(pDevice, Nvram.Config3); /* default = 0x03840a53 */ |
| 1719 | value32 &= ~NVRAM_WRITE_UNBUFFERED_COMMAND( NVRAM_COMMAND_MASK ); |
| 1720 | value32 |= NVRAM_WRITE_UNBUFFERED_COMMAND( ATMEL_AT45DB0X1B_BUFFER_WRITE_CMD ); |
| 1721 | REG_WR( pDevice, Nvram.Config3, value32 ); |
| 1722 | /* Config1 = 0x2008273 */ |
| 1723 | /* Config2 = 0x00570081 */ |
| 1724 | /* Config3 = 0x68848353 */ |
| 1725 | } |
| 1726 | else |
| 1727 | { |
| 1728 | /* NVRAM type unsupported. */ |
| 1729 | return LM_STATUS_FAILURE; |
| 1730 | } |
| 1731 | } |
| 1732 | else |
| 1733 | { |
| 1734 | /* NVRAM type unsupported. */ |
| 1735 | return LM_STATUS_FAILURE; |
| 1736 | } |
| 1737 | |
| 1738 | status = LM_STATUS_SUCCESS; |
| 1739 | |
| 1740 | if( offset & 0x3 ) |
| 1741 | { |
| 1742 | /* |
| 1743 | * If our initial offset does not fall on a word boundary, we |
| 1744 | * have to do a read / modify / write to preserve the |
| 1745 | * preceding bits we are not interested in. |
| 1746 | */ |
| 1747 | status = LM_NVRAM_ReadBlock( pDevice, offset & ~0x3, |
| 1748 | (LM_UINT8 *)&subword1, |
| 1749 | sizeof(subword1) ); |
| 1750 | if( status == LM_STATUS_FAILURE ) |
| 1751 | { |
| 1752 | return status; |
| 1753 | } |
| 1754 | } |
| 1755 | |
| 1756 | if( (offset + size) & 0x3 ) |
| 1757 | { |
| 1758 | /* |
| 1759 | * Likewise, if our ending offset does not fall on a word |
| 1760 | * boundary, we have to do a read / modify / write to |
| 1761 | * preserve the trailing bits we are not interested in. |
| 1762 | */ |
| 1763 | status = LM_NVRAM_ReadBlock( pDevice, (offset + size) & ~0x3, |
| 1764 | (LM_UINT8 *)&subword2, |
| 1765 | sizeof(subword2) ); |
| 1766 | if( status == LM_STATUS_FAILURE ) |
| 1767 | { |
| 1768 | return status; |
| 1769 | } |
| 1770 | } |
| 1771 | |
| 1772 | ctrlreg = NVRAM_CMD_FIRST; |
| 1773 | |
| 1774 | while( size > 0 ) |
| 1775 | { |
| 1776 | value32 = offset & 0x3; |
| 1777 | if( value32 ) |
| 1778 | { |
| 1779 | /* |
| 1780 | * We have to read / modify / write the data to |
| 1781 | * preserve the flash contents preceding the offset. |
| 1782 | */ |
| 1783 | offset &= ~0x3; |
| 1784 | |
| 1785 | dstptr = ((LM_UINT8 *)(&value32)) + value32; |
| 1786 | bytecnt = sizeof(LM_UINT32) - value32; |
| 1787 | value32 = subword1; |
| 1788 | } |
| 1789 | else if( size < sizeof(LM_UINT32) ) |
| 1790 | { |
| 1791 | dstptr = (LM_UINT8 *)(&value32); |
| 1792 | bytecnt = size; |
| 1793 | value32 = subword2; |
| 1794 | } |
| 1795 | else |
| 1796 | { |
| 1797 | dstptr = (LM_UINT8 *)(&value32); |
| 1798 | bytecnt = sizeof(LM_UINT32); |
| 1799 | } |
| 1800 | |
| 1801 | if( size < bytecnt ) |
| 1802 | { |
| 1803 | bytecnt = size; |
| 1804 | } |
| 1805 | |
| 1806 | memcpy( dstptr, (void *)data, bytecnt ); |
| 1807 | |
| 1808 | data += bytecnt; |
| 1809 | size -= bytecnt; |
| 1810 | |
| 1811 | /* |
| 1812 | * Swap the data so that the byte stream will be |
| 1813 | * written the same in little and big endian systems. |
| 1814 | */ |
| 1815 | value32 = MM_SWAP_BE32(value32); |
| 1816 | |
| 1817 | /* Set the desired write data value to the flash. */ |
| 1818 | REG_WR(pDevice, Nvram.WriteData, value32); |
| 1819 | |
| 1820 | pageoff = offset % pDevice->flashinfo.pagesize; |
| 1821 | |
| 1822 | /* Set the target address. */ |
| 1823 | if( pDevice->flashinfo.jedecnum == JEDEC_ATMEL && |
| 1824 | pDevice->flashinfo.romtype == ROM_TYPE_FLASH ) |
| 1825 | { |
| 1826 | /* |
| 1827 | * If we're dealing with the special ATMEL part, we need to |
| 1828 | * convert the submitted offset before it can be considered |
| 1829 | * a physical address. |
| 1830 | */ |
| 1831 | LM_UINT32 pagenmbr; |
| 1832 | |
| 1833 | pagenmbr = offset / pDevice->flashinfo.pagesize; |
| 1834 | pagenmbr = pagenmbr << ATMEL_AT45DB0X1B_PAGE_POS; |
| 1835 | |
| 1836 | physaddr = pagenmbr + pageoff; |
| 1837 | } |
| 1838 | else |
| 1839 | { |
| 1840 | physaddr = offset; |
| 1841 | } |
| 1842 | |
| 1843 | REG_WR(pDevice, Nvram.Addr, physaddr); |
| 1844 | |
| 1845 | ctrlreg |= (NVRAM_CMD_DO_IT | NVRAM_CMD_DONE | NVRAM_CMD_WR); |
| 1846 | |
| 1847 | if( pageoff == 0 ) |
| 1848 | { |
| 1849 | /* Set CMD_FIRST when we are at the beginning of a page. */ |
| 1850 | ctrlreg |= NVRAM_CMD_FIRST; |
| 1851 | } |
| 1852 | else if( pageoff == (pDevice->flashinfo.pagesize - 4) ) |
| 1853 | { |
| 1854 | /* |
| 1855 | * Enable the write to the current page |
| 1856 | * before moving on to the next one. |
| 1857 | */ |
| 1858 | ctrlreg |= NVRAM_CMD_LAST; |
| 1859 | } |
| 1860 | |
| 1861 | if( size == 0 ) |
| 1862 | { |
| 1863 | ctrlreg |= NVRAM_CMD_LAST; |
| 1864 | } |
| 1865 | |
| 1866 | if( pDevice->flashinfo.jedecnum == JEDEC_ST && |
| 1867 | ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5750) || |
| 1868 | (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5714)) && |
| 1869 | (ctrlreg & NVRAM_CMD_FIRST) ) |
| 1870 | { |
| 1871 | LM_UINT32 wrencmd; |
| 1872 | |
| 1873 | REG_WR(pDevice, Nvram.Write1, ST_M45PEX0_WRENA_CMD); |
| 1874 | |
| 1875 | /* We need to issue a special "write enable" command first. */ |
| 1876 | wrencmd = NVRAM_CMD_WRITE_ENABLE | NVRAM_CMD_DO_IT | NVRAM_CMD_DONE; |
| 1877 | |
| 1878 | status = LM_NVRAM_ExecuteCommand( pDevice, wrencmd ); |
| 1879 | if( status == LM_STATUS_FAILURE ) |
| 1880 | { |
| 1881 | return status; |
| 1882 | } |
| 1883 | } |
| 1884 | |
| 1885 | if( pDevice->flashinfo.romtype == ROM_TYPE_EEPROM ) |
| 1886 | { |
| 1887 | /* We always do complete word writes to eeprom. */ |
| 1888 | ctrlreg |= (NVRAM_CMD_FIRST | NVRAM_CMD_LAST); |
| 1889 | } |
| 1890 | |
| 1891 | status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg ); |
| 1892 | if( status == LM_STATUS_FAILURE ) |
| 1893 | { |
| 1894 | break; |
| 1895 | } |
| 1896 | |
| 1897 | offset += sizeof(LM_UINT32); |
| 1898 | ctrlreg = 0; |
| 1899 | } |
| 1900 | |
| 1901 | return status; |
| 1902 | } /* LM_NVRAM_WriteBlockBuffered */ |
| 1903 | |
| 1904 | |
| 1905 | |
| 1906 | /******************************************************************************/ |
| 1907 | /* Description: */ |
| 1908 | /* */ |
| 1909 | /* Return: */ |
| 1910 | /******************************************************************************/ |
| 1911 | LM_STATUS LM_NVRAM_WriteBlock( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset, |
| 1912 | LM_UINT8 * data, LM_UINT32 size ) |
| 1913 | { |
| 1914 | LM_UINT32 value32; |
| 1915 | LM_STATUS status; |
| 1916 | |
| 1917 | if( offset > pDevice->flashinfo.chipsize || |
| 1918 | (offset + size) > pDevice->flashinfo.chipsize ) |
| 1919 | { |
| 1920 | return LM_STATUS_FAILURE; |
| 1921 | } |
| 1922 | |
| 1923 | if( size == 0 ) |
| 1924 | { |
| 1925 | return LM_STATUS_SUCCESS; |
| 1926 | } |
| 1927 | |
| 1928 | if( T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| 1929 | T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 ) |
| 1930 | { |
| 1931 | status = LM_EEPROM_WriteBlock( pDevice, offset, data, size ); |
| 1932 | } |
| 1933 | else |
| 1934 | { |
| 1935 | status = LM_NVRAM_AcquireLock( pDevice ); |
| 1936 | if( status == LM_STATUS_FAILURE ) |
| 1937 | { |
| 1938 | return status; |
| 1939 | } |
| 1940 | |
| 1941 | if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 1942 | { |
| 1943 | if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0) |
| 1944 | { |
| 1945 | value32 = REG_RD( pDevice, Nvram.NvmAccess ); |
| 1946 | value32 |= (NVRAM_ACCESS_ENABLE | NVRAM_ACCESS_WRITE_ENABLE); |
| 1947 | REG_WR( pDevice, Nvram.NvmAccess, value32 ); |
| 1948 | } |
| 1949 | } |
| 1950 | |
| 1951 | /* Enable EEPROM write. */ |
| 1952 | if( pDevice->Flags & EEPROM_WP_FLAG ) |
| 1953 | { |
| 1954 | REG_WR(pDevice, Grc.LocalCtrl, |
| 1955 | pDevice->GrcLocalCtrl | GRC_MISC_LOCAL_CTRL_GPIO_OE1); |
| 1956 | REG_RD_BACK(pDevice, Grc.LocalCtrl); |
| 1957 | MM_Wait(40); |
| 1958 | |
| 1959 | value32 = REG_RD(pDevice, Grc.LocalCtrl); |
| 1960 | if( value32 & GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 ) |
| 1961 | { |
| 1962 | status = LM_STATUS_FAILURE; |
| 1963 | goto error; |
| 1964 | } |
| 1965 | } |
| 1966 | |
| 1967 | value32 = REG_RD(pDevice, Grc.Mode); |
| 1968 | value32 |= GRC_MODE_NVRAM_WRITE_ENABLE; |
| 1969 | REG_WR(pDevice, Grc.Mode, value32); |
| 1970 | |
| 1971 | if( pDevice->flashinfo.buffered == TRUE || |
| 1972 | pDevice->flashinfo.romtype == ROM_TYPE_EEPROM ) |
| 1973 | { |
| 1974 | status = LM_NVRAM_WriteBlockBuffered(pDevice, offset, data, size); |
| 1975 | } |
| 1976 | else |
| 1977 | { |
| 1978 | status = LM_NVRAM_WriteBlockUnBuffered(pDevice, offset, data, size); |
| 1979 | } |
| 1980 | |
| 1981 | value32 = REG_RD(pDevice, Grc.Mode); |
| 1982 | value32 &= ~GRC_MODE_NVRAM_WRITE_ENABLE; |
| 1983 | REG_WR(pDevice, Grc.Mode, value32); |
| 1984 | |
| 1985 | if( pDevice->Flags & EEPROM_WP_FLAG ) |
| 1986 | { |
| 1987 | REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl | |
| 1988 | GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| 1989 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1); |
| 1990 | REG_RD_BACK(pDevice, Grc.LocalCtrl); |
| 1991 | MM_Wait(40); |
| 1992 | } |
| 1993 | |
| 1994 | error: |
| 1995 | |
| 1996 | if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 1997 | { |
| 1998 | if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0) |
| 1999 | { |
| 2000 | value32 = REG_RD(pDevice, Nvram.NvmAccess); |
| 2001 | value32 &= ~(NVRAM_ACCESS_ENABLE | NVRAM_ACCESS_WRITE_ENABLE); |
| 2002 | REG_WR(pDevice, Nvram.NvmAccess, value32); |
| 2003 | } |
| 2004 | } |
| 2005 | |
| 2006 | LM_NVRAM_ReleaseLock( pDevice ); |
| 2007 | } |
| 2008 | |
| 2009 | return status; |
| 2010 | } /* LM_NVRAM_WriteBlock */ |
| 2011 | |
| 2012 | |
| 2013 | LM_STATUS LM_NvramWriteBlock( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset, |
| 2014 | LM_UINT32 * data, LM_UINT32 size ) |
| 2015 | { |
| 2016 | /* BCM4785: Avoid all access to NVRAM & EEPROM. */ |
| 2017 | if (pDevice->Flags & SB_CORE_FLAG) |
| 2018 | return LM_STATUS_FAILURE; |
| 2019 | |
| 2020 | return LM_NVRAM_WriteBlock( pDevice, offset, (LM_UINT8 *)data, size * 4 ); |
| 2021 | } |
| 2022 | |
| 2023 | #endif /* ETHTOOL_SEEPROM */ |
| 2024 | |
| 2025 | |
| 2026 | static int |
| 2027 | bcm_ether_atoe(char *p, struct ether_addr *ea) |
| 2028 | { |
| 2029 | int i = 0; |
| 2030 | |
| 2031 | for (;;) { |
| 2032 | ea->octet[i++] = (char) simple_strtoul(p, &p, 16); |
| 2033 | if (!*p++ || i == 6) |
| 2034 | break; |
| 2035 | } |
| 2036 | |
| 2037 | return (i == 6); |
| 2038 | } |
| 2039 | |
| 2040 | /******************************************************************************/ |
| 2041 | /* Description: */ |
| 2042 | /* This routine initializes default parameters and reads the PCI */ |
| 2043 | /* configurations. */ |
| 2044 | /* */ |
| 2045 | /* Return: */ |
| 2046 | /* LM_STATUS_SUCCESS */ |
| 2047 | /******************************************************************************/ |
| 2048 | LM_STATUS |
| 2049 | LM_GetAdapterInfo( |
| 2050 | PLM_DEVICE_BLOCK pDevice) |
| 2051 | { |
| 2052 | PLM_ADAPTER_INFO pAdapterInfo; |
| 2053 | LM_UINT32 Value32, LedCfg, Ver; |
| 2054 | LM_STATUS Status; |
| 2055 | LM_UINT32 EeSigFound; |
| 2056 | LM_UINT32 EePhyTypeSerdes = 0; |
| 2057 | LM_UINT32 EePhyId = 0; |
| 2058 | |
| 2059 | /* Get Device Id and Vendor Id */ |
| 2060 | Status = MM_ReadConfig32(pDevice, PCI_VENDOR_ID_REG, &Value32); |
| 2061 | if(Status != LM_STATUS_SUCCESS) |
| 2062 | { |
| 2063 | return Status; |
| 2064 | } |
| 2065 | pDevice->PciVendorId = (LM_UINT16) Value32; |
| 2066 | pDevice->PciDeviceId = (LM_UINT16) (Value32 >> 16); |
| 2067 | |
| 2068 | Status = MM_ReadConfig32(pDevice, PCI_REV_ID_REG, &Value32); |
| 2069 | if(Status != LM_STATUS_SUCCESS) |
| 2070 | { |
| 2071 | return Status; |
| 2072 | } |
| 2073 | pDevice->PciRevId = (LM_UINT8) Value32; |
| 2074 | |
| 2075 | /* Get chip revision id. */ |
| 2076 | Status = MM_ReadConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, &Value32); |
| 2077 | pDevice->ChipRevId = Value32 >> 16; |
| 2078 | |
| 2079 | /* determine if it is PCIE system */ |
| 2080 | if( (Value32 = MM_FindCapability(pDevice, T3_PCIE_CAPABILITY_ID)) != 0) |
| 2081 | { |
| 2082 | pDevice->Flags |= PCI_EXPRESS_FLAG; |
| 2083 | } |
| 2084 | |
| 2085 | /* Get subsystem vendor. */ |
| 2086 | Status = MM_ReadConfig32(pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG, &Value32); |
| 2087 | if(Status != LM_STATUS_SUCCESS) |
| 2088 | { |
| 2089 | return Status; |
| 2090 | } |
| 2091 | pDevice->SubsystemVendorId = (LM_UINT16) Value32; |
| 2092 | |
| 2093 | /* Get PCI subsystem id. */ |
| 2094 | pDevice->SubsystemId = (LM_UINT16) (Value32 >> 16); |
| 2095 | |
| 2096 | /* Read bond id for baxter A0 since it has same rev id as hamilton A0*/ |
| 2097 | |
| 2098 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5714_A0) { |
| 2099 | MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, Value32 | MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS); |
| 2100 | |
| 2101 | Value32 = LM_RegRdInd(pDevice, 0x6804); |
| 2102 | Value32 &= GRC_MISC_BD_ID_MASK; |
| 2103 | |
| 2104 | if((Value32 == 0)||(Value32 == 0x8000)) { |
| 2105 | pDevice->ChipRevId = T3_CHIP_ID_5752_A0; |
| 2106 | }else{ |
| 2107 | pDevice->ChipRevId = T3_CHIP_ID_5714_A0; |
| 2108 | } |
| 2109 | |
| 2110 | Status = MM_ReadConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, &Value32); |
| 2111 | MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, Value32 & ~ MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS); |
| 2112 | } |
| 2113 | |
| 2114 | |
| 2115 | /* Get the cache line size. */ |
| 2116 | MM_ReadConfig32(pDevice, PCI_CACHE_LINE_SIZE_REG, &Value32); |
| 2117 | pDevice->CacheLineSize = (LM_UINT8) Value32; |
| 2118 | pDevice->SavedCacheLineReg = Value32; |
| 2119 | |
| 2120 | if(pDevice->ChipRevId != T3_CHIP_ID_5703_A1 && |
| 2121 | pDevice->ChipRevId != T3_CHIP_ID_5703_A2 && |
| 2122 | pDevice->ChipRevId != T3_CHIP_ID_5704_A0) |
| 2123 | { |
| 2124 | pDevice->Flags &= ~UNDI_FIX_FLAG; |
| 2125 | } |
| 2126 | #ifndef PCIX_TARGET_WORKAROUND |
| 2127 | pDevice->Flags &= ~UNDI_FIX_FLAG; |
| 2128 | #endif |
| 2129 | /* Map the memory base to system address space. */ |
| 2130 | if (!(pDevice->Flags & UNDI_FIX_FLAG)) |
| 2131 | { |
| 2132 | Status = MM_MapMemBase(pDevice); |
| 2133 | if(Status != LM_STATUS_SUCCESS) |
| 2134 | { |
| 2135 | return Status; |
| 2136 | } |
| 2137 | /* Initialize the memory view pointer. */ |
| 2138 | pDevice->pMemView = (PT3_STD_MEM_MAP) pDevice->pMappedMemBase; |
| 2139 | } |
| 2140 | |
| 2141 | if ((T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) || |
| 2142 | (T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5704_AX)) |
| 2143 | { |
| 2144 | pDevice->Flags |= TX_4G_WORKAROUND_FLAG; |
| 2145 | } |
| 2146 | if ( (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) || |
| 2147 | (pDevice->Flags == PCI_EXPRESS_FLAG)) |
| 2148 | { |
| 2149 | pDevice->Flags |= REG_RD_BACK_FLAG; |
| 2150 | } |
| 2151 | |
| 2152 | if(pDevice->ChipRevId==T3_CHIP_ID_5750_A0) |
| 2153 | return LM_STATUS_UNKNOWN_ADAPTER; |
| 2154 | |
| 2155 | #ifdef PCIX_TARGET_WORKAROUND |
| 2156 | MM_ReadConfig32(pDevice, T3_PCI_STATE_REG, &Value32); |
| 2157 | if((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0) |
| 2158 | { |
| 2159 | if(T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) |
| 2160 | { |
| 2161 | pDevice->Flags |= ENABLE_PCIX_FIX_FLAG; |
| 2162 | } |
| 2163 | } |
| 2164 | if (pDevice->Flags & UNDI_FIX_FLAG) |
| 2165 | { |
| 2166 | pDevice->Flags |= ENABLE_PCIX_FIX_FLAG; |
| 2167 | } |
| 2168 | #endif |
| 2169 | /* Bx bug: due to the "byte_enable bug" in PCI-X mode, the power */ |
| 2170 | /* management register may be clobbered which may cause the */ |
| 2171 | /* BCM5700 to go into D3 state. While in this state, we will */ |
| 2172 | /* need to restore the device to D0 state. */ |
| 2173 | MM_ReadConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, &Value32); |
| 2174 | Value32 |= T3_PM_PME_ASSERTED; |
| 2175 | Value32 &= ~T3_PM_POWER_STATE_MASK; |
| 2176 | Value32 |= T3_PM_POWER_STATE_D0; |
| 2177 | MM_WriteConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, Value32); |
| 2178 | |
| 2179 | /* read the current PCI command word */ |
| 2180 | MM_ReadConfig32(pDevice, PCI_COMMAND_REG, &Value32); |
| 2181 | |
| 2182 | /* Make sure bus-mastering is enabled. */ |
| 2183 | Value32 |= PCI_BUSMASTER_ENABLE; |
| 2184 | |
| 2185 | #ifdef PCIX_TARGET_WORKAROUND |
| 2186 | /* if we are in PCI-X mode, also make sure mem-mapping and SERR#/PERR# |
| 2187 | are enabled */ |
| 2188 | if (pDevice->Flags & ENABLE_PCIX_FIX_FLAG) { |
| 2189 | Value32 |= (PCI_MEM_SPACE_ENABLE | PCI_SYSTEM_ERROR_ENABLE | |
| 2190 | PCI_PARITY_ERROR_ENABLE); |
| 2191 | } |
| 2192 | if (pDevice->Flags & UNDI_FIX_FLAG) |
| 2193 | { |
| 2194 | Value32 &= ~PCI_MEM_SPACE_ENABLE; |
| 2195 | } |
| 2196 | |
| 2197 | #endif |
| 2198 | |
| 2199 | if (pDevice->Flags & ENABLE_MWI_FLAG) |
| 2200 | { |
| 2201 | Value32 |= PCI_MEMORY_WRITE_INVALIDATE; |
| 2202 | } |
| 2203 | else { |
| 2204 | Value32 &= (~PCI_MEMORY_WRITE_INVALIDATE); |
| 2205 | } |
| 2206 | |
| 2207 | /* save the value we are going to write into the PCI command word */ |
| 2208 | pDevice->PciCommandStatusWords = Value32; |
| 2209 | |
| 2210 | Status = MM_WriteConfig32(pDevice, PCI_COMMAND_REG, Value32); |
| 2211 | if(Status != LM_STATUS_SUCCESS) |
| 2212 | { |
| 2213 | return Status; |
| 2214 | } |
| 2215 | |
| 2216 | /* Setup the mode registers. */ |
| 2217 | pDevice->MiscHostCtrl = |
| 2218 | MISC_HOST_CTRL_MASK_PCI_INT | |
| 2219 | MISC_HOST_CTRL_ENABLE_ENDIAN_WORD_SWAP | |
| 2220 | #ifdef BIG_ENDIAN_HOST |
| 2221 | MISC_HOST_CTRL_ENABLE_ENDIAN_BYTE_SWAP | |
| 2222 | #endif /* BIG_ENDIAN_HOST */ |
| 2223 | MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS | |
| 2224 | MISC_HOST_CTRL_ENABLE_PCI_STATE_REG_RW; |
| 2225 | /* write to PCI misc host ctr first in order to enable indirect accesses */ |
| 2226 | MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, pDevice->MiscHostCtrl); |
| 2227 | |
| 2228 | /* Set power state to D0. */ |
| 2229 | LM_SetPowerState(pDevice, LM_POWER_STATE_D0); |
| 2230 | |
| 2231 | /* Preserve HOST_STACK_UP bit in case ASF firmware is running */ |
| 2232 | Value32 = REG_RD(pDevice, Grc.Mode) & GRC_MODE_HOST_STACK_UP; |
| 2233 | #ifdef BIG_ENDIAN_HOST |
| 2234 | Value32 |= GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | |
| 2235 | GRC_MODE_WORD_SWAP_NON_FRAME_DATA; |
| 2236 | #else |
| 2237 | Value32 |= GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA; |
| 2238 | #endif |
| 2239 | REG_WR(pDevice, Grc.Mode, Value32); |
| 2240 | |
| 2241 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) |
| 2242 | { |
| 2243 | REG_WR(pDevice, Grc.LocalCtrl, GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 | |
| 2244 | GRC_MISC_LOCAL_CTRL_GPIO_OE1); |
| 2245 | REG_RD_BACK(pDevice, Grc.LocalCtrl); |
| 2246 | } |
| 2247 | MM_Wait(40); |
| 2248 | |
| 2249 | /* Enable memory arbiter*/ |
| 2250 | if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId) ) |
| 2251 | { |
| 2252 | Value32 = REG_RD(pDevice,MemArbiter.Mode); |
| 2253 | REG_WR(pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE | Value32); |
| 2254 | } |
| 2255 | else |
| 2256 | { |
| 2257 | REG_WR(pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE); |
| 2258 | } |
| 2259 | |
| 2260 | |
| 2261 | LM_SwitchClocks(pDevice); |
| 2262 | |
| 2263 | REG_WR(pDevice, PciCfg.MemWindowBaseAddr, 0); |
| 2264 | |
| 2265 | /* Check to see if PXE ran and did not shutdown properly */ |
| 2266 | if ((REG_RD(pDevice, DmaWrite.Mode) & DMA_WRITE_MODE_ENABLE) || |
| 2267 | !(REG_RD(pDevice, PciCfg.MiscHostCtrl) & MISC_HOST_CTRL_MASK_PCI_INT)) |
| 2268 | { |
| 2269 | LM_DisableInterrupt(pDevice); |
| 2270 | /* assume ASF is enabled */ |
| 2271 | pDevice->AsfFlags = ASF_ENABLED; |
| 2272 | if (T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 2273 | { |
| 2274 | pDevice->AsfFlags |= ASF_NEW_HANDSHAKE; |
| 2275 | } |
| 2276 | LM_ShutdownChip(pDevice, LM_SHUTDOWN_RESET); |
| 2277 | pDevice->AsfFlags = 0; |
| 2278 | } |
| 2279 | #ifdef PCIX_TARGET_WORKAROUND |
| 2280 | MM_ReadConfig32(pDevice, T3_PCI_STATE_REG, &Value32); |
| 2281 | if (!(pDevice->Flags & ENABLE_PCIX_FIX_FLAG) && |
| 2282 | ((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0)) |
| 2283 | { |
| 2284 | if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 || |
| 2285 | pDevice->ChipRevId == T3_CHIP_ID_5701_B0 || |
| 2286 | pDevice->ChipRevId == T3_CHIP_ID_5701_B2 || |
| 2287 | pDevice->ChipRevId == T3_CHIP_ID_5701_B5) |
| 2288 | { |
| 2289 | MM_MEMWRITEL(&(pDevice->pMemView->uIntMem.MemBlock32K[0x300]), 0); |
| 2290 | MM_MEMWRITEL(&(pDevice->pMemView->uIntMem.MemBlock32K[0x301]), 0); |
| 2291 | MM_MEMWRITEL(&(pDevice->pMemView->uIntMem.MemBlock32K[0x301]), |
| 2292 | 0xffffffff); |
| 2293 | if (MM_MEMREADL(&(pDevice->pMemView->uIntMem.MemBlock32K[0x300]))) |
| 2294 | { |
| 2295 | pDevice->Flags |= ENABLE_PCIX_FIX_FLAG; |
| 2296 | } |
| 2297 | } |
| 2298 | } |
| 2299 | #endif |
| 2300 | |
| 2301 | LM_NVRAM_Init(pDevice); |
| 2302 | |
| 2303 | Status = LM_STATUS_FAILURE; |
| 2304 | |
| 2305 | /* BCM4785: Use the MAC address stored in the main flash. */ |
| 2306 | if (pDevice->Flags & SB_CORE_FLAG) { |
| 2307 | bcm_ether_atoe(getvar(NULL, "et0macaddr"), (struct ether_addr *)pDevice->NodeAddress); |
| 2308 | Status = LM_STATUS_SUCCESS; |
| 2309 | } else { |
| 2310 | /* Get the node address. First try to get in from the shared memory. */ |
| 2311 | /* If the signature is not present, then get it from the NVRAM. */ |
| 2312 | Value32 = MEM_RD_OFFSET(pDevice, T3_MAC_ADDR_HIGH_MAILBOX); |
| 2313 | if((Value32 >> 16) == 0x484b) |
| 2314 | { |
| 2315 | int i; |
| 2316 | |
| 2317 | pDevice->NodeAddress[0] = (LM_UINT8) (Value32 >> 8); |
| 2318 | pDevice->NodeAddress[1] = (LM_UINT8) Value32; |
| 2319 | |
| 2320 | Value32 = MEM_RD_OFFSET(pDevice, T3_MAC_ADDR_LOW_MAILBOX); |
| 2321 | |
| 2322 | pDevice->NodeAddress[2] = (LM_UINT8) (Value32 >> 24); |
| 2323 | pDevice->NodeAddress[3] = (LM_UINT8) (Value32 >> 16); |
| 2324 | pDevice->NodeAddress[4] = (LM_UINT8) (Value32 >> 8); |
| 2325 | pDevice->NodeAddress[5] = (LM_UINT8) Value32; |
| 2326 | |
| 2327 | /* Check for null MAC address which can happen with older boot code */ |
| 2328 | for (i = 0; i < 6; i++) |
| 2329 | { |
| 2330 | if (pDevice->NodeAddress[i] != 0) |
| 2331 | { |
| 2332 | Status = LM_STATUS_SUCCESS; |
| 2333 | break; |
| 2334 | } |
| 2335 | } |
| 2336 | } |
| 2337 | } |
| 2338 | |
| 2339 | if (Status != LM_STATUS_SUCCESS) |
| 2340 | { |
| 2341 | int MacOffset; |
| 2342 | |
| 2343 | MacOffset = 0x7c; |
| 2344 | if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704 || |
| 2345 | (T3_ASIC_5714_FAMILY(pDevice->ChipRevId)) ) |
| 2346 | { |
| 2347 | if (REG_RD(pDevice, PciCfg.DualMacCtrl) & T3_DUAL_MAC_ID) |
| 2348 | { |
| 2349 | MacOffset = 0xcc; |
| 2350 | } |
| 2351 | /* the boot code is not running */ |
| 2352 | if (LM_NVRAM_AcquireLock(pDevice) != LM_STATUS_SUCCESS) |
| 2353 | { |
| 2354 | REG_WR(pDevice, Nvram.Cmd, NVRAM_CMD_RESET); |
| 2355 | } |
| 2356 | else |
| 2357 | { |
| 2358 | LM_NVRAM_ReleaseLock(pDevice); |
| 2359 | } |
| 2360 | } |
| 2361 | |
| 2362 | Status = LM_NvramRead(pDevice, MacOffset, &Value32); |
| 2363 | if(Status == LM_STATUS_SUCCESS) |
| 2364 | { |
| 2365 | LM_UINT8 *c = (LM_UINT8 *) &Value32; |
| 2366 | |
| 2367 | pDevice->NodeAddress[0] = c[2]; |
| 2368 | pDevice->NodeAddress[1] = c[3]; |
| 2369 | |
| 2370 | Status = LM_NvramRead(pDevice, MacOffset + 4, &Value32); |
| 2371 | |
| 2372 | c = (LM_UINT8 *) &Value32; |
| 2373 | pDevice->NodeAddress[2] = c[0]; |
| 2374 | pDevice->NodeAddress[3] = c[1]; |
| 2375 | pDevice->NodeAddress[4] = c[2]; |
| 2376 | pDevice->NodeAddress[5] = c[3]; |
| 2377 | } |
| 2378 | } |
| 2379 | |
| 2380 | if(Status != LM_STATUS_SUCCESS) |
| 2381 | { |
| 2382 | Value32 = REG_RD(pDevice, MacCtrl.MacAddr[0].High); |
| 2383 | pDevice->NodeAddress[0] = (Value32 >> 8) & 0xff; |
| 2384 | pDevice->NodeAddress[1] = Value32 & 0xff; |
| 2385 | Value32 = REG_RD(pDevice, MacCtrl.MacAddr[0].Low); |
| 2386 | pDevice->NodeAddress[2] = (Value32 >> 24) & 0xff; |
| 2387 | pDevice->NodeAddress[3] = (Value32 >> 16) & 0xff; |
| 2388 | pDevice->NodeAddress[4] = (Value32 >> 8) & 0xff; |
| 2389 | pDevice->NodeAddress[5] = Value32 & 0xff; |
| 2390 | B57_ERR(("WARNING: Cannot get MAC addr from NVRAM, using %2.2x%2.2x%2.2x%2.2x%2.2x%2.2x\n", |
| 2391 | pDevice->NodeAddress[0], pDevice->NodeAddress[1], |
| 2392 | pDevice->NodeAddress[2], pDevice->NodeAddress[3], |
| 2393 | pDevice->NodeAddress[4], pDevice->NodeAddress[5])); |
| 2394 | } |
| 2395 | |
| 2396 | memcpy(pDevice->PermanentNodeAddress, pDevice->NodeAddress, 6); |
| 2397 | |
| 2398 | /* Initialize the default values. */ |
| 2399 | pDevice->TxPacketDescCnt = DEFAULT_TX_PACKET_DESC_COUNT; |
| 2400 | pDevice->RxStdDescCnt = DEFAULT_STD_RCV_DESC_COUNT; |
| 2401 | pDevice->RxCoalescingTicks = DEFAULT_RX_COALESCING_TICKS; |
| 2402 | pDevice->TxCoalescingTicks = DEFAULT_TX_COALESCING_TICKS; |
| 2403 | pDevice->RxMaxCoalescedFrames = DEFAULT_RX_MAX_COALESCED_FRAMES; |
| 2404 | pDevice->TxMaxCoalescedFrames = DEFAULT_TX_MAX_COALESCED_FRAMES; |
| 2405 | pDevice->RxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE; |
| 2406 | pDevice->TxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE; |
| 2407 | pDevice->RxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE; |
| 2408 | pDevice->TxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE; |
| 2409 | pDevice->StatsCoalescingTicks = DEFAULT_STATS_COALESCING_TICKS; |
| 2410 | pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC; |
| 2411 | pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC; |
| 2412 | pDevice->DisableAutoNeg = FALSE; |
| 2413 | pDevice->PhyIntMode = T3_PHY_INT_MODE_AUTO; |
| 2414 | pDevice->LinkChngMode = T3_LINK_CHNG_MODE_AUTO; |
| 2415 | |
| 2416 | pDevice->PhyFlags = 0; |
| 2417 | |
| 2418 | if (!(pDevice->Flags & PCI_EXPRESS_FLAG)) |
| 2419 | pDevice->Flags |= DELAY_PCI_GRANT_FLAG; |
| 2420 | |
| 2421 | pDevice->RequestedLineSpeed = LM_LINE_SPEED_AUTO; |
| 2422 | pDevice->TaskOffloadCap = LM_TASK_OFFLOAD_NONE; |
| 2423 | pDevice->TaskToOffload = LM_TASK_OFFLOAD_NONE; |
| 2424 | pDevice->FlowControlCap = LM_FLOW_CONTROL_AUTO_PAUSE; |
| 2425 | #ifdef INCLUDE_TBI_SUPPORT |
| 2426 | pDevice->TbiFlags = 0; |
| 2427 | pDevice->IgnoreTbiLinkChange = FALSE; |
| 2428 | #endif |
| 2429 | #ifdef INCLUDE_TCP_SEG_SUPPORT |
| 2430 | pDevice->LargeSendMaxSize = T3_TCP_SEG_MAX_OFFLOAD_SIZE; |
| 2431 | pDevice->LargeSendMinNumSeg = T3_TCP_SEG_MIN_NUM_SEG; |
| 2432 | #endif |
| 2433 | |
| 2434 | if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) || |
| 2435 | (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704) || |
| 2436 | (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705)) |
| 2437 | { |
| 2438 | pDevice->PhyFlags |= PHY_RESET_ON_LINKDOWN; |
| 2439 | pDevice->PhyFlags |= PHY_CHECK_TAPS_AFTER_RESET; |
| 2440 | } |
| 2441 | if ((T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5703_AX) || |
| 2442 | (T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5704_AX)) |
| 2443 | { |
| 2444 | pDevice->PhyFlags |= PHY_ADC_FIX; |
| 2445 | } |
| 2446 | if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) |
| 2447 | { |
| 2448 | pDevice->PhyFlags |= PHY_5704_A0_FIX; |
| 2449 | } |
| 2450 | if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 2451 | { |
| 2452 | pDevice->PhyFlags |= PHY_5705_5750_FIX; |
| 2453 | } |
| 2454 | /* Ethernet@Wirespeed is supported on 5701,5702,5703,5704,5705a0,5705a1 */ |
| 2455 | if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) && |
| 2456 | !((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705) && |
| 2457 | (pDevice->ChipRevId != T3_CHIP_ID_5705_A0) && |
| 2458 | (pDevice->ChipRevId != T3_CHIP_ID_5705_A1))) |
| 2459 | { |
| 2460 | pDevice->PhyFlags |= PHY_ETHERNET_WIRESPEED; |
| 2461 | } |
| 2462 | |
| 2463 | switch (T3_ASIC_REV(pDevice->ChipRevId)) |
| 2464 | { |
| 2465 | case T3_ASIC_REV_5704: |
| 2466 | pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR; |
| 2467 | pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE64; |
| 2468 | break; |
| 2469 | default: |
| 2470 | pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR; |
| 2471 | pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE96; |
| 2472 | break; |
| 2473 | } |
| 2474 | |
| 2475 | pDevice->LinkStatus = LM_STATUS_LINK_DOWN; |
| 2476 | pDevice->QueueRxPackets = TRUE; |
| 2477 | |
| 2478 | #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| 2479 | |
| 2480 | if(T3_ASIC_IS_JUMBO_CAPABLE(pDevice->ChipRevId)){ |
| 2481 | if( ! T3_ASIC_5714_FAMILY(pDevice->ChipRevId)) |
| 2482 | pDevice->RxJumboDescCnt = DEFAULT_JUMBO_RCV_DESC_COUNT; |
| 2483 | pDevice->Flags |= JUMBO_CAPABLE_FLAG; |
| 2484 | } |
| 2485 | |
| 2486 | #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| 2487 | |
| 2488 | pDevice->BondId = REG_RD(pDevice, Grc.MiscCfg) & GRC_MISC_BD_ID_MASK; |
| 2489 | |
| 2490 | if(((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) && |
| 2491 | ((pDevice->BondId == 0x10000) || (pDevice->BondId == 0x18000))) || |
| 2492 | ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) && |
| 2493 | ((pDevice->BondId == 0x14000) || (pDevice->BondId == 0x1c000)))) |
| 2494 | { |
| 2495 | return LM_STATUS_UNKNOWN_ADAPTER; |
| 2496 | } |
| 2497 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) |
| 2498 | { |
| 2499 | if ((pDevice->BondId == 0x8000) || (pDevice->BondId == 0x4000)) |
| 2500 | { |
| 2501 | pDevice->PhyFlags |= PHY_NO_GIGABIT; |
| 2502 | } |
| 2503 | } |
| 2504 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705) |
| 2505 | { |
| 2506 | if ((pDevice->BondId == GRC_MISC_BD_ID_5788) || |
| 2507 | (pDevice->BondId == GRC_MISC_BD_ID_5788M)) |
| 2508 | { |
| 2509 | pDevice->Flags |= BCM5788_FLAG; |
| 2510 | } |
| 2511 | |
| 2512 | if ((pDevice->PciDeviceId == T3_PCI_DEVICE_ID(T3_PCI_ID_BCM5901)) || |
| 2513 | (pDevice->PciDeviceId == T3_PCI_DEVICE_ID(T3_PCI_ID_BCM5901A2)) || |
| 2514 | (pDevice->PciDeviceId == T3_PCI_DEVICE_ID(T3_PCI_ID_BCM5705F))) |
| 2515 | { |
| 2516 | pDevice->PhyFlags |= PHY_NO_GIGABIT; |
| 2517 | } |
| 2518 | } |
| 2519 | |
| 2520 | if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5750) |
| 2521 | { |
| 2522 | if ( (pDevice->PciDeviceId == T3_PCI_DEVICE_ID(T3_PCI_ID_BCM5751F))|| |
| 2523 | (pDevice->PciDeviceId == T3_PCI_DEVICE_ID(T3_PCI_ID_BCM5753F))) |
| 2524 | { |
| 2525 | pDevice->PhyFlags |= PHY_NO_GIGABIT; |
| 2526 | } |
| 2527 | } |
| 2528 | |
| 2529 | /* CIOBE multisplit has a bug */ |
| 2530 | |
| 2531 | /* Get Eeprom info. */ |
| 2532 | Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_SIG_ADDR); |
| 2533 | if (Value32 == T3_NIC_DATA_SIG) |
| 2534 | { |
| 2535 | EeSigFound = TRUE; |
| 2536 | Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_NIC_CFG_ADDR); |
| 2537 | |
| 2538 | /* For now the 5753 cannot drive gpio2 or ASF will blow */ |
| 2539 | if(Value32 & T3_NIC_GPIO2_NOT_AVAILABLE) |
| 2540 | { |
| 2541 | pDevice->Flags |= GPIO2_DONOT_OUTPUT; |
| 2542 | } |
| 2543 | |
| 2544 | if (Value32 & T3_NIC_MINI_PCI) |
| 2545 | { |
| 2546 | pDevice->Flags |= MINI_PCI_FLAG; |
| 2547 | } |
| 2548 | /* Determine PHY type. */ |
| 2549 | switch (Value32 & T3_NIC_CFG_PHY_TYPE_MASK) |
| 2550 | { |
| 2551 | case T3_NIC_CFG_PHY_TYPE_COPPER: |
| 2552 | EePhyTypeSerdes = FALSE; |
| 2553 | break; |
| 2554 | |
| 2555 | case T3_NIC_CFG_PHY_TYPE_FIBER: |
| 2556 | EePhyTypeSerdes = TRUE; |
| 2557 | break; |
| 2558 | |
| 2559 | default: |
| 2560 | EePhyTypeSerdes = FALSE; |
| 2561 | break; |
| 2562 | } |
| 2563 | |
| 2564 | if ( T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 2565 | { |
| 2566 | LedCfg = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_NIC_CFG_ADDR2); |
| 2567 | LedCfg = LedCfg & (T3_NIC_CFG_LED_MODE_MASK | |
| 2568 | T3_SHASTA_EXT_LED_MODE_MASK); |
| 2569 | } |
| 2570 | else |
| 2571 | { |
| 2572 | /* Determine PHY led mode. for legacy devices */ |
| 2573 | LedCfg = Value32 & T3_NIC_CFG_LED_MODE_MASK; |
| 2574 | } |
| 2575 | |
| 2576 | switch (LedCfg) |
| 2577 | { |
| 2578 | default: |
| 2579 | case T3_NIC_CFG_LED_PHY_MODE_1: |
| 2580 | pDevice->LedCtrl = LED_CTRL_PHY_MODE_1; |
| 2581 | break; |
| 2582 | |
| 2583 | case T3_NIC_CFG_LED_PHY_MODE_2: |
| 2584 | pDevice->LedCtrl = LED_CTRL_PHY_MODE_2; |
| 2585 | break; |
| 2586 | |
| 2587 | case T3_NIC_CFG_LED_MAC_MODE: |
| 2588 | pDevice->LedCtrl = LED_CTRL_MAC_MODE; |
| 2589 | break; |
| 2590 | |
| 2591 | case T3_SHASTA_EXT_LED_SHARED_TRAFFIC_LINK_MODE: |
| 2592 | pDevice->LedCtrl = LED_CTRL_SHARED_TRAFFIC_LINK; |
| 2593 | if ((pDevice->ChipRevId != T3_CHIP_ID_5750_A0) && |
| 2594 | (pDevice->ChipRevId != T3_CHIP_ID_5750_A1)) |
| 2595 | { |
| 2596 | pDevice->LedCtrl |= LED_CTRL_PHY_MODE_1 | |
| 2597 | LED_CTRL_PHY_MODE_2; |
| 2598 | } |
| 2599 | break; |
| 2600 | |
| 2601 | case T3_SHASTA_EXT_LED_MAC_MODE: |
| 2602 | pDevice->LedCtrl = LED_CTRL_SHASTA_MAC_MODE; |
| 2603 | break; |
| 2604 | |
| 2605 | case T3_SHASTA_EXT_LED_WIRELESS_COMBO_MODE: |
| 2606 | pDevice->LedCtrl = LED_CTRL_WIRELESS_COMBO; |
| 2607 | if (pDevice->ChipRevId != T3_CHIP_ID_5750_A0) |
| 2608 | { |
| 2609 | pDevice->LedCtrl |= LED_CTRL_PHY_MODE_1 | |
| 2610 | LED_CTRL_PHY_MODE_2; |
| 2611 | } |
| 2612 | break; |
| 2613 | |
| 2614 | } |
| 2615 | |
| 2616 | if (((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| 2617 | T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)) && |
| 2618 | (pDevice->SubsystemVendorId == T3_SVID_DELL)) |
| 2619 | { |
| 2620 | pDevice->LedCtrl = LED_CTRL_PHY_MODE_2; |
| 2621 | } |
| 2622 | |
| 2623 | if((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) || |
| 2624 | (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704) || |
| 2625 | (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) ) |
| 2626 | { |
| 2627 | /* Enable EEPROM write protection. */ |
| 2628 | if(Value32 & T3_NIC_EEPROM_WP) |
| 2629 | { |
| 2630 | pDevice->Flags |= EEPROM_WP_FLAG; |
| 2631 | } |
| 2632 | } |
| 2633 | pDevice->AsfFlags = 0; |
| 2634 | #ifdef BCM_ASF |
| 2635 | if (Value32 & T3_NIC_CFG_ENABLE_ASF) |
| 2636 | { |
| 2637 | pDevice->AsfFlags |= ASF_ENABLED; |
| 2638 | if (T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 2639 | { |
| 2640 | pDevice->AsfFlags |= ASF_NEW_HANDSHAKE; |
| 2641 | } |
| 2642 | } |
| 2643 | #endif |
| 2644 | if (Value32 & T3_NIC_FIBER_WOL_CAPABLE) |
| 2645 | { |
| 2646 | pDevice->Flags |= FIBER_WOL_CAPABLE_FLAG; |
| 2647 | } |
| 2648 | if (Value32 & T3_NIC_WOL_LIMIT_10) |
| 2649 | { |
| 2650 | pDevice->Flags |= WOL_LIMIT_10MBPS_FLAG; |
| 2651 | } |
| 2652 | |
| 2653 | /* Get the PHY Id. */ |
| 2654 | Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_PHY_ID_ADDR); |
| 2655 | if (Value32) |
| 2656 | { |
| 2657 | EePhyId = (((Value32 & T3_NIC_PHY_ID1_MASK) >> 16) & |
| 2658 | PHY_ID1_OUI_MASK) << 10; |
| 2659 | |
| 2660 | Value32 = Value32 & T3_NIC_PHY_ID2_MASK; |
| 2661 | |
| 2662 | EePhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) | |
| 2663 | (Value32 & PHY_ID2_MODEL_MASK) | (Value32 & PHY_ID2_REV_MASK); |
| 2664 | } |
| 2665 | else |
| 2666 | { |
| 2667 | EePhyId = 0; |
| 2668 | if (!EePhyTypeSerdes && !(pDevice->AsfFlags & ASF_ENABLED)) |
| 2669 | { |
| 2670 | /* reset PHY if boot code couldn't read the PHY ID */ |
| 2671 | LM_ResetPhy(pDevice); |
| 2672 | } |
| 2673 | } |
| 2674 | |
| 2675 | Ver = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_VER); |
| 2676 | Ver >>= T3_NIC_DATA_VER_SHIFT; |
| 2677 | |
| 2678 | Value32 = 0; |
| 2679 | if((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) && |
| 2680 | (T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701) && |
| 2681 | (T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5703) && |
| 2682 | (Ver > 0) && (Ver < 0x100)){ |
| 2683 | |
| 2684 | Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_NIC_CFG_ADDR2); |
| 2685 | |
| 2686 | if (Value32 & T3_NIC_CFG_CAPACITIVE_COUPLING) |
| 2687 | { |
| 2688 | pDevice->PhyFlags |= PHY_CAPACITIVE_COUPLING; |
| 2689 | } |
| 2690 | |
| 2691 | if (Value32 & T3_NIC_CFG_PRESERVE_PREEMPHASIS) |
| 2692 | { |
| 2693 | pDevice->TbiFlags |= TBI_DO_PREEMPHASIS; |
| 2694 | } |
| 2695 | |
| 2696 | } |
| 2697 | |
| 2698 | } |
| 2699 | else |
| 2700 | { |
| 2701 | EeSigFound = FALSE; |
| 2702 | } |
| 2703 | |
| 2704 | /* Set the PHY address. */ |
| 2705 | pDevice->PhyAddr = PHY_DEVICE_ID; |
| 2706 | |
| 2707 | /* Disable auto polling. */ |
| 2708 | pDevice->MiMode = 0xc0000; |
| 2709 | REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode); |
| 2710 | REG_RD_BACK(pDevice, MacCtrl.MiMode); |
| 2711 | MM_Wait(80); |
| 2712 | |
| 2713 | if (pDevice->AsfFlags & ASF_ENABLED) |
| 2714 | { |
| 2715 | /* Reading PHY registers will contend with ASF */ |
| 2716 | pDevice->PhyId = 0; |
| 2717 | } |
| 2718 | else |
| 2719 | { |
| 2720 | /* Get the PHY id. */ |
| 2721 | LM_GetPhyId(pDevice); |
| 2722 | } |
| 2723 | |
| 2724 | /* Set the EnableTbi flag to false if we have a copper PHY. */ |
| 2725 | switch(pDevice->PhyId & PHY_ID_MASK) |
| 2726 | { |
| 2727 | case PHY_BCM5400_PHY_ID: |
| 2728 | case PHY_BCM5401_PHY_ID: |
| 2729 | case PHY_BCM5411_PHY_ID: |
| 2730 | case PHY_BCM5461_PHY_ID: |
| 2731 | case PHY_BCM5701_PHY_ID: |
| 2732 | case PHY_BCM5703_PHY_ID: |
| 2733 | case PHY_BCM5704_PHY_ID: |
| 2734 | case PHY_BCM5705_PHY_ID: |
| 2735 | case PHY_BCM5750_PHY_ID: |
| 2736 | break; |
| 2737 | case PHY_BCM5714_PHY_ID: |
| 2738 | case PHY_BCM5780_PHY_ID: |
| 2739 | if(EePhyTypeSerdes == TRUE) |
| 2740 | { |
| 2741 | pDevice->PhyFlags |= PHY_IS_FIBER; |
| 2742 | } |
| 2743 | break; |
| 2744 | case PHY_BCM5752_PHY_ID: |
| 2745 | break; |
| 2746 | |
| 2747 | case PHY_BCM8002_PHY_ID: |
| 2748 | pDevice->TbiFlags |= ENABLE_TBI_FLAG; |
| 2749 | break; |
| 2750 | |
| 2751 | default: |
| 2752 | |
| 2753 | if (EeSigFound) |
| 2754 | { |
| 2755 | pDevice->PhyId = EePhyId; |
| 2756 | |
| 2757 | if (EePhyTypeSerdes && ((pDevice->PhyId == PHY_BCM5780_PHY_ID)) ) |
| 2758 | { |
| 2759 | pDevice->PhyFlags |= PHY_IS_FIBER; |
| 2760 | } |
| 2761 | else if (EePhyTypeSerdes) |
| 2762 | { |
| 2763 | pDevice->TbiFlags |= ENABLE_TBI_FLAG; |
| 2764 | } |
| 2765 | } |
| 2766 | else if ((pAdapterInfo = LM_GetAdapterInfoBySsid( |
| 2767 | pDevice->SubsystemVendorId, |
| 2768 | pDevice->SubsystemId))) |
| 2769 | { |
| 2770 | pDevice->PhyId = pAdapterInfo->PhyId; |
| 2771 | if (pAdapterInfo->Serdes) |
| 2772 | { |
| 2773 | pDevice->TbiFlags |= ENABLE_TBI_FLAG; |
| 2774 | } |
| 2775 | } |
| 2776 | else |
| 2777 | { |
| 2778 | if (UNKNOWN_PHY_ID(pDevice->PhyId)) |
| 2779 | { |
| 2780 | LM_ResetPhy(pDevice); |
| 2781 | LM_GetPhyId(pDevice); |
| 2782 | } |
| 2783 | } |
| 2784 | break; |
| 2785 | } |
| 2786 | |
| 2787 | if(UNKNOWN_PHY_ID(pDevice->PhyId) && |
| 2788 | !(pDevice->TbiFlags & ENABLE_TBI_FLAG)) |
| 2789 | { |
| 2790 | if (pDevice->Flags & ROBO_SWITCH_FLAG) { |
| 2791 | B57_ERR(("PHY ID unknown, assume it is a copper PHY.\n")); |
| 2792 | } else { |
| 2793 | pDevice->TbiFlags |= ENABLE_TBI_FLAG; |
| 2794 | B57_ERR(("PHY ID unknown, assume it is SerDes\n")); |
| 2795 | } |
| 2796 | } |
| 2797 | |
| 2798 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) |
| 2799 | { |
| 2800 | if((pDevice->SavedCacheLineReg & 0xff00) < 0x4000) |
| 2801 | { |
| 2802 | pDevice->SavedCacheLineReg &= 0xffff00ff; |
| 2803 | pDevice->SavedCacheLineReg |= 0x4000; |
| 2804 | } |
| 2805 | } |
| 2806 | |
| 2807 | pDevice->ReceiveMask = LM_ACCEPT_MULTICAST | LM_ACCEPT_BROADCAST | |
| 2808 | LM_ACCEPT_UNICAST; |
| 2809 | |
| 2810 | pDevice->TaskOffloadCap = LM_TASK_OFFLOAD_TX_TCP_CHECKSUM | |
| 2811 | LM_TASK_OFFLOAD_TX_UDP_CHECKSUM | LM_TASK_OFFLOAD_RX_TCP_CHECKSUM | |
| 2812 | LM_TASK_OFFLOAD_RX_UDP_CHECKSUM; |
| 2813 | |
| 2814 | if (pDevice->ChipRevId == T3_CHIP_ID_5700_B0) |
| 2815 | { |
| 2816 | pDevice->TaskOffloadCap &= ~(LM_TASK_OFFLOAD_TX_TCP_CHECKSUM | |
| 2817 | LM_TASK_OFFLOAD_TX_UDP_CHECKSUM); |
| 2818 | } |
| 2819 | |
| 2820 | #ifdef INCLUDE_TCP_SEG_SUPPORT |
| 2821 | pDevice->TaskOffloadCap |= LM_TASK_OFFLOAD_TCP_SEGMENTATION; |
| 2822 | |
| 2823 | if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) || |
| 2824 | (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) || |
| 2825 | (pDevice->ChipRevId == T3_CHIP_ID_5705_A0)) |
| 2826 | { |
| 2827 | pDevice->TaskOffloadCap &= ~LM_TASK_OFFLOAD_TCP_SEGMENTATION; |
| 2828 | } |
| 2829 | #endif |
| 2830 | |
| 2831 | #ifdef BCM_ASF |
| 2832 | if (pDevice->AsfFlags & ASF_ENABLED) |
| 2833 | { |
| 2834 | if (!T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 2835 | { |
| 2836 | pDevice->TaskOffloadCap &= ~LM_TASK_OFFLOAD_TCP_SEGMENTATION; |
| 2837 | } |
| 2838 | } |
| 2839 | #endif |
| 2840 | |
| 2841 | /* Change driver parameters. */ |
| 2842 | Status = MM_GetConfig(pDevice); |
| 2843 | if(Status != LM_STATUS_SUCCESS) |
| 2844 | { |
| 2845 | return Status; |
| 2846 | } |
| 2847 | |
| 2848 | if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 2849 | { |
| 2850 | pDevice->Flags &= ~NIC_SEND_BD_FLAG; |
| 2851 | } |
| 2852 | |
| 2853 | /* Save the current phy link status. */ |
| 2854 | if (!(pDevice->TbiFlags & ENABLE_TBI_FLAG) && |
| 2855 | !(pDevice->AsfFlags & ASF_ENABLED)) |
| 2856 | { |
| 2857 | LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32); |
| 2858 | LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32); |
| 2859 | |
| 2860 | /* If we don't have link reset the PHY. */ |
| 2861 | if(!(Value32 & PHY_STATUS_LINK_PASS) || |
| 2862 | (pDevice->PhyFlags & PHY_RESET_ON_INIT)) |
| 2863 | { |
| 2864 | |
| 2865 | LM_ResetPhy(pDevice); |
| 2866 | |
| 2867 | if (LM_PhyAdvertiseAll(pDevice) != LM_STATUS_SUCCESS) |
| 2868 | { |
| 2869 | Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD | |
| 2870 | PHY_AN_AD_ALL_SPEEDS; |
| 2871 | Value32 |= GetPhyAdFlowCntrlSettings(pDevice); |
| 2872 | LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32); |
| 2873 | |
| 2874 | if(!(pDevice->PhyFlags & PHY_NO_GIGABIT)) |
| 2875 | Value32 = BCM540X_AN_AD_ALL_1G_SPEEDS ; |
| 2876 | else |
| 2877 | Value32 =0; |
| 2878 | |
| 2879 | #ifdef INCLUDE_5701_AX_FIX |
| 2880 | if(pDevice->ChipRevId == T3_CHIP_ID_5701_A0 || |
| 2881 | pDevice->ChipRevId == T3_CHIP_ID_5701_B0) |
| 2882 | { |
| 2883 | Value32 |= BCM540X_CONFIG_AS_MASTER | |
| 2884 | BCM540X_ENABLE_CONFIG_AS_MASTER; |
| 2885 | } |
| 2886 | #endif |
| 2887 | LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, Value32); |
| 2888 | |
| 2889 | LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_AUTO_NEG_ENABLE | |
| 2890 | PHY_CTRL_RESTART_AUTO_NEG); |
| 2891 | } |
| 2892 | |
| 2893 | } |
| 2894 | LM_SetEthWireSpeed(pDevice); |
| 2895 | |
| 2896 | LM_ReadPhy(pDevice, PHY_AN_AD_REG, &pDevice->advertising); |
| 2897 | LM_ReadPhy(pDevice, BCM540X_1000BASET_CTRL_REG, |
| 2898 | &pDevice->advertising1000); |
| 2899 | |
| 2900 | } |
| 2901 | /* Currently 5401 phy only */ |
| 2902 | LM_PhyTapPowerMgmt(pDevice); |
| 2903 | |
| 2904 | #ifdef INCLUDE_TBI_SUPPORT |
| 2905 | if(pDevice->TbiFlags & ENABLE_TBI_FLAG) |
| 2906 | { |
| 2907 | if (!(pDevice->Flags & FIBER_WOL_CAPABLE_FLAG)) |
| 2908 | { |
| 2909 | pDevice->WakeUpModeCap = LM_WAKE_UP_MODE_NONE; |
| 2910 | } |
| 2911 | pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY; |
| 2912 | if (pDevice->TbiFlags & TBI_PURE_POLLING_FLAG) |
| 2913 | { |
| 2914 | pDevice->IgnoreTbiLinkChange = TRUE; |
| 2915 | } |
| 2916 | } |
| 2917 | else |
| 2918 | { |
| 2919 | pDevice->TbiFlags = 0; |
| 2920 | } |
| 2921 | |
| 2922 | #endif /* INCLUDE_TBI_SUPPORT */ |
| 2923 | |
| 2924 | /* UseTaggedStatus is only valid for 5701 and later. */ |
| 2925 | if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) || |
| 2926 | ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705) && |
| 2927 | ((pDevice->BondId == GRC_MISC_BD_ID_5788) || |
| 2928 | (pDevice->BondId == GRC_MISC_BD_ID_5788M)))) |
| 2929 | { |
| 2930 | pDevice->Flags &= ~USE_TAGGED_STATUS_FLAG; |
| 2931 | pDevice->CoalesceMode = 0; |
| 2932 | } |
| 2933 | else |
| 2934 | { |
| 2935 | pDevice->CoalesceMode = HOST_COALESCE_CLEAR_TICKS_ON_RX_BD_EVENT | |
| 2936 | HOST_COALESCE_CLEAR_TICKS_ON_TX_BD_EVENT; |
| 2937 | } |
| 2938 | |
| 2939 | /* Set the status block size. */ |
| 2940 | if(T3_CHIP_REV(pDevice->ChipRevId) != T3_CHIP_REV_5700_AX && |
| 2941 | T3_CHIP_REV(pDevice->ChipRevId) != T3_CHIP_REV_5700_BX) |
| 2942 | { |
| 2943 | pDevice->CoalesceMode |= HOST_COALESCE_32_BYTE_STATUS_MODE; |
| 2944 | } |
| 2945 | |
| 2946 | /* Check the DURING_INT coalescing ticks parameters. */ |
| 2947 | if (pDevice->Flags & USE_TAGGED_STATUS_FLAG) |
| 2948 | { |
| 2949 | if(pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) |
| 2950 | { |
| 2951 | pDevice->RxCoalescingTicksDuringInt = |
| 2952 | DEFAULT_RX_COALESCING_TICKS_DURING_INT; |
| 2953 | } |
| 2954 | |
| 2955 | if(pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) |
| 2956 | { |
| 2957 | pDevice->TxCoalescingTicksDuringInt = |
| 2958 | DEFAULT_TX_COALESCING_TICKS_DURING_INT; |
| 2959 | } |
| 2960 | |
| 2961 | if(pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) |
| 2962 | { |
| 2963 | pDevice->RxMaxCoalescedFramesDuringInt = |
| 2964 | DEFAULT_RX_MAX_COALESCED_FRAMES_DURING_INT; |
| 2965 | } |
| 2966 | |
| 2967 | if(pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) |
| 2968 | { |
| 2969 | pDevice->TxMaxCoalescedFramesDuringInt = |
| 2970 | DEFAULT_TX_MAX_COALESCED_FRAMES_DURING_INT; |
| 2971 | } |
| 2972 | } |
| 2973 | else |
| 2974 | { |
| 2975 | if(pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) |
| 2976 | { |
| 2977 | pDevice->RxCoalescingTicksDuringInt = 0; |
| 2978 | } |
| 2979 | |
| 2980 | if(pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) |
| 2981 | { |
| 2982 | pDevice->TxCoalescingTicksDuringInt = 0; |
| 2983 | } |
| 2984 | |
| 2985 | if(pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) |
| 2986 | { |
| 2987 | pDevice->RxMaxCoalescedFramesDuringInt = 0; |
| 2988 | } |
| 2989 | |
| 2990 | if(pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) |
| 2991 | { |
| 2992 | pDevice->TxMaxCoalescedFramesDuringInt = 0; |
| 2993 | } |
| 2994 | } |
| 2995 | |
| 2996 | #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| 2997 | if(pDevice->RxMtu <= (MAX_STD_RCV_BUFFER_SIZE - 8 /* CRC */)) |
| 2998 | { |
| 2999 | pDevice->RxJumboDescCnt = 0; |
| 3000 | if(pDevice->RxMtu <= MAX_ETHERNET_PACKET_SIZE_NO_CRC) |
| 3001 | { |
| 3002 | pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC; |
| 3003 | } |
| 3004 | } |
| 3005 | else if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705) |
| 3006 | { |
| 3007 | pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC; |
| 3008 | pDevice->RxJumboDescCnt = 0; |
| 3009 | } |
| 3010 | else |
| 3011 | { |
| 3012 | pDevice->RxJumboBufferSize = (pDevice->RxMtu + 8 /* CRC + VLAN */ + |
| 3013 | COMMON_CACHE_LINE_SIZE-1) & ~COMMON_CACHE_LINE_MASK; |
| 3014 | |
| 3015 | if(pDevice->RxJumboBufferSize > MAX_JUMBO_RCV_BUFFER_SIZE) |
| 3016 | { |
| 3017 | pDevice->RxJumboBufferSize = DEFAULT_JUMBO_RCV_BUFFER_SIZE; |
| 3018 | pDevice->RxMtu = pDevice->RxJumboBufferSize - 8 /* CRC + VLAN */; |
| 3019 | } |
| 3020 | pDevice->TxMtu = pDevice->RxMtu; |
| 3021 | } |
| 3022 | #else |
| 3023 | pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC; |
| 3024 | #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| 3025 | |
| 3026 | pDevice->RxPacketDescCnt = |
| 3027 | #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| 3028 | pDevice->RxJumboDescCnt + |
| 3029 | #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| 3030 | pDevice->RxStdDescCnt; |
| 3031 | |
| 3032 | if(pDevice->TxMtu < MAX_ETHERNET_PACKET_SIZE_NO_CRC) |
| 3033 | { |
| 3034 | pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC; |
| 3035 | } |
| 3036 | |
| 3037 | if(pDevice->TxMtu > MAX_JUMBO_TX_BUFFER_SIZE) |
| 3038 | { |
| 3039 | pDevice->TxMtu = MAX_JUMBO_TX_BUFFER_SIZE; |
| 3040 | } |
| 3041 | |
| 3042 | /* Configure the proper ways to get link change interrupt. */ |
| 3043 | if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO) |
| 3044 | { |
| 3045 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) |
| 3046 | { |
| 3047 | pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT; |
| 3048 | } |
| 3049 | else |
| 3050 | { |
| 3051 | pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY; |
| 3052 | } |
| 3053 | } |
| 3054 | else if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) |
| 3055 | { |
| 3056 | /* Auto-polling does not work on 5700_AX and 5700_BX. */ |
| 3057 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) |
| 3058 | { |
| 3059 | pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT; |
| 3060 | } |
| 3061 | } |
| 3062 | |
| 3063 | /* Determine the method to get link change status. */ |
| 3064 | if(pDevice->LinkChngMode == T3_LINK_CHNG_MODE_AUTO) |
| 3065 | { |
| 3066 | /* The link status bit in the status block does not work on 5700_AX */ |
| 3067 | /* and 5700_BX chips. */ |
| 3068 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) |
| 3069 | { |
| 3070 | pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG; |
| 3071 | } |
| 3072 | else |
| 3073 | { |
| 3074 | pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_BLOCK; |
| 3075 | } |
| 3076 | } |
| 3077 | |
| 3078 | if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT || |
| 3079 | T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) |
| 3080 | { |
| 3081 | pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG; |
| 3082 | } |
| 3083 | |
| 3084 | if (!EeSigFound) |
| 3085 | { |
| 3086 | pDevice->LedCtrl = LED_CTRL_PHY_MODE_1; |
| 3087 | } |
| 3088 | |
| 3089 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| 3090 | T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) |
| 3091 | { |
| 3092 | /* bug? 5701 in LINK10 mode does not seem to work when */ |
| 3093 | /* PhyIntMode is LINK_READY. */ |
| 3094 | if(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 && |
| 3095 | #ifdef INCLUDE_TBI_SUPPORT |
| 3096 | !(pDevice->TbiFlags & ENABLE_TBI_FLAG) && |
| 3097 | #endif |
| 3098 | pDevice->LedCtrl == LED_CTRL_PHY_MODE_2) |
| 3099 | { |
| 3100 | pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT; |
| 3101 | pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG; |
| 3102 | } |
| 3103 | if (pDevice->TbiFlags & ENABLE_TBI_FLAG) |
| 3104 | { |
| 3105 | pDevice->LedCtrl = LED_CTRL_PHY_MODE_1; |
| 3106 | } |
| 3107 | } |
| 3108 | |
| 3109 | #ifdef BCM_WOL |
| 3110 | if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| 3111 | pDevice->ChipRevId == T3_CHIP_ID_5701_A0 || |
| 3112 | pDevice->ChipRevId == T3_CHIP_ID_5701_B0 || |
| 3113 | pDevice->ChipRevId == T3_CHIP_ID_5701_B2) |
| 3114 | { |
| 3115 | pDevice->WolSpeed = WOL_SPEED_10MB; |
| 3116 | } |
| 3117 | else |
| 3118 | { |
| 3119 | if (pDevice->Flags & WOL_LIMIT_10MBPS_FLAG) |
| 3120 | { |
| 3121 | pDevice->WolSpeed = WOL_SPEED_10MB; |
| 3122 | } |
| 3123 | else |
| 3124 | { |
| 3125 | pDevice->WolSpeed = WOL_SPEED_100MB; |
| 3126 | } |
| 3127 | } |
| 3128 | #endif |
| 3129 | |
| 3130 | pDevice->PciState = REG_RD(pDevice, PciCfg.PciState); |
| 3131 | |
| 3132 | pDevice->DmaReadFifoSize = 0; |
| 3133 | if (((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705) && |
| 3134 | (pDevice->ChipRevId != T3_CHIP_ID_5705_A0)) || |
| 3135 | T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId) ) |
| 3136 | { |
| 3137 | #ifdef INCLUDE_TCP_SEG_SUPPORT |
| 3138 | if ((pDevice->TaskToOffload & LM_TASK_OFFLOAD_TCP_SEGMENTATION) && |
| 3139 | ((pDevice->ChipRevId == T3_CHIP_ID_5705_A1) || |
| 3140 | (pDevice->ChipRevId == T3_CHIP_ID_5705_A2))) |
| 3141 | { |
| 3142 | pDevice->DmaReadFifoSize = DMA_READ_MODE_FIFO_SIZE_128; |
| 3143 | } |
| 3144 | else |
| 3145 | #endif |
| 3146 | { |
| 3147 | if (!(pDevice->PciState & T3_PCI_STATE_HIGH_BUS_SPEED) && |
| 3148 | !(pDevice->Flags & BCM5788_FLAG) && |
| 3149 | !(pDevice->Flags & PCI_EXPRESS_FLAG)) |
| 3150 | { |
| 3151 | pDevice->DmaReadFifoSize = DMA_READ_MODE_FIFO_LONG_BURST; |
| 3152 | if (pDevice->ChipRevId == T3_CHIP_ID_5705_A1) |
| 3153 | { |
| 3154 | pDevice->Flags |= RX_BD_LIMIT_64_FLAG; |
| 3155 | } |
| 3156 | pDevice->Flags |= DMA_WR_MODE_RX_ACCELERATE_FLAG; |
| 3157 | } |
| 3158 | else if (pDevice->Flags & PCI_EXPRESS_FLAG) |
| 3159 | { |
| 3160 | pDevice->DmaReadFifoSize = DMA_READ_MODE_FIFO_LONG_BURST; |
| 3161 | } |
| 3162 | } |
| 3163 | } |
| 3164 | |
| 3165 | pDevice->Flags &= ~T3_HAS_TWO_CPUS; |
| 3166 | if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| 3167 | T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 || |
| 3168 | T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703 || |
| 3169 | T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704) |
| 3170 | { |
| 3171 | pDevice->Flags |= T3_HAS_TWO_CPUS; |
| 3172 | } |
| 3173 | |
| 3174 | return LM_STATUS_SUCCESS; |
| 3175 | } /* LM_GetAdapterInfo */ |
| 3176 | |
| 3177 | STATIC PLM_ADAPTER_INFO |
| 3178 | LM_GetAdapterInfoBySsid( |
| 3179 | LM_UINT16 Svid, |
| 3180 | LM_UINT16 Ssid) |
| 3181 | { |
| 3182 | static LM_ADAPTER_INFO AdapterArr[] = |
| 3183 | { |
| 3184 | { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A6, PHY_BCM5401_PHY_ID, 0}, |
| 3185 | { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A5, PHY_BCM5701_PHY_ID, 0}, |
| 3186 | { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700T6, PHY_BCM8002_PHY_ID, 1}, |
| 3187 | { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A9, 0, 1 }, |
| 3188 | { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T1, PHY_BCM5701_PHY_ID, 0}, |
| 3189 | { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T8, PHY_BCM5701_PHY_ID, 0}, |
| 3190 | { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A7, 0, 1}, |
| 3191 | { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A10, PHY_BCM5701_PHY_ID, 0}, |
| 3192 | { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A12, PHY_BCM5701_PHY_ID, 0}, |
| 3193 | { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax1, PHY_BCM5703_PHY_ID, 0}, |
| 3194 | { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax2, PHY_BCM5703_PHY_ID, 0}, |
| 3195 | |
| 3196 | { T3_SVID_3COM, T3_SSID_3COM_3C996T, PHY_BCM5401_PHY_ID, 0 }, |
| 3197 | { T3_SVID_3COM, T3_SSID_3COM_3C996BT, PHY_BCM5701_PHY_ID, 0 }, |
| 3198 | { T3_SVID_3COM, T3_SSID_3COM_3C996SX, 0, 1 }, |
| 3199 | { T3_SVID_3COM, T3_SSID_3COM_3C1000T, PHY_BCM5701_PHY_ID, 0 }, |
| 3200 | { T3_SVID_3COM, T3_SSID_3COM_3C940BR01, PHY_BCM5701_PHY_ID, 0 }, |
| 3201 | |
| 3202 | { T3_SVID_DELL, T3_SSID_DELL_VIPER, PHY_BCM5401_PHY_ID, 0 }, |
| 3203 | { T3_SVID_DELL, T3_SSID_DELL_JAGUAR, PHY_BCM5401_PHY_ID, 0 }, |
| 3204 | { T3_SVID_DELL, T3_SSID_DELL_MERLOT, PHY_BCM5411_PHY_ID, 0 }, |
| 3205 | { T3_SVID_DELL, T3_SSID_DELL_SLIM_MERLOT, PHY_BCM5411_PHY_ID, 0 }, |
| 3206 | |
| 3207 | { T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE, PHY_BCM5701_PHY_ID, 0 }, |
| 3208 | { T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE_2, PHY_BCM5701_PHY_ID, 0 }, |
| 3209 | { T3_SVID_COMPAQ, T3_SSID_COMPAQ_CHANGELING, 0, 1 }, |
| 3210 | { T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780, PHY_BCM5701_PHY_ID, 0 }, |
| 3211 | { T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780_2, PHY_BCM5701_PHY_ID, 0 }, |
| 3212 | |
| 3213 | { 0x1014, 0x0281, 0, 1 }, |
| 3214 | }; |
| 3215 | LM_UINT32 j; |
| 3216 | |
| 3217 | for(j = 0; j < sizeof(AdapterArr)/sizeof(LM_ADAPTER_INFO); j++) |
| 3218 | { |
| 3219 | if(AdapterArr[j].Svid == Svid && AdapterArr[j].Ssid == Ssid) |
| 3220 | { |
| 3221 | return &AdapterArr[j]; |
| 3222 | } |
| 3223 | } |
| 3224 | |
| 3225 | return NULL; |
| 3226 | } |
| 3227 | |
| 3228 | |
| 3229 | |
| 3230 | /******************************************************************************/ |
| 3231 | /* Description: */ |
| 3232 | /* This routine sets up receive/transmit buffer descriptions queues. */ |
| 3233 | /* */ |
| 3234 | /* Return: */ |
| 3235 | /* LM_STATUS_SUCCESS */ |
| 3236 | /******************************************************************************/ |
| 3237 | LM_STATUS |
| 3238 | LM_InitializeAdapter( |
| 3239 | PLM_DEVICE_BLOCK pDevice) |
| 3240 | { |
| 3241 | LM_PHYSICAL_ADDRESS MemPhy; |
| 3242 | PLM_UINT8 pMemVirt; |
| 3243 | PLM_PACKET pPacket; |
| 3244 | LM_STATUS Status; |
| 3245 | LM_UINT32 Size; |
| 3246 | LM_UINT32 Value32, j; |
| 3247 | LM_UINT32 DmaWrCmd, DmaRdCmd, DmaWrBdry, DmaRdBdry; |
| 3248 | |
| 3249 | MM_ReadConfig32(pDevice, PCI_COMMAND_REG, &Value32); |
| 3250 | j = 0; |
| 3251 | while (((Value32 & 0x3ff) != (pDevice->PciCommandStatusWords & 0x3ff)) && |
| 3252 | (j < 1000)) |
| 3253 | { |
| 3254 | /* On PCIE devices, there are some rare cases where the device */ |
| 3255 | /* is in the process of link-training at this point */ |
| 3256 | MM_Wait(200); |
| 3257 | MM_WriteConfig32(pDevice, PCI_COMMAND_REG, pDevice->PciCommandStatusWords); |
| 3258 | MM_ReadConfig32(pDevice, PCI_COMMAND_REG, &Value32); |
| 3259 | j++; |
| 3260 | } |
| 3261 | MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, pDevice->MiscHostCtrl); |
| 3262 | /* Set power state to D0. */ |
| 3263 | LM_SetPowerState(pDevice, LM_POWER_STATE_D0); |
| 3264 | |
| 3265 | /* Intialize the queues. */ |
| 3266 | QQ_InitQueue(&pDevice->RxPacketReceivedQ.Container, |
| 3267 | MAX_RX_PACKET_DESC_COUNT); |
| 3268 | QQ_InitQueue(&pDevice->RxPacketFreeQ.Container, |
| 3269 | MAX_RX_PACKET_DESC_COUNT); |
| 3270 | |
| 3271 | QQ_InitQueue(&pDevice->TxPacketFreeQ.Container,MAX_TX_PACKET_DESC_COUNT); |
| 3272 | QQ_InitQueue(&pDevice->TxPacketXmittedQ.Container,MAX_TX_PACKET_DESC_COUNT); |
| 3273 | |
| 3274 | if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId) ) |
| 3275 | { |
| 3276 | pDevice->RcvRetRcbEntryCount = 512; |
| 3277 | pDevice->RcvRetRcbEntryCountMask = 511; |
| 3278 | } |
| 3279 | else |
| 3280 | { |
| 3281 | pDevice->RcvRetRcbEntryCount = T3_RCV_RETURN_RCB_ENTRY_COUNT; |
| 3282 | pDevice->RcvRetRcbEntryCountMask = T3_RCV_RETURN_RCB_ENTRY_COUNT_MASK; |
| 3283 | } |
| 3284 | |
| 3285 | /* Allocate shared memory for: status block, the buffers for receive */ |
| 3286 | /* rings -- standard, mini, jumbo, and return rings. */ |
| 3287 | Size = T3_STATUS_BLOCK_SIZE + sizeof(T3_STATS_BLOCK) + |
| 3288 | T3_STD_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD) + |
| 3289 | #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| 3290 | T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD) + |
| 3291 | #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| 3292 | (pDevice->RcvRetRcbEntryCount * sizeof(T3_RCV_BD)); |
| 3293 | |
| 3294 | /* Memory for host based Send BD. */ |
| 3295 | if (!(pDevice->Flags & NIC_SEND_BD_FLAG)) |
| 3296 | { |
| 3297 | Size += sizeof(T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT; |
| 3298 | } |
| 3299 | |
| 3300 | /* Allocate the memory block. */ |
| 3301 | Status = MM_AllocateSharedMemory(pDevice, Size, (PLM_VOID) &pMemVirt, &MemPhy, FALSE); |
| 3302 | if(Status != LM_STATUS_SUCCESS) |
| 3303 | { |
| 3304 | return Status; |
| 3305 | } |
| 3306 | |
| 3307 | DmaWrCmd = DMA_CTRL_WRITE_CMD; |
| 3308 | DmaRdCmd = DMA_CTRL_READ_CMD; |
| 3309 | DmaWrBdry = DMA_CTRL_WRITE_BOUNDARY_DISABLE; |
| 3310 | DmaRdBdry = DMA_CTRL_READ_BOUNDARY_DISABLE; |
| 3311 | #ifdef BCM_DISCONNECT_AT_CACHELINE |
| 3312 | /* This code is intended for PPC64 and other similar architectures */ |
| 3313 | /* Only the following chips support this */ |
| 3314 | if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) || |
| 3315 | (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) || |
| 3316 | (pDevice->Flags & PCI_EXPRESS_FLAG)) |
| 3317 | { |
| 3318 | switch(pDevice->CacheLineSize * 4) |
| 3319 | { |
| 3320 | case 16: |
| 3321 | case 32: |
| 3322 | case 64: |
| 3323 | case 128: |
| 3324 | if (!(pDevice->PciState & T3_PCI_STATE_NOT_PCI_X_BUS) && |
| 3325 | !(pDevice->Flags & PCI_EXPRESS_FLAG)) |
| 3326 | { |
| 3327 | /* PCI-X */ |
| 3328 | /* use 384 which is a multiple of 16,32,64,128 */ |
| 3329 | DmaWrBdry = DMA_CTRL_WRITE_BOUNDARY_384_PCIX; |
| 3330 | break; |
| 3331 | } |
| 3332 | else if (pDevice->Flags & PCI_EXPRESS_FLAG) |
| 3333 | { |
| 3334 | /* PCI Express */ |
| 3335 | /* use 128 which is a multiple of 16,32,64,128 */ |
| 3336 | DmaWrCmd = DMA_CTRL_WRITE_BOUNDARY_128_PCIE; |
| 3337 | break; |
| 3338 | } |
| 3339 | /* fall through */ |
| 3340 | case 256: |
| 3341 | /* use 256 which is a multiple of 16,32,64,128,256 */ |
| 3342 | if ((pDevice->PciState & T3_PCI_STATE_NOT_PCI_X_BUS) && |
| 3343 | !(pDevice->Flags & PCI_EXPRESS_FLAG)) |
| 3344 | { |
| 3345 | /* PCI */ |
| 3346 | DmaWrBdry = DMA_CTRL_WRITE_BOUNDARY_256; |
| 3347 | } |
| 3348 | else if (!(pDevice->Flags & PCI_EXPRESS_FLAG)) |
| 3349 | { |
| 3350 | /* PCI-X */ |
| 3351 | DmaWrBdry = DMA_CTRL_WRITE_BOUNDARY_256_PCIX; |
| 3352 | } |
| 3353 | break; |
| 3354 | } |
| 3355 | } |
| 3356 | #endif |
| 3357 | pDevice->DmaReadWriteCtrl = DmaWrCmd | DmaRdCmd | DmaWrBdry | DmaRdBdry; |
| 3358 | /* Program DMA Read/Write */ |
| 3359 | if (pDevice->Flags & PCI_EXPRESS_FLAG) |
| 3360 | { |
| 3361 | |
| 3362 | /* !=0 is 256 max or greater payload size so set water mark accordingly*/ |
| 3363 | Value32 = (REG_RD(pDevice, PciCfg.DeviceCtrl) & MAX_PAYLOAD_SIZE_MASK); |
| 3364 | if (Value32) |
| 3365 | { |
| 3366 | pDevice->DmaReadWriteCtrl |= DMA_CTRL_WRITE_PCIE_H20MARK_256; |
| 3367 | }else |
| 3368 | { |
| 3369 | pDevice->DmaReadWriteCtrl |= DMA_CTRL_WRITE_PCIE_H20MARK_128; |
| 3370 | } |
| 3371 | |
| 3372 | } |
| 3373 | else if (pDevice->PciState & T3_PCI_STATE_NOT_PCI_X_BUS) |
| 3374 | { |
| 3375 | if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 3376 | { |
| 3377 | pDevice->DmaReadWriteCtrl |= 0x003f0000; |
| 3378 | } |
| 3379 | else |
| 3380 | { |
| 3381 | pDevice->DmaReadWriteCtrl |= 0x003f000f; |
| 3382 | } |
| 3383 | } |
| 3384 | else /* pci-x */ |
| 3385 | { |
| 3386 | if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704) |
| 3387 | { |
| 3388 | pDevice->DmaReadWriteCtrl |= 0x009f0000; |
| 3389 | } |
| 3390 | |
| 3391 | if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) |
| 3392 | { |
| 3393 | pDevice->DmaReadWriteCtrl |= 0x009C0000; |
| 3394 | } |
| 3395 | |
| 3396 | if( T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704 || |
| 3397 | T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703 ) |
| 3398 | { |
| 3399 | Value32 = REG_RD(pDevice, PciCfg.ClockCtrl) & 0x1f; |
| 3400 | if ((Value32 == 0x6) || (Value32 == 0x7)) |
| 3401 | { |
| 3402 | pDevice->Flags |= ONE_DMA_AT_ONCE_FLAG; |
| 3403 | } |
| 3404 | } |
| 3405 | else if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId) ) |
| 3406 | { |
| 3407 | pDevice->DmaReadWriteCtrl &= ~DMA_CTRL_WRITE_ONE_DMA_AT_ONCE; |
| 3408 | if( T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5780) |
| 3409 | pDevice->DmaReadWriteCtrl |= (BIT_20 | BIT_18 | DMA_CTRL_WRITE_ONE_DMA_AT_ONCE); |
| 3410 | else |
| 3411 | pDevice->DmaReadWriteCtrl |= (BIT_20 | BIT_18 | BIT_15); |
| 3412 | /* bit 15 is the current CQ 13140 Fix */ |
| 3413 | } |
| 3414 | else |
| 3415 | { |
| 3416 | pDevice->DmaReadWriteCtrl |= 0x001b000f; |
| 3417 | } |
| 3418 | } |
| 3419 | if((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) || |
| 3420 | (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)) |
| 3421 | { |
| 3422 | pDevice->DmaReadWriteCtrl &= 0xfffffff0; |
| 3423 | } |
| 3424 | |
| 3425 | if (pDevice->Flags & ONE_DMA_AT_ONCE_FLAG) |
| 3426 | { |
| 3427 | pDevice->DmaReadWriteCtrl |= DMA_CTRL_WRITE_ONE_DMA_AT_ONCE; |
| 3428 | } |
| 3429 | |
| 3430 | REG_WR(pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl); |
| 3431 | |
| 3432 | LM_SwitchClocks(pDevice); |
| 3433 | |
| 3434 | if (LM_DmaTest(pDevice, pMemVirt, MemPhy, 0x400) != LM_STATUS_SUCCESS) |
| 3435 | { |
| 3436 | return LM_STATUS_FAILURE; |
| 3437 | } |
| 3438 | |
| 3439 | /* Status block. */ |
| 3440 | pDevice->pStatusBlkVirt = (PT3_STATUS_BLOCK) pMemVirt; |
| 3441 | pDevice->StatusBlkPhy = MemPhy; |
| 3442 | pMemVirt += T3_STATUS_BLOCK_SIZE; |
| 3443 | LM_INC_PHYSICAL_ADDRESS(&MemPhy, T3_STATUS_BLOCK_SIZE); |
| 3444 | |
| 3445 | /* Statistics block. */ |
| 3446 | pDevice->pStatsBlkVirt = (PT3_STATS_BLOCK) pMemVirt; |
| 3447 | pDevice->StatsBlkPhy = MemPhy; |
| 3448 | pMemVirt += sizeof(T3_STATS_BLOCK); |
| 3449 | LM_INC_PHYSICAL_ADDRESS(&MemPhy, sizeof(T3_STATS_BLOCK)); |
| 3450 | |
| 3451 | /* Receive standard BD buffer. */ |
| 3452 | pDevice->pRxStdBdVirt = (PT3_RCV_BD) pMemVirt; |
| 3453 | pDevice->RxStdBdPhy = MemPhy; |
| 3454 | |
| 3455 | pMemVirt += T3_STD_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD); |
| 3456 | LM_INC_PHYSICAL_ADDRESS(&MemPhy, |
| 3457 | T3_STD_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD)); |
| 3458 | |
| 3459 | #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| 3460 | /* Receive jumbo BD buffer. */ |
| 3461 | pDevice->pRxJumboBdVirt = (PT3_RCV_BD) pMemVirt; |
| 3462 | pDevice->RxJumboBdPhy = MemPhy; |
| 3463 | |
| 3464 | pMemVirt += T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD); |
| 3465 | LM_INC_PHYSICAL_ADDRESS(&MemPhy, |
| 3466 | T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD)); |
| 3467 | #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| 3468 | |
| 3469 | /* Receive return BD buffer. */ |
| 3470 | pDevice->pRcvRetBdVirt = (PT3_RCV_BD) pMemVirt; |
| 3471 | pDevice->RcvRetBdPhy = MemPhy; |
| 3472 | |
| 3473 | pMemVirt += pDevice->RcvRetRcbEntryCount * sizeof(T3_RCV_BD); |
| 3474 | LM_INC_PHYSICAL_ADDRESS(&MemPhy, |
| 3475 | pDevice->RcvRetRcbEntryCount * sizeof(T3_RCV_BD)); |
| 3476 | |
| 3477 | /* Set up Send BD. */ |
| 3478 | if (!(pDevice->Flags & NIC_SEND_BD_FLAG)) |
| 3479 | { |
| 3480 | pDevice->pSendBdVirt = (PT3_SND_BD) pMemVirt; |
| 3481 | pDevice->SendBdPhy = MemPhy; |
| 3482 | |
| 3483 | pMemVirt += sizeof(T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT; |
| 3484 | LM_INC_PHYSICAL_ADDRESS(&MemPhy, |
| 3485 | sizeof(T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT); |
| 3486 | } |
| 3487 | #ifdef BCM_NIC_SEND_BD |
| 3488 | else |
| 3489 | { |
| 3490 | pDevice->pSendBdVirt = (PT3_SND_BD) |
| 3491 | pDevice->pMemView->uIntMem.First32k.BufferDesc; |
| 3492 | pDevice->SendBdPhy.High = 0; |
| 3493 | pDevice->SendBdPhy.Low = T3_NIC_SND_BUFFER_DESC_ADDR; |
| 3494 | } |
| 3495 | #endif |
| 3496 | |
| 3497 | /* Allocate memory for packet descriptors. */ |
| 3498 | Size = (pDevice->RxPacketDescCnt + |
| 3499 | pDevice->TxPacketDescCnt) * MM_PACKET_DESC_SIZE; |
| 3500 | Status = MM_AllocateMemory(pDevice, Size, (PLM_VOID *) &pPacket); |
| 3501 | if(Status != LM_STATUS_SUCCESS) |
| 3502 | { |
| 3503 | return Status; |
| 3504 | } |
| 3505 | pDevice->pPacketDescBase = (PLM_VOID) pPacket; |
| 3506 | |
| 3507 | /* Create transmit packet descriptors from the memory block and add them */ |
| 3508 | /* to the TxPacketFreeQ for each send ring. */ |
| 3509 | for(j = 0; j < pDevice->TxPacketDescCnt; j++) |
| 3510 | { |
| 3511 | /* Ring index. */ |
| 3512 | pPacket->Flags = 0; |
| 3513 | |
| 3514 | /* Queue the descriptor in the TxPacketFreeQ of the 'k' ring. */ |
| 3515 | QQ_PushTail(&pDevice->TxPacketFreeQ.Container, pPacket); |
| 3516 | |
| 3517 | /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */ |
| 3518 | /* is the total size of the packet descriptor including the */ |
| 3519 | /* os-specific extensions in the UM_PACKET structure. */ |
| 3520 | pPacket = (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE); |
| 3521 | } /* for(j.. */ |
| 3522 | |
| 3523 | /* Create receive packet descriptors from the memory block and add them */ |
| 3524 | /* to the RxPacketFreeQ. Create the Standard packet descriptors. */ |
| 3525 | for(j = 0; j < pDevice->RxStdDescCnt; j++) |
| 3526 | { |
| 3527 | /* Receive producer ring. */ |
| 3528 | pPacket->u.Rx.RcvProdRing = T3_STD_RCV_PROD_RING; |
| 3529 | |
| 3530 | /* Receive buffer size. */ |
| 3531 | if (T3_ASIC_5714_FAMILY(pDevice->ChipRevId) && |
| 3532 | (pDevice->RxJumboBufferSize) ) |
| 3533 | { |
| 3534 | pPacket->u.Rx.RxBufferSize = pDevice->RxJumboBufferSize; |
| 3535 | }else{ |
| 3536 | pPacket->u.Rx.RxBufferSize = MAX_STD_RCV_BUFFER_SIZE; |
| 3537 | } |
| 3538 | |
| 3539 | /* Add the descriptor to RxPacketFreeQ. */ |
| 3540 | QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket); |
| 3541 | |
| 3542 | /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */ |
| 3543 | /* is the total size of the packet descriptor including the */ |
| 3544 | /* os-specific extensions in the UM_PACKET structure. */ |
| 3545 | pPacket = (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE); |
| 3546 | } /* for */ |
| 3547 | |
| 3548 | |
| 3549 | #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| 3550 | /* Create the Jumbo packet descriptors. */ |
| 3551 | for(j = 0; j < pDevice->RxJumboDescCnt; j++) |
| 3552 | { |
| 3553 | /* Receive producer ring. */ |
| 3554 | pPacket->u.Rx.RcvProdRing = T3_JUMBO_RCV_PROD_RING; |
| 3555 | |
| 3556 | /* Receive buffer size. */ |
| 3557 | pPacket->u.Rx.RxBufferSize = pDevice->RxJumboBufferSize; |
| 3558 | |
| 3559 | /* Add the descriptor to RxPacketFreeQ. */ |
| 3560 | QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket); |
| 3561 | |
| 3562 | /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */ |
| 3563 | /* is the total size of the packet descriptor including the */ |
| 3564 | /* os-specific extensions in the UM_PACKET structure. */ |
| 3565 | pPacket = (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE); |
| 3566 | } /* for */ |
| 3567 | #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| 3568 | |
| 3569 | /* Initialize the rest of the packet descriptors. */ |
| 3570 | Status = MM_InitializeUmPackets(pDevice); |
| 3571 | if(Status != LM_STATUS_SUCCESS) |
| 3572 | { |
| 3573 | return Status; |
| 3574 | } /* if */ |
| 3575 | |
| 3576 | /* Default receive mask. */ |
| 3577 | pDevice->ReceiveMask &= LM_KEEP_VLAN_TAG; |
| 3578 | pDevice->ReceiveMask |= LM_ACCEPT_MULTICAST | LM_ACCEPT_BROADCAST | |
| 3579 | LM_ACCEPT_UNICAST; |
| 3580 | |
| 3581 | /* Make sure we are in the first 32k memory window or NicSendBd. */ |
| 3582 | REG_WR(pDevice, PciCfg.MemWindowBaseAddr, 0); |
| 3583 | |
| 3584 | /* Initialize the hardware. */ |
| 3585 | Status = LM_ResetAdapter(pDevice); |
| 3586 | if(Status != LM_STATUS_SUCCESS) |
| 3587 | { |
| 3588 | return Status; |
| 3589 | } |
| 3590 | |
| 3591 | /* We are done with initialization. */ |
| 3592 | pDevice->InitDone = TRUE; |
| 3593 | |
| 3594 | return LM_STATUS_SUCCESS; |
| 3595 | } /* LM_InitializeAdapter */ |
| 3596 | |
| 3597 | |
| 3598 | LM_STATUS |
| 3599 | LM_DisableChip(PLM_DEVICE_BLOCK pDevice) |
| 3600 | { |
| 3601 | LM_UINT32 data; |
| 3602 | |
| 3603 | pDevice->RxMode &= ~RX_MODE_ENABLE; |
| 3604 | REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode); |
| 3605 | if(!(REG_RD(pDevice, MacCtrl.RxMode) & RX_MODE_ENABLE)) |
| 3606 | { |
| 3607 | MM_Wait(20); |
| 3608 | } |
| 3609 | data = REG_RD(pDevice, RcvBdIn.Mode); |
| 3610 | data &= ~RCV_BD_IN_MODE_ENABLE; |
| 3611 | REG_WR(pDevice, RcvBdIn.Mode,data); |
| 3612 | if(!(REG_RD(pDevice, RcvBdIn.Mode) & RCV_BD_IN_MODE_ENABLE)) |
| 3613 | { |
| 3614 | MM_Wait(20); |
| 3615 | } |
| 3616 | data = REG_RD(pDevice, RcvListPlmt.Mode); |
| 3617 | data &= ~RCV_LIST_PLMT_MODE_ENABLE; |
| 3618 | REG_WR(pDevice, RcvListPlmt.Mode,data); |
| 3619 | if(!(REG_RD(pDevice, RcvListPlmt.Mode) & RCV_LIST_PLMT_MODE_ENABLE)) |
| 3620 | { |
| 3621 | MM_Wait(20); |
| 3622 | } |
| 3623 | if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 3624 | { |
| 3625 | data = REG_RD(pDevice, RcvListSel.Mode); |
| 3626 | data &= ~RCV_LIST_SEL_MODE_ENABLE; |
| 3627 | REG_WR(pDevice, RcvListSel.Mode,data); |
| 3628 | if(!(REG_RD(pDevice, RcvListSel.Mode) & RCV_LIST_SEL_MODE_ENABLE)) |
| 3629 | { |
| 3630 | MM_Wait(20); |
| 3631 | } |
| 3632 | } |
| 3633 | data = REG_RD(pDevice, RcvDataBdIn.Mode); |
| 3634 | data &= ~RCV_DATA_BD_IN_MODE_ENABLE; |
| 3635 | REG_WR(pDevice, RcvDataBdIn.Mode,data); |
| 3636 | if(!(REG_RD(pDevice, RcvDataBdIn.Mode) & RCV_DATA_BD_IN_MODE_ENABLE)) |
| 3637 | { |
| 3638 | MM_Wait(20); |
| 3639 | } |
| 3640 | data = REG_RD(pDevice, RcvDataComp.Mode); |
| 3641 | data &= ~RCV_DATA_COMP_MODE_ENABLE; |
| 3642 | REG_WR(pDevice, RcvDataComp.Mode,data); |
| 3643 | if(!(REG_RD(pDevice, RcvDataBdIn.Mode) & RCV_DATA_COMP_MODE_ENABLE)) |
| 3644 | { |
| 3645 | MM_Wait(20); |
| 3646 | } |
| 3647 | data = REG_RD(pDevice, RcvBdComp.Mode); |
| 3648 | data &= ~RCV_BD_COMP_MODE_ENABLE; |
| 3649 | REG_WR(pDevice, RcvBdComp.Mode,data); |
| 3650 | if(!(REG_RD(pDevice, RcvBdComp.Mode) & RCV_BD_COMP_MODE_ENABLE)) |
| 3651 | { |
| 3652 | MM_Wait(20); |
| 3653 | } |
| 3654 | data = REG_RD(pDevice, SndBdSel.Mode); |
| 3655 | data &= ~SND_BD_SEL_MODE_ENABLE; |
| 3656 | REG_WR(pDevice, SndBdSel.Mode, data); |
| 3657 | if(!(REG_RD(pDevice, SndBdSel.Mode) & SND_BD_SEL_MODE_ENABLE)) |
| 3658 | { |
| 3659 | MM_Wait(20); |
| 3660 | } |
| 3661 | data = REG_RD(pDevice, SndBdIn.Mode); |
| 3662 | data &= ~SND_BD_IN_MODE_ENABLE; |
| 3663 | REG_WR(pDevice, SndBdIn.Mode, data); |
| 3664 | if(!(REG_RD(pDevice, SndBdIn.Mode) & SND_BD_IN_MODE_ENABLE)) |
| 3665 | { |
| 3666 | MM_Wait(20); |
| 3667 | } |
| 3668 | data = REG_RD(pDevice, SndDataIn.Mode); |
| 3669 | data &= ~T3_SND_DATA_IN_MODE_ENABLE; |
| 3670 | REG_WR(pDevice, SndDataIn.Mode,data); |
| 3671 | if(!(REG_RD(pDevice, SndDataIn.Mode) & T3_SND_DATA_IN_MODE_ENABLE)) |
| 3672 | { |
| 3673 | MM_Wait(20); |
| 3674 | } |
| 3675 | data = REG_RD(pDevice, DmaRead.Mode); |
| 3676 | data &= ~DMA_READ_MODE_ENABLE; |
| 3677 | REG_WR(pDevice, DmaRead.Mode, data); |
| 3678 | if(!(REG_RD(pDevice, DmaRead.Mode) & DMA_READ_MODE_ENABLE)) |
| 3679 | { |
| 3680 | MM_Wait(20); |
| 3681 | } |
| 3682 | data = REG_RD(pDevice, SndDataComp.Mode); |
| 3683 | data &= ~SND_DATA_COMP_MODE_ENABLE; |
| 3684 | REG_WR(pDevice, SndDataComp.Mode, data); |
| 3685 | if(!(REG_RD(pDevice, SndDataComp.Mode) & SND_DATA_COMP_MODE_ENABLE)) |
| 3686 | { |
| 3687 | MM_Wait(20); |
| 3688 | } |
| 3689 | |
| 3690 | if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 3691 | { |
| 3692 | data = REG_RD(pDevice,DmaComp.Mode); |
| 3693 | data &= ~DMA_COMP_MODE_ENABLE; |
| 3694 | REG_WR(pDevice, DmaComp.Mode, data); |
| 3695 | if(!(REG_RD(pDevice, DmaComp.Mode) & DMA_COMP_MODE_ENABLE)) |
| 3696 | { |
| 3697 | MM_Wait(20); |
| 3698 | } |
| 3699 | } |
| 3700 | data = REG_RD(pDevice, SndBdComp.Mode); |
| 3701 | data &= ~SND_BD_COMP_MODE_ENABLE; |
| 3702 | REG_WR(pDevice, SndBdComp.Mode, data); |
| 3703 | if(!(REG_RD(pDevice, SndBdComp.Mode) & SND_BD_COMP_MODE_ENABLE)) |
| 3704 | { |
| 3705 | MM_Wait(20); |
| 3706 | } |
| 3707 | /* Clear TDE bit */ |
| 3708 | pDevice->MacMode &= ~MAC_MODE_ENABLE_TDE; |
| 3709 | REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode); |
| 3710 | pDevice->TxMode &= ~TX_MODE_ENABLE; |
| 3711 | REG_WR(pDevice, MacCtrl.TxMode, pDevice->TxMode); |
| 3712 | if(!(REG_RD(pDevice, MacCtrl.TxMode) & TX_MODE_ENABLE)) |
| 3713 | { |
| 3714 | MM_Wait(20); |
| 3715 | } |
| 3716 | data = REG_RD(pDevice, HostCoalesce.Mode); |
| 3717 | data &= ~HOST_COALESCE_ENABLE; |
| 3718 | REG_WR(pDevice, HostCoalesce.Mode, data); |
| 3719 | if(!(REG_RD(pDevice, SndBdIn.Mode) & HOST_COALESCE_ENABLE)) |
| 3720 | { |
| 3721 | MM_Wait(20); |
| 3722 | } |
| 3723 | data = REG_RD(pDevice, DmaWrite.Mode); |
| 3724 | data &= ~DMA_WRITE_MODE_ENABLE; |
| 3725 | REG_WR(pDevice, DmaWrite.Mode,data); |
| 3726 | if(!(REG_RD(pDevice, DmaWrite.Mode) & DMA_WRITE_MODE_ENABLE)) |
| 3727 | { |
| 3728 | MM_Wait(20); |
| 3729 | } |
| 3730 | |
| 3731 | if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 3732 | { |
| 3733 | data = REG_RD(pDevice, MbufClusterFree.Mode); |
| 3734 | data &= ~MBUF_CLUSTER_FREE_MODE_ENABLE; |
| 3735 | REG_WR(pDevice, MbufClusterFree.Mode,data); |
| 3736 | if(!(REG_RD(pDevice, MbufClusterFree.Mode) & MBUF_CLUSTER_FREE_MODE_ENABLE)) |
| 3737 | { |
| 3738 | MM_Wait(20); |
| 3739 | } |
| 3740 | } |
| 3741 | /* Reset all FTQs */ |
| 3742 | REG_WR(pDevice, Ftq.Reset, 0xffffffff); |
| 3743 | REG_WR(pDevice, Ftq.Reset, 0x0); |
| 3744 | |
| 3745 | if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 3746 | { |
| 3747 | data = REG_RD(pDevice, BufMgr.Mode); |
| 3748 | data &= ~BUFMGR_MODE_ENABLE; |
| 3749 | REG_WR(pDevice, BufMgr.Mode,data); |
| 3750 | if(!(REG_RD(pDevice, BufMgr.Mode) & BUFMGR_MODE_ENABLE)) |
| 3751 | { |
| 3752 | MM_Wait(20); |
| 3753 | } |
| 3754 | data = REG_RD(pDevice, MemArbiter.Mode); |
| 3755 | data &= ~T3_MEM_ARBITER_MODE_ENABLE; |
| 3756 | REG_WR(pDevice, MemArbiter.Mode, data); |
| 3757 | if(!(REG_RD(pDevice, MemArbiter.Mode) & T3_MEM_ARBITER_MODE_ENABLE)) |
| 3758 | { |
| 3759 | MM_Wait(20); |
| 3760 | } |
| 3761 | } |
| 3762 | return LM_STATUS_SUCCESS; |
| 3763 | } |
| 3764 | |
| 3765 | LM_STATUS |
| 3766 | LM_DisableFW(PLM_DEVICE_BLOCK pDevice) |
| 3767 | { |
| 3768 | #ifdef BCM_ASF |
| 3769 | int j; |
| 3770 | LM_UINT32 Value32; |
| 3771 | |
| 3772 | if (pDevice->AsfFlags & ASF_ENABLED) |
| 3773 | { |
| 3774 | MEM_WR_OFFSET(pDevice, T3_CMD_MAILBOX, T3_CMD_NICDRV_PAUSE_FW); |
| 3775 | Value32 = REG_RD(pDevice, Grc.RxCpuEvent); |
| 3776 | REG_WR(pDevice, Grc.RxCpuEvent, Value32 | BIT_14); |
| 3777 | for (j = 0; j < 100; j++) |
| 3778 | { |
| 3779 | Value32 = REG_RD(pDevice, Grc.RxCpuEvent); |
| 3780 | if (!(Value32 & BIT_14)) |
| 3781 | { |
| 3782 | break; |
| 3783 | } |
| 3784 | MM_Wait(1); |
| 3785 | } |
| 3786 | } |
| 3787 | #endif |
| 3788 | return LM_STATUS_SUCCESS; |
| 3789 | } |
| 3790 | |
| 3791 | /******************************************************************************/ |
| 3792 | /* Description: */ |
| 3793 | /* This function reinitializes the adapter. */ |
| 3794 | /* */ |
| 3795 | /* Return: */ |
| 3796 | /* LM_STATUS_SUCCESS */ |
| 3797 | /******************************************************************************/ |
| 3798 | LM_STATUS |
| 3799 | LM_ResetAdapter( |
| 3800 | PLM_DEVICE_BLOCK pDevice) |
| 3801 | { |
| 3802 | LM_UINT32 Value32; |
| 3803 | LM_UINT32 j, k; |
| 3804 | int reset_count = 0; |
| 3805 | |
| 3806 | /* Disable interrupt. */ |
| 3807 | LM_DisableInterrupt(pDevice); |
| 3808 | |
| 3809 | restart_reset: |
| 3810 | LM_DisableFW(pDevice); |
| 3811 | |
| 3812 | /* May get a spurious interrupt */ |
| 3813 | pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED; |
| 3814 | |
| 3815 | LM_WritePreResetSignatures(pDevice, LM_INIT_RESET); |
| 3816 | /* Disable transmit and receive DMA engines. Abort all pending requests. */ |
| 3817 | if(pDevice->InitDone) |
| 3818 | { |
| 3819 | LM_Abort(pDevice); |
| 3820 | } |
| 3821 | |
| 3822 | pDevice->ShuttingDown = FALSE; |
| 3823 | |
| 3824 | LM_ResetChip(pDevice); |
| 3825 | |
| 3826 | LM_WriteLegacySignatures(pDevice, LM_INIT_RESET); |
| 3827 | |
| 3828 | /* Bug: Athlon fix for B3 silicon only. This bit does not do anything */ |
| 3829 | /* in other chip revisions except 5750 */ |
| 3830 | if ((pDevice->Flags & DELAY_PCI_GRANT_FLAG) && |
| 3831 | !(pDevice->Flags & PCI_EXPRESS_FLAG)) |
| 3832 | { |
| 3833 | REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | BIT_31); |
| 3834 | } |
| 3835 | |
| 3836 | if(pDevice->ChipRevId == T3_CHIP_ID_5704_A0) |
| 3837 | { |
| 3838 | if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) |
| 3839 | { |
| 3840 | Value32 = REG_RD(pDevice, PciCfg.PciState); |
| 3841 | Value32 |= T3_PCI_STATE_RETRY_SAME_DMA; |
| 3842 | REG_WR(pDevice, PciCfg.PciState, Value32); |
| 3843 | } |
| 3844 | } |
| 3845 | if (T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5704_BX) |
| 3846 | { |
| 3847 | /* New bits defined in register 0x64 to enable some h/w fixes */ |
| 3848 | /* These new bits are 'write-only' */ |
| 3849 | Value32 = REG_RD(pDevice, PciCfg.MsiData); |
| 3850 | REG_WR(pDevice, PciCfg.MsiData, Value32 | BIT_26 | BIT_28 | BIT_29); |
| 3851 | } |
| 3852 | |
| 3853 | /* Enable TaggedStatus mode. */ |
| 3854 | if (pDevice->Flags & USE_TAGGED_STATUS_FLAG) |
| 3855 | { |
| 3856 | pDevice->MiscHostCtrl |= MISC_HOST_CTRL_ENABLE_TAGGED_STATUS_MODE; |
| 3857 | } |
| 3858 | |
| 3859 | /* Restore PCI configuration registers. */ |
| 3860 | MM_WriteConfig32(pDevice, PCI_CACHE_LINE_SIZE_REG, |
| 3861 | pDevice->SavedCacheLineReg); |
| 3862 | MM_WriteConfig32(pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG, |
| 3863 | (pDevice->SubsystemId << 16) | pDevice->SubsystemVendorId); |
| 3864 | |
| 3865 | /* Initialize the statistis Block */ |
| 3866 | pDevice->pStatusBlkVirt->Status = 0; |
| 3867 | pDevice->pStatusBlkVirt->RcvStdConIdx = 0; |
| 3868 | pDevice->pStatusBlkVirt->RcvJumboConIdx = 0; |
| 3869 | pDevice->pStatusBlkVirt->RcvMiniConIdx = 0; |
| 3870 | |
| 3871 | for(j = 0; j < 16; j++) |
| 3872 | { |
| 3873 | pDevice->pStatusBlkVirt->Idx[j].RcvProdIdx = 0; |
| 3874 | pDevice->pStatusBlkVirt->Idx[j].SendConIdx = 0; |
| 3875 | } |
| 3876 | |
| 3877 | for(k = 0; k < T3_STD_RCV_RCB_ENTRY_COUNT ;k++) |
| 3878 | { |
| 3879 | pDevice->pRxStdBdVirt[k].HostAddr.High = 0; |
| 3880 | pDevice->pRxStdBdVirt[k].HostAddr.Low = 0; |
| 3881 | pDevice->pRxStdBdVirt[k].Flags = RCV_BD_FLAG_END; |
| 3882 | if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId) && |
| 3883 | (pDevice->RxJumboBufferSize) ) |
| 3884 | pDevice->pRxStdBdVirt[k].Len = pDevice->RxJumboBufferSize; |
| 3885 | else |
| 3886 | pDevice->pRxStdBdVirt[k].Len = MAX_STD_RCV_BUFFER_SIZE; |
| 3887 | } |
| 3888 | |
| 3889 | #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| 3890 | /* Receive jumbo BD buffer. */ |
| 3891 | for(k = 0; k < T3_JUMBO_RCV_RCB_ENTRY_COUNT; k++) |
| 3892 | { |
| 3893 | pDevice->pRxJumboBdVirt[k].HostAddr.High = 0; |
| 3894 | pDevice->pRxJumboBdVirt[k].HostAddr.Low = 0; |
| 3895 | pDevice->pRxJumboBdVirt[k].Flags = RCV_BD_FLAG_END | |
| 3896 | RCV_BD_FLAG_JUMBO_RING; |
| 3897 | pDevice->pRxJumboBdVirt[k].Len = (LM_UINT16) pDevice->RxJumboBufferSize; |
| 3898 | } |
| 3899 | #endif |
| 3900 | |
| 3901 | REG_WR(pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl); |
| 3902 | |
| 3903 | /* GRC mode control register. */ |
| 3904 | Value32 = |
| 3905 | #ifdef BIG_ENDIAN_HOST |
| 3906 | GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | |
| 3907 | GRC_MODE_WORD_SWAP_NON_FRAME_DATA | |
| 3908 | GRC_MODE_BYTE_SWAP_DATA | |
| 3909 | GRC_MODE_WORD_SWAP_DATA | |
| 3910 | #else |
| 3911 | GRC_MODE_WORD_SWAP_NON_FRAME_DATA | |
| 3912 | GRC_MODE_BYTE_SWAP_DATA | |
| 3913 | GRC_MODE_WORD_SWAP_DATA | |
| 3914 | #endif |
| 3915 | GRC_MODE_INT_ON_MAC_ATTN | |
| 3916 | GRC_MODE_HOST_STACK_UP; |
| 3917 | |
| 3918 | /* Configure send BD mode. */ |
| 3919 | if (!(pDevice->Flags & NIC_SEND_BD_FLAG)) |
| 3920 | { |
| 3921 | Value32 |= GRC_MODE_HOST_SEND_BDS; |
| 3922 | } |
| 3923 | #ifdef BCM_NIC_SEND_BD |
| 3924 | else |
| 3925 | { |
| 3926 | Value32 |= GRC_MODE_4X_NIC_BASED_SEND_RINGS; |
| 3927 | } |
| 3928 | #endif |
| 3929 | |
| 3930 | /* Configure pseudo checksum mode. */ |
| 3931 | if (pDevice->Flags & NO_TX_PSEUDO_HDR_CSUM_FLAG) |
| 3932 | { |
| 3933 | Value32 |= GRC_MODE_TX_NO_PSEUDO_HEADER_CHKSUM; |
| 3934 | } |
| 3935 | |
| 3936 | if (pDevice->Flags & NO_RX_PSEUDO_HDR_CSUM_FLAG) |
| 3937 | { |
| 3938 | Value32 |= GRC_MODE_RX_NO_PSEUDO_HEADER_CHKSUM; |
| 3939 | } |
| 3940 | |
| 3941 | pDevice->GrcMode = Value32; |
| 3942 | REG_WR(pDevice, Grc.Mode, Value32); |
| 3943 | |
| 3944 | /* Setup the timer prescalar register. */ |
| 3945 | Value32 = REG_RD(pDevice, Grc.MiscCfg) & ~0xff; |
| 3946 | /* Clock is always 66Mhz. */ |
| 3947 | REG_WR(pDevice, Grc.MiscCfg, Value32 | (65 << 1)); |
| 3948 | |
| 3949 | /* Set up the MBUF pool base address and size. */ |
| 3950 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705) |
| 3951 | { |
| 3952 | #ifdef INCLUDE_TCP_SEG_SUPPORT |
| 3953 | if (pDevice->TaskToOffload & LM_TASK_OFFLOAD_TCP_SEGMENTATION) |
| 3954 | { |
| 3955 | Value32 = LM_GetStkOffLdFirmwareSize(pDevice); |
| 3956 | Value32 = (Value32 + 0x7f) & ~0x7f; |
| 3957 | pDevice->MbufBase = T3_NIC_BCM5705_MBUF_POOL_ADDR + Value32; |
| 3958 | pDevice->MbufSize = T3_NIC_BCM5705_MBUF_POOL_SIZE - Value32 - 0xa00; |
| 3959 | REG_WR(pDevice, BufMgr.MbufPoolAddr, pDevice->MbufBase); |
| 3960 | REG_WR(pDevice, BufMgr.MbufPoolSize, pDevice->MbufSize); |
| 3961 | } |
| 3962 | #endif |
| 3963 | } |
| 3964 | else if (!T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 3965 | { |
| 3966 | REG_WR(pDevice, BufMgr.MbufPoolAddr, pDevice->MbufBase); |
| 3967 | REG_WR(pDevice, BufMgr.MbufPoolSize, pDevice->MbufSize); |
| 3968 | |
| 3969 | /* Set up the DMA descriptor pool base address and size. */ |
| 3970 | REG_WR(pDevice, BufMgr.DmaDescPoolAddr, T3_NIC_DMA_DESC_POOL_ADDR); |
| 3971 | REG_WR(pDevice, BufMgr.DmaDescPoolSize, T3_NIC_DMA_DESC_POOL_SIZE); |
| 3972 | |
| 3973 | } |
| 3974 | |
| 3975 | /* Configure MBUF and Threshold watermarks */ |
| 3976 | /* Configure the DMA read MBUF low water mark. */ |
| 3977 | if(pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE) |
| 3978 | { |
| 3979 | if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 3980 | { |
| 3981 | REG_WR(pDevice, BufMgr.MbufReadDmaLowWaterMark, |
| 3982 | T3_DEF_DMA_MBUF_LOW_WMARK_5705); |
| 3983 | REG_WR(pDevice, BufMgr.MbufMacRxLowWaterMark, |
| 3984 | T3_DEF_RX_MAC_MBUF_LOW_WMARK_5705); |
| 3985 | REG_WR(pDevice, BufMgr.MbufHighWaterMark, |
| 3986 | T3_DEF_MBUF_HIGH_WMARK_5705); |
| 3987 | } |
| 3988 | else |
| 3989 | { |
| 3990 | REG_WR(pDevice, BufMgr.MbufReadDmaLowWaterMark, |
| 3991 | T3_DEF_DMA_MBUF_LOW_WMARK); |
| 3992 | REG_WR(pDevice, BufMgr.MbufMacRxLowWaterMark, |
| 3993 | T3_DEF_RX_MAC_MBUF_LOW_WMARK); |
| 3994 | REG_WR(pDevice, BufMgr.MbufHighWaterMark, |
| 3995 | T3_DEF_MBUF_HIGH_WMARK); |
| 3996 | } |
| 3997 | }else if( T3_ASIC_5714_FAMILY(pDevice->ChipRevId)){ |
| 3998 | |
| 3999 | REG_WR(pDevice, BufMgr.MbufReadDmaLowWaterMark,0); |
| 4000 | REG_WR(pDevice, BufMgr.MbufMacRxLowWaterMark,0x4b); |
| 4001 | REG_WR(pDevice, BufMgr.MbufHighWaterMark,0x96); |
| 4002 | } |
| 4003 | else |
| 4004 | { |
| 4005 | REG_WR(pDevice, BufMgr.MbufReadDmaLowWaterMark, |
| 4006 | T3_DEF_DMA_MBUF_LOW_WMARK_JUMBO); |
| 4007 | REG_WR(pDevice, BufMgr.MbufMacRxLowWaterMark, |
| 4008 | T3_DEF_RX_MAC_MBUF_LOW_WMARK_JUMBO); |
| 4009 | REG_WR(pDevice, BufMgr.MbufHighWaterMark, |
| 4010 | T3_DEF_MBUF_HIGH_WMARK_JUMBO); |
| 4011 | } |
| 4012 | |
| 4013 | REG_WR(pDevice, BufMgr.DmaLowWaterMark, T3_DEF_DMA_DESC_LOW_WMARK); |
| 4014 | REG_WR(pDevice, BufMgr.DmaHighWaterMark, T3_DEF_DMA_DESC_HIGH_WMARK); |
| 4015 | |
| 4016 | /* Enable buffer manager. */ |
| 4017 | REG_WR(pDevice, BufMgr.Mode, BUFMGR_MODE_ENABLE | BUFMGR_MODE_ATTN_ENABLE); |
| 4018 | |
| 4019 | for(j = 0 ;j < 2000; j++) |
| 4020 | { |
| 4021 | if(REG_RD(pDevice, BufMgr.Mode) & BUFMGR_MODE_ENABLE) |
| 4022 | break; |
| 4023 | MM_Wait(10); |
| 4024 | } |
| 4025 | |
| 4026 | if(j >= 2000) |
| 4027 | { |
| 4028 | return LM_STATUS_FAILURE; |
| 4029 | } |
| 4030 | |
| 4031 | /* GRC reset will reset FTQ */ |
| 4032 | |
| 4033 | /* Receive BD Ring replenish threshold. */ |
| 4034 | REG_WR(pDevice, RcvBdIn.StdRcvThreshold, pDevice->RxStdDescCnt/8); |
| 4035 | |
| 4036 | /* Initialize the Standard Receive RCB. */ |
| 4037 | REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.High, |
| 4038 | pDevice->RxStdBdPhy.High); |
| 4039 | REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.Low, |
| 4040 | pDevice->RxStdBdPhy.Low); |
| 4041 | REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.NicRingAddr, |
| 4042 | (LM_UINT32) T3_NIC_STD_RCV_BUFFER_DESC_ADDR); |
| 4043 | |
| 4044 | if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 4045 | { |
| 4046 | REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.u.MaxLen_Flags, |
| 4047 | 512 << 16); |
| 4048 | } |
| 4049 | else |
| 4050 | { |
| 4051 | REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.u.MaxLen_Flags, |
| 4052 | MAX_STD_RCV_BUFFER_SIZE << 16); |
| 4053 | |
| 4054 | /* Initialize the Jumbo Receive RCB. */ |
| 4055 | REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags, |
| 4056 | T3_RCB_FLAG_RING_DISABLED); |
| 4057 | #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| 4058 | REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.High, |
| 4059 | pDevice->RxJumboBdPhy.High); |
| 4060 | REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.Low, |
| 4061 | pDevice->RxJumboBdPhy.Low); |
| 4062 | REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags, 0); |
| 4063 | REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.NicRingAddr, |
| 4064 | (LM_UINT32) T3_NIC_JUMBO_RCV_BUFFER_DESC_ADDR); |
| 4065 | |
| 4066 | REG_WR(pDevice, RcvBdIn.JumboRcvThreshold, pDevice->RxJumboDescCnt/8); |
| 4067 | |
| 4068 | #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| 4069 | |
| 4070 | /* Initialize the Mini Receive RCB. */ |
| 4071 | REG_WR(pDevice, RcvDataBdIn.MiniRcvRcb.u.MaxLen_Flags, |
| 4072 | T3_RCB_FLAG_RING_DISABLED); |
| 4073 | |
| 4074 | /* Disable all the unused rings. */ |
| 4075 | for(j = 0; j < T3_MAX_SEND_RCB_COUNT; j++) { |
| 4076 | MEM_WR(pDevice, SendRcb[j].u.MaxLen_Flags, |
| 4077 | T3_RCB_FLAG_RING_DISABLED); |
| 4078 | } /* for */ |
| 4079 | |
| 4080 | } |
| 4081 | |
| 4082 | /* Initialize the indices. */ |
| 4083 | pDevice->SendProdIdx = 0; |
| 4084 | pDevice->SendConIdx = 0; |
| 4085 | |
| 4086 | MB_REG_WR(pDevice, Mailbox.SendHostProdIdx[0].Low, 0); |
| 4087 | MB_REG_RD(pDevice, Mailbox.SendHostProdIdx[0].Low); |
| 4088 | MB_REG_WR(pDevice, Mailbox.SendNicProdIdx[0].Low, 0); |
| 4089 | MB_REG_RD(pDevice, Mailbox.SendNicProdIdx[0].Low); |
| 4090 | |
| 4091 | /* Set up host or NIC based send RCB. */ |
| 4092 | if (!(pDevice->Flags & NIC_SEND_BD_FLAG)) |
| 4093 | { |
| 4094 | MEM_WR(pDevice, SendRcb[0].HostRingAddr.High, |
| 4095 | pDevice->SendBdPhy.High); |
| 4096 | MEM_WR(pDevice, SendRcb[0].HostRingAddr.Low, |
| 4097 | pDevice->SendBdPhy.Low); |
| 4098 | |
| 4099 | /* Setup the RCB. */ |
| 4100 | MEM_WR(pDevice, SendRcb[0].u.MaxLen_Flags, |
| 4101 | T3_SEND_RCB_ENTRY_COUNT << 16); |
| 4102 | |
| 4103 | if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 4104 | { |
| 4105 | /* Set up the NIC ring address in the RCB. */ |
| 4106 | MEM_WR(pDevice, SendRcb[0].NicRingAddr,T3_NIC_SND_BUFFER_DESC_ADDR); |
| 4107 | } |
| 4108 | for(k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++) |
| 4109 | { |
| 4110 | pDevice->pSendBdVirt[k].HostAddr.High = 0; |
| 4111 | pDevice->pSendBdVirt[k].HostAddr.Low = 0; |
| 4112 | } |
| 4113 | } |
| 4114 | #ifdef BCM_NIC_SEND_BD |
| 4115 | else |
| 4116 | { |
| 4117 | MEM_WR(pDevice, SendRcb[0].HostRingAddr.High, 0); |
| 4118 | MEM_WR(pDevice, SendRcb[0].HostRingAddr.Low, 0); |
| 4119 | MEM_WR(pDevice, SendRcb[0].NicRingAddr, |
| 4120 | pDevice->SendBdPhy.Low); |
| 4121 | |
| 4122 | for(k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++) |
| 4123 | { |
| 4124 | MM_MEMWRITEL(&(pDevice->pSendBdVirt[k].HostAddr.High), 0); |
| 4125 | MM_MEMWRITEL(&(pDevice->pSendBdVirt[k].HostAddr.Low), 0); |
| 4126 | MM_MEMWRITEL(&(pDevice->pSendBdVirt[k].u1.Len_Flags), 0); |
| 4127 | pDevice->ShadowSendBd[k].HostAddr.High = 0; |
| 4128 | pDevice->ShadowSendBd[k].u1.Len_Flags = 0; |
| 4129 | } |
| 4130 | } |
| 4131 | #endif |
| 4132 | MM_ATOMIC_SET(&pDevice->SendBdLeft, T3_SEND_RCB_ENTRY_COUNT-1); |
| 4133 | |
| 4134 | /* Configure the receive return rings. */ |
| 4135 | for(j = 0; j < T3_MAX_RCV_RETURN_RCB_COUNT; j++) |
| 4136 | { |
| 4137 | MEM_WR(pDevice, RcvRetRcb[j].u.MaxLen_Flags, T3_RCB_FLAG_RING_DISABLED); |
| 4138 | } |
| 4139 | |
| 4140 | pDevice->RcvRetConIdx = 0; |
| 4141 | |
| 4142 | MEM_WR(pDevice, RcvRetRcb[0].HostRingAddr.High, |
| 4143 | pDevice->RcvRetBdPhy.High); |
| 4144 | MEM_WR(pDevice, RcvRetRcb[0].HostRingAddr.Low, |
| 4145 | pDevice->RcvRetBdPhy.Low); |
| 4146 | |
| 4147 | MEM_WR(pDevice, RcvRetRcb[0].NicRingAddr, 0); |
| 4148 | |
| 4149 | /* Setup the RCB. */ |
| 4150 | MEM_WR(pDevice, RcvRetRcb[0].u.MaxLen_Flags, |
| 4151 | pDevice->RcvRetRcbEntryCount << 16); |
| 4152 | |
| 4153 | /* Reinitialize RX ring producer index */ |
| 4154 | MB_REG_WR(pDevice, Mailbox.RcvStdProdIdx.Low, 0); |
| 4155 | MB_REG_RD(pDevice, Mailbox.RcvStdProdIdx.Low); |
| 4156 | MB_REG_WR(pDevice, Mailbox.RcvJumboProdIdx.Low, 0); |
| 4157 | MB_REG_RD(pDevice, Mailbox.RcvJumboProdIdx.Low); |
| 4158 | MB_REG_WR(pDevice, Mailbox.RcvMiniProdIdx.Low, 0); |
| 4159 | MB_REG_RD(pDevice, Mailbox.RcvMiniProdIdx.Low); |
| 4160 | |
| 4161 | #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| 4162 | pDevice->RxJumboProdIdx = 0; |
| 4163 | pDevice->RxJumboQueuedCnt = 0; |
| 4164 | #endif |
| 4165 | |
| 4166 | /* Reinitialize our copy of the indices. */ |
| 4167 | pDevice->RxStdProdIdx = 0; |
| 4168 | pDevice->RxStdQueuedCnt = 0; |
| 4169 | |
| 4170 | #if T3_JUMBO_RCV_ENTRY_COUNT |
| 4171 | pDevice->RxJumboProdIdx = 0; |
| 4172 | #endif /* T3_JUMBO_RCV_ENTRY_COUNT */ |
| 4173 | |
| 4174 | /* Configure the MAC address. */ |
| 4175 | LM_SetMacAddress(pDevice, pDevice->NodeAddress); |
| 4176 | |
| 4177 | /* Initialize the transmit random backoff seed. */ |
| 4178 | Value32 = (pDevice->NodeAddress[0] + pDevice->NodeAddress[1] + |
| 4179 | pDevice->NodeAddress[2] + pDevice->NodeAddress[3] + |
| 4180 | pDevice->NodeAddress[4] + pDevice->NodeAddress[5]) & |
| 4181 | MAC_TX_BACKOFF_SEED_MASK; |
| 4182 | REG_WR(pDevice, MacCtrl.TxBackoffSeed, Value32); |
| 4183 | |
| 4184 | /* Receive MTU. Frames larger than the MTU is marked as oversized. */ |
| 4185 | REG_WR(pDevice, MacCtrl.MtuSize, pDevice->RxMtu + 8); /* CRC + VLAN. */ |
| 4186 | |
| 4187 | /* Configure Time slot/IPG per 802.3 */ |
| 4188 | REG_WR(pDevice, MacCtrl.TxLengths, 0x2620); |
| 4189 | |
| 4190 | /* |
| 4191 | * Configure Receive Rules so that packets don't match |
| 4192 | * Programmble rule will be queued to Return Ring 1 |
| 4193 | */ |
| 4194 | REG_WR(pDevice, MacCtrl.RcvRuleCfg, RX_RULE_DEFAULT_CLASS); |
| 4195 | |
| 4196 | /* |
| 4197 | * Configure to have 16 Classes of Services (COS) and one |
| 4198 | * queue per class. Bad frames are queued to RRR#1. |
| 4199 | * And frames don't match rules are also queued to COS#1. |
| 4200 | */ |
| 4201 | REG_WR(pDevice, RcvListPlmt.Config, 0x181); |
| 4202 | |
| 4203 | /* Enable Receive Placement Statistics */ |
| 4204 | if ((pDevice->DmaReadFifoSize == DMA_READ_MODE_FIFO_LONG_BURST) && |
| 4205 | (pDevice->TaskToOffload & LM_TASK_OFFLOAD_TCP_SEGMENTATION)) |
| 4206 | { |
| 4207 | Value32 = REG_RD(pDevice, RcvListPlmt.StatsEnableMask); |
| 4208 | Value32 &= ~T3_DISABLE_LONG_BURST_READ_DYN_FIX; |
| 4209 | REG_WR(pDevice, RcvListPlmt.StatsEnableMask, Value32); |
| 4210 | } |
| 4211 | else |
| 4212 | { |
| 4213 | REG_WR(pDevice, RcvListPlmt.StatsEnableMask,0xffffff); |
| 4214 | } |
| 4215 | REG_WR(pDevice, RcvListPlmt.StatsCtrl, RCV_LIST_STATS_ENABLE); |
| 4216 | |
| 4217 | /* Enable Send Data Initator Statistics */ |
| 4218 | REG_WR(pDevice, SndDataIn.StatsEnableMask,0xffffff); |
| 4219 | REG_WR(pDevice, SndDataIn.StatsCtrl, |
| 4220 | T3_SND_DATA_IN_STATS_CTRL_ENABLE | \ |
| 4221 | T3_SND_DATA_IN_STATS_CTRL_FASTER_UPDATE); |
| 4222 | |
| 4223 | /* Disable the host coalescing state machine before configuring it's */ |
| 4224 | /* parameters. */ |
| 4225 | REG_WR(pDevice, HostCoalesce.Mode, 0); |
| 4226 | for(j = 0; j < 2000; j++) |
| 4227 | { |
| 4228 | Value32 = REG_RD(pDevice, HostCoalesce.Mode); |
| 4229 | if(!(Value32 & HOST_COALESCE_ENABLE)) |
| 4230 | { |
| 4231 | break; |
| 4232 | } |
| 4233 | MM_Wait(10); |
| 4234 | } |
| 4235 | |
| 4236 | /* Host coalescing configurations. */ |
| 4237 | REG_WR(pDevice, HostCoalesce.RxCoalescingTicks, pDevice->RxCoalescingTicks); |
| 4238 | REG_WR(pDevice, HostCoalesce.TxCoalescingTicks, pDevice->TxCoalescingTicks); |
| 4239 | REG_WR(pDevice, HostCoalesce.RxMaxCoalescedFrames, |
| 4240 | pDevice->RxMaxCoalescedFrames); |
| 4241 | REG_WR(pDevice, HostCoalesce.TxMaxCoalescedFrames, |
| 4242 | pDevice->TxMaxCoalescedFrames); |
| 4243 | |
| 4244 | if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 4245 | { |
| 4246 | REG_WR(pDevice, HostCoalesce.RxCoalescedTickDuringInt, |
| 4247 | pDevice->RxCoalescingTicksDuringInt); |
| 4248 | REG_WR(pDevice, HostCoalesce.TxCoalescedTickDuringInt, |
| 4249 | pDevice->TxCoalescingTicksDuringInt); |
| 4250 | } |
| 4251 | REG_WR(pDevice, HostCoalesce.RxMaxCoalescedFramesDuringInt, |
| 4252 | pDevice->RxMaxCoalescedFramesDuringInt); |
| 4253 | REG_WR(pDevice, HostCoalesce.TxMaxCoalescedFramesDuringInt, |
| 4254 | pDevice->TxMaxCoalescedFramesDuringInt); |
| 4255 | |
| 4256 | /* Initialize the address of the status block. The NIC will DMA */ |
| 4257 | /* the status block to this memory which resides on the host. */ |
| 4258 | REG_WR(pDevice, HostCoalesce.StatusBlkHostAddr.High, |
| 4259 | pDevice->StatusBlkPhy.High); |
| 4260 | REG_WR(pDevice, HostCoalesce.StatusBlkHostAddr.Low, |
| 4261 | pDevice->StatusBlkPhy.Low); |
| 4262 | |
| 4263 | /* Initialize the address of the statistics block. The NIC will DMA */ |
| 4264 | /* the statistics to this block of memory. */ |
| 4265 | if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 4266 | { |
| 4267 | REG_WR(pDevice, HostCoalesce.StatsBlkHostAddr.High, |
| 4268 | pDevice->StatsBlkPhy.High); |
| 4269 | REG_WR(pDevice, HostCoalesce.StatsBlkHostAddr.Low, |
| 4270 | pDevice->StatsBlkPhy.Low); |
| 4271 | |
| 4272 | REG_WR(pDevice, HostCoalesce.StatsCoalescingTicks, |
| 4273 | pDevice->StatsCoalescingTicks); |
| 4274 | |
| 4275 | REG_WR(pDevice, HostCoalesce.StatsBlkNicAddr, 0x300); |
| 4276 | REG_WR(pDevice, HostCoalesce.StatusBlkNicAddr,0xb00); |
| 4277 | } |
| 4278 | |
| 4279 | /* Enable Host Coalesing state machine */ |
| 4280 | REG_WR(pDevice, HostCoalesce.Mode, HOST_COALESCE_ENABLE | |
| 4281 | pDevice->CoalesceMode); |
| 4282 | |
| 4283 | /* Enable the Receive BD Completion state machine. */ |
| 4284 | REG_WR(pDevice, RcvBdComp.Mode, RCV_BD_COMP_MODE_ENABLE | |
| 4285 | RCV_BD_COMP_MODE_ATTN_ENABLE); |
| 4286 | |
| 4287 | /* Enable the Receive List Placement state machine. */ |
| 4288 | REG_WR(pDevice, RcvListPlmt.Mode, RCV_LIST_PLMT_MODE_ENABLE); |
| 4289 | |
| 4290 | if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 4291 | { |
| 4292 | /* Enable the Receive List Selector state machine. */ |
| 4293 | REG_WR(pDevice, RcvListSel.Mode, RCV_LIST_SEL_MODE_ENABLE | |
| 4294 | RCV_LIST_SEL_MODE_ATTN_ENABLE); |
| 4295 | } |
| 4296 | |
| 4297 | /* Reset the Rx MAC State Machine. |
| 4298 | * |
| 4299 | * The Rx MAC State Machine must be reset when using fiber to prevent the |
| 4300 | * first packet being lost. This is needed primarily so that the loopback |
| 4301 | * test (which currently only sends one packet) doesn't fail. |
| 4302 | * |
| 4303 | * Also note that the Rx MAC State Machine (0x468) should be reset _before_ |
| 4304 | * writting to the MAC Mode register (0x400). Failures have been seen on |
| 4305 | * 5780/5714's using fiber where they stopped receiving packets in a simple |
| 4306 | * ping test when the Rx MAC State Machine was reset _after_ the MAC Mode |
| 4307 | * register was set. |
| 4308 | */ |
| 4309 | |
| 4310 | if ((pDevice->TbiFlags & ENABLE_TBI_FLAG) || |
| 4311 | (pDevice->PhyFlags & PHY_IS_FIBER)) |
| 4312 | { |
| 4313 | REG_WR(pDevice, MacCtrl.RxMode, RX_MODE_RESET); |
| 4314 | REG_RD_BACK(pDevice, MacCtrl.RxMode); |
| 4315 | MM_Wait(10); |
| 4316 | REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode); |
| 4317 | REG_RD_BACK(pDevice, MacCtrl.RxMode); |
| 4318 | } |
| 4319 | |
| 4320 | /* Clear the statistics block. */ |
| 4321 | for(j = 0x0300; j < 0x0b00; j = j + 4) |
| 4322 | { |
| 4323 | MEM_WR_OFFSET(pDevice, j, 0); |
| 4324 | } |
| 4325 | |
| 4326 | /* Set Mac Mode */ |
| 4327 | if (pDevice->TbiFlags & ENABLE_TBI_FLAG) |
| 4328 | { |
| 4329 | pDevice->MacMode = MAC_MODE_PORT_MODE_TBI; |
| 4330 | } |
| 4331 | else if(pDevice->PhyFlags & PHY_IS_FIBER) |
| 4332 | { |
| 4333 | pDevice->MacMode = MAC_MODE_PORT_MODE_GMII; |
| 4334 | } |
| 4335 | else |
| 4336 | { |
| 4337 | pDevice->MacMode = 0; |
| 4338 | } |
| 4339 | |
| 4340 | /* Enable transmit DMA, clear statistics. */ |
| 4341 | pDevice->MacMode |= MAC_MODE_ENABLE_TX_STATISTICS | |
| 4342 | MAC_MODE_ENABLE_RX_STATISTICS | MAC_MODE_ENABLE_TDE | |
| 4343 | MAC_MODE_ENABLE_RDE | MAC_MODE_ENABLE_FHDE; |
| 4344 | REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode | |
| 4345 | MAC_MODE_CLEAR_RX_STATISTICS | MAC_MODE_CLEAR_TX_STATISTICS); |
| 4346 | |
| 4347 | /* GRC miscellaneous local control register. */ |
| 4348 | pDevice->GrcLocalCtrl = GRC_MISC_LOCAL_CTRL_INT_ON_ATTN | |
| 4349 | GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM; |
| 4350 | |
| 4351 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) |
| 4352 | { |
| 4353 | pDevice->GrcLocalCtrl |= GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| 4354 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1; |
| 4355 | } |
| 4356 | else if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704) && |
| 4357 | !(pDevice->Flags & EEPROM_WP_FLAG)) |
| 4358 | { |
| 4359 | /* Make sure we're on Vmain */ |
| 4360 | /* The other port may cause us to be on Vaux */ |
| 4361 | pDevice->GrcLocalCtrl |= GRC_MISC_LOCAL_CTRL_GPIO_OE2 | |
| 4362 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2; |
| 4363 | } |
| 4364 | |
| 4365 | RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl); |
| 4366 | MM_Wait(40); |
| 4367 | |
| 4368 | /* Reset RX counters. */ |
| 4369 | for(j = 0; j < sizeof(LM_RX_COUNTERS); j++) |
| 4370 | { |
| 4371 | ((PLM_UINT8) &pDevice->RxCounters)[j] = 0; |
| 4372 | } |
| 4373 | |
| 4374 | /* Reset TX counters. */ |
| 4375 | for(j = 0; j < sizeof(LM_TX_COUNTERS); j++) |
| 4376 | { |
| 4377 | ((PLM_UINT8) &pDevice->TxCounters)[j] = 0; |
| 4378 | } |
| 4379 | |
| 4380 | MB_REG_WR(pDevice, Mailbox.Interrupt[0].Low, 0); |
| 4381 | MB_REG_RD(pDevice, Mailbox.Interrupt[0].Low); |
| 4382 | pDevice->LastTag = 0; |
| 4383 | |
| 4384 | if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 4385 | { |
| 4386 | /* Enable the DMA Completion state machine. */ |
| 4387 | REG_WR(pDevice, DmaComp.Mode, DMA_COMP_MODE_ENABLE); |
| 4388 | } |
| 4389 | |
| 4390 | /* Enable the DMA Write state machine. */ |
| 4391 | Value32 = DMA_WRITE_MODE_ENABLE | |
| 4392 | DMA_WRITE_MODE_TARGET_ABORT_ATTN_ENABLE | |
| 4393 | DMA_WRITE_MODE_MASTER_ABORT_ATTN_ENABLE | |
| 4394 | DMA_WRITE_MODE_PARITY_ERROR_ATTN_ENABLE | |
| 4395 | DMA_WRITE_MODE_ADDR_OVERFLOW_ATTN_ENABLE | |
| 4396 | DMA_WRITE_MODE_FIFO_OVERRUN_ATTN_ENABLE | |
| 4397 | DMA_WRITE_MODE_FIFO_UNDERRUN_ATTN_ENABLE | |
| 4398 | DMA_WRITE_MODE_FIFO_OVERREAD_ATTN_ENABLE | |
| 4399 | DMA_WRITE_MODE_LONG_READ_ATTN_ENABLE; |
| 4400 | |
| 4401 | if (pDevice->Flags & DMA_WR_MODE_RX_ACCELERATE_FLAG) |
| 4402 | { |
| 4403 | Value32 |= DMA_WRITE_MODE_RECEIVE_ACCELERATE; |
| 4404 | } |
| 4405 | |
| 4406 | if (pDevice->Flags & HOST_COALESCING_BUG_FIX) |
| 4407 | { |
| 4408 | Value32 |= (1 << 29); |
| 4409 | } |
| 4410 | |
| 4411 | REG_WR(pDevice, DmaWrite.Mode, Value32); |
| 4412 | |
| 4413 | if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) |
| 4414 | { |
| 4415 | if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) |
| 4416 | { |
| 4417 | Value32 = REG_RD(pDevice, PciCfg.PciXCapabilities); |
| 4418 | Value32 &= ~PCIX_CMD_MAX_BURST_MASK; |
| 4419 | Value32 |= PCIX_CMD_MAX_BURST_CPIOB << PCIX_CMD_MAX_BURST_SHL; |
| 4420 | REG_WR(pDevice, PciCfg.PciXCapabilities, Value32); |
| 4421 | } |
| 4422 | else if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704) |
| 4423 | { |
| 4424 | Value32 = REG_RD(pDevice, PciCfg.PciXCapabilities); |
| 4425 | Value32 &= ~(PCIX_CMD_MAX_SPLIT_MASK | PCIX_CMD_MAX_BURST_MASK); |
| 4426 | Value32 |= ((PCIX_CMD_MAX_BURST_CPIOB << PCIX_CMD_MAX_BURST_SHL) & |
| 4427 | PCIX_CMD_MAX_BURST_MASK); |
| 4428 | if (pDevice->Flags & MULTI_SPLIT_ENABLE_FLAG) |
| 4429 | { |
| 4430 | Value32 |= (pDevice->SplitModeMaxReq << PCIX_CMD_MAX_SPLIT_SHL) |
| 4431 | & PCIX_CMD_MAX_SPLIT_MASK; |
| 4432 | } |
| 4433 | REG_WR(pDevice, PciCfg.PciXCapabilities, Value32); |
| 4434 | } |
| 4435 | } |
| 4436 | |
| 4437 | /* Enable the Read DMA state machine. */ |
| 4438 | Value32 = DMA_READ_MODE_ENABLE | |
| 4439 | DMA_READ_MODE_TARGET_ABORT_ATTN_ENABLE | |
| 4440 | DMA_READ_MODE_MASTER_ABORT_ATTN_ENABLE | |
| 4441 | DMA_READ_MODE_PARITY_ERROR_ATTN_ENABLE | |
| 4442 | DMA_READ_MODE_ADDR_OVERFLOW_ATTN_ENABLE | |
| 4443 | DMA_READ_MODE_FIFO_OVERRUN_ATTN_ENABLE | |
| 4444 | DMA_READ_MODE_FIFO_UNDERRUN_ATTN_ENABLE | |
| 4445 | DMA_READ_MODE_FIFO_OVERREAD_ATTN_ENABLE | |
| 4446 | DMA_READ_MODE_LONG_READ_ATTN_ENABLE; |
| 4447 | |
| 4448 | if (pDevice->Flags & MULTI_SPLIT_ENABLE_FLAG) |
| 4449 | { |
| 4450 | Value32 |= DMA_READ_MODE_MULTI_SPLIT_ENABLE; |
| 4451 | } |
| 4452 | |
| 4453 | if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 4454 | { |
| 4455 | Value32 |= pDevice->DmaReadFifoSize; |
| 4456 | } |
| 4457 | #ifdef INCLUDE_TCP_SEG_SUPPORT |
| 4458 | if (T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 4459 | { |
| 4460 | Value32 |= BIT_27; |
| 4461 | } |
| 4462 | #endif |
| 4463 | |
| 4464 | |
| 4465 | REG_WR(pDevice, DmaRead.Mode, Value32); |
| 4466 | |
| 4467 | /* Enable the Receive Data Completion state machine. */ |
| 4468 | REG_WR(pDevice, RcvDataComp.Mode, RCV_DATA_COMP_MODE_ENABLE | |
| 4469 | RCV_DATA_COMP_MODE_ATTN_ENABLE); |
| 4470 | |
| 4471 | if (!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 4472 | { |
| 4473 | /* Enable the Mbuf Cluster Free state machine. */ |
| 4474 | REG_WR(pDevice, MbufClusterFree.Mode, MBUF_CLUSTER_FREE_MODE_ENABLE); |
| 4475 | } |
| 4476 | |
| 4477 | /* Enable the Send Data Completion state machine. */ |
| 4478 | REG_WR(pDevice, SndDataComp.Mode, SND_DATA_COMP_MODE_ENABLE); |
| 4479 | |
| 4480 | /* Enable the Send BD Completion state machine. */ |
| 4481 | REG_WR(pDevice, SndBdComp.Mode, SND_BD_COMP_MODE_ENABLE | |
| 4482 | SND_BD_COMP_MODE_ATTN_ENABLE); |
| 4483 | |
| 4484 | /* Enable the Receive BD Initiator state machine. */ |
| 4485 | REG_WR(pDevice, RcvBdIn.Mode, RCV_BD_IN_MODE_ENABLE | |
| 4486 | RCV_BD_IN_MODE_BD_IN_DIABLED_RCB_ATTN_ENABLE); |
| 4487 | |
| 4488 | /* Enable the Receive Data and Receive BD Initiator state machine. */ |
| 4489 | REG_WR(pDevice, RcvDataBdIn.Mode, RCV_DATA_BD_IN_MODE_ENABLE | |
| 4490 | RCV_DATA_BD_IN_MODE_INVALID_RING_SIZE); |
| 4491 | |
| 4492 | /* Enable the Send Data Initiator state machine. */ |
| 4493 | REG_WR(pDevice, SndDataIn.Mode, T3_SND_DATA_IN_MODE_ENABLE); |
| 4494 | |
| 4495 | #ifdef INCLUDE_TCP_SEG_SUPPORT |
| 4496 | if (T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 4497 | { |
| 4498 | REG_WR(pDevice, SndDataIn.Mode, T3_SND_DATA_IN_MODE_ENABLE | 0x8); |
| 4499 | } |
| 4500 | #endif |
| 4501 | |
| 4502 | /* Enable the Send BD Initiator state machine. */ |
| 4503 | REG_WR(pDevice, SndBdIn.Mode, SND_BD_IN_MODE_ENABLE | |
| 4504 | SND_BD_IN_MODE_ATTN_ENABLE); |
| 4505 | |
| 4506 | /* Enable the Send BD Selector state machine. */ |
| 4507 | REG_WR(pDevice, SndBdSel.Mode, SND_BD_SEL_MODE_ENABLE | |
| 4508 | SND_BD_SEL_MODE_ATTN_ENABLE); |
| 4509 | |
| 4510 | #ifdef INCLUDE_5701_AX_FIX |
| 4511 | if(pDevice->ChipRevId == T3_CHIP_ID_5701_A0) |
| 4512 | { |
| 4513 | LM_LoadRlsFirmware(pDevice); |
| 4514 | } |
| 4515 | #endif |
| 4516 | |
| 4517 | /* Queue Rx packet buffers. */ |
| 4518 | if(pDevice->QueueRxPackets) |
| 4519 | { |
| 4520 | LM_QueueRxPackets(pDevice); |
| 4521 | } |
| 4522 | |
| 4523 | if (pDevice->ChipRevId == T3_CHIP_ID_5705_A0) |
| 4524 | { |
| 4525 | Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_STD_RCV_BUFFER_DESC_ADDR + 8); |
| 4526 | j = 0; |
| 4527 | while ((Value32 != MAX_STD_RCV_BUFFER_SIZE) && (j < 10)) |
| 4528 | { |
| 4529 | MM_Wait(20); |
| 4530 | Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_STD_RCV_BUFFER_DESC_ADDR + 8); |
| 4531 | j++; |
| 4532 | } |
| 4533 | if (j >= 10) |
| 4534 | { |
| 4535 | reset_count++; |
| 4536 | LM_Abort(pDevice); |
| 4537 | if (reset_count > 5) |
| 4538 | return LM_STATUS_FAILURE; |
| 4539 | goto restart_reset; |
| 4540 | } |
| 4541 | } |
| 4542 | |
| 4543 | /* Enable the transmitter. */ |
| 4544 | pDevice->TxMode = TX_MODE_ENABLE; |
| 4545 | REG_WR(pDevice, MacCtrl.TxMode, pDevice->TxMode); |
| 4546 | |
| 4547 | /* Enable the receiver. */ |
| 4548 | pDevice->RxMode = (pDevice->RxMode & RX_MODE_KEEP_VLAN_TAG) | |
| 4549 | RX_MODE_ENABLE; |
| 4550 | REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode); |
| 4551 | |
| 4552 | #ifdef BCM_WOL |
| 4553 | if (pDevice->RestoreOnWakeUp) |
| 4554 | { |
| 4555 | pDevice->RestoreOnWakeUp = FALSE; |
| 4556 | pDevice->DisableAutoNeg = pDevice->WakeUpDisableAutoNeg; |
| 4557 | pDevice->RequestedLineSpeed = pDevice->WakeUpRequestedLineSpeed; |
| 4558 | pDevice->RequestedDuplexMode = pDevice->WakeUpRequestedDuplexMode; |
| 4559 | } |
| 4560 | #endif |
| 4561 | |
| 4562 | /* Disable auto polling. */ |
| 4563 | pDevice->MiMode = 0xc0000; |
| 4564 | REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode); |
| 4565 | |
| 4566 | REG_WR(pDevice, MacCtrl.LedCtrl, pDevice->LedCtrl); |
| 4567 | |
| 4568 | /* Activate Link to enable MAC state machine */ |
| 4569 | REG_WR(pDevice, MacCtrl.MiStatus, MI_STATUS_ENABLE_LINK_STATUS_ATTN); |
| 4570 | |
| 4571 | if (pDevice->TbiFlags & ENABLE_TBI_FLAG) |
| 4572 | { |
| 4573 | if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1) |
| 4574 | { |
| 4575 | REG_WR(pDevice, MacCtrl.SerdesCfg, 0x616000); |
| 4576 | } |
| 4577 | if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704) |
| 4578 | { |
| 4579 | |
| 4580 | if(!(pDevice->TbiFlags & TBI_DO_PREEMPHASIS)) |
| 4581 | { |
| 4582 | /* Set SerDes drive transmission level to 1.2V */ |
| 4583 | Value32 = REG_RD(pDevice, MacCtrl.SerdesCfg) & 0xfffff000; |
| 4584 | REG_WR(pDevice, MacCtrl.SerdesCfg, Value32 | 0x880); |
| 4585 | } |
| 4586 | } |
| 4587 | } |
| 4588 | |
| 4589 | REG_WR(pDevice, MacCtrl.LowWaterMarkMaxRxFrame, 2); |
| 4590 | |
| 4591 | if(pDevice->PhyFlags & PHY_IS_FIBER) |
| 4592 | { |
| 4593 | Value32 = REG_RD_OFFSET(pDevice, 0x5b0); |
| 4594 | REG_WR_OFFSET(pDevice, 0x5b0, Value32 | BIT_10 ); |
| 4595 | |
| 4596 | pDevice->GrcLocalCtrl |= BIT_4 ; |
| 4597 | pDevice->GrcLocalCtrl &= ~BIT_5 ; |
| 4598 | |
| 4599 | REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl); |
| 4600 | Value32 = REG_RD(pDevice, Grc.LocalCtrl); |
| 4601 | MM_Wait(40); |
| 4602 | } |
| 4603 | |
| 4604 | if (!pDevice->InitDone) |
| 4605 | { |
| 4606 | if(UNKNOWN_PHY_ID(pDevice->PhyId) && (pDevice->Flags & ROBO_SWITCH_FLAG)) { |
| 4607 | pDevice->LinkStatus = LM_STATUS_LINK_ACTIVE; |
| 4608 | } else { |
| 4609 | pDevice->LinkStatus = LM_STATUS_LINK_DOWN; |
| 4610 | } |
| 4611 | } |
| 4612 | |
| 4613 | if (!(pDevice->TbiFlags & ENABLE_TBI_FLAG) && |
| 4614 | ( ((pDevice->PhyId & PHY_ID_MASK) != PHY_BCM5401_PHY_ID)&& |
| 4615 | ((pDevice->PhyId & PHY_ID_MASK) != PHY_BCM5411_PHY_ID) )) |
| 4616 | { |
| 4617 | /* 5401/5411 PHY needs a delay of about 1 second after PHY reset */ |
| 4618 | /* Without the delay, it has problem linking at forced 10 half */ |
| 4619 | /* So skip the reset... */ |
| 4620 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5780) |
| 4621 | for(j =0; j<0x5000; j++) |
| 4622 | MM_Wait(1); |
| 4623 | |
| 4624 | LM_ResetPhy(pDevice); |
| 4625 | } |
| 4626 | |
| 4627 | /* Setup the phy chip. */ |
| 4628 | LM_SetupPhy(pDevice); |
| 4629 | |
| 4630 | if (!(pDevice->TbiFlags & ENABLE_TBI_FLAG)){ |
| 4631 | /* Clear CRC stats */ |
| 4632 | LM_ReadPhy(pDevice, 0x1e, &Value32); |
| 4633 | LM_WritePhy(pDevice, 0x1e, Value32 | 0x8000); |
| 4634 | LM_ReadPhy(pDevice, 0x14, &Value32); |
| 4635 | } |
| 4636 | |
| 4637 | /* Set up the receive mask. */ |
| 4638 | LM_SetReceiveMask(pDevice, pDevice->ReceiveMask); |
| 4639 | |
| 4640 | #ifdef INCLUDE_TCP_SEG_SUPPORT |
| 4641 | if (pDevice->TaskToOffload & LM_TASK_OFFLOAD_TCP_SEGMENTATION) |
| 4642 | { |
| 4643 | if (LM_LoadStkOffLdFirmware(pDevice) == LM_STATUS_FAILURE) |
| 4644 | { |
| 4645 | return LM_STATUS_FAILURE; |
| 4646 | } |
| 4647 | } |
| 4648 | #endif |
| 4649 | LM_WritePostResetSignatures(pDevice, LM_INIT_RESET); |
| 4650 | |
| 4651 | return LM_STATUS_SUCCESS; |
| 4652 | } /* LM_ResetAdapter */ |
| 4653 | |
| 4654 | |
| 4655 | /******************************************************************************/ |
| 4656 | /* Description: */ |
| 4657 | /* This routine disables the adapter from generating interrupts. */ |
| 4658 | /* */ |
| 4659 | /* Return: */ |
| 4660 | /* LM_STATUS_SUCCESS */ |
| 4661 | /******************************************************************************/ |
| 4662 | LM_STATUS |
| 4663 | LM_DisableInterrupt( |
| 4664 | PLM_DEVICE_BLOCK pDevice) |
| 4665 | { |
| 4666 | REG_WR(pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl | |
| 4667 | MISC_HOST_CTRL_MASK_PCI_INT); |
| 4668 | MB_REG_WR(pDevice, Mailbox.Interrupt[0].Low, 1); |
| 4669 | if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG) |
| 4670 | { |
| 4671 | MB_REG_RD(pDevice, Mailbox.Interrupt[0].Low); |
| 4672 | } |
| 4673 | |
| 4674 | return LM_STATUS_SUCCESS; |
| 4675 | } |
| 4676 | |
| 4677 | |
| 4678 | |
| 4679 | /******************************************************************************/ |
| 4680 | /* Description: */ |
| 4681 | /* This routine enables the adapter to generate interrupts. */ |
| 4682 | /* */ |
| 4683 | /* Return: */ |
| 4684 | /* LM_STATUS_SUCCESS */ |
| 4685 | /******************************************************************************/ |
| 4686 | LM_STATUS |
| 4687 | LM_EnableInterrupt( |
| 4688 | PLM_DEVICE_BLOCK pDevice) |
| 4689 | { |
| 4690 | MB_REG_WR(pDevice, Mailbox.Interrupt[0].Low, pDevice->LastTag << 24); |
| 4691 | if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG) |
| 4692 | { |
| 4693 | MB_REG_RD(pDevice, Mailbox.Interrupt[0].Low); |
| 4694 | } |
| 4695 | |
| 4696 | REG_WR(pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl & |
| 4697 | ~MISC_HOST_CTRL_MASK_PCI_INT); |
| 4698 | |
| 4699 | REG_WR(pDevice, HostCoalesce.Mode, pDevice->CoalesceMode | |
| 4700 | HOST_COALESCE_ENABLE | HOST_COALESCE_NOW); |
| 4701 | |
| 4702 | return LM_STATUS_SUCCESS; |
| 4703 | } |
| 4704 | |
| 4705 | |
| 4706 | |
| 4707 | /******************************************************************************/ |
| 4708 | /* Description: */ |
| 4709 | /* This routine puts a packet on the wire if there is a transmit DMA */ |
| 4710 | /* descriptor available; otherwise the packet is queued for later */ |
| 4711 | /* transmission. If the second argue is NULL, this routine will put */ |
| 4712 | /* the queued packet on the wire if possible. */ |
| 4713 | /* */ |
| 4714 | /* Return: */ |
| 4715 | /* LM_STATUS_SUCCESS */ |
| 4716 | /******************************************************************************/ |
| 4717 | LM_STATUS |
| 4718 | LM_SendPacket(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket) |
| 4719 | { |
| 4720 | LM_UINT32 FragCount; |
| 4721 | PT3_SND_BD pSendBd, pTmpSendBd; |
| 4722 | #ifdef BCM_NIC_SEND_BD |
| 4723 | PT3_SND_BD pShadowSendBd; |
| 4724 | T3_SND_BD NicSendBdArr[MAX_FRAGMENT_COUNT]; |
| 4725 | #endif |
| 4726 | LM_UINT32 StartIdx, Idx; |
| 4727 | |
| 4728 | while (1) |
| 4729 | { |
| 4730 | /* Initalize the send buffer descriptors. */ |
| 4731 | StartIdx = Idx = pDevice->SendProdIdx; |
| 4732 | |
| 4733 | #ifdef BCM_NIC_SEND_BD |
| 4734 | if (pDevice->Flags & NIC_SEND_BD_FLAG) |
| 4735 | { |
| 4736 | pTmpSendBd = pSendBd = &NicSendBdArr[0]; |
| 4737 | } |
| 4738 | else |
| 4739 | #endif |
| 4740 | { |
| 4741 | pTmpSendBd = pSendBd = &pDevice->pSendBdVirt[Idx]; |
| 4742 | } |
| 4743 | |
| 4744 | /* Next producer index. */ |
| 4745 | for(FragCount = 0; ; ) |
| 4746 | { |
| 4747 | LM_UINT32 Value32, Len; |
| 4748 | |
| 4749 | /* Initialize the pointer to the send buffer fragment. */ |
| 4750 | MM_MapTxDma(pDevice, pPacket, &pSendBd->HostAddr, &Len, FragCount); |
| 4751 | |
| 4752 | pSendBd->u2.VlanTag = pPacket->VlanTag; |
| 4753 | |
| 4754 | /* Setup the control flags and send buffer size. */ |
| 4755 | Value32 = (Len << 16) | pPacket->Flags; |
| 4756 | |
| 4757 | #ifdef INCLUDE_TCP_SEG_SUPPORT |
| 4758 | if (Value32 & (SND_BD_FLAG_CPU_PRE_DMA | SND_BD_FLAG_CPU_POST_DMA)) |
| 4759 | { |
| 4760 | if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 4761 | { |
| 4762 | pSendBd->u2.s2.Reserved = pPacket->u.Tx.MaxSegmentSize; |
| 4763 | } |
| 4764 | else if (FragCount == 0) |
| 4765 | { |
| 4766 | pSendBd->u2.s2.Reserved = pPacket->u.Tx.MaxSegmentSize; |
| 4767 | } |
| 4768 | else |
| 4769 | { |
| 4770 | pSendBd->u2.s2.Reserved = 0; |
| 4771 | Value32 &= 0xffff0fff; |
| 4772 | } |
| 4773 | } |
| 4774 | #endif |
| 4775 | Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK; |
| 4776 | |
| 4777 | FragCount++; |
| 4778 | if (FragCount >= pPacket->u.Tx.FragCount) |
| 4779 | { |
| 4780 | pSendBd->u1.Len_Flags = Value32 | SND_BD_FLAG_END; |
| 4781 | break; |
| 4782 | } |
| 4783 | else |
| 4784 | { |
| 4785 | pSendBd->u1.Len_Flags = Value32; |
| 4786 | } |
| 4787 | |
| 4788 | pSendBd++; |
| 4789 | if ((Idx == 0) && |
| 4790 | !(pDevice->Flags & NIC_SEND_BD_FLAG)) |
| 4791 | { |
| 4792 | pSendBd = &pDevice->pSendBdVirt[0]; |
| 4793 | } |
| 4794 | |
| 4795 | pDevice->SendRing[Idx] = 0; |
| 4796 | |
| 4797 | } /* for */ |
| 4798 | if (pDevice->Flags & TX_4G_WORKAROUND_FLAG) |
| 4799 | { |
| 4800 | if (LM_Test4GBoundary(pDevice, pPacket, pTmpSendBd) == |
| 4801 | LM_STATUS_SUCCESS) |
| 4802 | { |
| 4803 | if (MM_CoalesceTxBuffer(pDevice, pPacket) != LM_STATUS_SUCCESS) |
| 4804 | { |
| 4805 | QQ_PushHead(&pDevice->TxPacketFreeQ.Container, pPacket); |
| 4806 | return LM_STATUS_FAILURE; |
| 4807 | } |
| 4808 | continue; |
| 4809 | } |
| 4810 | } |
| 4811 | break; |
| 4812 | } |
| 4813 | /* Put the packet descriptor in the ActiveQ. */ |
| 4814 | pDevice->SendRing[StartIdx] = pPacket; |
| 4815 | |
| 4816 | #ifdef BCM_NIC_SEND_BD |
| 4817 | if (pDevice->Flags & NIC_SEND_BD_FLAG) |
| 4818 | { |
| 4819 | pSendBd = &pDevice->pSendBdVirt[StartIdx]; |
| 4820 | pShadowSendBd = &pDevice->ShadowSendBd[StartIdx]; |
| 4821 | |
| 4822 | while (StartIdx != Idx) |
| 4823 | { |
| 4824 | LM_UINT32 Value32; |
| 4825 | |
| 4826 | if ((Value32 = pTmpSendBd->HostAddr.High) != |
| 4827 | pShadowSendBd->HostAddr.High) |
| 4828 | { |
| 4829 | MM_MEMWRITEL(&(pSendBd->HostAddr.High), Value32); |
| 4830 | pShadowSendBd->HostAddr.High = Value32; |
| 4831 | } |
| 4832 | |
| 4833 | MM_MEMWRITEL(&(pSendBd->HostAddr.Low), pTmpSendBd->HostAddr.Low); |
| 4834 | |
| 4835 | if ((Value32 = pTmpSendBd->u1.Len_Flags) != |
| 4836 | pShadowSendBd->u1.Len_Flags) |
| 4837 | { |
| 4838 | MM_MEMWRITEL(&(pSendBd->u1.Len_Flags), Value32); |
| 4839 | pShadowSendBd->u1.Len_Flags = Value32; |
| 4840 | } |
| 4841 | |
| 4842 | if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) |
| 4843 | { |
| 4844 | MM_MEMWRITEL(&(pSendBd->u2.VlanTag), pTmpSendBd->u2.VlanTag); |
| 4845 | } |
| 4846 | |
| 4847 | StartIdx = (StartIdx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK; |
| 4848 | if (StartIdx == 0) |
| 4849 | { |
| 4850 | pSendBd = &pDevice->pSendBdVirt[0]; |
| 4851 | pShadowSendBd = &pDevice->ShadowSendBd[0]; |
| 4852 | } |
| 4853 | else |
| 4854 | { |
| 4855 | pSendBd++; |
| 4856 | pShadowSendBd++; |
| 4857 | } |
| 4858 | pTmpSendBd++; |
| 4859 | } |
| 4860 | MM_WMB(); |
| 4861 | MB_REG_WR(pDevice, Mailbox.SendNicProdIdx[0].Low, Idx); |
| 4862 | |
| 4863 | if(T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) |
| 4864 | { |
| 4865 | MB_REG_WR(pDevice, Mailbox.SendNicProdIdx[0].Low, Idx); |
| 4866 | } |
| 4867 | if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG) |
| 4868 | { |
| 4869 | MB_REG_RD(pDevice, Mailbox.SendNicProdIdx[0].Low); |
| 4870 | } |
| 4871 | else |
| 4872 | { |
| 4873 | MM_MMIOWB(); |
| 4874 | } |
| 4875 | } |
| 4876 | else |
| 4877 | #endif |
| 4878 | { |
| 4879 | MM_WMB(); |
| 4880 | MB_REG_WR(pDevice, Mailbox.SendHostProdIdx[0].Low, Idx); |
| 4881 | |
| 4882 | if(T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) |
| 4883 | { |
| 4884 | MB_REG_WR(pDevice, Mailbox.SendHostProdIdx[0].Low, Idx); |
| 4885 | } |
| 4886 | if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG) |
| 4887 | { |
| 4888 | MB_REG_RD(pDevice, Mailbox.SendHostProdIdx[0].Low); |
| 4889 | } |
| 4890 | else |
| 4891 | { |
| 4892 | MM_MMIOWB(); |
| 4893 | } |
| 4894 | } |
| 4895 | |
| 4896 | /* Update the SendBdLeft count. */ |
| 4897 | MM_ATOMIC_SUB(&pDevice->SendBdLeft, pPacket->u.Tx.FragCount); |
| 4898 | |
| 4899 | /* Update the producer index. */ |
| 4900 | pDevice->SendProdIdx = Idx; |
| 4901 | |
| 4902 | return LM_STATUS_SUCCESS; |
| 4903 | } |
| 4904 | |
| 4905 | STATIC LM_STATUS |
| 4906 | LM_Test4GBoundary(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket, |
| 4907 | PT3_SND_BD pSendBd) |
| 4908 | { |
| 4909 | int FragCount; |
| 4910 | LM_UINT32 Idx, Base, Len; |
| 4911 | |
| 4912 | Idx = pDevice->SendProdIdx; |
| 4913 | for(FragCount = 0; ; ) |
| 4914 | { |
| 4915 | Len = pSendBd->u1.Len_Flags >> 16; |
| 4916 | if (((Base = pSendBd->HostAddr.Low) > 0xffffdcc0) && |
| 4917 | ((Base + 8 + Len) < Base)) |
| 4918 | { |
| 4919 | return LM_STATUS_SUCCESS; |
| 4920 | } |
| 4921 | FragCount++; |
| 4922 | if (FragCount >= pPacket->u.Tx.FragCount) |
| 4923 | { |
| 4924 | break; |
| 4925 | } |
| 4926 | pSendBd++; |
| 4927 | if (!(pDevice->Flags & NIC_SEND_BD_FLAG)) |
| 4928 | { |
| 4929 | Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK; |
| 4930 | if (Idx == 0) |
| 4931 | { |
| 4932 | pSendBd = &pDevice->pSendBdVirt[0]; |
| 4933 | } |
| 4934 | } |
| 4935 | } |
| 4936 | return LM_STATUS_FAILURE; |
| 4937 | } |
| 4938 | |
| 4939 | /******************************************************************************/ |
| 4940 | /* Description: */ |
| 4941 | /* */ |
| 4942 | /* Return: */ |
| 4943 | /******************************************************************************/ |
| 4944 | LM_UINT32 |
| 4945 | ComputeCrc32(LM_UINT8 *pBuffer, LM_UINT32 BufferSize) |
| 4946 | { |
| 4947 | LM_UINT32 Reg; |
| 4948 | LM_UINT32 Tmp; |
| 4949 | int j, k; |
| 4950 | |
| 4951 | Reg = 0xffffffff; |
| 4952 | |
| 4953 | for(j = 0; j < BufferSize; j++) |
| 4954 | { |
| 4955 | Reg ^= pBuffer[j]; |
| 4956 | |
| 4957 | for(k = 0; k < 8; k++) |
| 4958 | { |
| 4959 | Tmp = Reg & 0x01; |
| 4960 | |
| 4961 | Reg >>= 1; |
| 4962 | |
| 4963 | if(Tmp) |
| 4964 | { |
| 4965 | Reg ^= 0xedb88320; |
| 4966 | } |
| 4967 | } |
| 4968 | } |
| 4969 | |
| 4970 | return ~Reg; |
| 4971 | } /* ComputeCrc32 */ |
| 4972 | |
| 4973 | |
| 4974 | |
| 4975 | /******************************************************************************/ |
| 4976 | /* Description: */ |
| 4977 | /* This routine sets the receive control register according to ReceiveMask */ |
| 4978 | /* */ |
| 4979 | /* Return: */ |
| 4980 | /* LM_STATUS_SUCCESS */ |
| 4981 | /******************************************************************************/ |
| 4982 | LM_STATUS |
| 4983 | LM_SetReceiveMask(PLM_DEVICE_BLOCK pDevice, LM_UINT32 Mask) |
| 4984 | { |
| 4985 | LM_UINT32 ReceiveMask; |
| 4986 | LM_UINT32 RxMode; |
| 4987 | LM_UINT32 j, k; |
| 4988 | |
| 4989 | ReceiveMask = Mask; |
| 4990 | |
| 4991 | RxMode = pDevice->RxMode; |
| 4992 | |
| 4993 | if(Mask & LM_ACCEPT_UNICAST) |
| 4994 | { |
| 4995 | Mask &= ~LM_ACCEPT_UNICAST; |
| 4996 | } |
| 4997 | |
| 4998 | if(Mask & LM_ACCEPT_MULTICAST) |
| 4999 | { |
| 5000 | Mask &= ~LM_ACCEPT_MULTICAST; |
| 5001 | } |
| 5002 | |
| 5003 | if(Mask & LM_ACCEPT_ALL_MULTICAST) |
| 5004 | { |
| 5005 | Mask &= ~LM_ACCEPT_ALL_MULTICAST; |
| 5006 | } |
| 5007 | |
| 5008 | if(Mask & LM_ACCEPT_BROADCAST) |
| 5009 | { |
| 5010 | Mask &= ~LM_ACCEPT_BROADCAST; |
| 5011 | } |
| 5012 | |
| 5013 | RxMode &= ~RX_MODE_KEEP_VLAN_TAG; |
| 5014 | if (Mask & LM_KEEP_VLAN_TAG) |
| 5015 | { |
| 5016 | RxMode |= RX_MODE_KEEP_VLAN_TAG; |
| 5017 | Mask &= ~LM_KEEP_VLAN_TAG; |
| 5018 | } |
| 5019 | |
| 5020 | RxMode &= ~RX_MODE_PROMISCUOUS_MODE; |
| 5021 | if(Mask & LM_PROMISCUOUS_MODE) |
| 5022 | { |
| 5023 | RxMode |= RX_MODE_PROMISCUOUS_MODE; |
| 5024 | Mask &= ~LM_PROMISCUOUS_MODE; |
| 5025 | } |
| 5026 | |
| 5027 | RxMode &= ~(RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED); |
| 5028 | if(Mask & LM_ACCEPT_ERROR_PACKET) |
| 5029 | { |
| 5030 | RxMode |= RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED; |
| 5031 | Mask &= ~LM_ACCEPT_ERROR_PACKET; |
| 5032 | } |
| 5033 | |
| 5034 | /* Make sure all the bits are valid before committing changes. */ |
| 5035 | if(Mask) |
| 5036 | { |
| 5037 | return LM_STATUS_FAILURE; |
| 5038 | } |
| 5039 | |
| 5040 | /* Commit the new filter. */ |
| 5041 | pDevice->ReceiveMask = ReceiveMask; |
| 5042 | |
| 5043 | pDevice->RxMode = RxMode; |
| 5044 | |
| 5045 | if (pDevice->PowerLevel != LM_POWER_STATE_D0) |
| 5046 | { |
| 5047 | return LM_STATUS_SUCCESS; |
| 5048 | } |
| 5049 | |
| 5050 | REG_WR(pDevice, MacCtrl.RxMode, RxMode); |
| 5051 | |
| 5052 | /* Set up the MC hash table. */ |
| 5053 | if(ReceiveMask & LM_ACCEPT_ALL_MULTICAST) |
| 5054 | { |
| 5055 | for(k = 0; k < 4; k++) |
| 5056 | { |
| 5057 | REG_WR(pDevice, MacCtrl.HashReg[k], 0xffffffff); |
| 5058 | } |
| 5059 | } |
| 5060 | else if(ReceiveMask & LM_ACCEPT_MULTICAST) |
| 5061 | { |
| 5062 | for(k = 0; k < 4; k++) |
| 5063 | { |
| 5064 | REG_WR(pDevice, MacCtrl.HashReg[k], pDevice->MulticastHash[k]); |
| 5065 | } |
| 5066 | } |
| 5067 | else |
| 5068 | { |
| 5069 | /* Reject all multicast frames. */ |
| 5070 | for(j = 0; j < 4; j++) |
| 5071 | { |
| 5072 | REG_WR(pDevice, MacCtrl.HashReg[j], 0); |
| 5073 | } |
| 5074 | } |
| 5075 | |
| 5076 | /* By default, Tigon3 will accept broadcast frames. We need to setup */ |
| 5077 | if(ReceiveMask & LM_ACCEPT_BROADCAST) |
| 5078 | { |
| 5079 | REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule, |
| 5080 | REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK); |
| 5081 | REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value, |
| 5082 | REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK); |
| 5083 | REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule, |
| 5084 | REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK); |
| 5085 | REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value, |
| 5086 | REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK); |
| 5087 | } |
| 5088 | else |
| 5089 | { |
| 5090 | REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule, |
| 5091 | REJECT_BROADCAST_RULE1_RULE); |
| 5092 | REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value, |
| 5093 | REJECT_BROADCAST_RULE1_VALUE); |
| 5094 | REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule, |
| 5095 | REJECT_BROADCAST_RULE2_RULE); |
| 5096 | REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value, |
| 5097 | REJECT_BROADCAST_RULE2_VALUE); |
| 5098 | } |
| 5099 | |
| 5100 | if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId)) |
| 5101 | { |
| 5102 | k = 16; |
| 5103 | } |
| 5104 | else if (!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 5105 | { |
| 5106 | k = 16; |
| 5107 | } |
| 5108 | else |
| 5109 | { |
| 5110 | k = 8; |
| 5111 | } |
| 5112 | #ifdef BCM_ASF |
| 5113 | if (pDevice->AsfFlags & ASF_ENABLED) |
| 5114 | { |
| 5115 | k -= 4; |
| 5116 | } |
| 5117 | #endif |
| 5118 | |
| 5119 | /* disable the rest of the rules. */ |
| 5120 | for(j = RCV_LAST_RULE_IDX; j < k; j++) |
| 5121 | { |
| 5122 | REG_WR(pDevice, MacCtrl.RcvRules[j].Rule, 0); |
| 5123 | REG_WR(pDevice, MacCtrl.RcvRules[j].Value, 0); |
| 5124 | } |
| 5125 | |
| 5126 | return LM_STATUS_SUCCESS; |
| 5127 | } /* LM_SetReceiveMask */ |
| 5128 | |
| 5129 | |
| 5130 | |
| 5131 | /******************************************************************************/ |
| 5132 | /* Description: */ |
| 5133 | /* Disable the interrupt and put the transmitter and receiver engines in */ |
| 5134 | /* an idle state. Also aborts all pending send requests and receive */ |
| 5135 | /* buffers. */ |
| 5136 | /* */ |
| 5137 | /* Return: */ |
| 5138 | /* LM_STATUS_SUCCESS */ |
| 5139 | /******************************************************************************/ |
| 5140 | LM_STATUS |
| 5141 | LM_Abort( |
| 5142 | PLM_DEVICE_BLOCK pDevice) |
| 5143 | { |
| 5144 | PLM_PACKET pPacket; |
| 5145 | LM_UINT Idx; |
| 5146 | |
| 5147 | LM_DisableInterrupt(pDevice); |
| 5148 | |
| 5149 | LM_DisableChip(pDevice); |
| 5150 | |
| 5151 | /* |
| 5152 | * If we do not have a status block pointer, then |
| 5153 | * the device hasn't really been opened. Do not |
| 5154 | * attempt to clean up packets. |
| 5155 | */ |
| 5156 | if (pDevice->pStatusBlkVirt == NULL) |
| 5157 | return LM_STATUS_SUCCESS; |
| 5158 | |
| 5159 | /* Abort packets that have already queued to go out. */ |
| 5160 | Idx = pDevice->SendConIdx; |
| 5161 | for ( ; ; ) |
| 5162 | { |
| 5163 | if ((pPacket = pDevice->SendRing[Idx])) |
| 5164 | { |
| 5165 | pDevice->SendRing[Idx] = 0; |
| 5166 | pPacket->PacketStatus = LM_STATUS_TRANSMIT_ABORTED; |
| 5167 | pDevice->TxCounters.TxPacketAbortedCnt++; |
| 5168 | |
| 5169 | MM_ATOMIC_ADD(&pDevice->SendBdLeft, pPacket->u.Tx.FragCount); |
| 5170 | Idx = (Idx + pPacket->u.Tx.FragCount) & |
| 5171 | T3_SEND_RCB_ENTRY_COUNT_MASK; |
| 5172 | |
| 5173 | QQ_PushTail(&pDevice->TxPacketXmittedQ.Container, pPacket); |
| 5174 | } |
| 5175 | else |
| 5176 | { |
| 5177 | break; |
| 5178 | } |
| 5179 | } |
| 5180 | |
| 5181 | /* Cleanup the receive return rings. */ |
| 5182 | #ifdef BCM_NAPI_RXPOLL |
| 5183 | LM_ServiceRxPoll(pDevice, T3_RCV_RETURN_RCB_ENTRY_COUNT); |
| 5184 | #else |
| 5185 | LM_ServiceRxInterrupt(pDevice); |
| 5186 | #endif |
| 5187 | |
| 5188 | /* Indicate packets to the protocol. */ |
| 5189 | MM_IndicateTxPackets(pDevice); |
| 5190 | |
| 5191 | #ifdef BCM_NAPI_RXPOLL |
| 5192 | |
| 5193 | /* Move the receive packet descriptors in the ReceivedQ to the */ |
| 5194 | /* free queue. */ |
| 5195 | for(; ;) |
| 5196 | { |
| 5197 | pPacket = (PLM_PACKET) QQ_PopHead( |
| 5198 | &pDevice->RxPacketReceivedQ.Container); |
| 5199 | if(pPacket == NULL) |
| 5200 | { |
| 5201 | break; |
| 5202 | } |
| 5203 | MM_UnmapRxDma(pDevice, pPacket); |
| 5204 | QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket); |
| 5205 | } |
| 5206 | #else |
| 5207 | /* Indicate received packets to the protocols. */ |
| 5208 | MM_IndicateRxPackets(pDevice); |
| 5209 | #endif |
| 5210 | |
| 5211 | /* Clean up the Std Receive Producer ring. */ |
| 5212 | /* Don't always trust the consumer idx in the status block in case of */ |
| 5213 | /* hw failure */ |
| 5214 | Idx = 0; |
| 5215 | |
| 5216 | while(Idx < T3_STD_RCV_RCB_ENTRY_COUNT) |
| 5217 | { |
| 5218 | if ((pPacket = pDevice->RxStdRing[Idx])) |
| 5219 | { |
| 5220 | MM_UnmapRxDma(pDevice, pPacket); |
| 5221 | QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket); |
| 5222 | pDevice->RxStdRing[Idx] = 0; |
| 5223 | } |
| 5224 | |
| 5225 | Idx++; |
| 5226 | } /* while */ |
| 5227 | |
| 5228 | /* Reinitialize our copy of the indices. */ |
| 5229 | pDevice->RxStdProdIdx = 0; |
| 5230 | |
| 5231 | #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| 5232 | /* Clean up the Jumbo Receive Producer ring. */ |
| 5233 | Idx = 0; |
| 5234 | |
| 5235 | while(Idx < T3_JUMBO_RCV_RCB_ENTRY_COUNT) |
| 5236 | { |
| 5237 | if ((pPacket = pDevice->RxJumboRing[Idx])) |
| 5238 | { |
| 5239 | MM_UnmapRxDma(pDevice, pPacket); |
| 5240 | QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket); |
| 5241 | pDevice->RxJumboRing[Idx] = 0; |
| 5242 | } |
| 5243 | Idx++; |
| 5244 | } /* while */ |
| 5245 | |
| 5246 | /* Reinitialize our copy of the indices. */ |
| 5247 | pDevice->RxJumboProdIdx = 0; |
| 5248 | #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| 5249 | |
| 5250 | /* Initialize the statistis Block */ |
| 5251 | pDevice->pStatusBlkVirt->Status = 0; |
| 5252 | pDevice->pStatusBlkVirt->RcvStdConIdx = 0; |
| 5253 | pDevice->pStatusBlkVirt->RcvJumboConIdx = 0; |
| 5254 | pDevice->pStatusBlkVirt->RcvMiniConIdx = 0; |
| 5255 | |
| 5256 | return LM_STATUS_SUCCESS; |
| 5257 | } /* LM_Abort */ |
| 5258 | |
| 5259 | |
| 5260 | |
| 5261 | /******************************************************************************/ |
| 5262 | /* Description: */ |
| 5263 | /* Disable the interrupt and put the transmitter and receiver engines in */ |
| 5264 | /* an idle state. Aborts all pending send requests and receive buffers. */ |
| 5265 | /* Also free all the receive buffers. */ |
| 5266 | /* */ |
| 5267 | /* Return: */ |
| 5268 | /* LM_STATUS_SUCCESS */ |
| 5269 | /******************************************************************************/ |
| 5270 | LM_STATUS |
| 5271 | LM_DoHalt(LM_DEVICE_BLOCK *pDevice) |
| 5272 | { |
| 5273 | PLM_PACKET pPacket; |
| 5274 | LM_UINT32 EntryCnt; |
| 5275 | |
| 5276 | LM_DisableFW(pDevice); |
| 5277 | |
| 5278 | LM_WritePreResetSignatures(pDevice, LM_SHUTDOWN_RESET); |
| 5279 | LM_Abort(pDevice); |
| 5280 | |
| 5281 | if((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5461_PHY_ID) |
| 5282 | LM_WritePhy(pDevice, BCM546X_1c_SHADOW_REG, |
| 5283 | (BCM546X_1c_SPR_CTRL_1 | BCM546X_1c_WR_EN)); |
| 5284 | |
| 5285 | /* Get the number of entries in the queue. */ |
| 5286 | EntryCnt = QQ_GetEntryCnt(&pDevice->RxPacketFreeQ.Container); |
| 5287 | |
| 5288 | /* Make sure all the packets have been accounted for. */ |
| 5289 | for(EntryCnt = 0; EntryCnt < pDevice->RxPacketDescCnt; EntryCnt++) |
| 5290 | { |
| 5291 | pPacket = (PLM_PACKET) QQ_PopHead(&pDevice->RxPacketFreeQ.Container); |
| 5292 | if (pPacket == 0) |
| 5293 | break; |
| 5294 | |
| 5295 | MM_FreeRxBuffer(pDevice, pPacket); |
| 5296 | |
| 5297 | QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket); |
| 5298 | } |
| 5299 | |
| 5300 | LM_ResetChip(pDevice); |
| 5301 | LM_WriteLegacySignatures(pDevice, LM_SHUTDOWN_RESET); |
| 5302 | |
| 5303 | /* Restore PCI configuration registers. */ |
| 5304 | MM_WriteConfig32(pDevice, PCI_CACHE_LINE_SIZE_REG, |
| 5305 | pDevice->SavedCacheLineReg); |
| 5306 | LM_RegWrInd(pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG, |
| 5307 | (pDevice->SubsystemId << 16) | pDevice->SubsystemVendorId); |
| 5308 | |
| 5309 | /* Reprogram the MAC address. */ |
| 5310 | LM_SetMacAddress(pDevice, pDevice->NodeAddress); |
| 5311 | |
| 5312 | return LM_STATUS_SUCCESS; |
| 5313 | } /* LM_DoHalt */ |
| 5314 | |
| 5315 | |
| 5316 | LM_STATUS |
| 5317 | LM_Halt(LM_DEVICE_BLOCK *pDevice) |
| 5318 | { |
| 5319 | LM_STATUS status; |
| 5320 | |
| 5321 | status = LM_DoHalt(pDevice); |
| 5322 | LM_WritePostResetSignatures(pDevice, LM_SHUTDOWN_RESET); |
| 5323 | return status; |
| 5324 | } |
| 5325 | |
| 5326 | |
| 5327 | STATIC LM_VOID |
| 5328 | LM_WritePreResetSignatures(LM_DEVICE_BLOCK *pDevice, LM_RESET_TYPE Mode) |
| 5329 | { |
| 5330 | MEM_WR_OFFSET(pDevice, T3_FIRMWARE_MAILBOX,T3_MAGIC_NUM_FIRMWARE_INIT_DONE); |
| 5331 | #ifdef BCM_ASF |
| 5332 | if (pDevice->AsfFlags & ASF_NEW_HANDSHAKE) |
| 5333 | { |
| 5334 | if (Mode == LM_INIT_RESET) |
| 5335 | { |
| 5336 | MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_START); |
| 5337 | } |
| 5338 | else if (Mode == LM_SHUTDOWN_RESET) |
| 5339 | { |
| 5340 | MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_UNLOAD); |
| 5341 | } |
| 5342 | else if (Mode == LM_SUSPEND_RESET) |
| 5343 | { |
| 5344 | MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_SUSPEND); |
| 5345 | } |
| 5346 | } |
| 5347 | #endif |
| 5348 | } |
| 5349 | |
| 5350 | STATIC LM_VOID |
| 5351 | LM_WritePostResetSignatures(LM_DEVICE_BLOCK *pDevice, LM_RESET_TYPE Mode) |
| 5352 | { |
| 5353 | #ifdef BCM_ASF |
| 5354 | if (pDevice->AsfFlags & ASF_NEW_HANDSHAKE) |
| 5355 | { |
| 5356 | if (Mode == LM_INIT_RESET) |
| 5357 | { |
| 5358 | MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, |
| 5359 | T3_DRV_STATE_START_DONE); |
| 5360 | } |
| 5361 | else if (Mode == LM_SHUTDOWN_RESET) |
| 5362 | { |
| 5363 | MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, |
| 5364 | T3_DRV_STATE_UNLOAD_DONE); |
| 5365 | } |
| 5366 | } |
| 5367 | #endif |
| 5368 | } |
| 5369 | |
| 5370 | STATIC LM_VOID |
| 5371 | LM_WriteLegacySignatures(LM_DEVICE_BLOCK *pDevice, LM_RESET_TYPE Mode) |
| 5372 | { |
| 5373 | #ifdef BCM_ASF |
| 5374 | if (pDevice->AsfFlags & ASF_ENABLED) |
| 5375 | { |
| 5376 | if (Mode == LM_INIT_RESET) |
| 5377 | { |
| 5378 | MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_START); |
| 5379 | } |
| 5380 | else if (Mode == LM_SHUTDOWN_RESET) |
| 5381 | { |
| 5382 | MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_UNLOAD); |
| 5383 | } |
| 5384 | else if (Mode == LM_SUSPEND_RESET) |
| 5385 | { |
| 5386 | MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_SUSPEND); |
| 5387 | } |
| 5388 | } |
| 5389 | #endif |
| 5390 | } |
| 5391 | |
| 5392 | STATIC LM_STATUS |
| 5393 | LM_ResetChip(PLM_DEVICE_BLOCK pDevice) |
| 5394 | { |
| 5395 | LM_UINT32 Value32; |
| 5396 | LM_UINT32 j, tmp1 = 0, tmp2 = 0; |
| 5397 | |
| 5398 | /* Wait for access to the nvram interface before resetting. This is */ |
| 5399 | if(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 && |
| 5400 | T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701) |
| 5401 | { |
| 5402 | /* Request access to the flash interface. */ |
| 5403 | LM_NVRAM_AcquireLock(pDevice); |
| 5404 | } |
| 5405 | |
| 5406 | Value32 = GRC_MISC_CFG_CORE_CLOCK_RESET; |
| 5407 | if (pDevice->Flags & PCI_EXPRESS_FLAG) |
| 5408 | { |
| 5409 | if (REG_RD_OFFSET(pDevice, 0x7e2c) == 0x60) /* PCIE 1.0 system */ |
| 5410 | { |
| 5411 | REG_WR_OFFSET(pDevice, 0x7e2c, 0x20); |
| 5412 | } |
| 5413 | if (pDevice->ChipRevId != T3_CHIP_ID_5750_A0) |
| 5414 | { |
| 5415 | /* This bit prevents PCIE link training during GRC reset */ |
| 5416 | REG_WR(pDevice, Grc.MiscCfg, BIT_29); /* Write bit 29 first */ |
| 5417 | Value32 |= BIT_29; /* and keep bit 29 set during GRC reset */ |
| 5418 | } |
| 5419 | } |
| 5420 | if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 5421 | { |
| 5422 | Value32 |= GRC_MISC_GPHY_KEEP_POWER_DURING_RESET; |
| 5423 | } |
| 5424 | |
| 5425 | if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId) ) |
| 5426 | { |
| 5427 | /* Save the MSI ENABLE bit (may need to save the message as well) */ |
| 5428 | tmp1 = LM_RegRd( pDevice, T3_PCI_MSI_ENABLE ); |
| 5429 | } |
| 5430 | |
| 5431 | /* Global reset. */ |
| 5432 | RAW_REG_WR(pDevice, Grc.MiscCfg, Value32); |
| 5433 | MM_Wait(120); |
| 5434 | |
| 5435 | MM_ReadConfig32(pDevice, PCI_COMMAND_REG, &Value32); |
| 5436 | |
| 5437 | MM_Wait(120); |
| 5438 | |
| 5439 | /* make sure we re-enable indirect accesses */ |
| 5440 | MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, |
| 5441 | pDevice->MiscHostCtrl); |
| 5442 | |
| 5443 | /* Set MAX PCI retry to zero. */ |
| 5444 | Value32 = T3_PCI_STATE_PCI_ROM_ENABLE | T3_PCI_STATE_PCI_ROM_RETRY_ENABLE; |
| 5445 | if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) |
| 5446 | { |
| 5447 | if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) |
| 5448 | { |
| 5449 | Value32 |= T3_PCI_STATE_RETRY_SAME_DMA; |
| 5450 | } |
| 5451 | } |
| 5452 | MM_WriteConfig32(pDevice, T3_PCI_STATE_REG, Value32); |
| 5453 | |
| 5454 | /* Restore PCI command register. */ |
| 5455 | MM_WriteConfig32(pDevice, PCI_COMMAND_REG, |
| 5456 | pDevice->PciCommandStatusWords); |
| 5457 | |
| 5458 | /* Disable PCI-X relaxed ordering bit. */ |
| 5459 | MM_ReadConfig32(pDevice, PCIX_CAP_REG, &Value32); |
| 5460 | Value32 &= ~PCIX_ENABLE_RELAXED_ORDERING; |
| 5461 | MM_WriteConfig32(pDevice, PCIX_CAP_REG, Value32); |
| 5462 | |
| 5463 | /* Enable memory arbiter */ |
| 5464 | if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId) ) |
| 5465 | { |
| 5466 | Value32 = REG_RD(pDevice,MemArbiter.Mode); |
| 5467 | REG_WR(pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE | Value32); |
| 5468 | } |
| 5469 | else |
| 5470 | { |
| 5471 | REG_WR(pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE); |
| 5472 | } |
| 5473 | |
| 5474 | if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId)) |
| 5475 | { |
| 5476 | /* restore the MSI ENABLE bit (may need to restore the message also) */ |
| 5477 | tmp2 = LM_RegRd( pDevice, T3_PCI_MSI_ENABLE ); |
| 5478 | tmp2 |= (tmp1 & (1 << 16)); |
| 5479 | LM_RegWr( pDevice, T3_PCI_MSI_ENABLE, tmp2, TRUE ); |
| 5480 | tmp2 = LM_RegRd( pDevice, T3_PCI_MSI_ENABLE ); |
| 5481 | } |
| 5482 | |
| 5483 | |
| 5484 | if (pDevice->ChipRevId == T3_CHIP_ID_5750_A3) |
| 5485 | { |
| 5486 | /* Because of chip bug on A3, we need to kill the CPU */ |
| 5487 | LM_DisableFW(pDevice); |
| 5488 | REG_WR_OFFSET(pDevice, 0x5000, 0x400); |
| 5489 | } |
| 5490 | |
| 5491 | /* |
| 5492 | * BCM4785: In order to avoid repercussions from using potentially |
| 5493 | * defective internal ROM, stop the Rx RISC CPU, which is not |
| 5494 | * required. |
| 5495 | */ |
| 5496 | if (pDevice->Flags & SB_CORE_FLAG) { |
| 5497 | LM_DisableFW(pDevice); |
| 5498 | LM_HaltCpu(pDevice, T3_RX_CPU_ID); |
| 5499 | } |
| 5500 | |
| 5501 | #ifdef BIG_ENDIAN_HOST |
| 5502 | /* Reconfigure the mode register. */ |
| 5503 | Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | |
| 5504 | GRC_MODE_WORD_SWAP_NON_FRAME_DATA | |
| 5505 | GRC_MODE_BYTE_SWAP_DATA | |
| 5506 | GRC_MODE_WORD_SWAP_DATA; |
| 5507 | #else |
| 5508 | /* Reconfigure the mode register. */ |
| 5509 | Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA; |
| 5510 | #endif |
| 5511 | REG_WR(pDevice, Grc.Mode, Value32); |
| 5512 | |
| 5513 | if ((pDevice->Flags & MINI_PCI_FLAG) && |
| 5514 | (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705)) |
| 5515 | { |
| 5516 | pDevice->ClockCtrl |= T3_PCI_CLKRUN_OUTPUT_EN; |
| 5517 | if (pDevice->ChipRevId == T3_CHIP_ID_5705_A0) |
| 5518 | { |
| 5519 | pDevice->ClockCtrl |= T3_PCI_FORCE_CLKRUN; |
| 5520 | } |
| 5521 | REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl); |
| 5522 | } |
| 5523 | |
| 5524 | if (pDevice->TbiFlags & ENABLE_TBI_FLAG) |
| 5525 | { |
| 5526 | pDevice->MacMode = MAC_MODE_PORT_MODE_TBI; |
| 5527 | } |
| 5528 | else if(pDevice->PhyFlags & PHY_IS_FIBER) |
| 5529 | { |
| 5530 | pDevice->MacMode = MAC_MODE_PORT_MODE_GMII; |
| 5531 | } |
| 5532 | else |
| 5533 | { |
| 5534 | pDevice->MacMode = 0; |
| 5535 | } |
| 5536 | |
| 5537 | REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode); |
| 5538 | REG_RD_BACK(pDevice, MacCtrl.Mode); |
| 5539 | MM_Wait(40); |
| 5540 | |
| 5541 | /* BCM4785: Don't use any firmware, so don't wait */ |
| 5542 | if (!pDevice->Flags & SB_CORE_FLAG) { |
| 5543 | /* Wait for the firmware to finish initialization. */ |
| 5544 | for(j = 0; j < 100000; j++) { |
| 5545 | MM_Wait(10); |
| 5546 | |
| 5547 | if (j < 100) |
| 5548 | continue; |
| 5549 | |
| 5550 | Value32 = MEM_RD_OFFSET(pDevice, T3_FIRMWARE_MAILBOX); |
| 5551 | if(Value32 == ~T3_MAGIC_NUM_FIRMWARE_INIT_DONE) { |
| 5552 | break; |
| 5553 | } |
| 5554 | } |
| 5555 | if ((j >= 0x100000) && (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)) { |
| 5556 | /* if the boot code is not running */ |
| 5557 | if (LM_NVRAM_AcquireLock(pDevice) != LM_STATUS_SUCCESS) { |
| 5558 | LM_DEVICE_BLOCK *pDevice2; |
| 5559 | |
| 5560 | REG_WR(pDevice, Nvram.Cmd, NVRAM_CMD_RESET); |
| 5561 | pDevice2 = MM_FindPeerDev(pDevice); |
| 5562 | if (pDevice2 && !pDevice2->InitDone) |
| 5563 | REG_WR(pDevice2, Nvram.Cmd, NVRAM_CMD_RESET); |
| 5564 | } else { |
| 5565 | LM_NVRAM_ReleaseLock(pDevice); |
| 5566 | } |
| 5567 | } |
| 5568 | } |
| 5569 | |
| 5570 | if ((pDevice->Flags & PCI_EXPRESS_FLAG) && |
| 5571 | (pDevice->ChipRevId != T3_CHIP_ID_5750_A0)) |
| 5572 | { |
| 5573 | /* Enable PCIE bug fix */ |
| 5574 | Value32 = REG_RD_OFFSET(pDevice, 0x7c00); |
| 5575 | REG_WR_OFFSET(pDevice, 0x7c00, Value32 | BIT_25 | BIT_29); |
| 5576 | } |
| 5577 | |
| 5578 | #ifdef BCM_ASF |
| 5579 | pDevice->AsfFlags = 0; |
| 5580 | Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_SIG_ADDR); |
| 5581 | |
| 5582 | if (Value32 == T3_NIC_DATA_SIG) |
| 5583 | { |
| 5584 | Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_NIC_CFG_ADDR); |
| 5585 | if (Value32 & T3_NIC_CFG_ENABLE_ASF) |
| 5586 | { |
| 5587 | pDevice->AsfFlags = ASF_ENABLED; |
| 5588 | if (T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 5589 | { |
| 5590 | pDevice->AsfFlags |= ASF_NEW_HANDSHAKE; |
| 5591 | } |
| 5592 | } |
| 5593 | } |
| 5594 | #endif |
| 5595 | |
| 5596 | return LM_STATUS_SUCCESS; |
| 5597 | } |
| 5598 | |
| 5599 | |
| 5600 | LM_STATUS |
| 5601 | LM_ShutdownChip(PLM_DEVICE_BLOCK pDevice, LM_RESET_TYPE Mode) |
| 5602 | { |
| 5603 | LM_DisableFW(pDevice); |
| 5604 | LM_WritePreResetSignatures(pDevice, Mode); |
| 5605 | if (pDevice->InitDone) |
| 5606 | { |
| 5607 | LM_Abort(pDevice); |
| 5608 | } |
| 5609 | else |
| 5610 | { |
| 5611 | LM_DisableChip(pDevice); |
| 5612 | } |
| 5613 | LM_ResetChip(pDevice); |
| 5614 | LM_WriteLegacySignatures(pDevice, Mode); |
| 5615 | LM_WritePostResetSignatures(pDevice, Mode); |
| 5616 | return LM_STATUS_SUCCESS; |
| 5617 | } |
| 5618 | |
| 5619 | /******************************************************************************/ |
| 5620 | /* Description: */ |
| 5621 | /* */ |
| 5622 | /* Return: */ |
| 5623 | /******************************************************************************/ |
| 5624 | void |
| 5625 | LM_ServiceTxInterrupt( |
| 5626 | PLM_DEVICE_BLOCK pDevice) { |
| 5627 | PLM_PACKET pPacket; |
| 5628 | LM_UINT32 HwConIdx; |
| 5629 | LM_UINT32 SwConIdx; |
| 5630 | |
| 5631 | HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx; |
| 5632 | |
| 5633 | /* Get our copy of the consumer index. The buffer descriptors */ |
| 5634 | /* that are in between the consumer indices are freed. */ |
| 5635 | SwConIdx = pDevice->SendConIdx; |
| 5636 | |
| 5637 | /* Move the packets from the TxPacketActiveQ that are sent out to */ |
| 5638 | /* the TxPacketXmittedQ. Packets that are sent use the */ |
| 5639 | /* descriptors that are between SwConIdx and HwConIdx. */ |
| 5640 | while(SwConIdx != HwConIdx) |
| 5641 | { |
| 5642 | pPacket = pDevice->SendRing[SwConIdx]; |
| 5643 | pDevice->SendRing[SwConIdx] = 0; |
| 5644 | |
| 5645 | /* Set the return status. */ |
| 5646 | pPacket->PacketStatus = LM_STATUS_SUCCESS; |
| 5647 | |
| 5648 | /* Put the packet in the TxPacketXmittedQ for indication later. */ |
| 5649 | QQ_PushTail(&pDevice->TxPacketXmittedQ.Container, pPacket); |
| 5650 | |
| 5651 | /* Move to the next packet's BD. */ |
| 5652 | SwConIdx = (SwConIdx + pPacket->u.Tx.FragCount) & |
| 5653 | T3_SEND_RCB_ENTRY_COUNT_MASK; |
| 5654 | |
| 5655 | /* Update the number of unused BDs. */ |
| 5656 | MM_ATOMIC_ADD(&pDevice->SendBdLeft, pPacket->u.Tx.FragCount); |
| 5657 | |
| 5658 | /* Get the new updated HwConIdx. */ |
| 5659 | HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx; |
| 5660 | } /* while */ |
| 5661 | |
| 5662 | /* Save the new SwConIdx. */ |
| 5663 | pDevice->SendConIdx = SwConIdx; |
| 5664 | |
| 5665 | } /* LM_ServiceTxInterrupt */ |
| 5666 | |
| 5667 | |
| 5668 | #ifdef BCM_NAPI_RXPOLL |
| 5669 | /******************************************************************************/ |
| 5670 | /* Description: */ |
| 5671 | /* */ |
| 5672 | /* Return: */ |
| 5673 | /******************************************************************************/ |
| 5674 | int |
| 5675 | LM_ServiceRxPoll(PLM_DEVICE_BLOCK pDevice, int limit) |
| 5676 | { |
| 5677 | PLM_PACKET pPacket=NULL; |
| 5678 | PT3_RCV_BD pRcvBd; |
| 5679 | LM_UINT32 HwRcvRetProdIdx; |
| 5680 | LM_UINT32 SwRcvRetConIdx; |
| 5681 | int received = 0; |
| 5682 | |
| 5683 | /* Loop thru the receive return rings for received packets. */ |
| 5684 | HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx; |
| 5685 | |
| 5686 | SwRcvRetConIdx = pDevice->RcvRetConIdx; |
| 5687 | MM_RMB(); |
| 5688 | while (SwRcvRetConIdx != HwRcvRetProdIdx) |
| 5689 | { |
| 5690 | pRcvBd = &pDevice->pRcvRetBdVirt[SwRcvRetConIdx]; |
| 5691 | |
| 5692 | /* Get the received packet descriptor. */ |
| 5693 | pPacket = (PLM_PACKET) (MM_UINT_PTR(pDevice->pPacketDescBase) + |
| 5694 | MM_UINT_PTR(pRcvBd->Opaque)); |
| 5695 | |
| 5696 | switch(pPacket->u.Rx.RcvProdRing) { |
| 5697 | #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| 5698 | case T3_JUMBO_RCV_PROD_RING: /* Jumbo Receive Ring. */ |
| 5699 | pDevice->RxJumboRing[pPacket->u.Rx.RcvRingProdIdx] = 0; |
| 5700 | break; |
| 5701 | #endif |
| 5702 | case T3_STD_RCV_PROD_RING: /* Standard Receive Ring. */ |
| 5703 | pDevice->RxStdRing[pPacket->u.Rx.RcvRingProdIdx] = 0; |
| 5704 | break; |
| 5705 | } |
| 5706 | |
| 5707 | /* Check the error flag. */ |
| 5708 | if(pRcvBd->ErrorFlag && |
| 5709 | pRcvBd->ErrorFlag != RCV_BD_ERR_ODD_NIBBLED_RCVD_MII) |
| 5710 | { |
| 5711 | pPacket->PacketStatus = LM_STATUS_FAILURE; |
| 5712 | |
| 5713 | pDevice->RxCounters.RxPacketErrCnt++; |
| 5714 | |
| 5715 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_BAD_CRC) |
| 5716 | { |
| 5717 | pDevice->RxCounters.RxErrCrcCnt++; |
| 5718 | } |
| 5719 | |
| 5720 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_COLL_DETECT) |
| 5721 | { |
| 5722 | pDevice->RxCounters.RxErrCollCnt++; |
| 5723 | } |
| 5724 | |
| 5725 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_LINK_LOST_DURING_PKT) |
| 5726 | { |
| 5727 | pDevice->RxCounters.RxErrLinkLostCnt++; |
| 5728 | } |
| 5729 | |
| 5730 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_PHY_DECODE_ERR) |
| 5731 | { |
| 5732 | pDevice->RxCounters.RxErrPhyDecodeCnt++; |
| 5733 | } |
| 5734 | |
| 5735 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_ODD_NIBBLED_RCVD_MII) |
| 5736 | { |
| 5737 | pDevice->RxCounters.RxErrOddNibbleCnt++; |
| 5738 | } |
| 5739 | |
| 5740 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_MAC_ABORT) |
| 5741 | { |
| 5742 | pDevice->RxCounters.RxErrMacAbortCnt++; |
| 5743 | } |
| 5744 | |
| 5745 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_LEN_LT_64) |
| 5746 | { |
| 5747 | pDevice->RxCounters.RxErrShortPacketCnt++; |
| 5748 | } |
| 5749 | |
| 5750 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_TRUNC_NO_RESOURCES) |
| 5751 | { |
| 5752 | pDevice->RxCounters.RxErrNoResourceCnt++; |
| 5753 | } |
| 5754 | |
| 5755 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_GIANT_FRAME_RCVD) |
| 5756 | { |
| 5757 | pDevice->RxCounters.RxErrLargePacketCnt++; |
| 5758 | } |
| 5759 | } |
| 5760 | else |
| 5761 | { |
| 5762 | pPacket->PacketStatus = LM_STATUS_SUCCESS; |
| 5763 | pPacket->PacketSize = pRcvBd->Len - 4; |
| 5764 | |
| 5765 | pPacket->Flags = pRcvBd->Flags; |
| 5766 | if(pRcvBd->Flags & RCV_BD_FLAG_VLAN_TAG) |
| 5767 | { |
| 5768 | pPacket->VlanTag = pRcvBd->VlanTag; |
| 5769 | } |
| 5770 | |
| 5771 | pPacket->u.Rx.TcpUdpChecksum = pRcvBd->TcpUdpCksum; |
| 5772 | } |
| 5773 | |
| 5774 | /* Put the packet descriptor containing the received packet */ |
| 5775 | /* buffer in the RxPacketReceivedQ for indication later. */ |
| 5776 | QQ_PushTail(&pDevice->RxPacketReceivedQ.Container, pPacket); |
| 5777 | |
| 5778 | /* Go to the next buffer descriptor. */ |
| 5779 | SwRcvRetConIdx = (SwRcvRetConIdx + 1) & |
| 5780 | pDevice->RcvRetRcbEntryCountMask; |
| 5781 | |
| 5782 | if (++received >= limit) |
| 5783 | { |
| 5784 | break; |
| 5785 | } |
| 5786 | } /* while */ |
| 5787 | |
| 5788 | pDevice->RcvRetConIdx = SwRcvRetConIdx; |
| 5789 | |
| 5790 | /* Update the receive return ring consumer index. */ |
| 5791 | MB_REG_WR(pDevice, Mailbox.RcvRetConIdx[0].Low, SwRcvRetConIdx); |
| 5792 | if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG) |
| 5793 | { |
| 5794 | MB_REG_RD(pDevice, Mailbox.RcvRetConIdx[0].Low); |
| 5795 | } |
| 5796 | else |
| 5797 | { |
| 5798 | MM_MMIOWB(); |
| 5799 | } |
| 5800 | return received; |
| 5801 | } /* LM_ServiceRxPoll */ |
| 5802 | #endif /* BCM_NAPI_RXPOLL */ |
| 5803 | |
| 5804 | |
| 5805 | /******************************************************************************/ |
| 5806 | /* Description: */ |
| 5807 | /* */ |
| 5808 | /* Return: */ |
| 5809 | /******************************************************************************/ |
| 5810 | void |
| 5811 | LM_ServiceRxInterrupt(PLM_DEVICE_BLOCK pDevice) |
| 5812 | { |
| 5813 | #ifndef BCM_NAPI_RXPOLL |
| 5814 | PLM_PACKET pPacket; |
| 5815 | PT3_RCV_BD pRcvBd; |
| 5816 | #endif |
| 5817 | LM_UINT32 HwRcvRetProdIdx; |
| 5818 | LM_UINT32 SwRcvRetConIdx; |
| 5819 | |
| 5820 | /* Loop thru the receive return rings for received packets. */ |
| 5821 | HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx; |
| 5822 | |
| 5823 | SwRcvRetConIdx = pDevice->RcvRetConIdx; |
| 5824 | #ifdef BCM_NAPI_RXPOLL |
| 5825 | if (!pDevice->RxPoll) |
| 5826 | { |
| 5827 | if (SwRcvRetConIdx != HwRcvRetProdIdx) |
| 5828 | { |
| 5829 | if (MM_ScheduleRxPoll(pDevice) == LM_STATUS_SUCCESS) |
| 5830 | { |
| 5831 | pDevice->RxPoll = TRUE; |
| 5832 | REG_WR(pDevice, Grc.Mode, |
| 5833 | pDevice->GrcMode | GRC_MODE_NO_INTERRUPT_ON_RECEIVE); |
| 5834 | } |
| 5835 | } |
| 5836 | } |
| 5837 | #else |
| 5838 | MM_RMB(); |
| 5839 | while(SwRcvRetConIdx != HwRcvRetProdIdx) |
| 5840 | { |
| 5841 | pRcvBd = &pDevice->pRcvRetBdVirt[SwRcvRetConIdx]; |
| 5842 | |
| 5843 | /* Get the received packet descriptor. */ |
| 5844 | pPacket = (PLM_PACKET) (MM_UINT_PTR(pDevice->pPacketDescBase) + |
| 5845 | MM_UINT_PTR(pRcvBd->Opaque)); |
| 5846 | |
| 5847 | switch(pPacket->u.Rx.RcvProdRing) { |
| 5848 | #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| 5849 | case T3_JUMBO_RCV_PROD_RING: /* Jumbo Receive Ring. */ |
| 5850 | pDevice->RxJumboRing[pPacket->u.Rx.RcvRingProdIdx] = 0; |
| 5851 | break; |
| 5852 | #endif |
| 5853 | case T3_STD_RCV_PROD_RING: /* Standard Receive Ring. */ |
| 5854 | pDevice->RxStdRing[pPacket->u.Rx.RcvRingProdIdx] = 0; |
| 5855 | break; |
| 5856 | } |
| 5857 | |
| 5858 | /* Check the error flag. */ |
| 5859 | if(pRcvBd->ErrorFlag && |
| 5860 | pRcvBd->ErrorFlag != RCV_BD_ERR_ODD_NIBBLED_RCVD_MII) |
| 5861 | { |
| 5862 | pPacket->PacketStatus = LM_STATUS_FAILURE; |
| 5863 | |
| 5864 | pDevice->RxCounters.RxPacketErrCnt++; |
| 5865 | |
| 5866 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_BAD_CRC) |
| 5867 | { |
| 5868 | pDevice->RxCounters.RxErrCrcCnt++; |
| 5869 | } |
| 5870 | |
| 5871 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_COLL_DETECT) |
| 5872 | { |
| 5873 | pDevice->RxCounters.RxErrCollCnt++; |
| 5874 | } |
| 5875 | |
| 5876 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_LINK_LOST_DURING_PKT) |
| 5877 | { |
| 5878 | pDevice->RxCounters.RxErrLinkLostCnt++; |
| 5879 | } |
| 5880 | |
| 5881 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_PHY_DECODE_ERR) |
| 5882 | { |
| 5883 | pDevice->RxCounters.RxErrPhyDecodeCnt++; |
| 5884 | } |
| 5885 | |
| 5886 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_ODD_NIBBLED_RCVD_MII) |
| 5887 | { |
| 5888 | pDevice->RxCounters.RxErrOddNibbleCnt++; |
| 5889 | } |
| 5890 | |
| 5891 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_MAC_ABORT) |
| 5892 | { |
| 5893 | pDevice->RxCounters.RxErrMacAbortCnt++; |
| 5894 | } |
| 5895 | |
| 5896 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_LEN_LT_64) |
| 5897 | { |
| 5898 | pDevice->RxCounters.RxErrShortPacketCnt++; |
| 5899 | } |
| 5900 | |
| 5901 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_TRUNC_NO_RESOURCES) |
| 5902 | { |
| 5903 | pDevice->RxCounters.RxErrNoResourceCnt++; |
| 5904 | } |
| 5905 | |
| 5906 | if(pRcvBd->ErrorFlag & RCV_BD_ERR_GIANT_FRAME_RCVD) |
| 5907 | { |
| 5908 | pDevice->RxCounters.RxErrLargePacketCnt++; |
| 5909 | } |
| 5910 | } |
| 5911 | else |
| 5912 | { |
| 5913 | pPacket->PacketStatus = LM_STATUS_SUCCESS; |
| 5914 | pPacket->PacketSize = pRcvBd->Len - 4; |
| 5915 | |
| 5916 | pPacket->Flags = pRcvBd->Flags; |
| 5917 | if(pRcvBd->Flags & RCV_BD_FLAG_VLAN_TAG) |
| 5918 | { |
| 5919 | pPacket->VlanTag = pRcvBd->VlanTag; |
| 5920 | } |
| 5921 | |
| 5922 | pPacket->u.Rx.TcpUdpChecksum = pRcvBd->TcpUdpCksum; |
| 5923 | } |
| 5924 | |
| 5925 | /* Put the packet descriptor containing the received packet */ |
| 5926 | /* buffer in the RxPacketReceivedQ for indication later. */ |
| 5927 | QQ_PushTail(&pDevice->RxPacketReceivedQ.Container, pPacket); |
| 5928 | |
| 5929 | /* Go to the next buffer descriptor. */ |
| 5930 | SwRcvRetConIdx = (SwRcvRetConIdx + 1) & |
| 5931 | pDevice->RcvRetRcbEntryCountMask; |
| 5932 | |
| 5933 | } /* while */ |
| 5934 | |
| 5935 | pDevice->RcvRetConIdx = SwRcvRetConIdx; |
| 5936 | |
| 5937 | /* Update the receive return ring consumer index. */ |
| 5938 | MB_REG_WR(pDevice, Mailbox.RcvRetConIdx[0].Low, SwRcvRetConIdx); |
| 5939 | if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG) |
| 5940 | { |
| 5941 | MB_REG_RD(pDevice, Mailbox.RcvRetConIdx[0].Low); |
| 5942 | } |
| 5943 | else |
| 5944 | { |
| 5945 | MM_MMIOWB(); |
| 5946 | } |
| 5947 | |
| 5948 | #endif |
| 5949 | } /* LM_ServiceRxInterrupt */ |
| 5950 | |
| 5951 | |
| 5952 | |
| 5953 | /******************************************************************************/ |
| 5954 | /* Description: */ |
| 5955 | /* This is the interrupt event handler routine. It acknowledges all */ |
| 5956 | /* pending interrupts and process all pending events. */ |
| 5957 | /* */ |
| 5958 | /* Return: */ |
| 5959 | /* LM_STATUS_SUCCESS */ |
| 5960 | /******************************************************************************/ |
| 5961 | LM_STATUS |
| 5962 | LM_ServiceInterrupts( |
| 5963 | PLM_DEVICE_BLOCK pDevice) |
| 5964 | { |
| 5965 | LM_UINT32 Value32; |
| 5966 | int ServicePhyInt = FALSE; |
| 5967 | |
| 5968 | /* Setup the phy chip whenever the link status changes. */ |
| 5969 | if(pDevice->LinkChngMode == T3_LINK_CHNG_MODE_USE_STATUS_REG) |
| 5970 | { |
| 5971 | Value32 = REG_RD(pDevice, MacCtrl.Status); |
| 5972 | if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) |
| 5973 | { |
| 5974 | if (Value32 & MAC_STATUS_MI_INTERRUPT) |
| 5975 | { |
| 5976 | ServicePhyInt = TRUE; |
| 5977 | } |
| 5978 | } |
| 5979 | else if(Value32 & MAC_STATUS_LINK_STATE_CHANGED) |
| 5980 | { |
| 5981 | ServicePhyInt = TRUE; |
| 5982 | } |
| 5983 | } |
| 5984 | else |
| 5985 | { |
| 5986 | if(pDevice->pStatusBlkVirt->Status & STATUS_BLOCK_LINK_CHANGED_STATUS) |
| 5987 | { |
| 5988 | pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED | |
| 5989 | (pDevice->pStatusBlkVirt->Status & ~STATUS_BLOCK_LINK_CHANGED_STATUS); |
| 5990 | ServicePhyInt = TRUE; |
| 5991 | } |
| 5992 | } |
| 5993 | #ifdef INCLUDE_TBI_SUPPORT |
| 5994 | if (pDevice->IgnoreTbiLinkChange == TRUE) |
| 5995 | { |
| 5996 | ServicePhyInt = FALSE; |
| 5997 | } |
| 5998 | #endif |
| 5999 | if (ServicePhyInt == TRUE) |
| 6000 | { |
| 6001 | MM_ACQUIRE_PHY_LOCK_IN_IRQ(pDevice); |
| 6002 | LM_SetupPhy(pDevice); |
| 6003 | MM_RELEASE_PHY_LOCK_IN_IRQ(pDevice); |
| 6004 | } |
| 6005 | |
| 6006 | /* Service receive and transmit interrupts. */ |
| 6007 | LM_ServiceRxInterrupt(pDevice); |
| 6008 | LM_ServiceTxInterrupt(pDevice); |
| 6009 | |
| 6010 | #ifndef BCM_NAPI_RXPOLL |
| 6011 | /* No spinlock for this queue since this routine is serialized. */ |
| 6012 | if(!QQ_Empty(&pDevice->RxPacketReceivedQ.Container)) |
| 6013 | { |
| 6014 | /* Indicate receive packets. */ |
| 6015 | MM_IndicateRxPackets(pDevice); |
| 6016 | } |
| 6017 | #endif |
| 6018 | |
| 6019 | /* No spinlock for this queue since this routine is serialized. */ |
| 6020 | if(!QQ_Empty(&pDevice->TxPacketXmittedQ.Container)) |
| 6021 | { |
| 6022 | MM_IndicateTxPackets(pDevice); |
| 6023 | } |
| 6024 | |
| 6025 | return LM_STATUS_SUCCESS; |
| 6026 | } /* LM_ServiceInterrupts */ |
| 6027 | |
| 6028 | |
| 6029 | /******************************************************************************/ |
| 6030 | /* Description: Add a Multicast address. Note that MC addresses, once added, */ |
| 6031 | /* cannot be individually deleted. All addresses must be */ |
| 6032 | /* cleared. */ |
| 6033 | /* */ |
| 6034 | /* Return: */ |
| 6035 | /******************************************************************************/ |
| 6036 | LM_STATUS |
| 6037 | LM_MulticastAdd(LM_DEVICE_BLOCK *pDevice, PLM_UINT8 pMcAddress) |
| 6038 | { |
| 6039 | |
| 6040 | LM_UINT32 RegIndex; |
| 6041 | LM_UINT32 Bitpos; |
| 6042 | LM_UINT32 Crc32; |
| 6043 | |
| 6044 | Crc32 = ComputeCrc32(pMcAddress, ETHERNET_ADDRESS_SIZE); |
| 6045 | |
| 6046 | /* The most significant 7 bits of the CRC32 (no inversion), */ |
| 6047 | /* are used to index into one of the possible 128 bit positions. */ |
| 6048 | Bitpos = ~Crc32 & 0x7f; |
| 6049 | |
| 6050 | /* Hash register index. */ |
| 6051 | RegIndex = (Bitpos & 0x60) >> 5; |
| 6052 | |
| 6053 | /* Bit to turn on within a hash register. */ |
| 6054 | Bitpos &= 0x1f; |
| 6055 | |
| 6056 | /* Enable the multicast bit. */ |
| 6057 | pDevice->MulticastHash[RegIndex] |= (1 << Bitpos); |
| 6058 | |
| 6059 | LM_SetReceiveMask(pDevice, pDevice->ReceiveMask | LM_ACCEPT_MULTICAST); |
| 6060 | |
| 6061 | return LM_STATUS_SUCCESS; |
| 6062 | } |
| 6063 | |
| 6064 | |
| 6065 | /******************************************************************************/ |
| 6066 | /* Description: */ |
| 6067 | /* */ |
| 6068 | /* Return: */ |
| 6069 | /******************************************************************************/ |
| 6070 | LM_STATUS |
| 6071 | LM_MulticastDel(LM_DEVICE_BLOCK *pDevice, PLM_UINT8 pMcAddress) |
| 6072 | { |
| 6073 | return LM_STATUS_FAILURE; |
| 6074 | } /* LM_MulticastDel */ |
| 6075 | |
| 6076 | |
| 6077 | |
| 6078 | /******************************************************************************/ |
| 6079 | /* Description: */ |
| 6080 | /* */ |
| 6081 | /* Return: */ |
| 6082 | /******************************************************************************/ |
| 6083 | LM_STATUS |
| 6084 | LM_MulticastClear(LM_DEVICE_BLOCK *pDevice) |
| 6085 | { |
| 6086 | int i; |
| 6087 | |
| 6088 | for (i = 0; i < 4; i++) |
| 6089 | { |
| 6090 | pDevice->MulticastHash[i] = 0; |
| 6091 | } |
| 6092 | LM_SetReceiveMask(pDevice, pDevice->ReceiveMask & ~LM_ACCEPT_MULTICAST); |
| 6093 | |
| 6094 | return LM_STATUS_SUCCESS; |
| 6095 | } /* LM_MulticastClear */ |
| 6096 | |
| 6097 | |
| 6098 | |
| 6099 | /******************************************************************************/ |
| 6100 | /* Description: */ |
| 6101 | /* */ |
| 6102 | /* Return: */ |
| 6103 | /******************************************************************************/ |
| 6104 | LM_STATUS |
| 6105 | LM_SetMacAddress( |
| 6106 | PLM_DEVICE_BLOCK pDevice, |
| 6107 | PLM_UINT8 pMacAddress) |
| 6108 | { |
| 6109 | LM_UINT32 j; |
| 6110 | |
| 6111 | for(j = 0; j < 4; j++) |
| 6112 | { |
| 6113 | REG_WR(pDevice, MacCtrl.MacAddr[j].High, |
| 6114 | (pMacAddress[0] << 8) | pMacAddress[1]); |
| 6115 | REG_WR(pDevice, MacCtrl.MacAddr[j].Low, |
| 6116 | (pMacAddress[2] << 24) | (pMacAddress[3] << 16) | |
| 6117 | (pMacAddress[4] << 8) | pMacAddress[5]); |
| 6118 | } |
| 6119 | |
| 6120 | if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) || |
| 6121 | (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)) |
| 6122 | { |
| 6123 | for (j = 0; j < 12; j++) |
| 6124 | { |
| 6125 | REG_WR(pDevice, MacCtrl.MacAddrExt[j].High, |
| 6126 | (pMacAddress[0] << 8) | pMacAddress[1]); |
| 6127 | REG_WR(pDevice, MacCtrl.MacAddrExt[j].Low, |
| 6128 | (pMacAddress[2] << 24) | (pMacAddress[3] << 16) | |
| 6129 | (pMacAddress[4] << 8) | pMacAddress[5]); |
| 6130 | } |
| 6131 | } |
| 6132 | return LM_STATUS_SUCCESS; |
| 6133 | } |
| 6134 | |
| 6135 | LM_VOID |
| 6136 | LM_PhyTapPowerMgmt(LM_DEVICE_BLOCK *pDevice) |
| 6137 | { |
| 6138 | /* Turn off tap power management. */ |
| 6139 | if((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID) |
| 6140 | { |
| 6141 | LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x4c20); |
| 6142 | LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x0012); |
| 6143 | LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x1804); |
| 6144 | LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x0013); |
| 6145 | LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x1204); |
| 6146 | LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006); |
| 6147 | LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0132); |
| 6148 | LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006); |
| 6149 | LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0232); |
| 6150 | LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x201f); |
| 6151 | LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0a20); |
| 6152 | |
| 6153 | MM_Wait(40); |
| 6154 | } |
| 6155 | } |
| 6156 | |
| 6157 | /******************************************************************************/ |
| 6158 | /* Description: */ |
| 6159 | /* */ |
| 6160 | /* Return: */ |
| 6161 | /* LM_STATUS_LINK_ACTIVE */ |
| 6162 | /* LM_STATUS_LINK_DOWN */ |
| 6163 | /******************************************************************************/ |
| 6164 | static LM_STATUS |
| 6165 | LM_InitBcm540xPhy( |
| 6166 | PLM_DEVICE_BLOCK pDevice) |
| 6167 | { |
| 6168 | LM_LINE_SPEED CurrentLineSpeed; |
| 6169 | LM_DUPLEX_MODE CurrentDuplexMode; |
| 6170 | LM_STATUS CurrentLinkStatus; |
| 6171 | LM_UINT32 Value32; |
| 6172 | LM_UINT32 j; |
| 6173 | robo_info_t *robo; |
| 6174 | |
| 6175 | LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x02); |
| 6176 | |
| 6177 | if ((pDevice->PhyFlags & PHY_RESET_ON_LINKDOWN) && |
| 6178 | (pDevice->LinkStatus == LM_STATUS_LINK_ACTIVE)) |
| 6179 | { |
| 6180 | LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32); |
| 6181 | LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32); |
| 6182 | if(!(Value32 & PHY_STATUS_LINK_PASS)) |
| 6183 | { |
| 6184 | LM_ResetPhy(pDevice); |
| 6185 | } |
| 6186 | } |
| 6187 | if((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID) |
| 6188 | { |
| 6189 | LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32); |
| 6190 | LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32); |
| 6191 | |
| 6192 | if(!pDevice->InitDone) |
| 6193 | { |
| 6194 | Value32 = 0; |
| 6195 | } |
| 6196 | |
| 6197 | if(!(Value32 & PHY_STATUS_LINK_PASS)) |
| 6198 | { |
| 6199 | LM_PhyTapPowerMgmt(pDevice); |
| 6200 | |
| 6201 | LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32); |
| 6202 | for(j = 0; j < 1000; j++) |
| 6203 | { |
| 6204 | MM_Wait(10); |
| 6205 | |
| 6206 | LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32); |
| 6207 | if(Value32 & PHY_STATUS_LINK_PASS) |
| 6208 | { |
| 6209 | MM_Wait(40); |
| 6210 | break; |
| 6211 | } |
| 6212 | } |
| 6213 | |
| 6214 | if((pDevice->PhyId & PHY_ID_REV_MASK) == PHY_BCM5401_B0_REV) |
| 6215 | { |
| 6216 | if(!(Value32 & PHY_STATUS_LINK_PASS) && |
| 6217 | (pDevice->OldLineSpeed == LM_LINE_SPEED_1000MBPS)) |
| 6218 | { |
| 6219 | LM_ResetPhy(pDevice); |
| 6220 | } |
| 6221 | } |
| 6222 | } |
| 6223 | } |
| 6224 | else if(pDevice->ChipRevId == T3_CHIP_ID_5701_A0 || |
| 6225 | pDevice->ChipRevId == T3_CHIP_ID_5701_B0) |
| 6226 | { |
| 6227 | LM_WritePhy(pDevice, 0x15, 0x0a75); |
| 6228 | LM_WritePhy(pDevice, 0x1c, 0x8c68); |
| 6229 | LM_WritePhy(pDevice, 0x1c, 0x8d68); |
| 6230 | LM_WritePhy(pDevice, 0x1c, 0x8c68); |
| 6231 | } |
| 6232 | |
| 6233 | /* Acknowledge interrupts. */ |
| 6234 | LM_ReadPhy(pDevice, BCM540X_INT_STATUS_REG, &Value32); |
| 6235 | LM_ReadPhy(pDevice, BCM540X_INT_STATUS_REG, &Value32); |
| 6236 | |
| 6237 | /* Configure the interrupt mask. */ |
| 6238 | if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) |
| 6239 | { |
| 6240 | LM_WritePhy(pDevice, BCM540X_INT_MASK_REG, ~BCM540X_INT_LINK_CHANGE); |
| 6241 | } |
| 6242 | |
| 6243 | /* Configure PHY led mode. */ |
| 6244 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 || |
| 6245 | (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)) |
| 6246 | { |
| 6247 | if(pDevice->LedCtrl == LED_CTRL_PHY_MODE_1) |
| 6248 | { |
| 6249 | LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, |
| 6250 | BCM540X_EXT_CTRL_LINK3_LED_MODE); |
| 6251 | } |
| 6252 | else |
| 6253 | { |
| 6254 | LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, 0); |
| 6255 | } |
| 6256 | } |
| 6257 | else if((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5461_PHY_ID) |
| 6258 | { |
| 6259 | /* |
| 6260 | ** Set up the 'link' LED for the 4785+5461 combo, |
| 6261 | ** using the INTR/ENERGYDET pin (on the BCM4785 bringup board). |
| 6262 | */ |
| 6263 | LM_WritePhy( pDevice, |
| 6264 | BCM546X_1c_SHADOW_REG, |
| 6265 | (BCM546X_1c_SPR_CTRL_2 | BCM546X_1c_WR_EN | BCM546X_1c_SP2_NRG_DET) ); |
| 6266 | |
| 6267 | /* |
| 6268 | ** Set up the LINK LED mode for the 4785+5461 combo, |
| 6269 | ** using the 5461 SLAVE/ANEN pin (on the BCM4785 bringup board) as |
| 6270 | ** active low link status (phy ready) feedback to the 4785 |
| 6271 | */ |
| 6272 | LM_WritePhy( pDevice, |
| 6273 | BCM546X_1c_SHADOW_REG, |
| 6274 | (BCM546X_1c_SPR_CTRL_1 | BCM546X_1c_WR_EN | BCM546X_1c_SP1_LINK_LED) ); |
| 6275 | } |
| 6276 | |
| 6277 | if (pDevice->PhyFlags & PHY_CAPACITIVE_COUPLING) |
| 6278 | { |
| 6279 | LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x4007); |
| 6280 | LM_ReadPhy(pDevice, BCM5401_AUX_CTRL, &Value32); |
| 6281 | if (!(Value32 & BIT_10)) |
| 6282 | { |
| 6283 | /* set the bit and re-link */ |
| 6284 | LM_WritePhy(pDevice, BCM5401_AUX_CTRL, Value32 | BIT_10); |
| 6285 | return LM_STATUS_LINK_SETTING_MISMATCH; |
| 6286 | } |
| 6287 | } |
| 6288 | |
| 6289 | CurrentLinkStatus = LM_STATUS_LINK_DOWN; |
| 6290 | |
| 6291 | if(UNKNOWN_PHY_ID(pDevice->PhyId) && (pDevice->Flags & ROBO_SWITCH_FLAG)) { |
| 6292 | B57_INFO(("Force to active link of 1000 MBPS and full duplex mod.\n")); |
| 6293 | CurrentLinkStatus = LM_STATUS_LINK_ACTIVE; |
| 6294 | |
| 6295 | /* Set the line speed based on the robo switch type */ |
| 6296 | robo = ((PUM_DEVICE_BLOCK)pDevice)->robo; |
| 6297 | if (robo->devid == DEVID5325) |
| 6298 | { |
| 6299 | CurrentLineSpeed = LM_LINE_SPEED_100MBPS; |
| 6300 | } |
| 6301 | else |
| 6302 | { |
| 6303 | CurrentLineSpeed = LM_LINE_SPEED_1000MBPS; |
| 6304 | } |
| 6305 | CurrentDuplexMode = LM_DUPLEX_MODE_FULL; |
| 6306 | |
| 6307 | /* Save line settings. */ |
| 6308 | pDevice->LineSpeed = CurrentLineSpeed; |
| 6309 | pDevice->DuplexMode = CurrentDuplexMode; |
| 6310 | } else { |
| 6311 | |
| 6312 | /* Get current link and duplex mode. */ |
| 6313 | for(j = 0; j < 100; j++) |
| 6314 | { |
| 6315 | LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32); |
| 6316 | LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32); |
| 6317 | |
| 6318 | if(Value32 & PHY_STATUS_LINK_PASS) |
| 6319 | { |
| 6320 | break; |
| 6321 | } |
| 6322 | MM_Wait(40); |
| 6323 | } |
| 6324 | |
| 6325 | if(Value32 & PHY_STATUS_LINK_PASS) |
| 6326 | { |
| 6327 | |
| 6328 | /* Determine the current line and duplex settings. */ |
| 6329 | LM_ReadPhy(pDevice, BCM540X_AUX_STATUS_REG, &Value32); |
| 6330 | for(j = 0; j < 2000; j++) |
| 6331 | { |
| 6332 | MM_Wait(10); |
| 6333 | |
| 6334 | LM_ReadPhy(pDevice, BCM540X_AUX_STATUS_REG, &Value32); |
| 6335 | if(Value32) |
| 6336 | { |
| 6337 | break; |
| 6338 | } |
| 6339 | } |
| 6340 | |
| 6341 | switch(Value32 & BCM540X_AUX_SPEED_MASK) |
| 6342 | { |
| 6343 | case BCM540X_AUX_10BASET_HD: |
| 6344 | CurrentLineSpeed = LM_LINE_SPEED_10MBPS; |
| 6345 | CurrentDuplexMode = LM_DUPLEX_MODE_HALF; |
| 6346 | break; |
| 6347 | |
| 6348 | case BCM540X_AUX_10BASET_FD: |
| 6349 | CurrentLineSpeed = LM_LINE_SPEED_10MBPS; |
| 6350 | CurrentDuplexMode = LM_DUPLEX_MODE_FULL; |
| 6351 | break; |
| 6352 | |
| 6353 | case BCM540X_AUX_100BASETX_HD: |
| 6354 | CurrentLineSpeed = LM_LINE_SPEED_100MBPS; |
| 6355 | CurrentDuplexMode = LM_DUPLEX_MODE_HALF; |
| 6356 | break; |
| 6357 | |
| 6358 | case BCM540X_AUX_100BASETX_FD: |
| 6359 | CurrentLineSpeed = LM_LINE_SPEED_100MBPS; |
| 6360 | CurrentDuplexMode = LM_DUPLEX_MODE_FULL; |
| 6361 | break; |
| 6362 | |
| 6363 | case BCM540X_AUX_100BASET_HD: |
| 6364 | CurrentLineSpeed = LM_LINE_SPEED_1000MBPS; |
| 6365 | CurrentDuplexMode = LM_DUPLEX_MODE_HALF; |
| 6366 | break; |
| 6367 | |
| 6368 | case BCM540X_AUX_100BASET_FD: |
| 6369 | CurrentLineSpeed = LM_LINE_SPEED_1000MBPS; |
| 6370 | CurrentDuplexMode = LM_DUPLEX_MODE_FULL; |
| 6371 | break; |
| 6372 | |
| 6373 | default: |
| 6374 | |
| 6375 | CurrentLineSpeed = LM_LINE_SPEED_UNKNOWN; |
| 6376 | CurrentDuplexMode = LM_DUPLEX_MODE_UNKNOWN; |
| 6377 | break; |
| 6378 | } |
| 6379 | |
| 6380 | /* Make sure we are in auto-neg mode. */ |
| 6381 | for (j = 0; j < 200; j++) |
| 6382 | { |
| 6383 | LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32); |
| 6384 | if(Value32 && Value32 != 0x7fff) |
| 6385 | { |
| 6386 | break; |
| 6387 | } |
| 6388 | |
| 6389 | if(Value32 == 0 && |
| 6390 | pDevice->RequestedLineSpeed == LM_LINE_SPEED_10MBPS && |
| 6391 | pDevice->RequestedDuplexMode == LM_DUPLEX_MODE_HALF) |
| 6392 | { |
| 6393 | break; |
| 6394 | } |
| 6395 | |
| 6396 | MM_Wait(10); |
| 6397 | } |
| 6398 | |
| 6399 | /* Use the current line settings for "auto" mode. */ |
| 6400 | if(pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) |
| 6401 | { |
| 6402 | if(Value32 & PHY_CTRL_AUTO_NEG_ENABLE) |
| 6403 | { |
| 6404 | CurrentLinkStatus = LM_STATUS_LINK_ACTIVE; |
| 6405 | |
| 6406 | /* We may be exiting low power mode and the link is in */ |
| 6407 | /* 10mb. In this case, we need to restart autoneg. */ |
| 6408 | |
| 6409 | if (LM_PhyAdvertiseAll(pDevice) != LM_STATUS_SUCCESS) |
| 6410 | { |
| 6411 | CurrentLinkStatus = LM_STATUS_LINK_SETTING_MISMATCH; |
| 6412 | } |
| 6413 | } |
| 6414 | else |
| 6415 | { |
| 6416 | CurrentLinkStatus = LM_STATUS_LINK_SETTING_MISMATCH; |
| 6417 | } |
| 6418 | } |
| 6419 | else |
| 6420 | { |
| 6421 | /* Force line settings. */ |
| 6422 | /* Use the current setting if it matches the user's requested */ |
| 6423 | /* setting. */ |
| 6424 | LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32); |
| 6425 | if((pDevice->LineSpeed == CurrentLineSpeed) && |
| 6426 | (pDevice->DuplexMode == CurrentDuplexMode)) |
| 6427 | { |
| 6428 | if ((pDevice->DisableAutoNeg && |
| 6429 | !(Value32 & PHY_CTRL_AUTO_NEG_ENABLE)) || |
| 6430 | (!pDevice->DisableAutoNeg && |
| 6431 | (Value32 & PHY_CTRL_AUTO_NEG_ENABLE))) |
| 6432 | { |
| 6433 | CurrentLinkStatus = LM_STATUS_LINK_ACTIVE; |
| 6434 | } |
| 6435 | else |
| 6436 | { |
| 6437 | CurrentLinkStatus = LM_STATUS_LINK_SETTING_MISMATCH; |
| 6438 | } |
| 6439 | } |
| 6440 | else |
| 6441 | { |
| 6442 | CurrentLinkStatus = LM_STATUS_LINK_SETTING_MISMATCH; |
| 6443 | } |
| 6444 | } |
| 6445 | |
| 6446 | /* Save line settings. */ |
| 6447 | pDevice->LineSpeed = CurrentLineSpeed; |
| 6448 | pDevice->DuplexMode = CurrentDuplexMode; |
| 6449 | } |
| 6450 | } |
| 6451 | |
| 6452 | return CurrentLinkStatus; |
| 6453 | } /* LM_InitBcm540xPhy */ |
| 6454 | |
| 6455 | /******************************************************************************/ |
| 6456 | /* Description: */ |
| 6457 | /* */ |
| 6458 | /* Return: */ |
| 6459 | /******************************************************************************/ |
| 6460 | LM_STATUS |
| 6461 | LM_SetFlowControl( |
| 6462 | PLM_DEVICE_BLOCK pDevice, |
| 6463 | LM_UINT32 LocalPhyAd, |
| 6464 | LM_UINT32 RemotePhyAd) |
| 6465 | { |
| 6466 | LM_FLOW_CONTROL FlowCap; |
| 6467 | |
| 6468 | /* Resolve flow control. */ |
| 6469 | FlowCap = LM_FLOW_CONTROL_NONE; |
| 6470 | |
| 6471 | /* See Table 28B-3 of 802.3ab-1999 spec. */ |
| 6472 | if(pDevice->FlowControlCap & LM_FLOW_CONTROL_AUTO_PAUSE) |
| 6473 | { |
| 6474 | if(pDevice->PhyFlags & PHY_IS_FIBER){ |
| 6475 | LocalPhyAd &= ~(PHY_AN_AD_ASYM_PAUSE | |
| 6476 | PHY_AN_AD_PAUSE_CAPABLE); |
| 6477 | RemotePhyAd &= ~(PHY_AN_AD_ASYM_PAUSE | |
| 6478 | PHY_AN_AD_PAUSE_CAPABLE); |
| 6479 | |
| 6480 | if (LocalPhyAd & PHY_AN_AD_1000XPAUSE) |
| 6481 | LocalPhyAd |= PHY_AN_AD_PAUSE_CAPABLE; |
| 6482 | if (LocalPhyAd & PHY_AN_AD_1000XPSE_ASYM) |
| 6483 | LocalPhyAd |= PHY_AN_AD_ASYM_PAUSE; |
| 6484 | if (RemotePhyAd & PHY_AN_AD_1000XPAUSE) |
| 6485 | RemotePhyAd |= PHY_LINK_PARTNER_PAUSE_CAPABLE; |
| 6486 | if (RemotePhyAd & PHY_AN_AD_1000XPSE_ASYM) |
| 6487 | RemotePhyAd |= PHY_LINK_PARTNER_ASYM_PAUSE; |
| 6488 | } |
| 6489 | |
| 6490 | if(LocalPhyAd & PHY_AN_AD_PAUSE_CAPABLE) |
| 6491 | { |
| 6492 | if(LocalPhyAd & PHY_AN_AD_ASYM_PAUSE) |
| 6493 | { |
| 6494 | if(RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE) |
| 6495 | { |
| 6496 | FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE | |
| 6497 | LM_FLOW_CONTROL_RECEIVE_PAUSE; |
| 6498 | } |
| 6499 | else if(RemotePhyAd & PHY_LINK_PARTNER_ASYM_PAUSE) |
| 6500 | { |
| 6501 | FlowCap = LM_FLOW_CONTROL_RECEIVE_PAUSE; |
| 6502 | } |
| 6503 | } |
| 6504 | else |
| 6505 | { |
| 6506 | if(RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE) |
| 6507 | { |
| 6508 | FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE | |
| 6509 | LM_FLOW_CONTROL_RECEIVE_PAUSE; |
| 6510 | } |
| 6511 | } |
| 6512 | } |
| 6513 | else if(LocalPhyAd & PHY_AN_AD_ASYM_PAUSE) |
| 6514 | { |
| 6515 | if((RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE) && |
| 6516 | (RemotePhyAd & PHY_LINK_PARTNER_ASYM_PAUSE)) |
| 6517 | { |
| 6518 | FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE; |
| 6519 | } |
| 6520 | } |
| 6521 | } |
| 6522 | else |
| 6523 | { |
| 6524 | FlowCap = pDevice->FlowControlCap; |
| 6525 | } |
| 6526 | |
| 6527 | pDevice->FlowControl = LM_FLOW_CONTROL_NONE; |
| 6528 | |
| 6529 | /* Enable/disable rx PAUSE. */ |
| 6530 | pDevice->RxMode &= ~RX_MODE_ENABLE_FLOW_CONTROL; |
| 6531 | if(FlowCap & LM_FLOW_CONTROL_RECEIVE_PAUSE && |
| 6532 | (pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE || |
| 6533 | pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE)) |
| 6534 | { |
| 6535 | pDevice->FlowControl |= LM_FLOW_CONTROL_RECEIVE_PAUSE; |
| 6536 | pDevice->RxMode |= RX_MODE_ENABLE_FLOW_CONTROL; |
| 6537 | |
| 6538 | } |
| 6539 | REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode); |
| 6540 | |
| 6541 | /* Enable/disable tx PAUSE. */ |
| 6542 | pDevice->TxMode &= ~TX_MODE_ENABLE_FLOW_CONTROL; |
| 6543 | if(FlowCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE && |
| 6544 | (pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE || |
| 6545 | pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE)) |
| 6546 | { |
| 6547 | pDevice->FlowControl |= LM_FLOW_CONTROL_TRANSMIT_PAUSE; |
| 6548 | pDevice->TxMode |= TX_MODE_ENABLE_FLOW_CONTROL; |
| 6549 | |
| 6550 | } |
| 6551 | REG_WR(pDevice, MacCtrl.TxMode, pDevice->TxMode); |
| 6552 | |
| 6553 | return LM_STATUS_SUCCESS; |
| 6554 | } |
| 6555 | |
| 6556 | |
| 6557 | #ifdef INCLUDE_TBI_SUPPORT |
| 6558 | /******************************************************************************/ |
| 6559 | /* Description: */ |
| 6560 | /* */ |
| 6561 | /* Return: */ |
| 6562 | /******************************************************************************/ |
| 6563 | STATIC LM_STATUS |
| 6564 | LM_InitBcm800xPhy( |
| 6565 | PLM_DEVICE_BLOCK pDevice) |
| 6566 | { |
| 6567 | LM_UINT32 Value32; |
| 6568 | LM_UINT32 j; |
| 6569 | |
| 6570 | |
| 6571 | Value32 = REG_RD(pDevice, MacCtrl.Status); |
| 6572 | |
| 6573 | /* Reset the SERDES during init and when we have link. */ |
| 6574 | if(!pDevice->InitDone || Value32 & MAC_STATUS_PCS_SYNCED) |
| 6575 | { |
| 6576 | /* Set PLL lock range. */ |
| 6577 | LM_WritePhy(pDevice, 0x16, 0x8007); |
| 6578 | |
| 6579 | /* Software reset. */ |
| 6580 | LM_WritePhy(pDevice, 0x00, 0x8000); |
| 6581 | |
| 6582 | /* Wait for reset to complete. */ |
| 6583 | for(j = 0; j < 500; j++) |
| 6584 | { |
| 6585 | MM_Wait(10); |
| 6586 | } |
| 6587 | |
| 6588 | /* Config mode; seletct PMA/Ch 1 regs. */ |
| 6589 | LM_WritePhy(pDevice, 0x10, 0x8411); |
| 6590 | |
| 6591 | /* Enable auto-lock and comdet, select txclk for tx. */ |
| 6592 | LM_WritePhy(pDevice, 0x11, 0x0a10); |
| 6593 | |
| 6594 | LM_WritePhy(pDevice, 0x18, 0x00a0); |
| 6595 | LM_WritePhy(pDevice, 0x16, 0x41ff); |
| 6596 | |
| 6597 | /* Assert and deassert POR. */ |
| 6598 | LM_WritePhy(pDevice, 0x13, 0x0400); |
| 6599 | MM_Wait(40); |
| 6600 | LM_WritePhy(pDevice, 0x13, 0x0000); |
| 6601 | |
| 6602 | LM_WritePhy(pDevice, 0x11, 0x0a50); |
| 6603 | MM_Wait(40); |
| 6604 | LM_WritePhy(pDevice, 0x11, 0x0a10); |
| 6605 | |
| 6606 | /* Delay for signal to stabilize. */ |
| 6607 | for(j = 0; j < 15000; j++) |
| 6608 | { |
| 6609 | MM_Wait(10); |
| 6610 | } |
| 6611 | |
| 6612 | /* Deselect the channel register so we can read the PHY id later. */ |
| 6613 | LM_WritePhy(pDevice, 0x10, 0x8011); |
| 6614 | } |
| 6615 | |
| 6616 | return LM_STATUS_SUCCESS; |
| 6617 | } |
| 6618 | |
| 6619 | |
| 6620 | |
| 6621 | /******************************************************************************/ |
| 6622 | /* Description: */ |
| 6623 | /* */ |
| 6624 | /* Return: */ |
| 6625 | /******************************************************************************/ |
| 6626 | STATIC LM_STATUS |
| 6627 | LM_SetupFiberPhy( |
| 6628 | PLM_DEVICE_BLOCK pDevice) |
| 6629 | { |
| 6630 | LM_STATUS CurrentLinkStatus; |
| 6631 | AUTONEG_STATUS AnStatus = 0; |
| 6632 | LM_UINT32 Value32; |
| 6633 | LM_UINT32 Cnt; |
| 6634 | LM_UINT32 j, k; |
| 6635 | LM_UINT32 MacStatus, RemotePhyAd, LocalPhyAd; |
| 6636 | LM_FLOW_CONTROL PreviousFlowControl = pDevice->FlowControl; |
| 6637 | |
| 6638 | |
| 6639 | if (pDevice->LoopBackMode == LM_MAC_LOOP_BACK_MODE) |
| 6640 | { |
| 6641 | pDevice->LinkStatus = LM_STATUS_LINK_ACTIVE; |
| 6642 | MM_IndicateStatus(pDevice, LM_STATUS_LINK_ACTIVE); |
| 6643 | return LM_STATUS_SUCCESS; |
| 6644 | } |
| 6645 | |
| 6646 | |
| 6647 | if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5704) && |
| 6648 | (pDevice->LinkStatus == LM_STATUS_LINK_ACTIVE) && pDevice->InitDone) |
| 6649 | { |
| 6650 | MacStatus = REG_RD(pDevice, MacCtrl.Status); |
| 6651 | if ((MacStatus & (MAC_STATUS_PCS_SYNCED | MAC_STATUS_SIGNAL_DETECTED | |
| 6652 | MAC_STATUS_CFG_CHANGED | MAC_STATUS_RECEIVING_CFG)) |
| 6653 | == (MAC_STATUS_PCS_SYNCED | MAC_STATUS_SIGNAL_DETECTED)) |
| 6654 | { |
| 6655 | |
| 6656 | REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED | |
| 6657 | MAC_STATUS_CFG_CHANGED); |
| 6658 | return LM_STATUS_SUCCESS; |
| 6659 | } |
| 6660 | } |
| 6661 | pDevice->MacMode &= ~(MAC_MODE_HALF_DUPLEX | MAC_MODE_PORT_MODE_MASK); |
| 6662 | |
| 6663 | /* Initialize the send_config register. */ |
| 6664 | REG_WR(pDevice, MacCtrl.TxAutoNeg, 0); |
| 6665 | |
| 6666 | pDevice->MacMode |= MAC_MODE_PORT_MODE_TBI; |
| 6667 | REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode); |
| 6668 | MM_Wait(10); |
| 6669 | |
| 6670 | /* Initialize the BCM8002 SERDES PHY. */ |
| 6671 | switch(pDevice->PhyId & PHY_ID_MASK) |
| 6672 | { |
| 6673 | case PHY_BCM8002_PHY_ID: |
| 6674 | LM_InitBcm800xPhy(pDevice); |
| 6675 | break; |
| 6676 | |
| 6677 | default: |
| 6678 | break; |
| 6679 | } |
| 6680 | |
| 6681 | /* Enable link change interrupt. */ |
| 6682 | REG_WR(pDevice, MacCtrl.MacEvent, MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN); |
| 6683 | |
| 6684 | /* Default to link down. */ |
| 6685 | CurrentLinkStatus = LM_STATUS_LINK_DOWN; |
| 6686 | |
| 6687 | /* Get the link status. */ |
| 6688 | MacStatus = REG_RD(pDevice, MacCtrl.Status); |
| 6689 | |
| 6690 | if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704) |
| 6691 | { |
| 6692 | LM_UINT32 SgDigCtrl, SgDigStatus; |
| 6693 | LM_UINT32 SerdesCfg = 0; |
| 6694 | LM_UINT32 ExpectedSgDigCtrl = 0; |
| 6695 | LM_UINT32 WorkAround = 0; |
| 6696 | LM_UINT32 PortA = 1; |
| 6697 | |
| 6698 | if ((pDevice->ChipRevId != T3_CHIP_ID_5704_A0) && |
| 6699 | (pDevice->ChipRevId != T3_CHIP_ID_5704_A1)) |
| 6700 | { |
| 6701 | WorkAround = 1; |
| 6702 | if (REG_RD(pDevice, PciCfg.DualMacCtrl) & T3_DUAL_MAC_ID) |
| 6703 | { |
| 6704 | PortA = 0; |
| 6705 | } |
| 6706 | |
| 6707 | if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS) |
| 6708 | { |
| 6709 | /* Save voltage reg bits & bits 14:0 */ |
| 6710 | SerdesCfg = REG_RD(pDevice, MacCtrl.SerdesCfg) & |
| 6711 | (BIT_23 | BIT_22 | BIT_21 | BIT_20 | 0x7fff ); |
| 6712 | |
| 6713 | } |
| 6714 | else |
| 6715 | { |
| 6716 | /* preserve the voltage regulator bits */ |
| 6717 | SerdesCfg = REG_RD(pDevice, MacCtrl.SerdesCfg) & |
| 6718 | (BIT_23 | BIT_22 | BIT_21 | BIT_20); |
| 6719 | } |
| 6720 | } |
| 6721 | SgDigCtrl = REG_RD(pDevice, MacCtrl.SgDigControl); |
| 6722 | if((pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) || |
| 6723 | (pDevice->DisableAutoNeg == FALSE)) |
| 6724 | { |
| 6725 | |
| 6726 | ExpectedSgDigCtrl = 0x81388400; |
| 6727 | LocalPhyAd = GetPhyAdFlowCntrlSettings(pDevice); |
| 6728 | if(LocalPhyAd & PHY_AN_AD_PAUSE_CAPABLE) |
| 6729 | { |
| 6730 | ExpectedSgDigCtrl |= BIT_11; |
| 6731 | } |
| 6732 | if(LocalPhyAd & PHY_AN_AD_ASYM_PAUSE) |
| 6733 | { |
| 6734 | ExpectedSgDigCtrl |= BIT_12; |
| 6735 | } |
| 6736 | if (SgDigCtrl != ExpectedSgDigCtrl) |
| 6737 | { |
| 6738 | if (WorkAround) |
| 6739 | { |
| 6740 | if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS) |
| 6741 | { |
| 6742 | REG_WR(pDevice, MacCtrl.SerdesCfg, 0xc011000 | SerdesCfg); |
| 6743 | } |
| 6744 | else |
| 6745 | { |
| 6746 | REG_WR(pDevice, MacCtrl.SerdesCfg, 0xc011880 | SerdesCfg); |
| 6747 | } |
| 6748 | } |
| 6749 | REG_WR(pDevice, MacCtrl.SgDigControl, ExpectedSgDigCtrl | |
| 6750 | BIT_30); |
| 6751 | REG_RD_BACK(pDevice, MacCtrl.SgDigControl); |
| 6752 | MM_Wait(5); |
| 6753 | REG_WR(pDevice, MacCtrl.SgDigControl, ExpectedSgDigCtrl); |
| 6754 | pDevice->AutoNegJustInited = TRUE; |
| 6755 | } |
| 6756 | /* If autoneg is off, you only get SD when link is up */ |
| 6757 | else if(MacStatus & (MAC_STATUS_PCS_SYNCED | |
| 6758 | MAC_STATUS_SIGNAL_DETECTED)) |
| 6759 | { |
| 6760 | SgDigStatus = REG_RD(pDevice, MacCtrl.SgDigStatus); |
| 6761 | if ((SgDigStatus & BIT_1) && |
| 6762 | (MacStatus & MAC_STATUS_PCS_SYNCED)) |
| 6763 | { |
| 6764 | /* autoneg. completed */ |
| 6765 | RemotePhyAd = 0; |
| 6766 | if(SgDigStatus & BIT_19) |
| 6767 | { |
| 6768 | RemotePhyAd |= PHY_LINK_PARTNER_PAUSE_CAPABLE; |
| 6769 | } |
| 6770 | |
| 6771 | if(SgDigStatus & BIT_20) |
| 6772 | { |
| 6773 | RemotePhyAd |= PHY_LINK_PARTNER_ASYM_PAUSE; |
| 6774 | } |
| 6775 | |
| 6776 | LM_SetFlowControl(pDevice, LocalPhyAd, RemotePhyAd); |
| 6777 | CurrentLinkStatus = LM_STATUS_LINK_ACTIVE; |
| 6778 | pDevice->AutoNegJustInited = FALSE; |
| 6779 | } |
| 6780 | else if (!(SgDigStatus & BIT_1)) |
| 6781 | { |
| 6782 | if (pDevice->AutoNegJustInited == TRUE) |
| 6783 | { |
| 6784 | /* we may be checking too soon, so check again */ |
| 6785 | /* at the next poll interval */ |
| 6786 | pDevice->AutoNegJustInited = FALSE; |
| 6787 | } |
| 6788 | else |
| 6789 | { |
| 6790 | /* autoneg. failed */ |
| 6791 | if (WorkAround) |
| 6792 | { |
| 6793 | if (PortA) |
| 6794 | { |
| 6795 | if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS) |
| 6796 | { |
| 6797 | REG_WR(pDevice, MacCtrl.SerdesCfg, |
| 6798 | 0xc010000 | (SerdesCfg & ~0x00001000)); |
| 6799 | } |
| 6800 | else |
| 6801 | { |
| 6802 | REG_WR(pDevice, MacCtrl.SerdesCfg, |
| 6803 | 0xc010880 | SerdesCfg); |
| 6804 | } |
| 6805 | } |
| 6806 | else |
| 6807 | { |
| 6808 | if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS) |
| 6809 | { |
| 6810 | REG_WR(pDevice, MacCtrl.SerdesCfg, |
| 6811 | 0x4010000 | (SerdesCfg & ~0x00001000)); |
| 6812 | } |
| 6813 | else |
| 6814 | { |
| 6815 | REG_WR(pDevice, MacCtrl.SerdesCfg, |
| 6816 | 0x4010880 | SerdesCfg); |
| 6817 | } |
| 6818 | } |
| 6819 | } |
| 6820 | /* turn off autoneg. to allow traffic to pass */ |
| 6821 | REG_WR(pDevice, MacCtrl.SgDigControl, 0x01388400); |
| 6822 | REG_RD_BACK(pDevice, MacCtrl.SgDigControl); |
| 6823 | MM_Wait(40); |
| 6824 | MacStatus = REG_RD(pDevice, MacCtrl.Status); |
| 6825 | if ((MacStatus & MAC_STATUS_PCS_SYNCED) && !(MacStatus & MAC_STATUS_RECEIVING_CFG)) |
| 6826 | { |
| 6827 | LM_SetFlowControl(pDevice, 0, 0); |
| 6828 | CurrentLinkStatus = LM_STATUS_LINK_ACTIVE; |
| 6829 | } |
| 6830 | } |
| 6831 | } |
| 6832 | } |
| 6833 | } |
| 6834 | else |
| 6835 | { |
| 6836 | if (SgDigCtrl & BIT_31) { |
| 6837 | if (WorkAround) |
| 6838 | { |
| 6839 | if (PortA) |
| 6840 | { |
| 6841 | |
| 6842 | if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS) |
| 6843 | { |
| 6844 | REG_WR(pDevice, MacCtrl.SerdesCfg, |
| 6845 | 0xc010000 | (SerdesCfg & ~0x00001000)); |
| 6846 | } |
| 6847 | else |
| 6848 | { |
| 6849 | REG_WR(pDevice, MacCtrl.SerdesCfg, |
| 6850 | 0xc010880 | SerdesCfg); |
| 6851 | } |
| 6852 | } |
| 6853 | else |
| 6854 | { |
| 6855 | if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS) |
| 6856 | { |
| 6857 | REG_WR(pDevice, MacCtrl.SerdesCfg, |
| 6858 | 0x4010000 | (SerdesCfg & ~0x00001000)); |
| 6859 | } |
| 6860 | else |
| 6861 | { |
| 6862 | REG_WR(pDevice, MacCtrl.SerdesCfg, |
| 6863 | 0x4010880 | SerdesCfg); |
| 6864 | } |
| 6865 | } |
| 6866 | } |
| 6867 | REG_WR(pDevice, MacCtrl.SgDigControl, 0x01388400); |
| 6868 | } |
| 6869 | if(MacStatus & MAC_STATUS_PCS_SYNCED) |
| 6870 | { |
| 6871 | LM_SetFlowControl(pDevice, 0, 0); |
| 6872 | CurrentLinkStatus = LM_STATUS_LINK_ACTIVE; |
| 6873 | } |
| 6874 | } |
| 6875 | } |
| 6876 | else if(MacStatus & MAC_STATUS_PCS_SYNCED) |
| 6877 | { |
| 6878 | if((pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) || |
| 6879 | (pDevice->DisableAutoNeg == FALSE)) |
| 6880 | { |
| 6881 | /* auto-negotiation mode. */ |
| 6882 | /* Initialize the autoneg default capaiblities. */ |
| 6883 | AutonegInit(&pDevice->AnInfo); |
| 6884 | |
| 6885 | /* Set the context pointer to point to the main device structure. */ |
| 6886 | pDevice->AnInfo.pContext = pDevice; |
| 6887 | |
| 6888 | /* Setup flow control advertisement register. */ |
| 6889 | Value32 = GetPhyAdFlowCntrlSettings(pDevice); |
| 6890 | if(Value32 & PHY_AN_AD_PAUSE_CAPABLE) |
| 6891 | { |
| 6892 | pDevice->AnInfo.mr_adv_sym_pause = 1; |
| 6893 | } |
| 6894 | else |
| 6895 | { |
| 6896 | pDevice->AnInfo.mr_adv_sym_pause = 0; |
| 6897 | } |
| 6898 | |
| 6899 | if(Value32 & PHY_AN_AD_ASYM_PAUSE) |
| 6900 | { |
| 6901 | pDevice->AnInfo.mr_adv_asym_pause = 1; |
| 6902 | } |
| 6903 | else |
| 6904 | { |
| 6905 | pDevice->AnInfo.mr_adv_asym_pause = 0; |
| 6906 | } |
| 6907 | |
| 6908 | /* Try to autoneg up to six times. */ |
| 6909 | if (pDevice->IgnoreTbiLinkChange) |
| 6910 | { |
| 6911 | Cnt = 1; |
| 6912 | } |
| 6913 | else |
| 6914 | { |
| 6915 | Cnt = 6; |
| 6916 | } |
| 6917 | for (j = 0; j < Cnt; j++) |
| 6918 | { |
| 6919 | REG_WR(pDevice, MacCtrl.TxAutoNeg, 0); |
| 6920 | |
| 6921 | Value32 = pDevice->MacMode & ~MAC_MODE_PORT_MODE_MASK; |
| 6922 | REG_WR(pDevice, MacCtrl.Mode, Value32); |
| 6923 | REG_RD_BACK(pDevice, MacCtrl.Mode); |
| 6924 | MM_Wait(20); |
| 6925 | |
| 6926 | REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode | |
| 6927 | MAC_MODE_SEND_CONFIGS); |
| 6928 | REG_RD_BACK(pDevice, MacCtrl.Mode); |
| 6929 | |
| 6930 | MM_Wait(20); |
| 6931 | |
| 6932 | pDevice->AnInfo.State = AN_STATE_UNKNOWN; |
| 6933 | pDevice->AnInfo.CurrentTime_us = 0; |
| 6934 | |
| 6935 | REG_WR(pDevice, Grc.Timer, 0); |
| 6936 | for(k = 0; (pDevice->AnInfo.CurrentTime_us < 75000) && |
| 6937 | (k < 75000); k++) |
| 6938 | { |
| 6939 | AnStatus = Autoneg8023z(&pDevice->AnInfo); |
| 6940 | |
| 6941 | if((AnStatus == AUTONEG_STATUS_DONE) || |
| 6942 | (AnStatus == AUTONEG_STATUS_FAILED)) |
| 6943 | { |
| 6944 | break; |
| 6945 | } |
| 6946 | |
| 6947 | pDevice->AnInfo.CurrentTime_us = REG_RD(pDevice, Grc.Timer); |
| 6948 | |
| 6949 | } |
| 6950 | if((AnStatus == AUTONEG_STATUS_DONE) || |
| 6951 | (AnStatus == AUTONEG_STATUS_FAILED)) |
| 6952 | { |
| 6953 | break; |
| 6954 | } |
| 6955 | if (j >= 1) |
| 6956 | { |
| 6957 | if (!(REG_RD(pDevice, MacCtrl.Status) & |
| 6958 | MAC_STATUS_PCS_SYNCED)) { |
| 6959 | break; |
| 6960 | } |
| 6961 | } |
| 6962 | } |
| 6963 | |
| 6964 | /* Stop sending configs. */ |
| 6965 | MM_AnTxIdle(&pDevice->AnInfo); |
| 6966 | |
| 6967 | /* Resolve flow control settings. */ |
| 6968 | if((AnStatus == AUTONEG_STATUS_DONE) && |
| 6969 | pDevice->AnInfo.mr_an_complete && pDevice->AnInfo.mr_link_ok && |
| 6970 | pDevice->AnInfo.mr_lp_adv_full_duplex) |
| 6971 | { |
| 6972 | LM_UINT32 RemotePhyAd; |
| 6973 | LM_UINT32 LocalPhyAd; |
| 6974 | |
| 6975 | LocalPhyAd = 0; |
| 6976 | if(pDevice->AnInfo.mr_adv_sym_pause) |
| 6977 | { |
| 6978 | LocalPhyAd |= PHY_AN_AD_PAUSE_CAPABLE; |
| 6979 | } |
| 6980 | |
| 6981 | if(pDevice->AnInfo.mr_adv_asym_pause) |
| 6982 | { |
| 6983 | LocalPhyAd |= PHY_AN_AD_ASYM_PAUSE; |
| 6984 | } |
| 6985 | |
| 6986 | RemotePhyAd = 0; |
| 6987 | if(pDevice->AnInfo.mr_lp_adv_sym_pause) |
| 6988 | { |
| 6989 | RemotePhyAd |= PHY_LINK_PARTNER_PAUSE_CAPABLE; |
| 6990 | } |
| 6991 | |
| 6992 | if(pDevice->AnInfo.mr_lp_adv_asym_pause) |
| 6993 | { |
| 6994 | RemotePhyAd |= PHY_LINK_PARTNER_ASYM_PAUSE; |
| 6995 | } |
| 6996 | |
| 6997 | LM_SetFlowControl(pDevice, LocalPhyAd, RemotePhyAd); |
| 6998 | |
| 6999 | CurrentLinkStatus = LM_STATUS_LINK_ACTIVE; |
| 7000 | } |
| 7001 | else |
| 7002 | { |
| 7003 | LM_SetFlowControl(pDevice, 0, 0); |
| 7004 | } |
| 7005 | for (j = 0; j < 30; j++) |
| 7006 | { |
| 7007 | MM_Wait(20); |
| 7008 | REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED | |
| 7009 | MAC_STATUS_CFG_CHANGED); |
| 7010 | REG_RD_BACK(pDevice, MacCtrl.Status); |
| 7011 | MM_Wait(20); |
| 7012 | if ((REG_RD(pDevice, MacCtrl.Status) & |
| 7013 | (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)) == 0) |
| 7014 | break; |
| 7015 | } |
| 7016 | if (pDevice->TbiFlags & TBI_POLLING_FLAGS) |
| 7017 | { |
| 7018 | Value32 = REG_RD(pDevice, MacCtrl.Status); |
| 7019 | if (Value32 & MAC_STATUS_RECEIVING_CFG) |
| 7020 | { |
| 7021 | pDevice->IgnoreTbiLinkChange = TRUE; |
| 7022 | } |
| 7023 | else if (pDevice->TbiFlags & TBI_POLLING_INTR_FLAG) |
| 7024 | { |
| 7025 | pDevice->IgnoreTbiLinkChange = FALSE; |
| 7026 | } |
| 7027 | } |
| 7028 | Value32 = REG_RD(pDevice, MacCtrl.Status); |
| 7029 | if (CurrentLinkStatus == LM_STATUS_LINK_DOWN && |
| 7030 | (Value32 & MAC_STATUS_PCS_SYNCED) && |
| 7031 | ((Value32 & MAC_STATUS_RECEIVING_CFG) == 0)) |
| 7032 | { |
| 7033 | CurrentLinkStatus = LM_STATUS_LINK_ACTIVE; |
| 7034 | } |
| 7035 | } |
| 7036 | else |
| 7037 | { |
| 7038 | /* We are forcing line speed. */ |
| 7039 | pDevice->FlowControlCap &= ~LM_FLOW_CONTROL_AUTO_PAUSE; |
| 7040 | LM_SetFlowControl(pDevice, 0, 0); |
| 7041 | |
| 7042 | CurrentLinkStatus = LM_STATUS_LINK_ACTIVE; |
| 7043 | REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode | |
| 7044 | MAC_MODE_SEND_CONFIGS); |
| 7045 | } |
| 7046 | } |
| 7047 | /* Set the link polarity bit. */ |
| 7048 | pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY; |
| 7049 | REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode); |
| 7050 | |
| 7051 | pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED | |
| 7052 | (pDevice->pStatusBlkVirt->Status & ~STATUS_BLOCK_LINK_CHANGED_STATUS); |
| 7053 | |
| 7054 | for (j = 0; j < 100; j++) |
| 7055 | { |
| 7056 | REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED | |
| 7057 | MAC_STATUS_CFG_CHANGED); |
| 7058 | REG_RD_BACK(pDevice, MacCtrl.Status); |
| 7059 | MM_Wait(5); |
| 7060 | if ((REG_RD(pDevice, MacCtrl.Status) & |
| 7061 | (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)) == 0) |
| 7062 | break; |
| 7063 | } |
| 7064 | |
| 7065 | Value32 = REG_RD(pDevice, MacCtrl.Status); |
| 7066 | if((Value32 & MAC_STATUS_PCS_SYNCED) == 0) |
| 7067 | { |
| 7068 | CurrentLinkStatus = LM_STATUS_LINK_DOWN; |
| 7069 | if (pDevice->DisableAutoNeg == FALSE) |
| 7070 | { |
| 7071 | REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode | |
| 7072 | MAC_MODE_SEND_CONFIGS); |
| 7073 | REG_RD_BACK(pDevice, MacCtrl.Mode); |
| 7074 | MM_Wait(1); |
| 7075 | REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode); |
| 7076 | } |
| 7077 | } |
| 7078 | |
| 7079 | /* Initialize the current link status. */ |
| 7080 | if(CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) |
| 7081 | { |
| 7082 | pDevice->LineSpeed = LM_LINE_SPEED_1000MBPS; |
| 7083 | pDevice->DuplexMode = LM_DUPLEX_MODE_FULL; |
| 7084 | REG_WR(pDevice, MacCtrl.LedCtrl, pDevice->LedCtrl | |
| 7085 | LED_CTRL_OVERRIDE_LINK_LED | |
| 7086 | LED_CTRL_1000MBPS_LED_ON); |
| 7087 | } |
| 7088 | else |
| 7089 | { |
| 7090 | pDevice->LineSpeed = LM_LINE_SPEED_UNKNOWN; |
| 7091 | pDevice->DuplexMode = LM_DUPLEX_MODE_UNKNOWN; |
| 7092 | REG_WR(pDevice, MacCtrl.LedCtrl, pDevice->LedCtrl | |
| 7093 | LED_CTRL_OVERRIDE_LINK_LED | |
| 7094 | LED_CTRL_OVERRIDE_TRAFFIC_LED); |
| 7095 | } |
| 7096 | |
| 7097 | /* Indicate link status. */ |
| 7098 | if ((pDevice->LinkStatus != CurrentLinkStatus) || |
| 7099 | ((CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) && |
| 7100 | (PreviousFlowControl != pDevice->FlowControl))) |
| 7101 | { |
| 7102 | pDevice->LinkStatus = CurrentLinkStatus; |
| 7103 | MM_IndicateStatus(pDevice, CurrentLinkStatus); |
| 7104 | } |
| 7105 | |
| 7106 | return LM_STATUS_SUCCESS; |
| 7107 | } |
| 7108 | #endif /* INCLUDE_TBI_SUPPORT */ |
| 7109 | |
| 7110 | |
| 7111 | /******************************************************************************/ |
| 7112 | /* Description: */ |
| 7113 | /* */ |
| 7114 | /* Return: */ |
| 7115 | /******************************************************************************/ |
| 7116 | LM_STATUS |
| 7117 | LM_SetupCopperPhy( |
| 7118 | PLM_DEVICE_BLOCK pDevice) |
| 7119 | { |
| 7120 | LM_STATUS CurrentLinkStatus; |
| 7121 | LM_UINT32 Value32; |
| 7122 | |
| 7123 | /* Assume there is not link first. */ |
| 7124 | CurrentLinkStatus = LM_STATUS_LINK_DOWN; |
| 7125 | |
| 7126 | /* Disable phy link change attention. */ |
| 7127 | REG_WR(pDevice, MacCtrl.MacEvent, 0); |
| 7128 | |
| 7129 | /* Clear link change attention. */ |
| 7130 | REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED | |
| 7131 | MAC_STATUS_CFG_CHANGED | MAC_STATUS_MI_COMPLETION | |
| 7132 | MAC_STATUS_LINK_STATE_CHANGED); |
| 7133 | |
| 7134 | /* Disable auto-polling for the moment. */ |
| 7135 | pDevice->MiMode = 0xc0000; |
| 7136 | REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode); |
| 7137 | REG_RD_BACK(pDevice, MacCtrl.MiMode); |
| 7138 | MM_Wait(40); |
| 7139 | |
| 7140 | /* Determine the requested line speed and duplex. */ |
| 7141 | pDevice->OldLineSpeed = pDevice->LineSpeed; |
| 7142 | /* Set line and duplex only if we don't have a Robo switch */ |
| 7143 | if (!(pDevice->Flags & ROBO_SWITCH_FLAG)) { |
| 7144 | pDevice->LineSpeed = pDevice->RequestedLineSpeed; |
| 7145 | pDevice->DuplexMode = pDevice->RequestedDuplexMode; |
| 7146 | } |
| 7147 | |
| 7148 | /* Set the phy to loopback mode. */ |
| 7149 | if ((pDevice->LoopBackMode == LM_PHY_LOOP_BACK_MODE) || |
| 7150 | (pDevice->LoopBackMode == LM_MAC_LOOP_BACK_MODE)) |
| 7151 | { |
| 7152 | LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32); |
| 7153 | if(!(Value32 & PHY_CTRL_LOOPBACK_MODE) && |
| 7154 | (pDevice->LoopBackMode == LM_PHY_LOOP_BACK_MODE)) |
| 7155 | { |
| 7156 | /* Disable link change and PHY interrupts. */ |
| 7157 | REG_WR(pDevice, MacCtrl.MacEvent, 0); |
| 7158 | |
| 7159 | /* Clear link change attention. */ |
| 7160 | REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED | |
| 7161 | MAC_STATUS_CFG_CHANGED); |
| 7162 | |
| 7163 | LM_WritePhy(pDevice, PHY_CTRL_REG, 0x4140); |
| 7164 | MM_Wait(40); |
| 7165 | |
| 7166 | pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY; |
| 7167 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 || |
| 7168 | T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703 || |
| 7169 | T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704 || |
| 7170 | T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705 || |
| 7171 | (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 && |
| 7172 | (pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5411_PHY_ID)) |
| 7173 | { |
| 7174 | pDevice->MacMode |= MAC_MODE_LINK_POLARITY; |
| 7175 | } |
| 7176 | |
| 7177 | /* Prevent the interrupt handling from being called. */ |
| 7178 | pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED | |
| 7179 | (pDevice->pStatusBlkVirt->Status & |
| 7180 | ~STATUS_BLOCK_LINK_CHANGED_STATUS); |
| 7181 | |
| 7182 | /* GMII interface. */ |
| 7183 | pDevice->MacMode &= ~MAC_MODE_PORT_MODE_MASK; |
| 7184 | pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII; |
| 7185 | REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode); |
| 7186 | REG_RD_BACK(pDevice, MacCtrl.Mode); |
| 7187 | MM_Wait(40); |
| 7188 | |
| 7189 | /* Configure PHY led mode. */ |
| 7190 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 || |
| 7191 | (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)) |
| 7192 | { |
| 7193 | LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, |
| 7194 | BCM540X_EXT_CTRL_LINK3_LED_MODE); |
| 7195 | MM_Wait(40); |
| 7196 | } |
| 7197 | |
| 7198 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) |
| 7199 | { |
| 7200 | int j = 0; |
| 7201 | |
| 7202 | while (REG_RD(pDevice, DmaWrite.Mode) & DMA_WRITE_MODE_ENABLE) |
| 7203 | { |
| 7204 | MM_Wait(40); |
| 7205 | j++; |
| 7206 | if (j > 20) |
| 7207 | break; |
| 7208 | } |
| 7209 | |
| 7210 | Value32 = DMA_WRITE_MODE_ENABLE | |
| 7211 | DMA_WRITE_MODE_TARGET_ABORT_ATTN_ENABLE | |
| 7212 | DMA_WRITE_MODE_MASTER_ABORT_ATTN_ENABLE | |
| 7213 | DMA_WRITE_MODE_PARITY_ERROR_ATTN_ENABLE | |
| 7214 | DMA_WRITE_MODE_ADDR_OVERFLOW_ATTN_ENABLE | |
| 7215 | DMA_WRITE_MODE_FIFO_OVERRUN_ATTN_ENABLE | |
| 7216 | DMA_WRITE_MODE_FIFO_UNDERRUN_ATTN_ENABLE | |
| 7217 | DMA_WRITE_MODE_FIFO_OVERREAD_ATTN_ENABLE | |
| 7218 | DMA_WRITE_MODE_LONG_READ_ATTN_ENABLE; |
| 7219 | REG_WR(pDevice, DmaWrite.Mode, Value32); |
| 7220 | } |
| 7221 | } |
| 7222 | |
| 7223 | pDevice->LinkStatus = LM_STATUS_LINK_ACTIVE; |
| 7224 | MM_IndicateStatus(pDevice, LM_STATUS_LINK_ACTIVE); |
| 7225 | |
| 7226 | return LM_STATUS_SUCCESS; |
| 7227 | } |
| 7228 | |
| 7229 | /* For Robo switch read PHY_CTRL_REG value as zero */ |
| 7230 | if (pDevice->Flags & ROBO_SWITCH_FLAG) |
| 7231 | Value32 = 0; |
| 7232 | else |
| 7233 | LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32); |
| 7234 | |
| 7235 | if(Value32 & PHY_CTRL_LOOPBACK_MODE) |
| 7236 | { |
| 7237 | CurrentLinkStatus = LM_STATUS_LINK_DOWN; |
| 7238 | |
| 7239 | /* Re-enable link change interrupt. This was disabled when we */ |
| 7240 | /* enter loopback mode. */ |
| 7241 | if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) |
| 7242 | { |
| 7243 | REG_WR(pDevice, MacCtrl.MacEvent, MAC_EVENT_ENABLE_MI_INTERRUPT); |
| 7244 | } |
| 7245 | else |
| 7246 | { |
| 7247 | REG_WR(pDevice, MacCtrl.MacEvent, |
| 7248 | MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN); |
| 7249 | } |
| 7250 | } |
| 7251 | else |
| 7252 | { |
| 7253 | /* Initialize the phy chip. */ |
| 7254 | CurrentLinkStatus = LM_InitBcm540xPhy(pDevice); |
| 7255 | } |
| 7256 | |
| 7257 | if(CurrentLinkStatus == LM_STATUS_LINK_SETTING_MISMATCH) |
| 7258 | { |
| 7259 | CurrentLinkStatus = LM_STATUS_LINK_DOWN; |
| 7260 | } |
| 7261 | |
| 7262 | /* Setup flow control. */ |
| 7263 | pDevice->FlowControl = LM_FLOW_CONTROL_NONE; |
| 7264 | if(CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) |
| 7265 | { |
| 7266 | LM_FLOW_CONTROL FlowCap; /* Flow control capability. */ |
| 7267 | |
| 7268 | FlowCap = LM_FLOW_CONTROL_NONE; |
| 7269 | |
| 7270 | if(pDevice->DuplexMode == LM_DUPLEX_MODE_FULL) |
| 7271 | { |
| 7272 | if(pDevice->DisableAutoNeg == FALSE || |
| 7273 | pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) |
| 7274 | { |
| 7275 | LM_UINT32 ExpectedPhyAd; |
| 7276 | LM_UINT32 LocalPhyAd; |
| 7277 | LM_UINT32 RemotePhyAd; |
| 7278 | |
| 7279 | LM_ReadPhy(pDevice, PHY_AN_AD_REG, &LocalPhyAd); |
| 7280 | pDevice->advertising = LocalPhyAd; |
| 7281 | LocalPhyAd &= (PHY_AN_AD_ASYM_PAUSE | PHY_AN_AD_PAUSE_CAPABLE); |
| 7282 | |
| 7283 | ExpectedPhyAd = GetPhyAdFlowCntrlSettings(pDevice); |
| 7284 | |
| 7285 | if(LocalPhyAd != ExpectedPhyAd) |
| 7286 | { |
| 7287 | CurrentLinkStatus = LM_STATUS_LINK_DOWN; |
| 7288 | } |
| 7289 | else |
| 7290 | { |
| 7291 | LM_ReadPhy(pDevice, PHY_LINK_PARTNER_ABILITY_REG, |
| 7292 | &RemotePhyAd); |
| 7293 | |
| 7294 | LM_SetFlowControl(pDevice, LocalPhyAd, RemotePhyAd); |
| 7295 | } |
| 7296 | } |
| 7297 | else |
| 7298 | { |
| 7299 | pDevice->FlowControlCap &= ~LM_FLOW_CONTROL_AUTO_PAUSE; |
| 7300 | LM_SetFlowControl(pDevice, 0, 0); |
| 7301 | } |
| 7302 | } |
| 7303 | } |
| 7304 | |
| 7305 | if(CurrentLinkStatus == LM_STATUS_LINK_DOWN) |
| 7306 | { |
| 7307 | LM_ForceAutoNeg(pDevice); |
| 7308 | |
| 7309 | /* If we force line speed, we make get link right away. */ |
| 7310 | LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32); |
| 7311 | LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32); |
| 7312 | if(Value32 & PHY_STATUS_LINK_PASS) |
| 7313 | { |
| 7314 | CurrentLinkStatus = LM_STATUS_LINK_ACTIVE; |
| 7315 | } |
| 7316 | } |
| 7317 | |
| 7318 | /* GMII interface. */ |
| 7319 | pDevice->MacMode &= ~MAC_MODE_PORT_MODE_MASK; |
| 7320 | if(CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) |
| 7321 | { |
| 7322 | if(pDevice->LineSpeed == LM_LINE_SPEED_100MBPS || |
| 7323 | pDevice->LineSpeed == LM_LINE_SPEED_10MBPS) |
| 7324 | { |
| 7325 | pDevice->MacMode |= MAC_MODE_PORT_MODE_MII; |
| 7326 | } |
| 7327 | else |
| 7328 | { |
| 7329 | pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII; |
| 7330 | } |
| 7331 | } |
| 7332 | else { |
| 7333 | pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII; |
| 7334 | } |
| 7335 | |
| 7336 | /* In order for the 5750 core in BCM4785 chip to work properly |
| 7337 | * in RGMII mode, the Led Control Register must be set up. |
| 7338 | */ |
| 7339 | if (pDevice->Flags & RGMII_MODE_FLAG) |
| 7340 | { |
| 7341 | LM_UINT32 LedCtrl_Reg; |
| 7342 | |
| 7343 | LedCtrl_Reg = REG_RD(pDevice, MacCtrl.LedCtrl); |
| 7344 | LedCtrl_Reg &= ~(LED_CTRL_1000MBPS_LED_ON | LED_CTRL_100MBPS_LED_ON); |
| 7345 | |
| 7346 | if(pDevice->LineSpeed == LM_LINE_SPEED_10MBPS) |
| 7347 | LedCtrl_Reg |= LED_CTRL_OVERRIDE_LINK_LED; |
| 7348 | else if (pDevice->LineSpeed == LM_LINE_SPEED_100MBPS) |
| 7349 | LedCtrl_Reg |= (LED_CTRL_OVERRIDE_LINK_LED | LED_CTRL_100MBPS_LED_ON); |
| 7350 | else /* LM_LINE_SPEED_1000MBPS */ |
| 7351 | LedCtrl_Reg |= (LED_CTRL_OVERRIDE_LINK_LED | LED_CTRL_1000MBPS_LED_ON); |
| 7352 | |
| 7353 | REG_WR(pDevice, MacCtrl.LedCtrl, LedCtrl_Reg); |
| 7354 | |
| 7355 | MM_Wait(40); |
| 7356 | } |
| 7357 | |
| 7358 | /* Set the MAC to operate in the appropriate duplex mode. */ |
| 7359 | pDevice->MacMode &= ~MAC_MODE_HALF_DUPLEX; |
| 7360 | if(pDevice->DuplexMode == LM_DUPLEX_MODE_HALF) |
| 7361 | { |
| 7362 | pDevice->MacMode |= MAC_MODE_HALF_DUPLEX; |
| 7363 | } |
| 7364 | |
| 7365 | /* Set the link polarity bit. */ |
| 7366 | pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY; |
| 7367 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) |
| 7368 | { |
| 7369 | if((pDevice->LedCtrl == LED_CTRL_PHY_MODE_2) || |
| 7370 | (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE && |
| 7371 | pDevice->LineSpeed == LM_LINE_SPEED_10MBPS)) |
| 7372 | { |
| 7373 | pDevice->MacMode |= MAC_MODE_LINK_POLARITY; |
| 7374 | } |
| 7375 | } |
| 7376 | else |
| 7377 | { |
| 7378 | if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) |
| 7379 | { |
| 7380 | pDevice->MacMode |= MAC_MODE_LINK_POLARITY; |
| 7381 | } |
| 7382 | } |
| 7383 | |
| 7384 | REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode); |
| 7385 | |
| 7386 | /* Enable auto polling. */ |
| 7387 | if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) |
| 7388 | { |
| 7389 | pDevice->MiMode |= MI_MODE_AUTO_POLLING_ENABLE; |
| 7390 | REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode); |
| 7391 | } |
| 7392 | /* if using MAC led mode and not using auto polling, need to configure */ |
| 7393 | /* mi status register */ |
| 7394 | else if ((pDevice->LedCtrl & |
| 7395 | (LED_CTRL_PHY_MODE_1 | LED_CTRL_PHY_MODE_2)) == 0) |
| 7396 | { |
| 7397 | if (CurrentLinkStatus != LM_STATUS_LINK_ACTIVE) |
| 7398 | { |
| 7399 | REG_WR(pDevice, MacCtrl.MiStatus, 0); |
| 7400 | } |
| 7401 | else if (pDevice->LineSpeed == LM_LINE_SPEED_10MBPS) |
| 7402 | { |
| 7403 | REG_WR(pDevice, MacCtrl.MiStatus, |
| 7404 | MI_STATUS_ENABLE_LINK_STATUS_ATTN | MI_STATUS_10MBPS); |
| 7405 | } |
| 7406 | else |
| 7407 | { |
| 7408 | REG_WR(pDevice, MacCtrl.MiStatus, |
| 7409 | MI_STATUS_ENABLE_LINK_STATUS_ATTN); |
| 7410 | } |
| 7411 | } |
| 7412 | |
| 7413 | /* Enable phy link change attention. */ |
| 7414 | if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) |
| 7415 | { |
| 7416 | REG_WR(pDevice, MacCtrl.MacEvent, MAC_EVENT_ENABLE_MI_INTERRUPT); |
| 7417 | } |
| 7418 | else |
| 7419 | { |
| 7420 | REG_WR(pDevice, MacCtrl.MacEvent, |
| 7421 | MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN); |
| 7422 | } |
| 7423 | if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) && |
| 7424 | (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) && |
| 7425 | (pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) && |
| 7426 | (((pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) && |
| 7427 | (pDevice->PciState & T3_PCI_STATE_BUS_SPEED_HIGH)) || |
| 7428 | !(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))) |
| 7429 | { |
| 7430 | MM_Wait(120); |
| 7431 | REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED | |
| 7432 | MAC_STATUS_CFG_CHANGED); |
| 7433 | MEM_WR_OFFSET(pDevice, T3_FIRMWARE_MAILBOX, |
| 7434 | T3_MAGIC_NUM_DISABLE_DMAW_ON_LINK_CHANGE); |
| 7435 | } |
| 7436 | |
| 7437 | /* Indicate link status. */ |
| 7438 | if (pDevice->LinkStatus != CurrentLinkStatus) { |
| 7439 | pDevice->LinkStatus = CurrentLinkStatus; |
| 7440 | MM_IndicateStatus(pDevice, CurrentLinkStatus); |
| 7441 | } |
| 7442 | |
| 7443 | return LM_STATUS_SUCCESS; |
| 7444 | } /* LM_SetupCopperPhy */ |
| 7445 | |
| 7446 | |
| 7447 | void |
| 7448 | LM_5714_FamForceFiber( |
| 7449 | PLM_DEVICE_BLOCK pDevice) |
| 7450 | { |
| 7451 | LM_UINT32 Creg, new_bmcr; |
| 7452 | LM_ReadPhy(pDevice, PHY_CTRL_REG, &Creg); |
| 7453 | |
| 7454 | new_bmcr = Creg & ~PHY_CTRL_AUTO_NEG_ENABLE; |
| 7455 | |
| 7456 | if ( pDevice->RequestedDuplexMode == 0 || |
| 7457 | pDevice->RequestedDuplexMode == LM_DUPLEX_MODE_FULL){ |
| 7458 | |
| 7459 | new_bmcr |= PHY_CTRL_FULL_DUPLEX_MODE; |
| 7460 | } |
| 7461 | |
| 7462 | if(Creg == new_bmcr) |
| 7463 | return; |
| 7464 | |
| 7465 | new_bmcr |= PHY_CTRL_SPEED_SELECT_1000MBPS; /* Reserve bit */ |
| 7466 | |
| 7467 | /* Force a linkdown */ |
| 7468 | LM_WritePhy(pDevice, PHY_AN_AD_REG, 0); |
| 7469 | LM_WritePhy(pDevice, PHY_CTRL_REG, new_bmcr | |
| 7470 | PHY_CTRL_RESTART_AUTO_NEG | |
| 7471 | PHY_CTRL_AUTO_NEG_ENABLE | |
| 7472 | PHY_CTRL_SPEED_SELECT_1000MBPS); |
| 7473 | MM_Wait(10); |
| 7474 | |
| 7475 | /* Force it */ |
| 7476 | LM_WritePhy(pDevice, PHY_CTRL_REG, new_bmcr); |
| 7477 | MM_Wait(10); |
| 7478 | |
| 7479 | return; |
| 7480 | |
| 7481 | }/* LM_5714_FamForceFiber */ |
| 7482 | |
| 7483 | |
| 7484 | void |
| 7485 | LM_5714_FamGoFiberAutoNeg( |
| 7486 | PLM_DEVICE_BLOCK pDevice) |
| 7487 | { |
| 7488 | LM_UINT32 adv,Creg,new; |
| 7489 | |
| 7490 | LM_ReadPhy(pDevice, PHY_CTRL_REG, &Creg); |
| 7491 | LM_ReadPhy(pDevice,PHY_AN_AD_REG, &adv); |
| 7492 | |
| 7493 | new = adv & ~( PHY_AN_AD_1000XFULL | |
| 7494 | PHY_AN_AD_1000XHALF | |
| 7495 | PHY_AN_AD_1000XPAUSE | |
| 7496 | PHY_AN_AD_1000XPSE_ASYM | |
| 7497 | 0x1f); |
| 7498 | |
| 7499 | new |= PHY_AN_AD_1000XPAUSE; |
| 7500 | |
| 7501 | new |= PHY_AN_AD_1000XFULL; |
| 7502 | new |= PHY_AN_AD_1000XHALF; |
| 7503 | |
| 7504 | if ((new != adv) || !(Creg & PHY_CTRL_AUTO_NEG_ENABLE)){ |
| 7505 | LM_WritePhy(pDevice, PHY_AN_AD_REG, new); |
| 7506 | MM_Wait(5); |
| 7507 | pDevice->AutoNegJustInited=1; |
| 7508 | LM_WritePhy(pDevice, PHY_CTRL_REG, (Creg | |
| 7509 | PHY_CTRL_RESTART_AUTO_NEG | |
| 7510 | PHY_CTRL_SPEED_SELECT_1000MBPS | |
| 7511 | PHY_CTRL_AUTO_NEG_ENABLE) ); |
| 7512 | } |
| 7513 | |
| 7514 | return; |
| 7515 | } /* 5714_FamGoFiberAutoNeg */ |
| 7516 | |
| 7517 | |
| 7518 | void |
| 7519 | LM_5714_FamDoFiberLoopback(PLM_DEVICE_BLOCK pDevice) |
| 7520 | { |
| 7521 | LM_UINT32 Value32; |
| 7522 | |
| 7523 | LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32); |
| 7524 | |
| 7525 | if( !(Value32 & PHY_CTRL_LOOPBACK_MODE) ) |
| 7526 | { |
| 7527 | LM_WritePhy(pDevice, PHY_CTRL_REG, 0x4140); |
| 7528 | |
| 7529 | /* Prevent the interrupt handling from being called. */ |
| 7530 | pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED | |
| 7531 | (pDevice->pStatusBlkVirt->Status & |
| 7532 | ~STATUS_BLOCK_LINK_CHANGED_STATUS); |
| 7533 | } |
| 7534 | |
| 7535 | pDevice->LinkStatus = LM_STATUS_LINK_ACTIVE; |
| 7536 | MM_IndicateStatus(pDevice, LM_STATUS_LINK_ACTIVE); |
| 7537 | |
| 7538 | return; |
| 7539 | |
| 7540 | }/* 5714_FamDoFiberLoopBack */ |
| 7541 | |
| 7542 | |
| 7543 | /******************************************************************************/ |
| 7544 | /* Description: */ |
| 7545 | /* */ |
| 7546 | /* Return: */ |
| 7547 | /******************************************************************************/ |
| 7548 | |
| 7549 | LM_STATUS |
| 7550 | LM_SetupNewFiberPhy( |
| 7551 | PLM_DEVICE_BLOCK pDevice) |
| 7552 | { |
| 7553 | LM_STATUS LmStatus = LM_STATUS_SUCCESS; |
| 7554 | LM_UINT32 Creg,Sreg,rsav; |
| 7555 | |
| 7556 | rsav = pDevice->LinkStatus; |
| 7557 | |
| 7558 | pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII; |
| 7559 | REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode); |
| 7560 | MM_Wait(40); |
| 7561 | |
| 7562 | /* Disable phy link change attention. */ |
| 7563 | REG_WR(pDevice, MacCtrl.MacEvent, 0); |
| 7564 | |
| 7565 | /* Clear link change attention. */ |
| 7566 | REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED | |
| 7567 | MAC_STATUS_CFG_CHANGED | MAC_STATUS_MI_COMPLETION | |
| 7568 | MAC_STATUS_LINK_STATE_CHANGED); |
| 7569 | |
| 7570 | |
| 7571 | if( (pDevice->PhyFlags & PHY_FIBER_FALLBACK) && |
| 7572 | ( pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) ){ |
| 7573 | |
| 7574 | /* do nothing */ |
| 7575 | }else if ( pDevice->LoopBackMode == LM_MAC_LOOP_BACK_MODE){ |
| 7576 | |
| 7577 | LM_5714_FamDoFiberLoopback(pDevice); |
| 7578 | goto fiberloopbackreturn; |
| 7579 | |
| 7580 | } else if( pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) { |
| 7581 | |
| 7582 | LM_5714_FamGoFiberAutoNeg(pDevice); |
| 7583 | |
| 7584 | |
| 7585 | }else { |
| 7586 | |
| 7587 | LM_5714_FamForceFiber(pDevice); |
| 7588 | } |
| 7589 | LM_ReadPhy(pDevice, PHY_STATUS_REG, &Sreg); |
| 7590 | LM_ReadPhy(pDevice, PHY_STATUS_REG, &Sreg); |
| 7591 | |
| 7592 | if(Sreg & PHY_STATUS_LINK_PASS){ |
| 7593 | |
| 7594 | pDevice->LinkStatus = LM_STATUS_LINK_ACTIVE; |
| 7595 | pDevice->LineSpeed = LM_LINE_SPEED_1000MBPS; |
| 7596 | |
| 7597 | LM_ReadPhy(pDevice, PHY_CTRL_REG, &Creg); |
| 7598 | |
| 7599 | if(Creg & PHY_CTRL_FULL_DUPLEX_MODE) { |
| 7600 | pDevice->DuplexMode = LM_DUPLEX_MODE_FULL; |
| 7601 | }else{ |
| 7602 | pDevice->DuplexMode = LM_DUPLEX_MODE_HALF; |
| 7603 | pDevice->MacMode |= MAC_MODE_HALF_DUPLEX; |
| 7604 | REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode); |
| 7605 | } |
| 7606 | |
| 7607 | if(Creg & PHY_CTRL_AUTO_NEG_ENABLE){ |
| 7608 | LM_UINT32 ours,partner; |
| 7609 | |
| 7610 | LM_ReadPhy(pDevice,PHY_AN_AD_REG, &ours); |
| 7611 | LM_ReadPhy(pDevice,PHY_LINK_PARTNER_ABILITY_REG, &partner); |
| 7612 | LM_SetFlowControl(pDevice, ours, partner); |
| 7613 | } |
| 7614 | |
| 7615 | }else{ |
| 7616 | pDevice->LinkStatus = LM_STATUS_LINK_DOWN; |
| 7617 | pDevice->LineSpeed = 0; |
| 7618 | } |
| 7619 | |
| 7620 | if(rsav != pDevice->LinkStatus) |
| 7621 | MM_IndicateStatus(pDevice, pDevice->LinkStatus); |
| 7622 | |
| 7623 | fiberloopbackreturn: |
| 7624 | pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII; |
| 7625 | REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode); |
| 7626 | MM_Wait(40); |
| 7627 | /* Enable link change interrupt. */ |
| 7628 | REG_WR(pDevice, MacCtrl.MacEvent, MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN); |
| 7629 | |
| 7630 | return LmStatus; |
| 7631 | } /* Setup New phy */ |
| 7632 | |
| 7633 | void |
| 7634 | LM_5714_FamFiberCheckLink( |
| 7635 | PLM_DEVICE_BLOCK pDevice) |
| 7636 | { |
| 7637 | |
| 7638 | if(pDevice->AutoNegJustInited){ |
| 7639 | pDevice->AutoNegJustInited=0; |
| 7640 | return; |
| 7641 | } |
| 7642 | |
| 7643 | if ((pDevice->LinkStatus != LM_STATUS_LINK_ACTIVE) && |
| 7644 | (pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) && |
| 7645 | !(pDevice->PhyFlags & PHY_FIBER_FALLBACK)){ |
| 7646 | LM_UINT32 bmcr; |
| 7647 | |
| 7648 | LM_ReadPhy(pDevice, PHY_CTRL_REG, &bmcr); |
| 7649 | if (bmcr & PHY_CTRL_AUTO_NEG_ENABLE) { |
| 7650 | LM_UINT32 phy1, phy2; |
| 7651 | |
| 7652 | LM_WritePhy(pDevice, 0x1c, 0x7c00); |
| 7653 | LM_ReadPhy(pDevice, 0x1c, &phy1); |
| 7654 | |
| 7655 | LM_WritePhy(pDevice, 0x17, 0x0f01); |
| 7656 | LM_ReadPhy(pDevice, 0x15, &phy2); |
| 7657 | LM_ReadPhy(pDevice, 0x15, &phy2); |
| 7658 | |
| 7659 | if ((phy1 & 0x10) && !(phy2 & 0x20)) { |
| 7660 | |
| 7661 | /* We have signal detect and not receiving |
| 7662 | * configs. |
| 7663 | */ |
| 7664 | |
| 7665 | pDevice->PhyFlags |= PHY_FIBER_FALLBACK; |
| 7666 | LM_5714_FamForceFiber(pDevice); |
| 7667 | } |
| 7668 | } |
| 7669 | } |
| 7670 | else if ( (pDevice->PhyFlags & PHY_FIBER_FALLBACK) && |
| 7671 | (pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO)) { |
| 7672 | LM_UINT32 phy2; |
| 7673 | |
| 7674 | LM_WritePhy(pDevice, 0x17, 0x0f01); |
| 7675 | LM_ReadPhy(pDevice, 0x15, &phy2); |
| 7676 | if (phy2 & 0x20) { |
| 7677 | /* Receiving configs. */ |
| 7678 | |
| 7679 | pDevice->PhyFlags &= ~PHY_FIBER_FALLBACK; |
| 7680 | LM_5714_FamGoFiberAutoNeg(pDevice); |
| 7681 | } |
| 7682 | } |
| 7683 | |
| 7684 | } /* LM_5714_FamFiberCheckLink */ |
| 7685 | |
| 7686 | |
| 7687 | /******************************************************************************/ |
| 7688 | /* Description: */ |
| 7689 | /* */ |
| 7690 | /* Return: */ |
| 7691 | /******************************************************************************/ |
| 7692 | LM_STATUS |
| 7693 | LM_SetupPhy( |
| 7694 | PLM_DEVICE_BLOCK pDevice) |
| 7695 | { |
| 7696 | LM_STATUS LmStatus; |
| 7697 | LM_UINT32 Value32; |
| 7698 | |
| 7699 | if(pDevice->PhyFlags & PHY_IS_FIBER) |
| 7700 | { |
| 7701 | LmStatus = LM_SetupNewFiberPhy(pDevice); |
| 7702 | }else |
| 7703 | #ifdef INCLUDE_TBI_SUPPORT |
| 7704 | if (pDevice->TbiFlags & ENABLE_TBI_FLAG) |
| 7705 | { |
| 7706 | LmStatus = LM_SetupFiberPhy(pDevice); |
| 7707 | } |
| 7708 | else |
| 7709 | #endif /* INCLUDE_TBI_SUPPORT */ |
| 7710 | { |
| 7711 | LmStatus = LM_SetupCopperPhy(pDevice); |
| 7712 | } |
| 7713 | if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) |
| 7714 | { |
| 7715 | if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) |
| 7716 | { |
| 7717 | Value32 = REG_RD(pDevice, PciCfg.PciState); |
| 7718 | REG_WR(pDevice, PciCfg.PciState, |
| 7719 | Value32 | T3_PCI_STATE_RETRY_SAME_DMA); |
| 7720 | } |
| 7721 | } |
| 7722 | if ((pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) && |
| 7723 | (pDevice->DuplexMode == LM_DUPLEX_MODE_HALF)) |
| 7724 | { |
| 7725 | REG_WR(pDevice, MacCtrl.TxLengths, 0x26ff); |
| 7726 | } |
| 7727 | else |
| 7728 | { |
| 7729 | REG_WR(pDevice, MacCtrl.TxLengths, 0x2620); |
| 7730 | } |
| 7731 | if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 7732 | { |
| 7733 | if (pDevice->LinkStatus == LM_STATUS_LINK_DOWN) |
| 7734 | { |
| 7735 | REG_WR(pDevice, HostCoalesce.StatsCoalescingTicks, 0); |
| 7736 | } |
| 7737 | else |
| 7738 | { |
| 7739 | REG_WR(pDevice, HostCoalesce.StatsCoalescingTicks, |
| 7740 | pDevice->StatsCoalescingTicks); |
| 7741 | } |
| 7742 | } |
| 7743 | |
| 7744 | return LmStatus; |
| 7745 | } |
| 7746 | |
| 7747 | |
| 7748 | /* test data pattern */ |
| 7749 | static LM_UINT32 pattern[4][6] = { |
| 7750 | /* For 5703/04, each DFE TAP has 21-bits (low word 15, hi word 6) |
| 7751 | For 5705 , each DFE TAP has 19-bits (low word 15, hi word 4) |
| 7752 | For simplicity, we check only 19-bits, so we don't have to |
| 7753 | distinguish which chip it is. |
| 7754 | the LO word contains 15 bits, make sure pattern data is < 0x7fff |
| 7755 | the HI word contains 6 bits, make sure pattern data is < 0x003f */ |
| 7756 | {0x00005555, 0x00000005, /* ch0, TAP 0, LO/HI pattern */ |
| 7757 | 0x00002aaa, 0x0000000a, /* ch0, TAP 1, LO/HI pattern */ |
| 7758 | 0x00003456, 0x00000003}, /* ch0, TAP 2, LO/HI pattern */ |
| 7759 | |
| 7760 | {0x00002aaa, 0x0000000a, /* ch1, TAP 0, LO/HI pattern */ |
| 7761 | 0x00003333, 0x00000003, /* ch1, TAP 1, LO/HI pattern */ |
| 7762 | 0x0000789a, 0x00000005}, /* ch1, TAP 2, LO/HI pattern */ |
| 7763 | |
| 7764 | {0x00005a5a, 0x00000005, /* ch2, TAP 0, LO/HI pattern */ |
| 7765 | 0x00002a6a, 0x0000000a, /* ch2, TAP 1, LO/HI pattern */ |
| 7766 | 0x00001bcd, 0x00000003}, /* ch2, TAP 2, LO/HI pattern */ |
| 7767 | |
| 7768 | {0x00002a5a, 0x0000000a, /* ch3, TAP 0, LO/HI pattern */ |
| 7769 | 0x000033c3, 0x00000003, /* ch3, TAP 1, LO/HI pattern */ |
| 7770 | 0x00002ef1, 0x00000005}, /* ch3, TAP 2, LO/HI pattern */ |
| 7771 | }; |
| 7772 | |
| 7773 | /********************************************************/ |
| 7774 | /* Routine to wait for PHY Macro Command to complete */ |
| 7775 | /* */ |
| 7776 | /* If PHY's Macro operation keeps stay busy, nothing we */ |
| 7777 | /* can do anyway. The timeout is there so we won't */ |
| 7778 | /* stay in this routine indefinitly. */ |
| 7779 | /********************************************************/ |
| 7780 | static LM_UINT32 LM_wait_macro_done(LM_DEVICE_BLOCK *pDevice); |
| 7781 | |
| 7782 | static LM_UINT32 |
| 7783 | LM_wait_macro_done(LM_DEVICE_BLOCK *pDevice) |
| 7784 | { |
| 7785 | LM_UINT32 timeout; |
| 7786 | LM_UINT32 val32; |
| 7787 | |
| 7788 | timeout = 100; |
| 7789 | while (timeout--) |
| 7790 | { |
| 7791 | /* make sure the MACRO operation is complete */ |
| 7792 | LM_ReadPhy(pDevice, 0x16, &val32); |
| 7793 | if ((val32 & 0x1000) == 0) break; |
| 7794 | } |
| 7795 | |
| 7796 | return( timeout > 0 ); |
| 7797 | } |
| 7798 | |
| 7799 | /********************************************************/ |
| 7800 | /* This routine resets the PHY on following chips: */ |
| 7801 | /* 5703, 04, CIOB-E and 5705 */ |
| 7802 | /* */ |
| 7803 | /* This routine will issue PHY_RESET and check if */ |
| 7804 | /* the reset is sucessful. If not, another PHY RESET */ |
| 7805 | /* will be issued, until max "retry" reaches */ |
| 7806 | /* */ |
| 7807 | /* Input: */ |
| 7808 | /* pDevice - device's context */ |
| 7809 | /* retry - number of retries */ |
| 7810 | /* reset - TRUE=will cause a PHY reset initially */ |
| 7811 | /* FALSE = will not issue a PHY reset */ |
| 7812 | /* unless TAP lockup detected */ |
| 7813 | /* */ |
| 7814 | /* Output: */ |
| 7815 | /* TRUE - PHY Reset is done sucessfully */ |
| 7816 | /* FALSE - PHY Reset had failed, after "retry" */ |
| 7817 | /* has reached */ |
| 7818 | /* */ |
| 7819 | /* Dependencies: */ |
| 7820 | /* void LM_wait_macro_done() */ |
| 7821 | /* LM_UINT32 pattern[] */ |
| 7822 | /* */ |
| 7823 | /* Usage: */ |
| 7824 | /* a. Before calling this routine, caller must */ |
| 7825 | /* determine if the chip is a 5702/03/04 or */ |
| 7826 | /* CIOB-E, and only call this routine if the */ |
| 7827 | /* is one of these. */ |
| 7828 | /* or its derivatives. */ |
| 7829 | /* b. Instead of using MII register write to reset */ |
| 7830 | /* the PHY, call this routine instead */ |
| 7831 | /* c. Upon return from this routine, check return */ |
| 7832 | /* value (TRUE/FALSE) to determine if PHY reset */ |
| 7833 | /* is successful of not and "optionally" take */ |
| 7834 | /* appropriate action (such as: event log) */ |
| 7835 | /* d. Regardless of the return TRUE or FALSE, */ |
| 7836 | /* proceed with PHY setup as you normally would */ |
| 7837 | /* after a PHY_RESET. */ |
| 7838 | /* e. It is recommended that the caller will give */ |
| 7839 | /* 10 "retry", however, caller can change to a */ |
| 7840 | /* different number, depending on you code. */ |
| 7841 | /* */ |
| 7842 | /********************************************************/ |
| 7843 | LM_STATUS LM_ResetPhy_5703_4_5(LM_DEVICE_BLOCK *pDevice, int retry, int reset); |
| 7844 | |
| 7845 | LM_STATUS |
| 7846 | LM_ResetPhy_5703_4_5(LM_DEVICE_BLOCK *pDevice, int retry, int reset) |
| 7847 | { |
| 7848 | LM_UINT32 val32, save9; |
| 7849 | LM_UINT32 dataLo, dataHi; |
| 7850 | int i, channel; |
| 7851 | int reset_success = LM_STATUS_FAILURE; |
| 7852 | int force_reset; |
| 7853 | |
| 7854 | /* to actually do a PHY_RESET or not is dictated by the caller */ |
| 7855 | force_reset = reset; |
| 7856 | |
| 7857 | while (retry-- && (reset_success != LM_STATUS_SUCCESS)) |
| 7858 | { |
| 7859 | if (force_reset) |
| 7860 | { |
| 7861 | /* issue a phy reset, and wait for reset to complete */ |
| 7862 | LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_PHY_RESET); |
| 7863 | for(i = 0; i < 100; i++) |
| 7864 | { |
| 7865 | MM_Wait(10); |
| 7866 | |
| 7867 | LM_ReadPhy(pDevice, PHY_CTRL_REG, &val32); |
| 7868 | if(val32 && !(val32 & PHY_CTRL_PHY_RESET)) |
| 7869 | { |
| 7870 | MM_Wait(20); |
| 7871 | break; |
| 7872 | } |
| 7873 | } |
| 7874 | |
| 7875 | /* no more phy reset unless lockup detected */ |
| 7876 | force_reset = FALSE; |
| 7877 | } |
| 7878 | |
| 7879 | /* assuming reset is successful first */ |
| 7880 | reset_success = LM_STATUS_SUCCESS; |
| 7881 | |
| 7882 | /* now go check the DFE TAPs to see if locked up, but |
| 7883 | first, we need to set up PHY so we can read DFE TAPs */ |
| 7884 | |
| 7885 | /* Disable Transmitter and Interrupt, while we play with |
| 7886 | the PHY registers, so the link partner won't see any |
| 7887 | strange data and the Driver won't see any interrupts. */ |
| 7888 | LM_ReadPhy(pDevice, 0x10, &val32); |
| 7889 | LM_WritePhy(pDevice, 0x10, val32 | 0x3000); |
| 7890 | |
| 7891 | /* Setup Full-Duplex, 1000 mbps */ |
| 7892 | LM_WritePhy(pDevice, 0x0, 0x0140); |
| 7893 | |
| 7894 | /* Set to Master mode */ |
| 7895 | LM_ReadPhy(pDevice, 0x9, &save9); |
| 7896 | LM_WritePhy(pDevice, 0x9, 0x1800); |
| 7897 | |
| 7898 | /* Enable SM_DSP_CLOCK & 6dB */ |
| 7899 | LM_WritePhy(pDevice, 0x18, 0x0c00); |
| 7900 | |
| 7901 | /* blocks the PHY control access */ |
| 7902 | LM_WritePhy(pDevice, 0x17, 0x8005); |
| 7903 | LM_WritePhy(pDevice, 0x15, 0x0800); |
| 7904 | |
| 7905 | /* check TAPs for all 4 channels, as soon |
| 7906 | as we see a lockup we'll stop checking */ |
| 7907 | for (channel=0; (channel<4) && (reset_success == LM_STATUS_SUCCESS); |
| 7908 | channel++) |
| 7909 | { |
| 7910 | /* select channel and set TAP index to 0 */ |
| 7911 | LM_WritePhy(pDevice, 0x17, (channel * 0x2000) | 0x0200); |
| 7912 | /* freeze filter again just to be safe */ |
| 7913 | LM_WritePhy(pDevice, 0x16, 0x0002); |
| 7914 | |
| 7915 | /* write fixed pattern to the RAM, 3 TAPs for |
| 7916 | each channel, each TAP have 2 WORDs (LO/HI) */ |
| 7917 | for (i=0; i<6; i++) |
| 7918 | LM_WritePhy(pDevice, 0x15, pattern[channel][i]); |
| 7919 | |
| 7920 | /* Activate PHY's Macro operation to write DFE TAP from RAM, |
| 7921 | and wait for Macro to complete */ |
| 7922 | LM_WritePhy(pDevice, 0x16, 0x0202); |
| 7923 | if (!LM_wait_macro_done(pDevice)) |
| 7924 | { |
| 7925 | reset_success = LM_STATUS_FAILURE; |
| 7926 | force_reset = TRUE; |
| 7927 | break; |
| 7928 | } |
| 7929 | |
| 7930 | /* --- done with write phase, now begin read phase --- */ |
| 7931 | |
| 7932 | /* select channel and set TAP index to 0 */ |
| 7933 | LM_WritePhy(pDevice, 0x17, (channel * 0x2000) | 0x0200); |
| 7934 | |
| 7935 | /* Active PHY's Macro operation to load DFE TAP to RAM, |
| 7936 | and wait for Macro to complete */ |
| 7937 | LM_WritePhy(pDevice, 0x16, 0x0082); |
| 7938 | if (!LM_wait_macro_done(pDevice)) |
| 7939 | { |
| 7940 | reset_success = LM_STATUS_FAILURE; |
| 7941 | force_reset = TRUE; |
| 7942 | break; |
| 7943 | } |
| 7944 | |
| 7945 | /* enable "pre-fetch" */ |
| 7946 | LM_WritePhy(pDevice, 0x16, 0x0802); |
| 7947 | if (!LM_wait_macro_done(pDevice)) |
| 7948 | { |
| 7949 | reset_success = LM_STATUS_FAILURE; |
| 7950 | force_reset = TRUE; |
| 7951 | break; |
| 7952 | } |
| 7953 | |
| 7954 | /* read back the TAP values. |
| 7955 | 3 TAPs for each channel, each TAP have 2 WORDs (LO/HI) */ |
| 7956 | for (i=0; i<6; i+=2) |
| 7957 | { |
| 7958 | /* read Lo/Hi then wait for 'done' is faster */ |
| 7959 | LM_ReadPhy(pDevice, 0x15, &dataLo); |
| 7960 | LM_ReadPhy(pDevice, 0x15, &dataHi); |
| 7961 | if (!LM_wait_macro_done(pDevice)) |
| 7962 | { |
| 7963 | reset_success = LM_STATUS_FAILURE; |
| 7964 | force_reset = TRUE; |
| 7965 | break; |
| 7966 | } |
| 7967 | |
| 7968 | /* For 5703/04, each DFE TAP has 21-bits (low word 15, |
| 7969 | * hi word 6) For 5705, each DFE TAP pas 19-bits (low word 15, |
| 7970 | * hi word 4) For simplicity, we check only 19-bits, so we |
| 7971 | * don't have to distinguish which chip it is. */ |
| 7972 | dataLo &= 0x7fff; |
| 7973 | dataHi &= 0x000f; |
| 7974 | |
| 7975 | /* check if what we wrote is what we read back */ |
| 7976 | if ( (dataLo != pattern[channel][i]) || (dataHi != pattern[channel][i+1]) ) |
| 7977 | { |
| 7978 | /* if failed, then the PHY is locked up, |
| 7979 | we need to do PHY reset again */ |
| 7980 | reset_success = LM_STATUS_FAILURE; |
| 7981 | force_reset = TRUE; |
| 7982 | /* 04/25/2003. sb. do these writes before issueing a reset. */ |
| 7983 | /* these steps will reduce the chance of back-to-back |
| 7984 | * phy lockup after reset */ |
| 7985 | LM_WritePhy(pDevice, 0x17, 0x000B); |
| 7986 | LM_WritePhy(pDevice, 0x15, 0x4001); |
| 7987 | LM_WritePhy(pDevice, 0x15, 0x4005); |
| 7988 | break; |
| 7989 | } |
| 7990 | } /* for i */ |
| 7991 | } /* for channel */ |
| 7992 | } /* while */ |
| 7993 | |
| 7994 | /* restore dfe coeff back to zeros */ |
| 7995 | for (channel=0; channel<4 ; channel++) |
| 7996 | { |
| 7997 | LM_WritePhy(pDevice, 0x17, (channel * 0x2000) | 0x0200); |
| 7998 | LM_WritePhy(pDevice, 0x16, 0x0002); |
| 7999 | for (i=0; i<6; i++) |
| 8000 | LM_WritePhy(pDevice, 0x15, 0x0000); |
| 8001 | LM_WritePhy(pDevice, 0x16, 0x0202); |
| 8002 | if (!LM_wait_macro_done(pDevice)) |
| 8003 | { |
| 8004 | reset_success = LM_STATUS_FAILURE; |
| 8005 | break; |
| 8006 | } |
| 8007 | } |
| 8008 | |
| 8009 | /* remove block phy control */ |
| 8010 | LM_WritePhy(pDevice, 0x17, 0x8005); |
| 8011 | LM_WritePhy(pDevice, 0x15, 0x0000); |
| 8012 | |
| 8013 | /* unfreeze DFE TAP filter for all channels */ |
| 8014 | LM_WritePhy(pDevice, 0x17, 0x8200); |
| 8015 | LM_WritePhy(pDevice, 0x16, 0x0000); |
| 8016 | |
| 8017 | /* Restore PHY back to operating state */ |
| 8018 | LM_WritePhy(pDevice, 0x18, 0x0400); |
| 8019 | |
| 8020 | /* Restore register 9 */ |
| 8021 | LM_WritePhy(pDevice, 0x9, save9); |
| 8022 | |
| 8023 | /* enable transmitter and interrupt */ |
| 8024 | LM_ReadPhy(pDevice, 0x10, &val32); |
| 8025 | LM_WritePhy(pDevice, 0x10, (val32 & ~0x3000)); |
| 8026 | |
| 8027 | return reset_success; |
| 8028 | } |
| 8029 | |
| 8030 | LM_VOID |
| 8031 | LM_ResetPhy(LM_DEVICE_BLOCK *pDevice) |
| 8032 | { |
| 8033 | int j; |
| 8034 | LM_UINT32 miireg; |
| 8035 | |
| 8036 | if (pDevice->PhyFlags & PHY_CHECK_TAPS_AFTER_RESET) |
| 8037 | { |
| 8038 | LM_ResetPhy_5703_4_5(pDevice, 5, 1); |
| 8039 | } |
| 8040 | else |
| 8041 | { |
| 8042 | int wait_val = 100; |
| 8043 | LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_PHY_RESET); |
| 8044 | |
| 8045 | if( pDevice->PhyFlags & PHY_IS_FIBER ) |
| 8046 | wait_val = 5000; |
| 8047 | |
| 8048 | for(j = 0; j < wait_val; j++) |
| 8049 | { |
| 8050 | MM_Wait(10); |
| 8051 | |
| 8052 | LM_ReadPhy(pDevice, PHY_CTRL_REG, &miireg); |
| 8053 | if(miireg && !(miireg & PHY_CTRL_PHY_RESET)) |
| 8054 | { |
| 8055 | MM_Wait(20); |
| 8056 | break; |
| 8057 | } |
| 8058 | } |
| 8059 | |
| 8060 | LM_PhyTapPowerMgmt(pDevice); |
| 8061 | } |
| 8062 | if ( (pDevice->PhyFlags & PHY_ADC_FIX) && |
| 8063 | !( pDevice->PhyFlags & PHY_IS_FIBER) ) |
| 8064 | { |
| 8065 | LM_WritePhy(pDevice, 0x18, 0x0c00); |
| 8066 | LM_WritePhy(pDevice, 0x17, 0x201f); |
| 8067 | LM_WritePhy(pDevice, 0x15, 0x2aaa); |
| 8068 | LM_WritePhy(pDevice, 0x17, 0x000a); |
| 8069 | LM_WritePhy(pDevice, 0x15, 0x0323); |
| 8070 | LM_WritePhy(pDevice, 0x18, 0x0400); |
| 8071 | } |
| 8072 | if ( (pDevice->PhyFlags & PHY_5705_5750_FIX) && |
| 8073 | !( pDevice->PhyFlags & PHY_IS_FIBER) ) |
| 8074 | { |
| 8075 | LM_WritePhy(pDevice, 0x18, 0x0c00); |
| 8076 | LM_WritePhy(pDevice, 0x17, 0x000a); |
| 8077 | LM_WritePhy(pDevice, 0x15, 0x310b); |
| 8078 | LM_WritePhy(pDevice, 0x17, 0x201f); |
| 8079 | LM_WritePhy(pDevice, 0x15, 0x9506); |
| 8080 | LM_WritePhy(pDevice, 0x17, 0x401f); |
| 8081 | LM_WritePhy(pDevice, 0x15, 0x14e2); |
| 8082 | LM_WritePhy(pDevice, 0x18, 0x0400); |
| 8083 | } |
| 8084 | if ( (pDevice->PhyFlags & PHY_5704_A0_FIX) && |
| 8085 | !( pDevice->PhyFlags & PHY_IS_FIBER) ) |
| 8086 | { |
| 8087 | LM_WritePhy(pDevice, 0x1c, 0x8d68); |
| 8088 | LM_WritePhy(pDevice, 0x1c, 0x8d68); |
| 8089 | } |
| 8090 | if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID) |
| 8091 | { |
| 8092 | LM_ReadPhy(pDevice, BCM540X_EXT_CTRL_REG, &miireg); |
| 8093 | miireg |= 1; /* set tx elastic fifo */ |
| 8094 | LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, miireg); |
| 8095 | |
| 8096 | LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x4c20); |
| 8097 | } |
| 8098 | else if (pDevice->Flags & JUMBO_CAPABLE_FLAG) |
| 8099 | { |
| 8100 | LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x0007); |
| 8101 | LM_ReadPhy(pDevice, BCM5401_AUX_CTRL, &miireg); |
| 8102 | miireg |= 0x4000; /* set rx extended packet length */ |
| 8103 | LM_WritePhy(pDevice, BCM5401_AUX_CTRL, miireg); |
| 8104 | |
| 8105 | LM_ReadPhy(pDevice, BCM540X_EXT_CTRL_REG, &miireg); |
| 8106 | miireg |= 1; /* set tx elastic fifo */ |
| 8107 | LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, miireg); |
| 8108 | |
| 8109 | } |
| 8110 | |
| 8111 | LM_SetEthWireSpeed(pDevice); |
| 8112 | pDevice->PhyFlags &= ~PHY_FIBER_FALLBACK; |
| 8113 | } |
| 8114 | |
| 8115 | STATIC LM_VOID |
| 8116 | LM_SetEthWireSpeed(LM_DEVICE_BLOCK *pDevice) |
| 8117 | { |
| 8118 | LM_UINT32 Value32; |
| 8119 | |
| 8120 | if( pDevice->PhyFlags & PHY_IS_FIBER) |
| 8121 | return; |
| 8122 | |
| 8123 | /* Enable Ethernet@WireSpeed. */ |
| 8124 | if (pDevice->PhyFlags & PHY_ETHERNET_WIRESPEED) |
| 8125 | { |
| 8126 | LM_WritePhy(pDevice, 0x18, 0x7007); |
| 8127 | LM_ReadPhy(pDevice, 0x18, &Value32); |
| 8128 | LM_WritePhy(pDevice, 0x18, Value32 | BIT_15 | BIT_4); |
| 8129 | } |
| 8130 | } |
| 8131 | |
| 8132 | STATIC LM_STATUS |
| 8133 | LM_PhyAdvertiseAll(LM_DEVICE_BLOCK *pDevice) |
| 8134 | { |
| 8135 | LM_UINT32 miireg; |
| 8136 | |
| 8137 | LM_ReadPhy(pDevice, PHY_AN_AD_REG, &miireg); |
| 8138 | pDevice->advertising = miireg; |
| 8139 | if ((miireg & PHY_AN_AD_ALL_SPEEDS) != PHY_AN_AD_ALL_SPEEDS) |
| 8140 | { |
| 8141 | return LM_STATUS_FAILURE; |
| 8142 | } |
| 8143 | |
| 8144 | LM_ReadPhy(pDevice, BCM540X_1000BASET_CTRL_REG, &miireg); |
| 8145 | pDevice->advertising1000 = miireg; |
| 8146 | |
| 8147 | if (!(pDevice->PhyFlags & PHY_NO_GIGABIT)) |
| 8148 | { |
| 8149 | if ((miireg & BCM540X_AN_AD_ALL_1G_SPEEDS) != |
| 8150 | BCM540X_AN_AD_ALL_1G_SPEEDS) |
| 8151 | { |
| 8152 | return LM_STATUS_FAILURE; |
| 8153 | } |
| 8154 | }else{ |
| 8155 | |
| 8156 | if(miireg) |
| 8157 | { |
| 8158 | return LM_STATUS_FAILURE; |
| 8159 | } |
| 8160 | } |
| 8161 | return LM_STATUS_SUCCESS; |
| 8162 | } |
| 8163 | |
| 8164 | /******************************************************************************/ |
| 8165 | /* Description: */ |
| 8166 | /* */ |
| 8167 | /* Return: */ |
| 8168 | /******************************************************************************/ |
| 8169 | LM_VOID |
| 8170 | LM_ReadPhy( |
| 8171 | PLM_DEVICE_BLOCK pDevice, |
| 8172 | LM_UINT32 PhyReg, |
| 8173 | PLM_UINT32 pData32) { |
| 8174 | LM_UINT32 Value32; |
| 8175 | LM_UINT32 j; |
| 8176 | |
| 8177 | if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) |
| 8178 | { |
| 8179 | REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode & |
| 8180 | ~MI_MODE_AUTO_POLLING_ENABLE); |
| 8181 | REG_RD_BACK(pDevice, MacCtrl.MiMode); |
| 8182 | MM_Wait(40); |
| 8183 | } |
| 8184 | |
| 8185 | Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) | |
| 8186 | ((PhyReg & MI_COM_PHY_REG_ADDR_MASK) << MI_COM_FIRST_PHY_REG_ADDR_BIT) | |
| 8187 | MI_COM_CMD_READ | MI_COM_START; |
| 8188 | |
| 8189 | REG_WR(pDevice, MacCtrl.MiCom, Value32); |
| 8190 | |
| 8191 | for(j = 0; j < 200; j++) |
| 8192 | { |
| 8193 | MM_Wait(1); |
| 8194 | |
| 8195 | Value32 = REG_RD(pDevice, MacCtrl.MiCom); |
| 8196 | |
| 8197 | if(!(Value32 & MI_COM_BUSY)) |
| 8198 | { |
| 8199 | MM_Wait(5); |
| 8200 | Value32 = REG_RD(pDevice, MacCtrl.MiCom); |
| 8201 | Value32 &= MI_COM_PHY_DATA_MASK; |
| 8202 | break; |
| 8203 | } |
| 8204 | } |
| 8205 | |
| 8206 | if(Value32 & MI_COM_BUSY) |
| 8207 | { |
| 8208 | Value32 = 0; |
| 8209 | } |
| 8210 | |
| 8211 | *pData32 = Value32; |
| 8212 | |
| 8213 | if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) |
| 8214 | { |
| 8215 | REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode); |
| 8216 | REG_RD_BACK(pDevice, MacCtrl.MiMode); |
| 8217 | MM_Wait(40); |
| 8218 | } |
| 8219 | } /* LM_ReadPhy */ |
| 8220 | |
| 8221 | |
| 8222 | |
| 8223 | /******************************************************************************/ |
| 8224 | /* Description: */ |
| 8225 | /* */ |
| 8226 | /* Return: */ |
| 8227 | /******************************************************************************/ |
| 8228 | LM_VOID |
| 8229 | LM_WritePhy( |
| 8230 | PLM_DEVICE_BLOCK pDevice, |
| 8231 | LM_UINT32 PhyReg, |
| 8232 | LM_UINT32 Data32) { |
| 8233 | LM_UINT32 Value32; |
| 8234 | LM_UINT32 j; |
| 8235 | |
| 8236 | if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) |
| 8237 | { |
| 8238 | REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode & |
| 8239 | ~MI_MODE_AUTO_POLLING_ENABLE); |
| 8240 | REG_RD_BACK(pDevice, MacCtrl.MiMode); |
| 8241 | MM_Wait(40); |
| 8242 | } |
| 8243 | |
| 8244 | Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) | |
| 8245 | ((PhyReg & MI_COM_PHY_REG_ADDR_MASK) << MI_COM_FIRST_PHY_REG_ADDR_BIT) | |
| 8246 | (Data32 & MI_COM_PHY_DATA_MASK) | MI_COM_CMD_WRITE | MI_COM_START; |
| 8247 | |
| 8248 | REG_WR(pDevice, MacCtrl.MiCom, Value32); |
| 8249 | |
| 8250 | for(j = 0; j < 200; j++) |
| 8251 | { |
| 8252 | MM_Wait(1); |
| 8253 | |
| 8254 | Value32 = REG_RD(pDevice, MacCtrl.MiCom); |
| 8255 | |
| 8256 | if(!(Value32 & MI_COM_BUSY)) |
| 8257 | { |
| 8258 | MM_Wait(5); |
| 8259 | break; |
| 8260 | } |
| 8261 | } |
| 8262 | |
| 8263 | if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) |
| 8264 | { |
| 8265 | REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode); |
| 8266 | REG_RD_BACK(pDevice, MacCtrl.MiMode); |
| 8267 | MM_Wait(40); |
| 8268 | } |
| 8269 | } /* LM_WritePhy */ |
| 8270 | |
| 8271 | /* MII read/write functions to export to the robo support code */ |
| 8272 | LM_UINT16 |
| 8273 | robo_miird(void *h, int phyadd, int regoff) |
| 8274 | { |
| 8275 | PLM_DEVICE_BLOCK pdev = h; |
| 8276 | LM_UINT32 savephyaddr, val32; |
| 8277 | |
| 8278 | savephyaddr = pdev->PhyAddr; |
| 8279 | pdev->PhyAddr = phyadd; |
| 8280 | |
| 8281 | LM_ReadPhy(pdev, regoff, &val32); |
| 8282 | |
| 8283 | pdev->PhyAddr = savephyaddr; |
| 8284 | |
| 8285 | return ((LM_UINT16)(val32 & 0xffff)); |
| 8286 | } |
| 8287 | |
| 8288 | void |
| 8289 | robo_miiwr(void *h, int phyadd, int regoff, LM_UINT16 value) |
| 8290 | { |
| 8291 | PLM_DEVICE_BLOCK pdev = h; |
| 8292 | LM_UINT32 val32, savephyaddr; |
| 8293 | |
| 8294 | savephyaddr = pdev->PhyAddr; |
| 8295 | pdev->PhyAddr = phyadd; |
| 8296 | |
| 8297 | val32 = (LM_UINT32)value; |
| 8298 | LM_WritePhy(pdev, regoff, val32); |
| 8299 | |
| 8300 | pdev->PhyAddr = savephyaddr; |
| 8301 | } |
| 8302 | |
| 8303 | STATIC void |
| 8304 | LM_GetPhyId(LM_DEVICE_BLOCK *pDevice) |
| 8305 | { |
| 8306 | LM_UINT32 Value32; |
| 8307 | |
| 8308 | LM_ReadPhy(pDevice, PHY_ID1_REG, &Value32); |
| 8309 | pDevice->PhyId = (Value32 & PHY_ID1_OUI_MASK) << 10; |
| 8310 | |
| 8311 | LM_ReadPhy(pDevice, PHY_ID2_REG, &Value32); |
| 8312 | pDevice->PhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) | |
| 8313 | (Value32 & PHY_ID2_MODEL_MASK) | (Value32 & PHY_ID2_REV_MASK); |
| 8314 | |
| 8315 | } |
| 8316 | |
| 8317 | LM_STATUS |
| 8318 | LM_EnableMacLoopBack(PLM_DEVICE_BLOCK pDevice) |
| 8319 | { |
| 8320 | pDevice->LoopBackMode = LM_MAC_LOOP_BACK_MODE; |
| 8321 | pDevice->MacMode &= ~MAC_MODE_PORT_MODE_MASK; |
| 8322 | pDevice->MacMode |= (MAC_MODE_PORT_INTERNAL_LOOPBACK | |
| 8323 | MAC_MODE_LINK_POLARITY | MAC_MODE_PORT_MODE_GMII); |
| 8324 | REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode); |
| 8325 | MM_Wait(40); |
| 8326 | LM_SetupPhy(pDevice); |
| 8327 | return LM_STATUS_SUCCESS; |
| 8328 | } |
| 8329 | |
| 8330 | LM_STATUS |
| 8331 | LM_DisableMacLoopBack(PLM_DEVICE_BLOCK pDevice) |
| 8332 | { |
| 8333 | pDevice->LoopBackMode = 0; |
| 8334 | |
| 8335 | pDevice->MacMode &= ~(MAC_MODE_PORT_INTERNAL_LOOPBACK | |
| 8336 | MAC_MODE_LINK_POLARITY | MAC_MODE_PORT_MODE_MASK); |
| 8337 | REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode); |
| 8338 | MM_Wait(40); |
| 8339 | if(pDevice->PhyFlags & PHY_IS_FIBER) |
| 8340 | LM_ResetPhy(pDevice); |
| 8341 | |
| 8342 | LM_SetupPhy(pDevice); |
| 8343 | return LM_STATUS_SUCCESS; |
| 8344 | } |
| 8345 | |
| 8346 | LM_STATUS |
| 8347 | LM_EnablePhyLoopBack(PLM_DEVICE_BLOCK pDevice) |
| 8348 | { |
| 8349 | pDevice->LoopBackMode = LM_PHY_LOOP_BACK_MODE; |
| 8350 | LM_SetupPhy(pDevice); |
| 8351 | return LM_STATUS_SUCCESS; |
| 8352 | } |
| 8353 | |
| 8354 | LM_STATUS |
| 8355 | LM_DisablePhyLoopBack(PLM_DEVICE_BLOCK pDevice) |
| 8356 | { |
| 8357 | pDevice->LoopBackMode = 0; |
| 8358 | LM_SetupPhy(pDevice); |
| 8359 | return LM_STATUS_SUCCESS; |
| 8360 | } |
| 8361 | |
| 8362 | LM_STATUS |
| 8363 | LM_EnableExtLoopBack(PLM_DEVICE_BLOCK pDevice, LM_LINE_SPEED LineSpeed) |
| 8364 | { |
| 8365 | pDevice->LoopBackMode = LM_EXT_LOOP_BACK_MODE; |
| 8366 | |
| 8367 | pDevice->SavedDisableAutoNeg = pDevice->DisableAutoNeg; |
| 8368 | pDevice->SavedRequestedLineSpeed = pDevice->RequestedLineSpeed; |
| 8369 | pDevice->SavedRequestedDuplexMode = pDevice->RequestedDuplexMode; |
| 8370 | |
| 8371 | pDevice->DisableAutoNeg = TRUE; |
| 8372 | pDevice->RequestedLineSpeed = LineSpeed; |
| 8373 | pDevice->RequestedDuplexMode = LM_DUPLEX_MODE_FULL; |
| 8374 | LM_SetupPhy(pDevice); |
| 8375 | return LM_STATUS_SUCCESS; |
| 8376 | } |
| 8377 | |
| 8378 | LM_STATUS |
| 8379 | LM_DisableExtLoopBack(PLM_DEVICE_BLOCK pDevice) |
| 8380 | { |
| 8381 | pDevice->LoopBackMode = 0; |
| 8382 | |
| 8383 | pDevice->DisableAutoNeg = pDevice->SavedDisableAutoNeg; |
| 8384 | pDevice->RequestedLineSpeed = pDevice->SavedRequestedLineSpeed; |
| 8385 | pDevice->RequestedDuplexMode = pDevice->SavedRequestedDuplexMode; |
| 8386 | |
| 8387 | LM_SetupPhy(pDevice); |
| 8388 | return LM_STATUS_SUCCESS; |
| 8389 | } |
| 8390 | |
| 8391 | /******************************************************************************/ |
| 8392 | /* Description: */ |
| 8393 | /* */ |
| 8394 | /* Return: */ |
| 8395 | /******************************************************************************/ |
| 8396 | LM_STATUS |
| 8397 | LM_SetPowerState( |
| 8398 | PLM_DEVICE_BLOCK pDevice, |
| 8399 | LM_POWER_STATE PowerLevel) |
| 8400 | { |
| 8401 | #ifdef BCM_WOL |
| 8402 | LM_UINT32 PmeSupport; |
| 8403 | PLM_DEVICE_BLOCK pDevice2 = 0; |
| 8404 | int j; |
| 8405 | #endif |
| 8406 | LM_UINT32 Value32; |
| 8407 | LM_UINT32 PmCtrl; |
| 8408 | |
| 8409 | /* make sureindirect accesses are enabled*/ |
| 8410 | MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, pDevice->MiscHostCtrl); |
| 8411 | |
| 8412 | /* Clear the PME_ASSERT bit and the power state bits. Also enable */ |
| 8413 | /* the PME bit. */ |
| 8414 | MM_ReadConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, &PmCtrl); |
| 8415 | |
| 8416 | PmCtrl |= T3_PM_PME_ASSERTED; |
| 8417 | PmCtrl &= ~T3_PM_POWER_STATE_MASK; |
| 8418 | |
| 8419 | /* Set the appropriate power state. */ |
| 8420 | if(PowerLevel == LM_POWER_STATE_D0) |
| 8421 | { |
| 8422 | /* Bring the card out of low power mode. */ |
| 8423 | PmCtrl |= T3_PM_POWER_STATE_D0; |
| 8424 | MM_WriteConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl); |
| 8425 | |
| 8426 | Value32 = REG_RD(pDevice, Grc.LocalCtrl); |
| 8427 | |
| 8428 | if(T3_ASIC_5752(pDevice->ChipRevId)){ |
| 8429 | Value32 |= (GRC_MISC_LOCAL_CTRL_GPIO_OE3 | |
| 8430 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT3 | |
| 8431 | GRC_MISC_LOCAL_CTRL_GPIO_OE0 | |
| 8432 | GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| 8433 | GRC_MISC_LOCAL_CTRL_GPIO_OE2 | |
| 8434 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 | |
| 8435 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 | |
| 8436 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2); |
| 8437 | } |
| 8438 | else |
| 8439 | { |
| 8440 | Value32 &= ~(GRC_MISC_LOCAL_CTRL_GPIO_OE0 | |
| 8441 | GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| 8442 | GRC_MISC_LOCAL_CTRL_GPIO_OE2 | |
| 8443 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 | |
| 8444 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 | |
| 8445 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2); |
| 8446 | } |
| 8447 | |
| 8448 | RAW_REG_WR(pDevice, Grc.LocalCtrl, Value32); |
| 8449 | |
| 8450 | MM_Wait(40); /* Required delay is about 20us. */ |
| 8451 | |
| 8452 | pDevice->PowerLevel = PowerLevel; |
| 8453 | return LM_STATUS_SUCCESS; |
| 8454 | } |
| 8455 | #ifdef BCM_WOL |
| 8456 | else if(PowerLevel == LM_POWER_STATE_D1) |
| 8457 | { |
| 8458 | PmCtrl |= T3_PM_POWER_STATE_D1; |
| 8459 | } |
| 8460 | else if(PowerLevel == LM_POWER_STATE_D2) |
| 8461 | { |
| 8462 | PmCtrl |= T3_PM_POWER_STATE_D2; |
| 8463 | } |
| 8464 | else if(PowerLevel == LM_POWER_STATE_D3) |
| 8465 | { |
| 8466 | PmCtrl |= T3_PM_POWER_STATE_D3; |
| 8467 | } |
| 8468 | else |
| 8469 | { |
| 8470 | return LM_STATUS_FAILURE; |
| 8471 | } |
| 8472 | PmCtrl |= T3_PM_PME_ENABLE; |
| 8473 | |
| 8474 | /* Mask out all interrupts so LM_SetupPhy won't be called while we are */ |
| 8475 | /* setting new line speed. */ |
| 8476 | Value32 = REG_RD(pDevice, PciCfg.MiscHostCtrl); |
| 8477 | REG_WR(pDevice, PciCfg.MiscHostCtrl, Value32 | MISC_HOST_CTRL_MASK_PCI_INT); |
| 8478 | |
| 8479 | if(!pDevice->RestoreOnWakeUp) |
| 8480 | { |
| 8481 | pDevice->RestoreOnWakeUp = TRUE; |
| 8482 | pDevice->WakeUpDisableAutoNeg = pDevice->DisableAutoNeg; |
| 8483 | pDevice->WakeUpRequestedLineSpeed = pDevice->RequestedLineSpeed; |
| 8484 | pDevice->WakeUpRequestedDuplexMode = pDevice->RequestedDuplexMode; |
| 8485 | } |
| 8486 | |
| 8487 | /* Force auto-negotiation to 10 line speed. */ |
| 8488 | pDevice->DisableAutoNeg = FALSE; |
| 8489 | |
| 8490 | if (!(pDevice->TbiFlags & ENABLE_TBI_FLAG)) |
| 8491 | { |
| 8492 | pDevice->RequestedLineSpeed = LM_LINE_SPEED_10MBPS; |
| 8493 | LM_SetupPhy(pDevice); |
| 8494 | } |
| 8495 | |
| 8496 | /* Put the driver in the initial state, and go through the power down */ |
| 8497 | /* sequence. */ |
| 8498 | LM_DoHalt(pDevice); |
| 8499 | |
| 8500 | if (!(pDevice->AsfFlags & ASF_ENABLED)) |
| 8501 | { |
| 8502 | for(j = 0; j < 20000; j++) |
| 8503 | { |
| 8504 | MM_Wait(10); |
| 8505 | |
| 8506 | Value32 = MEM_RD_OFFSET(pDevice, T3_ASF_FW_STATUS_MAILBOX); |
| 8507 | if(Value32 == ~T3_MAGIC_NUM_FIRMWARE_INIT_DONE) |
| 8508 | { |
| 8509 | break; |
| 8510 | } |
| 8511 | } |
| 8512 | } |
| 8513 | |
| 8514 | MEM_WR_OFFSET(pDevice, DRV_WOL_MAILBOX, DRV_WOL_SIGNATURE | |
| 8515 | DRV_DOWN_STATE_SHUTDOWN | 0x2 | DRV_WOL_SET_MAGIC_PKT); |
| 8516 | |
| 8517 | MM_ReadConfig32(pDevice, T3_PCI_PM_CAP_REG, &PmeSupport); |
| 8518 | |
| 8519 | if (pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE) |
| 8520 | { |
| 8521 | |
| 8522 | /* Enable WOL. */ |
| 8523 | if (!(pDevice->TbiFlags & ENABLE_TBI_FLAG)) |
| 8524 | { |
| 8525 | LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x5a); |
| 8526 | MM_Wait(40); |
| 8527 | } |
| 8528 | |
| 8529 | if (! T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) |
| 8530 | { |
| 8531 | /* Let boot code deal with LED mode on shasta */ |
| 8532 | REG_WR(pDevice, MacCtrl.LedCtrl, pDevice->LedCtrl); |
| 8533 | } |
| 8534 | |
| 8535 | if (pDevice->TbiFlags & ENABLE_TBI_FLAG) |
| 8536 | { |
| 8537 | Value32 = MAC_MODE_PORT_MODE_TBI; |
| 8538 | } |
| 8539 | else |
| 8540 | { |
| 8541 | Value32 = MAC_MODE_PORT_MODE_MII; |
| 8542 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) |
| 8543 | { |
| 8544 | if(pDevice->LedCtrl == LED_CTRL_PHY_MODE_2 || |
| 8545 | pDevice->WolSpeed == WOL_SPEED_10MB) |
| 8546 | { |
| 8547 | Value32 |= MAC_MODE_LINK_POLARITY; |
| 8548 | } |
| 8549 | } |
| 8550 | else |
| 8551 | { |
| 8552 | Value32 |= MAC_MODE_LINK_POLARITY; |
| 8553 | } |
| 8554 | } |
| 8555 | REG_WR(pDevice, MacCtrl.Mode, Value32); |
| 8556 | REG_RD_BACK(pDevice, MacCtrl.Mode); |
| 8557 | MM_Wait(40); MM_Wait(40); MM_Wait(40); |
| 8558 | |
| 8559 | /* Always enable magic packet wake-up if we have vaux. */ |
| 8560 | if((PmeSupport & T3_PCI_PM_CAP_PME_D3COLD) && |
| 8561 | (pDevice->WakeUpModeCap & LM_WAKE_UP_MODE_MAGIC_PACKET)) |
| 8562 | { |
| 8563 | Value32 |= MAC_MODE_DETECT_MAGIC_PACKET_ENABLE; |
| 8564 | } |
| 8565 | |
| 8566 | #ifdef BCM_ASF |
| 8567 | if (pDevice->AsfFlags & ASF_ENABLED) |
| 8568 | { |
| 8569 | Value32 &= ~MAC_MODE_ACPI_POWER_ON_ENABLE; |
| 8570 | } |
| 8571 | #endif |
| 8572 | REG_WR(pDevice, MacCtrl.Mode, Value32); |
| 8573 | |
| 8574 | /* Enable the receiver. */ |
| 8575 | REG_WR(pDevice, MacCtrl.RxMode, RX_MODE_ENABLE); |
| 8576 | } |
| 8577 | else if (!(pDevice->AsfFlags & ASF_ENABLED)) |
| 8578 | { |
| 8579 | if (pDevice->TbiFlags & ENABLE_TBI_FLAG) |
| 8580 | { |
| 8581 | REG_WR(pDevice, MacCtrl.LedCtrl, LED_CTRL_OVERRIDE_LINK_LED | |
| 8582 | LED_CTRL_OVERRIDE_TRAFFIC_LED); |
| 8583 | } |
| 8584 | else |
| 8585 | { |
| 8586 | LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, |
| 8587 | BCM540X_EXT_CTRL_FORCE_LED_OFF); |
| 8588 | LM_WritePhy(pDevice, 0x18, 0x01b2); |
| 8589 | if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) && |
| 8590 | (T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5704) && |
| 8591 | !T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId) ) |
| 8592 | { |
| 8593 | LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_LOWER_POWER_MODE); |
| 8594 | } |
| 8595 | } |
| 8596 | } |
| 8597 | |
| 8598 | /* Disable tx/rx clocks, and select an alternate clock. */ |
| 8599 | if (T3_ASIC_5714_FAMILY(pDevice->ChipRevId)){ |
| 8600 | /* Do nothing */ |
| 8601 | } |
| 8602 | else if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) || |
| 8603 | ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) && |
| 8604 | (pDevice->WolSpeed == WOL_SPEED_10MB))) |
| 8605 | { |
| 8606 | Value32 = T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK | |
| 8607 | T3_PCI_SELECT_ALTERNATE_CLOCK | |
| 8608 | T3_PCI_POWER_DOWN_PCI_PLL133; |
| 8609 | |
| 8610 | REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | Value32); |
| 8611 | } |
| 8612 | /* ASF on 5750 will not run properly on slow core clock */ |
| 8613 | else if( !(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId) && |
| 8614 | (pDevice->AsfFlags & ASF_ENABLED) )) |
| 8615 | { |
| 8616 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) |
| 8617 | { |
| 8618 | Value32 = T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK | |
| 8619 | T3_PCI_SELECT_ALTERNATE_CLOCK; |
| 8620 | } |
| 8621 | else if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId) ) |
| 8622 | { |
| 8623 | Value32 = T3_PCI_625_CORE_CLOCK; |
| 8624 | } |
| 8625 | else |
| 8626 | { |
| 8627 | Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK; |
| 8628 | } |
| 8629 | RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | Value32); |
| 8630 | |
| 8631 | MM_Wait(40); |
| 8632 | |
| 8633 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| 8634 | T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) |
| 8635 | { |
| 8636 | Value32 = T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK | |
| 8637 | T3_PCI_SELECT_ALTERNATE_CLOCK | T3_PCI_44MHZ_CORE_CLOCK; |
| 8638 | } |
| 8639 | else if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId) ) |
| 8640 | { |
| 8641 | Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK | T3_PCI_625_CORE_CLOCK; |
| 8642 | } |
| 8643 | else if(!T3_ASIC_5714_FAMILY(pDevice->ChipRevId)) |
| 8644 | { |
| 8645 | Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK | T3_PCI_44MHZ_CORE_CLOCK; |
| 8646 | } |
| 8647 | |
| 8648 | RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | Value32); |
| 8649 | |
| 8650 | if (!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 8651 | { |
| 8652 | MM_Wait(40); |
| 8653 | |
| 8654 | if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| 8655 | T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) |
| 8656 | { |
| 8657 | Value32 = T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK | |
| 8658 | T3_PCI_44MHZ_CORE_CLOCK; |
| 8659 | } |
| 8660 | else |
| 8661 | { |
| 8662 | Value32 = T3_PCI_44MHZ_CORE_CLOCK; |
| 8663 | } |
| 8664 | |
| 8665 | RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | Value32); |
| 8666 | } |
| 8667 | } |
| 8668 | |
| 8669 | MM_Wait(40); |
| 8670 | |
| 8671 | if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704) |
| 8672 | { |
| 8673 | pDevice2 = MM_FindPeerDev(pDevice); |
| 8674 | } |
| 8675 | if (!(pDevice->Flags & EEPROM_WP_FLAG)) |
| 8676 | { |
| 8677 | LM_SwitchVaux(pDevice, pDevice2); |
| 8678 | } |
| 8679 | |
| 8680 | LM_WritePostResetSignatures(pDevice, LM_SHUTDOWN_RESET); |
| 8681 | |
| 8682 | if((T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5750_AX) || |
| 8683 | (T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5750_BX)) { |
| 8684 | |
| 8685 | Value32= REG_RD_OFFSET(pDevice, 0x7d00); |
| 8686 | REG_WR_OFFSET(pDevice, 0x7d00,Value32 & ~(BIT_16 | BIT_4 | BIT_2 | BIT_1 | BIT_0)); |
| 8687 | |
| 8688 | if(!(pDevice->AsfFlags & ASF_ENABLED)) |
| 8689 | LM_HaltCpu(pDevice, T3_RX_CPU_ID); |
| 8690 | |
| 8691 | } |
| 8692 | |
| 8693 | /* Put the the hardware in low power mode. */ |
| 8694 | if (!(pDevice->Flags & DISABLE_D3HOT_FLAG)) |
| 8695 | { |
| 8696 | MM_WriteConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl); |
| 8697 | MM_Wait(200); /* Wait 200us for state transition */ |
| 8698 | } |
| 8699 | |
| 8700 | pDevice->PowerLevel = PowerLevel; |
| 8701 | |
| 8702 | #else |
| 8703 | LM_WritePostResetSignatures(pDevice, LM_SHUTDOWN_RESET); |
| 8704 | #endif /* BCM_WOL */ |
| 8705 | |
| 8706 | return LM_STATUS_SUCCESS; |
| 8707 | } /* LM_SetPowerState */ |
| 8708 | |
| 8709 | |
| 8710 | LM_VOID |
| 8711 | LM_SwitchVaux(PLM_DEVICE_BLOCK pDevice, PLM_DEVICE_BLOCK pDevice2) |
| 8712 | { |
| 8713 | if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId)) |
| 8714 | return; |
| 8715 | |
| 8716 | pDevice->GrcLocalCtrl &= ~(GRC_MISC_LOCAL_CTRL_GPIO_OE0 | |
| 8717 | GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| 8718 | GRC_MISC_LOCAL_CTRL_GPIO_OE2 | |
| 8719 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 | |
| 8720 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 | |
| 8721 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2); |
| 8722 | |
| 8723 | /* Switch adapter to auxilliary power if WOL enabled */ |
| 8724 | if ((pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE) || |
| 8725 | (pDevice->AsfFlags & ASF_ENABLED) || |
| 8726 | (pDevice2 && ((pDevice2->WakeUpModeCap != LM_WAKE_UP_MODE_NONE) || |
| 8727 | (pDevice2->AsfFlags & ASF_ENABLED)))) |
| 8728 | { |
| 8729 | if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| 8730 | T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) |
| 8731 | { |
| 8732 | /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */ |
| 8733 | RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl | |
| 8734 | GRC_MISC_LOCAL_CTRL_GPIO_OE0 | |
| 8735 | GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| 8736 | GRC_MISC_LOCAL_CTRL_GPIO_OE2 | |
| 8737 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 | |
| 8738 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1); |
| 8739 | MM_Wait(40); |
| 8740 | } |
| 8741 | else |
| 8742 | { |
| 8743 | if (pDevice2 && pDevice2->InitDone) |
| 8744 | { |
| 8745 | return; |
| 8746 | } |
| 8747 | |
| 8748 | /* On NICs GPIOs are used for vaux. |
| 8749 | The transition of GPIO0 from 0-1 causes vaux |
| 8750 | to power up. Transition of GPIO1 from 1-0 turns vaux off. |
| 8751 | GPIO2 transition from 1-0 enables a non-glitch vaux |
| 8752 | transition from one state to another. |
| 8753 | On certain designs we should not output GPIO2. |
| 8754 | */ |
| 8755 | if(pDevice->Flags & GPIO2_DONOT_OUTPUT) |
| 8756 | { |
| 8757 | /* GPIO0 = 0, GPIO1 = 1. */ |
| 8758 | RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl | |
| 8759 | GRC_MISC_LOCAL_CTRL_GPIO_OE0 | |
| 8760 | GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| 8761 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1); |
| 8762 | |
| 8763 | MM_Wait(40); |
| 8764 | |
| 8765 | /* GPIO0 = 1, GPIO1 = 1. */ |
| 8766 | RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl | |
| 8767 | GRC_MISC_LOCAL_CTRL_GPIO_OE0 | |
| 8768 | GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| 8769 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 | |
| 8770 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1); |
| 8771 | |
| 8772 | MM_Wait(40); |
| 8773 | } |
| 8774 | else |
| 8775 | { |
| 8776 | |
| 8777 | /* GPIO0 = 0, GPIO1 = 1, GPIO2 = 1. */ |
| 8778 | RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl | |
| 8779 | GRC_MISC_LOCAL_CTRL_GPIO_OE0 | |
| 8780 | GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| 8781 | GRC_MISC_LOCAL_CTRL_GPIO_OE2 | |
| 8782 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 | |
| 8783 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2); |
| 8784 | |
| 8785 | MM_Wait(40); |
| 8786 | |
| 8787 | /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 1. */ |
| 8788 | RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl | |
| 8789 | GRC_MISC_LOCAL_CTRL_GPIO_OE0 | |
| 8790 | GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| 8791 | GRC_MISC_LOCAL_CTRL_GPIO_OE2 | |
| 8792 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 | |
| 8793 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 | |
| 8794 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2); |
| 8795 | MM_Wait(40); |
| 8796 | |
| 8797 | /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */ |
| 8798 | RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl | |
| 8799 | GRC_MISC_LOCAL_CTRL_GPIO_OE0 | |
| 8800 | GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| 8801 | GRC_MISC_LOCAL_CTRL_GPIO_OE2 | |
| 8802 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 | |
| 8803 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1); |
| 8804 | MM_Wait(40); |
| 8805 | } /* GPIO2 OK */ |
| 8806 | } /* Not 5700||5701 */ |
| 8807 | } /* WOL disabled */ |
| 8808 | else |
| 8809 | { |
| 8810 | if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) && |
| 8811 | (T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701)) |
| 8812 | { |
| 8813 | if (pDevice2 && pDevice2->InitDone) |
| 8814 | { |
| 8815 | return; |
| 8816 | } |
| 8817 | |
| 8818 | /* GPIO1 = 1 */ |
| 8819 | RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl | |
| 8820 | GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| 8821 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1); |
| 8822 | MM_Wait(40); |
| 8823 | |
| 8824 | /* GPIO1 = 0 */ |
| 8825 | RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl | |
| 8826 | GRC_MISC_LOCAL_CTRL_GPIO_OE1); |
| 8827 | MM_Wait(40); |
| 8828 | |
| 8829 | /* GPIO1 = 1 */ |
| 8830 | RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl | |
| 8831 | GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| 8832 | GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1); |
| 8833 | MM_Wait(40); |
| 8834 | } |
| 8835 | } |
| 8836 | } |
| 8837 | |
| 8838 | |
| 8839 | /******************************************************************************/ |
| 8840 | /* Description: */ |
| 8841 | /* */ |
| 8842 | /* Return: */ |
| 8843 | /******************************************************************************/ |
| 8844 | static LM_UINT32 |
| 8845 | GetPhyAdFlowCntrlSettings( |
| 8846 | PLM_DEVICE_BLOCK pDevice) |
| 8847 | { |
| 8848 | LM_UINT32 Value32; |
| 8849 | |
| 8850 | Value32 = 0; |
| 8851 | |
| 8852 | /* Auto negotiation flow control only when autonegotiation is enabled. */ |
| 8853 | if(pDevice->DisableAutoNeg == FALSE || |
| 8854 | pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) |
| 8855 | { |
| 8856 | if (T3_ASIC_5714_FAMILY(pDevice->ChipRevId) && |
| 8857 | (pDevice->PhyFlags & PHY_IS_FIBER)) { |
| 8858 | |
| 8859 | /* Please refer to Table 28B-3 of the 802.3ab-1999 spec. */ |
| 8860 | if((pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE) || |
| 8861 | ((pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE) && |
| 8862 | (pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE))) |
| 8863 | { |
| 8864 | Value32 |=PHY_AN_AD_1000XPAUSE; |
| 8865 | } |
| 8866 | else if(pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE) |
| 8867 | { |
| 8868 | Value32 |= PHY_AN_AD_1000XPSE_ASYM; |
| 8869 | } |
| 8870 | else if(pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE) |
| 8871 | { |
| 8872 | Value32 |= (PHY_AN_AD_1000XPSE_ASYM | PHY_AN_AD_1000XPAUSE); |
| 8873 | } |
| 8874 | |
| 8875 | }else{ |
| 8876 | |
| 8877 | /* Please refer to Table 28B-3 of the 802.3ab-1999 spec. */ |
| 8878 | if((pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE) || |
| 8879 | ((pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE) && |
| 8880 | (pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE))) |
| 8881 | { |
| 8882 | Value32 |= PHY_AN_AD_PAUSE_CAPABLE; |
| 8883 | } |
| 8884 | else if(pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE) |
| 8885 | { |
| 8886 | Value32 |= PHY_AN_AD_ASYM_PAUSE; |
| 8887 | } |
| 8888 | else if(pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE) |
| 8889 | { |
| 8890 | Value32 |= PHY_AN_AD_PAUSE_CAPABLE | PHY_AN_AD_ASYM_PAUSE; |
| 8891 | } |
| 8892 | } |
| 8893 | } |
| 8894 | |
| 8895 | return Value32; |
| 8896 | } |
| 8897 | |
| 8898 | |
| 8899 | |
| 8900 | /******************************************************************************/ |
| 8901 | /* Description: */ |
| 8902 | /* */ |
| 8903 | /* Return: */ |
| 8904 | /* LM_STATUS_FAILURE */ |
| 8905 | /* LM_STATUS_SUCCESS */ |
| 8906 | /* */ |
| 8907 | /******************************************************************************/ |
| 8908 | static LM_STATUS |
| 8909 | LM_ForceAutoNeg(PLM_DEVICE_BLOCK pDevice) |
| 8910 | { |
| 8911 | LM_LINE_SPEED LineSpeed; |
| 8912 | LM_DUPLEX_MODE DuplexMode; |
| 8913 | LM_UINT32 NewPhyCtrl; |
| 8914 | LM_UINT32 Value32, PhyReg18; |
| 8915 | LM_UINT32 Cnt; |
| 8916 | |
| 8917 | /* Get the interface type, line speed, and duplex mode. */ |
| 8918 | LineSpeed = pDevice->RequestedLineSpeed; |
| 8919 | DuplexMode = pDevice->RequestedDuplexMode; |
| 8920 | |
| 8921 | /* Exit ext. loop back, in case it was in ext. loopback mode */ |
| 8922 | /* Set Extended packet length bit on chips that support jumbo frames */ |
| 8923 | if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID) |
| 8924 | { |
| 8925 | LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x4c20); |
| 8926 | |
| 8927 | LM_ReadPhy(pDevice, BCM540X_EXT_CTRL_REG, &Value32); |
| 8928 | Value32 |= 1; /* set tx elastic fifo */ |
| 8929 | LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, Value32); |
| 8930 | |
| 8931 | } |
| 8932 | else |
| 8933 | { |
| 8934 | LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x0007); |
| 8935 | LM_ReadPhy(pDevice, BCM5401_AUX_CTRL, &PhyReg18); |
| 8936 | PhyReg18 &= ~0x8000; /* clear external loop back */ |
| 8937 | |
| 8938 | if (pDevice->Flags & JUMBO_CAPABLE_FLAG) |
| 8939 | { |
| 8940 | PhyReg18 |= 0x4000; /* set extended packet length */ |
| 8941 | LM_ReadPhy(pDevice, BCM540X_EXT_CTRL_REG, &Value32); |
| 8942 | Value32 |= 1; /* set tx elastic fifo */ |
| 8943 | LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, Value32); |
| 8944 | } |
| 8945 | LM_WritePhy(pDevice, BCM5401_AUX_CTRL, PhyReg18); |
| 8946 | } |
| 8947 | |
| 8948 | #ifdef BCM_WOL |
| 8949 | if (pDevice->RestoreOnWakeUp) |
| 8950 | { |
| 8951 | LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, 0); |
| 8952 | pDevice->advertising1000 = 0; |
| 8953 | Value32 = PHY_AN_AD_10BASET_FULL | PHY_AN_AD_10BASET_HALF; |
| 8954 | if (pDevice->WolSpeed == WOL_SPEED_100MB) |
| 8955 | { |
| 8956 | Value32 |= PHY_AN_AD_100BASETX_FULL | PHY_AN_AD_100BASETX_HALF; |
| 8957 | } |
| 8958 | Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD; |
| 8959 | Value32 |= GetPhyAdFlowCntrlSettings(pDevice); |
| 8960 | LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32); |
| 8961 | pDevice->advertising = Value32; |
| 8962 | } |
| 8963 | /* Setup the auto-negotiation advertisement register. */ |
| 8964 | else if(LineSpeed == LM_LINE_SPEED_UNKNOWN) |
| 8965 | #else |
| 8966 | /* Setup the auto-negotiation advertisement register. */ |
| 8967 | if(LineSpeed == LM_LINE_SPEED_UNKNOWN) |
| 8968 | #endif |
| 8969 | { |
| 8970 | /* Setup the 10/100 Mbps auto-negotiation advertisement register. */ |
| 8971 | Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD | PHY_AN_AD_ALL_SPEEDS; |
| 8972 | Value32 |= GetPhyAdFlowCntrlSettings(pDevice); |
| 8973 | |
| 8974 | LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32); |
| 8975 | pDevice->advertising = Value32; |
| 8976 | |
| 8977 | /* Advertise 1000Mbps */ |
| 8978 | if (!(pDevice->PhyFlags & PHY_NO_GIGABIT)) |
| 8979 | { |
| 8980 | Value32 = BCM540X_AN_AD_ALL_1G_SPEEDS; |
| 8981 | |
| 8982 | #ifdef INCLUDE_5701_AX_FIX |
| 8983 | /* slave mode. This will force the PHY to operate in */ |
| 8984 | /* master mode. */ |
| 8985 | if(pDevice->ChipRevId == T3_CHIP_ID_5701_A0 || |
| 8986 | pDevice->ChipRevId == T3_CHIP_ID_5701_B0) |
| 8987 | { |
| 8988 | Value32 |= BCM540X_CONFIG_AS_MASTER | |
| 8989 | BCM540X_ENABLE_CONFIG_AS_MASTER; |
| 8990 | } |
| 8991 | #endif |
| 8992 | |
| 8993 | LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, Value32); |
| 8994 | pDevice->advertising1000 = Value32; |
| 8995 | } |
| 8996 | else |
| 8997 | { |
| 8998 | LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, 0); |
| 8999 | pDevice->advertising1000 = 0; |
| 9000 | } |
| 9001 | } |
| 9002 | else |
| 9003 | { |
| 9004 | if ((pDevice->PhyFlags & PHY_NO_GIGABIT) && |
| 9005 | (LineSpeed == LM_LINE_SPEED_1000MBPS)) |
| 9006 | { |
| 9007 | LineSpeed = LM_LINE_SPEED_100MBPS; |
| 9008 | } |
| 9009 | if(LineSpeed == LM_LINE_SPEED_1000MBPS) |
| 9010 | { |
| 9011 | Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD; |
| 9012 | Value32 |= GetPhyAdFlowCntrlSettings(pDevice); |
| 9013 | |
| 9014 | LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32); |
| 9015 | pDevice->advertising = Value32; |
| 9016 | |
| 9017 | if(DuplexMode != LM_DUPLEX_MODE_FULL) |
| 9018 | { |
| 9019 | Value32 = BCM540X_AN_AD_1000BASET_HALF; |
| 9020 | } |
| 9021 | else |
| 9022 | { |
| 9023 | Value32 = BCM540X_AN_AD_1000BASET_FULL; |
| 9024 | } |
| 9025 | |
| 9026 | #ifdef INCLUDE_5701_AX_FIX |
| 9027 | if ((pDevice->LoopBackMode == LM_EXT_LOOP_BACK_MODE) || |
| 9028 | (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 || |
| 9029 | pDevice->ChipRevId == T3_CHIP_ID_5701_B0)) |
| 9030 | #else |
| 9031 | if (pDevice->LoopBackMode == LM_EXT_LOOP_BACK_MODE) |
| 9032 | #endif |
| 9033 | { |
| 9034 | Value32 |= BCM540X_CONFIG_AS_MASTER | |
| 9035 | BCM540X_ENABLE_CONFIG_AS_MASTER; |
| 9036 | } |
| 9037 | LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, Value32); |
| 9038 | pDevice->advertising1000 = Value32; |
| 9039 | if (pDevice->LoopBackMode == LM_EXT_LOOP_BACK_MODE) |
| 9040 | { |
| 9041 | if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID) |
| 9042 | { |
| 9043 | LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x8c20); |
| 9044 | } |
| 9045 | else |
| 9046 | { |
| 9047 | LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x0007); |
| 9048 | LM_ReadPhy(pDevice, BCM5401_AUX_CTRL, &PhyReg18); |
| 9049 | PhyReg18 |= 0x8000; /* set loop back */ |
| 9050 | LM_WritePhy(pDevice, BCM5401_AUX_CTRL, PhyReg18); |
| 9051 | } |
| 9052 | } |
| 9053 | } |
| 9054 | else if(LineSpeed == LM_LINE_SPEED_100MBPS) |
| 9055 | { |
| 9056 | LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, 0); |
| 9057 | pDevice->advertising1000 = 0; |
| 9058 | |
| 9059 | if(DuplexMode != LM_DUPLEX_MODE_FULL) |
| 9060 | { |
| 9061 | Value32 = PHY_AN_AD_100BASETX_HALF; |
| 9062 | } |
| 9063 | else |
| 9064 | { |
| 9065 | Value32 = PHY_AN_AD_100BASETX_FULL; |
| 9066 | } |
| 9067 | |
| 9068 | Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD; |
| 9069 | Value32 |= GetPhyAdFlowCntrlSettings(pDevice); |
| 9070 | |
| 9071 | LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32); |
| 9072 | pDevice->advertising = Value32; |
| 9073 | } |
| 9074 | else if(LineSpeed == LM_LINE_SPEED_10MBPS) |
| 9075 | { |
| 9076 | LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, 0); |
| 9077 | pDevice->advertising1000 = 0; |
| 9078 | |
| 9079 | if(DuplexMode != LM_DUPLEX_MODE_FULL) |
| 9080 | { |
| 9081 | Value32 = PHY_AN_AD_10BASET_HALF; |
| 9082 | } |
| 9083 | else |
| 9084 | { |
| 9085 | Value32 = PHY_AN_AD_10BASET_FULL; |
| 9086 | } |
| 9087 | |
| 9088 | Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD; |
| 9089 | Value32 |= GetPhyAdFlowCntrlSettings(pDevice); |
| 9090 | |
| 9091 | LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32); |
| 9092 | pDevice->advertising = Value32; |
| 9093 | } |
| 9094 | } |
| 9095 | |
| 9096 | /* Force line speed if auto-negotiation is disabled. */ |
| 9097 | if(pDevice->DisableAutoNeg && LineSpeed != LM_LINE_SPEED_UNKNOWN) |
| 9098 | { |
| 9099 | /* This code path is executed only when there is link. */ |
| 9100 | pDevice->LineSpeed = LineSpeed; |
| 9101 | pDevice->DuplexMode = DuplexMode; |
| 9102 | |
| 9103 | /* Force line seepd. */ |
| 9104 | NewPhyCtrl = 0; |
| 9105 | switch(LineSpeed) |
| 9106 | { |
| 9107 | case LM_LINE_SPEED_10MBPS: |
| 9108 | NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_10MBPS; |
| 9109 | break; |
| 9110 | case LM_LINE_SPEED_100MBPS: |
| 9111 | NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_100MBPS; |
| 9112 | break; |
| 9113 | case LM_LINE_SPEED_1000MBPS: |
| 9114 | NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS; |
| 9115 | break; |
| 9116 | default: |
| 9117 | NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS; |
| 9118 | break; |
| 9119 | } |
| 9120 | |
| 9121 | if(DuplexMode == LM_DUPLEX_MODE_FULL) |
| 9122 | { |
| 9123 | NewPhyCtrl |= PHY_CTRL_FULL_DUPLEX_MODE; |
| 9124 | } |
| 9125 | |
| 9126 | /* Don't do anything if the PHY_CTRL is already what we wanted. */ |
| 9127 | LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32); |
| 9128 | if(Value32 != NewPhyCtrl) |
| 9129 | { |
| 9130 | /* Temporary bring the link down before forcing line speed. */ |
| 9131 | LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_LOOPBACK_MODE); |
| 9132 | |
| 9133 | /* Wait for link to go down. */ |
| 9134 | for(Cnt = 0; Cnt < 1500; Cnt++) |
| 9135 | { |
| 9136 | MM_Wait(10); |
| 9137 | |
| 9138 | LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32); |
| 9139 | LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32); |
| 9140 | |
| 9141 | if(!(Value32 & PHY_STATUS_LINK_PASS)) |
| 9142 | { |
| 9143 | MM_Wait(40); |
| 9144 | break; |
| 9145 | } |
| 9146 | } |
| 9147 | |
| 9148 | LM_WritePhy(pDevice, PHY_CTRL_REG, NewPhyCtrl); |
| 9149 | MM_Wait(40); |
| 9150 | } |
| 9151 | } |
| 9152 | else |
| 9153 | { |
| 9154 | LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_AUTO_NEG_ENABLE | |
| 9155 | PHY_CTRL_RESTART_AUTO_NEG); |
| 9156 | } |
| 9157 | |
| 9158 | return LM_STATUS_SUCCESS; |
| 9159 | } /* LM_ForceAutoNegBcm540xPhy */ |
| 9160 | |
| 9161 | /******************************************************************************/ |
| 9162 | /* Description: */ |
| 9163 | /* */ |
| 9164 | /* Return: */ |
| 9165 | /******************************************************************************/ |
| 9166 | LM_STATUS LM_LoadFirmware(PLM_DEVICE_BLOCK pDevice, |
| 9167 | PT3_FWIMG_INFO pFwImg, |
| 9168 | LM_UINT32 LoadCpu, |
| 9169 | LM_UINT32 StartCpu) |
| 9170 | { |
| 9171 | LM_UINT32 i; |
| 9172 | LM_UINT32 address; |
| 9173 | LM_VOID (*Wr_fn)(PLM_DEVICE_BLOCK pDevice,LM_UINT32 Register,LM_UINT32 Value32); |
| 9174 | LM_UINT32 (*Rd_fn)(PLM_DEVICE_BLOCK pDevice,LM_UINT32 Register); |
| 9175 | LM_UINT32 len; |
| 9176 | LM_UINT32 base_addr; |
| 9177 | |
| 9178 | /* BCM4785: Avoid all use of firmware. */ |
| 9179 | if (pDevice->Flags & SB_CORE_FLAG) |
| 9180 | return LM_STATUS_FAILURE; |
| 9181 | |
| 9182 | #ifdef INCLUDE_TCP_SEG_SUPPORT |
| 9183 | if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705) |
| 9184 | { |
| 9185 | Wr_fn = LM_MemWrInd; |
| 9186 | Rd_fn = LM_MemRdInd; |
| 9187 | len = LM_GetStkOffLdFirmwareSize(pDevice); |
| 9188 | base_addr = T3_NIC_BCM5705_MBUF_POOL_ADDR; |
| 9189 | } |
| 9190 | else |
| 9191 | #endif |
| 9192 | { |
| 9193 | Wr_fn = LM_RegWrInd; |
| 9194 | Rd_fn = LM_RegRdInd; |
| 9195 | len = T3_RX_CPU_SPAD_SIZE; |
| 9196 | base_addr = T3_RX_CPU_SPAD_ADDR; |
| 9197 | } |
| 9198 | |
| 9199 | if (LoadCpu & T3_RX_CPU_ID) |
| 9200 | { |
| 9201 | if (LM_HaltCpu(pDevice,T3_RX_CPU_ID) != LM_STATUS_SUCCESS) |
| 9202 | { |
| 9203 | return LM_STATUS_FAILURE; |
| 9204 | } |
| 9205 | |
| 9206 | /* First of all clear scrach pad memory */ |
| 9207 | for (i = 0; i < len; i+=4) |
| 9208 | { |
| 9209 | Wr_fn(pDevice,base_addr+i,0); |
| 9210 | } |
| 9211 | |
| 9212 | /* Copy code first */ |
| 9213 | address = base_addr + (pFwImg->Text.Offset & 0xffff); |
| 9214 | for (i = 0; i <= pFwImg->Text.Length; i+=4) |
| 9215 | { |
| 9216 | Wr_fn(pDevice,address+i, |
| 9217 | ((LM_UINT32 *)pFwImg->Text.Buffer)[i/4]); |
| 9218 | } |
| 9219 | |
| 9220 | address = base_addr + (pFwImg->ROnlyData.Offset & 0xffff); |
| 9221 | for (i = 0; i <= pFwImg->ROnlyData.Length; i+=4) |
| 9222 | { |
| 9223 | Wr_fn(pDevice,address+i, |
| 9224 | ((LM_UINT32 *)pFwImg->ROnlyData.Buffer)[i/4]); |
| 9225 | } |
| 9226 | |
| 9227 | address = base_addr + (pFwImg->Data.Offset & 0xffff); |
| 9228 | for (i= 0; i <= pFwImg->Data.Length; i+=4) |
| 9229 | { |
| 9230 | Wr_fn(pDevice,address+i, |
| 9231 | ((LM_UINT32 *)pFwImg->Data.Buffer)[i/4]); |
| 9232 | } |
| 9233 | } |
| 9234 | |
| 9235 | if ((LoadCpu & T3_TX_CPU_ID) && |
| 9236 | (T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5705)) |
| 9237 | { |
| 9238 | if (LM_HaltCpu(pDevice,T3_TX_CPU_ID) != LM_STATUS_SUCCESS) |
| 9239 | { |
| 9240 | return LM_STATUS_FAILURE; |
| 9241 | } |
| 9242 | |
| 9243 | /* First of all clear scrach pad memory */ |
| 9244 | for (i = 0; i < T3_TX_CPU_SPAD_SIZE; i+=4) |
| 9245 | { |
| 9246 | Wr_fn(pDevice,T3_TX_CPU_SPAD_ADDR+i,0); |
| 9247 | } |
| 9248 | |
| 9249 | /* Copy code first */ |
| 9250 | address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Text.Offset & 0xffff); |
| 9251 | for (i= 0; i <= pFwImg->Text.Length; i+=4) |
| 9252 | { |
| 9253 | Wr_fn(pDevice,address+i, |
| 9254 | ((LM_UINT32 *)pFwImg->Text.Buffer)[i/4]); |
| 9255 | } |
| 9256 | |
| 9257 | address = T3_TX_CPU_SPAD_ADDR + (pFwImg->ROnlyData.Offset & 0xffff); |
| 9258 | for (i= 0; i <= pFwImg->ROnlyData.Length; i+=4) |
| 9259 | { |
| 9260 | Wr_fn(pDevice,address+i, |
| 9261 | ((LM_UINT32 *)pFwImg->ROnlyData.Buffer)[i/4]); |
| 9262 | } |
| 9263 | |
| 9264 | address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Data.Offset & 0xffff); |
| 9265 | for (i= 0; i <= pFwImg->Data.Length; i+=4) |
| 9266 | { |
| 9267 | Wr_fn(pDevice,address+i, |
| 9268 | ((LM_UINT32 *)pFwImg->Data.Buffer)[i/4]); |
| 9269 | } |
| 9270 | } |
| 9271 | |
| 9272 | if (StartCpu & T3_RX_CPU_ID) |
| 9273 | { |
| 9274 | /* Start Rx CPU */ |
| 9275 | REG_WR(pDevice,rxCpu.reg.state, 0xffffffff); |
| 9276 | REG_WR(pDevice,rxCpu.reg.PC,pFwImg->StartAddress); |
| 9277 | for (i = 0 ; i < 5; i++) |
| 9278 | { |
| 9279 | if (pFwImg->StartAddress == REG_RD(pDevice,rxCpu.reg.PC)) |
| 9280 | break; |
| 9281 | |
| 9282 | REG_WR(pDevice,rxCpu.reg.state, 0xffffffff); |
| 9283 | REG_WR(pDevice,rxCpu.reg.mode,CPU_MODE_HALT); |
| 9284 | REG_WR(pDevice,rxCpu.reg.PC,pFwImg->StartAddress); |
| 9285 | REG_RD_BACK(pDevice,rxCpu.reg.PC); |
| 9286 | MM_Wait(1000); |
| 9287 | } |
| 9288 | |
| 9289 | REG_WR(pDevice,rxCpu.reg.state, 0xffffffff); |
| 9290 | REG_WR(pDevice,rxCpu.reg.mode, 0); |
| 9291 | } |
| 9292 | |
| 9293 | if ((StartCpu & T3_TX_CPU_ID) && |
| 9294 | (T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5705)) |
| 9295 | { |
| 9296 | /* Start Tx CPU */ |
| 9297 | REG_WR(pDevice,txCpu.reg.state, 0xffffffff); |
| 9298 | REG_WR(pDevice,txCpu.reg.PC,pFwImg->StartAddress); |
| 9299 | for (i = 0 ; i < 5; i++) |
| 9300 | { |
| 9301 | if (pFwImg->StartAddress == REG_RD(pDevice,txCpu.reg.PC)) |
| 9302 | break; |
| 9303 | |
| 9304 | REG_WR(pDevice,txCpu.reg.state, 0xffffffff); |
| 9305 | REG_WR(pDevice,txCpu.reg.mode,CPU_MODE_HALT); |
| 9306 | REG_WR(pDevice,txCpu.reg.PC,pFwImg->StartAddress); |
| 9307 | REG_RD_BACK(pDevice,txCpu.reg.PC); |
| 9308 | MM_Wait(1000); |
| 9309 | } |
| 9310 | |
| 9311 | REG_WR(pDevice,txCpu.reg.state, 0xffffffff); |
| 9312 | REG_WR(pDevice,txCpu.reg.mode, 0); |
| 9313 | } |
| 9314 | |
| 9315 | return LM_STATUS_SUCCESS; |
| 9316 | } |
| 9317 | |
| 9318 | LM_STATUS LM_HaltCpu(PLM_DEVICE_BLOCK pDevice,LM_UINT32 cpu_number) |
| 9319 | { |
| 9320 | LM_UINT32 i; |
| 9321 | LM_STATUS status; |
| 9322 | |
| 9323 | status = LM_STATUS_SUCCESS; |
| 9324 | |
| 9325 | if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId) && |
| 9326 | !(cpu_number & T3_RX_CPU_ID)) |
| 9327 | { |
| 9328 | return status; |
| 9329 | } |
| 9330 | |
| 9331 | if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) && |
| 9332 | (T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701)) |
| 9333 | { |
| 9334 | status = LM_NVRAM_AcquireLock(pDevice); |
| 9335 | } |
| 9336 | |
| 9337 | if (cpu_number & T3_RX_CPU_ID) |
| 9338 | { |
| 9339 | for (i = 0 ; i < 10000; i++) |
| 9340 | { |
| 9341 | REG_WR(pDevice,rxCpu.reg.state, 0xffffffff); |
| 9342 | REG_WR(pDevice,rxCpu.reg.mode,CPU_MODE_HALT); |
| 9343 | |
| 9344 | if (REG_RD(pDevice,rxCpu.reg.mode) & CPU_MODE_HALT) |
| 9345 | break; |
| 9346 | } |
| 9347 | |
| 9348 | REG_WR(pDevice,rxCpu.reg.state, 0xffffffff); |
| 9349 | REG_WR(pDevice,rxCpu.reg.mode,CPU_MODE_HALT); |
| 9350 | REG_RD_BACK(pDevice,rxCpu.reg.mode); |
| 9351 | MM_Wait(10); |
| 9352 | |
| 9353 | if (i == 10000) |
| 9354 | status = LM_STATUS_FAILURE; |
| 9355 | } |
| 9356 | |
| 9357 | /* |
| 9358 | * BCM4785: There is only an Rx CPU for the 5750 derivative in |
| 9359 | * the 4785. Don't go any further in this code in order to |
| 9360 | * avoid access to the NVRAM arbitration register. |
| 9361 | */ |
| 9362 | if (pDevice->Flags & SB_CORE_FLAG) |
| 9363 | return status; |
| 9364 | |
| 9365 | if ((pDevice->Flags & T3_HAS_TWO_CPUS) && |
| 9366 | (cpu_number & T3_TX_CPU_ID)) |
| 9367 | { |
| 9368 | for (i = 0 ; i < 10000; i++) |
| 9369 | { |
| 9370 | REG_WR(pDevice,txCpu.reg.state, 0xffffffff); |
| 9371 | REG_WR(pDevice,txCpu.reg.mode,CPU_MODE_HALT); |
| 9372 | |
| 9373 | if (REG_RD(pDevice,txCpu.reg.mode) & CPU_MODE_HALT) |
| 9374 | break; |
| 9375 | } |
| 9376 | |
| 9377 | if (i == 10000) |
| 9378 | status = LM_STATUS_FAILURE; |
| 9379 | } |
| 9380 | |
| 9381 | if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) && |
| 9382 | (T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701)) |
| 9383 | { |
| 9384 | if (status != LM_STATUS_SUCCESS) |
| 9385 | { |
| 9386 | /* |
| 9387 | * Some part of this operation failed. |
| 9388 | * Just undo our own actions. |
| 9389 | */ |
| 9390 | LM_NVRAM_ReleaseLock(pDevice); |
| 9391 | } |
| 9392 | else if (!(pDevice->Flags & T3_HAS_TWO_CPUS) || |
| 9393 | cpu_number == (T3_TX_CPU_ID | T3_RX_CPU_ID)) |
| 9394 | { |
| 9395 | /* |
| 9396 | * Release our NVRAM arbitration grant along |
| 9397 | * with the firmware's arbitration request bit. |
| 9398 | */ |
| 9399 | REG_WR(pDevice, Nvram.SwArb, SW_ARB_REQ_CLR1 | SW_ARB_REQ_CLR0); |
| 9400 | REG_RD_BACK(pDevice, Nvram.SwArb); |
| 9401 | } |
| 9402 | else |
| 9403 | { |
| 9404 | LM_NVRAM_ReleaseLock(pDevice); |
| 9405 | |
| 9406 | if (LM_NVRAM_AcquireLock(pDevice) == LM_STATUS_SUCCESS) |
| 9407 | { |
| 9408 | /* All is well. Release the arbitration and continue. */ |
| 9409 | LM_NVRAM_ReleaseLock(pDevice); |
| 9410 | } |
| 9411 | else |
| 9412 | { |
| 9413 | /* |
| 9414 | * We've timed out while attempting to get the |
| 9415 | * NVRAM arbitration. Assume the cause is that |
| 9416 | * the NVRAM has requested arbitration after we |
| 9417 | * acquired arbitration the first time, but before |
| 9418 | * the CPU was actually halted. |
| 9419 | */ |
| 9420 | |
| 9421 | /* |
| 9422 | * Release our NVRAM arbitration grant along |
| 9423 | * with the firmware's arbitration request bit. |
| 9424 | */ |
| 9425 | REG_WR(pDevice, Nvram.SwArb, SW_ARB_REQ_CLR1 | SW_ARB_REQ_CLR0); |
| 9426 | REG_RD_BACK(pDevice, Nvram.SwArb); |
| 9427 | } |
| 9428 | } |
| 9429 | } |
| 9430 | |
| 9431 | return status; |
| 9432 | } |
| 9433 | |
| 9434 | |
| 9435 | LM_STATUS |
| 9436 | LM_BlinkLED(PLM_DEVICE_BLOCK pDevice, LM_UINT32 BlinkDurationSec) |
| 9437 | { |
| 9438 | int j; |
| 9439 | int ret = LM_STATUS_SUCCESS; |
| 9440 | |
| 9441 | if(BlinkDurationSec == 0) |
| 9442 | { |
| 9443 | BlinkDurationSec = 1; |
| 9444 | } |
| 9445 | if(BlinkDurationSec > 120) |
| 9446 | { |
| 9447 | BlinkDurationSec = 120; |
| 9448 | } |
| 9449 | |
| 9450 | for(j = 0; j < BlinkDurationSec * 2; j++) |
| 9451 | { |
| 9452 | if(j % 2) |
| 9453 | { |
| 9454 | // Turn on the LEDs. |
| 9455 | REG_WR(pDevice, MacCtrl.LedCtrl, |
| 9456 | LED_CTRL_OVERRIDE_LINK_LED | |
| 9457 | LED_CTRL_1000MBPS_LED_ON | |
| 9458 | LED_CTRL_100MBPS_LED_ON | |
| 9459 | LED_CTRL_10MBPS_LED_ON | |
| 9460 | LED_CTRL_OVERRIDE_TRAFFIC_LED | |
| 9461 | LED_CTRL_BLINK_TRAFFIC_LED | |
| 9462 | LED_CTRL_TRAFFIC_LED); |
| 9463 | } |
| 9464 | else |
| 9465 | { |
| 9466 | // Turn off the LEDs. |
| 9467 | REG_WR(pDevice, MacCtrl.LedCtrl, |
| 9468 | LED_CTRL_OVERRIDE_LINK_LED | |
| 9469 | LED_CTRL_OVERRIDE_TRAFFIC_LED); |
| 9470 | } |
| 9471 | if (MM_Sleep(pDevice, 500) != LM_STATUS_SUCCESS)/* 0.5 second */ |
| 9472 | { |
| 9473 | ret = LM_STATUS_FAILURE; |
| 9474 | break; |
| 9475 | } |
| 9476 | } |
| 9477 | REG_WR(pDevice, MacCtrl.LedCtrl, pDevice->LedCtrl); |
| 9478 | return ret; |
| 9479 | } |
| 9480 | |
| 9481 | LM_STATUS |
| 9482 | LM_SwitchClocks(PLM_DEVICE_BLOCK pDevice) |
| 9483 | { |
| 9484 | LM_UINT32 ClockCtrl; |
| 9485 | |
| 9486 | if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId)) |
| 9487 | return LM_STATUS_SUCCESS; |
| 9488 | |
| 9489 | ClockCtrl = REG_RD(pDevice, PciCfg.ClockCtrl); |
| 9490 | pDevice->ClockCtrl = ClockCtrl & (T3_PCI_FORCE_CLKRUN | |
| 9491 | T3_PCI_CLKRUN_OUTPUT_EN | 0x1f); |
| 9492 | if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 9493 | { |
| 9494 | if (ClockCtrl & T3_PCI_625_CORE_CLOCK) |
| 9495 | { |
| 9496 | /* clear ALT clock first */ |
| 9497 | RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | |
| 9498 | T3_PCI_625_CORE_CLOCK); |
| 9499 | MM_Wait(40); /* required delay is 27usec */ |
| 9500 | } |
| 9501 | } |
| 9502 | else |
| 9503 | { |
| 9504 | if (ClockCtrl & T3_PCI_44MHZ_CORE_CLOCK) |
| 9505 | { |
| 9506 | RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | |
| 9507 | T3_PCI_44MHZ_CORE_CLOCK | T3_PCI_SELECT_ALTERNATE_CLOCK); |
| 9508 | MM_Wait(40); /* required delay is 27usec */ |
| 9509 | RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | |
| 9510 | T3_PCI_SELECT_ALTERNATE_CLOCK); |
| 9511 | MM_Wait(40); /* required delay is 27usec */ |
| 9512 | } |
| 9513 | } |
| 9514 | |
| 9515 | RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl); |
| 9516 | MM_Wait(40); /* required delay is 27usec */ |
| 9517 | return LM_STATUS_SUCCESS; |
| 9518 | } |
| 9519 | |
| 9520 | int t3_do_dma(PLM_DEVICE_BLOCK pDevice, |
| 9521 | LM_PHYSICAL_ADDRESS host_addr_phy, int length, |
| 9522 | int dma_read) |
| 9523 | { |
| 9524 | T3_DMA_DESC dma_desc; |
| 9525 | int i; |
| 9526 | LM_UINT32 dma_desc_addr; |
| 9527 | LM_UINT32 value32; |
| 9528 | |
| 9529 | REG_WR(pDevice, BufMgr.Mode, 0); |
| 9530 | REG_WR(pDevice, Ftq.Reset, 0); |
| 9531 | |
| 9532 | dma_desc.host_addr.High = host_addr_phy.High; |
| 9533 | dma_desc.host_addr.Low = host_addr_phy.Low; |
| 9534 | dma_desc.nic_mbuf = 0x2100; |
| 9535 | dma_desc.len = length; |
| 9536 | dma_desc.flags = 0x00000005; /* Generate Rx-CPU event */ |
| 9537 | |
| 9538 | if (dma_read) |
| 9539 | { |
| 9540 | dma_desc.cqid_sqid = (T3_QID_RX_BD_COMP << 8) | |
| 9541 | T3_QID_DMA_HIGH_PRI_READ; |
| 9542 | REG_WR(pDevice, DmaRead.Mode, DMA_READ_MODE_ENABLE); |
| 9543 | } |
| 9544 | else |
| 9545 | { |
| 9546 | dma_desc.cqid_sqid = (T3_QID_RX_DATA_COMP << 8) | |
| 9547 | T3_QID_DMA_HIGH_PRI_WRITE; |
| 9548 | REG_WR(pDevice, DmaWrite.Mode, DMA_WRITE_MODE_ENABLE); |
| 9549 | } |
| 9550 | |
| 9551 | dma_desc_addr = T3_NIC_DMA_DESC_POOL_ADDR; |
| 9552 | |
| 9553 | /* Writing this DMA descriptor to DMA memory */ |
| 9554 | for (i = 0; i < sizeof(T3_DMA_DESC); i += 4) |
| 9555 | { |
| 9556 | value32 = *((PLM_UINT32) (((PLM_UINT8) &dma_desc) + i)); |
| 9557 | MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, dma_desc_addr+i); |
| 9558 | MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_DATA_REG, |
| 9559 | MM_SWAP_LE32(value32)); |
| 9560 | } |
| 9561 | MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, 0); |
| 9562 | |
| 9563 | if (dma_read) |
| 9564 | REG_WR(pDevice, Ftq.DmaHighReadFtqFifoEnqueueDequeue, dma_desc_addr); |
| 9565 | else |
| 9566 | REG_WR(pDevice, Ftq.DmaHighWriteFtqFifoEnqueueDequeue, dma_desc_addr); |
| 9567 | |
| 9568 | for (i = 0; i < 40; i++) |
| 9569 | { |
| 9570 | if (dma_read) |
| 9571 | value32 = REG_RD(pDevice, Ftq.RcvBdCompFtqFifoEnqueueDequeue); |
| 9572 | else |
| 9573 | value32 = REG_RD(pDevice, Ftq.RcvDataCompFtqFifoEnqueueDequeue); |
| 9574 | |
| 9575 | if ((value32 & 0xffff) == dma_desc_addr) |
| 9576 | break; |
| 9577 | |
| 9578 | MM_Wait(10); |
| 9579 | } |
| 9580 | |
| 9581 | return LM_STATUS_SUCCESS; |
| 9582 | } |
| 9583 | |
| 9584 | STATIC LM_STATUS |
| 9585 | LM_DmaTest(PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt, |
| 9586 | LM_PHYSICAL_ADDRESS BufferPhy, LM_UINT32 BufferSize) |
| 9587 | { |
| 9588 | int j; |
| 9589 | LM_UINT32 *ptr; |
| 9590 | int dma_success = 0; |
| 9591 | LM_STATUS ret = LM_STATUS_FAILURE; |
| 9592 | |
| 9593 | if(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 && |
| 9594 | T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701) |
| 9595 | { |
| 9596 | return LM_STATUS_SUCCESS; |
| 9597 | } |
| 9598 | while (!dma_success) |
| 9599 | { |
| 9600 | /* Fill data with incremental patterns */ |
| 9601 | ptr = (LM_UINT32 *)pBufferVirt; |
| 9602 | for (j = 0; j < BufferSize/4; j++) |
| 9603 | *ptr++ = j; |
| 9604 | |
| 9605 | if (t3_do_dma(pDevice,BufferPhy,BufferSize, 1) == LM_STATUS_FAILURE) |
| 9606 | { |
| 9607 | goto LM_DmaTestDone; |
| 9608 | } |
| 9609 | |
| 9610 | MM_Wait(40); |
| 9611 | ptr = (LM_UINT32 *)pBufferVirt; |
| 9612 | /* Fill data with zero */ |
| 9613 | for (j = 0; j < BufferSize/4; j++) |
| 9614 | *ptr++ = 0; |
| 9615 | |
| 9616 | if (t3_do_dma(pDevice,BufferPhy,BufferSize, 0) == LM_STATUS_FAILURE) |
| 9617 | { |
| 9618 | goto LM_DmaTestDone; |
| 9619 | } |
| 9620 | |
| 9621 | MM_Wait(40); |
| 9622 | /* Check for data */ |
| 9623 | ptr = (LM_UINT32 *)pBufferVirt; |
| 9624 | for (j = 0; j < BufferSize/4; j++) |
| 9625 | { |
| 9626 | if (*ptr++ != j) |
| 9627 | { |
| 9628 | if ((pDevice->DmaReadWriteCtrl & DMA_CTRL_WRITE_BOUNDARY_MASK) |
| 9629 | != DMA_CTRL_WRITE_BOUNDARY_16) |
| 9630 | { |
| 9631 | pDevice->DmaReadWriteCtrl = (pDevice->DmaReadWriteCtrl & |
| 9632 | ~DMA_CTRL_WRITE_BOUNDARY_MASK) | |
| 9633 | DMA_CTRL_WRITE_BOUNDARY_16; |
| 9634 | REG_WR(pDevice, PciCfg.DmaReadWriteCtrl, |
| 9635 | pDevice->DmaReadWriteCtrl); |
| 9636 | break; |
| 9637 | } |
| 9638 | else |
| 9639 | { |
| 9640 | goto LM_DmaTestDone; |
| 9641 | } |
| 9642 | } |
| 9643 | } |
| 9644 | if (j == (BufferSize/4)) |
| 9645 | dma_success = 1; |
| 9646 | } |
| 9647 | ret = LM_STATUS_SUCCESS; |
| 9648 | LM_DmaTestDone: |
| 9649 | memset(pBufferVirt, 0, BufferSize); |
| 9650 | return ret; |
| 9651 | } |
| 9652 | |
| 9653 | void |
| 9654 | LM_Add32To64Counter(LM_UINT32 Counter32, T3_64BIT_REGISTER *Counter64) |
| 9655 | { |
| 9656 | Counter64->Low += Counter32; |
| 9657 | if (Counter64->Low < Counter32) |
| 9658 | { |
| 9659 | Counter64->High++; |
| 9660 | } |
| 9661 | } |
| 9662 | |
| 9663 | LM_STATUS |
| 9664 | LM_GetStats(PLM_DEVICE_BLOCK pDevice) |
| 9665 | { |
| 9666 | PT3_STATS_BLOCK pStats = (PT3_STATS_BLOCK) pDevice->pStatsBlkVirt; |
| 9667 | |
| 9668 | if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) |
| 9669 | { |
| 9670 | return LM_STATUS_FAILURE; |
| 9671 | } |
| 9672 | |
| 9673 | if (pStats == 0) |
| 9674 | { |
| 9675 | return LM_STATUS_FAILURE; |
| 9676 | } |
| 9677 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCOutOctets), |
| 9678 | &pStats->ifHCOutOctets); |
| 9679 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.etherStatsCollisions), |
| 9680 | &pStats->etherStatsCollisions); |
| 9681 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.outXonSent), |
| 9682 | &pStats->outXonSent); |
| 9683 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.outXoffSent), |
| 9684 | &pStats->outXoffSent); |
| 9685 | LM_Add32To64Counter(REG_RD(pDevice, |
| 9686 | MacCtrl.dot3StatsInternalMacTransmitErrors), |
| 9687 | &pStats->dot3StatsInternalMacTransmitErrors); |
| 9688 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsSingleCollisionFrames), |
| 9689 | &pStats->dot3StatsSingleCollisionFrames); |
| 9690 | LM_Add32To64Counter(REG_RD(pDevice, |
| 9691 | MacCtrl.dot3StatsMultipleCollisionFrames), |
| 9692 | &pStats->dot3StatsMultipleCollisionFrames); |
| 9693 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsDeferredTransmissions), |
| 9694 | &pStats->dot3StatsDeferredTransmissions); |
| 9695 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsExcessiveCollisions), |
| 9696 | &pStats->dot3StatsExcessiveCollisions); |
| 9697 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsLateCollisions), |
| 9698 | &pStats->dot3StatsLateCollisions); |
| 9699 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCOutUcastPkts), |
| 9700 | &pStats->ifHCOutUcastPkts); |
| 9701 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCOutMulticastPkts), |
| 9702 | &pStats->ifHCOutMulticastPkts); |
| 9703 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCOutBroadcastPkts), |
| 9704 | &pStats->ifHCOutBroadcastPkts); |
| 9705 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCInOctets), |
| 9706 | &pStats->ifHCInOctets); |
| 9707 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.etherStatsFragments), |
| 9708 | &pStats->etherStatsFragments); |
| 9709 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCInUcastPkts), |
| 9710 | &pStats->ifHCInUcastPkts); |
| 9711 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCInMulticastPkts), |
| 9712 | &pStats->ifHCInMulticastPkts); |
| 9713 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCInBroadcastPkts), |
| 9714 | &pStats->ifHCInBroadcastPkts); |
| 9715 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsFCSErrors), |
| 9716 | &pStats->dot3StatsFCSErrors); |
| 9717 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsAlignmentErrors), |
| 9718 | &pStats->dot3StatsAlignmentErrors); |
| 9719 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.xonPauseFramesReceived), |
| 9720 | &pStats->xonPauseFramesReceived); |
| 9721 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.xoffPauseFramesReceived), |
| 9722 | &pStats->xoffPauseFramesReceived); |
| 9723 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.macControlFramesReceived), |
| 9724 | &pStats->macControlFramesReceived); |
| 9725 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.xoffStateEntered), |
| 9726 | &pStats->xoffStateEntered); |
| 9727 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsFramesTooLong), |
| 9728 | &pStats->dot3StatsFramesTooLong); |
| 9729 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.etherStatsJabbers), |
| 9730 | &pStats->etherStatsJabbers); |
| 9731 | LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.etherStatsUndersizePkts), |
| 9732 | &pStats->etherStatsUndersizePkts); |
| 9733 | |
| 9734 | return LM_STATUS_SUCCESS; |
| 9735 | } |
| 9736 | |