| 1 | /* |
| 2 | * Misc utility routines for accessing chip-specific features |
| 3 | * of the SiliconBackplane-based Broadcom chips. |
| 4 | * |
| 5 | * Copyright 2007, Broadcom Corporation |
| 6 | * All Rights Reserved. |
| 7 | * |
| 8 | * THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY |
| 9 | * KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM |
| 10 | * SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS |
| 11 | * FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE. |
| 12 | */ |
| 13 | |
| 14 | #include <typedefs.h> |
| 15 | #include <bcmdefs.h> |
| 16 | #include <osl.h> |
| 17 | #include <sbutils.h> |
| 18 | #include <bcmdevs.h> |
| 19 | #include <sbconfig.h> |
| 20 | #include <sbchipc.h> |
| 21 | #include <sbextif.h> |
| 22 | #include <sbpci.h> |
| 23 | #include <sbpcie.h> |
| 24 | #include <pcicfg.h> |
| 25 | #include <sbpcmcia.h> |
| 26 | #include <sbsocram.h> |
| 27 | #include <bcmnvram.h> |
| 28 | #include <bcmsrom.h> |
| 29 | #include <hndpmu.h> |
| 30 | |
| 31 | /* debug/trace */ |
| 32 | #define SB_ERROR(args) |
| 33 | |
| 34 | #ifdef BCMDBG |
| 35 | #define SB_MSG(args) printf args |
| 36 | #else |
| 37 | #define SB_MSG(args) |
| 38 | #endif /* BCMDBG */ |
| 39 | |
| 40 | typedef uint32(*sb_intrsoff_t) (void *intr_arg); |
| 41 | typedef void (*sb_intrsrestore_t) (void *intr_arg, uint32 arg); |
| 42 | typedef bool(*sb_intrsenabled_t) (void *intr_arg); |
| 43 | |
| 44 | typedef struct gpioh_item { |
| 45 | void *arg; |
| 46 | bool level; |
| 47 | gpio_handler_t handler; |
| 48 | uint32 event; |
| 49 | struct gpioh_item *next; |
| 50 | } gpioh_item_t; |
| 51 | |
| 52 | /* misc sb info needed by some of the routines */ |
| 53 | typedef struct sb_info { |
| 54 | |
| 55 | struct sb_pub sb; /* back plane public state (must be first field) */ |
| 56 | |
| 57 | void *osh; /* osl os handle */ |
| 58 | void *sdh; /* bcmsdh handle */ |
| 59 | |
| 60 | void *curmap; /* current regs va */ |
| 61 | void *regs[SB_MAXCORES]; /* other regs va */ |
| 62 | |
| 63 | uint curidx; /* current core index */ |
| 64 | uint dev_coreid; /* the core provides driver functions */ |
| 65 | |
| 66 | bool memseg; /* flag to toggle MEM_SEG register */ |
| 67 | |
| 68 | uint gpioidx; /* gpio control core index */ |
| 69 | uint gpioid; /* gpio control coretype */ |
| 70 | |
| 71 | uint numcores; /* # discovered cores */ |
| 72 | uint coreid[SB_MAXCORES]; /* id of each core */ |
| 73 | |
| 74 | void *intr_arg; /* interrupt callback function arg */ |
| 75 | sb_intrsoff_t intrsoff_fn; /* turns chip interrupts off */ |
| 76 | sb_intrsrestore_t intrsrestore_fn; /* restore chip interrupts */ |
| 77 | sb_intrsenabled_t intrsenabled_fn; /* check if interrupts are enabled */ |
| 78 | |
| 79 | uint8 pciecap_lcreg_offset; /* PCIE capability LCreg offset in the config space */ |
| 80 | bool pr42767_war; |
| 81 | uint8 pcie_polarity; |
| 82 | bool pcie_war_ovr; /* Override ASPM/Clkreq settings */ |
| 83 | |
| 84 | uint8 pmecap_offset; /* PM Capability offset in the config space */ |
| 85 | bool pmecap; /* Capable of generating PME */ |
| 86 | |
| 87 | gpioh_item_t *gpioh_head; /* GPIO event handlers list */ |
| 88 | |
| 89 | char *vars; |
| 90 | uint varsz; |
| 91 | } sb_info_t; |
| 92 | |
| 93 | /* local prototypes */ |
| 94 | static sb_info_t *sb_doattach(sb_info_t * si, uint devid, osl_t * osh, |
| 95 | void *regs, uint bustype, void *sdh, |
| 96 | char **vars, uint * varsz); |
| 97 | static void sb_scan(sb_info_t * si); |
| 98 | static uint _sb_coreidx(sb_info_t * si); |
| 99 | static uint sb_pcidev2chip(uint pcidev); |
| 100 | static uint sb_chip2numcores(uint chip); |
| 101 | static bool sb_ispcie(sb_info_t * si); |
| 102 | static uint8 sb_find_pci_capability(sb_info_t * si, uint8 req_cap_id, |
| 103 | uchar * buf, uint32 * buflen); |
| 104 | static int sb_pci_fixcfg(sb_info_t * si); |
| 105 | /* routines to access mdio slave device registers */ |
| 106 | static int sb_pcie_mdiowrite(sb_info_t * si, uint physmedia, uint readdr, |
| 107 | uint val); |
| 108 | static int sb_pcie_mdioread(sb_info_t * si, uint physmedia, uint readdr, |
| 109 | uint * ret_val); |
| 110 | |
| 111 | /* dev path concatenation util */ |
| 112 | static char *sb_devpathvar(sb_t * sbh, char *var, int len, const char *name); |
| 113 | |
| 114 | /* WARs */ |
| 115 | static void sb_war43448(sb_t * sbh); |
| 116 | static void sb_war43448_aspm(sb_t * sbh); |
| 117 | static void sb_war32414_forceHT(sb_t * sbh, bool forceHT); |
| 118 | static void sb_war30841(sb_info_t * si); |
| 119 | static void sb_war42767(sb_t * sbh); |
| 120 | static void sb_war42767_clkreq(sb_t * sbh); |
| 121 | |
| 122 | /* delay needed between the mdio control/ mdiodata register data access */ |
| 123 | #define PR28829_DELAY() OSL_DELAY(10) |
| 124 | |
| 125 | /* size that can take bitfielddump */ |
| 126 | #define BITFIELD_DUMP_SIZE 32 |
| 127 | |
| 128 | /* global variable to indicate reservation/release of gpio's */ |
| 129 | static uint32 sb_gpioreservation = 0; |
| 130 | |
| 131 | /* global flag to prevent shared resources from being initialized multiple times in sb_attach() */ |
| 132 | static bool sb_onetimeinit = FALSE; |
| 133 | |
| 134 | #define SB_INFO(sbh) (sb_info_t*)(uintptr)sbh |
| 135 | #define SET_SBREG(si, r, mask, val) \ |
| 136 | W_SBREG((si), (r), ((R_SBREG((si), (r)) & ~(mask)) | (val))) |
| 137 | #define GOODCOREADDR(x) (((x) >= SB_ENUM_BASE) && ((x) <= SB_ENUM_LIM) && \ |
| 138 | ISALIGNED((x), SB_CORE_SIZE)) |
| 139 | #define GOODREGS(regs) ((regs) && ISALIGNED((uintptr)(regs), SB_CORE_SIZE)) |
| 140 | #define REGS2SB(va) (sbconfig_t*) ((int8*)(va) + SBCONFIGOFF) |
| 141 | #define BADCOREADDR 0 |
| 142 | #define GOODIDX(idx) (((uint)idx) < SB_MAXCORES) |
| 143 | #define BADIDX (SB_MAXCORES+1) |
| 144 | #define NOREV -1 /* Invalid rev */ |
| 145 | |
| 146 | #define PCI(si) ((BUSTYPE(si->sb.bustype) == PCI_BUS) && (si->sb.buscoretype == SB_PCI)) |
| 147 | #define PCIE(si) ((BUSTYPE(si->sb.bustype) == PCI_BUS) && (si->sb.buscoretype == SB_PCIE)) |
| 148 | #define PCMCIA(si) ((BUSTYPE(si->sb.bustype) == PCMCIA_BUS) && (si->memseg == TRUE)) |
| 149 | |
| 150 | /* sonicsrev */ |
| 151 | #define SONICS_2_2 (SBIDL_RV_2_2 >> SBIDL_RV_SHIFT) |
| 152 | #define SONICS_2_3 (SBIDL_RV_2_3 >> SBIDL_RV_SHIFT) |
| 153 | |
| 154 | #define R_SBREG(si, sbr) sb_read_sbreg((si), (sbr)) |
| 155 | #define W_SBREG(si, sbr, v) sb_write_sbreg((si), (sbr), (v)) |
| 156 | #define AND_SBREG(si, sbr, v) W_SBREG((si), (sbr), (R_SBREG((si), (sbr)) & (v))) |
| 157 | #define OR_SBREG(si, sbr, v) W_SBREG((si), (sbr), (R_SBREG((si), (sbr)) | (v))) |
| 158 | |
| 159 | /* |
| 160 | * Macros to disable/restore function core(D11, ENET, ILINE20, etc) interrupts before/ |
| 161 | * after core switching to avoid invalid register accesss inside ISR. |
| 162 | */ |
| 163 | #define INTR_OFF(si, intr_val) \ |
| 164 | if ((si)->intrsoff_fn && (si)->coreid[(si)->curidx] == (si)->dev_coreid) { \ |
| 165 | intr_val = (*(si)->intrsoff_fn)((si)->intr_arg); } |
| 166 | #define INTR_RESTORE(si, intr_val) \ |
| 167 | if ((si)->intrsrestore_fn && (si)->coreid[(si)->curidx] == (si)->dev_coreid) { \ |
| 168 | (*(si)->intrsrestore_fn)((si)->intr_arg, intr_val); } |
| 169 | |
| 170 | /* dynamic clock control defines */ |
| 171 | #define LPOMINFREQ 25000 /* low power oscillator min */ |
| 172 | #define LPOMAXFREQ 43000 /* low power oscillator max */ |
| 173 | #define XTALMINFREQ 19800000 /* 20 MHz - 1% */ |
| 174 | #define XTALMAXFREQ 20200000 /* 20 MHz + 1% */ |
| 175 | #define PCIMINFREQ 25000000 /* 25 MHz */ |
| 176 | #define PCIMAXFREQ 34000000 /* 33 MHz + fudge */ |
| 177 | |
| 178 | #define ILP_DIV_5MHZ 0 /* ILP = 5 MHz */ |
| 179 | #define ILP_DIV_1MHZ 4 /* ILP = 1 MHz */ |
| 180 | |
| 181 | /* force HT war check */ |
| 182 | #define FORCEHT_WAR32414(si) \ |
| 183 | (((PCIE(si)) && (si->sb.chip == BCM4311_CHIP_ID) && ((si->sb.chiprev <= 1))) || \ |
| 184 | ((PCI(si) || PCIE(si)) && (si->sb.chip == BCM4321_CHIP_ID) && (si->sb.chiprev <= 3))) |
| 185 | |
| 186 | #define PCIE_ASPMWARS(si) \ |
| 187 | ((PCIE(si)) && ((si->sb.buscorerev >= 3) && (si->sb.buscorerev <= 5))) |
| 188 | |
| 189 | /* GPIO Based LED powersave defines */ |
| 190 | #define DEFAULT_GPIO_ONTIME 10 /* Default: 10% on */ |
| 191 | #define DEFAULT_GPIO_OFFTIME 90 /* Default: 10% on */ |
| 192 | |
| 193 | #define DEFAULT_GPIOTIMERVAL ((DEFAULT_GPIO_ONTIME << GPIO_ONTIME_SHIFT) | DEFAULT_GPIO_OFFTIME) |
| 194 | |
| 195 | static uint32 sb_read_sbreg(sb_info_t * si, volatile uint32 * sbr) |
| 196 | { |
| 197 | uint8 tmp; |
| 198 | uint32 val, intr_val = 0; |
| 199 | |
| 200 | /* |
| 201 | * compact flash only has 11 bits address, while we needs 12 bits address. |
| 202 | * MEM_SEG will be OR'd with other 11 bits address in hardware, |
| 203 | * so we program MEM_SEG with 12th bit when necessary(access sb regsiters). |
| 204 | * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special |
| 205 | */ |
| 206 | if (PCMCIA(si)) { |
| 207 | INTR_OFF(si, intr_val); |
| 208 | tmp = 1; |
| 209 | OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1); |
| 210 | sbr = (volatile uint32 *)((uintptr) sbr & ~(1 << 11)); /* mask out bit 11 */ |
| 211 | } |
| 212 | |
| 213 | val = R_REG(si->osh, sbr); |
| 214 | |
| 215 | if (PCMCIA(si)) { |
| 216 | tmp = 0; |
| 217 | OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1); |
| 218 | INTR_RESTORE(si, intr_val); |
| 219 | } |
| 220 | |
| 221 | return (val); |
| 222 | } |
| 223 | |
| 224 | static void sb_write_sbreg(sb_info_t * si, volatile uint32 * sbr, uint32 v) |
| 225 | { |
| 226 | uint8 tmp; |
| 227 | volatile uint32 dummy; |
| 228 | uint32 intr_val = 0; |
| 229 | |
| 230 | /* |
| 231 | * compact flash only has 11 bits address, while we needs 12 bits address. |
| 232 | * MEM_SEG will be OR'd with other 11 bits address in hardware, |
| 233 | * so we program MEM_SEG with 12th bit when necessary(access sb regsiters). |
| 234 | * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special |
| 235 | */ |
| 236 | if (PCMCIA(si)) { |
| 237 | INTR_OFF(si, intr_val); |
| 238 | tmp = 1; |
| 239 | OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1); |
| 240 | sbr = (volatile uint32 *)((uintptr) sbr & ~(1 << 11)); /* mask out bit 11 */ |
| 241 | } |
| 242 | |
| 243 | if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) { |
| 244 | #ifdef IL_BIGENDIAN |
| 245 | dummy = R_REG(si->osh, sbr); |
| 246 | W_REG(si->osh, ((volatile uint16 *)sbr + 1), |
| 247 | (uint16) ((v >> 16) & 0xffff)); |
| 248 | dummy = R_REG(si->osh, sbr); |
| 249 | W_REG(si->osh, (volatile uint16 *)sbr, (uint16) (v & 0xffff)); |
| 250 | #else |
| 251 | dummy = R_REG(si->osh, sbr); |
| 252 | W_REG(si->osh, (volatile uint16 *)sbr, (uint16) (v & 0xffff)); |
| 253 | dummy = R_REG(si->osh, sbr); |
| 254 | W_REG(si->osh, ((volatile uint16 *)sbr + 1), |
| 255 | (uint16) ((v >> 16) & 0xffff)); |
| 256 | #endif /* IL_BIGENDIAN */ |
| 257 | } else |
| 258 | W_REG(si->osh, sbr, v); |
| 259 | |
| 260 | if (PCMCIA(si)) { |
| 261 | tmp = 0; |
| 262 | OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1); |
| 263 | INTR_RESTORE(si, intr_val); |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | /* |
| 268 | * Allocate a sb handle. |
| 269 | * devid - pci device id (used to determine chip#) |
| 270 | * osh - opaque OS handle |
| 271 | * regs - virtual address of initial core registers |
| 272 | * bustype - pci/pcmcia/sb/sdio/etc |
| 273 | * vars - pointer to a pointer area for "environment" variables |
| 274 | * varsz - pointer to int to return the size of the vars |
| 275 | */ |
| 276 | sb_t *sb_attach(uint devid, osl_t * osh, void *regs, |
| 277 | uint bustype, void *sdh, char **vars, |
| 278 | uint * varsz) { |
| 279 | sb_info_t *si; |
| 280 | |
| 281 | /* alloc sb_info_t */ |
| 282 | if ((si = MALLOC(osh, sizeof(sb_info_t))) == NULL) { |
| 283 | SB_ERROR(("sb_attach: malloc failed! malloced %d bytes\n", |
| 284 | MALLOCED(osh))); |
| 285 | return (NULL); |
| 286 | } |
| 287 | |
| 288 | if (sb_doattach(si, devid, osh, regs, bustype, sdh, vars, varsz) == |
| 289 | NULL) { |
| 290 | MFREE(osh, si, sizeof(sb_info_t)); |
| 291 | return (NULL); |
| 292 | } |
| 293 | si->vars = vars ? *vars : NULL; |
| 294 | si->varsz = varsz ? *varsz : 0; |
| 295 | |
| 296 | return (sb_t *) si; |
| 297 | } |
| 298 | |
| 299 | /* Using sb_kattach depends on SB_BUS support, either implicit */ |
| 300 | /* no limiting BCMBUSTYPE value) or explicit (value is SB_BUS). */ |
| 301 | #if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SB_BUS) |
| 302 | |
| 303 | /* global kernel resource */ |
| 304 | static sb_info_t ksi; |
| 305 | |
| 306 | /* generic kernel variant of sb_attach() */ |
| 307 | sb_t *BCMINITFN(sb_kattach) (osl_t * osh) { |
| 308 | static bool ksi_attached = FALSE; |
| 309 | uint32 *regs; |
| 310 | |
| 311 | if (!ksi_attached) { |
| 312 | uint32 cid; |
| 313 | |
| 314 | regs = (uint32 *) REG_MAP(SB_ENUM_BASE, SB_CORE_SIZE); |
| 315 | cid = R_REG(osh, (uint32 *) regs); |
| 316 | if (((cid & CID_ID_MASK) == BCM4712_CHIP_ID) && |
| 317 | ((cid & CID_PKG_MASK) != BCM4712LARGE_PKG_ID) && |
| 318 | ((cid & CID_REV_MASK) <= (3 << CID_REV_SHIFT))) { |
| 319 | uint32 *scc, val; |
| 320 | |
| 321 | scc = |
| 322 | (uint32 *) ((uchar *) regs + |
| 323 | OFFSETOF(chipcregs_t, slow_clk_ctl)); |
| 324 | val = R_REG(osh, scc); |
| 325 | SB_ERROR((" initial scc = 0x%x\n", val)); |
| 326 | val |= SCC_SS_XTAL; |
| 327 | W_REG(osh, scc, val); |
| 328 | } |
| 329 | |
| 330 | if (sb_doattach(&ksi, BCM4710_DEVICE_ID, osh, (void *)regs, SB_BUS, NULL, |
| 331 | osh != SB_OSH ? &ksi.vars : NULL, |
| 332 | osh != SB_OSH ? &ksi.varsz : NULL) == NULL) |
| 333 | return NULL; |
| 334 | ksi_attached = TRUE; |
| 335 | } |
| 336 | |
| 337 | return &ksi.sb; |
| 338 | } |
| 339 | #endif /* !BCMBUSTYPE || (BCMBUSTYPE == SB_BUS) */ |
| 340 | |
| 341 | static sb_info_t *BCMINITFN(sb_doattach) (sb_info_t * si, uint devid, |
| 342 | osl_t * osh, void *regs, |
| 343 | uint bustype, void *sdh, |
| 344 | char **vars, uint * varsz) { |
| 345 | uint origidx; |
| 346 | chipcregs_t *cc; |
| 347 | sbconfig_t *sb; |
| 348 | uint32 w; |
| 349 | char *pvars; |
| 350 | |
| 351 | ASSERT(GOODREGS(regs)); |
| 352 | |
| 353 | bzero((uchar *) si, sizeof(sb_info_t)); |
| 354 | si->sb.buscoreidx = si->gpioidx = BADIDX; |
| 355 | |
| 356 | si->curmap = regs; |
| 357 | si->sdh = sdh; |
| 358 | si->osh = osh; |
| 359 | |
| 360 | /* check to see if we are a sb core mimic'ing a pci core */ |
| 361 | if (bustype == PCI_BUS) { |
| 362 | if (OSL_PCI_READ_CONFIG |
| 363 | (si->osh, PCI_SPROM_CONTROL, |
| 364 | sizeof(uint32)) == 0xffffffff) { |
| 365 | SB_ERROR(("%s: incoming bus is PCI but it's a lie, switching to SB " "devid:0x%x\n", __FUNCTION__, devid)); |
| 366 | bustype = SB_BUS; |
| 367 | } |
| 368 | } |
| 369 | si->sb.bustype = bustype; |
| 370 | if (si->sb.bustype != BUSTYPE(si->sb.bustype)) { |
| 371 | SB_ERROR(("sb_doattach: bus type %d does not match configured bus type %d\n", si->sb.bustype, BUSTYPE(si->sb.bustype))); |
| 372 | return NULL; |
| 373 | } |
| 374 | |
| 375 | /* need to set memseg flag for CF card first before any sb registers access */ |
| 376 | if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) |
| 377 | si->memseg = TRUE; |
| 378 | |
| 379 | /* kludge to enable the clock on the 4306 which lacks a slowclock */ |
| 380 | if (BUSTYPE(si->sb.bustype) == PCI_BUS && !sb_ispcie(si)) |
| 381 | sb_clkctl_xtal(&si->sb, XTAL | PLL, ON); |
| 382 | |
| 383 | if (BUSTYPE(si->sb.bustype) == PCI_BUS) { |
| 384 | w = OSL_PCI_READ_CONFIG(si->osh, PCI_BAR0_WIN, sizeof(uint32)); |
| 385 | if (!GOODCOREADDR(w)) |
| 386 | OSL_PCI_WRITE_CONFIG(si->osh, PCI_BAR0_WIN, |
| 387 | sizeof(uint32), SB_ENUM_BASE); |
| 388 | } |
| 389 | |
| 390 | /* initialize current core index value */ |
| 391 | si->curidx = _sb_coreidx(si); |
| 392 | |
| 393 | if (si->curidx == BADIDX) { |
| 394 | SB_ERROR(("sb_doattach: bad core index\n")); |
| 395 | return NULL; |
| 396 | } |
| 397 | |
| 398 | /* get sonics backplane revision */ |
| 399 | sb = REGS2SB(regs); |
| 400 | si->sb.sonicsrev = |
| 401 | (R_SBREG(si, &sb->sbidlow) & SBIDL_RV_MASK) >> SBIDL_RV_SHIFT; |
| 402 | /* keep and reuse the initial register mapping */ |
| 403 | origidx = si->curidx; |
| 404 | if (BUSTYPE(si->sb.bustype) == SB_BUS) |
| 405 | si->regs[origidx] = regs; |
| 406 | |
| 407 | /* is core-0 a chipcommon core? */ |
| 408 | si->numcores = 1; |
| 409 | cc = (chipcregs_t *) sb_setcoreidx(&si->sb, 0); |
| 410 | if (sb_coreid(&si->sb) != SB_CC) |
| 411 | cc = NULL; |
| 412 | |
| 413 | /* determine chip id and rev */ |
| 414 | if (cc) { |
| 415 | /* chip common core found! */ |
| 416 | si->sb.chip = R_REG(si->osh, &cc->chipid) & CID_ID_MASK; |
| 417 | si->sb.chiprev = |
| 418 | (R_REG(si->osh, &cc->chipid) & CID_REV_MASK) >> |
| 419 | CID_REV_SHIFT; |
| 420 | si->sb.chippkg = |
| 421 | (R_REG(si->osh, &cc->chipid) & CID_PKG_MASK) >> |
| 422 | CID_PKG_SHIFT; |
| 423 | } else { |
| 424 | /* no chip common core -- must convert device id to chip id */ |
| 425 | if ((si->sb.chip = sb_pcidev2chip(devid)) == 0) { |
| 426 | SB_ERROR(("sb_doattach: unrecognized device id 0x%04x\n", devid)); |
| 427 | sb_setcoreidx(&si->sb, origidx); |
| 428 | return NULL; |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | /* get chipcommon rev */ |
| 433 | si->sb.ccrev = cc ? (int)sb_corerev(&si->sb) : NOREV; |
| 434 | |
| 435 | /* get chipcommon capabilites */ |
| 436 | si->sb.cccaps = cc ? R_REG(si->osh, &cc->capabilities) : 0; |
| 437 | |
| 438 | /* determine numcores */ |
| 439 | if (cc && ((si->sb.ccrev == 4) || (si->sb.ccrev >= 6))) |
| 440 | si->numcores = |
| 441 | (R_REG(si->osh, &cc->chipid) & CID_CC_MASK) >> CID_CC_SHIFT; |
| 442 | else |
| 443 | si->numcores = sb_chip2numcores(si->sb.chip); |
| 444 | |
| 445 | /* return to original core */ |
| 446 | sb_setcoreidx(&si->sb, origidx); |
| 447 | |
| 448 | /* sanity checks */ |
| 449 | ASSERT(si->sb.chip); |
| 450 | |
| 451 | /* scan for cores */ |
| 452 | sb_scan(si); |
| 453 | |
| 454 | /* fixup necessary chip/core configurations */ |
| 455 | if (BUSTYPE(si->sb.bustype) == PCI_BUS && sb_pci_fixcfg(si)) { |
| 456 | SB_ERROR(("sb_doattach: sb_pci_fixcfg failed\n")); |
| 457 | return NULL; |
| 458 | } |
| 459 | |
| 460 | /* Init nvram from sprom/otp if they exist */ |
| 461 | if (srom_var_init |
| 462 | (&si->sb, BUSTYPE(si->sb.bustype), regs, si->osh, vars, varsz)) { |
| 463 | SB_ERROR(("sb_doattach: srom_var_init failed: bad srom\n")); |
| 464 | return (NULL); |
| 465 | } |
| 466 | pvars = vars ? *vars : NULL; |
| 467 | |
| 468 | /* PMU specific initializations */ |
| 469 | if ((si->sb.cccaps & CC_CAP_PMU) && !sb_onetimeinit) { |
| 470 | sb_pmu_init(&si->sb, si->osh); |
| 471 | /* Find out Crystal frequency and init PLL */ |
| 472 | sb_pmu_pll_init(&si->sb, si->osh, getintvar(pvars, "xtalfreq")); |
| 473 | /* Initialize PMU resources (up/dn timers, dep masks, etc.) */ |
| 474 | sb_pmu_res_init(&si->sb, si->osh); |
| 475 | } |
| 476 | if (cc == NULL) { |
| 477 | /* |
| 478 | * The chip revision number is hardwired into all |
| 479 | * of the pci function config rev fields and is |
| 480 | * independent from the individual core revision numbers. |
| 481 | * For example, the "A0" silicon of each chip is chip rev 0. |
| 482 | * For PCMCIA we get it from the CIS instead. |
| 483 | */ |
| 484 | if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) { |
| 485 | ASSERT(vars); |
| 486 | si->sb.chiprev = getintvar(*vars, "chiprev"); |
| 487 | } else if (BUSTYPE(si->sb.bustype) == PCI_BUS) { |
| 488 | w = OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_REV, |
| 489 | sizeof(uint32)); |
| 490 | si->sb.chiprev = w & 0xff; |
| 491 | } else |
| 492 | si->sb.chiprev = 0; |
| 493 | } |
| 494 | |
| 495 | if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) { |
| 496 | w = getintvar(pvars, "regwindowsz"); |
| 497 | si->memseg = (w <= CFTABLE_REGWIN_2K) ? TRUE : FALSE; |
| 498 | } |
| 499 | /* gpio control core is required */ |
| 500 | if (!GOODIDX(si->gpioidx)) { |
| 501 | SB_ERROR(("sb_doattach: gpio control core not found\n")); |
| 502 | return NULL; |
| 503 | } |
| 504 | |
| 505 | /* get boardtype and boardrev */ |
| 506 | switch (BUSTYPE(si->sb.bustype)) { |
| 507 | case PCI_BUS: |
| 508 | /* do a pci config read to get subsystem id and subvendor id */ |
| 509 | w = OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_SVID, sizeof(uint32)); |
| 510 | /* Let nvram variables override subsystem Vend/ID */ |
| 511 | if ((si->sb.boardvendor = |
| 512 | (uint16) sb_getdevpathintvar(&si->sb, "boardvendor")) == 0) |
| 513 | si->sb.boardvendor = w & 0xffff; |
| 514 | else |
| 515 | SB_ERROR(("Overriding boardvendor: 0x%x instead of 0x%x\n", si->sb.boardvendor, w & 0xffff)); |
| 516 | if ((si->sb.boardtype = |
| 517 | (uint16) sb_getdevpathintvar(&si->sb, "boardtype")) == 0) |
| 518 | si->sb.boardtype = (w >> 16) & 0xffff; |
| 519 | else |
| 520 | SB_ERROR(("Overriding boardtype: 0x%x instead of 0x%x\n", si->sb.boardtype, (w >> 16) & 0xffff)); |
| 521 | break; |
| 522 | |
| 523 | case PCMCIA_BUS: |
| 524 | si->sb.boardvendor = getintvar(pvars, "manfid"); |
| 525 | si->sb.boardtype = getintvar(pvars, "prodid"); |
| 526 | break; |
| 527 | |
| 528 | case SB_BUS: |
| 529 | case JTAG_BUS: |
| 530 | si->sb.boardvendor = VENDOR_BROADCOM; |
| 531 | if (pvars == NULL |
| 532 | || ((si->sb.boardtype = getintvar(pvars, "prodid")) == 0)) |
| 533 | if ((si->sb.boardtype = |
| 534 | getintvar(NULL, "boardtype")) == 0) |
| 535 | si->sb.boardtype = 0xffff; |
| 536 | break; |
| 537 | } |
| 538 | |
| 539 | if (si->sb.boardtype == 0) { |
| 540 | SB_ERROR(("sb_doattach: unknown board type\n")); |
| 541 | ASSERT(si->sb.boardtype); |
| 542 | } |
| 543 | |
| 544 | si->sb.boardflags = getintvar(pvars, "boardflags"); |
| 545 | |
| 546 | /* setup the GPIO based LED powersave register */ |
| 547 | if (si->sb.ccrev >= 16) { |
| 548 | if ((pvars == NULL) || ((w = getintvar(pvars, "leddc")) == 0)) |
| 549 | w = DEFAULT_GPIOTIMERVAL; |
| 550 | sb_corereg(&si->sb, SB_CC_IDX, |
| 551 | OFFSETOF(chipcregs_t, gpiotimerval), ~0, w); |
| 552 | } |
| 553 | |
| 554 | /* Determine if this board needs override */ |
| 555 | if (PCIE(si) && (si->sb.chip == BCM4321_CHIP_ID)) |
| 556 | si->pcie_war_ovr = ((si->sb.boardvendor == VENDOR_APPLE) && |
| 557 | ((uint8) getintvar(pvars, "sromrev") == 4) |
| 558 | && ((uint8) getintvar(pvars, "boardrev") <= |
| 559 | 0x71)) |
| 560 | || ((uint32) getintvar(pvars, "boardflags2") & |
| 561 | BFL2_PCIEWAR_OVR); |
| 562 | |
| 563 | if (PCIE_ASPMWARS(si)) { |
| 564 | sb_war43448_aspm((void *)si); |
| 565 | sb_war42767_clkreq((void *)si); |
| 566 | } |
| 567 | |
| 568 | if (FORCEHT_WAR32414(si)) { |
| 569 | si->sb.pr32414 = TRUE; |
| 570 | sb_clkctl_init(&si->sb); |
| 571 | sb_war32414_forceHT(&si->sb, 1); |
| 572 | } |
| 573 | |
| 574 | if (PCIE(si) && ((si->sb.buscorerev == 6) || (si->sb.buscorerev == 7))) |
| 575 | si->sb.pr42780 = TRUE; |
| 576 | |
| 577 | if (PCIE_ASPMWARS(si)) |
| 578 | sb_pcieclkreq(&si->sb, 1, 0); |
| 579 | |
| 580 | if (PCIE(si) && |
| 581 | (((si->sb.chip == BCM4311_CHIP_ID) && (si->sb.chiprev == 2)) || |
| 582 | ((si->sb.chip == BCM4312_CHIP_ID) && (si->sb.chiprev == 0)))) |
| 583 | sb_set_initiator_to(&si->sb, 0x3, |
| 584 | sb_findcoreidx(&si->sb, SB_D11, 0)); |
| 585 | |
| 586 | /* Disable gpiopullup and gpiopulldown */ |
| 587 | if (!sb_onetimeinit && si->sb.ccrev >= 20) { |
| 588 | cc = (chipcregs_t *) sb_setcore(&si->sb, SB_CC, 0); |
| 589 | W_REG(osh, &cc->gpiopullup, 0); |
| 590 | W_REG(osh, &cc->gpiopulldown, 0); |
| 591 | sb_setcoreidx(&si->sb, origidx); |
| 592 | } |
| 593 | #ifdef BCMDBG |
| 594 | /* clear any previous epidiag-induced target abort */ |
| 595 | sb_taclear(&si->sb); |
| 596 | #endif /* BCMDBG */ |
| 597 | |
| 598 | #ifdef HNDRTE |
| 599 | sb_onetimeinit = TRUE; |
| 600 | #endif |
| 601 | |
| 602 | return (si); |
| 603 | } |
| 604 | |
| 605 | /* Enable/Disable clkreq for PCIE (4311B0/4321B1) */ |
| 606 | void sb_war42780_clkreq(sb_t * sbh, bool clkreq) { |
| 607 | sb_info_t *si; |
| 608 | |
| 609 | si = SB_INFO(sbh); |
| 610 | |
| 611 | /* Don't change clkreq value if serdespll war has not yet been applied */ |
| 612 | if (!si->pr42767_war && PCIE_ASPMWARS(si)) |
| 613 | return; |
| 614 | |
| 615 | sb_pcieclkreq(sbh, 1, (int32) clkreq); |
| 616 | } |
| 617 | |
| 618 | static void BCMINITFN(sb_war43448) (sb_t * sbh) { |
| 619 | sb_info_t *si; |
| 620 | |
| 621 | si = SB_INFO(sbh); |
| 622 | |
| 623 | /* if not pcie bus, we're done */ |
| 624 | if (!PCIE(si) || !PCIE_ASPMWARS(si)) |
| 625 | return; |
| 626 | |
| 627 | /* Restore the polarity */ |
| 628 | if (si->pcie_polarity != 0) |
| 629 | sb_pcie_mdiowrite((void *)(uintptr) & si->sb, MDIODATA_DEV_RX, |
| 630 | SERDES_RX_CTRL, si->pcie_polarity); |
| 631 | } |
| 632 | |
| 633 | static void BCMINITFN(sb_war43448_aspm) (sb_t * sbh) { |
| 634 | uint32 w; |
| 635 | uint16 val16, *reg16; |
| 636 | sbpcieregs_t *pcieregs; |
| 637 | sb_info_t *si; |
| 638 | |
| 639 | si = SB_INFO(sbh); |
| 640 | |
| 641 | /* if not pcie bus, we're done */ |
| 642 | if (!PCIE(si) || !PCIE_ASPMWARS(si)) |
| 643 | return; |
| 644 | |
| 645 | /* no ASPM stuff on QT or VSIM */ |
| 646 | if (si->sb.chippkg == HDLSIM_PKG_ID || si->sb.chippkg == HWSIM_PKG_ID) |
| 647 | return; |
| 648 | |
| 649 | pcieregs = (sbpcieregs_t *) sb_setcoreidx(sbh, si->sb.buscoreidx); |
| 650 | |
| 651 | /* Enable ASPM in the shadow SROM and Link control */ |
| 652 | reg16 = &pcieregs->sprom[SRSH_ASPM_OFFSET]; |
| 653 | val16 = R_REG(si->osh, reg16); |
| 654 | if (!si->pcie_war_ovr) |
| 655 | val16 |= SRSH_ASPM_ENB; |
| 656 | else |
| 657 | val16 &= ~SRSH_ASPM_ENB; |
| 658 | W_REG(si->osh, reg16, val16); |
| 659 | |
| 660 | w = OSL_PCI_READ_CONFIG(si->osh, si->pciecap_lcreg_offset, |
| 661 | sizeof(uint32)); |
| 662 | if (!si->pcie_war_ovr) |
| 663 | w |= PCIE_ASPM_ENAB; |
| 664 | else |
| 665 | w &= ~PCIE_ASPM_ENAB; |
| 666 | OSL_PCI_WRITE_CONFIG(si->osh, si->pciecap_lcreg_offset, sizeof(uint32), |
| 667 | w); |
| 668 | } |
| 669 | |
| 670 | static void BCMINITFN(sb_war32414_forceHT) (sb_t * sbh, bool forceHT) { |
| 671 | sb_info_t *si; |
| 672 | uint32 val = 0; |
| 673 | |
| 674 | si = SB_INFO(sbh); |
| 675 | |
| 676 | ASSERT(FORCEHT_WAR32414(si)); |
| 677 | |
| 678 | if (forceHT) |
| 679 | val = SYCC_HR; |
| 680 | sb_corereg(sbh, SB_CC_IDX, OFFSETOF(chipcregs_t, system_clk_ctl), |
| 681 | SYCC_HR, val); |
| 682 | } |
| 683 | |
| 684 | uint sb_coreid(sb_t * sbh) |
| 685 | { |
| 686 | sb_info_t *si; |
| 687 | sbconfig_t *sb; |
| 688 | |
| 689 | si = SB_INFO(sbh); |
| 690 | sb = REGS2SB(si->curmap); |
| 691 | |
| 692 | return ((R_SBREG(si, &sb->sbidhigh) & SBIDH_CC_MASK) >> SBIDH_CC_SHIFT); |
| 693 | } |
| 694 | |
| 695 | uint sb_flag(sb_t * sbh) |
| 696 | { |
| 697 | sb_info_t *si; |
| 698 | sbconfig_t *sb; |
| 699 | |
| 700 | si = SB_INFO(sbh); |
| 701 | sb = REGS2SB(si->curmap); |
| 702 | |
| 703 | return R_SBREG(si, &sb->sbtpsflag) & SBTPS_NUM0_MASK; |
| 704 | } |
| 705 | |
| 706 | uint sb_coreidx(sb_t * sbh) |
| 707 | { |
| 708 | sb_info_t *si; |
| 709 | |
| 710 | si = SB_INFO(sbh); |
| 711 | return (si->curidx); |
| 712 | } |
| 713 | |
| 714 | static uint _sb_coreidx(sb_info_t * si) |
| 715 | { |
| 716 | |
| 717 | sbconfig_t *sb; |
| 718 | uint32 sbaddr = 0; |
| 719 | |
| 720 | ASSERT(si); |
| 721 | |
| 722 | switch (BUSTYPE(si->sb.bustype)) { |
| 723 | case SB_BUS: |
| 724 | sb = REGS2SB(si->curmap); |
| 725 | sbaddr = sb_base(R_SBREG(si, &sb->sbadmatch0)); |
| 726 | break; |
| 727 | |
| 728 | case PCI_BUS: |
| 729 | sbaddr = |
| 730 | OSL_PCI_READ_CONFIG(si->osh, PCI_BAR0_WIN, sizeof(uint32)); |
| 731 | break; |
| 732 | |
| 733 | case PCMCIA_BUS:{ |
| 734 | uint8 tmp = 0; |
| 735 | |
| 736 | OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_ADDR0, &tmp, 1); |
| 737 | sbaddr = (uint) tmp << 12; |
| 738 | OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_ADDR1, &tmp, 1); |
| 739 | sbaddr |= (uint) tmp << 16; |
| 740 | OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_ADDR2, &tmp, 1); |
| 741 | sbaddr |= (uint) tmp << 24; |
| 742 | break; |
| 743 | } |
| 744 | |
| 745 | #ifdef BCMJTAG |
| 746 | case JTAG_BUS: |
| 747 | sbaddr = (uint32) si->curmap; |
| 748 | break; |
| 749 | #endif /* BCMJTAG */ |
| 750 | |
| 751 | default: |
| 752 | ASSERT(0); |
| 753 | } |
| 754 | |
| 755 | if (!GOODCOREADDR(sbaddr)) |
| 756 | return BADIDX; |
| 757 | |
| 758 | return ((sbaddr - SB_ENUM_BASE) / SB_CORE_SIZE); |
| 759 | } |
| 760 | |
| 761 | uint sb_corevendor(sb_t * sbh) |
| 762 | { |
| 763 | sb_info_t *si; |
| 764 | sbconfig_t *sb; |
| 765 | |
| 766 | si = SB_INFO(sbh); |
| 767 | sb = REGS2SB(si->curmap); |
| 768 | |
| 769 | return ((R_SBREG(si, &sb->sbidhigh) & SBIDH_VC_MASK) >> SBIDH_VC_SHIFT); |
| 770 | } |
| 771 | |
| 772 | uint sb_corerev(sb_t * sbh) |
| 773 | { |
| 774 | sb_info_t *si; |
| 775 | sbconfig_t *sb; |
| 776 | uint sbidh; |
| 777 | |
| 778 | si = SB_INFO(sbh); |
| 779 | sb = REGS2SB(si->curmap); |
| 780 | sbidh = R_SBREG(si, &sb->sbidhigh); |
| 781 | |
| 782 | return (SBCOREREV(sbidh)); |
| 783 | } |
| 784 | |
| 785 | void *sb_osh(sb_t * sbh) |
| 786 | { |
| 787 | sb_info_t *si; |
| 788 | |
| 789 | si = SB_INFO(sbh); |
| 790 | return si->osh; |
| 791 | } |
| 792 | |
| 793 | void sb_setosh(sb_t * sbh, osl_t * osh) |
| 794 | { |
| 795 | sb_info_t *si; |
| 796 | |
| 797 | si = SB_INFO(sbh); |
| 798 | if (si->osh != NULL) { |
| 799 | SB_ERROR(("osh is already set....\n")); |
| 800 | ASSERT(!si->osh); |
| 801 | } |
| 802 | si->osh = osh; |
| 803 | } |
| 804 | |
| 805 | /* set sbtmstatelow core-specific flags */ |
| 806 | void sb_coreflags_wo(sb_t * sbh, uint32 mask, uint32 val) |
| 807 | { |
| 808 | sb_info_t *si; |
| 809 | sbconfig_t *sb; |
| 810 | uint32 w; |
| 811 | |
| 812 | si = SB_INFO(sbh); |
| 813 | sb = REGS2SB(si->curmap); |
| 814 | |
| 815 | ASSERT((val & ~mask) == 0); |
| 816 | |
| 817 | /* mask and set */ |
| 818 | w = (R_SBREG(si, &sb->sbtmstatelow) & ~mask) | val; |
| 819 | W_SBREG(si, &sb->sbtmstatelow, w); |
| 820 | } |
| 821 | |
| 822 | /* set/clear sbtmstatelow core-specific flags */ |
| 823 | uint32 sb_coreflags(sb_t * sbh, uint32 mask, uint32 val) |
| 824 | { |
| 825 | sb_info_t *si; |
| 826 | sbconfig_t *sb; |
| 827 | uint32 w; |
| 828 | |
| 829 | si = SB_INFO(sbh); |
| 830 | sb = REGS2SB(si->curmap); |
| 831 | |
| 832 | ASSERT((val & ~mask) == 0); |
| 833 | |
| 834 | /* mask and set */ |
| 835 | if (mask || val) { |
| 836 | w = (R_SBREG(si, &sb->sbtmstatelow) & ~mask) | val; |
| 837 | W_SBREG(si, &sb->sbtmstatelow, w); |
| 838 | } |
| 839 | |
| 840 | /* return the new value |
| 841 | * for write operation, the following readback ensures the completion of write opration. |
| 842 | */ |
| 843 | return (R_SBREG(si, &sb->sbtmstatelow)); |
| 844 | } |
| 845 | |
| 846 | /* set/clear sbtmstatehigh core-specific flags */ |
| 847 | uint32 sb_coreflagshi(sb_t * sbh, uint32 mask, uint32 val) |
| 848 | { |
| 849 | sb_info_t *si; |
| 850 | sbconfig_t *sb; |
| 851 | uint32 w; |
| 852 | |
| 853 | si = SB_INFO(sbh); |
| 854 | sb = REGS2SB(si->curmap); |
| 855 | |
| 856 | ASSERT((val & ~mask) == 0); |
| 857 | ASSERT((mask & ~SBTMH_FL_MASK) == 0); |
| 858 | |
| 859 | /* mask and set */ |
| 860 | if (mask || val) { |
| 861 | w = (R_SBREG(si, &sb->sbtmstatehigh) & ~mask) | val; |
| 862 | W_SBREG(si, &sb->sbtmstatehigh, w); |
| 863 | } |
| 864 | |
| 865 | /* return the new value */ |
| 866 | return (R_SBREG(si, &sb->sbtmstatehigh)); |
| 867 | } |
| 868 | |
| 869 | /* Run bist on current core. Caller needs to take care of core-specific bist hazards */ |
| 870 | int sb_corebist(sb_t * sbh) |
| 871 | { |
| 872 | uint32 sblo; |
| 873 | sb_info_t *si; |
| 874 | sbconfig_t *sb; |
| 875 | int result = 0; |
| 876 | |
| 877 | si = SB_INFO(sbh); |
| 878 | sb = REGS2SB(si->curmap); |
| 879 | |
| 880 | sblo = R_SBREG(si, &sb->sbtmstatelow); |
| 881 | W_SBREG(si, &sb->sbtmstatelow, (sblo | SBTML_FGC | SBTML_BE)); |
| 882 | |
| 883 | SPINWAIT(((R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BISTD) == 0), |
| 884 | 100000); |
| 885 | |
| 886 | if (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BISTF) |
| 887 | result = -1; |
| 888 | |
| 889 | W_SBREG(si, &sb->sbtmstatelow, sblo); |
| 890 | |
| 891 | return result; |
| 892 | } |
| 893 | |
| 894 | bool sb_iscoreup(sb_t * sbh) |
| 895 | { |
| 896 | sb_info_t *si; |
| 897 | sbconfig_t *sb; |
| 898 | |
| 899 | si = SB_INFO(sbh); |
| 900 | sb = REGS2SB(si->curmap); |
| 901 | |
| 902 | return ((R_SBREG(si, &sb->sbtmstatelow) & |
| 903 | (SBTML_RESET | SBTML_REJ_MASK | SBTML_CLK)) == SBTML_CLK); |
| 904 | } |
| 905 | |
| 906 | /* |
| 907 | * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation, |
| 908 | * switch back to the original core, and return the new value. |
| 909 | * |
| 910 | * When using the silicon backplane, no fidleing with interrupts or core switches are needed. |
| 911 | * |
| 912 | * Also, when using pci/pcie, we can optimize away the core switching for pci registers |
| 913 | * and (on newer pci cores) chipcommon registers. |
| 914 | */ |
| 915 | uint sb_corereg(sb_t * sbh, uint coreidx, uint regoff, uint mask, uint val) |
| 916 | { |
| 917 | uint origidx = 0; |
| 918 | uint32 *r = NULL; |
| 919 | uint w; |
| 920 | uint intr_val = 0; |
| 921 | bool fast = FALSE; |
| 922 | sb_info_t *si; |
| 923 | |
| 924 | si = SB_INFO(sbh); |
| 925 | |
| 926 | ASSERT(GOODIDX(coreidx)); |
| 927 | ASSERT(regoff < SB_CORE_SIZE); |
| 928 | ASSERT((val & ~mask) == 0); |
| 929 | |
| 930 | #if 0 |
| 931 | if (BUSTYPE(si->sb.bustype) == SB_BUS) { |
| 932 | /* If internal bus, we can always get at everything */ |
| 933 | fast = TRUE; |
| 934 | /* map if does not exist */ |
| 935 | if (!si->regs[coreidx]) { |
| 936 | si->regs[coreidx] = |
| 937 | (void *)REG_MAP(si->coresba[coreidx], SB_CORE_SIZE); |
| 938 | ASSERT(GOODREGS(si->regs[coreidx])); |
| 939 | } |
| 940 | r = (uint32 *) ((uchar *) si->regs[coreidx] + regoff); |
| 941 | } else if (BUSTYPE(si->sb.bustype) == PCI_BUS) { |
| 942 | /* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */ |
| 943 | |
| 944 | if ((si->coreid[coreidx] == SB_CC) && |
| 945 | ((si->sb.buscoretype == SB_PCIE) |
| 946 | || (si->sb.buscorerev >= 13))) { |
| 947 | /* Chipc registers are mapped at 12KB */ |
| 948 | |
| 949 | fast = TRUE; |
| 950 | r = (uint32 *) ((char *)si->curmap + |
| 951 | PCI_16KB0_CCREGS_OFFSET + regoff); |
| 952 | } else if (si->sb.buscoreidx == coreidx) { |
| 953 | /* pci registers are at either in the last 2KB of an 8KB window |
| 954 | * or, in pcie and pci rev 13 at 8KB |
| 955 | */ |
| 956 | fast = TRUE; |
| 957 | if ((si->sb.buscoretype == SB_PCIE) |
| 958 | || (si->sb.buscorerev >= 13)) |
| 959 | r = (uint32 *) ((char *)si->curmap + |
| 960 | PCI_16KB0_PCIREGS_OFFSET + |
| 961 | regoff); |
| 962 | else |
| 963 | r = (uint32 *) ((char *)si->curmap + |
| 964 | ((regoff >= SBCONFIGOFF) ? |
| 965 | PCI_BAR0_PCISBR_OFFSET : |
| 966 | PCI_BAR0_PCIREGS_OFFSET) |
| 967 | + regoff); |
| 968 | } |
| 969 | } |
| 970 | #endif |
| 971 | |
| 972 | if (!fast) { |
| 973 | INTR_OFF(si, intr_val); |
| 974 | |
| 975 | /* save current core index */ |
| 976 | origidx = sb_coreidx(&si->sb); |
| 977 | |
| 978 | /* switch core */ |
| 979 | r = (uint32 *) ((uchar *) sb_setcoreidx(&si->sb, coreidx) + |
| 980 | regoff); |
| 981 | } |
| 982 | ASSERT(r); |
| 983 | |
| 984 | /* mask and set */ |
| 985 | if (mask || val) { |
| 986 | if (regoff >= SBCONFIGOFF) { |
| 987 | w = (R_SBREG(si, r) & ~mask) | val; |
| 988 | W_SBREG(si, r, w); |
| 989 | } else { |
| 990 | w = (R_REG(si->osh, r) & ~mask) | val; |
| 991 | W_REG(si->osh, r, w); |
| 992 | } |
| 993 | } |
| 994 | |
| 995 | /* readback */ |
| 996 | if (regoff >= SBCONFIGOFF) |
| 997 | w = R_SBREG(si, r); |
| 998 | else { |
| 999 | if ((si->sb.chip == BCM5354_CHIP_ID) && |
| 1000 | (coreidx == SB_CC_IDX) && |
| 1001 | (regoff == OFFSETOF(chipcregs_t, watchdog))) { |
| 1002 | w = val; |
| 1003 | } else |
| 1004 | w = R_REG(si->osh, r); |
| 1005 | } |
| 1006 | |
| 1007 | if (!fast) { |
| 1008 | /* restore core index */ |
| 1009 | if (origidx != coreidx) |
| 1010 | sb_setcoreidx(&si->sb, origidx); |
| 1011 | |
| 1012 | INTR_RESTORE(si, intr_val); |
| 1013 | } |
| 1014 | |
| 1015 | return (w); |
| 1016 | } |
| 1017 | |
| 1018 | #define DWORD_ALIGN(x) (x & ~(0x03)) |
| 1019 | #define BYTE_POS(x) (x & 0x3) |
| 1020 | #define WORD_POS(x) (x & 0x1) |
| 1021 | |
| 1022 | #define BYTE_SHIFT(x) (8 * BYTE_POS(x)) |
| 1023 | #define WORD_SHIFT(x) (16 * WORD_POS(x)) |
| 1024 | |
| 1025 | #define BYTE_VAL(a, x) ((a >> BYTE_SHIFT(x)) & 0xFF) |
| 1026 | #define WORD_VAL(a, x) ((a >> WORD_SHIFT(x)) & 0xFFFF) |
| 1027 | |
| 1028 | #define read_pci_cfg_byte(a) \ |
| 1029 | (BYTE_VAL(OSL_PCI_READ_CONFIG(si->osh, DWORD_ALIGN(a), 4), a) & 0xff) |
| 1030 | |
| 1031 | #define read_pci_cfg_word(a) \ |
| 1032 | (WORD_VAL(OSL_PCI_READ_CONFIG(si->osh, DWORD_ALIGN(a), 4), a) & 0xffff) |
| 1033 | |
| 1034 | /* return cap_offset if requested capability exists in the PCI config space */ |
| 1035 | static uint8 |
| 1036 | sb_find_pci_capability(sb_info_t * si, uint8 req_cap_id, uchar * buf, |
| 1037 | uint32 * buflen) |
| 1038 | { |
| 1039 | uint8 cap_id; |
| 1040 | uint8 cap_ptr = 0; |
| 1041 | uint32 bufsize; |
| 1042 | uint8 byte_val; |
| 1043 | |
| 1044 | if (BUSTYPE(si->sb.bustype) != PCI_BUS) |
| 1045 | goto end; |
| 1046 | |
| 1047 | /* check for Header type 0 */ |
| 1048 | byte_val = read_pci_cfg_byte(PCI_CFG_HDR); |
| 1049 | if ((byte_val & 0x7f) != PCI_HEADER_NORMAL) |
| 1050 | goto end; |
| 1051 | |
| 1052 | /* check if the capability pointer field exists */ |
| 1053 | byte_val = read_pci_cfg_byte(PCI_CFG_STAT); |
| 1054 | if (!(byte_val & PCI_CAPPTR_PRESENT)) |
| 1055 | goto end; |
| 1056 | |
| 1057 | cap_ptr = read_pci_cfg_byte(PCI_CFG_CAPPTR); |
| 1058 | /* check if the capability pointer is 0x00 */ |
| 1059 | if (cap_ptr == 0x00) |
| 1060 | goto end; |
| 1061 | |
| 1062 | /* loop thr'u the capability list and see if the pcie capabilty exists */ |
| 1063 | |
| 1064 | cap_id = read_pci_cfg_byte(cap_ptr); |
| 1065 | |
| 1066 | while (cap_id != req_cap_id) { |
| 1067 | cap_ptr = read_pci_cfg_byte((cap_ptr + 1)); |
| 1068 | if (cap_ptr == 0x00) |
| 1069 | break; |
| 1070 | cap_id = read_pci_cfg_byte(cap_ptr); |
| 1071 | } |
| 1072 | if (cap_id != req_cap_id) { |
| 1073 | goto end; |
| 1074 | } |
| 1075 | /* found the caller requested capability */ |
| 1076 | if ((buf != NULL) && (buflen != NULL)) { |
| 1077 | uint8 cap_data; |
| 1078 | |
| 1079 | bufsize = *buflen; |
| 1080 | if (!bufsize) |
| 1081 | goto end; |
| 1082 | *buflen = 0; |
| 1083 | /* copy the cpability data excluding cap ID and next ptr */ |
| 1084 | cap_data = cap_ptr + 2; |
| 1085 | if ((bufsize + cap_data) > SZPCR) |
| 1086 | bufsize = SZPCR - cap_data; |
| 1087 | *buflen = bufsize; |
| 1088 | while (bufsize--) { |
| 1089 | *buf = read_pci_cfg_byte(cap_data); |
| 1090 | cap_data++; |
| 1091 | buf++; |
| 1092 | } |
| 1093 | } |
| 1094 | end: |
| 1095 | return cap_ptr; |
| 1096 | } |
| 1097 | |
| 1098 | uint8 sb_pcieclkreq(sb_t * sbh, uint32 mask, uint32 val) |
| 1099 | { |
| 1100 | sb_info_t *si; |
| 1101 | uint32 reg_val; |
| 1102 | uint8 offset; |
| 1103 | |
| 1104 | si = SB_INFO(sbh); |
| 1105 | |
| 1106 | offset = si->pciecap_lcreg_offset; |
| 1107 | if (!offset) |
| 1108 | return 0; |
| 1109 | |
| 1110 | reg_val = OSL_PCI_READ_CONFIG(si->osh, offset, sizeof(uint32)); |
| 1111 | /* set operation */ |
| 1112 | if (mask) { |
| 1113 | if (val) |
| 1114 | reg_val |= PCIE_CLKREQ_ENAB; |
| 1115 | else |
| 1116 | reg_val &= ~PCIE_CLKREQ_ENAB; |
| 1117 | OSL_PCI_WRITE_CONFIG(si->osh, offset, sizeof(uint32), reg_val); |
| 1118 | reg_val = OSL_PCI_READ_CONFIG(si->osh, offset, sizeof(uint32)); |
| 1119 | } |
| 1120 | if (reg_val & PCIE_CLKREQ_ENAB) |
| 1121 | return 1; |
| 1122 | else |
| 1123 | return 0; |
| 1124 | } |
| 1125 | |
| 1126 | #ifdef BCMDBG |
| 1127 | |
| 1128 | uint32 sb_pcielcreg(sb_t * sbh, uint32 mask, uint32 val) |
| 1129 | { |
| 1130 | sb_info_t *si; |
| 1131 | uint32 reg_val; |
| 1132 | uint8 offset; |
| 1133 | |
| 1134 | si = SB_INFO(sbh); |
| 1135 | |
| 1136 | if (!PCIE(si)) |
| 1137 | return 0; |
| 1138 | |
| 1139 | offset = si->pciecap_lcreg_offset; |
| 1140 | if (!offset) |
| 1141 | return 0; |
| 1142 | |
| 1143 | /* set operation */ |
| 1144 | if (mask) |
| 1145 | OSL_PCI_WRITE_CONFIG(si->osh, offset, sizeof(uint32), val); |
| 1146 | |
| 1147 | reg_val = OSL_PCI_READ_CONFIG(si->osh, offset, sizeof(uint32)); |
| 1148 | |
| 1149 | return reg_val; |
| 1150 | } |
| 1151 | |
| 1152 | uint8 sb_pcieL1plldown(sb_t * sbh) |
| 1153 | { |
| 1154 | sb_info_t *si; |
| 1155 | uint intr_val = 0; |
| 1156 | uint origidx; |
| 1157 | uint32 reg_val; |
| 1158 | |
| 1159 | si = SB_INFO(sbh); |
| 1160 | |
| 1161 | if (!PCIE(si)) |
| 1162 | return 0; |
| 1163 | if (!((si->sb.buscorerev == 3) || (si->sb.buscorerev == 4))) |
| 1164 | return 0; |
| 1165 | |
| 1166 | if (!sb_pcieclkreq((void *)(uintptr) sbh, 0, 0)) { |
| 1167 | SB_ERROR(("PCIEL1PLLDOWN requires Clkreq be enabled, so enable it\n")); |
| 1168 | sb_pcieclkreq((void *)(uintptr) sbh, 1, 1); |
| 1169 | } |
| 1170 | reg_val = sb_pcielcreg((void *)(uintptr) sbh, 0, 0); |
| 1171 | if (reg_val & PCIE_CAP_LCREG_ASPML0s) { |
| 1172 | SB_ERROR(("PCIEL1PLLDOWN requires L0s to be disabled\n")); |
| 1173 | reg_val &= ~PCIE_CAP_LCREG_ASPML0s; |
| 1174 | sb_pcielcreg((void *)(uintptr) sbh, 1, reg_val); |
| 1175 | } else |
| 1176 | SB_ERROR(("PCIEL1PLLDOWN: L0s is already disabled\n")); |
| 1177 | |
| 1178 | /* turnoff intrs, change core, set original back, turn on intrs back on */ |
| 1179 | origidx = si->curidx; |
| 1180 | INTR_OFF(si, intr_val); |
| 1181 | sb_setcore(sbh, SB_PCIE, 0); |
| 1182 | |
| 1183 | sb_pcie_writereg((void *)(uintptr) sbh, (void *)PCIE_PCIEREGS, |
| 1184 | PCIE_DLLP_PCIE11, 0); |
| 1185 | |
| 1186 | sb_setcoreidx(sbh, origidx); |
| 1187 | INTR_RESTORE(si, intr_val); |
| 1188 | return 1; |
| 1189 | } |
| 1190 | #endif /* BCMDBG */ |
| 1191 | |
| 1192 | /* return TRUE if PCIE capability exists in the pci config space */ |
| 1193 | static bool sb_ispcie(sb_info_t * si) |
| 1194 | { |
| 1195 | uint8 cap_ptr; |
| 1196 | |
| 1197 | cap_ptr = sb_find_pci_capability(si, PCI_CAP_PCIECAP_ID, NULL, NULL); |
| 1198 | if (!cap_ptr) |
| 1199 | return FALSE; |
| 1200 | |
| 1201 | si->pciecap_lcreg_offset = cap_ptr + PCIE_CAP_LINKCTRL_OFFSET; |
| 1202 | |
| 1203 | return TRUE; |
| 1204 | } |
| 1205 | |
| 1206 | /* Wake-on-wireless-LAN (WOWL) support functions */ |
| 1207 | /* return TRUE if PM capability exists in the pci config space */ |
| 1208 | bool sb_pci_pmecap(sb_t * sbh) |
| 1209 | { |
| 1210 | uint8 cap_ptr; |
| 1211 | uint32 pmecap; |
| 1212 | sb_info_t *si; |
| 1213 | |
| 1214 | si = SB_INFO(sbh); |
| 1215 | |
| 1216 | if (si == NULL || !(PCI(si) || PCIE(si))) |
| 1217 | return FALSE; |
| 1218 | |
| 1219 | if (!si->pmecap_offset) { |
| 1220 | cap_ptr = |
| 1221 | sb_find_pci_capability(si, PCI_CAP_POWERMGMTCAP_ID, NULL, |
| 1222 | NULL); |
| 1223 | if (!cap_ptr) |
| 1224 | return FALSE; |
| 1225 | |
| 1226 | si->pmecap_offset = cap_ptr; |
| 1227 | |
| 1228 | pmecap = |
| 1229 | OSL_PCI_READ_CONFIG(si->osh, si->pmecap_offset, |
| 1230 | sizeof(uint32)); |
| 1231 | |
| 1232 | /* At least one state can generate PME */ |
| 1233 | si->pmecap = (pmecap & PME_CAP_PM_STATES) != 0; |
| 1234 | } |
| 1235 | |
| 1236 | return (si->pmecap); |
| 1237 | } |
| 1238 | |
| 1239 | /* Enable PME generation and disable clkreq */ |
| 1240 | void sb_pci_pmeen(sb_t * sbh) |
| 1241 | { |
| 1242 | sb_info_t *si; |
| 1243 | uint32 w; |
| 1244 | si = SB_INFO(sbh); |
| 1245 | |
| 1246 | /* if not pmecapable return */ |
| 1247 | if (!sb_pci_pmecap(sbh)) |
| 1248 | return; |
| 1249 | |
| 1250 | w = OSL_PCI_READ_CONFIG(si->osh, si->pmecap_offset + PME_CSR_OFFSET, |
| 1251 | sizeof(uint32)); |
| 1252 | w |= (PME_CSR_PME_EN); |
| 1253 | OSL_PCI_WRITE_CONFIG(si->osh, si->pmecap_offset + PME_CSR_OFFSET, |
| 1254 | sizeof(uint32), w); |
| 1255 | |
| 1256 | /* Disable clkreq */ |
| 1257 | if (si->pr42767_war) { |
| 1258 | sb_pcieclkreq(sbh, 1, 0); |
| 1259 | si->pr42767_war = FALSE; |
| 1260 | } else if (si->sb.pr42780) { |
| 1261 | sb_pcieclkreq(sbh, 1, 1); |
| 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | /* Disable PME generation, clear the PME status bit if set and |
| 1266 | * return TRUE if PME status set |
| 1267 | */ |
| 1268 | bool sb_pci_pmeclr(sb_t * sbh) |
| 1269 | { |
| 1270 | sb_info_t *si; |
| 1271 | uint32 w; |
| 1272 | bool ret = FALSE; |
| 1273 | |
| 1274 | si = SB_INFO(sbh); |
| 1275 | |
| 1276 | if (!sb_pci_pmecap(sbh)) |
| 1277 | return ret; |
| 1278 | |
| 1279 | w = OSL_PCI_READ_CONFIG(si->osh, si->pmecap_offset + PME_CSR_OFFSET, |
| 1280 | sizeof(uint32)); |
| 1281 | |
| 1282 | SB_ERROR(("sb_pci_pmeclr PMECSR : 0x%x\n", w)); |
| 1283 | ret = (w & PME_CSR_PME_STAT) == PME_CSR_PME_STAT; |
| 1284 | |
| 1285 | /* PMESTAT is cleared by writing 1 to it */ |
| 1286 | w &= ~(PME_CSR_PME_EN); |
| 1287 | |
| 1288 | OSL_PCI_WRITE_CONFIG(si->osh, si->pmecap_offset + PME_CSR_OFFSET, |
| 1289 | sizeof(uint32), w); |
| 1290 | |
| 1291 | return ret; |
| 1292 | } |
| 1293 | |
| 1294 | /* use pci dev id to determine chip id for chips not having a chipcommon core */ |
| 1295 | static uint BCMINITFN(sb_pcidev2chip) (uint pcidev) { |
| 1296 | if ((pcidev >= BCM4710_DEVICE_ID) && (pcidev <= BCM47XX_USB_ID)) |
| 1297 | return (BCM4710_CHIP_ID); |
| 1298 | if ((pcidev >= BCM4402_ENET_ID) && (pcidev <= BCM4402_V90_ID)) |
| 1299 | return (BCM4402_CHIP_ID); |
| 1300 | if (pcidev == BCM4401_ENET_ID) |
| 1301 | return (BCM4402_CHIP_ID); |
| 1302 | if (pcidev == SDIOH_FPGA_ID) |
| 1303 | return (SDIOH_FPGA_ID); |
| 1304 | |
| 1305 | return (0); |
| 1306 | } |
| 1307 | |
| 1308 | /* Scan the enumeration space to find all cores starting from the given |
| 1309 | * bus 'sbba'. Append coreid and other info to the lists in 'si'. 'sba' |
| 1310 | * is the default core address at chip POR time and 'regs' is the virtual |
| 1311 | * address that the default core is mapped at. 'ncores' is the number of |
| 1312 | * cores expected on bus 'sbba'. It returns the total number of cores |
| 1313 | * starting from bus 'sbba', inclusive. |
| 1314 | */ |
| 1315 | |
| 1316 | static void BCMINITFN(sb_scan) (sb_info_t * si) { |
| 1317 | sb_t *sbh; |
| 1318 | uint origidx; |
| 1319 | uint i; |
| 1320 | bool pci; |
| 1321 | bool pcie; |
| 1322 | uint pciidx; |
| 1323 | uint pcieidx; |
| 1324 | uint pcirev; |
| 1325 | uint pcierev; |
| 1326 | |
| 1327 | sbh = (sb_t *) si; |
| 1328 | |
| 1329 | /* numcores should already be set */ |
| 1330 | ASSERT((si->numcores > 0) && (si->numcores <= SB_MAXCORES)); |
| 1331 | |
| 1332 | /* save current core index */ |
| 1333 | origidx = sb_coreidx(&si->sb); |
| 1334 | |
| 1335 | si->sb.buscorerev = NOREV; |
| 1336 | si->sb.buscoreidx = BADIDX; |
| 1337 | |
| 1338 | si->gpioidx = BADIDX; |
| 1339 | |
| 1340 | pci = pcie = FALSE; |
| 1341 | pcirev = pcierev = NOREV; |
| 1342 | pciidx = pcieidx = BADIDX; |
| 1343 | |
| 1344 | for (i = 0; i < si->numcores; i++) { |
| 1345 | sb_setcoreidx(&si->sb, i); |
| 1346 | si->coreid[i] = sb_coreid(&si->sb); |
| 1347 | |
| 1348 | if (si->coreid[i] == SB_PCI) { |
| 1349 | pciidx = i; |
| 1350 | pcirev = sb_corerev(&si->sb); |
| 1351 | pci = TRUE; |
| 1352 | } else if (si->coreid[i] == SB_PCIE) { |
| 1353 | pcieidx = i; |
| 1354 | pcierev = sb_corerev(&si->sb); |
| 1355 | pcie = TRUE; |
| 1356 | } else if (si->coreid[i] == SB_PCMCIA) { |
| 1357 | si->sb.buscorerev = sb_corerev(&si->sb); |
| 1358 | si->sb.buscoretype = si->coreid[i]; |
| 1359 | si->sb.buscoreidx = i; |
| 1360 | } |
| 1361 | } |
| 1362 | if (pci && pcie) { |
| 1363 | if (sb_ispcie(si)) |
| 1364 | pci = FALSE; |
| 1365 | else |
| 1366 | pcie = FALSE; |
| 1367 | } |
| 1368 | if (pci) { |
| 1369 | si->sb.buscoretype = SB_PCI; |
| 1370 | si->sb.buscorerev = pcirev; |
| 1371 | si->sb.buscoreidx = pciidx; |
| 1372 | } else if (pcie) { |
| 1373 | si->sb.buscoretype = SB_PCIE; |
| 1374 | si->sb.buscorerev = pcierev; |
| 1375 | si->sb.buscoreidx = pcieidx; |
| 1376 | } |
| 1377 | |
| 1378 | /* |
| 1379 | * Find the gpio "controlling core" type and index. |
| 1380 | * Precedence: |
| 1381 | * - if there's a chip common core - use that |
| 1382 | * - else if there's a pci core (rev >= 2) - use that |
| 1383 | * - else there had better be an extif core (4710 only) |
| 1384 | */ |
| 1385 | if (GOODIDX(sb_findcoreidx(sbh, SB_CC, 0))) { |
| 1386 | si->gpioidx = sb_findcoreidx(sbh, SB_CC, 0); |
| 1387 | si->gpioid = SB_CC; |
| 1388 | } else if (PCI(si) && (si->sb.buscorerev >= 2)) { |
| 1389 | si->gpioidx = si->sb.buscoreidx; |
| 1390 | si->gpioid = SB_PCI; |
| 1391 | } else if (sb_findcoreidx(sbh, SB_EXTIF, 0)) { |
| 1392 | si->gpioidx = sb_findcoreidx(sbh, SB_EXTIF, 0); |
| 1393 | si->gpioid = SB_EXTIF; |
| 1394 | } else |
| 1395 | ASSERT(si->gpioidx != BADIDX); |
| 1396 | |
| 1397 | /* return to original core index */ |
| 1398 | sb_setcoreidx(&si->sb, origidx); |
| 1399 | } |
| 1400 | |
| 1401 | /* may be called with core in reset */ |
| 1402 | void sb_detach(sb_t * sbh) |
| 1403 | { |
| 1404 | sb_info_t *si; |
| 1405 | uint idx; |
| 1406 | |
| 1407 | si = SB_INFO(sbh); |
| 1408 | |
| 1409 | if (si == NULL) |
| 1410 | return; |
| 1411 | |
| 1412 | if (BUSTYPE(si->sb.bustype) == SB_BUS) |
| 1413 | for (idx = 0; idx < SB_MAXCORES; idx++) |
| 1414 | if (si->regs[idx]) { |
| 1415 | REG_UNMAP(si->regs[idx]); |
| 1416 | si->regs[idx] = NULL; |
| 1417 | } |
| 1418 | #if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SB_BUS) |
| 1419 | if (si != &ksi) |
| 1420 | #endif /* !BCMBUSTYPE || (BCMBUSTYPE == SB_BUS) */ |
| 1421 | MFREE(si->osh, si, sizeof(sb_info_t)); |
| 1422 | } |
| 1423 | |
| 1424 | |
| 1425 | /* convert chip number to number of i/o cores */ |
| 1426 | static uint BCMINITFN(sb_chip2numcores) (uint chip) { |
| 1427 | if (chip == BCM4710_CHIP_ID) |
| 1428 | return (9); |
| 1429 | if (chip == BCM4402_CHIP_ID) |
| 1430 | return (3); |
| 1431 | if (chip == BCM4306_CHIP_ID) /* < 4306c0 */ |
| 1432 | return (6); |
| 1433 | if (chip == BCM4704_CHIP_ID) |
| 1434 | return (9); |
| 1435 | if (chip == BCM5365_CHIP_ID) |
| 1436 | return (7); |
| 1437 | if (chip == SDIOH_FPGA_ID) |
| 1438 | return (2); |
| 1439 | |
| 1440 | SB_ERROR(("sb_chip2numcores: unsupported chip 0x%x\n", chip)); |
| 1441 | ASSERT(0); |
| 1442 | return (1); |
| 1443 | } |
| 1444 | |
| 1445 | /* return index of coreid or BADIDX if not found */ |
| 1446 | uint sb_findcoreidx(sb_t * sbh, uint coreid, uint coreunit) |
| 1447 | { |
| 1448 | sb_info_t *si; |
| 1449 | uint found; |
| 1450 | uint i; |
| 1451 | |
| 1452 | si = SB_INFO(sbh); |
| 1453 | |
| 1454 | found = 0; |
| 1455 | |
| 1456 | for (i = 0; i < si->numcores; i++) |
| 1457 | if (si->coreid[i] == coreid) { |
| 1458 | if (found == coreunit) |
| 1459 | return (i); |
| 1460 | found++; |
| 1461 | } |
| 1462 | |
| 1463 | return (BADIDX); |
| 1464 | } |
| 1465 | |
| 1466 | /* |
| 1467 | * this function changes logical "focus" to the indiciated core, |
| 1468 | * must be called with interrupt off. |
| 1469 | * Moreover, callers should keep interrupts off during switching out of and back to d11 core |
| 1470 | */ |
| 1471 | void *sb_setcoreidx(sb_t * sbh, uint coreidx) |
| 1472 | { |
| 1473 | sb_info_t *si; |
| 1474 | uint32 sbaddr; |
| 1475 | uint8 tmp; |
| 1476 | |
| 1477 | si = SB_INFO(sbh); |
| 1478 | |
| 1479 | if (coreidx >= si->numcores) |
| 1480 | return (NULL); |
| 1481 | |
| 1482 | /* |
| 1483 | * If the user has provided an interrupt mask enabled function, |
| 1484 | * then assert interrupts are disabled before switching the core. |
| 1485 | */ |
| 1486 | ASSERT((si->intrsenabled_fn == NULL) |
| 1487 | || !(*(si)->intrsenabled_fn) ((si)->intr_arg)); |
| 1488 | |
| 1489 | sbaddr = SB_ENUM_BASE + (coreidx * SB_CORE_SIZE); |
| 1490 | |
| 1491 | switch (BUSTYPE(si->sb.bustype)) { |
| 1492 | case SB_BUS: |
| 1493 | /* map new one */ |
| 1494 | if (!si->regs[coreidx]) { |
| 1495 | si->regs[coreidx] = |
| 1496 | (void *)REG_MAP(sbaddr, SB_CORE_SIZE); |
| 1497 | ASSERT(GOODREGS(si->regs[coreidx])); |
| 1498 | } |
| 1499 | si->curmap = si->regs[coreidx]; |
| 1500 | break; |
| 1501 | |
| 1502 | case PCI_BUS: |
| 1503 | /* point bar0 window */ |
| 1504 | OSL_PCI_WRITE_CONFIG(si->osh, PCI_BAR0_WIN, 4, sbaddr); |
| 1505 | break; |
| 1506 | |
| 1507 | case PCMCIA_BUS: |
| 1508 | tmp = (sbaddr >> 12) & 0x0f; |
| 1509 | OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_ADDR0, &tmp, 1); |
| 1510 | tmp = (sbaddr >> 16) & 0xff; |
| 1511 | OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_ADDR1, &tmp, 1); |
| 1512 | tmp = (sbaddr >> 24) & 0xff; |
| 1513 | OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_ADDR2, &tmp, 1); |
| 1514 | break; |
| 1515 | #ifdef BCMJTAG |
| 1516 | case JTAG_BUS: |
| 1517 | /* map new one */ |
| 1518 | if (!si->regs[coreidx]) { |
| 1519 | si->regs[coreidx] = (void *)sbaddr; |
| 1520 | ASSERT(GOODREGS(si->regs[coreidx])); |
| 1521 | } |
| 1522 | si->curmap = si->regs[coreidx]; |
| 1523 | break; |
| 1524 | #endif /* BCMJTAG */ |
| 1525 | } |
| 1526 | |
| 1527 | si->curidx = coreidx; |
| 1528 | |
| 1529 | return (si->curmap); |
| 1530 | } |
| 1531 | |
| 1532 | /* |
| 1533 | * this function changes logical "focus" to the indiciated core, |
| 1534 | * must be called with interrupt off. |
| 1535 | * Moreover, callers should keep interrupts off during switching out of and back to d11 core |
| 1536 | */ |
| 1537 | void *sb_setcore(sb_t * sbh, uint coreid, uint coreunit) |
| 1538 | { |
| 1539 | uint idx; |
| 1540 | |
| 1541 | idx = sb_findcoreidx(sbh, coreid, coreunit); |
| 1542 | if (!GOODIDX(idx)) |
| 1543 | return (NULL); |
| 1544 | |
| 1545 | return (sb_setcoreidx(sbh, idx)); |
| 1546 | } |
| 1547 | |
| 1548 | /* return chip number */ |
| 1549 | uint BCMINITFN(sb_chip) (sb_t * sbh) { |
| 1550 | sb_info_t *si; |
| 1551 | |
| 1552 | si = SB_INFO(sbh); |
| 1553 | return (si->sb.chip); |
| 1554 | } |
| 1555 | |
| 1556 | /* return chip revision number */ |
| 1557 | uint BCMINITFN(sb_chiprev) (sb_t * sbh) { |
| 1558 | sb_info_t *si; |
| 1559 | |
| 1560 | si = SB_INFO(sbh); |
| 1561 | return (si->sb.chiprev); |
| 1562 | } |
| 1563 | |
| 1564 | /* return chip common revision number */ |
| 1565 | uint BCMINITFN(sb_chipcrev) (sb_t * sbh) { |
| 1566 | sb_info_t *si; |
| 1567 | |
| 1568 | si = SB_INFO(sbh); |
| 1569 | return (si->sb.ccrev); |
| 1570 | } |
| 1571 | |
| 1572 | /* return chip package option */ |
| 1573 | uint BCMINITFN(sb_chippkg) (sb_t * sbh) { |
| 1574 | sb_info_t *si; |
| 1575 | |
| 1576 | si = SB_INFO(sbh); |
| 1577 | return (si->sb.chippkg); |
| 1578 | } |
| 1579 | |
| 1580 | /* return PCI core rev. */ |
| 1581 | uint BCMINITFN(sb_pcirev) (sb_t * sbh) { |
| 1582 | sb_info_t *si; |
| 1583 | |
| 1584 | si = SB_INFO(sbh); |
| 1585 | return (si->sb.buscorerev); |
| 1586 | } |
| 1587 | |
| 1588 | bool BCMINITFN(sb_war16165) (sb_t * sbh) { |
| 1589 | sb_info_t *si; |
| 1590 | |
| 1591 | si = SB_INFO(sbh); |
| 1592 | |
| 1593 | return (PCI(si) && (si->sb.buscorerev <= 10)); |
| 1594 | } |
| 1595 | |
| 1596 | static void BCMINITFN(sb_war30841) (sb_info_t * si) { |
| 1597 | sb_pcie_mdiowrite(si, MDIODATA_DEV_RX, SERDES_RX_TIMER1, 0x8128); |
| 1598 | sb_pcie_mdiowrite(si, MDIODATA_DEV_RX, SERDES_RX_CDR, 0x0100); |
| 1599 | sb_pcie_mdiowrite(si, MDIODATA_DEV_RX, SERDES_RX_CDRBW, 0x1466); |
| 1600 | } |
| 1601 | |
| 1602 | /* return PCMCIA core rev. */ |
| 1603 | uint BCMINITFN(sb_pcmciarev) (sb_t * sbh) { |
| 1604 | sb_info_t *si; |
| 1605 | |
| 1606 | si = SB_INFO(sbh); |
| 1607 | return (si->sb.buscorerev); |
| 1608 | } |
| 1609 | |
| 1610 | /* return board vendor id */ |
| 1611 | uint BCMINITFN(sb_boardvendor) (sb_t * sbh) { |
| 1612 | sb_info_t *si; |
| 1613 | |
| 1614 | si = SB_INFO(sbh); |
| 1615 | return (si->sb.boardvendor); |
| 1616 | } |
| 1617 | |
| 1618 | /* return boardtype */ |
| 1619 | uint BCMINITFN(sb_boardtype) (sb_t * sbh) { |
| 1620 | sb_info_t *si; |
| 1621 | char *var; |
| 1622 | |
| 1623 | si = SB_INFO(sbh); |
| 1624 | |
| 1625 | if (BUSTYPE(si->sb.bustype) == SB_BUS && si->sb.boardtype == 0xffff) { |
| 1626 | /* boardtype format is a hex string */ |
| 1627 | si->sb.boardtype = getintvar(NULL, "boardtype"); |
| 1628 | |
| 1629 | /* backward compatibility for older boardtype string format */ |
| 1630 | if ((si->sb.boardtype == 0) |
| 1631 | && (var = getvar(NULL, "boardtype"))) { |
| 1632 | if (!strcmp(var, "bcm94710dev")) |
| 1633 | si->sb.boardtype = BCM94710D_BOARD; |
| 1634 | else if (!strcmp(var, "bcm94710ap")) |
| 1635 | si->sb.boardtype = BCM94710AP_BOARD; |
| 1636 | else if (!strcmp(var, "bu4710")) |
| 1637 | si->sb.boardtype = BU4710_BOARD; |
| 1638 | else if (!strcmp(var, "bcm94702mn")) |
| 1639 | si->sb.boardtype = BCM94702MN_BOARD; |
| 1640 | else if (!strcmp(var, "bcm94710r1")) |
| 1641 | si->sb.boardtype = BCM94710R1_BOARD; |
| 1642 | else if (!strcmp(var, "bcm94710r4")) |
| 1643 | si->sb.boardtype = BCM94710R4_BOARD; |
| 1644 | else if (!strcmp(var, "bcm94702cpci")) |
| 1645 | si->sb.boardtype = BCM94702CPCI_BOARD; |
| 1646 | else if (!strcmp(var, "bcm95380_rr")) |
| 1647 | si->sb.boardtype = BCM95380RR_BOARD; |
| 1648 | } |
| 1649 | } |
| 1650 | |
| 1651 | return (si->sb.boardtype); |
| 1652 | } |
| 1653 | |
| 1654 | /* return bus type of sbh device */ |
| 1655 | uint sb_bus(sb_t * sbh) |
| 1656 | { |
| 1657 | sb_info_t *si; |
| 1658 | |
| 1659 | si = SB_INFO(sbh); |
| 1660 | return (si->sb.bustype); |
| 1661 | } |
| 1662 | |
| 1663 | /* return bus core type */ |
| 1664 | uint sb_buscoretype(sb_t * sbh) |
| 1665 | { |
| 1666 | sb_info_t *si; |
| 1667 | |
| 1668 | si = SB_INFO(sbh); |
| 1669 | |
| 1670 | return (si->sb.buscoretype); |
| 1671 | } |
| 1672 | |
| 1673 | /* return bus core revision */ |
| 1674 | uint sb_buscorerev(sb_t * sbh) |
| 1675 | { |
| 1676 | sb_info_t *si; |
| 1677 | si = SB_INFO(sbh); |
| 1678 | |
| 1679 | return (si->sb.buscorerev); |
| 1680 | } |
| 1681 | |
| 1682 | /* return list of found cores */ |
| 1683 | uint sb_corelist(sb_t * sbh, uint coreid[]) |
| 1684 | { |
| 1685 | sb_info_t *si; |
| 1686 | |
| 1687 | si = SB_INFO(sbh); |
| 1688 | |
| 1689 | bcopy((uchar *) si->coreid, (uchar *) coreid, |
| 1690 | (si->numcores * sizeof(uint))); |
| 1691 | return (si->numcores); |
| 1692 | } |
| 1693 | |
| 1694 | /* return current register mapping */ |
| 1695 | void *sb_coreregs(sb_t * sbh) |
| 1696 | { |
| 1697 | sb_info_t *si; |
| 1698 | |
| 1699 | si = SB_INFO(sbh); |
| 1700 | ASSERT(GOODREGS(si->curmap)); |
| 1701 | |
| 1702 | return (si->curmap); |
| 1703 | } |
| 1704 | |
| 1705 | #if defined(BCMDBG_ASSERT) |
| 1706 | /* traverse all cores to find and clear source of serror */ |
| 1707 | static void sb_serr_clear(sb_info_t * si) |
| 1708 | { |
| 1709 | sbconfig_t *sb; |
| 1710 | uint origidx; |
| 1711 | uint i, intr_val = 0; |
| 1712 | void *corereg = NULL; |
| 1713 | |
| 1714 | INTR_OFF(si, intr_val); |
| 1715 | origidx = sb_coreidx(&si->sb); |
| 1716 | |
| 1717 | for (i = 0; i < si->numcores; i++) { |
| 1718 | corereg = sb_setcoreidx(&si->sb, i); |
| 1719 | if (NULL != corereg) { |
| 1720 | sb = REGS2SB(corereg); |
| 1721 | if ((R_SBREG(si, &sb->sbtmstatehigh)) & SBTMH_SERR) { |
| 1722 | AND_SBREG(si, &sb->sbtmstatehigh, ~SBTMH_SERR); |
| 1723 | SB_ERROR(("sb_serr_clear: SError at core 0x%x\n", sb_coreid(&si->sb))); |
| 1724 | } |
| 1725 | } |
| 1726 | } |
| 1727 | |
| 1728 | sb_setcoreidx(&si->sb, origidx); |
| 1729 | INTR_RESTORE(si, intr_val); |
| 1730 | } |
| 1731 | |
| 1732 | /* |
| 1733 | * Check if any inband, outband or timeout errors has happened and clear them. |
| 1734 | * Must be called with chip clk on ! |
| 1735 | */ |
| 1736 | bool sb_taclear(sb_t * sbh) |
| 1737 | { |
| 1738 | sb_info_t *si; |
| 1739 | sbconfig_t *sb; |
| 1740 | uint origidx; |
| 1741 | uint intr_val = 0; |
| 1742 | bool rc = FALSE; |
| 1743 | uint32 inband = 0, serror = 0, timeout = 0; |
| 1744 | void *corereg = NULL; |
| 1745 | volatile uint32 imstate, tmstate; |
| 1746 | |
| 1747 | si = SB_INFO(sbh); |
| 1748 | |
| 1749 | if (BUSTYPE(si->sb.bustype) == PCI_BUS) { |
| 1750 | volatile uint32 stcmd; |
| 1751 | |
| 1752 | /* inband error is Target abort for PCI */ |
| 1753 | stcmd = |
| 1754 | OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_CMD, sizeof(uint32)); |
| 1755 | inband = stcmd & PCI_CFG_CMD_STAT_TA; |
| 1756 | if (inband) { |
| 1757 | #ifdef BCMDBG |
| 1758 | SB_ERROR(("inband:\n")); |
| 1759 | sb_viewall((void *)si); |
| 1760 | #endif |
| 1761 | OSL_PCI_WRITE_CONFIG(si->osh, PCI_CFG_CMD, |
| 1762 | sizeof(uint32), stcmd); |
| 1763 | } |
| 1764 | |
| 1765 | /* serror */ |
| 1766 | stcmd = |
| 1767 | OSL_PCI_READ_CONFIG(si->osh, PCI_INT_STATUS, |
| 1768 | sizeof(uint32)); |
| 1769 | serror = stcmd & PCI_SBIM_STATUS_SERR; |
| 1770 | if (serror) { |
| 1771 | #ifdef BCMDBG |
| 1772 | SB_ERROR(("serror:\n")); |
| 1773 | sb_viewall((void *)si); |
| 1774 | #endif |
| 1775 | sb_serr_clear(si); |
| 1776 | OSL_PCI_WRITE_CONFIG(si->osh, PCI_INT_STATUS, |
| 1777 | sizeof(uint32), stcmd); |
| 1778 | } |
| 1779 | |
| 1780 | /* timeout */ |
| 1781 | imstate = sb_corereg(sbh, si->sb.buscoreidx, |
| 1782 | SBCONFIGOFF + OFFSETOF(sbconfig_t, |
| 1783 | sbimstate), 0, 0); |
| 1784 | if ((imstate != 0xffffffff) && (imstate & (SBIM_IBE | SBIM_TO))) { |
| 1785 | sb_corereg(sbh, si->sb.buscoreidx, |
| 1786 | SBCONFIGOFF + OFFSETOF(sbconfig_t, |
| 1787 | sbimstate), ~0, |
| 1788 | (imstate & ~(SBIM_IBE | SBIM_TO))); |
| 1789 | /* inband = imstate & SBIM_IBE; same as TA above */ |
| 1790 | timeout = imstate & SBIM_TO; |
| 1791 | if (timeout) { |
| 1792 | #ifdef BCMDBG |
| 1793 | SB_ERROR(("timeout:\n")); |
| 1794 | sb_viewall((void *)si); |
| 1795 | #endif |
| 1796 | } |
| 1797 | } |
| 1798 | |
| 1799 | if (inband) { |
| 1800 | /* dump errlog for sonics >= 2.3 */ |
| 1801 | if (si->sb.sonicsrev == SONICS_2_2) ; |
| 1802 | else { |
| 1803 | uint32 imerrlog, imerrloga; |
| 1804 | imerrlog = |
| 1805 | sb_corereg(sbh, si->sb.buscoreidx, |
| 1806 | SBIMERRLOG, 0, 0); |
| 1807 | if (imerrlog & SBTMEL_EC) { |
| 1808 | imerrloga = |
| 1809 | sb_corereg(sbh, si->sb.buscoreidx, |
| 1810 | SBIMERRLOGA, 0, 0); |
| 1811 | /* clear errlog */ |
| 1812 | sb_corereg(sbh, si->sb.buscoreidx, |
| 1813 | SBIMERRLOG, ~0, 0); |
| 1814 | SB_ERROR(("sb_taclear: ImErrLog 0x%x, ImErrLogA 0x%x\n", imerrlog, imerrloga)); |
| 1815 | } |
| 1816 | } |
| 1817 | } |
| 1818 | |
| 1819 | } else if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) { |
| 1820 | |
| 1821 | INTR_OFF(si, intr_val); |
| 1822 | origidx = sb_coreidx(sbh); |
| 1823 | |
| 1824 | corereg = sb_setcore(sbh, SB_PCMCIA, 0); |
| 1825 | if (NULL != corereg) { |
| 1826 | sb = REGS2SB(corereg); |
| 1827 | |
| 1828 | imstate = R_SBREG(si, &sb->sbimstate); |
| 1829 | /* handle surprise removal */ |
| 1830 | if ((imstate != 0xffffffff) |
| 1831 | && (imstate & (SBIM_IBE | SBIM_TO))) { |
| 1832 | AND_SBREG(si, &sb->sbimstate, |
| 1833 | ~(SBIM_IBE | SBIM_TO)); |
| 1834 | inband = imstate & SBIM_IBE; |
| 1835 | timeout = imstate & SBIM_TO; |
| 1836 | } |
| 1837 | tmstate = R_SBREG(si, &sb->sbtmstatehigh); |
| 1838 | if ((tmstate != 0xffffffff) |
| 1839 | && (tmstate & SBTMH_INT_STATUS)) { |
| 1840 | if (!inband) { |
| 1841 | serror = 1; |
| 1842 | sb_serr_clear(si); |
| 1843 | } |
| 1844 | OR_SBREG(si, &sb->sbtmstatelow, SBTML_INT_ACK); |
| 1845 | AND_SBREG(si, &sb->sbtmstatelow, |
| 1846 | ~SBTML_INT_ACK); |
| 1847 | } |
| 1848 | } |
| 1849 | sb_setcoreidx(sbh, origidx); |
| 1850 | INTR_RESTORE(si, intr_val); |
| 1851 | |
| 1852 | } |
| 1853 | |
| 1854 | if (inband | timeout | serror) { |
| 1855 | rc = TRUE; |
| 1856 | SB_ERROR(("sb_taclear: inband 0x%x, serror 0x%x, timeout 0x%x!\n", inband, serror, timeout)); |
| 1857 | } |
| 1858 | |
| 1859 | return (rc); |
| 1860 | } |
| 1861 | #endif /* BCMDBG */ |
| 1862 | |
| 1863 | /* do buffered registers update */ |
| 1864 | void sb_commit(sb_t * sbh) |
| 1865 | { |
| 1866 | sb_info_t *si; |
| 1867 | uint origidx; |
| 1868 | uint intr_val = 0; |
| 1869 | |
| 1870 | si = SB_INFO(sbh); |
| 1871 | |
| 1872 | origidx = si->curidx; |
| 1873 | ASSERT(GOODIDX(origidx)); |
| 1874 | |
| 1875 | INTR_OFF(si, intr_val); |
| 1876 | |
| 1877 | /* switch over to chipcommon core if there is one, else use pci */ |
| 1878 | if (si->sb.ccrev != NOREV) { |
| 1879 | chipcregs_t *ccregs = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0); |
| 1880 | |
| 1881 | /* do the buffer registers update */ |
| 1882 | W_REG(si->osh, &ccregs->broadcastaddress, SB_COMMIT); |
| 1883 | W_REG(si->osh, &ccregs->broadcastdata, 0x0); |
| 1884 | } else if (PCI(si)) { |
| 1885 | sbpciregs_t *pciregs = |
| 1886 | (sbpciregs_t *) sb_setcore(sbh, SB_PCI, 0); |
| 1887 | |
| 1888 | /* do the buffer registers update */ |
| 1889 | W_REG(si->osh, &pciregs->bcastaddr, SB_COMMIT); |
| 1890 | W_REG(si->osh, &pciregs->bcastdata, 0x0); |
| 1891 | } else |
| 1892 | ASSERT(0); |
| 1893 | |
| 1894 | /* restore core index */ |
| 1895 | sb_setcoreidx(sbh, origidx); |
| 1896 | INTR_RESTORE(si, intr_val); |
| 1897 | } |
| 1898 | |
| 1899 | /* reset and re-enable a core |
| 1900 | * inputs: |
| 1901 | * bits - core specific bits that are set during and after reset sequence |
| 1902 | * resetbits - core specific bits that are set only during reset sequence |
| 1903 | */ |
| 1904 | void sb_core_reset(sb_t * sbh, uint32 bits, uint32 resetbits) |
| 1905 | { |
| 1906 | sb_info_t *si; |
| 1907 | sbconfig_t *sb; |
| 1908 | volatile uint32 dummy; |
| 1909 | |
| 1910 | si = SB_INFO(sbh); |
| 1911 | ASSERT(GOODREGS(si->curmap)); |
| 1912 | sb = REGS2SB(si->curmap); |
| 1913 | |
| 1914 | /* |
| 1915 | * Must do the disable sequence first to work for arbitrary current core state. |
| 1916 | */ |
| 1917 | sb_core_disable(sbh, (bits | resetbits)); |
| 1918 | |
| 1919 | /* |
| 1920 | * Now do the initialization sequence. |
| 1921 | */ |
| 1922 | |
| 1923 | /* set reset while enabling the clock and forcing them on throughout the core */ |
| 1924 | W_SBREG(si, &sb->sbtmstatelow, |
| 1925 | (SBTML_FGC | SBTML_CLK | SBTML_RESET | bits | resetbits)); |
| 1926 | dummy = R_SBREG(si, &sb->sbtmstatelow); |
| 1927 | OSL_DELAY(1); |
| 1928 | |
| 1929 | if (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_SERR) { |
| 1930 | W_SBREG(si, &sb->sbtmstatehigh, 0); |
| 1931 | } |
| 1932 | if ((dummy = R_SBREG(si, &sb->sbimstate)) & (SBIM_IBE | SBIM_TO)) { |
| 1933 | AND_SBREG(si, &sb->sbimstate, ~(SBIM_IBE | SBIM_TO)); |
| 1934 | } |
| 1935 | |
| 1936 | /* clear reset and allow it to propagate throughout the core */ |
| 1937 | W_SBREG(si, &sb->sbtmstatelow, (SBTML_FGC | SBTML_CLK | bits)); |
| 1938 | dummy = R_SBREG(si, &sb->sbtmstatelow); |
| 1939 | OSL_DELAY(1); |
| 1940 | |
| 1941 | /* leave clock enabled */ |
| 1942 | W_SBREG(si, &sb->sbtmstatelow, (SBTML_CLK | bits)); |
| 1943 | dummy = R_SBREG(si, &sb->sbtmstatelow); |
| 1944 | OSL_DELAY(1); |
| 1945 | } |
| 1946 | |
| 1947 | void sb_core_tofixup(sb_t * sbh) |
| 1948 | { |
| 1949 | sb_info_t *si; |
| 1950 | sbconfig_t *sb; |
| 1951 | |
| 1952 | si = SB_INFO(sbh); |
| 1953 | |
| 1954 | if ((BUSTYPE(si->sb.bustype) != PCI_BUS) || PCIE(si) || |
| 1955 | (PCI(si) && (si->sb.buscorerev >= 5))) |
| 1956 | return; |
| 1957 | |
| 1958 | ASSERT(GOODREGS(si->curmap)); |
| 1959 | sb = REGS2SB(si->curmap); |
| 1960 | |
| 1961 | if (BUSTYPE(si->sb.bustype) == SB_BUS) { |
| 1962 | SET_SBREG(si, &sb->sbimconfiglow, |
| 1963 | SBIMCL_RTO_MASK | SBIMCL_STO_MASK, |
| 1964 | (0x5 << SBIMCL_RTO_SHIFT) | 0x3); |
| 1965 | } else { |
| 1966 | if (sb_coreid(sbh) == SB_PCI) { |
| 1967 | SET_SBREG(si, &sb->sbimconfiglow, |
| 1968 | SBIMCL_RTO_MASK | SBIMCL_STO_MASK, |
| 1969 | (0x3 << SBIMCL_RTO_SHIFT) | 0x2); |
| 1970 | } else { |
| 1971 | SET_SBREG(si, &sb->sbimconfiglow, |
| 1972 | (SBIMCL_RTO_MASK | SBIMCL_STO_MASK), 0); |
| 1973 | } |
| 1974 | } |
| 1975 | |
| 1976 | sb_commit(sbh); |
| 1977 | } |
| 1978 | |
| 1979 | /* |
| 1980 | * Set the initiator timeout for the "master core". |
| 1981 | * The master core is defined to be the core in control |
| 1982 | * of the chip and so it issues accesses to non-memory |
| 1983 | * locations (Because of dma *any* core can access memeory). |
| 1984 | * |
| 1985 | * The routine uses the bus to decide who is the master: |
| 1986 | * SB_BUS => mips |
| 1987 | * JTAG_BUS => chipc |
| 1988 | * PCI_BUS => pci or pcie |
| 1989 | * PCMCIA_BUS => pcmcia |
| 1990 | * SDIO_BUS => pcmcia |
| 1991 | * |
| 1992 | * This routine exists so callers can disable initiator |
| 1993 | * timeouts so accesses to very slow devices like otp |
| 1994 | * won't cause an abort. The routine allows arbitrary |
| 1995 | * settings of the service and request timeouts, though. |
| 1996 | * |
| 1997 | * Returns the timeout state before changing it or -1 |
| 1998 | * on error. |
| 1999 | */ |
| 2000 | |
| 2001 | #define TO_MASK (SBIMCL_RTO_MASK | SBIMCL_STO_MASK) |
| 2002 | |
| 2003 | uint32 sb_set_initiator_to(sb_t * sbh, uint32 to, uint idx) |
| 2004 | { |
| 2005 | sb_info_t *si; |
| 2006 | uint origidx; |
| 2007 | uint intr_val = 0; |
| 2008 | uint32 tmp, ret = 0xffffffff; |
| 2009 | sbconfig_t *sb; |
| 2010 | |
| 2011 | si = SB_INFO(sbh); |
| 2012 | |
| 2013 | if ((to & ~TO_MASK) != 0) |
| 2014 | return ret; |
| 2015 | |
| 2016 | /* Figure out the master core */ |
| 2017 | if (idx == BADIDX) { |
| 2018 | switch (BUSTYPE(si->sb.bustype)) { |
| 2019 | case PCI_BUS: |
| 2020 | idx = si->sb.buscoreidx; |
| 2021 | break; |
| 2022 | case JTAG_BUS: |
| 2023 | idx = SB_CC_IDX; |
| 2024 | break; |
| 2025 | case PCMCIA_BUS: |
| 2026 | case SDIO_BUS: |
| 2027 | idx = sb_findcoreidx(sbh, SB_PCMCIA, 0); |
| 2028 | break; |
| 2029 | case SB_BUS: |
| 2030 | if ((idx = sb_findcoreidx(sbh, SB_MIPS33, 0)) == BADIDX) |
| 2031 | idx = sb_findcoreidx(sbh, SB_MIPS, 0); |
| 2032 | break; |
| 2033 | default: |
| 2034 | ASSERT(0); |
| 2035 | } |
| 2036 | if (idx == BADIDX) |
| 2037 | return ret; |
| 2038 | } |
| 2039 | |
| 2040 | INTR_OFF(si, intr_val); |
| 2041 | origidx = sb_coreidx(sbh); |
| 2042 | |
| 2043 | sb = REGS2SB(sb_setcoreidx(sbh, idx)); |
| 2044 | |
| 2045 | tmp = R_SBREG(si, &sb->sbimconfiglow); |
| 2046 | ret = tmp & TO_MASK; |
| 2047 | W_SBREG(si, &sb->sbimconfiglow, (tmp & ~TO_MASK) | to); |
| 2048 | |
| 2049 | sb_commit(sbh); |
| 2050 | sb_setcoreidx(sbh, origidx); |
| 2051 | INTR_RESTORE(si, intr_val); |
| 2052 | return ret; |
| 2053 | } |
| 2054 | |
| 2055 | void sb_core_disable(sb_t * sbh, uint32 bits) |
| 2056 | { |
| 2057 | sb_info_t *si; |
| 2058 | volatile uint32 dummy; |
| 2059 | uint32 rej; |
| 2060 | sbconfig_t *sb; |
| 2061 | |
| 2062 | si = SB_INFO(sbh); |
| 2063 | |
| 2064 | ASSERT(GOODREGS(si->curmap)); |
| 2065 | sb = REGS2SB(si->curmap); |
| 2066 | |
| 2067 | /* if core is already in reset, just return */ |
| 2068 | if (R_SBREG(si, &sb->sbtmstatelow) & SBTML_RESET) |
| 2069 | return; |
| 2070 | |
| 2071 | /* reject value changed between sonics 2.2 and 2.3 */ |
| 2072 | if (si->sb.sonicsrev == SONICS_2_2) |
| 2073 | rej = (1 << SBTML_REJ_SHIFT); |
| 2074 | else |
| 2075 | rej = (2 << SBTML_REJ_SHIFT); |
| 2076 | |
| 2077 | /* if clocks are not enabled, put into reset and return */ |
| 2078 | if ((R_SBREG(si, &sb->sbtmstatelow) & SBTML_CLK) == 0) |
| 2079 | goto disable; |
| 2080 | |
| 2081 | /* set target reject and spin until busy is clear (preserve core-specific bits) */ |
| 2082 | OR_SBREG(si, &sb->sbtmstatelow, rej); |
| 2083 | dummy = R_SBREG(si, &sb->sbtmstatelow); |
| 2084 | OSL_DELAY(1); |
| 2085 | SPINWAIT((R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BUSY), 100000); |
| 2086 | if (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BUSY) |
| 2087 | SB_ERROR(("%s: target state still busy\n", __FUNCTION__)); |
| 2088 | |
| 2089 | if (R_SBREG(si, &sb->sbidlow) & SBIDL_INIT) { |
| 2090 | OR_SBREG(si, &sb->sbimstate, SBIM_RJ); |
| 2091 | dummy = R_SBREG(si, &sb->sbimstate); |
| 2092 | OSL_DELAY(1); |
| 2093 | SPINWAIT((R_SBREG(si, &sb->sbimstate) & SBIM_BY), 100000); |
| 2094 | } |
| 2095 | |
| 2096 | /* set reset and reject while enabling the clocks */ |
| 2097 | W_SBREG(si, &sb->sbtmstatelow, |
| 2098 | (bits | SBTML_FGC | SBTML_CLK | rej | SBTML_RESET)); |
| 2099 | dummy = R_SBREG(si, &sb->sbtmstatelow); |
| 2100 | OSL_DELAY(10); |
| 2101 | |
| 2102 | /* don't forget to clear the initiator reject bit */ |
| 2103 | if (R_SBREG(si, &sb->sbidlow) & SBIDL_INIT) |
| 2104 | AND_SBREG(si, &sb->sbimstate, ~SBIM_RJ); |
| 2105 | |
| 2106 | disable: |
| 2107 | /* leave reset and reject asserted */ |
| 2108 | W_SBREG(si, &sb->sbtmstatelow, (bits | rej | SBTML_RESET)); |
| 2109 | OSL_DELAY(1); |
| 2110 | } |
| 2111 | |
| 2112 | /* set chip watchdog reset timer to fire in 'ticks' backplane cycles */ |
| 2113 | void sb_watchdog(sb_t * sbh, uint ticks) |
| 2114 | { |
| 2115 | sb_info_t *si = SB_INFO(sbh); |
| 2116 | |
| 2117 | /* make sure we come up in fast clock mode; or if clearing, clear clock */ |
| 2118 | if (ticks) |
| 2119 | sb_clkctl_clk(sbh, CLK_FAST); |
| 2120 | else |
| 2121 | sb_clkctl_clk(sbh, CLK_DYNAMIC); |
| 2122 | |
| 2123 | if (sbh->chip == BCM4328_CHIP_ID && ticks != 0) |
| 2124 | sb_corereg(sbh, SB_CC_IDX, OFFSETOF(chipcregs_t, min_res_mask), |
| 2125 | PMURES_BIT(RES4328_ROM_SWITCH), |
| 2126 | PMURES_BIT(RES4328_ROM_SWITCH)); |
| 2127 | |
| 2128 | /* instant NMI */ |
| 2129 | switch (si->gpioid) { |
| 2130 | case SB_CC: |
| 2131 | sb_corereg(sbh, SB_CC_IDX, OFFSETOF(chipcregs_t, watchdog), ~0, |
| 2132 | ticks); |
| 2133 | break; |
| 2134 | case SB_EXTIF: |
| 2135 | sb_corereg(sbh, si->gpioidx, OFFSETOF(extifregs_t, watchdog), |
| 2136 | ~0, ticks); |
| 2137 | break; |
| 2138 | } |
| 2139 | } |
| 2140 | |
| 2141 | /* initialize the pcmcia core */ |
| 2142 | void sb_pcmcia_init(sb_t * sbh) |
| 2143 | { |
| 2144 | sb_info_t *si; |
| 2145 | uint8 cor = 0; |
| 2146 | |
| 2147 | si = SB_INFO(sbh); |
| 2148 | |
| 2149 | /* enable d11 mac interrupts */ |
| 2150 | OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_FCR0 + PCMCIA_COR, &cor, 1); |
| 2151 | cor |= COR_IRQEN | COR_FUNEN; |
| 2152 | OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_FCR0 + PCMCIA_COR, &cor, 1); |
| 2153 | |
| 2154 | } |
| 2155 | |
| 2156 | void BCMINITFN(sb_pci_up) (sb_t * sbh) { |
| 2157 | sb_info_t *si = SB_INFO(sbh); |
| 2158 | if (si->gpioid == SB_EXTIF) |
| 2159 | return; |
| 2160 | |
| 2161 | /* if not pci bus, we're done */ |
| 2162 | if (BUSTYPE(si->sb.bustype) != PCI_BUS) |
| 2163 | return; |
| 2164 | |
| 2165 | if (FORCEHT_WAR32414(si)) |
| 2166 | sb_war32414_forceHT(sbh, 1); |
| 2167 | |
| 2168 | if (PCIE_ASPMWARS(si) || si->sb.pr42780) |
| 2169 | sb_pcieclkreq(sbh, 1, 0); |
| 2170 | |
| 2171 | if (PCIE(si) && |
| 2172 | (((si->sb.chip == BCM4311_CHIP_ID) && (si->sb.chiprev == 2)) || |
| 2173 | ((si->sb.chip == BCM4312_CHIP_ID) && (si->sb.chiprev == 0)))) |
| 2174 | sb_set_initiator_to((void *)si, 0x3, |
| 2175 | sb_findcoreidx((void *)si, SB_D11, 0)); |
| 2176 | } |
| 2177 | |
| 2178 | /* Unconfigure and/or apply various WARs when system is going to sleep mode */ |
| 2179 | void BCMUNINITFN(sb_pci_sleep) (sb_t * sbh) { |
| 2180 | sb_info_t *si = SB_INFO(sbh); |
| 2181 | if (si->gpioid == SB_EXTIF) |
| 2182 | return; |
| 2183 | uint32 w; |
| 2184 | |
| 2185 | /* if not pci bus, we're done */ |
| 2186 | if (!PCIE(si) || !PCIE_ASPMWARS(si)) |
| 2187 | return; |
| 2188 | |
| 2189 | w = OSL_PCI_READ_CONFIG(si->osh, si->pciecap_lcreg_offset, |
| 2190 | sizeof(uint32)); |
| 2191 | w &= ~PCIE_CAP_LCREG_ASPML1; |
| 2192 | OSL_PCI_WRITE_CONFIG(si->osh, si->pciecap_lcreg_offset, sizeof(uint32), |
| 2193 | w); |
| 2194 | } |
| 2195 | |
| 2196 | /* Unconfigure and/or apply various WARs when going down */ |
| 2197 | void BCMINITFN(sb_pci_down) (sb_t * sbh) { |
| 2198 | sb_info_t *si = SB_INFO(sbh); |
| 2199 | if (si->gpioid == SB_EXTIF) |
| 2200 | return; |
| 2201 | |
| 2202 | /* if not pci bus, we're done */ |
| 2203 | if (BUSTYPE(si->sb.bustype) != PCI_BUS) |
| 2204 | return; |
| 2205 | |
| 2206 | if (FORCEHT_WAR32414(si)) |
| 2207 | sb_war32414_forceHT(sbh, 0); |
| 2208 | |
| 2209 | if (si->pr42767_war) { |
| 2210 | sb_pcieclkreq(sbh, 1, 1); |
| 2211 | si->pr42767_war = FALSE; |
| 2212 | } else if (si->sb.pr42780) { |
| 2213 | sb_pcieclkreq(sbh, 1, 1); |
| 2214 | } |
| 2215 | } |
| 2216 | |
| 2217 | static void BCMINITFN(sb_war42767_clkreq) (sb_t * sbh) { |
| 2218 | sbpcieregs_t *pcieregs; |
| 2219 | uint16 val16, *reg16; |
| 2220 | sb_info_t *si; |
| 2221 | |
| 2222 | si = SB_INFO(sbh); |
| 2223 | |
| 2224 | /* if not pcie bus, we're done */ |
| 2225 | if (!PCIE(si) || !PCIE_ASPMWARS(si)) |
| 2226 | return; |
| 2227 | |
| 2228 | pcieregs = (sbpcieregs_t *) sb_setcoreidx(sbh, si->sb.buscoreidx); |
| 2229 | reg16 = &pcieregs->sprom[SRSH_CLKREQ_OFFSET]; |
| 2230 | val16 = R_REG(si->osh, reg16); |
| 2231 | /* if clockreq is not advertized advertize it */ |
| 2232 | if (!si->pcie_war_ovr) { |
| 2233 | val16 |= SRSH_CLKREQ_ENB; |
| 2234 | si->pr42767_war = TRUE; |
| 2235 | |
| 2236 | si->sb.pr42780 = TRUE; |
| 2237 | } else |
| 2238 | val16 &= ~SRSH_CLKREQ_ENB; |
| 2239 | W_REG(si->osh, reg16, val16); |
| 2240 | } |
| 2241 | |
| 2242 | static void BCMINITFN(sb_war42767) (sb_t * sbh) { |
| 2243 | uint32 w = 0; |
| 2244 | sb_info_t *si; |
| 2245 | |
| 2246 | si = SB_INFO(sbh); |
| 2247 | |
| 2248 | /* if not pcie bus, we're done */ |
| 2249 | if (!PCIE(si) || !PCIE_ASPMWARS(si)) |
| 2250 | return; |
| 2251 | |
| 2252 | sb_pcie_mdioread(si, MDIODATA_DEV_PLL, SERDES_PLL_CTRL, &w); |
| 2253 | if (w & PLL_CTRL_FREQDET_EN) { |
| 2254 | w &= ~PLL_CTRL_FREQDET_EN; |
| 2255 | sb_pcie_mdiowrite(si, MDIODATA_DEV_PLL, SERDES_PLL_CTRL, w); |
| 2256 | } |
| 2257 | } |
| 2258 | |
| 2259 | /* |
| 2260 | * Configure the pci core for pci client (NIC) action |
| 2261 | * coremask is the bitvec of cores by index to be enabled. |
| 2262 | */ |
| 2263 | void BCMINITFN(sb_pci_setup) (sb_t * sbh, uint coremask) { |
| 2264 | sb_info_t *si; |
| 2265 | sbconfig_t *sb; |
| 2266 | sbpciregs_t *pciregs; |
| 2267 | uint32 sbflag; |
| 2268 | uint32 w; |
| 2269 | uint idx; |
| 2270 | |
| 2271 | si = SB_INFO(sbh); |
| 2272 | |
| 2273 | /* if not pci bus, we're done */ |
| 2274 | if (BUSTYPE(si->sb.bustype) != PCI_BUS) |
| 2275 | return; |
| 2276 | |
| 2277 | ASSERT(PCI(si) || PCIE(si)); |
| 2278 | ASSERT(si->sb.buscoreidx != BADIDX); |
| 2279 | |
| 2280 | /* get current core index */ |
| 2281 | idx = si->curidx; |
| 2282 | |
| 2283 | /* we interrupt on this backplane flag number */ |
| 2284 | ASSERT(GOODREGS(si->curmap)); |
| 2285 | sb = REGS2SB(si->curmap); |
| 2286 | sbflag = R_SBREG(si, &sb->sbtpsflag) & SBTPS_NUM0_MASK; |
| 2287 | |
| 2288 | /* switch over to pci core */ |
| 2289 | pciregs = (sbpciregs_t *) sb_setcoreidx(sbh, si->sb.buscoreidx); |
| 2290 | sb = REGS2SB(pciregs); |
| 2291 | |
| 2292 | /* |
| 2293 | * Enable sb->pci interrupts. Assume |
| 2294 | * PCI rev 2.3 support was added in pci core rev 6 and things changed.. |
| 2295 | */ |
| 2296 | if (PCIE(si) || (PCI(si) && ((si->sb.buscorerev) >= 6))) { |
| 2297 | /* pci config write to set this core bit in PCIIntMask */ |
| 2298 | w = OSL_PCI_READ_CONFIG(si->osh, PCI_INT_MASK, sizeof(uint32)); |
| 2299 | w |= (coremask << PCI_SBIM_SHIFT); |
| 2300 | OSL_PCI_WRITE_CONFIG(si->osh, PCI_INT_MASK, sizeof(uint32), w); |
| 2301 | } else { |
| 2302 | /* set sbintvec bit for our flag number */ |
| 2303 | OR_SBREG(si, &sb->sbintvec, (1 << sbflag)); |
| 2304 | } |
| 2305 | |
| 2306 | if (PCI(si)) { |
| 2307 | OR_REG(si->osh, &pciregs->sbtopci2, |
| 2308 | (SBTOPCI_PREF | SBTOPCI_BURST)); |
| 2309 | if (si->sb.buscorerev >= 11) |
| 2310 | OR_REG(si->osh, &pciregs->sbtopci2, |
| 2311 | SBTOPCI_RC_READMULTI); |
| 2312 | if (si->sb.buscorerev < 5) { |
| 2313 | SET_SBREG(si, &sb->sbimconfiglow, |
| 2314 | SBIMCL_RTO_MASK | SBIMCL_STO_MASK, |
| 2315 | (0x3 << SBIMCL_RTO_SHIFT) | 0x2); |
| 2316 | sb_commit(sbh); |
| 2317 | } |
| 2318 | } |
| 2319 | |
| 2320 | /* PCIE workarounds */ |
| 2321 | if (PCIE(si)) { |
| 2322 | if ((si->sb.buscorerev == 0) || (si->sb.buscorerev == 1)) { |
| 2323 | w = sb_pcie_readreg((void *)(uintptr) sbh, |
| 2324 | (void *)(uintptr) PCIE_PCIEREGS, |
| 2325 | PCIE_TLP_WORKAROUNDSREG); |
| 2326 | w |= 0x8; |
| 2327 | sb_pcie_writereg((void *)(uintptr) sbh, |
| 2328 | (void *)(uintptr) PCIE_PCIEREGS, |
| 2329 | PCIE_TLP_WORKAROUNDSREG, w); |
| 2330 | } |
| 2331 | |
| 2332 | if (si->sb.buscorerev == 1) { |
| 2333 | w = sb_pcie_readreg((void *)(uintptr) sbh, |
| 2334 | (void *)(uintptr) PCIE_PCIEREGS, |
| 2335 | PCIE_DLLP_LCREG); |
| 2336 | w |= (0x40); |
| 2337 | sb_pcie_writereg((void *)(uintptr) sbh, |
| 2338 | (void *)(uintptr) PCIE_PCIEREGS, |
| 2339 | PCIE_DLLP_LCREG, w); |
| 2340 | } |
| 2341 | |
| 2342 | if (si->sb.buscorerev == 0) |
| 2343 | sb_war30841(si); |
| 2344 | |
| 2345 | if ((si->sb.buscorerev >= 3) && (si->sb.buscorerev <= 5)) { |
| 2346 | w = sb_pcie_readreg((void *)(uintptr) sbh, |
| 2347 | (void *)(uintptr) PCIE_PCIEREGS, |
| 2348 | PCIE_DLLP_PMTHRESHREG); |
| 2349 | w &= ~(PCIE_L1THRESHOLDTIME_MASK); |
| 2350 | w |= (PCIE_L1THRESHOLD_WARVAL << |
| 2351 | PCIE_L1THRESHOLDTIME_SHIFT); |
| 2352 | sb_pcie_writereg((void *)(uintptr) sbh, |
| 2353 | (void *)(uintptr) PCIE_PCIEREGS, |
| 2354 | PCIE_DLLP_PMTHRESHREG, w); |
| 2355 | |
| 2356 | sb_war43448(sbh); |
| 2357 | |
| 2358 | sb_war42767(sbh); |
| 2359 | |
| 2360 | sb_war43448_aspm(sbh); |
| 2361 | sb_war42767_clkreq(sbh); |
| 2362 | } |
| 2363 | } |
| 2364 | |
| 2365 | /* switch back to previous core */ |
| 2366 | sb_setcoreidx(sbh, idx); |
| 2367 | } |
| 2368 | |
| 2369 | uint32 sb_base(uint32 admatch) |
| 2370 | { |
| 2371 | uint32 base; |
| 2372 | uint type; |
| 2373 | |
| 2374 | type = admatch & SBAM_TYPE_MASK; |
| 2375 | ASSERT(type < 3); |
| 2376 | |
| 2377 | base = 0; |
| 2378 | |
| 2379 | if (type == 0) { |
| 2380 | base = admatch & SBAM_BASE0_MASK; |
| 2381 | } else if (type == 1) { |
| 2382 | ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ |
| 2383 | base = admatch & SBAM_BASE1_MASK; |
| 2384 | } else if (type == 2) { |
| 2385 | ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ |
| 2386 | base = admatch & SBAM_BASE2_MASK; |
| 2387 | } |
| 2388 | |
| 2389 | return (base); |
| 2390 | } |
| 2391 | |
| 2392 | uint32 sb_size(uint32 admatch) |
| 2393 | { |
| 2394 | uint32 size; |
| 2395 | uint type; |
| 2396 | |
| 2397 | type = admatch & SBAM_TYPE_MASK; |
| 2398 | ASSERT(type < 3); |
| 2399 | |
| 2400 | size = 0; |
| 2401 | |
| 2402 | if (type == 0) { |
| 2403 | size = |
| 2404 | 1 << (((admatch & SBAM_ADINT0_MASK) >> SBAM_ADINT0_SHIFT) + |
| 2405 | 1); |
| 2406 | } else if (type == 1) { |
| 2407 | ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ |
| 2408 | size = |
| 2409 | 1 << (((admatch & SBAM_ADINT1_MASK) >> SBAM_ADINT1_SHIFT) + |
| 2410 | 1); |
| 2411 | } else if (type == 2) { |
| 2412 | ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ |
| 2413 | size = |
| 2414 | 1 << (((admatch & SBAM_ADINT2_MASK) >> SBAM_ADINT2_SHIFT) + |
| 2415 | 1); |
| 2416 | } |
| 2417 | |
| 2418 | return (size); |
| 2419 | } |
| 2420 | |
| 2421 | /* return the core-type instantiation # of the current core */ |
| 2422 | uint sb_coreunit(sb_t * sbh) |
| 2423 | { |
| 2424 | sb_info_t *si; |
| 2425 | uint idx; |
| 2426 | uint coreid; |
| 2427 | uint coreunit; |
| 2428 | uint i; |
| 2429 | |
| 2430 | si = SB_INFO(sbh); |
| 2431 | coreunit = 0; |
| 2432 | |
| 2433 | idx = si->curidx; |
| 2434 | |
| 2435 | ASSERT(GOODREGS(si->curmap)); |
| 2436 | coreid = sb_coreid(sbh); |
| 2437 | |
| 2438 | /* count the cores of our type */ |
| 2439 | for (i = 0; i < idx; i++) |
| 2440 | if (si->coreid[i] == coreid) |
| 2441 | coreunit++; |
| 2442 | |
| 2443 | return (coreunit); |
| 2444 | } |
| 2445 | |
| 2446 | static uint32 BCMINITFN(factor6) (uint32 x) { |
| 2447 | switch (x) { |
| 2448 | case CC_F6_2: |
| 2449 | return 2; |
| 2450 | case CC_F6_3: |
| 2451 | return 3; |
| 2452 | case CC_F6_4: |
| 2453 | return 4; |
| 2454 | case CC_F6_5: |
| 2455 | return 5; |
| 2456 | case CC_F6_6: |
| 2457 | return 6; |
| 2458 | case CC_F6_7: |
| 2459 | return 7; |
| 2460 | default: |
| 2461 | return 0; |
| 2462 | } |
| 2463 | } |
| 2464 | |
| 2465 | /* calculate the speed the SB would run at given a set of clockcontrol values */ |
| 2466 | uint32 BCMINITFN(sb_clock_rate) (uint32 pll_type, uint32 n, uint32 m) { |
| 2467 | uint32 n1, n2, clock, m1, m2, m3, mc; |
| 2468 | |
| 2469 | n1 = n & CN_N1_MASK; |
| 2470 | n2 = (n & CN_N2_MASK) >> CN_N2_SHIFT; |
| 2471 | |
| 2472 | if (pll_type == PLL_TYPE6) { |
| 2473 | if (m & CC_T6_MMASK) |
| 2474 | return CC_T6_M1; |
| 2475 | else |
| 2476 | return CC_T6_M0; |
| 2477 | } else if ((pll_type == PLL_TYPE1) || |
| 2478 | (pll_type == PLL_TYPE3) || |
| 2479 | (pll_type == PLL_TYPE4) || (pll_type == PLL_TYPE7)) { |
| 2480 | n1 = factor6(n1); |
| 2481 | n2 += CC_F5_BIAS; |
| 2482 | } else if (pll_type == PLL_TYPE2) { |
| 2483 | n1 += CC_T2_BIAS; |
| 2484 | n2 += CC_T2_BIAS; |
| 2485 | ASSERT((n1 >= 2) && (n1 <= 7)); |
| 2486 | ASSERT((n2 >= 5) && (n2 <= 23)); |
| 2487 | } else if (pll_type == PLL_TYPE5) { |
| 2488 | return (100000000); |
| 2489 | } else |
| 2490 | ASSERT(0); |
| 2491 | /* PLL types 3 and 7 use BASE2 (25Mhz) */ |
| 2492 | if ((pll_type == PLL_TYPE3) || (pll_type == PLL_TYPE7)) { |
| 2493 | clock = CC_CLOCK_BASE2 * n1 * n2; |
| 2494 | } else |
| 2495 | clock = CC_CLOCK_BASE1 * n1 * n2; |
| 2496 | |
| 2497 | if (clock == 0) |
| 2498 | return 0; |
| 2499 | |
| 2500 | m1 = m & CC_M1_MASK; |
| 2501 | m2 = (m & CC_M2_MASK) >> CC_M2_SHIFT; |
| 2502 | m3 = (m & CC_M3_MASK) >> CC_M3_SHIFT; |
| 2503 | mc = (m & CC_MC_MASK) >> CC_MC_SHIFT; |
| 2504 | |
| 2505 | if ((pll_type == PLL_TYPE1) || |
| 2506 | (pll_type == PLL_TYPE3) || |
| 2507 | (pll_type == PLL_TYPE4) || (pll_type == PLL_TYPE7)) { |
| 2508 | m1 = factor6(m1); |
| 2509 | if ((pll_type == PLL_TYPE1) || (pll_type == PLL_TYPE3)) |
| 2510 | m2 += CC_F5_BIAS; |
| 2511 | else |
| 2512 | m2 = factor6(m2); |
| 2513 | m3 = factor6(m3); |
| 2514 | |
| 2515 | switch (mc) { |
| 2516 | case CC_MC_BYPASS: |
| 2517 | return (clock); |
| 2518 | case CC_MC_M1: |
| 2519 | return (clock / m1); |
| 2520 | case CC_MC_M1M2: |
| 2521 | return (clock / (m1 * m2)); |
| 2522 | case CC_MC_M1M2M3: |
| 2523 | return (clock / (m1 * m2 * m3)); |
| 2524 | case CC_MC_M1M3: |
| 2525 | return (clock / (m1 * m3)); |
| 2526 | default: |
| 2527 | return (0); |
| 2528 | } |
| 2529 | } else { |
| 2530 | ASSERT(pll_type == PLL_TYPE2); |
| 2531 | |
| 2532 | m1 += CC_T2_BIAS; |
| 2533 | m2 += CC_T2M2_BIAS; |
| 2534 | m3 += CC_T2_BIAS; |
| 2535 | ASSERT((m1 >= 2) && (m1 <= 7)); |
| 2536 | ASSERT((m2 >= 3) && (m2 <= 10)); |
| 2537 | ASSERT((m3 >= 2) && (m3 <= 7)); |
| 2538 | |
| 2539 | if ((mc & CC_T2MC_M1BYP) == 0) |
| 2540 | clock /= m1; |
| 2541 | if ((mc & CC_T2MC_M2BYP) == 0) |
| 2542 | clock /= m2; |
| 2543 | if ((mc & CC_T2MC_M3BYP) == 0) |
| 2544 | clock /= m3; |
| 2545 | |
| 2546 | return (clock); |
| 2547 | } |
| 2548 | } |
| 2549 | |
| 2550 | /* returns the current speed the SB is running at */ |
| 2551 | uint32 BCMINITFN(sb_clock) (sb_t * sbh) { |
| 2552 | sb_info_t *si; |
| 2553 | extifregs_t *eir; |
| 2554 | chipcregs_t *cc; |
| 2555 | uint32 n, m; |
| 2556 | uint idx; |
| 2557 | uint32 cap, pll_type, rate; |
| 2558 | uint intr_val = 0; |
| 2559 | |
| 2560 | si = SB_INFO(sbh); |
| 2561 | idx = si->curidx; |
| 2562 | pll_type = PLL_TYPE1; |
| 2563 | |
| 2564 | INTR_OFF(si, intr_val); |
| 2565 | |
| 2566 | /* switch to extif or chipc core */ |
| 2567 | if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) { |
| 2568 | n = R_REG(si->osh, &eir->clockcontrol_n); |
| 2569 | m = R_REG(si->osh, &eir->clockcontrol_sb); |
| 2570 | } else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) { |
| 2571 | |
| 2572 | cap = R_REG(si->osh, &cc->capabilities); |
| 2573 | |
| 2574 | if (cap & CC_CAP_PMU) { |
| 2575 | |
| 2576 | if (sb_chip(sbh) == BCM5354_CHIP_ID) { |
| 2577 | /* 5354 has a constant sb clock of 120MHz */ |
| 2578 | rate = 120000000; |
| 2579 | goto end; |
| 2580 | } else |
| 2581 | if (sb_chip(sbh) == BCM4328_CHIP_ID) { |
| 2582 | rate = 80000000; |
| 2583 | goto end; |
| 2584 | } else |
| 2585 | ASSERT(0); |
| 2586 | } |
| 2587 | |
| 2588 | pll_type = cap & CC_CAP_PLL_MASK; |
| 2589 | if (pll_type == PLL_NONE) { |
| 2590 | INTR_RESTORE(si, intr_val); |
| 2591 | return 80000000; |
| 2592 | } |
| 2593 | n = R_REG(si->osh, &cc->clockcontrol_n); |
| 2594 | if (pll_type == PLL_TYPE6) |
| 2595 | m = R_REG(si->osh, &cc->clockcontrol_m3); |
| 2596 | else if (pll_type == PLL_TYPE3 |
| 2597 | && !(BCMINIT(sb_chip) (sbh) == 0x5365)) |
| 2598 | m = R_REG(si->osh, &cc->clockcontrol_m2); |
| 2599 | else |
| 2600 | m = R_REG(si->osh, &cc->clockcontrol_sb); |
| 2601 | } else { |
| 2602 | INTR_RESTORE(si, intr_val); |
| 2603 | return 0; |
| 2604 | } |
| 2605 | |
| 2606 | /* calculate rate */ |
| 2607 | if (BCMINIT(sb_chip) (sbh) == 0x5365) |
| 2608 | rate = 100000000; |
| 2609 | else { |
| 2610 | rate = sb_clock_rate(pll_type, n, m); |
| 2611 | |
| 2612 | if (pll_type == PLL_TYPE3) |
| 2613 | rate = rate / 2; |
| 2614 | } |
| 2615 | |
| 2616 | end: |
| 2617 | /* switch back to previous core */ |
| 2618 | sb_setcoreidx(sbh, idx); |
| 2619 | |
| 2620 | INTR_RESTORE(si, intr_val); |
| 2621 | |
| 2622 | return rate; |
| 2623 | } |
| 2624 | |
| 2625 | uint32 BCMINITFN(sb_alp_clock) (sb_t * sbh) { |
| 2626 | uint32 clock = ALP_CLOCK; |
| 2627 | |
| 2628 | if (sbh->cccaps & CC_CAP_PMU) |
| 2629 | clock = sb_pmu_alp_clock(sbh, sb_osh(sbh)); |
| 2630 | |
| 2631 | return clock; |
| 2632 | } |
| 2633 | |
| 2634 | /* change logical "focus" to the gpio core for optimized access */ |
| 2635 | void *sb_gpiosetcore(sb_t * sbh) |
| 2636 | { |
| 2637 | sb_info_t *si; |
| 2638 | |
| 2639 | si = SB_INFO(sbh); |
| 2640 | |
| 2641 | return (sb_setcoreidx(sbh, si->gpioidx)); |
| 2642 | } |
| 2643 | |
| 2644 | /* mask&set gpiocontrol bits */ |
| 2645 | uint32 sb_gpiocontrol(sb_t * sbh, uint32 mask, uint32 val, uint8 priority) |
| 2646 | { |
| 2647 | sb_info_t *si; |
| 2648 | uint regoff; |
| 2649 | |
| 2650 | si = SB_INFO(sbh); |
| 2651 | regoff = 0; |
| 2652 | |
| 2653 | /* gpios could be shared on router platforms |
| 2654 | * ignore reservation if it's high priority (e.g., test apps) |
| 2655 | */ |
| 2656 | if ((priority != GPIO_HI_PRIORITY) && |
| 2657 | (BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) { |
| 2658 | mask = priority ? (sb_gpioreservation & mask) : |
| 2659 | ((sb_gpioreservation | mask) & ~(sb_gpioreservation)); |
| 2660 | val &= mask; |
| 2661 | } |
| 2662 | |
| 2663 | switch (si->gpioid) { |
| 2664 | case SB_CC: |
| 2665 | regoff = OFFSETOF(chipcregs_t, gpiocontrol); |
| 2666 | break; |
| 2667 | |
| 2668 | case SB_PCI: |
| 2669 | regoff = OFFSETOF(sbpciregs_t, gpiocontrol); |
| 2670 | break; |
| 2671 | |
| 2672 | case SB_EXTIF: |
| 2673 | return (0); |
| 2674 | } |
| 2675 | |
| 2676 | return (sb_corereg(sbh, si->gpioidx, regoff, mask, val)); |
| 2677 | } |
| 2678 | |
| 2679 | /* mask&set gpio output enable bits */ |
| 2680 | uint32 sb_gpioouten(sb_t * sbh, uint32 mask, uint32 val, uint8 priority) |
| 2681 | { |
| 2682 | sb_info_t *si; |
| 2683 | uint regoff; |
| 2684 | |
| 2685 | si = SB_INFO(sbh); |
| 2686 | regoff = 0; |
| 2687 | |
| 2688 | /* gpios could be shared on router platforms |
| 2689 | * ignore reservation if it's high priority (e.g., test apps) |
| 2690 | */ |
| 2691 | if ((priority != GPIO_HI_PRIORITY) && |
| 2692 | (BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) { |
| 2693 | mask = priority ? (sb_gpioreservation & mask) : |
| 2694 | ((sb_gpioreservation | mask) & ~(sb_gpioreservation)); |
| 2695 | val &= mask; |
| 2696 | } |
| 2697 | |
| 2698 | switch (si->gpioid) { |
| 2699 | case SB_CC: |
| 2700 | regoff = OFFSETOF(chipcregs_t, gpioouten); |
| 2701 | break; |
| 2702 | |
| 2703 | case SB_PCI: |
| 2704 | regoff = OFFSETOF(sbpciregs_t, gpioouten); |
| 2705 | break; |
| 2706 | |
| 2707 | case SB_EXTIF: |
| 2708 | regoff = OFFSETOF(extifregs_t, gpio[0].outen); |
| 2709 | break; |
| 2710 | } |
| 2711 | |
| 2712 | return (sb_corereg(sbh, si->gpioidx, regoff, mask, val)); |
| 2713 | } |
| 2714 | |
| 2715 | /* mask&set gpio output bits */ |
| 2716 | uint32 sb_gpioout(sb_t * sbh, uint32 mask, uint32 val, uint8 priority) |
| 2717 | { |
| 2718 | sb_info_t *si; |
| 2719 | uint regoff; |
| 2720 | |
| 2721 | si = SB_INFO(sbh); |
| 2722 | regoff = 0; |
| 2723 | |
| 2724 | /* gpios could be shared on router platforms |
| 2725 | * ignore reservation if it's high priority (e.g., test apps) |
| 2726 | */ |
| 2727 | if ((priority != GPIO_HI_PRIORITY) && |
| 2728 | (BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) { |
| 2729 | mask = priority ? (sb_gpioreservation & mask) : |
| 2730 | ((sb_gpioreservation | mask) & ~(sb_gpioreservation)); |
| 2731 | val &= mask; |
| 2732 | } |
| 2733 | |
| 2734 | switch (si->gpioid) { |
| 2735 | case SB_CC: |
| 2736 | regoff = OFFSETOF(chipcregs_t, gpioout); |
| 2737 | break; |
| 2738 | |
| 2739 | case SB_PCI: |
| 2740 | regoff = OFFSETOF(sbpciregs_t, gpioout); |
| 2741 | break; |
| 2742 | |
| 2743 | case SB_EXTIF: |
| 2744 | regoff = OFFSETOF(extifregs_t, gpio[0].out); |
| 2745 | break; |
| 2746 | } |
| 2747 | |
| 2748 | return (sb_corereg(sbh, si->gpioidx, regoff, mask, val)); |
| 2749 | } |
| 2750 | |
| 2751 | /* reserve one gpio */ |
| 2752 | uint32 sb_gpioreserve(sb_t * sbh, uint32 gpio_bitmask, uint8 priority) |
| 2753 | { |
| 2754 | sb_info_t *si; |
| 2755 | |
| 2756 | si = SB_INFO(sbh); |
| 2757 | |
| 2758 | /* only cores on SB_BUS share GPIO's and only applcation users need to |
| 2759 | * reserve/release GPIO |
| 2760 | */ |
| 2761 | if ((BUSTYPE(si->sb.bustype) != SB_BUS) || (!priority)) { |
| 2762 | ASSERT((BUSTYPE(si->sb.bustype) == SB_BUS) && (priority)); |
| 2763 | return -1; |
| 2764 | } |
| 2765 | /* make sure only one bit is set */ |
| 2766 | if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) { |
| 2767 | ASSERT((gpio_bitmask) |
| 2768 | && !((gpio_bitmask) & (gpio_bitmask - 1))); |
| 2769 | return -1; |
| 2770 | } |
| 2771 | |
| 2772 | /* already reserved */ |
| 2773 | if (sb_gpioreservation & gpio_bitmask) |
| 2774 | return -1; |
| 2775 | /* set reservation */ |
| 2776 | sb_gpioreservation |= gpio_bitmask; |
| 2777 | |
| 2778 | return sb_gpioreservation; |
| 2779 | } |
| 2780 | |
| 2781 | /* release one gpio */ |
| 2782 | /* |
| 2783 | * releasing the gpio doesn't change the current value on the GPIO last write value |
| 2784 | * persists till some one overwrites it |
| 2785 | */ |
| 2786 | |
| 2787 | uint32 sb_gpiorelease(sb_t * sbh, uint32 gpio_bitmask, uint8 priority) |
| 2788 | { |
| 2789 | sb_info_t *si; |
| 2790 | |
| 2791 | si = SB_INFO(sbh); |
| 2792 | |
| 2793 | /* only cores on SB_BUS share GPIO's and only applcation users need to |
| 2794 | * reserve/release GPIO |
| 2795 | */ |
| 2796 | if ((BUSTYPE(si->sb.bustype) != SB_BUS) || (!priority)) { |
| 2797 | ASSERT((BUSTYPE(si->sb.bustype) == SB_BUS) && (priority)); |
| 2798 | return -1; |
| 2799 | } |
| 2800 | /* make sure only one bit is set */ |
| 2801 | if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) { |
| 2802 | ASSERT((gpio_bitmask) |
| 2803 | && !((gpio_bitmask) & (gpio_bitmask - 1))); |
| 2804 | return -1; |
| 2805 | } |
| 2806 | |
| 2807 | /* already released */ |
| 2808 | if (!(sb_gpioreservation & gpio_bitmask)) |
| 2809 | return -1; |
| 2810 | |
| 2811 | /* clear reservation */ |
| 2812 | sb_gpioreservation &= ~gpio_bitmask; |
| 2813 | |
| 2814 | return sb_gpioreservation; |
| 2815 | } |
| 2816 | |
| 2817 | /* return the current gpioin register value */ |
| 2818 | uint32 sb_gpioin(sb_t * sbh) |
| 2819 | { |
| 2820 | sb_info_t *si; |
| 2821 | uint regoff; |
| 2822 | |
| 2823 | si = SB_INFO(sbh); |
| 2824 | regoff = 0; |
| 2825 | |
| 2826 | switch (si->gpioid) { |
| 2827 | case SB_CC: |
| 2828 | regoff = OFFSETOF(chipcregs_t, gpioin); |
| 2829 | break; |
| 2830 | |
| 2831 | case SB_PCI: |
| 2832 | regoff = OFFSETOF(sbpciregs_t, gpioin); |
| 2833 | break; |
| 2834 | |
| 2835 | case SB_EXTIF: |
| 2836 | regoff = OFFSETOF(extifregs_t, gpioin); |
| 2837 | break; |
| 2838 | } |
| 2839 | |
| 2840 | return (sb_corereg(sbh, si->gpioidx, regoff, 0, 0)); |
| 2841 | } |
| 2842 | |
| 2843 | /* mask&set gpio interrupt polarity bits */ |
| 2844 | uint32 sb_gpiointpolarity(sb_t * sbh, uint32 mask, uint32 val, uint8 priority) |
| 2845 | { |
| 2846 | sb_info_t *si; |
| 2847 | uint regoff; |
| 2848 | |
| 2849 | si = SB_INFO(sbh); |
| 2850 | regoff = 0; |
| 2851 | |
| 2852 | /* gpios could be shared on router platforms */ |
| 2853 | if ((BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) { |
| 2854 | mask = priority ? (sb_gpioreservation & mask) : |
| 2855 | ((sb_gpioreservation | mask) & ~(sb_gpioreservation)); |
| 2856 | val &= mask; |
| 2857 | } |
| 2858 | |
| 2859 | switch (si->gpioid) { |
| 2860 | case SB_CC: |
| 2861 | regoff = OFFSETOF(chipcregs_t, gpiointpolarity); |
| 2862 | break; |
| 2863 | |
| 2864 | case SB_PCI: |
| 2865 | /* pci gpio implementation does not support interrupt polarity */ |
| 2866 | ASSERT(0); |
| 2867 | break; |
| 2868 | |
| 2869 | case SB_EXTIF: |
| 2870 | regoff = OFFSETOF(extifregs_t, gpiointpolarity); |
| 2871 | break; |
| 2872 | } |
| 2873 | |
| 2874 | return (sb_corereg(sbh, si->gpioidx, regoff, mask, val)); |
| 2875 | } |
| 2876 | |
| 2877 | /* mask&set gpio interrupt mask bits */ |
| 2878 | uint32 sb_gpiointmask(sb_t * sbh, uint32 mask, uint32 val, uint8 priority) |
| 2879 | { |
| 2880 | sb_info_t *si; |
| 2881 | uint regoff; |
| 2882 | |
| 2883 | si = SB_INFO(sbh); |
| 2884 | regoff = 0; |
| 2885 | |
| 2886 | /* gpios could be shared on router platforms */ |
| 2887 | if ((BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) { |
| 2888 | mask = priority ? (sb_gpioreservation & mask) : |
| 2889 | ((sb_gpioreservation | mask) & ~(sb_gpioreservation)); |
| 2890 | val &= mask; |
| 2891 | } |
| 2892 | |
| 2893 | switch (si->gpioid) { |
| 2894 | case SB_CC: |
| 2895 | regoff = OFFSETOF(chipcregs_t, gpiointmask); |
| 2896 | break; |
| 2897 | |
| 2898 | case SB_PCI: |
| 2899 | /* pci gpio implementation does not support interrupt mask */ |
| 2900 | ASSERT(0); |
| 2901 | break; |
| 2902 | |
| 2903 | case SB_EXTIF: |
| 2904 | regoff = OFFSETOF(extifregs_t, gpiointmask); |
| 2905 | break; |
| 2906 | } |
| 2907 | |
| 2908 | return (sb_corereg(sbh, si->gpioidx, regoff, mask, val)); |
| 2909 | } |
| 2910 | |
| 2911 | /* assign the gpio to an led */ |
| 2912 | uint32 sb_gpioled(sb_t * sbh, uint32 mask, uint32 val) |
| 2913 | { |
| 2914 | sb_info_t *si; |
| 2915 | |
| 2916 | si = SB_INFO(sbh); |
| 2917 | if (si->sb.ccrev < 16) |
| 2918 | return -1; |
| 2919 | |
| 2920 | /* gpio led powersave reg */ |
| 2921 | return (sb_corereg |
| 2922 | (sbh, SB_CC_IDX, OFFSETOF(chipcregs_t, gpiotimeroutmask), mask, |
| 2923 | val)); |
| 2924 | } |
| 2925 | |
| 2926 | /* mask&set gpio timer val */ |
| 2927 | uint32 sb_gpiotimerval(sb_t * sbh, uint32 mask, uint32 gpiotimerval) |
| 2928 | { |
| 2929 | sb_info_t *si; |
| 2930 | si = SB_INFO(sbh); |
| 2931 | |
| 2932 | if (si->sb.ccrev < 16) |
| 2933 | return -1; |
| 2934 | |
| 2935 | return (sb_corereg(sbh, SB_CC_IDX, |
| 2936 | OFFSETOF(chipcregs_t, gpiotimerval), mask, |
| 2937 | gpiotimerval)); |
| 2938 | } |
| 2939 | |
| 2940 | uint32 sb_gpiopull(sb_t * sbh, bool updown, uint32 mask, uint32 val) |
| 2941 | { |
| 2942 | sb_info_t *si; |
| 2943 | uint offs; |
| 2944 | |
| 2945 | si = SB_INFO(sbh); |
| 2946 | if (si->sb.ccrev < 20) |
| 2947 | return -1; |
| 2948 | |
| 2949 | offs = |
| 2950 | (updown ? OFFSETOF(chipcregs_t, gpiopulldown) : |
| 2951 | OFFSETOF(chipcregs_t, gpiopullup)); |
| 2952 | return (sb_corereg(sbh, SB_CC_IDX, offs, mask, val)); |
| 2953 | } |
| 2954 | |
| 2955 | uint32 sb_gpioevent(sb_t * sbh, uint regtype, uint32 mask, uint32 val) |
| 2956 | { |
| 2957 | sb_info_t *si; |
| 2958 | uint offs; |
| 2959 | |
| 2960 | si = SB_INFO(sbh); |
| 2961 | if (si->sb.ccrev < 11) |
| 2962 | return -1; |
| 2963 | |
| 2964 | if (regtype == GPIO_REGEVT) |
| 2965 | offs = OFFSETOF(chipcregs_t, gpioevent); |
| 2966 | else if (regtype == GPIO_REGEVT_INTMSK) |
| 2967 | offs = OFFSETOF(chipcregs_t, gpioeventintmask); |
| 2968 | else if (regtype == GPIO_REGEVT_INTPOL) |
| 2969 | offs = OFFSETOF(chipcregs_t, gpioeventintpolarity); |
| 2970 | else |
| 2971 | return -1; |
| 2972 | |
| 2973 | return (sb_corereg(sbh, SB_CC_IDX, offs, mask, val)); |
| 2974 | } |
| 2975 | |
| 2976 | void *BCMINITFN(sb_gpio_handler_register) (sb_t * sbh, uint32 event, |
| 2977 | bool level, gpio_handler_t cb, |
| 2978 | void *arg) { |
| 2979 | sb_info_t *si; |
| 2980 | gpioh_item_t *gi; |
| 2981 | |
| 2982 | ASSERT(event); |
| 2983 | ASSERT(cb); |
| 2984 | |
| 2985 | si = SB_INFO(sbh); |
| 2986 | if (si->sb.ccrev < 11) |
| 2987 | return NULL; |
| 2988 | |
| 2989 | if ((gi = MALLOC(si->osh, sizeof(gpioh_item_t))) == NULL) |
| 2990 | return NULL; |
| 2991 | |
| 2992 | bzero(gi, sizeof(gpioh_item_t)); |
| 2993 | gi->event = event; |
| 2994 | gi->handler = cb; |
| 2995 | gi->arg = arg; |
| 2996 | gi->level = level; |
| 2997 | |
| 2998 | gi->next = si->gpioh_head; |
| 2999 | si->gpioh_head = gi; |
| 3000 | |
| 3001 | return (void *)(gi); |
| 3002 | } |
| 3003 | |
| 3004 | void BCMINITFN(sb_gpio_handler_unregister) (sb_t * sbh, void *gpioh) { |
| 3005 | sb_info_t *si; |
| 3006 | gpioh_item_t *p, *n; |
| 3007 | |
| 3008 | si = SB_INFO(sbh); |
| 3009 | if (si->sb.ccrev < 11) |
| 3010 | return; |
| 3011 | |
| 3012 | ASSERT(si->gpioh_head); |
| 3013 | if ((void *)si->gpioh_head == gpioh) { |
| 3014 | si->gpioh_head = si->gpioh_head->next; |
| 3015 | MFREE(si->osh, gpioh, sizeof(gpioh_item_t)); |
| 3016 | return; |
| 3017 | } else { |
| 3018 | p = si->gpioh_head; |
| 3019 | n = p->next; |
| 3020 | while (n) { |
| 3021 | if ((void *)n == gpioh) { |
| 3022 | p->next = n->next; |
| 3023 | MFREE(si->osh, gpioh, sizeof(gpioh_item_t)); |
| 3024 | return; |
| 3025 | } |
| 3026 | p = n; |
| 3027 | n = n->next; |
| 3028 | } |
| 3029 | } |
| 3030 | |
| 3031 | ASSERT(0); /* Not found in list */ |
| 3032 | } |
| 3033 | |
| 3034 | void sb_gpio_handler_process(sb_t * sbh) |
| 3035 | { |
| 3036 | sb_info_t *si; |
| 3037 | gpioh_item_t *h; |
| 3038 | uint32 status; |
| 3039 | uint32 level = sb_gpioin(sbh); |
| 3040 | uint32 edge = sb_gpioevent(sbh, GPIO_REGEVT, 0, 0); |
| 3041 | |
| 3042 | si = SB_INFO(sbh); |
| 3043 | for (h = si->gpioh_head; h != NULL; h = h->next) { |
| 3044 | if (h->handler) { |
| 3045 | status = (h->level ? level : edge); |
| 3046 | |
| 3047 | if (status & h->event) |
| 3048 | h->handler(status, h->arg); |
| 3049 | } |
| 3050 | } |
| 3051 | |
| 3052 | sb_gpioevent(sbh, GPIO_REGEVT, edge, edge); /* clear edge-trigger status */ |
| 3053 | } |
| 3054 | |
| 3055 | uint32 sb_gpio_int_enable(sb_t * sbh, bool enable) |
| 3056 | { |
| 3057 | sb_info_t *si; |
| 3058 | uint offs; |
| 3059 | |
| 3060 | si = SB_INFO(sbh); |
| 3061 | if (si->sb.ccrev < 11) |
| 3062 | return -1; |
| 3063 | |
| 3064 | offs = OFFSETOF(chipcregs_t, intmask); |
| 3065 | return (sb_corereg |
| 3066 | (sbh, SB_CC_IDX, offs, CI_GPIO, (enable ? CI_GPIO : 0))); |
| 3067 | } |
| 3068 | |
| 3069 | #ifdef BCMDBG |
| 3070 | void sb_dump(sb_t * sbh, struct bcmstrbuf *b) |
| 3071 | { |
| 3072 | sb_info_t *si; |
| 3073 | uint i; |
| 3074 | |
| 3075 | si = SB_INFO(sbh); |
| 3076 | |
| 3077 | bcm_bprintf(b, |
| 3078 | "si %p chip 0x%x chiprev 0x%x boardtype 0x%x boardvendor 0x%x bus %d\n", |
| 3079 | si, si->sb.chip, si->sb.chiprev, si->sb.boardtype, |
| 3080 | si->sb.boardvendor, si->sb.bustype); |
| 3081 | bcm_bprintf(b, "osh %p curmap %p\n", si->osh, si->curmap); |
| 3082 | bcm_bprintf(b, |
| 3083 | "sonicsrev %d ccrev %d buscoretype 0x%x buscorerev %d curidx %d\n", |
| 3084 | si->sb.sonicsrev, si->sb.ccrev, si->sb.buscoretype, |
| 3085 | si->sb.buscorerev, si->curidx); |
| 3086 | |
| 3087 | bcm_bprintf(b, "forceHT %d ASPM overflowPR42780 %d pcie_polarity %d\n", |
| 3088 | si->sb.pr32414, si->sb.pr42780, si->pcie_polarity); |
| 3089 | |
| 3090 | bcm_bprintf(b, "cores: "); |
| 3091 | for (i = 0; i < si->numcores; i++) |
| 3092 | bcm_bprintf(b, "0x%x ", si->coreid[i]); |
| 3093 | bcm_bprintf(b, "\n"); |
| 3094 | } |
| 3095 | |
| 3096 | /* print interesting sbconfig registers */ |
| 3097 | void sb_dumpregs(sb_t * sbh, struct bcmstrbuf *b) |
| 3098 | { |
| 3099 | sb_info_t *si; |
| 3100 | sbconfig_t *sb; |
| 3101 | uint origidx; |
| 3102 | uint curidx, i, intr_val = 0; |
| 3103 | |
| 3104 | si = SB_INFO(sbh); |
| 3105 | origidx = si->curidx; |
| 3106 | |
| 3107 | INTR_OFF(si, intr_val); |
| 3108 | curidx = si->curidx; |
| 3109 | |
| 3110 | for (i = 0; i < si->numcores; i++) { |
| 3111 | sb = REGS2SB(sb_setcoreidx(sbh, i)); |
| 3112 | |
| 3113 | bcm_bprintf(b, "core 0x%x: \n", si->coreid[i]); |
| 3114 | bcm_bprintf(b, |
| 3115 | "sbtmstatelow 0x%x sbtmstatehigh 0x%x sbidhigh 0x%x " |
| 3116 | "sbimstate 0x%x\n sbimconfiglow 0x%x sbimconfighigh 0x%x\n", |
| 3117 | R_SBREG(si, &sb->sbtmstatelow), R_SBREG(si, |
| 3118 | &sb-> |
| 3119 | sbtmstatehigh), |
| 3120 | R_SBREG(si, &sb->sbidhigh), R_SBREG(si, |
| 3121 | &sb->sbimstate), |
| 3122 | R_SBREG(si, &sb->sbimconfiglow), R_SBREG(si, |
| 3123 | &sb-> |
| 3124 | sbimconfighigh)); |
| 3125 | } |
| 3126 | |
| 3127 | sb_setcoreidx(sbh, origidx); |
| 3128 | INTR_RESTORE(si, intr_val); |
| 3129 | } |
| 3130 | |
| 3131 | void sb_view(sb_t * sbh) |
| 3132 | { |
| 3133 | sb_info_t *si; |
| 3134 | sbconfig_t *sb; |
| 3135 | |
| 3136 | si = SB_INFO(sbh); |
| 3137 | sb = REGS2SB(si->curmap); |
| 3138 | |
| 3139 | if (si->sb.sonicsrev > SONICS_2_2) |
| 3140 | SB_ERROR(("sbimerrlog 0x%x sbimerrloga 0x%x\n", |
| 3141 | sb_corereg(sbh, sb_coreidx(&si->sb), SBIMERRLOG, 0, |
| 3142 | 0), sb_corereg(sbh, sb_coreidx(&si->sb), |
| 3143 | SBIMERRLOGA, 0, 0))); |
| 3144 | |
| 3145 | SB_ERROR(("sbipsflag 0x%x sbtpsflag 0x%x sbtmerrloga 0x%x sbtmerrlog 0x%x\n", R_SBREG(si, &sb->sbipsflag), R_SBREG(si, &sb->sbtpsflag), R_SBREG(si, &sb->sbtmerrloga), R_SBREG(si, &sb->sbtmerrlog))); |
| 3146 | SB_ERROR(("sbadmatch3 0x%x sbadmatch2 0x%x sbadmatch1 0x%x\n", |
| 3147 | R_SBREG(si, &sb->sbadmatch3), R_SBREG(si, &sb->sbadmatch2), |
| 3148 | R_SBREG(si, &sb->sbadmatch1))); |
| 3149 | SB_ERROR(("sbimstate 0x%x sbintvec 0x%x sbtmstatelow 0x%x sbtmstatehigh 0x%x\n", R_SBREG(si, &sb->sbimstate), R_SBREG(si, &sb->sbintvec), R_SBREG(si, &sb->sbtmstatelow), R_SBREG(si, &sb->sbtmstatehigh))); |
| 3150 | SB_ERROR(("sbbwa0 0x%x sbimconfiglow 0x%x sbimconfighigh 0x%x sbadmatch0 0x%x\n", R_SBREG(si, &sb->sbbwa0), R_SBREG(si, &sb->sbimconfiglow), R_SBREG(si, &sb->sbimconfighigh), R_SBREG(si, &sb->sbadmatch0))); |
| 3151 | SB_ERROR(("sbtmconfiglow 0x%x sbtmconfighigh 0x%x sbbconfig 0x%x sbbstate 0x%x\n", R_SBREG(si, &sb->sbtmconfiglow), R_SBREG(si, &sb->sbtmconfighigh), R_SBREG(si, &sb->sbbconfig), R_SBREG(si, &sb->sbbstate))); |
| 3152 | SB_ERROR(("sbactcnfg 0x%x sbflagst 0x%x sbidlow 0x%x sbidhigh 0x%x\n", |
| 3153 | R_SBREG(si, &sb->sbactcnfg), R_SBREG(si, &sb->sbflagst), |
| 3154 | R_SBREG(si, &sb->sbidlow), R_SBREG(si, &sb->sbidhigh))); |
| 3155 | } |
| 3156 | |
| 3157 | void sb_viewall(sb_t * sbh) |
| 3158 | { |
| 3159 | sb_info_t *si; |
| 3160 | uint curidx, i; |
| 3161 | uint intr_val = 0; |
| 3162 | |
| 3163 | si = SB_INFO(sbh); |
| 3164 | curidx = si->curidx; |
| 3165 | |
| 3166 | for (i = 0; i < si->numcores; i++) { |
| 3167 | INTR_OFF(si, intr_val); |
| 3168 | sb_setcoreidx(sbh, i); |
| 3169 | sb_view(sbh); |
| 3170 | INTR_RESTORE(si, intr_val); |
| 3171 | } |
| 3172 | |
| 3173 | sb_setcoreidx(sbh, curidx); |
| 3174 | } |
| 3175 | #endif /* BCMDBG */ |
| 3176 | |
| 3177 | /* return the slow clock source - LPO, XTAL, or PCI */ |
| 3178 | static uint sb_slowclk_src(sb_info_t * si) |
| 3179 | { |
| 3180 | chipcregs_t *cc; |
| 3181 | |
| 3182 | ASSERT(sb_coreid(&si->sb) == SB_CC); |
| 3183 | |
| 3184 | if (si->sb.ccrev < 6) { |
| 3185 | if ((BUSTYPE(si->sb.bustype) == PCI_BUS) && |
| 3186 | (OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUT, sizeof(uint32)) |
| 3187 | & PCI_CFG_GPIO_SCS)) |
| 3188 | return (SCC_SS_PCI); |
| 3189 | else |
| 3190 | return (SCC_SS_XTAL); |
| 3191 | } else if (si->sb.ccrev < 10) { |
| 3192 | cc = (chipcregs_t *) sb_setcoreidx(&si->sb, si->curidx); |
| 3193 | return (R_REG(si->osh, &cc->slow_clk_ctl) & SCC_SS_MASK); |
| 3194 | } else /* Insta-clock */ |
| 3195 | return (SCC_SS_XTAL); |
| 3196 | } |
| 3197 | |
| 3198 | /* return the ILP (slowclock) min or max frequency */ |
| 3199 | static uint sb_slowclk_freq(sb_info_t * si, bool max_freq) |
| 3200 | { |
| 3201 | chipcregs_t *cc; |
| 3202 | uint32 slowclk; |
| 3203 | uint div; |
| 3204 | |
| 3205 | ASSERT(sb_coreid(&si->sb) == SB_CC); |
| 3206 | |
| 3207 | cc = (chipcregs_t *) sb_setcoreidx(&si->sb, si->curidx); |
| 3208 | |
| 3209 | /* shouldn't be here unless we've established the chip has dynamic clk control */ |
| 3210 | ASSERT(R_REG(si->osh, &cc->capabilities) & CC_CAP_PWR_CTL); |
| 3211 | |
| 3212 | slowclk = sb_slowclk_src(si); |
| 3213 | if (si->sb.ccrev < 6) { |
| 3214 | if (slowclk == SCC_SS_PCI) |
| 3215 | return (max_freq ? (PCIMAXFREQ / 64) |
| 3216 | : (PCIMINFREQ / 64)); |
| 3217 | else |
| 3218 | return (max_freq ? (XTALMAXFREQ / 32) |
| 3219 | : (XTALMINFREQ / 32)); |
| 3220 | } else if (si->sb.ccrev < 10) { |
| 3221 | div = |
| 3222 | 4 * |
| 3223 | (((R_REG(si->osh, &cc->slow_clk_ctl) & SCC_CD_MASK) >> |
| 3224 | SCC_CD_SHIFT) |
| 3225 | + 1); |
| 3226 | if (slowclk == SCC_SS_LPO) |
| 3227 | return (max_freq ? LPOMAXFREQ : LPOMINFREQ); |
| 3228 | else if (slowclk == SCC_SS_XTAL) |
| 3229 | return (max_freq ? (XTALMAXFREQ / div) |
| 3230 | : (XTALMINFREQ / div)); |
| 3231 | else if (slowclk == SCC_SS_PCI) |
| 3232 | return (max_freq ? (PCIMAXFREQ / div) |
| 3233 | : (PCIMINFREQ / div)); |
| 3234 | else |
| 3235 | ASSERT(0); |
| 3236 | } else { |
| 3237 | /* Chipc rev 10 is InstaClock */ |
| 3238 | div = R_REG(si->osh, &cc->system_clk_ctl) >> SYCC_CD_SHIFT; |
| 3239 | div = 4 * (div + 1); |
| 3240 | return (max_freq ? XTALMAXFREQ : (XTALMINFREQ / div)); |
| 3241 | } |
| 3242 | return (0); |
| 3243 | } |
| 3244 | |
| 3245 | static void BCMINITFN(sb_clkctl_setdelay) (sb_info_t * si, void *chipcregs) { |
| 3246 | chipcregs_t *cc; |
| 3247 | uint slowmaxfreq, pll_delay, slowclk; |
| 3248 | uint pll_on_delay, fref_sel_delay; |
| 3249 | |
| 3250 | pll_delay = PLL_DELAY; |
| 3251 | |
| 3252 | /* If the slow clock is not sourced by the xtal then add the xtal_on_delay |
| 3253 | * since the xtal will also be powered down by dynamic clk control logic. |
| 3254 | */ |
| 3255 | |
| 3256 | slowclk = sb_slowclk_src(si); |
| 3257 | if (slowclk != SCC_SS_XTAL) |
| 3258 | pll_delay += XTAL_ON_DELAY; |
| 3259 | |
| 3260 | /* Starting with 4318 it is ILP that is used for the delays */ |
| 3261 | slowmaxfreq = sb_slowclk_freq(si, (si->sb.ccrev >= 10) ? FALSE : TRUE); |
| 3262 | |
| 3263 | pll_on_delay = ((slowmaxfreq * pll_delay) + 999999) / 1000000; |
| 3264 | fref_sel_delay = ((slowmaxfreq * FREF_DELAY) + 999999) / 1000000; |
| 3265 | |
| 3266 | cc = (chipcregs_t *) chipcregs; |
| 3267 | W_REG(si->osh, &cc->pll_on_delay, pll_on_delay); |
| 3268 | W_REG(si->osh, &cc->fref_sel_delay, fref_sel_delay); |
| 3269 | } |
| 3270 | |
| 3271 | /* initialize power control delay registers */ |
| 3272 | void BCMINITFN(sb_clkctl_init) (sb_t * sbh) { |
| 3273 | sb_info_t *si; |
| 3274 | uint origidx; |
| 3275 | chipcregs_t *cc; |
| 3276 | |
| 3277 | si = SB_INFO(sbh); |
| 3278 | |
| 3279 | origidx = si->curidx; |
| 3280 | |
| 3281 | if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0)) == NULL) |
| 3282 | return; |
| 3283 | |
| 3284 | if ((si->sb.chip == BCM4321_CHIP_ID) && (si->sb.chiprev < 2)) |
| 3285 | W_REG(si->osh, &cc->chipcontrol, |
| 3286 | (si->sb.chiprev == |
| 3287 | 0) ? CHIPCTRL_4321A0_DEFAULT : CHIPCTRL_4321A1_DEFAULT); |
| 3288 | |
| 3289 | if (!(R_REG(si->osh, &cc->capabilities) & CC_CAP_PWR_CTL)) |
| 3290 | goto done; |
| 3291 | |
| 3292 | /* set all Instaclk chip ILP to 1 MHz */ |
| 3293 | if (si->sb.ccrev >= 10) |
| 3294 | SET_REG(si->osh, &cc->system_clk_ctl, SYCC_CD_MASK, |
| 3295 | (ILP_DIV_1MHZ << SYCC_CD_SHIFT)); |
| 3296 | |
| 3297 | sb_clkctl_setdelay(si, (void *)(uintptr) cc); |
| 3298 | |
| 3299 | done: |
| 3300 | sb_setcoreidx(sbh, origidx); |
| 3301 | } |
| 3302 | |
| 3303 | /* return the value suitable for writing to the dot11 core FAST_PWRUP_DELAY register */ |
| 3304 | uint16 BCMINITFN(sb_clkctl_fast_pwrup_delay) (sb_t * sbh) { |
| 3305 | sb_info_t *si; |
| 3306 | uint origidx; |
| 3307 | chipcregs_t *cc; |
| 3308 | uint slowminfreq; |
| 3309 | uint16 fpdelay; |
| 3310 | uint intr_val = 0; |
| 3311 | |
| 3312 | si = SB_INFO(sbh); |
| 3313 | fpdelay = 0; |
| 3314 | origidx = si->curidx; |
| 3315 | |
| 3316 | INTR_OFF(si, intr_val); |
| 3317 | |
| 3318 | if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0)) == NULL) |
| 3319 | goto done; |
| 3320 | |
| 3321 | if (sbh->cccaps & CC_CAP_PMU) { |
| 3322 | fpdelay = sb_pmu_fast_pwrup_delay(sbh, si->osh); |
| 3323 | goto done; |
| 3324 | } |
| 3325 | |
| 3326 | if (!(sbh->cccaps & CC_CAP_PWR_CTL)) |
| 3327 | goto done; |
| 3328 | |
| 3329 | slowminfreq = sb_slowclk_freq(si, FALSE); |
| 3330 | fpdelay = (((R_REG(si->osh, &cc->pll_on_delay) + 2) * 1000000) + |
| 3331 | (slowminfreq - 1)) / slowminfreq; |
| 3332 | |
| 3333 | done: |
| 3334 | sb_setcoreidx(sbh, origidx); |
| 3335 | INTR_RESTORE(si, intr_val); |
| 3336 | return (fpdelay); |
| 3337 | } |
| 3338 | |
| 3339 | /* turn primary xtal and/or pll off/on */ |
| 3340 | int sb_clkctl_xtal(sb_t * sbh, uint what, bool on) |
| 3341 | { |
| 3342 | sb_info_t *si; |
| 3343 | uint32 in, out, outen; |
| 3344 | |
| 3345 | si = SB_INFO(sbh); |
| 3346 | |
| 3347 | switch (BUSTYPE(si->sb.bustype)) { |
| 3348 | |
| 3349 | case PCMCIA_BUS: |
| 3350 | return (0); |
| 3351 | |
| 3352 | case PCI_BUS: |
| 3353 | |
| 3354 | /* pcie core doesn't have any mapping to control the xtal pu */ |
| 3355 | if (PCIE(si)) |
| 3356 | return -1; |
| 3357 | |
| 3358 | in = OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_IN, sizeof(uint32)); |
| 3359 | out = |
| 3360 | OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUT, sizeof(uint32)); |
| 3361 | outen = |
| 3362 | OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUTEN, |
| 3363 | sizeof(uint32)); |
| 3364 | |
| 3365 | /* |
| 3366 | * Avoid glitching the clock if GPRS is already using it. |
| 3367 | * We can't actually read the state of the PLLPD so we infer it |
| 3368 | * by the value of XTAL_PU which *is* readable via gpioin. |
| 3369 | */ |
| 3370 | if (on && (in & PCI_CFG_GPIO_XTAL)) |
| 3371 | return (0); |
| 3372 | |
| 3373 | if (what & XTAL) |
| 3374 | outen |= PCI_CFG_GPIO_XTAL; |
| 3375 | if (what & PLL) |
| 3376 | outen |= PCI_CFG_GPIO_PLL; |
| 3377 | |
| 3378 | if (on) { |
| 3379 | /* turn primary xtal on */ |
| 3380 | if (what & XTAL) { |
| 3381 | out |= PCI_CFG_GPIO_XTAL; |
| 3382 | if (what & PLL) |
| 3383 | out |= PCI_CFG_GPIO_PLL; |
| 3384 | OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUT, |
| 3385 | sizeof(uint32), out); |
| 3386 | OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUTEN, |
| 3387 | sizeof(uint32), outen); |
| 3388 | OSL_DELAY(XTAL_ON_DELAY); |
| 3389 | } |
| 3390 | |
| 3391 | /* turn pll on */ |
| 3392 | if (what & PLL) { |
| 3393 | out &= ~PCI_CFG_GPIO_PLL; |
| 3394 | OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUT, |
| 3395 | sizeof(uint32), out); |
| 3396 | OSL_DELAY(2000); |
| 3397 | } |
| 3398 | } else { |
| 3399 | if (what & XTAL) |
| 3400 | out &= ~PCI_CFG_GPIO_XTAL; |
| 3401 | if (what & PLL) |
| 3402 | out |= PCI_CFG_GPIO_PLL; |
| 3403 | OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUT, |
| 3404 | sizeof(uint32), out); |
| 3405 | OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUTEN, |
| 3406 | sizeof(uint32), outen); |
| 3407 | } |
| 3408 | |
| 3409 | default: |
| 3410 | return (-1); |
| 3411 | } |
| 3412 | |
| 3413 | return (0); |
| 3414 | } |
| 3415 | |
| 3416 | /* set dynamic clk control mode (forceslow, forcefast, dynamic) */ |
| 3417 | /* returns true if we are forcing fast clock */ |
| 3418 | bool sb_clkctl_clk(sb_t * sbh, uint mode) |
| 3419 | { |
| 3420 | sb_info_t *si; |
| 3421 | uint origidx; |
| 3422 | chipcregs_t *cc; |
| 3423 | uint32 scc; |
| 3424 | uint intr_val = 0; |
| 3425 | |
| 3426 | si = SB_INFO(sbh); |
| 3427 | |
| 3428 | /* chipcommon cores prior to rev6 don't support dynamic clock control */ |
| 3429 | if (si->sb.ccrev < 6) |
| 3430 | return (FALSE); |
| 3431 | |
| 3432 | /* Chips with ccrev 10 are EOL and they don't have SYCC_HR which we use below */ |
| 3433 | ASSERT(si->sb.ccrev != 10); |
| 3434 | |
| 3435 | INTR_OFF(si, intr_val); |
| 3436 | |
| 3437 | origidx = si->curidx; |
| 3438 | |
| 3439 | if (sb_setcore(sbh, SB_MIPS33, 0) && (sb_corerev(&si->sb) <= 7) && |
| 3440 | (BUSTYPE(si->sb.bustype) == SB_BUS) && (si->sb.ccrev >= 10)) |
| 3441 | goto done; |
| 3442 | |
| 3443 | if (FORCEHT_WAR32414(si)) |
| 3444 | goto done; |
| 3445 | |
| 3446 | cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0); |
| 3447 | ASSERT(cc != NULL); |
| 3448 | |
| 3449 | if (!(R_REG(si->osh, &cc->capabilities) & CC_CAP_PWR_CTL) |
| 3450 | && (si->sb.ccrev < 20)) |
| 3451 | goto done; |
| 3452 | |
| 3453 | switch (mode) { |
| 3454 | case CLK_FAST: /* force fast (pll) clock */ |
| 3455 | if (si->sb.ccrev < 10) { |
| 3456 | /* don't forget to force xtal back on before we clear SCC_DYN_XTAL.. */ |
| 3457 | sb_clkctl_xtal(&si->sb, XTAL, ON); |
| 3458 | |
| 3459 | SET_REG(si->osh, &cc->slow_clk_ctl, |
| 3460 | (SCC_XC | SCC_FS | SCC_IP), SCC_IP); |
| 3461 | } else if (si->sb.ccrev < 20) { |
| 3462 | OR_REG(si->osh, &cc->system_clk_ctl, SYCC_HR); |
| 3463 | } else { |
| 3464 | OR_REG(si->osh, &cc->clk_ctl_st, CCS_FORCEHT); |
| 3465 | } |
| 3466 | |
| 3467 | /* wait for the PLL */ |
| 3468 | if (R_REG(si->osh, &cc->capabilities) & CC_CAP_PMU) { |
| 3469 | SPINWAIT(((R_REG(si->osh, &cc->clk_ctl_st) & |
| 3470 | CCS_HTAVAIL) == 0), PMU_MAX_TRANSITION_DLY); |
| 3471 | ASSERT(R_REG(si->osh, &cc->clk_ctl_st) & CCS_HTAVAIL); |
| 3472 | } else { |
| 3473 | OSL_DELAY(PLL_DELAY); |
| 3474 | } |
| 3475 | break; |
| 3476 | |
| 3477 | case CLK_DYNAMIC: /* enable dynamic clock control */ |
| 3478 | if (si->sb.ccrev < 10) { |
| 3479 | scc = R_REG(si->osh, &cc->slow_clk_ctl); |
| 3480 | scc &= ~(SCC_FS | SCC_IP | SCC_XC); |
| 3481 | if ((scc & SCC_SS_MASK) != SCC_SS_XTAL) |
| 3482 | scc |= SCC_XC; |
| 3483 | W_REG(si->osh, &cc->slow_clk_ctl, scc); |
| 3484 | |
| 3485 | /* for dynamic control, we have to release our xtal_pu "force on" */ |
| 3486 | if (scc & SCC_XC) |
| 3487 | sb_clkctl_xtal(&si->sb, XTAL, OFF); |
| 3488 | } else if (si->sb.ccrev < 20) { |
| 3489 | /* Instaclock */ |
| 3490 | AND_REG(si->osh, &cc->system_clk_ctl, ~SYCC_HR); |
| 3491 | } else { |
| 3492 | AND_REG(si->osh, &cc->clk_ctl_st, ~CCS_FORCEHT); |
| 3493 | } |
| 3494 | break; |
| 3495 | |
| 3496 | default: |
| 3497 | ASSERT(0); |
| 3498 | } |
| 3499 | |
| 3500 | done: |
| 3501 | sb_setcoreidx(sbh, origidx); |
| 3502 | INTR_RESTORE(si, intr_val); |
| 3503 | return (mode == CLK_FAST); |
| 3504 | } |
| 3505 | |
| 3506 | /* register driver interrupt disabling and restoring callback functions */ |
| 3507 | void |
| 3508 | sb_register_intr_callback(sb_t * sbh, void *intrsoff_fn, |
| 3509 | void *intrsrestore_fn, void *intrsenabled_fn, |
| 3510 | void *intr_arg) |
| 3511 | { |
| 3512 | sb_info_t *si; |
| 3513 | |
| 3514 | si = SB_INFO(sbh); |
| 3515 | si->intr_arg = intr_arg; |
| 3516 | si->intrsoff_fn = (sb_intrsoff_t) intrsoff_fn; |
| 3517 | si->intrsrestore_fn = (sb_intrsrestore_t) intrsrestore_fn; |
| 3518 | si->intrsenabled_fn = (sb_intrsenabled_t) intrsenabled_fn; |
| 3519 | /* save current core id. when this function called, the current core |
| 3520 | * must be the core which provides driver functions(il, et, wl, etc.) |
| 3521 | */ |
| 3522 | si->dev_coreid = si->coreid[si->curidx]; |
| 3523 | } |
| 3524 | |
| 3525 | void sb_deregister_intr_callback(sb_t * sbh) |
| 3526 | { |
| 3527 | sb_info_t *si; |
| 3528 | |
| 3529 | si = SB_INFO(sbh); |
| 3530 | si->intrsoff_fn = NULL; |
| 3531 | } |
| 3532 | |
| 3533 | #ifdef BCMDBG |
| 3534 | /* dump dynamic clock control related registers */ |
| 3535 | void sb_clkctl_dump(sb_t * sbh, struct bcmstrbuf *b) |
| 3536 | { |
| 3537 | sb_info_t *si; |
| 3538 | chipcregs_t *cc; |
| 3539 | uint origidx; |
| 3540 | uint intr_val = 0; |
| 3541 | |
| 3542 | si = SB_INFO(sbh); |
| 3543 | |
| 3544 | INTR_OFF(si, intr_val); |
| 3545 | |
| 3546 | origidx = si->curidx; |
| 3547 | |
| 3548 | if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0)) == NULL) { |
| 3549 | INTR_RESTORE(si, intr_val); |
| 3550 | return; |
| 3551 | } |
| 3552 | |
| 3553 | if (!(R_REG(si->osh, &cc->capabilities) & CC_CAP_PWR_CTL)) |
| 3554 | goto done; |
| 3555 | |
| 3556 | bcm_bprintf(b, "pll_on_delay 0x%x fref_sel_delay 0x%x ", |
| 3557 | cc->pll_on_delay, cc->fref_sel_delay); |
| 3558 | if ((si->sb.ccrev >= 6) && (si->sb.ccrev < 10)) |
| 3559 | bcm_bprintf(b, "slow_clk_ctl 0x%x ", cc->slow_clk_ctl); |
| 3560 | if (si->sb.ccrev >= 10) { |
| 3561 | bcm_bprintf(b, "system_clk_ctl 0x%x ", cc->system_clk_ctl); |
| 3562 | bcm_bprintf(b, "clkstatestretch 0x%x ", cc->clkstatestretch); |
| 3563 | } |
| 3564 | if (BUSTYPE(si->sb.bustype) == PCI_BUS) |
| 3565 | bcm_bprintf(b, "gpioout 0x%x gpioouten 0x%x ", |
| 3566 | OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUT, |
| 3567 | sizeof(uint32)), |
| 3568 | OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUTEN, |
| 3569 | sizeof(uint32))); |
| 3570 | bcm_bprintf(b, "\n"); |
| 3571 | |
| 3572 | done: |
| 3573 | sb_setcoreidx(sbh, origidx); |
| 3574 | INTR_RESTORE(si, intr_val); |
| 3575 | } |
| 3576 | #endif /* BCMDBG */ |
| 3577 | |
| 3578 | uint16 BCMINITFN(sb_d11_devid) (sb_t * sbh) { |
| 3579 | sb_info_t *si = SB_INFO(sbh); |
| 3580 | uint16 device; |
| 3581 | |
| 3582 | #if defined(BCM4328) |
| 3583 | /* Fix device id for dual band BCM4328 */ |
| 3584 | if (sbh->chip == BCM4328_CHIP_ID && |
| 3585 | (sbh->chippkg == BCM4328USBDUAL_PKG_ID |
| 3586 | || sbh->chippkg == BCM4328SDIODUAL_PKG_ID)) |
| 3587 | device = BCM4328_D11DUAL_ID; |
| 3588 | else |
| 3589 | #endif /* BCM4328 */ |
| 3590 | /* Let an nvram variable with devpath override devid */ |
| 3591 | if ((device = (uint16) sb_getdevpathintvar(sbh, "devid")) != 0) ; |
| 3592 | /* Get devid from OTP/SPROM depending on where the SROM is read */ |
| 3593 | else if ((device = (uint16) getintvar(si->vars, "devid")) != 0) ; |
| 3594 | /* |
| 3595 | * no longer support wl0id, but keep the code |
| 3596 | * here for backward compatibility. |
| 3597 | */ |
| 3598 | else if ((device = (uint16) getintvar(si->vars, "wl0id")) != 0) ; |
| 3599 | /* Chip specific conversion */ |
| 3600 | else if (sbh->chip == BCM4712_CHIP_ID) { |
| 3601 | if (sbh->chippkg == BCM4712SMALL_PKG_ID) |
| 3602 | device = BCM4306_D11G_ID; |
| 3603 | else |
| 3604 | device = BCM4306_D11DUAL_ID; |
| 3605 | } |
| 3606 | /* ignore it */ |
| 3607 | else |
| 3608 | device = 0xffff; |
| 3609 | |
| 3610 | return device; |
| 3611 | } |
| 3612 | |
| 3613 | int |
| 3614 | BCMINITFN(sb_corepciid) (sb_t * sbh, uint func, uint16 * pcivendor, |
| 3615 | uint16 * pcidevice, uint8 * pciclass, |
| 3616 | uint8 * pcisubclass, uint8 * pciprogif, |
| 3617 | uint8 * pciheader) { |
| 3618 | uint16 vendor = 0xffff, device = 0xffff; |
| 3619 | uint8 class, subclass, progif = 0; |
| 3620 | uint8 header = PCI_HEADER_NORMAL; |
| 3621 | uint32 core = sb_coreid(sbh); |
| 3622 | |
| 3623 | /* Verify whether the function exists for the core */ |
| 3624 | if (func >= (uint) (core == SB_USB20H ? 2 : 1)) |
| 3625 | return -1; |
| 3626 | |
| 3627 | /* Known vendor translations */ |
| 3628 | switch (sb_corevendor(sbh)) { |
| 3629 | case SB_VEND_BCM: |
| 3630 | vendor = VENDOR_BROADCOM; |
| 3631 | break; |
| 3632 | default: |
| 3633 | return -1; |
| 3634 | } |
| 3635 | |
| 3636 | /* Determine class based on known core codes */ |
| 3637 | switch (core) { |
| 3638 | case SB_ILINE20: |
| 3639 | class = PCI_CLASS_NET; |
| 3640 | subclass = PCI_NET_ETHER; |
| 3641 | device = BCM47XX_ILINE_ID; |
| 3642 | break; |
| 3643 | case SB_ENET: |
| 3644 | class = PCI_CLASS_NET; |
| 3645 | subclass = PCI_NET_ETHER; |
| 3646 | device = BCM47XX_ENET_ID; |
| 3647 | break; |
| 3648 | case SB_GIGETH: |
| 3649 | class = PCI_CLASS_NET; |
| 3650 | subclass = PCI_NET_ETHER; |
| 3651 | device = BCM47XX_GIGETH_ID; |
| 3652 | break; |
| 3653 | case SB_SDRAM: |
| 3654 | case SB_MEMC: |
| 3655 | class = PCI_CLASS_MEMORY; |
| 3656 | subclass = PCI_MEMORY_RAM; |
| 3657 | device = (uint16) core; |
| 3658 | break; |
| 3659 | case SB_PCI: |
| 3660 | case SB_PCIE: |
| 3661 | class = PCI_CLASS_BRIDGE; |
| 3662 | subclass = PCI_BRIDGE_PCI; |
| 3663 | device = (uint16) core; |
| 3664 | header = PCI_HEADER_BRIDGE; |
| 3665 | break; |
| 3666 | case SB_MIPS: |
| 3667 | case SB_MIPS33: |
| 3668 | class = PCI_CLASS_CPU; |
| 3669 | subclass = PCI_CPU_MIPS; |
| 3670 | device = (uint16) core; |
| 3671 | break; |
| 3672 | case SB_CODEC: |
| 3673 | class = PCI_CLASS_COMM; |
| 3674 | subclass = PCI_COMM_MODEM; |
| 3675 | device = BCM47XX_V90_ID; |
| 3676 | break; |
| 3677 | case SB_USB: |
| 3678 | class = PCI_CLASS_SERIAL; |
| 3679 | subclass = PCI_SERIAL_USB; |
| 3680 | progif = 0x10; /* OHCI */ |
| 3681 | device = BCM47XX_USB_ID; |
| 3682 | break; |
| 3683 | case SB_USB11H: |
| 3684 | class = PCI_CLASS_SERIAL; |
| 3685 | subclass = PCI_SERIAL_USB; |
| 3686 | progif = 0x10; /* OHCI */ |
| 3687 | device = BCM47XX_USBH_ID; |
| 3688 | break; |
| 3689 | case SB_USB20H: |
| 3690 | class = PCI_CLASS_SERIAL; |
| 3691 | subclass = PCI_SERIAL_USB; |
| 3692 | progif = func == 0 ? 0x10 : 0x20; /* OHCI/EHCI */ |
| 3693 | device = BCM47XX_USB20H_ID; |
| 3694 | header = 0x80; /* multifunction */ |
| 3695 | break; |
| 3696 | case SB_IPSEC: |
| 3697 | class = PCI_CLASS_CRYPT; |
| 3698 | subclass = PCI_CRYPT_NETWORK; |
| 3699 | device = BCM47XX_IPSEC_ID; |
| 3700 | break; |
| 3701 | case SB_ROBO: |
| 3702 | class = PCI_CLASS_NET; |
| 3703 | subclass = PCI_NET_OTHER; |
| 3704 | device = BCM47XX_ROBO_ID; |
| 3705 | break; |
| 3706 | case SB_EXTIF: |
| 3707 | case SB_CC: |
| 3708 | class = PCI_CLASS_MEMORY; |
| 3709 | subclass = PCI_MEMORY_FLASH; |
| 3710 | device = (uint16) core; |
| 3711 | break; |
| 3712 | case SB_SATAXOR: |
| 3713 | class = PCI_CLASS_XOR; |
| 3714 | subclass = PCI_XOR_QDMA; |
| 3715 | device = BCM47XX_SATAXOR_ID; |
| 3716 | break; |
| 3717 | case SB_ATA100: |
| 3718 | class = PCI_CLASS_DASDI; |
| 3719 | subclass = PCI_DASDI_IDE; |
| 3720 | device = BCM47XX_ATA100_ID; |
| 3721 | break; |
| 3722 | case SB_USB11D: |
| 3723 | class = PCI_CLASS_SERIAL; |
| 3724 | subclass = PCI_SERIAL_USB; |
| 3725 | device = BCM47XX_USBD_ID; |
| 3726 | break; |
| 3727 | case SB_USB20D: |
| 3728 | class = PCI_CLASS_SERIAL; |
| 3729 | subclass = PCI_SERIAL_USB; |
| 3730 | device = BCM47XX_USB20D_ID; |
| 3731 | break; |
| 3732 | case SB_D11: |
| 3733 | class = PCI_CLASS_NET; |
| 3734 | subclass = PCI_NET_OTHER; |
| 3735 | device = sb_d11_devid(sbh); |
| 3736 | break; |
| 3737 | |
| 3738 | default: |
| 3739 | class = subclass = progif = 0xff; |
| 3740 | device = (uint16) core; |
| 3741 | break; |
| 3742 | } |
| 3743 | |
| 3744 | *pcivendor = vendor; |
| 3745 | *pcidevice = device; |
| 3746 | *pciclass = class; |
| 3747 | *pcisubclass = subclass; |
| 3748 | *pciprogif = progif; |
| 3749 | *pciheader = header; |
| 3750 | |
| 3751 | return 0; |
| 3752 | } |
| 3753 | |
| 3754 | /* use the mdio interface to read from mdio slaves */ |
| 3755 | static int |
| 3756 | sb_pcie_mdioread(sb_info_t * si, uint physmedia, uint regaddr, uint * regval) |
| 3757 | { |
| 3758 | uint mdiodata; |
| 3759 | uint i = 0; |
| 3760 | sbpcieregs_t *pcieregs; |
| 3761 | |
| 3762 | pcieregs = (sbpcieregs_t *) sb_setcoreidx(&si->sb, si->sb.buscoreidx); |
| 3763 | ASSERT(pcieregs); |
| 3764 | |
| 3765 | /* enable mdio access to SERDES */ |
| 3766 | W_REG(si->osh, (&pcieregs->mdiocontrol), |
| 3767 | MDIOCTL_PREAM_EN | MDIOCTL_DIVISOR_VAL); |
| 3768 | |
| 3769 | mdiodata = MDIODATA_START | MDIODATA_READ | |
| 3770 | (physmedia << MDIODATA_DEVADDR_SHF) | |
| 3771 | (regaddr << MDIODATA_REGADDR_SHF) | MDIODATA_TA; |
| 3772 | |
| 3773 | W_REG(si->osh, &pcieregs->mdiodata, mdiodata); |
| 3774 | |
| 3775 | PR28829_DELAY(); |
| 3776 | |
| 3777 | /* retry till the transaction is complete */ |
| 3778 | while (i < 10) { |
| 3779 | if (R_REG(si->osh, &(pcieregs->mdiocontrol)) & |
| 3780 | MDIOCTL_ACCESS_DONE) { |
| 3781 | PR28829_DELAY(); |
| 3782 | *regval = |
| 3783 | (R_REG(si->osh, &(pcieregs->mdiodata)) & |
| 3784 | MDIODATA_MASK); |
| 3785 | /* Disable mdio access to SERDES */ |
| 3786 | W_REG(si->osh, (&pcieregs->mdiocontrol), 0); |
| 3787 | return 0; |
| 3788 | } |
| 3789 | OSL_DELAY(1000); |
| 3790 | i++; |
| 3791 | } |
| 3792 | |
| 3793 | SB_ERROR(("sb_pcie_mdioread: timed out\n")); |
| 3794 | /* Disable mdio access to SERDES */ |
| 3795 | W_REG(si->osh, (&pcieregs->mdiocontrol), 0); |
| 3796 | return 1; |
| 3797 | } |
| 3798 | |
| 3799 | /* use the mdio interface to write to mdio slaves */ |
| 3800 | static int |
| 3801 | sb_pcie_mdiowrite(sb_info_t * si, uint physmedia, uint regaddr, uint val) |
| 3802 | { |
| 3803 | uint mdiodata; |
| 3804 | uint i = 0; |
| 3805 | sbpcieregs_t *pcieregs; |
| 3806 | |
| 3807 | pcieregs = (sbpcieregs_t *) sb_setcoreidx(&si->sb, si->sb.buscoreidx); |
| 3808 | ASSERT(pcieregs); |
| 3809 | |
| 3810 | /* enable mdio access to SERDES */ |
| 3811 | W_REG(si->osh, (&pcieregs->mdiocontrol), |
| 3812 | MDIOCTL_PREAM_EN | MDIOCTL_DIVISOR_VAL); |
| 3813 | |
| 3814 | mdiodata = MDIODATA_START | MDIODATA_WRITE | |
| 3815 | (physmedia << MDIODATA_DEVADDR_SHF) | |
| 3816 | (regaddr << MDIODATA_REGADDR_SHF) | MDIODATA_TA | val; |
| 3817 | |
| 3818 | W_REG(si->osh, (&pcieregs->mdiodata), mdiodata); |
| 3819 | |
| 3820 | PR28829_DELAY(); |
| 3821 | |
| 3822 | /* retry till the transaction is complete */ |
| 3823 | while (i < 10) { |
| 3824 | if (R_REG(si->osh, &(pcieregs->mdiocontrol)) & |
| 3825 | MDIOCTL_ACCESS_DONE) { |
| 3826 | /* Disable mdio access to SERDES */ |
| 3827 | W_REG(si->osh, (&pcieregs->mdiocontrol), 0); |
| 3828 | return 0; |
| 3829 | } |
| 3830 | OSL_DELAY(1000); |
| 3831 | i++; |
| 3832 | } |
| 3833 | |
| 3834 | SB_ERROR(("sb_pcie_mdiowrite: timed out\n")); |
| 3835 | /* Disable mdio access to SERDES */ |
| 3836 | W_REG(si->osh, (&pcieregs->mdiocontrol), 0); |
| 3837 | return 1; |
| 3838 | |
| 3839 | } |
| 3840 | |
| 3841 | /* indirect way to read pcie config regs */ |
| 3842 | uint sb_pcie_readreg(void *sb, void *arg1, uint offset) |
| 3843 | { |
| 3844 | sb_info_t *si; |
| 3845 | sb_t *sbh; |
| 3846 | uint retval = 0xFFFFFFFF; |
| 3847 | sbpcieregs_t *pcieregs; |
| 3848 | uint addrtype; |
| 3849 | |
| 3850 | sbh = (sb_t *) sb; |
| 3851 | si = SB_INFO(sbh); |
| 3852 | ASSERT(PCIE(si)); |
| 3853 | |
| 3854 | pcieregs = (sbpcieregs_t *) sb_setcore(sbh, SB_PCIE, 0); |
| 3855 | ASSERT(pcieregs); |
| 3856 | |
| 3857 | addrtype = (uint) ((uintptr) arg1); |
| 3858 | switch (addrtype) { |
| 3859 | case PCIE_CONFIGREGS: |
| 3860 | W_REG(si->osh, (&pcieregs->configaddr), offset); |
| 3861 | retval = R_REG(si->osh, &(pcieregs->configdata)); |
| 3862 | break; |
| 3863 | case PCIE_PCIEREGS: |
| 3864 | W_REG(si->osh, &(pcieregs->pcieindaddr), offset); |
| 3865 | retval = R_REG(si->osh, &(pcieregs->pcieinddata)); |
| 3866 | break; |
| 3867 | default: |
| 3868 | ASSERT(0); |
| 3869 | break; |
| 3870 | } |
| 3871 | return retval; |
| 3872 | } |
| 3873 | |
| 3874 | /* indirect way to write pcie config/mdio/pciecore regs */ |
| 3875 | uint sb_pcie_writereg(sb_t * sbh, void *arg1, uint offset, uint val) |
| 3876 | { |
| 3877 | sb_info_t *si; |
| 3878 | sbpcieregs_t *pcieregs; |
| 3879 | uint addrtype; |
| 3880 | |
| 3881 | si = SB_INFO(sbh); |
| 3882 | ASSERT(PCIE(si)); |
| 3883 | |
| 3884 | pcieregs = (sbpcieregs_t *) sb_setcore(sbh, SB_PCIE, 0); |
| 3885 | ASSERT(pcieregs); |
| 3886 | |
| 3887 | addrtype = (uint) ((uintptr) arg1); |
| 3888 | |
| 3889 | switch (addrtype) { |
| 3890 | case PCIE_CONFIGREGS: |
| 3891 | W_REG(si->osh, (&pcieregs->configaddr), offset); |
| 3892 | W_REG(si->osh, (&pcieregs->configdata), val); |
| 3893 | break; |
| 3894 | case PCIE_PCIEREGS: |
| 3895 | W_REG(si->osh, (&pcieregs->pcieindaddr), offset); |
| 3896 | W_REG(si->osh, (&pcieregs->pcieinddata), val); |
| 3897 | break; |
| 3898 | default: |
| 3899 | ASSERT(0); |
| 3900 | break; |
| 3901 | } |
| 3902 | return 0; |
| 3903 | } |
| 3904 | |
| 3905 | /* Build device path. Support SB, PCI, and JTAG for now. */ |
| 3906 | int BCMINITFN(sb_devpath) (sb_t * sbh, char *path, int size) { |
| 3907 | int slen; |
| 3908 | ASSERT(path); |
| 3909 | ASSERT(size >= SB_DEVPATH_BUFSZ); |
| 3910 | |
| 3911 | if (!path || size <= 0) |
| 3912 | return -1; |
| 3913 | |
| 3914 | switch (BUSTYPE((SB_INFO(sbh))->sb.bustype)) { |
| 3915 | case SB_BUS: |
| 3916 | case JTAG_BUS: |
| 3917 | slen = snprintf(path, (size_t) size, "sb/%u/", sb_coreidx(sbh)); |
| 3918 | break; |
| 3919 | case PCI_BUS: |
| 3920 | ASSERT((SB_INFO(sbh))->osh); |
| 3921 | slen = snprintf(path, (size_t) size, "pci/%u/%u/", |
| 3922 | OSL_PCI_BUS((SB_INFO(sbh))->osh), |
| 3923 | OSL_PCI_SLOT((SB_INFO(sbh))->osh)); |
| 3924 | break; |
| 3925 | case PCMCIA_BUS: |
| 3926 | SB_ERROR(("sb_devpath: OSL_PCMCIA_BUS() not implemented, bus 1 assumed\n")); |
| 3927 | SB_ERROR(("sb_devpath: OSL_PCMCIA_SLOT() not implemented, slot 1 assumed\n")); |
| 3928 | slen = snprintf(path, (size_t) size, "pc/1/1/"); |
| 3929 | break; |
| 3930 | default: |
| 3931 | slen = -1; |
| 3932 | ASSERT(0); |
| 3933 | break; |
| 3934 | } |
| 3935 | |
| 3936 | if (slen < 0 || slen >= size) { |
| 3937 | path[0] = '\0'; |
| 3938 | return -1; |
| 3939 | } |
| 3940 | |
| 3941 | return 0; |
| 3942 | } |
| 3943 | |
| 3944 | /* Get a variable, but only if it has a devpath prefix */ |
| 3945 | char *BCMINITFN(sb_getdevpathvar) (sb_t * sbh, const char *name) { |
| 3946 | char varname[SB_DEVPATH_BUFSZ + 32]; |
| 3947 | |
| 3948 | sb_devpathvar(sbh, varname, sizeof(varname), name); |
| 3949 | |
| 3950 | return (getvar(NULL, varname)); |
| 3951 | } |
| 3952 | |
| 3953 | /* Get a variable, but only if it has a devpath prefix */ |
| 3954 | int BCMINITFN(sb_getdevpathintvar) (sb_t * sbh, const char *name) { |
| 3955 | char varname[SB_DEVPATH_BUFSZ + 32]; |
| 3956 | |
| 3957 | sb_devpathvar(sbh, varname, sizeof(varname), name); |
| 3958 | |
| 3959 | return (getintvar(NULL, varname)); |
| 3960 | } |
| 3961 | |
| 3962 | /* Concatenate the dev path with a varname into the given 'var' buffer |
| 3963 | * and return the 'var' pointer. |
| 3964 | * Nothing is done to the arguments if len == 0 or var is NULL, var is still returned. |
| 3965 | * On overflow, the first char will be set to '\0'. |
| 3966 | */ |
| 3967 | static char *BCMINITFN(sb_devpathvar) (sb_t * sbh, char *var, int len, |
| 3968 | const char *name) { |
| 3969 | uint path_len; |
| 3970 | |
| 3971 | if (!var || len <= 0) |
| 3972 | return var; |
| 3973 | |
| 3974 | if (sb_devpath(sbh, var, len) == 0) { |
| 3975 | path_len = strlen(var); |
| 3976 | |
| 3977 | if (strlen(name) + 1 > (uint) (len - path_len)) |
| 3978 | var[0] = '\0'; |
| 3979 | else |
| 3980 | strncpy(var + path_len, name, len - path_len - 1); |
| 3981 | } |
| 3982 | |
| 3983 | return var; |
| 3984 | } |
| 3985 | |
| 3986 | /* |
| 3987 | * Fixup SROMless PCI device's configuration. |
| 3988 | * The current core may be changed upon return. |
| 3989 | */ |
| 3990 | static int sb_pci_fixcfg(sb_info_t * si) |
| 3991 | { |
| 3992 | uint origidx, pciidx; |
| 3993 | sbpciregs_t *pciregs; |
| 3994 | sbpcieregs_t *pcieregs = NULL; |
| 3995 | uint16 val16, *reg16; |
| 3996 | uint32 w; |
| 3997 | |
| 3998 | ASSERT(BUSTYPE(si->sb.bustype) == PCI_BUS); |
| 3999 | |
| 4000 | /* Fixup PI in SROM shadow area to enable the correct PCI core access */ |
| 4001 | /* save the current index */ |
| 4002 | origidx = sb_coreidx(&si->sb); |
| 4003 | |
| 4004 | /* check 'pi' is correct and fix it if not */ |
| 4005 | if (si->sb.buscoretype == SB_PCIE) { |
| 4006 | pcieregs = (sbpcieregs_t *) sb_setcore(&si->sb, SB_PCIE, 0); |
| 4007 | ASSERT(pcieregs); |
| 4008 | reg16 = &pcieregs->sprom[SRSH_PI_OFFSET]; |
| 4009 | } else if (si->sb.buscoretype == SB_PCI) { |
| 4010 | pciregs = (sbpciregs_t *) sb_setcore(&si->sb, SB_PCI, 0); |
| 4011 | ASSERT(pciregs); |
| 4012 | reg16 = &pciregs->sprom[SRSH_PI_OFFSET]; |
| 4013 | } else { |
| 4014 | ASSERT(0); |
| 4015 | return -1; |
| 4016 | } |
| 4017 | pciidx = sb_coreidx(&si->sb); |
| 4018 | val16 = R_REG(si->osh, reg16); |
| 4019 | if (((val16 & SRSH_PI_MASK) >> SRSH_PI_SHIFT) != (uint16) pciidx) { |
| 4020 | val16 = |
| 4021 | (uint16) (pciidx << SRSH_PI_SHIFT) | (val16 & |
| 4022 | ~SRSH_PI_MASK); |
| 4023 | W_REG(si->osh, reg16, val16); |
| 4024 | } |
| 4025 | |
| 4026 | if (PCIE_ASPMWARS(si)) { |
| 4027 | w = sb_pcie_readreg((void *)(uintptr) & si->sb, |
| 4028 | (void *)PCIE_PCIEREGS, PCIE_PLP_STATUSREG); |
| 4029 | |
| 4030 | /* Detect the current polarity at attach and force that polarity and |
| 4031 | * disable changing the polarity |
| 4032 | */ |
| 4033 | if ((w & PCIE_PLP_POLARITYINV_STAT) == 0) { |
| 4034 | si->pcie_polarity = (SERDES_RX_CTRL_FORCE); |
| 4035 | } else { |
| 4036 | si->pcie_polarity = (SERDES_RX_CTRL_FORCE | |
| 4037 | SERDES_RX_CTRL_POLARITY); |
| 4038 | } |
| 4039 | |
| 4040 | w = OSL_PCI_READ_CONFIG(si->osh, si->pciecap_lcreg_offset, |
| 4041 | sizeof(uint32)); |
| 4042 | if (w & PCIE_CLKREQ_ENAB) { |
| 4043 | reg16 = &pcieregs->sprom[SRSH_CLKREQ_OFFSET]; |
| 4044 | val16 = R_REG(si->osh, reg16); |
| 4045 | /* if clockreq is not advertized clkreq should not be enabled */ |
| 4046 | if (!(val16 & SRSH_CLKREQ_ENB)) |
| 4047 | SB_ERROR(("WARNING: CLK REQ enabled already 0x%x\n", w)); |
| 4048 | } |
| 4049 | |
| 4050 | sb_war43448(&si->sb); |
| 4051 | |
| 4052 | sb_war42767(&si->sb); |
| 4053 | |
| 4054 | } |
| 4055 | |
| 4056 | /* restore the original index */ |
| 4057 | sb_setcoreidx(&si->sb, origidx); |
| 4058 | |
| 4059 | return 0; |
| 4060 | } |
| 4061 | |
| 4062 | /* Return ADDR64 capability of the backplane */ |
| 4063 | bool sb_backplane64(sb_t * sbh) |
| 4064 | { |
| 4065 | sb_info_t *si; |
| 4066 | |
| 4067 | si = SB_INFO(sbh); |
| 4068 | return ((si->sb.cccaps & CC_CAP_BKPLN64) != 0); |
| 4069 | } |
| 4070 | |
| 4071 | void sb_btcgpiowar(sb_t * sbh) |
| 4072 | { |
| 4073 | sb_info_t *si; |
| 4074 | uint origidx; |
| 4075 | uint intr_val = 0; |
| 4076 | chipcregs_t *cc; |
| 4077 | si = SB_INFO(sbh); |
| 4078 | |
| 4079 | /* Make sure that there is ChipCommon core present && |
| 4080 | * UART_TX is strapped to 1 |
| 4081 | */ |
| 4082 | if (!(si->sb.cccaps & CC_CAP_UARTGPIO)) |
| 4083 | return; |
| 4084 | |
| 4085 | /* sb_corereg cannot be used as we have to guarantee 8-bit read/writes */ |
| 4086 | INTR_OFF(si, intr_val); |
| 4087 | |
| 4088 | origidx = sb_coreidx(sbh); |
| 4089 | |
| 4090 | cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0); |
| 4091 | ASSERT(cc); |
| 4092 | |
| 4093 | W_REG(si->osh, &cc->uart0mcr, R_REG(si->osh, &cc->uart0mcr) | 0x04); |
| 4094 | |
| 4095 | /* restore the original index */ |
| 4096 | sb_setcoreidx(sbh, origidx); |
| 4097 | |
| 4098 | INTR_RESTORE(si, intr_val); |
| 4099 | } |
| 4100 | |
| 4101 | /* check if the device is removed */ |
| 4102 | bool sb_deviceremoved(sb_t * sbh) |
| 4103 | { |
| 4104 | uint32 w; |
| 4105 | sb_info_t *si; |
| 4106 | |
| 4107 | si = SB_INFO(sbh); |
| 4108 | |
| 4109 | switch (BUSTYPE(si->sb.bustype)) { |
| 4110 | case PCI_BUS: |
| 4111 | ASSERT(si->osh); |
| 4112 | w = OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_VID, sizeof(uint32)); |
| 4113 | if ((w & 0xFFFF) != VENDOR_BROADCOM) |
| 4114 | return TRUE; |
| 4115 | else |
| 4116 | return FALSE; |
| 4117 | default: |
| 4118 | return FALSE; |
| 4119 | } |
| 4120 | return FALSE; |
| 4121 | } |
| 4122 | |
| 4123 | #if 0 |
| 4124 | /* Return the RAM size of the SOCRAM core */ |
| 4125 | uint32 BCMINITFN(sb_socram_size) (sb_t * sbh) { |
| 4126 | sb_info_t *si; |
| 4127 | uint origidx; |
| 4128 | uint intr_val = 0; |
| 4129 | |
| 4130 | sbsocramregs_t *regs; |
| 4131 | bool wasup; |
| 4132 | uint corerev; |
| 4133 | uint32 coreinfo; |
| 4134 | uint memsize = 0; |
| 4135 | |
| 4136 | si = SB_INFO(sbh); |
| 4137 | ASSERT(si); |
| 4138 | |
| 4139 | /* Block ints and save current core */ |
| 4140 | INTR_OFF(si, intr_val); |
| 4141 | origidx = sb_coreidx(sbh); |
| 4142 | |
| 4143 | /* Switch to SOCRAM core */ |
| 4144 | if (!(regs = sb_setcore(sbh, SB_SOCRAM, 0))) |
| 4145 | goto done; |
| 4146 | |
| 4147 | /* Get info for determining size */ |
| 4148 | if (!(wasup = sb_iscoreup(sbh))) |
| 4149 | sb_core_reset(sbh, 0, 0); |
| 4150 | corerev = sb_corerev(sbh); |
| 4151 | coreinfo = R_REG(si->osh, ®s->coreinfo); |
| 4152 | |
| 4153 | /* Calculate size from coreinfo based on rev */ |
| 4154 | if (corerev == 0) |
| 4155 | memsize = 1 << (16 + (coreinfo & SRCI_MS0_MASK)); |
| 4156 | else if (corerev < 3) { |
| 4157 | memsize = 1 << (SR_BSZ_BASE + (coreinfo & SRCI_SRBSZ_MASK)); |
| 4158 | memsize *= (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; |
| 4159 | } else { |
| 4160 | uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; |
| 4161 | uint bsz = (coreinfo & SRCI_SRBSZ_MASK); |
| 4162 | uint lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT; |
| 4163 | if (lss != 0) |
| 4164 | nb--; |
| 4165 | memsize = nb * (1 << (bsz + SR_BSZ_BASE)); |
| 4166 | if (lss != 0) |
| 4167 | memsize += (1 << ((lss - 1) + SR_BSZ_BASE)); |
| 4168 | } |
| 4169 | /* Return to previous state and core */ |
| 4170 | if (!wasup) |
| 4171 | sb_core_disable(sbh, 0); |
| 4172 | sb_setcoreidx(sbh, origidx); |
| 4173 | |
| 4174 | done: |
| 4175 | INTR_RESTORE(si, intr_val); |
| 4176 | return memsize; |
| 4177 | } |
| 4178 | |
| 4179 | #endif |
| 4180 | |