Root/target/linux/generic-2.6/files/crypto/ocf/crypto.c

1/*-
2 * Linux port done by David McCullough <david_mccullough@securecomputing.com>
3 * Copyright (C) 2006-2007 David McCullough
4 * Copyright (C) 2004-2005 Intel Corporation.
5 * The license and original author are listed below.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved.
9 *
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30#if 0
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.27 2007/03/21 03:42:51 sam Exp $");
33#endif
34
35/*
36 * Cryptographic Subsystem.
37 *
38 * This code is derived from the Openbsd Cryptographic Framework (OCF)
39 * that has the copyright shown below. Very little of the original
40 * code remains.
41 */
42/*-
43 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
44 *
45 * This code was written by Angelos D. Keromytis in Athens, Greece, in
46 * February 2000. Network Security Technologies Inc. (NSTI) kindly
47 * supported the development of this code.
48 *
49 * Copyright (c) 2000, 2001 Angelos D. Keromytis
50 *
51 * Permission to use, copy, and modify this software with or without fee
52 * is hereby granted, provided that this entire notice is included in
53 * all source code copies of any software which is or includes a copy or
54 * modification of this software.
55 *
56 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
57 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
58 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
59 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
60 * PURPOSE.
61 *
62__FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.16 2005/01/07 02:29:16 imp Exp $");
63 */
64
65
66#ifndef AUTOCONF_INCLUDED
67#include <linux/config.h>
68#endif
69#include <linux/module.h>
70#include <linux/init.h>
71#include <linux/list.h>
72#include <linux/slab.h>
73#include <linux/wait.h>
74#include <linux/sched.h>
75#include <linux/spinlock.h>
76#include <linux/version.h>
77#include <cryptodev.h>
78
79/*
80 * keep track of whether or not we have been initialised, a big
81 * issue if we are linked into the kernel and a driver gets started before
82 * us
83 */
84static int crypto_initted = 0;
85
86/*
87 * Crypto drivers register themselves by allocating a slot in the
88 * crypto_drivers table with crypto_get_driverid() and then registering
89 * each algorithm they support with crypto_register() and crypto_kregister().
90 */
91
92/*
93 * lock on driver table
94 * we track its state as spin_is_locked does not do anything on non-SMP boxes
95 */
96static spinlock_t crypto_drivers_lock;
97static int crypto_drivers_locked; /* for non-SMP boxes */
98
99#define CRYPTO_DRIVER_LOCK() \
100            ({ \
101                spin_lock_irqsave(&crypto_drivers_lock, d_flags); \
102                 crypto_drivers_locked = 1; \
103                dprintk("%s,%d: DRIVER_LOCK()\n", __FILE__, __LINE__); \
104             })
105#define CRYPTO_DRIVER_UNLOCK() \
106            ({ \
107                 dprintk("%s,%d: DRIVER_UNLOCK()\n", __FILE__, __LINE__); \
108                 crypto_drivers_locked = 0; \
109                spin_unlock_irqrestore(&crypto_drivers_lock, d_flags); \
110             })
111#define CRYPTO_DRIVER_ASSERT() \
112            ({ \
113                 if (!crypto_drivers_locked) { \
114                    dprintk("%s,%d: DRIVER_ASSERT!\n", __FILE__, __LINE__); \
115                 } \
116             })
117
118/*
119 * Crypto device/driver capabilities structure.
120 *
121 * Synchronization:
122 * (d) - protected by CRYPTO_DRIVER_LOCK()
123 * (q) - protected by CRYPTO_Q_LOCK()
124 * Not tagged fields are read-only.
125 */
126struct cryptocap {
127    device_t cc_dev; /* (d) device/driver */
128    u_int32_t cc_sessions; /* (d) # of sessions */
129    u_int32_t cc_koperations; /* (d) # os asym operations */
130    /*
131     * Largest possible operator length (in bits) for each type of
132     * encryption algorithm. XXX not used
133     */
134    u_int16_t cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
135    u_int8_t cc_alg[CRYPTO_ALGORITHM_MAX + 1];
136    u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1];
137
138    int cc_flags; /* (d) flags */
139#define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */
140    int cc_qblocked; /* (q) symmetric q blocked */
141    int cc_kqblocked; /* (q) asymmetric q blocked */
142};
143static struct cryptocap *crypto_drivers = NULL;
144static int crypto_drivers_num = 0;
145
146/*
147 * There are two queues for crypto requests; one for symmetric (e.g.
148 * cipher) operations and one for asymmetric (e.g. MOD)operations.
149 * A single mutex is used to lock access to both queues. We could
150 * have one per-queue but having one simplifies handling of block/unblock
151 * operations.
152 */
153static int crp_sleep = 0;
154static LIST_HEAD(crp_q); /* request queues */
155static LIST_HEAD(crp_kq);
156
157static spinlock_t crypto_q_lock;
158
159int crypto_all_qblocked = 0; /* protect with Q_LOCK */
160module_param(crypto_all_qblocked, int, 0444);
161MODULE_PARM_DESC(crypto_all_qblocked, "Are all crypto queues blocked");
162
163int crypto_all_kqblocked = 0; /* protect with Q_LOCK */
164module_param(crypto_all_kqblocked, int, 0444);
165MODULE_PARM_DESC(crypto_all_kqblocked, "Are all asym crypto queues blocked");
166
167#define CRYPTO_Q_LOCK() \
168            ({ \
169                spin_lock_irqsave(&crypto_q_lock, q_flags); \
170                 dprintk("%s,%d: Q_LOCK()\n", __FILE__, __LINE__); \
171             })
172#define CRYPTO_Q_UNLOCK() \
173            ({ \
174                 dprintk("%s,%d: Q_UNLOCK()\n", __FILE__, __LINE__); \
175                spin_unlock_irqrestore(&crypto_q_lock, q_flags); \
176             })
177
178/*
179 * There are two queues for processing completed crypto requests; one
180 * for the symmetric and one for the asymmetric ops. We only need one
181 * but have two to avoid type futzing (cryptop vs. cryptkop). A single
182 * mutex is used to lock access to both queues. Note that this lock
183 * must be separate from the lock on request queues to insure driver
184 * callbacks don't generate lock order reversals.
185 */
186static LIST_HEAD(crp_ret_q); /* callback queues */
187static LIST_HEAD(crp_ret_kq);
188
189static spinlock_t crypto_ret_q_lock;
190#define CRYPTO_RETQ_LOCK() \
191            ({ \
192                spin_lock_irqsave(&crypto_ret_q_lock, r_flags); \
193                dprintk("%s,%d: RETQ_LOCK\n", __FILE__, __LINE__); \
194             })
195#define CRYPTO_RETQ_UNLOCK() \
196            ({ \
197                 dprintk("%s,%d: RETQ_UNLOCK\n", __FILE__, __LINE__); \
198                spin_unlock_irqrestore(&crypto_ret_q_lock, r_flags); \
199             })
200#define CRYPTO_RETQ_EMPTY() (list_empty(&crp_ret_q) && list_empty(&crp_ret_kq))
201
202#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
203static kmem_cache_t *cryptop_zone;
204static kmem_cache_t *cryptodesc_zone;
205#else
206static struct kmem_cache *cryptop_zone;
207static struct kmem_cache *cryptodesc_zone;
208#endif
209
210#define debug crypto_debug
211int crypto_debug = 0;
212module_param(crypto_debug, int, 0644);
213MODULE_PARM_DESC(crypto_debug, "Enable debug");
214EXPORT_SYMBOL(crypto_debug);
215
216/*
217 * Maximum number of outstanding crypto requests before we start
218 * failing requests. We need this to prevent DOS when too many
219 * requests are arriving for us to keep up. Otherwise we will
220 * run the system out of memory. Since crypto is slow, we are
221 * usually the bottleneck that needs to say, enough is enough.
222 *
223 * We cannot print errors when this condition occurs, we are already too
224 * slow, printing anything will just kill us
225 */
226
227static int crypto_q_cnt = 0;
228module_param(crypto_q_cnt, int, 0444);
229MODULE_PARM_DESC(crypto_q_cnt,
230        "Current number of outstanding crypto requests");
231
232static int crypto_q_max = 1000;
233module_param(crypto_q_max, int, 0644);
234MODULE_PARM_DESC(crypto_q_max,
235        "Maximum number of outstanding crypto requests");
236
237#define bootverbose crypto_verbose
238static int crypto_verbose = 0;
239module_param(crypto_verbose, int, 0644);
240MODULE_PARM_DESC(crypto_verbose,
241        "Enable verbose crypto startup");
242
243int crypto_usercrypto = 1; /* userland may do crypto reqs */
244module_param(crypto_usercrypto, int, 0644);
245MODULE_PARM_DESC(crypto_usercrypto,
246       "Enable/disable user-mode access to crypto support");
247
248int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
249module_param(crypto_userasymcrypto, int, 0644);
250MODULE_PARM_DESC(crypto_userasymcrypto,
251       "Enable/disable user-mode access to asymmetric crypto support");
252
253int crypto_devallowsoft = 0; /* only use hardware crypto */
254module_param(crypto_devallowsoft, int, 0644);
255MODULE_PARM_DESC(crypto_devallowsoft,
256       "Enable/disable use of software crypto support");
257
258static pid_t cryptoproc = (pid_t) -1;
259static struct completion cryptoproc_exited;
260static DECLARE_WAIT_QUEUE_HEAD(cryptoproc_wait);
261static pid_t cryptoretproc = (pid_t) -1;
262static struct completion cryptoretproc_exited;
263static DECLARE_WAIT_QUEUE_HEAD(cryptoretproc_wait);
264
265static int crypto_proc(void *arg);
266static int crypto_ret_proc(void *arg);
267static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
268static int crypto_kinvoke(struct cryptkop *krp, int flags);
269static void crypto_exit(void);
270static int crypto_init(void);
271
272static struct cryptostats cryptostats;
273
274static struct cryptocap *
275crypto_checkdriver(u_int32_t hid)
276{
277    if (crypto_drivers == NULL)
278        return NULL;
279    return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
280}
281
282/*
283 * Compare a driver's list of supported algorithms against another
284 * list; return non-zero if all algorithms are supported.
285 */
286static int
287driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
288{
289    const struct cryptoini *cr;
290
291    /* See if all the algorithms are supported. */
292    for (cr = cri; cr; cr = cr->cri_next)
293        if (cap->cc_alg[cr->cri_alg] == 0)
294            return 0;
295    return 1;
296}
297
298/*
299 * Select a driver for a new session that supports the specified
300 * algorithms and, optionally, is constrained according to the flags.
301 * The algorithm we use here is pretty stupid; just use the
302 * first driver that supports all the algorithms we need. If there
303 * are multiple drivers we choose the driver with the fewest active
304 * sessions. We prefer hardware-backed drivers to software ones.
305 *
306 * XXX We need more smarts here (in real life too, but that's
307 * XXX another story altogether).
308 */
309static struct cryptocap *
310crypto_select_driver(const struct cryptoini *cri, int flags)
311{
312    struct cryptocap *cap, *best;
313    int match, hid;
314
315    CRYPTO_DRIVER_ASSERT();
316
317    /*
318     * Look first for hardware crypto devices if permitted.
319     */
320    if (flags & CRYPTOCAP_F_HARDWARE)
321        match = CRYPTOCAP_F_HARDWARE;
322    else
323        match = CRYPTOCAP_F_SOFTWARE;
324    best = NULL;
325again:
326    for (hid = 0; hid < crypto_drivers_num; hid++) {
327        cap = &crypto_drivers[hid];
328        /*
329         * If it's not initialized, is in the process of
330         * going away, or is not appropriate (hardware
331         * or software based on match), then skip.
332         */
333        if (cap->cc_dev == NULL ||
334            (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
335            (cap->cc_flags & match) == 0)
336            continue;
337
338        /* verify all the algorithms are supported. */
339        if (driver_suitable(cap, cri)) {
340            if (best == NULL ||
341                cap->cc_sessions < best->cc_sessions)
342                best = cap;
343        }
344    }
345    if (best != NULL)
346        return best;
347    if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
348        /* sort of an Algol 68-style for loop */
349        match = CRYPTOCAP_F_SOFTWARE;
350        goto again;
351    }
352    return best;
353}
354
355/*
356 * Create a new session. The crid argument specifies a crypto
357 * driver to use or constraints on a driver to select (hardware
358 * only, software only, either). Whatever driver is selected
359 * must be capable of the requested crypto algorithms.
360 */
361int
362crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
363{
364    struct cryptocap *cap;
365    u_int32_t hid, lid;
366    int err;
367    unsigned long d_flags;
368
369    CRYPTO_DRIVER_LOCK();
370    if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
371        /*
372         * Use specified driver; verify it is capable.
373         */
374        cap = crypto_checkdriver(crid);
375        if (cap != NULL && !driver_suitable(cap, cri))
376            cap = NULL;
377    } else {
378        /*
379         * No requested driver; select based on crid flags.
380         */
381        cap = crypto_select_driver(cri, crid);
382        /*
383         * if NULL then can't do everything in one session.
384         * XXX Fix this. We need to inject a "virtual" session
385         * XXX layer right about here.
386         */
387    }
388    if (cap != NULL) {
389        /* Call the driver initialization routine. */
390        hid = cap - crypto_drivers;
391        lid = hid; /* Pass the driver ID. */
392        cap->cc_sessions++;
393        CRYPTO_DRIVER_UNLOCK();
394        err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
395        CRYPTO_DRIVER_LOCK();
396        if (err == 0) {
397            (*sid) = (cap->cc_flags & 0xff000000)
398                   | (hid & 0x00ffffff);
399            (*sid) <<= 32;
400            (*sid) |= (lid & 0xffffffff);
401        } else
402            cap->cc_sessions--;
403    } else
404        err = EINVAL;
405    CRYPTO_DRIVER_UNLOCK();
406    return err;
407}
408
409static void
410crypto_remove(struct cryptocap *cap)
411{
412    CRYPTO_DRIVER_ASSERT();
413    if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
414        bzero(cap, sizeof(*cap));
415}
416
417/*
418 * Delete an existing session (or a reserved session on an unregistered
419 * driver).
420 */
421int
422crypto_freesession(u_int64_t sid)
423{
424    struct cryptocap *cap;
425    u_int32_t hid;
426    int err = 0;
427    unsigned long d_flags;
428
429    dprintk("%s()\n", __FUNCTION__);
430    CRYPTO_DRIVER_LOCK();
431
432    if (crypto_drivers == NULL) {
433        err = EINVAL;
434        goto done;
435    }
436
437    /* Determine two IDs. */
438    hid = CRYPTO_SESID2HID(sid);
439
440    if (hid >= crypto_drivers_num) {
441        dprintk("%s - INVALID DRIVER NUM %d\n", __FUNCTION__, hid);
442        err = ENOENT;
443        goto done;
444    }
445    cap = &crypto_drivers[hid];
446
447    if (cap->cc_dev) {
448        CRYPTO_DRIVER_UNLOCK();
449        /* Call the driver cleanup routine, if available, unlocked. */
450        err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
451        CRYPTO_DRIVER_LOCK();
452    }
453
454    if (cap->cc_sessions)
455        cap->cc_sessions--;
456
457    if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
458        crypto_remove(cap);
459
460done:
461    CRYPTO_DRIVER_UNLOCK();
462    return err;
463}
464
465/*
466 * Return an unused driver id. Used by drivers prior to registering
467 * support for the algorithms they handle.
468 */
469int32_t
470crypto_get_driverid(device_t dev, int flags)
471{
472    struct cryptocap *newdrv;
473    int i;
474    unsigned long d_flags;
475
476    if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
477        printf("%s: no flags specified when registering driver\n",
478            device_get_nameunit(dev));
479        return -1;
480    }
481
482    CRYPTO_DRIVER_LOCK();
483
484    for (i = 0; i < crypto_drivers_num; i++) {
485        if (crypto_drivers[i].cc_dev == NULL &&
486            (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
487            break;
488        }
489    }
490
491    /* Out of entries, allocate some more. */
492    if (i == crypto_drivers_num) {
493        /* Be careful about wrap-around. */
494        if (2 * crypto_drivers_num <= crypto_drivers_num) {
495            CRYPTO_DRIVER_UNLOCK();
496            printk("crypto: driver count wraparound!\n");
497            return -1;
498        }
499
500        newdrv = kmalloc(2 * crypto_drivers_num * sizeof(struct cryptocap),
501                GFP_KERNEL);
502        if (newdrv == NULL) {
503            CRYPTO_DRIVER_UNLOCK();
504            printk("crypto: no space to expand driver table!\n");
505            return -1;
506        }
507
508        memcpy(newdrv, crypto_drivers,
509                crypto_drivers_num * sizeof(struct cryptocap));
510        memset(&newdrv[crypto_drivers_num], 0,
511                crypto_drivers_num * sizeof(struct cryptocap));
512
513        crypto_drivers_num *= 2;
514
515        kfree(crypto_drivers);
516        crypto_drivers = newdrv;
517    }
518
519    /* NB: state is zero'd on free */
520    crypto_drivers[i].cc_sessions = 1; /* Mark */
521    crypto_drivers[i].cc_dev = dev;
522    crypto_drivers[i].cc_flags = flags;
523    if (bootverbose)
524        printf("crypto: assign %s driver id %u, flags %u\n",
525            device_get_nameunit(dev), i, flags);
526
527    CRYPTO_DRIVER_UNLOCK();
528
529    return i;
530}
531
532/*
533 * Lookup a driver by name. We match against the full device
534 * name and unit, and against just the name. The latter gives
535 * us a simple widlcarding by device name. On success return the
536 * driver/hardware identifier; otherwise return -1.
537 */
538int
539crypto_find_driver(const char *match)
540{
541    int i, len = strlen(match);
542    unsigned long d_flags;
543
544    CRYPTO_DRIVER_LOCK();
545    for (i = 0; i < crypto_drivers_num; i++) {
546        device_t dev = crypto_drivers[i].cc_dev;
547        if (dev == NULL ||
548            (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
549            continue;
550        if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
551            strncmp(match, device_get_name(dev), len) == 0)
552            break;
553    }
554    CRYPTO_DRIVER_UNLOCK();
555    return i < crypto_drivers_num ? i : -1;
556}
557
558/*
559 * Return the device_t for the specified driver or NULL
560 * if the driver identifier is invalid.
561 */
562device_t
563crypto_find_device_byhid(int hid)
564{
565    struct cryptocap *cap = crypto_checkdriver(hid);
566    return cap != NULL ? cap->cc_dev : NULL;
567}
568
569/*
570 * Return the device/driver capabilities.
571 */
572int
573crypto_getcaps(int hid)
574{
575    struct cryptocap *cap = crypto_checkdriver(hid);
576    return cap != NULL ? cap->cc_flags : 0;
577}
578
579/*
580 * Register support for a key-related algorithm. This routine
581 * is called once for each algorithm supported a driver.
582 */
583int
584crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
585{
586    struct cryptocap *cap;
587    int err;
588    unsigned long d_flags;
589
590    dprintk("%s()\n", __FUNCTION__);
591    CRYPTO_DRIVER_LOCK();
592
593    cap = crypto_checkdriver(driverid);
594    if (cap != NULL &&
595        (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
596        /*
597         * XXX Do some performance testing to determine placing.
598         * XXX We probably need an auxiliary data structure that
599         * XXX describes relative performances.
600         */
601
602        cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
603        if (bootverbose)
604            printf("crypto: %s registers key alg %u flags %u\n"
605                , device_get_nameunit(cap->cc_dev)
606                , kalg
607                , flags
608            );
609        err = 0;
610    } else
611        err = EINVAL;
612
613    CRYPTO_DRIVER_UNLOCK();
614    return err;
615}
616
617/*
618 * Register support for a non-key-related algorithm. This routine
619 * is called once for each such algorithm supported by a driver.
620 */
621int
622crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
623    u_int32_t flags)
624{
625    struct cryptocap *cap;
626    int err;
627    unsigned long d_flags;
628
629    dprintk("%s(id=0x%x, alg=%d, maxoplen=%d, flags=0x%x)\n", __FUNCTION__,
630            driverid, alg, maxoplen, flags);
631
632    CRYPTO_DRIVER_LOCK();
633
634    cap = crypto_checkdriver(driverid);
635    /* NB: algorithms are in the range [1..max] */
636    if (cap != NULL &&
637        (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
638        /*
639         * XXX Do some performance testing to determine placing.
640         * XXX We probably need an auxiliary data structure that
641         * XXX describes relative performances.
642         */
643
644        cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
645        cap->cc_max_op_len[alg] = maxoplen;
646        if (bootverbose)
647            printf("crypto: %s registers alg %u flags %u maxoplen %u\n"
648                , device_get_nameunit(cap->cc_dev)
649                , alg
650                , flags
651                , maxoplen
652            );
653        cap->cc_sessions = 0; /* Unmark */
654        err = 0;
655    } else
656        err = EINVAL;
657
658    CRYPTO_DRIVER_UNLOCK();
659    return err;
660}
661
662static void
663driver_finis(struct cryptocap *cap)
664{
665    u_int32_t ses, kops;
666
667    CRYPTO_DRIVER_ASSERT();
668
669    ses = cap->cc_sessions;
670    kops = cap->cc_koperations;
671    bzero(cap, sizeof(*cap));
672    if (ses != 0 || kops != 0) {
673        /*
674         * If there are pending sessions,
675         * just mark as invalid.
676         */
677        cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
678        cap->cc_sessions = ses;
679        cap->cc_koperations = kops;
680    }
681}
682
683/*
684 * Unregister a crypto driver. If there are pending sessions using it,
685 * leave enough information around so that subsequent calls using those
686 * sessions will correctly detect the driver has been unregistered and
687 * reroute requests.
688 */
689int
690crypto_unregister(u_int32_t driverid, int alg)
691{
692    struct cryptocap *cap;
693    int i, err;
694    unsigned long d_flags;
695
696    dprintk("%s()\n", __FUNCTION__);
697    CRYPTO_DRIVER_LOCK();
698
699    cap = crypto_checkdriver(driverid);
700    if (cap != NULL &&
701        (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
702        cap->cc_alg[alg] != 0) {
703        cap->cc_alg[alg] = 0;
704        cap->cc_max_op_len[alg] = 0;
705
706        /* Was this the last algorithm ? */
707        for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
708            if (cap->cc_alg[i] != 0)
709                break;
710
711        if (i == CRYPTO_ALGORITHM_MAX + 1)
712            driver_finis(cap);
713        err = 0;
714    } else
715        err = EINVAL;
716    CRYPTO_DRIVER_UNLOCK();
717    return err;
718}
719
720/*
721 * Unregister all algorithms associated with a crypto driver.
722 * If there are pending sessions using it, leave enough information
723 * around so that subsequent calls using those sessions will
724 * correctly detect the driver has been unregistered and reroute
725 * requests.
726 */
727int
728crypto_unregister_all(u_int32_t driverid)
729{
730    struct cryptocap *cap;
731    int err;
732    unsigned long d_flags;
733
734    dprintk("%s()\n", __FUNCTION__);
735    CRYPTO_DRIVER_LOCK();
736    cap = crypto_checkdriver(driverid);
737    if (cap != NULL) {
738        driver_finis(cap);
739        err = 0;
740    } else
741        err = EINVAL;
742    CRYPTO_DRIVER_UNLOCK();
743
744    return err;
745}
746
747/*
748 * Clear blockage on a driver. The what parameter indicates whether
749 * the driver is now ready for cryptop's and/or cryptokop's.
750 */
751int
752crypto_unblock(u_int32_t driverid, int what)
753{
754    struct cryptocap *cap;
755    int err;
756    unsigned long q_flags;
757
758    CRYPTO_Q_LOCK();
759    cap = crypto_checkdriver(driverid);
760    if (cap != NULL) {
761        if (what & CRYPTO_SYMQ) {
762            cap->cc_qblocked = 0;
763            crypto_all_qblocked = 0;
764        }
765        if (what & CRYPTO_ASYMQ) {
766            cap->cc_kqblocked = 0;
767            crypto_all_kqblocked = 0;
768        }
769        if (crp_sleep)
770            wake_up_interruptible(&cryptoproc_wait);
771        err = 0;
772    } else
773        err = EINVAL;
774    CRYPTO_Q_UNLOCK(); //DAVIDM should this be a driver lock
775
776    return err;
777}
778
779/*
780 * Add a crypto request to a queue, to be processed by the kernel thread.
781 */
782int
783crypto_dispatch(struct cryptop *crp)
784{
785    struct cryptocap *cap;
786    int result = -1;
787    unsigned long q_flags;
788
789    dprintk("%s()\n", __FUNCTION__);
790
791    cryptostats.cs_ops++;
792
793    CRYPTO_Q_LOCK();
794    if (crypto_q_cnt >= crypto_q_max) {
795        CRYPTO_Q_UNLOCK();
796        cryptostats.cs_drops++;
797        return ENOMEM;
798    }
799    crypto_q_cnt++;
800
801    /*
802     * Caller marked the request to be processed immediately; dispatch
803     * it directly to the driver unless the driver is currently blocked.
804     */
805    if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
806        int hid = CRYPTO_SESID2HID(crp->crp_sid);
807        cap = crypto_checkdriver(hid);
808        /* Driver cannot disappear when there is an active session. */
809        KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
810        if (!cap->cc_qblocked) {
811            crypto_all_qblocked = 0;
812            crypto_drivers[hid].cc_qblocked = 1;
813            CRYPTO_Q_UNLOCK();
814            result = crypto_invoke(cap, crp, 0);
815            CRYPTO_Q_LOCK();
816            if (result != ERESTART)
817                crypto_drivers[hid].cc_qblocked = 0;
818        }
819    }
820    if (result == ERESTART) {
821        /*
822         * The driver ran out of resources, mark the
823         * driver ``blocked'' for cryptop's and put
824         * the request back in the queue. It would
825         * best to put the request back where we got
826         * it but that's hard so for now we put it
827         * at the front. This should be ok; putting
828         * it at the end does not work.
829         */
830        list_add(&crp->crp_next, &crp_q);
831        cryptostats.cs_blocks++;
832    } else if (result == -1) {
833        TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
834    }
835    if (crp_sleep)
836        wake_up_interruptible(&cryptoproc_wait);
837    CRYPTO_Q_UNLOCK();
838    return 0;
839}
840
841/*
842 * Add an asymetric crypto request to a queue,
843 * to be processed by the kernel thread.
844 */
845int
846crypto_kdispatch(struct cryptkop *krp)
847{
848    int error;
849    unsigned long q_flags;
850
851    cryptostats.cs_kops++;
852
853    error = crypto_kinvoke(krp, krp->krp_crid);
854    if (error == ERESTART) {
855        CRYPTO_Q_LOCK();
856        TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
857        if (crp_sleep)
858            wake_up_interruptible(&cryptoproc_wait);
859        CRYPTO_Q_UNLOCK();
860        error = 0;
861    }
862    return error;
863}
864
865/*
866 * Verify a driver is suitable for the specified operation.
867 */
868static __inline int
869kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
870{
871    return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
872}
873
874/*
875 * Select a driver for an asym operation. The driver must
876 * support the necessary algorithm. The caller can constrain
877 * which device is selected with the flags parameter. The
878 * algorithm we use here is pretty stupid; just use the first
879 * driver that supports the algorithms we need. If there are
880 * multiple suitable drivers we choose the driver with the
881 * fewest active operations. We prefer hardware-backed
882 * drivers to software ones when either may be used.
883 */
884static struct cryptocap *
885crypto_select_kdriver(const struct cryptkop *krp, int flags)
886{
887    struct cryptocap *cap, *best, *blocked;
888    int match, hid;
889
890    CRYPTO_DRIVER_ASSERT();
891
892    /*
893     * Look first for hardware crypto devices if permitted.
894     */
895    if (flags & CRYPTOCAP_F_HARDWARE)
896        match = CRYPTOCAP_F_HARDWARE;
897    else
898        match = CRYPTOCAP_F_SOFTWARE;
899    best = NULL;
900    blocked = NULL;
901again:
902    for (hid = 0; hid < crypto_drivers_num; hid++) {
903        cap = &crypto_drivers[hid];
904        /*
905         * If it's not initialized, is in the process of
906         * going away, or is not appropriate (hardware
907         * or software based on match), then skip.
908         */
909        if (cap->cc_dev == NULL ||
910            (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
911            (cap->cc_flags & match) == 0)
912            continue;
913
914        /* verify all the algorithms are supported. */
915        if (kdriver_suitable(cap, krp)) {
916            if (best == NULL ||
917                cap->cc_koperations < best->cc_koperations)
918                best = cap;
919        }
920    }
921    if (best != NULL)
922        return best;
923    if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
924        /* sort of an Algol 68-style for loop */
925        match = CRYPTOCAP_F_SOFTWARE;
926        goto again;
927    }
928    return best;
929}
930
931/*
932 * Dispatch an assymetric crypto request.
933 */
934static int
935crypto_kinvoke(struct cryptkop *krp, int crid)
936{
937    struct cryptocap *cap = NULL;
938    int error;
939    unsigned long d_flags;
940
941    KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
942    KASSERT(krp->krp_callback != NULL,
943        ("%s: krp->crp_callback == NULL", __func__));
944
945    CRYPTO_DRIVER_LOCK();
946    if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
947        cap = crypto_checkdriver(crid);
948        if (cap != NULL) {
949            /*
950             * Driver present, it must support the necessary
951             * algorithm and, if s/w drivers are excluded,
952             * it must be registered as hardware-backed.
953             */
954            if (!kdriver_suitable(cap, krp) ||
955                (!crypto_devallowsoft &&
956                 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
957                cap = NULL;
958        }
959    } else {
960        /*
961         * No requested driver; select based on crid flags.
962         */
963        if (!crypto_devallowsoft) /* NB: disallow s/w drivers */
964            crid &= ~CRYPTOCAP_F_SOFTWARE;
965        cap = crypto_select_kdriver(krp, crid);
966    }
967    if (cap != NULL && !cap->cc_kqblocked) {
968        krp->krp_hid = cap - crypto_drivers;
969        cap->cc_koperations++;
970        CRYPTO_DRIVER_UNLOCK();
971        error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
972        CRYPTO_DRIVER_LOCK();
973        if (error == ERESTART) {
974            cap->cc_koperations--;
975            CRYPTO_DRIVER_UNLOCK();
976            return (error);
977        }
978        /* return the actual device used */
979        krp->krp_crid = krp->krp_hid;
980    } else {
981        /*
982         * NB: cap is !NULL if device is blocked; in
983         * that case return ERESTART so the operation
984         * is resubmitted if possible.
985         */
986        error = (cap == NULL) ? ENODEV : ERESTART;
987    }
988    CRYPTO_DRIVER_UNLOCK();
989
990    if (error) {
991        krp->krp_status = error;
992        crypto_kdone(krp);
993    }
994    return 0;
995}
996
997
998/*
999 * Dispatch a crypto request to the appropriate crypto devices.
1000 */
1001static int
1002crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1003{
1004    KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1005    KASSERT(crp->crp_callback != NULL,
1006        ("%s: crp->crp_callback == NULL", __func__));
1007    KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
1008
1009    dprintk("%s()\n", __FUNCTION__);
1010
1011#ifdef CRYPTO_TIMING
1012    if (crypto_timing)
1013        crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1014#endif
1015    if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1016        struct cryptodesc *crd;
1017        u_int64_t nid;
1018
1019        /*
1020         * Driver has unregistered; migrate the session and return
1021         * an error to the caller so they'll resubmit the op.
1022         *
1023         * XXX: What if there are more already queued requests for this
1024         * session?
1025         */
1026        crypto_freesession(crp->crp_sid);
1027
1028        for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1029            crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1030
1031        /* XXX propagate flags from initial session? */
1032        if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
1033            CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1034            crp->crp_sid = nid;
1035
1036        crp->crp_etype = EAGAIN;
1037        crypto_done(crp);
1038        return 0;
1039    } else {
1040        /*
1041         * Invoke the driver to process the request.
1042         */
1043        return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1044    }
1045}
1046
1047/*
1048 * Release a set of crypto descriptors.
1049 */
1050void
1051crypto_freereq(struct cryptop *crp)
1052{
1053    struct cryptodesc *crd;
1054
1055    if (crp == NULL)
1056        return;
1057
1058#ifdef DIAGNOSTIC
1059    {
1060        struct cryptop *crp2;
1061        unsigned long q_flags;
1062
1063        CRYPTO_Q_LOCK();
1064        TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1065            KASSERT(crp2 != crp,
1066                ("Freeing cryptop from the crypto queue (%p).",
1067                crp));
1068        }
1069        CRYPTO_Q_UNLOCK();
1070        CRYPTO_RETQ_LOCK();
1071        TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
1072            KASSERT(crp2 != crp,
1073                ("Freeing cryptop from the return queue (%p).",
1074                crp));
1075        }
1076        CRYPTO_RETQ_UNLOCK();
1077    }
1078#endif
1079
1080    while ((crd = crp->crp_desc) != NULL) {
1081        crp->crp_desc = crd->crd_next;
1082        kmem_cache_free(cryptodesc_zone, crd);
1083    }
1084    kmem_cache_free(cryptop_zone, crp);
1085}
1086
1087/*
1088 * Acquire a set of crypto descriptors.
1089 */
1090struct cryptop *
1091crypto_getreq(int num)
1092{
1093    struct cryptodesc *crd;
1094    struct cryptop *crp;
1095
1096    crp = kmem_cache_alloc(cryptop_zone, SLAB_ATOMIC);
1097    if (crp != NULL) {
1098        memset(crp, 0, sizeof(*crp));
1099        INIT_LIST_HEAD(&crp->crp_next);
1100        init_waitqueue_head(&crp->crp_waitq);
1101        while (num--) {
1102            crd = kmem_cache_alloc(cryptodesc_zone, SLAB_ATOMIC);
1103            if (crd == NULL) {
1104                crypto_freereq(crp);
1105                return NULL;
1106            }
1107            memset(crd, 0, sizeof(*crd));
1108            crd->crd_next = crp->crp_desc;
1109            crp->crp_desc = crd;
1110        }
1111    }
1112    return crp;
1113}
1114
1115/*
1116 * Invoke the callback on behalf of the driver.
1117 */
1118void
1119crypto_done(struct cryptop *crp)
1120{
1121    unsigned long q_flags;
1122
1123    dprintk("%s()\n", __FUNCTION__);
1124    if ((crp->crp_flags & CRYPTO_F_DONE) == 0) {
1125        crp->crp_flags |= CRYPTO_F_DONE;
1126        CRYPTO_Q_LOCK();
1127        crypto_q_cnt--;
1128        CRYPTO_Q_UNLOCK();
1129    } else
1130        printk("crypto: crypto_done op already done, flags 0x%x",
1131                crp->crp_flags);
1132    if (crp->crp_etype != 0)
1133        cryptostats.cs_errs++;
1134    /*
1135     * CBIMM means unconditionally do the callback immediately;
1136     * CBIFSYNC means do the callback immediately only if the
1137     * operation was done synchronously. Both are used to avoid
1138     * doing extraneous context switches; the latter is mostly
1139     * used with the software crypto driver.
1140     */
1141    if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1142        ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1143         (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
1144        /*
1145         * Do the callback directly. This is ok when the
1146         * callback routine does very little (e.g. the
1147         * /dev/crypto callback method just does a wakeup).
1148         */
1149        crp->crp_callback(crp);
1150    } else {
1151        unsigned long r_flags;
1152        /*
1153         * Normal case; queue the callback for the thread.
1154         */
1155        CRYPTO_RETQ_LOCK();
1156        if (CRYPTO_RETQ_EMPTY())
1157            wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
1158        TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1159        CRYPTO_RETQ_UNLOCK();
1160    }
1161}
1162
1163/*
1164 * Invoke the callback on behalf of the driver.
1165 */
1166void
1167crypto_kdone(struct cryptkop *krp)
1168{
1169    struct cryptocap *cap;
1170    unsigned long d_flags;
1171
1172    if ((krp->krp_flags & CRYPTO_KF_DONE) != 0)
1173        printk("crypto: crypto_kdone op already done, flags 0x%x",
1174                krp->krp_flags);
1175    krp->krp_flags |= CRYPTO_KF_DONE;
1176    if (krp->krp_status != 0)
1177        cryptostats.cs_kerrs++;
1178
1179    CRYPTO_DRIVER_LOCK();
1180    /* XXX: What if driver is loaded in the meantime? */
1181    if (krp->krp_hid < crypto_drivers_num) {
1182        cap = &crypto_drivers[krp->krp_hid];
1183        cap->cc_koperations--;
1184        KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
1185        if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1186            crypto_remove(cap);
1187    }
1188    CRYPTO_DRIVER_UNLOCK();
1189
1190    /*
1191     * CBIMM means unconditionally do the callback immediately;
1192     * This is used to avoid doing extraneous context switches
1193     */
1194    if ((krp->krp_flags & CRYPTO_KF_CBIMM)) {
1195        /*
1196         * Do the callback directly. This is ok when the
1197         * callback routine does very little (e.g. the
1198         * /dev/crypto callback method just does a wakeup).
1199         */
1200        krp->krp_callback(krp);
1201    } else {
1202        unsigned long r_flags;
1203        /*
1204         * Normal case; queue the callback for the thread.
1205         */
1206        CRYPTO_RETQ_LOCK();
1207        if (CRYPTO_RETQ_EMPTY())
1208            wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
1209        TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1210        CRYPTO_RETQ_UNLOCK();
1211    }
1212}
1213
1214int
1215crypto_getfeat(int *featp)
1216{
1217    int hid, kalg, feat = 0;
1218    unsigned long d_flags;
1219
1220    CRYPTO_DRIVER_LOCK();
1221    for (hid = 0; hid < crypto_drivers_num; hid++) {
1222        const struct cryptocap *cap = &crypto_drivers[hid];
1223
1224        if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1225            !crypto_devallowsoft) {
1226            continue;
1227        }
1228        for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1229            if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1230                feat |= 1 << kalg;
1231    }
1232    CRYPTO_DRIVER_UNLOCK();
1233    *featp = feat;
1234    return (0);
1235}
1236
1237/*
1238 * Crypto thread, dispatches crypto requests.
1239 */
1240static int
1241crypto_proc(void *arg)
1242{
1243    struct cryptop *crp, *submit;
1244    struct cryptkop *krp, *krpp;
1245    struct cryptocap *cap;
1246    u_int32_t hid;
1247    int result, hint;
1248    unsigned long q_flags;
1249
1250    ocf_daemonize("crypto");
1251
1252    CRYPTO_Q_LOCK();
1253    for (;;) {
1254        /*
1255         * we need to make sure we don't get into a busy loop with nothing
1256         * to do, the two crypto_all_*blocked vars help us find out when
1257         * we are all full and can do nothing on any driver or Q. If so we
1258         * wait for an unblock.
1259         */
1260        crypto_all_qblocked = !list_empty(&crp_q);
1261
1262        /*
1263         * Find the first element in the queue that can be
1264         * processed and look-ahead to see if multiple ops
1265         * are ready for the same driver.
1266         */
1267        submit = NULL;
1268        hint = 0;
1269        list_for_each_entry(crp, &crp_q, crp_next) {
1270            hid = CRYPTO_SESID2HID(crp->crp_sid);
1271            cap = crypto_checkdriver(hid);
1272            /*
1273             * Driver cannot disappear when there is an active
1274             * session.
1275             */
1276            KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1277                __func__, __LINE__));
1278            if (cap == NULL || cap->cc_dev == NULL) {
1279                /* Op needs to be migrated, process it. */
1280                if (submit == NULL)
1281                    submit = crp;
1282                break;
1283            }
1284            if (!cap->cc_qblocked) {
1285                if (submit != NULL) {
1286                    /*
1287                     * We stop on finding another op,
1288                     * regardless whether its for the same
1289                     * driver or not. We could keep
1290                     * searching the queue but it might be
1291                     * better to just use a per-driver
1292                     * queue instead.
1293                     */
1294                    if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
1295                        hint = CRYPTO_HINT_MORE;
1296                    break;
1297                } else {
1298                    submit = crp;
1299                    if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1300                        break;
1301                    /* keep scanning for more are q'd */
1302                }
1303            }
1304        }
1305        if (submit != NULL) {
1306            hid = CRYPTO_SESID2HID(submit->crp_sid);
1307            crypto_all_qblocked = 0;
1308            list_del(&submit->crp_next);
1309            crypto_drivers[hid].cc_qblocked = 1;
1310            cap = crypto_checkdriver(hid);
1311            CRYPTO_Q_UNLOCK();
1312            KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1313                __func__, __LINE__));
1314            result = crypto_invoke(cap, submit, hint);
1315            CRYPTO_Q_LOCK();
1316            if (result == ERESTART) {
1317                /*
1318                 * The driver ran out of resources, mark the
1319                 * driver ``blocked'' for cryptop's and put
1320                 * the request back in the queue. It would
1321                 * best to put the request back where we got
1322                 * it but that's hard so for now we put it
1323                 * at the front. This should be ok; putting
1324                 * it at the end does not work.
1325                 */
1326                /* XXX validate sid again? */
1327                list_add(&submit->crp_next, &crp_q);
1328                cryptostats.cs_blocks++;
1329            } else
1330                crypto_drivers[hid].cc_qblocked=0;
1331        }
1332
1333        crypto_all_kqblocked = !list_empty(&crp_kq);
1334
1335        /* As above, but for key ops */
1336        krp = NULL;
1337        list_for_each_entry(krpp, &crp_kq, krp_next) {
1338            cap = crypto_checkdriver(krpp->krp_hid);
1339            if (cap == NULL || cap->cc_dev == NULL) {
1340                /*
1341                 * Operation needs to be migrated, invalidate
1342                 * the assigned device so it will reselect a
1343                 * new one below. Propagate the original
1344                 * crid selection flags if supplied.
1345                 */
1346                krp->krp_hid = krp->krp_crid &
1347                    (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
1348                if (krp->krp_hid == 0)
1349                    krp->krp_hid =
1350                    CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
1351                break;
1352            }
1353            if (!cap->cc_kqblocked) {
1354                krp = krpp;
1355                break;
1356            }
1357        }
1358        if (krp != NULL) {
1359            crypto_all_kqblocked = 0;
1360            list_del(&krp->krp_next);
1361            crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1362            CRYPTO_Q_UNLOCK();
1363            result = crypto_kinvoke(krp, krp->krp_hid);
1364            CRYPTO_Q_LOCK();
1365            if (result == ERESTART) {
1366                /*
1367                 * The driver ran out of resources, mark the
1368                 * driver ``blocked'' for cryptkop's and put
1369                 * the request back in the queue. It would
1370                 * best to put the request back where we got
1371                 * it but that's hard so for now we put it
1372                 * at the front. This should be ok; putting
1373                 * it at the end does not work.
1374                 */
1375                /* XXX validate sid again? */
1376                list_add(&krp->krp_next, &crp_kq);
1377                cryptostats.cs_kblocks++;
1378            } else
1379                crypto_drivers[krp->krp_hid].cc_kqblocked = 0;
1380        }
1381
1382        if (submit == NULL && krp == NULL) {
1383            /*
1384             * Nothing more to be processed. Sleep until we're
1385             * woken because there are more ops to process.
1386             * This happens either by submission or by a driver
1387             * becoming unblocked and notifying us through
1388             * crypto_unblock. Note that when we wakeup we
1389             * start processing each queue again from the
1390             * front. It's not clear that it's important to
1391             * preserve this ordering since ops may finish
1392             * out of order if dispatched to different devices
1393             * and some become blocked while others do not.
1394             */
1395            dprintk("%s - sleeping (qe=%d qb=%d kqe=%d kqb=%d)\n",
1396                    __FUNCTION__,
1397                    list_empty(&crp_q), crypto_all_qblocked,
1398                    list_empty(&crp_kq), crypto_all_kqblocked);
1399            CRYPTO_Q_UNLOCK();
1400            crp_sleep = 1;
1401            wait_event_interruptible(cryptoproc_wait,
1402                    !(list_empty(&crp_q) || crypto_all_qblocked) ||
1403                    !(list_empty(&crp_kq) || crypto_all_kqblocked) ||
1404                    cryptoproc == (pid_t) -1);
1405            crp_sleep = 0;
1406            if (signal_pending (current)) {
1407#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1408                spin_lock_irq(&current->sigmask_lock);
1409#endif
1410                flush_signals(current);
1411#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1412                spin_unlock_irq(&current->sigmask_lock);
1413#endif
1414            }
1415            CRYPTO_Q_LOCK();
1416            dprintk("%s - awake\n", __FUNCTION__);
1417            if (cryptoproc == (pid_t) -1)
1418                break;
1419            cryptostats.cs_intrs++;
1420        }
1421    }
1422    CRYPTO_Q_UNLOCK();
1423    complete_and_exit(&cryptoproc_exited, 0);
1424}
1425
1426/*
1427 * Crypto returns thread, does callbacks for processed crypto requests.
1428 * Callbacks are done here, rather than in the crypto drivers, because
1429 * callbacks typically are expensive and would slow interrupt handling.
1430 */
1431static int
1432crypto_ret_proc(void *arg)
1433{
1434    struct cryptop *crpt;
1435    struct cryptkop *krpt;
1436    unsigned long r_flags;
1437
1438    ocf_daemonize("crypto_ret");
1439
1440    CRYPTO_RETQ_LOCK();
1441    for (;;) {
1442        /* Harvest return q's for completed ops */
1443        crpt = NULL;
1444        if (!list_empty(&crp_ret_q))
1445            crpt = list_entry(crp_ret_q.next, typeof(*crpt), crp_next);
1446        if (crpt != NULL)
1447            list_del(&crpt->crp_next);
1448
1449        krpt = NULL;
1450        if (!list_empty(&crp_ret_kq))
1451            krpt = list_entry(crp_ret_kq.next, typeof(*krpt), krp_next);
1452        if (krpt != NULL)
1453            list_del(&krpt->krp_next);
1454
1455        if (crpt != NULL || krpt != NULL) {
1456            CRYPTO_RETQ_UNLOCK();
1457            /*
1458             * Run callbacks unlocked.
1459             */
1460            if (crpt != NULL)
1461                crpt->crp_callback(crpt);
1462            if (krpt != NULL)
1463                krpt->krp_callback(krpt);
1464            CRYPTO_RETQ_LOCK();
1465        } else {
1466            /*
1467             * Nothing more to be processed. Sleep until we're
1468             * woken because there are more returns to process.
1469             */
1470            dprintk("%s - sleeping\n", __FUNCTION__);
1471            CRYPTO_RETQ_UNLOCK();
1472            wait_event_interruptible(cryptoretproc_wait,
1473                    cryptoretproc == (pid_t) -1 ||
1474                    !list_empty(&crp_ret_q) ||
1475                    !list_empty(&crp_ret_kq));
1476            if (signal_pending (current)) {
1477#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1478                spin_lock_irq(&current->sigmask_lock);
1479#endif
1480                flush_signals(current);
1481#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1482                spin_unlock_irq(&current->sigmask_lock);
1483#endif
1484            }
1485            CRYPTO_RETQ_LOCK();
1486            dprintk("%s - awake\n", __FUNCTION__);
1487            if (cryptoretproc == (pid_t) -1) {
1488                dprintk("%s - EXITING!\n", __FUNCTION__);
1489                break;
1490            }
1491            cryptostats.cs_rets++;
1492        }
1493    }
1494    CRYPTO_RETQ_UNLOCK();
1495    complete_and_exit(&cryptoretproc_exited, 0);
1496}
1497
1498
1499#if 0 /* should put this into /proc or something */
1500static void
1501db_show_drivers(void)
1502{
1503    int hid;
1504
1505    db_printf("%12s %4s %4s %8s %2s %2s\n"
1506        , "Device"
1507        , "Ses"
1508        , "Kops"
1509        , "Flags"
1510        , "QB"
1511        , "KB"
1512    );
1513    for (hid = 0; hid < crypto_drivers_num; hid++) {
1514        const struct cryptocap *cap = &crypto_drivers[hid];
1515        if (cap->cc_dev == NULL)
1516            continue;
1517        db_printf("%-12s %4u %4u %08x %2u %2u\n"
1518            , device_get_nameunit(cap->cc_dev)
1519            , cap->cc_sessions
1520            , cap->cc_koperations
1521            , cap->cc_flags
1522            , cap->cc_qblocked
1523            , cap->cc_kqblocked
1524        );
1525    }
1526}
1527
1528DB_SHOW_COMMAND(crypto, db_show_crypto)
1529{
1530    struct cryptop *crp;
1531
1532    db_show_drivers();
1533    db_printf("\n");
1534
1535    db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1536        "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1537        "Desc", "Callback");
1538    TAILQ_FOREACH(crp, &crp_q, crp_next) {
1539        db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1540            , (int) CRYPTO_SESID2HID(crp->crp_sid)
1541            , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
1542            , crp->crp_ilen, crp->crp_olen
1543            , crp->crp_etype
1544            , crp->crp_flags
1545            , crp->crp_desc
1546            , crp->crp_callback
1547        );
1548    }
1549    if (!TAILQ_EMPTY(&crp_ret_q)) {
1550        db_printf("\n%4s %4s %4s %8s\n",
1551            "HID", "Etype", "Flags", "Callback");
1552        TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
1553            db_printf("%4u %4u %04x %8p\n"
1554                , (int) CRYPTO_SESID2HID(crp->crp_sid)
1555                , crp->crp_etype
1556                , crp->crp_flags
1557                , crp->crp_callback
1558            );
1559        }
1560    }
1561}
1562
1563DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
1564{
1565    struct cryptkop *krp;
1566
1567    db_show_drivers();
1568    db_printf("\n");
1569
1570    db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1571        "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1572    TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1573        db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1574            , krp->krp_op
1575            , krp->krp_status
1576            , krp->krp_iparams, krp->krp_oparams
1577            , krp->krp_crid, krp->krp_hid
1578            , krp->krp_callback
1579        );
1580    }
1581    if (!TAILQ_EMPTY(&crp_ret_q)) {
1582        db_printf("%4s %5s %8s %4s %8s\n",
1583            "Op", "Status", "CRID", "HID", "Callback");
1584        TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
1585            db_printf("%4u %5u %08x %4u %8p\n"
1586                , krp->krp_op
1587                , krp->krp_status
1588                , krp->krp_crid, krp->krp_hid
1589                , krp->krp_callback
1590            );
1591        }
1592    }
1593}
1594#endif
1595
1596
1597static int
1598crypto_init(void)
1599{
1600    int error;
1601
1602    dprintk("%s(0x%x)\n", __FUNCTION__, (int) crypto_init);
1603
1604    if (crypto_initted)
1605        return 0;
1606    crypto_initted = 1;
1607
1608    spin_lock_init(&crypto_drivers_lock);
1609    spin_lock_init(&crypto_q_lock);
1610    spin_lock_init(&crypto_ret_q_lock);
1611
1612    cryptop_zone = kmem_cache_create("cryptop", sizeof(struct cryptop),
1613                       0, SLAB_HWCACHE_ALIGN, NULL
1614#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
1615                       , NULL
1616#endif
1617                    );
1618
1619    cryptodesc_zone = kmem_cache_create("cryptodesc", sizeof(struct cryptodesc),
1620                       0, SLAB_HWCACHE_ALIGN, NULL
1621#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
1622                       , NULL
1623#endif
1624                    );
1625
1626    if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
1627        printk("crypto: crypto_init cannot setup crypto zones\n");
1628        error = ENOMEM;
1629        goto bad;
1630    }
1631
1632    crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
1633    crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap),
1634            GFP_KERNEL);
1635    if (crypto_drivers == NULL) {
1636        printk("crypto: crypto_init cannot setup crypto drivers\n");
1637        error = ENOMEM;
1638        goto bad;
1639    }
1640
1641    memset(crypto_drivers, 0, crypto_drivers_num * sizeof(struct cryptocap));
1642
1643    init_completion(&cryptoproc_exited);
1644    init_completion(&cryptoretproc_exited);
1645
1646    cryptoproc = 0; /* to avoid race condition where proc runs first */
1647    cryptoproc = kernel_thread(crypto_proc, NULL, CLONE_FS|CLONE_FILES);
1648    if (cryptoproc < 0) {
1649        error = cryptoproc;
1650        printk("crypto: crypto_init cannot start crypto thread; error %d",
1651            error);
1652        goto bad;
1653    }
1654
1655    cryptoretproc = 0; /* to avoid race condition where proc runs first */
1656    cryptoretproc = kernel_thread(crypto_ret_proc, NULL, CLONE_FS|CLONE_FILES);
1657    if (cryptoretproc < 0) {
1658        error = cryptoretproc;
1659        printk("crypto: crypto_init cannot start cryptoret thread; error %d",
1660                error);
1661        goto bad;
1662    }
1663
1664    return 0;
1665bad:
1666    crypto_exit();
1667    return error;
1668}
1669
1670
1671static void
1672crypto_exit(void)
1673{
1674    pid_t p;
1675    unsigned long d_flags;
1676
1677    dprintk("%s()\n", __FUNCTION__);
1678
1679    /*
1680     * Terminate any crypto threads.
1681     */
1682
1683    CRYPTO_DRIVER_LOCK();
1684    p = cryptoproc;
1685    cryptoproc = (pid_t) -1;
1686    kill_proc(p, SIGTERM, 1);
1687    wake_up_interruptible(&cryptoproc_wait);
1688    CRYPTO_DRIVER_UNLOCK();
1689
1690    wait_for_completion(&cryptoproc_exited);
1691
1692    CRYPTO_DRIVER_LOCK();
1693    p = cryptoretproc;
1694    cryptoretproc = (pid_t) -1;
1695    kill_proc(p, SIGTERM, 1);
1696    wake_up_interruptible(&cryptoretproc_wait);
1697    CRYPTO_DRIVER_UNLOCK();
1698
1699    wait_for_completion(&cryptoretproc_exited);
1700
1701    /* XXX flush queues??? */
1702
1703    /*
1704     * Reclaim dynamically allocated resources.
1705     */
1706    if (crypto_drivers != NULL)
1707        kfree(crypto_drivers);
1708
1709    if (cryptodesc_zone != NULL)
1710        kmem_cache_destroy(cryptodesc_zone);
1711    if (cryptop_zone != NULL)
1712        kmem_cache_destroy(cryptop_zone);
1713}
1714
1715
1716EXPORT_SYMBOL(crypto_newsession);
1717EXPORT_SYMBOL(crypto_freesession);
1718EXPORT_SYMBOL(crypto_get_driverid);
1719EXPORT_SYMBOL(crypto_kregister);
1720EXPORT_SYMBOL(crypto_register);
1721EXPORT_SYMBOL(crypto_unregister);
1722EXPORT_SYMBOL(crypto_unregister_all);
1723EXPORT_SYMBOL(crypto_unblock);
1724EXPORT_SYMBOL(crypto_dispatch);
1725EXPORT_SYMBOL(crypto_kdispatch);
1726EXPORT_SYMBOL(crypto_freereq);
1727EXPORT_SYMBOL(crypto_getreq);
1728EXPORT_SYMBOL(crypto_done);
1729EXPORT_SYMBOL(crypto_kdone);
1730EXPORT_SYMBOL(crypto_getfeat);
1731EXPORT_SYMBOL(crypto_userasymcrypto);
1732EXPORT_SYMBOL(crypto_getcaps);
1733EXPORT_SYMBOL(crypto_find_driver);
1734EXPORT_SYMBOL(crypto_find_device_byhid);
1735
1736module_init(crypto_init);
1737module_exit(crypto_exit);
1738
1739MODULE_LICENSE("BSD");
1740MODULE_AUTHOR("David McCullough <david_mccullough@securecomputing.com>");
1741MODULE_DESCRIPTION("OCF (OpenBSD Cryptographic Framework)");
1742

Archive Download this file



interactive