| 1 | /*************************************************************************** |
| 2 | * |
| 3 | * This file is provided under a dual BSD/GPLv2 license. When using or |
| 4 | * redistributing this file, you may do so under either license. |
| 5 | * |
| 6 | * GPL LICENSE SUMMARY |
| 7 | * |
| 8 | * Copyright(c) 2007,2008 Intel Corporation. All rights reserved. |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify |
| 11 | * it under the terms of version 2 of the GNU General Public License as |
| 12 | * published by the Free Software Foundation. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, but |
| 15 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 17 | * General Public License for more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License |
| 20 | * along with this program; if not, write to the Free Software |
| 21 | * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 22 | * The full GNU General Public License is included in this distribution |
| 23 | * in the file called LICENSE.GPL. |
| 24 | * |
| 25 | * Contact Information: |
| 26 | * Intel Corporation |
| 27 | * |
| 28 | * BSD LICENSE |
| 29 | * |
| 30 | * Copyright(c) 2007,2008 Intel Corporation. All rights reserved. |
| 31 | * All rights reserved. |
| 32 | * |
| 33 | * Redistribution and use in source and binary forms, with or without |
| 34 | * modification, are permitted provided that the following conditions |
| 35 | * are met: |
| 36 | * |
| 37 | * * Redistributions of source code must retain the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer. |
| 39 | * * Redistributions in binary form must reproduce the above copyright |
| 40 | * notice, this list of conditions and the following disclaimer in |
| 41 | * the documentation and/or other materials provided with the |
| 42 | * distribution. |
| 43 | * * Neither the name of Intel Corporation nor the names of its |
| 44 | * contributors may be used to endorse or promote products derived |
| 45 | * from this software without specific prior written permission. |
| 46 | * |
| 47 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 48 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 49 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 50 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 51 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 52 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 53 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 54 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 55 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 56 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 57 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 58 | * |
| 59 | * |
| 60 | * version: Security.L.1.0.130 |
| 61 | * |
| 62 | ***************************************************************************/ |
| 63 | |
| 64 | #include "icp_ocf.h" |
| 65 | |
| 66 | /*The following define values (containing the word 'INDEX') are used to find |
| 67 | the index of each input buffer of the crypto_kop struct (see OCF cryptodev.h). |
| 68 | These values were found through analysis of the OCF OpenSSL patch. If the |
| 69 | calling program uses different input buffer positions, these defines will have |
| 70 | to be changed.*/ |
| 71 | |
| 72 | /*DIFFIE HELLMAN buffer index values*/ |
| 73 | #define ICP_DH_KRP_PARAM_PRIME_INDEX (0) |
| 74 | #define ICP_DH_KRP_PARAM_BASE_INDEX (1) |
| 75 | #define ICP_DH_KRP_PARAM_PRIVATE_VALUE_INDEX (2) |
| 76 | #define ICP_DH_KRP_PARAM_RESULT_INDEX (3) |
| 77 | |
| 78 | /*MOD EXP buffer index values*/ |
| 79 | #define ICP_MOD_EXP_KRP_PARAM_BASE_INDEX (0) |
| 80 | #define ICP_MOD_EXP_KRP_PARAM_EXPONENT_INDEX (1) |
| 81 | #define ICP_MOD_EXP_KRP_PARAM_MODULUS_INDEX (2) |
| 82 | #define ICP_MOD_EXP_KRP_PARAM_RESULT_INDEX (3) |
| 83 | |
| 84 | #define SINGLE_BYTE_VALUE (4) |
| 85 | |
| 86 | /*MOD EXP CRT buffer index values*/ |
| 87 | #define ICP_MOD_EXP_CRT_KRP_PARAM_PRIME_P_INDEX (0) |
| 88 | #define ICP_MOD_EXP_CRT_KRP_PARAM_PRIME_Q_INDEX (1) |
| 89 | #define ICP_MOD_EXP_CRT_KRP_PARAM_I_INDEX (2) |
| 90 | #define ICP_MOD_EXP_CRT_KRP_PARAM_EXPONENT_DP_INDEX (3) |
| 91 | #define ICP_MOD_EXP_CRT_KRP_PARAM_EXPONENT_DQ_INDEX (4) |
| 92 | #define ICP_MOD_EXP_CRT_KRP_PARAM_COEFF_QINV_INDEX (5) |
| 93 | #define ICP_MOD_EXP_CRT_KRP_PARAM_RESULT_INDEX (6) |
| 94 | |
| 95 | /*DSA sign buffer index values*/ |
| 96 | #define ICP_DSA_SIGN_KRP_PARAM_DGST_INDEX (0) |
| 97 | #define ICP_DSA_SIGN_KRP_PARAM_PRIME_P_INDEX (1) |
| 98 | #define ICP_DSA_SIGN_KRP_PARAM_PRIME_Q_INDEX (2) |
| 99 | #define ICP_DSA_SIGN_KRP_PARAM_G_INDEX (3) |
| 100 | #define ICP_DSA_SIGN_KRP_PARAM_X_INDEX (4) |
| 101 | #define ICP_DSA_SIGN_KRP_PARAM_R_RESULT_INDEX (5) |
| 102 | #define ICP_DSA_SIGN_KRP_PARAM_S_RESULT_INDEX (6) |
| 103 | |
| 104 | /*DSA verify buffer index values*/ |
| 105 | #define ICP_DSA_VERIFY_KRP_PARAM_DGST_INDEX (0) |
| 106 | #define ICP_DSA_VERIFY_KRP_PARAM_PRIME_P_INDEX (1) |
| 107 | #define ICP_DSA_VERIFY_KRP_PARAM_PRIME_Q_INDEX (2) |
| 108 | #define ICP_DSA_VERIFY_KRP_PARAM_G_INDEX (3) |
| 109 | #define ICP_DSA_VERIFY_KRP_PARAM_PUBKEY_INDEX (4) |
| 110 | #define ICP_DSA_VERIFY_KRP_PARAM_SIG_R_INDEX (5) |
| 111 | #define ICP_DSA_VERIFY_KRP_PARAM_SIG_S_INDEX (6) |
| 112 | |
| 113 | /*DSA sign prime Q vs random number K size check values*/ |
| 114 | #define DONT_RUN_LESS_THAN_CHECK (0) |
| 115 | #define FAIL_A_IS_GREATER_THAN_B (1) |
| 116 | #define FAIL_A_IS_EQUAL_TO_B (1) |
| 117 | #define SUCCESS_A_IS_LESS_THAN_B (0) |
| 118 | #define DSA_SIGN_RAND_GEN_VAL_CHECK_MAX_ITERATIONS (500) |
| 119 | |
| 120 | /* We need to set a cryptokp success value just in case it is set or allocated |
| 121 | and not set to zero outside of this module */ |
| 122 | #define CRYPTO_OP_SUCCESS (0) |
| 123 | |
| 124 | static int icp_ocfDrvDHComputeKey(struct cryptkop *krp); |
| 125 | |
| 126 | static int icp_ocfDrvModExp(struct cryptkop *krp); |
| 127 | |
| 128 | static int icp_ocfDrvModExpCRT(struct cryptkop *krp); |
| 129 | |
| 130 | static int |
| 131 | icp_ocfDrvCheckALessThanB(CpaFlatBuffer * pK, CpaFlatBuffer * pQ, int *doCheck); |
| 132 | |
| 133 | static int icp_ocfDrvDsaSign(struct cryptkop *krp); |
| 134 | |
| 135 | static int icp_ocfDrvDsaVerify(struct cryptkop *krp); |
| 136 | |
| 137 | static void |
| 138 | icp_ocfDrvDhP1CallBack(void *callbackTag, |
| 139 | CpaStatus status, |
| 140 | void *pOpData, CpaFlatBuffer * pLocalOctetStringPV); |
| 141 | |
| 142 | static void |
| 143 | icp_ocfDrvModExpCallBack(void *callbackTag, |
| 144 | CpaStatus status, |
| 145 | void *pOpData, CpaFlatBuffer * pResult); |
| 146 | |
| 147 | static void |
| 148 | icp_ocfDrvModExpCRTCallBack(void *callbackTag, |
| 149 | CpaStatus status, |
| 150 | void *pOpData, CpaFlatBuffer * pOutputData); |
| 151 | |
| 152 | static void |
| 153 | icp_ocfDrvDsaVerifyCallBack(void *callbackTag, |
| 154 | CpaStatus status, |
| 155 | void *pOpData, CpaBoolean verifyStatus); |
| 156 | |
| 157 | static void |
| 158 | icp_ocfDrvDsaRSSignCallBack(void *callbackTag, |
| 159 | CpaStatus status, |
| 160 | void *pOpData, |
| 161 | CpaBoolean protocolStatus, |
| 162 | CpaFlatBuffer * pR, CpaFlatBuffer * pS); |
| 163 | |
| 164 | /* Name : icp_ocfDrvPkeProcess |
| 165 | * |
| 166 | * Description : This function will choose which PKE process to follow |
| 167 | * based on the input arguments |
| 168 | */ |
| 169 | int icp_ocfDrvPkeProcess(device_t dev, struct cryptkop *krp, int hint) |
| 170 | { |
| 171 | CpaStatus lacStatus = CPA_STATUS_SUCCESS; |
| 172 | |
| 173 | if (NULL == krp) { |
| 174 | DPRINTK("%s(): Invalid input parameters, cryptkop = %p\n", |
| 175 | __FUNCTION__, krp); |
| 176 | return EINVAL; |
| 177 | } |
| 178 | |
| 179 | if (CPA_TRUE == atomic_read(&icp_ocfDrvIsExiting)) { |
| 180 | krp->krp_status = ECANCELED; |
| 181 | return ECANCELED; |
| 182 | } |
| 183 | |
| 184 | switch (krp->krp_op) { |
| 185 | case CRK_DH_COMPUTE_KEY: |
| 186 | DPRINTK("%s() doing DH_COMPUTE_KEY\n", __FUNCTION__); |
| 187 | lacStatus = icp_ocfDrvDHComputeKey(krp); |
| 188 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 189 | EPRINTK("%s(): icp_ocfDrvDHComputeKey failed " |
| 190 | "(%d).\n", __FUNCTION__, lacStatus); |
| 191 | krp->krp_status = ECANCELED; |
| 192 | return ECANCELED; |
| 193 | } |
| 194 | |
| 195 | break; |
| 196 | |
| 197 | case CRK_MOD_EXP: |
| 198 | DPRINTK("%s() doing MOD_EXP \n", __FUNCTION__); |
| 199 | lacStatus = icp_ocfDrvModExp(krp); |
| 200 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 201 | EPRINTK("%s(): icp_ocfDrvModExp failed (%d).\n", |
| 202 | __FUNCTION__, lacStatus); |
| 203 | krp->krp_status = ECANCELED; |
| 204 | return ECANCELED; |
| 205 | } |
| 206 | |
| 207 | break; |
| 208 | |
| 209 | case CRK_MOD_EXP_CRT: |
| 210 | DPRINTK("%s() doing MOD_EXP_CRT \n", __FUNCTION__); |
| 211 | lacStatus = icp_ocfDrvModExpCRT(krp); |
| 212 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 213 | EPRINTK("%s(): icp_ocfDrvModExpCRT " |
| 214 | "failed (%d).\n", __FUNCTION__, lacStatus); |
| 215 | krp->krp_status = ECANCELED; |
| 216 | return ECANCELED; |
| 217 | } |
| 218 | |
| 219 | break; |
| 220 | |
| 221 | case CRK_DSA_SIGN: |
| 222 | DPRINTK("%s() doing DSA_SIGN \n", __FUNCTION__); |
| 223 | lacStatus = icp_ocfDrvDsaSign(krp); |
| 224 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 225 | EPRINTK("%s(): icp_ocfDrvDsaSign " |
| 226 | "failed (%d).\n", __FUNCTION__, lacStatus); |
| 227 | krp->krp_status = ECANCELED; |
| 228 | return ECANCELED; |
| 229 | } |
| 230 | |
| 231 | break; |
| 232 | |
| 233 | case CRK_DSA_VERIFY: |
| 234 | DPRINTK("%s() doing DSA_VERIFY \n", __FUNCTION__); |
| 235 | lacStatus = icp_ocfDrvDsaVerify(krp); |
| 236 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 237 | EPRINTK("%s(): icp_ocfDrvDsaVerify " |
| 238 | "failed (%d).\n", __FUNCTION__, lacStatus); |
| 239 | krp->krp_status = ECANCELED; |
| 240 | return ECANCELED; |
| 241 | } |
| 242 | |
| 243 | break; |
| 244 | |
| 245 | default: |
| 246 | EPRINTK("%s(): Asymettric function not " |
| 247 | "supported (%d).\n", __FUNCTION__, krp->krp_op); |
| 248 | krp->krp_status = EOPNOTSUPP; |
| 249 | return EOPNOTSUPP; |
| 250 | } |
| 251 | |
| 252 | return ICP_OCF_DRV_STATUS_SUCCESS; |
| 253 | } |
| 254 | |
| 255 | /* Name : icp_ocfDrvSwapBytes |
| 256 | * |
| 257 | * Description : This function is used to swap the byte order of a buffer. |
| 258 | * It has been seen that in general we are passed little endian byte order |
| 259 | * buffers, but LAC only accepts big endian byte order buffers. |
| 260 | */ |
| 261 | static void inline |
| 262 | icp_ocfDrvSwapBytes(u_int8_t * num, u_int32_t buff_len_bytes) |
| 263 | { |
| 264 | |
| 265 | int i; |
| 266 | u_int8_t *end_ptr; |
| 267 | u_int8_t hold_val; |
| 268 | |
| 269 | end_ptr = num + (buff_len_bytes - 1); |
| 270 | buff_len_bytes = buff_len_bytes >> 1; |
| 271 | for (i = 0; i < buff_len_bytes; i++) { |
| 272 | hold_val = *num; |
| 273 | *num = *end_ptr; |
| 274 | num++; |
| 275 | *end_ptr = hold_val; |
| 276 | end_ptr--; |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | /* Name : icp_ocfDrvDHComputeKey |
| 281 | * |
| 282 | * Description : This function will map Diffie Hellman calls from OCF |
| 283 | * to the LAC API. OCF uses this function for Diffie Hellman Phase1 and |
| 284 | * Phase2. LAC has a separate Diffie Hellman Phase2 call, however both phases |
| 285 | * break down to a modular exponentiation. |
| 286 | */ |
| 287 | static int icp_ocfDrvDHComputeKey(struct cryptkop *krp) |
| 288 | { |
| 289 | CpaStatus lacStatus = CPA_STATUS_SUCCESS; |
| 290 | void *callbackTag = NULL; |
| 291 | CpaCyDhPhase1KeyGenOpData *pPhase1OpData = NULL; |
| 292 | CpaFlatBuffer *pLocalOctetStringPV = NULL; |
| 293 | uint32_t dh_prime_len_bytes = 0, dh_prime_len_bits = 0; |
| 294 | |
| 295 | /* Input checks - check prime is a multiple of 8 bits to allow for |
| 296 | allocation later */ |
| 297 | dh_prime_len_bits = |
| 298 | (krp->krp_param[ICP_DH_KRP_PARAM_PRIME_INDEX].crp_nbits); |
| 299 | |
| 300 | /* LAC can reject prime lengths based on prime key sizes, we just |
| 301 | need to make sure we can allocate space for the base and |
| 302 | exponent buffers correctly */ |
| 303 | if ((dh_prime_len_bits % NUM_BITS_IN_BYTE) != 0) { |
| 304 | APRINTK("%s(): Warning Prime number buffer size is not a " |
| 305 | "multiple of 8 bits\n", __FUNCTION__); |
| 306 | } |
| 307 | |
| 308 | /* Result storage space should be the same size as the prime as this |
| 309 | value can take up the same amount of storage space */ |
| 310 | if (dh_prime_len_bits != |
| 311 | krp->krp_param[ICP_DH_KRP_PARAM_RESULT_INDEX].crp_nbits) { |
| 312 | DPRINTK("%s(): Return Buffer must be the same size " |
| 313 | "as the Prime buffer\n", __FUNCTION__); |
| 314 | krp->krp_status = EINVAL; |
| 315 | return EINVAL; |
| 316 | } |
| 317 | /* Switch to size in bytes */ |
| 318 | BITS_TO_BYTES(dh_prime_len_bytes, dh_prime_len_bits); |
| 319 | |
| 320 | callbackTag = krp; |
| 321 | |
| 322 | pPhase1OpData = kmem_cache_zalloc(drvDH_zone, GFP_KERNEL); |
| 323 | if (NULL == pPhase1OpData) { |
| 324 | APRINTK("%s():Failed to get memory for key gen data\n", |
| 325 | __FUNCTION__); |
| 326 | krp->krp_status = ENOMEM; |
| 327 | return ENOMEM; |
| 328 | } |
| 329 | |
| 330 | pLocalOctetStringPV = kmem_cache_zalloc(drvFlatBuffer_zone, GFP_KERNEL); |
| 331 | if (NULL == pLocalOctetStringPV) { |
| 332 | APRINTK("%s():Failed to get memory for pLocalOctetStringPV\n", |
| 333 | __FUNCTION__); |
| 334 | kmem_cache_free(drvDH_zone, pPhase1OpData); |
| 335 | krp->krp_status = ENOMEM; |
| 336 | return ENOMEM; |
| 337 | } |
| 338 | |
| 339 | /* Link parameters */ |
| 340 | pPhase1OpData->primeP.pData = |
| 341 | krp->krp_param[ICP_DH_KRP_PARAM_PRIME_INDEX].crp_p; |
| 342 | |
| 343 | pPhase1OpData->primeP.dataLenInBytes = dh_prime_len_bytes; |
| 344 | |
| 345 | icp_ocfDrvSwapBytes(pPhase1OpData->primeP.pData, dh_prime_len_bytes); |
| 346 | |
| 347 | pPhase1OpData->baseG.pData = |
| 348 | krp->krp_param[ICP_DH_KRP_PARAM_BASE_INDEX].crp_p; |
| 349 | |
| 350 | BITS_TO_BYTES(pPhase1OpData->baseG.dataLenInBytes, |
| 351 | krp->krp_param[ICP_DH_KRP_PARAM_BASE_INDEX].crp_nbits); |
| 352 | |
| 353 | icp_ocfDrvSwapBytes(pPhase1OpData->baseG.pData, |
| 354 | pPhase1OpData->baseG.dataLenInBytes); |
| 355 | |
| 356 | pPhase1OpData->privateValueX.pData = |
| 357 | krp->krp_param[ICP_DH_KRP_PARAM_PRIVATE_VALUE_INDEX].crp_p; |
| 358 | |
| 359 | BITS_TO_BYTES(pPhase1OpData->privateValueX.dataLenInBytes, |
| 360 | krp->krp_param[ICP_DH_KRP_PARAM_PRIVATE_VALUE_INDEX]. |
| 361 | crp_nbits); |
| 362 | |
| 363 | icp_ocfDrvSwapBytes(pPhase1OpData->privateValueX.pData, |
| 364 | pPhase1OpData->privateValueX.dataLenInBytes); |
| 365 | |
| 366 | /* Output parameters */ |
| 367 | pLocalOctetStringPV->pData = |
| 368 | krp->krp_param[ICP_DH_KRP_PARAM_RESULT_INDEX].crp_p; |
| 369 | |
| 370 | BITS_TO_BYTES(pLocalOctetStringPV->dataLenInBytes, |
| 371 | krp->krp_param[ICP_DH_KRP_PARAM_RESULT_INDEX].crp_nbits); |
| 372 | |
| 373 | lacStatus = cpaCyDhKeyGenPhase1(CPA_INSTANCE_HANDLE_SINGLE, |
| 374 | icp_ocfDrvDhP1CallBack, |
| 375 | callbackTag, pPhase1OpData, |
| 376 | pLocalOctetStringPV); |
| 377 | |
| 378 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 379 | EPRINTK("%s(): DH Phase 1 Key Gen failed (%d).\n", |
| 380 | __FUNCTION__, lacStatus); |
| 381 | icp_ocfDrvFreeFlatBuffer(pLocalOctetStringPV); |
| 382 | kmem_cache_free(drvDH_zone, pPhase1OpData); |
| 383 | } |
| 384 | |
| 385 | return lacStatus; |
| 386 | } |
| 387 | |
| 388 | /* Name : icp_ocfDrvModExp |
| 389 | * |
| 390 | * Description : This function will map ordinary Modular Exponentiation calls |
| 391 | * from OCF to the LAC API. |
| 392 | * |
| 393 | */ |
| 394 | static int icp_ocfDrvModExp(struct cryptkop *krp) |
| 395 | { |
| 396 | CpaStatus lacStatus = CPA_STATUS_SUCCESS; |
| 397 | void *callbackTag = NULL; |
| 398 | CpaCyLnModExpOpData *pModExpOpData = NULL; |
| 399 | CpaFlatBuffer *pResult = NULL; |
| 400 | |
| 401 | if ((krp->krp_param[ICP_MOD_EXP_KRP_PARAM_MODULUS_INDEX].crp_nbits % |
| 402 | NUM_BITS_IN_BYTE) != 0) { |
| 403 | DPRINTK("%s(): Warning - modulus buffer size (%d) is not a " |
| 404 | "multiple of 8 bits\n", __FUNCTION__, |
| 405 | krp->krp_param[ICP_MOD_EXP_KRP_PARAM_MODULUS_INDEX]. |
| 406 | crp_nbits); |
| 407 | } |
| 408 | |
| 409 | /* Result storage space should be the same size as the prime as this |
| 410 | value can take up the same amount of storage space */ |
| 411 | if (krp->krp_param[ICP_MOD_EXP_KRP_PARAM_MODULUS_INDEX].crp_nbits > |
| 412 | krp->krp_param[ICP_MOD_EXP_KRP_PARAM_RESULT_INDEX].crp_nbits) { |
| 413 | APRINTK("%s(): Return Buffer size must be the same or" |
| 414 | " greater than the Modulus buffer\n", __FUNCTION__); |
| 415 | krp->krp_status = EINVAL; |
| 416 | return EINVAL; |
| 417 | } |
| 418 | |
| 419 | callbackTag = krp; |
| 420 | |
| 421 | pModExpOpData = kmem_cache_zalloc(drvLnModExp_zone, GFP_KERNEL); |
| 422 | if (NULL == pModExpOpData) { |
| 423 | APRINTK("%s():Failed to get memory for key gen data\n", |
| 424 | __FUNCTION__); |
| 425 | krp->krp_status = ENOMEM; |
| 426 | return ENOMEM; |
| 427 | } |
| 428 | |
| 429 | pResult = kmem_cache_zalloc(drvFlatBuffer_zone, GFP_KERNEL); |
| 430 | if (NULL == pResult) { |
| 431 | APRINTK("%s():Failed to get memory for ModExp result\n", |
| 432 | __FUNCTION__); |
| 433 | kmem_cache_free(drvLnModExp_zone, pModExpOpData); |
| 434 | krp->krp_status = ENOMEM; |
| 435 | return ENOMEM; |
| 436 | } |
| 437 | |
| 438 | /* Link parameters */ |
| 439 | pModExpOpData->modulus.pData = |
| 440 | krp->krp_param[ICP_MOD_EXP_KRP_PARAM_MODULUS_INDEX].crp_p; |
| 441 | BITS_TO_BYTES(pModExpOpData->modulus.dataLenInBytes, |
| 442 | krp->krp_param[ICP_MOD_EXP_KRP_PARAM_MODULUS_INDEX]. |
| 443 | crp_nbits); |
| 444 | |
| 445 | icp_ocfDrvSwapBytes(pModExpOpData->modulus.pData, |
| 446 | pModExpOpData->modulus.dataLenInBytes); |
| 447 | |
| 448 | /*OCF patch to Openswan Pluto regularly sends the base value as 2 |
| 449 | bits in size. In this case, it has been found it is better to |
| 450 | use the base size memory space as the input buffer (if the number |
| 451 | is in bits is less than a byte, the number of bits is the input |
| 452 | value) */ |
| 453 | if (krp->krp_param[ICP_MOD_EXP_KRP_PARAM_BASE_INDEX].crp_nbits < |
| 454 | NUM_BITS_IN_BYTE) { |
| 455 | DPRINTK("%s : base is small (%d)\n", __FUNCTION__, krp-> |
| 456 | krp_param[ICP_MOD_EXP_KRP_PARAM_BASE_INDEX].crp_nbits); |
| 457 | pModExpOpData->base.dataLenInBytes = SINGLE_BYTE_VALUE; |
| 458 | pModExpOpData->base.pData = |
| 459 | (uint8_t *) & (krp-> |
| 460 | krp_param[ICP_MOD_EXP_KRP_PARAM_BASE_INDEX]. |
| 461 | crp_nbits); |
| 462 | *((uint32_t *) pModExpOpData->base.pData) = |
| 463 | htonl(*((uint32_t *) pModExpOpData->base.pData)); |
| 464 | |
| 465 | } else { |
| 466 | |
| 467 | DPRINTK("%s : base is big (%d)\n", __FUNCTION__, krp-> |
| 468 | krp_param[ICP_MOD_EXP_KRP_PARAM_BASE_INDEX].crp_nbits); |
| 469 | pModExpOpData->base.pData = |
| 470 | krp->krp_param[ICP_MOD_EXP_KRP_PARAM_BASE_INDEX].crp_p; |
| 471 | BITS_TO_BYTES(pModExpOpData->base.dataLenInBytes, |
| 472 | krp->krp_param[ICP_MOD_EXP_KRP_PARAM_BASE_INDEX]. |
| 473 | crp_nbits); |
| 474 | icp_ocfDrvSwapBytes(pModExpOpData->base.pData, |
| 475 | pModExpOpData->base.dataLenInBytes); |
| 476 | } |
| 477 | |
| 478 | pModExpOpData->exponent.pData = |
| 479 | krp->krp_param[ICP_MOD_EXP_KRP_PARAM_EXPONENT_INDEX].crp_p; |
| 480 | BITS_TO_BYTES(pModExpOpData->exponent.dataLenInBytes, |
| 481 | krp->krp_param[ICP_MOD_EXP_KRP_PARAM_EXPONENT_INDEX]. |
| 482 | crp_nbits); |
| 483 | |
| 484 | icp_ocfDrvSwapBytes(pModExpOpData->exponent.pData, |
| 485 | pModExpOpData->exponent.dataLenInBytes); |
| 486 | /* Output parameters */ |
| 487 | pResult->pData = |
| 488 | krp->krp_param[ICP_MOD_EXP_KRP_PARAM_RESULT_INDEX].crp_p, |
| 489 | BITS_TO_BYTES(pResult->dataLenInBytes, |
| 490 | krp->krp_param[ICP_MOD_EXP_KRP_PARAM_RESULT_INDEX]. |
| 491 | crp_nbits); |
| 492 | |
| 493 | lacStatus = cpaCyLnModExp(CPA_INSTANCE_HANDLE_SINGLE, |
| 494 | icp_ocfDrvModExpCallBack, |
| 495 | callbackTag, pModExpOpData, pResult); |
| 496 | |
| 497 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 498 | EPRINTK("%s(): Mod Exp Operation failed (%d).\n", |
| 499 | __FUNCTION__, lacStatus); |
| 500 | krp->krp_status = ECANCELED; |
| 501 | icp_ocfDrvFreeFlatBuffer(pResult); |
| 502 | kmem_cache_free(drvLnModExp_zone, pModExpOpData); |
| 503 | } |
| 504 | |
| 505 | return lacStatus; |
| 506 | } |
| 507 | |
| 508 | /* Name : icp_ocfDrvModExpCRT |
| 509 | * |
| 510 | * Description : This function will map ordinary Modular Exponentiation Chinese |
| 511 | * Remainder Theorem implementaion calls from OCF to the LAC API. |
| 512 | * |
| 513 | * Note : Mod Exp CRT for this driver is accelerated through LAC RSA type 2 |
| 514 | * decrypt operation. Therefore P and Q input values must always be prime |
| 515 | * numbers. Although basic primality checks are done in LAC, it is up to the |
| 516 | * user to do any correct prime number checking before passing the inputs. |
| 517 | */ |
| 518 | |
| 519 | static int icp_ocfDrvModExpCRT(struct cryptkop *krp) |
| 520 | { |
| 521 | CpaStatus lacStatus = CPA_STATUS_SUCCESS; |
| 522 | CpaCyRsaDecryptOpData *rsaDecryptOpData = NULL; |
| 523 | void *callbackTag = NULL; |
| 524 | CpaFlatBuffer *pOutputData = NULL; |
| 525 | |
| 526 | /*Parameter input checks are all done by LAC, no need to repeat |
| 527 | them here. */ |
| 528 | callbackTag = krp; |
| 529 | |
| 530 | rsaDecryptOpData = kmem_cache_zalloc(drvRSADecrypt_zone, GFP_KERNEL); |
| 531 | if (NULL == rsaDecryptOpData) { |
| 532 | APRINTK("%s():Failed to get memory" |
| 533 | " for MOD EXP CRT Op data struct\n", __FUNCTION__); |
| 534 | krp->krp_status = ENOMEM; |
| 535 | return ENOMEM; |
| 536 | } |
| 537 | |
| 538 | rsaDecryptOpData->pRecipientPrivateKey |
| 539 | = kmem_cache_zalloc(drvRSAPrivateKey_zone, GFP_KERNEL); |
| 540 | if (NULL == rsaDecryptOpData->pRecipientPrivateKey) { |
| 541 | APRINTK("%s():Failed to get memory for MOD EXP CRT" |
| 542 | " private key values struct\n", __FUNCTION__); |
| 543 | kmem_cache_free(drvRSADecrypt_zone, rsaDecryptOpData); |
| 544 | krp->krp_status = ENOMEM; |
| 545 | return ENOMEM; |
| 546 | } |
| 547 | |
| 548 | rsaDecryptOpData->pRecipientPrivateKey-> |
| 549 | version = CPA_CY_RSA_VERSION_TWO_PRIME; |
| 550 | rsaDecryptOpData->pRecipientPrivateKey-> |
| 551 | privateKeyRepType = CPA_CY_RSA_PRIVATE_KEY_REP_TYPE_2; |
| 552 | |
| 553 | pOutputData = kmem_cache_zalloc(drvFlatBuffer_zone, GFP_KERNEL); |
| 554 | if (NULL == pOutputData) { |
| 555 | APRINTK("%s():Failed to get memory" |
| 556 | " for MOD EXP CRT output data\n", __FUNCTION__); |
| 557 | kmem_cache_free(drvRSAPrivateKey_zone, |
| 558 | rsaDecryptOpData->pRecipientPrivateKey); |
| 559 | kmem_cache_free(drvRSADecrypt_zone, rsaDecryptOpData); |
| 560 | krp->krp_status = ENOMEM; |
| 561 | return ENOMEM; |
| 562 | } |
| 563 | |
| 564 | rsaDecryptOpData->pRecipientPrivateKey-> |
| 565 | version = CPA_CY_RSA_VERSION_TWO_PRIME; |
| 566 | rsaDecryptOpData->pRecipientPrivateKey-> |
| 567 | privateKeyRepType = CPA_CY_RSA_PRIVATE_KEY_REP_TYPE_2; |
| 568 | |
| 569 | /* Link parameters */ |
| 570 | rsaDecryptOpData->inputData.pData = |
| 571 | krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_I_INDEX].crp_p; |
| 572 | BITS_TO_BYTES(rsaDecryptOpData->inputData.dataLenInBytes, |
| 573 | krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_I_INDEX]. |
| 574 | crp_nbits); |
| 575 | |
| 576 | icp_ocfDrvSwapBytes(rsaDecryptOpData->inputData.pData, |
| 577 | rsaDecryptOpData->inputData.dataLenInBytes); |
| 578 | |
| 579 | rsaDecryptOpData->pRecipientPrivateKey->privateKeyRep2.prime1P.pData = |
| 580 | krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_PRIME_P_INDEX].crp_p; |
| 581 | BITS_TO_BYTES(rsaDecryptOpData->pRecipientPrivateKey->privateKeyRep2. |
| 582 | prime1P.dataLenInBytes, |
| 583 | krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_PRIME_P_INDEX]. |
| 584 | crp_nbits); |
| 585 | |
| 586 | icp_ocfDrvSwapBytes(rsaDecryptOpData->pRecipientPrivateKey-> |
| 587 | privateKeyRep2.prime1P.pData, |
| 588 | rsaDecryptOpData->pRecipientPrivateKey-> |
| 589 | privateKeyRep2.prime1P.dataLenInBytes); |
| 590 | |
| 591 | rsaDecryptOpData->pRecipientPrivateKey->privateKeyRep2.prime2Q.pData = |
| 592 | krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_PRIME_Q_INDEX].crp_p; |
| 593 | BITS_TO_BYTES(rsaDecryptOpData->pRecipientPrivateKey->privateKeyRep2. |
| 594 | prime2Q.dataLenInBytes, |
| 595 | krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_PRIME_Q_INDEX]. |
| 596 | crp_nbits); |
| 597 | |
| 598 | icp_ocfDrvSwapBytes(rsaDecryptOpData->pRecipientPrivateKey-> |
| 599 | privateKeyRep2.prime2Q.pData, |
| 600 | rsaDecryptOpData->pRecipientPrivateKey-> |
| 601 | privateKeyRep2.prime2Q.dataLenInBytes); |
| 602 | |
| 603 | rsaDecryptOpData->pRecipientPrivateKey-> |
| 604 | privateKeyRep2.exponent1Dp.pData = |
| 605 | krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_EXPONENT_DP_INDEX].crp_p; |
| 606 | BITS_TO_BYTES(rsaDecryptOpData->pRecipientPrivateKey->privateKeyRep2. |
| 607 | exponent1Dp.dataLenInBytes, |
| 608 | krp-> |
| 609 | krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_EXPONENT_DP_INDEX]. |
| 610 | crp_nbits); |
| 611 | |
| 612 | icp_ocfDrvSwapBytes(rsaDecryptOpData->pRecipientPrivateKey-> |
| 613 | privateKeyRep2.exponent1Dp.pData, |
| 614 | rsaDecryptOpData->pRecipientPrivateKey-> |
| 615 | privateKeyRep2.exponent1Dp.dataLenInBytes); |
| 616 | |
| 617 | rsaDecryptOpData->pRecipientPrivateKey-> |
| 618 | privateKeyRep2.exponent2Dq.pData = |
| 619 | krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_EXPONENT_DQ_INDEX].crp_p; |
| 620 | BITS_TO_BYTES(rsaDecryptOpData->pRecipientPrivateKey-> |
| 621 | privateKeyRep2.exponent2Dq.dataLenInBytes, |
| 622 | krp-> |
| 623 | krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_EXPONENT_DQ_INDEX]. |
| 624 | crp_nbits); |
| 625 | |
| 626 | icp_ocfDrvSwapBytes(rsaDecryptOpData->pRecipientPrivateKey-> |
| 627 | privateKeyRep2.exponent2Dq.pData, |
| 628 | rsaDecryptOpData->pRecipientPrivateKey-> |
| 629 | privateKeyRep2.exponent2Dq.dataLenInBytes); |
| 630 | |
| 631 | rsaDecryptOpData->pRecipientPrivateKey-> |
| 632 | privateKeyRep2.coefficientQInv.pData = |
| 633 | krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_COEFF_QINV_INDEX].crp_p; |
| 634 | BITS_TO_BYTES(rsaDecryptOpData->pRecipientPrivateKey-> |
| 635 | privateKeyRep2.coefficientQInv.dataLenInBytes, |
| 636 | krp-> |
| 637 | krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_COEFF_QINV_INDEX]. |
| 638 | crp_nbits); |
| 639 | |
| 640 | icp_ocfDrvSwapBytes(rsaDecryptOpData->pRecipientPrivateKey-> |
| 641 | privateKeyRep2.coefficientQInv.pData, |
| 642 | rsaDecryptOpData->pRecipientPrivateKey-> |
| 643 | privateKeyRep2.coefficientQInv.dataLenInBytes); |
| 644 | |
| 645 | /* Output Parameter */ |
| 646 | pOutputData->pData = |
| 647 | krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_RESULT_INDEX].crp_p; |
| 648 | BITS_TO_BYTES(pOutputData->dataLenInBytes, |
| 649 | krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_RESULT_INDEX]. |
| 650 | crp_nbits); |
| 651 | |
| 652 | lacStatus = cpaCyRsaDecrypt(CPA_INSTANCE_HANDLE_SINGLE, |
| 653 | icp_ocfDrvModExpCRTCallBack, |
| 654 | callbackTag, rsaDecryptOpData, pOutputData); |
| 655 | |
| 656 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 657 | EPRINTK("%s(): Mod Exp CRT Operation failed (%d).\n", |
| 658 | __FUNCTION__, lacStatus); |
| 659 | krp->krp_status = ECANCELED; |
| 660 | icp_ocfDrvFreeFlatBuffer(pOutputData); |
| 661 | kmem_cache_free(drvRSAPrivateKey_zone, |
| 662 | rsaDecryptOpData->pRecipientPrivateKey); |
| 663 | kmem_cache_free(drvRSADecrypt_zone, rsaDecryptOpData); |
| 664 | } |
| 665 | |
| 666 | return lacStatus; |
| 667 | } |
| 668 | |
| 669 | /* Name : icp_ocfDrvCheckALessThanB |
| 670 | * |
| 671 | * Description : This function will check whether the first argument is less |
| 672 | * than the second. It is used to check whether the DSA RS sign Random K |
| 673 | * value is less than the Prime Q value (as defined in the specification) |
| 674 | * |
| 675 | */ |
| 676 | static int |
| 677 | icp_ocfDrvCheckALessThanB(CpaFlatBuffer * pK, CpaFlatBuffer * pQ, int *doCheck) |
| 678 | { |
| 679 | |
| 680 | uint8_t *MSB_K = pK->pData; |
| 681 | uint8_t *MSB_Q = pQ->pData; |
| 682 | uint32_t buffer_lengths_in_bytes = pQ->dataLenInBytes; |
| 683 | |
| 684 | if (DONT_RUN_LESS_THAN_CHECK == *doCheck) { |
| 685 | return FAIL_A_IS_GREATER_THAN_B; |
| 686 | } |
| 687 | |
| 688 | /*Check MSBs |
| 689 | if A == B, check next MSB |
| 690 | if A > B, return A_IS_GREATER_THAN_B |
| 691 | if A < B, return A_IS_LESS_THAN_B (success) |
| 692 | */ |
| 693 | while (*MSB_K == *MSB_Q) { |
| 694 | MSB_K++; |
| 695 | MSB_Q++; |
| 696 | |
| 697 | buffer_lengths_in_bytes--; |
| 698 | if (0 == buffer_lengths_in_bytes) { |
| 699 | DPRINTK("%s() Buffers have equal value!!\n", |
| 700 | __FUNCTION__); |
| 701 | return FAIL_A_IS_EQUAL_TO_B; |
| 702 | } |
| 703 | |
| 704 | } |
| 705 | |
| 706 | if (*MSB_K < *MSB_Q) { |
| 707 | return SUCCESS_A_IS_LESS_THAN_B; |
| 708 | } else { |
| 709 | return FAIL_A_IS_GREATER_THAN_B; |
| 710 | } |
| 711 | |
| 712 | } |
| 713 | |
| 714 | /* Name : icp_ocfDrvDsaSign |
| 715 | * |
| 716 | * Description : This function will map DSA RS Sign from OCF to the LAC API. |
| 717 | * |
| 718 | * NOTE: From looking at OCF patch to OpenSSL and even the number of input |
| 719 | * parameters, OCF expects us to generate the random seed value. This value |
| 720 | * is generated and passed to LAC, however the number is discared in the |
| 721 | * callback and not returned to the user. |
| 722 | */ |
| 723 | static int icp_ocfDrvDsaSign(struct cryptkop *krp) |
| 724 | { |
| 725 | CpaStatus lacStatus = CPA_STATUS_SUCCESS; |
| 726 | CpaCyDsaRSSignOpData *dsaRsSignOpData = NULL; |
| 727 | void *callbackTag = NULL; |
| 728 | CpaCyRandGenOpData randGenOpData; |
| 729 | int primeQSizeInBytes = 0; |
| 730 | int doCheck = 0; |
| 731 | CpaFlatBuffer randData; |
| 732 | CpaBoolean protocolStatus = CPA_FALSE; |
| 733 | CpaFlatBuffer *pR = NULL; |
| 734 | CpaFlatBuffer *pS = NULL; |
| 735 | |
| 736 | callbackTag = krp; |
| 737 | |
| 738 | BITS_TO_BYTES(primeQSizeInBytes, |
| 739 | krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_PRIME_Q_INDEX]. |
| 740 | crp_nbits); |
| 741 | |
| 742 | if (DSA_RS_SIGN_PRIMEQ_SIZE_IN_BYTES != primeQSizeInBytes) { |
| 743 | APRINTK("%s(): DSA PRIME Q size not equal to the " |
| 744 | "FIPS defined 20bytes, = %d\n", |
| 745 | __FUNCTION__, primeQSizeInBytes); |
| 746 | krp->krp_status = EDOM; |
| 747 | return EDOM; |
| 748 | } |
| 749 | |
| 750 | dsaRsSignOpData = kmem_cache_zalloc(drvDSARSSign_zone, GFP_KERNEL); |
| 751 | if (NULL == dsaRsSignOpData) { |
| 752 | APRINTK("%s():Failed to get memory" |
| 753 | " for DSA RS Sign Op data struct\n", __FUNCTION__); |
| 754 | krp->krp_status = ENOMEM; |
| 755 | return ENOMEM; |
| 756 | } |
| 757 | |
| 758 | dsaRsSignOpData->K.pData = |
| 759 | kmem_cache_alloc(drvDSARSSignKValue_zone, GFP_ATOMIC); |
| 760 | |
| 761 | if (NULL == dsaRsSignOpData->K.pData) { |
| 762 | APRINTK("%s():Failed to get memory" |
| 763 | " for DSA RS Sign Op Random value\n", __FUNCTION__); |
| 764 | kmem_cache_free(drvDSARSSign_zone, dsaRsSignOpData); |
| 765 | krp->krp_status = ENOMEM; |
| 766 | return ENOMEM; |
| 767 | } |
| 768 | |
| 769 | pR = kmem_cache_zalloc(drvFlatBuffer_zone, GFP_KERNEL); |
| 770 | if (NULL == pR) { |
| 771 | APRINTK("%s():Failed to get memory" |
| 772 | " for DSA signature R\n", __FUNCTION__); |
| 773 | kmem_cache_free(drvDSARSSignKValue_zone, |
| 774 | dsaRsSignOpData->K.pData); |
| 775 | kmem_cache_free(drvDSARSSign_zone, dsaRsSignOpData); |
| 776 | krp->krp_status = ENOMEM; |
| 777 | return ENOMEM; |
| 778 | } |
| 779 | |
| 780 | pS = kmem_cache_zalloc(drvFlatBuffer_zone, GFP_KERNEL); |
| 781 | if (NULL == pS) { |
| 782 | APRINTK("%s():Failed to get memory" |
| 783 | " for DSA signature S\n", __FUNCTION__); |
| 784 | icp_ocfDrvFreeFlatBuffer(pR); |
| 785 | kmem_cache_free(drvDSARSSignKValue_zone, |
| 786 | dsaRsSignOpData->K.pData); |
| 787 | kmem_cache_free(drvDSARSSign_zone, dsaRsSignOpData); |
| 788 | krp->krp_status = ENOMEM; |
| 789 | return ENOMEM; |
| 790 | } |
| 791 | |
| 792 | /*link prime number parameter for ease of processing */ |
| 793 | dsaRsSignOpData->P.pData = |
| 794 | krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_PRIME_P_INDEX].crp_p; |
| 795 | BITS_TO_BYTES(dsaRsSignOpData->P.dataLenInBytes, |
| 796 | krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_PRIME_P_INDEX]. |
| 797 | crp_nbits); |
| 798 | |
| 799 | icp_ocfDrvSwapBytes(dsaRsSignOpData->P.pData, |
| 800 | dsaRsSignOpData->P.dataLenInBytes); |
| 801 | |
| 802 | dsaRsSignOpData->Q.pData = |
| 803 | krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_PRIME_Q_INDEX].crp_p; |
| 804 | BITS_TO_BYTES(dsaRsSignOpData->Q.dataLenInBytes, |
| 805 | krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_PRIME_Q_INDEX]. |
| 806 | crp_nbits); |
| 807 | |
| 808 | icp_ocfDrvSwapBytes(dsaRsSignOpData->Q.pData, |
| 809 | dsaRsSignOpData->Q.dataLenInBytes); |
| 810 | |
| 811 | /*generate random number with equal buffer size to Prime value Q, |
| 812 | but value less than Q */ |
| 813 | dsaRsSignOpData->K.dataLenInBytes = dsaRsSignOpData->Q.dataLenInBytes; |
| 814 | |
| 815 | randGenOpData.generateBits = CPA_TRUE; |
| 816 | randGenOpData.lenInBytes = dsaRsSignOpData->K.dataLenInBytes; |
| 817 | |
| 818 | icp_ocfDrvPtrAndLenToFlatBuffer(dsaRsSignOpData->K.pData, |
| 819 | dsaRsSignOpData->K.dataLenInBytes, |
| 820 | &randData); |
| 821 | |
| 822 | doCheck = 0; |
| 823 | while (icp_ocfDrvCheckALessThanB(&(dsaRsSignOpData->K), |
| 824 | &(dsaRsSignOpData->Q), &doCheck)) { |
| 825 | |
| 826 | if (CPA_STATUS_SUCCESS |
| 827 | != cpaCyRandGen(CPA_INSTANCE_HANDLE_SINGLE, |
| 828 | NULL, NULL, &randGenOpData, &randData)) { |
| 829 | APRINTK("%s(): ERROR - Failed to generate DSA RS Sign K" |
| 830 | "value\n", __FUNCTION__); |
| 831 | icp_ocfDrvFreeFlatBuffer(pS); |
| 832 | icp_ocfDrvFreeFlatBuffer(pR); |
| 833 | kmem_cache_free(drvDSARSSignKValue_zone, |
| 834 | dsaRsSignOpData->K.pData); |
| 835 | kmem_cache_free(drvDSARSSign_zone, dsaRsSignOpData); |
| 836 | krp->krp_status = EAGAIN; |
| 837 | return EAGAIN; |
| 838 | } |
| 839 | |
| 840 | doCheck++; |
| 841 | if (DSA_SIGN_RAND_GEN_VAL_CHECK_MAX_ITERATIONS == doCheck) { |
| 842 | APRINTK("%s(): ERROR - Failed to find DSA RS Sign K " |
| 843 | "value less than Q value\n", __FUNCTION__); |
| 844 | icp_ocfDrvFreeFlatBuffer(pS); |
| 845 | icp_ocfDrvFreeFlatBuffer(pR); |
| 846 | kmem_cache_free(drvDSARSSignKValue_zone, |
| 847 | dsaRsSignOpData->K.pData); |
| 848 | kmem_cache_free(drvDSARSSign_zone, dsaRsSignOpData); |
| 849 | krp->krp_status = EAGAIN; |
| 850 | return EAGAIN; |
| 851 | } |
| 852 | |
| 853 | } |
| 854 | /*Rand Data - no need to swap bytes for pK */ |
| 855 | |
| 856 | /* Link parameters */ |
| 857 | dsaRsSignOpData->G.pData = |
| 858 | krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_G_INDEX].crp_p; |
| 859 | BITS_TO_BYTES(dsaRsSignOpData->G.dataLenInBytes, |
| 860 | krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_G_INDEX].crp_nbits); |
| 861 | |
| 862 | icp_ocfDrvSwapBytes(dsaRsSignOpData->G.pData, |
| 863 | dsaRsSignOpData->G.dataLenInBytes); |
| 864 | |
| 865 | dsaRsSignOpData->X.pData = |
| 866 | krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_X_INDEX].crp_p; |
| 867 | BITS_TO_BYTES(dsaRsSignOpData->X.dataLenInBytes, |
| 868 | krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_X_INDEX].crp_nbits); |
| 869 | icp_ocfDrvSwapBytes(dsaRsSignOpData->X.pData, |
| 870 | dsaRsSignOpData->X.dataLenInBytes); |
| 871 | |
| 872 | dsaRsSignOpData->M.pData = |
| 873 | krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_DGST_INDEX].crp_p; |
| 874 | BITS_TO_BYTES(dsaRsSignOpData->M.dataLenInBytes, |
| 875 | krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_DGST_INDEX]. |
| 876 | crp_nbits); |
| 877 | icp_ocfDrvSwapBytes(dsaRsSignOpData->M.pData, |
| 878 | dsaRsSignOpData->M.dataLenInBytes); |
| 879 | |
| 880 | /* Output Parameters */ |
| 881 | pS->pData = krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_S_RESULT_INDEX].crp_p; |
| 882 | BITS_TO_BYTES(pS->dataLenInBytes, |
| 883 | krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_S_RESULT_INDEX]. |
| 884 | crp_nbits); |
| 885 | |
| 886 | pR->pData = krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_R_RESULT_INDEX].crp_p; |
| 887 | BITS_TO_BYTES(pR->dataLenInBytes, |
| 888 | krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_R_RESULT_INDEX]. |
| 889 | crp_nbits); |
| 890 | |
| 891 | lacStatus = cpaCyDsaSignRS(CPA_INSTANCE_HANDLE_SINGLE, |
| 892 | icp_ocfDrvDsaRSSignCallBack, |
| 893 | callbackTag, dsaRsSignOpData, |
| 894 | &protocolStatus, pR, pS); |
| 895 | |
| 896 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 897 | EPRINTK("%s(): DSA RS Sign Operation failed (%d).\n", |
| 898 | __FUNCTION__, lacStatus); |
| 899 | krp->krp_status = ECANCELED; |
| 900 | icp_ocfDrvFreeFlatBuffer(pS); |
| 901 | icp_ocfDrvFreeFlatBuffer(pR); |
| 902 | kmem_cache_free(drvDSARSSignKValue_zone, |
| 903 | dsaRsSignOpData->K.pData); |
| 904 | kmem_cache_free(drvDSARSSign_zone, dsaRsSignOpData); |
| 905 | } |
| 906 | |
| 907 | return lacStatus; |
| 908 | } |
| 909 | |
| 910 | /* Name : icp_ocfDrvDsaVerify |
| 911 | * |
| 912 | * Description : This function will map DSA RS Verify from OCF to the LAC API. |
| 913 | * |
| 914 | */ |
| 915 | static int icp_ocfDrvDsaVerify(struct cryptkop *krp) |
| 916 | { |
| 917 | CpaStatus lacStatus = CPA_STATUS_SUCCESS; |
| 918 | CpaCyDsaVerifyOpData *dsaVerifyOpData = NULL; |
| 919 | void *callbackTag = NULL; |
| 920 | CpaBoolean verifyStatus = CPA_FALSE; |
| 921 | |
| 922 | callbackTag = krp; |
| 923 | |
| 924 | dsaVerifyOpData = kmem_cache_zalloc(drvDSAVerify_zone, GFP_KERNEL); |
| 925 | if (NULL == dsaVerifyOpData) { |
| 926 | APRINTK("%s():Failed to get memory" |
| 927 | " for DSA Verify Op data struct\n", __FUNCTION__); |
| 928 | krp->krp_status = ENOMEM; |
| 929 | return ENOMEM; |
| 930 | } |
| 931 | |
| 932 | /* Link parameters */ |
| 933 | dsaVerifyOpData->P.pData = |
| 934 | krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_PRIME_P_INDEX].crp_p; |
| 935 | BITS_TO_BYTES(dsaVerifyOpData->P.dataLenInBytes, |
| 936 | krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_PRIME_P_INDEX]. |
| 937 | crp_nbits); |
| 938 | icp_ocfDrvSwapBytes(dsaVerifyOpData->P.pData, |
| 939 | dsaVerifyOpData->P.dataLenInBytes); |
| 940 | |
| 941 | dsaVerifyOpData->Q.pData = |
| 942 | krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_PRIME_Q_INDEX].crp_p; |
| 943 | BITS_TO_BYTES(dsaVerifyOpData->Q.dataLenInBytes, |
| 944 | krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_PRIME_Q_INDEX]. |
| 945 | crp_nbits); |
| 946 | icp_ocfDrvSwapBytes(dsaVerifyOpData->Q.pData, |
| 947 | dsaVerifyOpData->Q.dataLenInBytes); |
| 948 | |
| 949 | dsaVerifyOpData->G.pData = |
| 950 | krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_G_INDEX].crp_p; |
| 951 | BITS_TO_BYTES(dsaVerifyOpData->G.dataLenInBytes, |
| 952 | krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_G_INDEX]. |
| 953 | crp_nbits); |
| 954 | icp_ocfDrvSwapBytes(dsaVerifyOpData->G.pData, |
| 955 | dsaVerifyOpData->G.dataLenInBytes); |
| 956 | |
| 957 | dsaVerifyOpData->Y.pData = |
| 958 | krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_PUBKEY_INDEX].crp_p; |
| 959 | BITS_TO_BYTES(dsaVerifyOpData->Y.dataLenInBytes, |
| 960 | krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_PUBKEY_INDEX]. |
| 961 | crp_nbits); |
| 962 | icp_ocfDrvSwapBytes(dsaVerifyOpData->Y.pData, |
| 963 | dsaVerifyOpData->Y.dataLenInBytes); |
| 964 | |
| 965 | dsaVerifyOpData->M.pData = |
| 966 | krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_DGST_INDEX].crp_p; |
| 967 | BITS_TO_BYTES(dsaVerifyOpData->M.dataLenInBytes, |
| 968 | krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_DGST_INDEX]. |
| 969 | crp_nbits); |
| 970 | icp_ocfDrvSwapBytes(dsaVerifyOpData->M.pData, |
| 971 | dsaVerifyOpData->M.dataLenInBytes); |
| 972 | |
| 973 | dsaVerifyOpData->R.pData = |
| 974 | krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_SIG_R_INDEX].crp_p; |
| 975 | BITS_TO_BYTES(dsaVerifyOpData->R.dataLenInBytes, |
| 976 | krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_SIG_R_INDEX]. |
| 977 | crp_nbits); |
| 978 | icp_ocfDrvSwapBytes(dsaVerifyOpData->R.pData, |
| 979 | dsaVerifyOpData->R.dataLenInBytes); |
| 980 | |
| 981 | dsaVerifyOpData->S.pData = |
| 982 | krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_SIG_S_INDEX].crp_p; |
| 983 | BITS_TO_BYTES(dsaVerifyOpData->S.dataLenInBytes, |
| 984 | krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_SIG_S_INDEX]. |
| 985 | crp_nbits); |
| 986 | icp_ocfDrvSwapBytes(dsaVerifyOpData->S.pData, |
| 987 | dsaVerifyOpData->S.dataLenInBytes); |
| 988 | |
| 989 | lacStatus = cpaCyDsaVerify(CPA_INSTANCE_HANDLE_SINGLE, |
| 990 | icp_ocfDrvDsaVerifyCallBack, |
| 991 | callbackTag, dsaVerifyOpData, &verifyStatus); |
| 992 | |
| 993 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 994 | EPRINTK("%s(): DSA Verify Operation failed (%d).\n", |
| 995 | __FUNCTION__, lacStatus); |
| 996 | kmem_cache_free(drvDSAVerify_zone, dsaVerifyOpData); |
| 997 | krp->krp_status = ECANCELED; |
| 998 | } |
| 999 | |
| 1000 | return lacStatus; |
| 1001 | } |
| 1002 | |
| 1003 | /* Name : icp_ocfDrvReadRandom |
| 1004 | * |
| 1005 | * Description : This function will map RNG functionality calls from OCF |
| 1006 | * to the LAC API. |
| 1007 | */ |
| 1008 | int icp_ocfDrvReadRandom(void *arg, uint32_t * buf, int maxwords) |
| 1009 | { |
| 1010 | CpaStatus lacStatus = CPA_STATUS_SUCCESS; |
| 1011 | CpaCyRandGenOpData randGenOpData; |
| 1012 | CpaFlatBuffer randData; |
| 1013 | |
| 1014 | if (NULL == buf) { |
| 1015 | APRINTK("%s(): Invalid input parameters\n", __FUNCTION__); |
| 1016 | return EINVAL; |
| 1017 | } |
| 1018 | |
| 1019 | /* maxwords here is number of integers to generate data for */ |
| 1020 | randGenOpData.generateBits = CPA_TRUE; |
| 1021 | |
| 1022 | randGenOpData.lenInBytes = maxwords * sizeof(uint32_t); |
| 1023 | |
| 1024 | icp_ocfDrvPtrAndLenToFlatBuffer((Cpa8U *) buf, |
| 1025 | randGenOpData.lenInBytes, &randData); |
| 1026 | |
| 1027 | lacStatus = cpaCyRandGen(CPA_INSTANCE_HANDLE_SINGLE, |
| 1028 | NULL, NULL, &randGenOpData, &randData); |
| 1029 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 1030 | EPRINTK("%s(): icp_LacSymRandGen failed (%d). \n", |
| 1031 | __FUNCTION__, lacStatus); |
| 1032 | return RETURN_RAND_NUM_GEN_FAILED; |
| 1033 | } |
| 1034 | |
| 1035 | return randGenOpData.lenInBytes / sizeof(uint32_t); |
| 1036 | } |
| 1037 | |
| 1038 | /* Name : icp_ocfDrvDhP1Callback |
| 1039 | * |
| 1040 | * Description : When this function returns it signifies that the LAC |
| 1041 | * component has completed the DH operation. |
| 1042 | */ |
| 1043 | static void |
| 1044 | icp_ocfDrvDhP1CallBack(void *callbackTag, |
| 1045 | CpaStatus status, |
| 1046 | void *pOpData, CpaFlatBuffer * pLocalOctetStringPV) |
| 1047 | { |
| 1048 | struct cryptkop *krp = NULL; |
| 1049 | CpaCyDhPhase1KeyGenOpData *pPhase1OpData = NULL; |
| 1050 | |
| 1051 | if (NULL == callbackTag) { |
| 1052 | DPRINTK("%s(): Invalid input parameters - " |
| 1053 | "callbackTag data is NULL\n", __FUNCTION__); |
| 1054 | return; |
| 1055 | } |
| 1056 | krp = (struct cryptkop *)callbackTag; |
| 1057 | |
| 1058 | if (NULL == pOpData) { |
| 1059 | DPRINTK("%s(): Invalid input parameters - " |
| 1060 | "Operation Data is NULL\n", __FUNCTION__); |
| 1061 | krp->krp_status = ECANCELED; |
| 1062 | crypto_kdone(krp); |
| 1063 | return; |
| 1064 | } |
| 1065 | pPhase1OpData = (CpaCyDhPhase1KeyGenOpData *) pOpData; |
| 1066 | |
| 1067 | if (NULL == pLocalOctetStringPV) { |
| 1068 | DPRINTK("%s(): Invalid input parameters - " |
| 1069 | "pLocalOctetStringPV Data is NULL\n", __FUNCTION__); |
| 1070 | memset(pPhase1OpData, 0, sizeof(CpaCyDhPhase1KeyGenOpData)); |
| 1071 | kmem_cache_free(drvDH_zone, pPhase1OpData); |
| 1072 | krp->krp_status = ECANCELED; |
| 1073 | crypto_kdone(krp); |
| 1074 | return; |
| 1075 | } |
| 1076 | |
| 1077 | if (CPA_STATUS_SUCCESS == status) { |
| 1078 | krp->krp_status = CRYPTO_OP_SUCCESS; |
| 1079 | } else { |
| 1080 | APRINTK("%s(): Diffie Hellman Phase1 Key Gen failed - " |
| 1081 | "Operation Status = %d\n", __FUNCTION__, status); |
| 1082 | krp->krp_status = ECANCELED; |
| 1083 | } |
| 1084 | |
| 1085 | icp_ocfDrvSwapBytes(pLocalOctetStringPV->pData, |
| 1086 | pLocalOctetStringPV->dataLenInBytes); |
| 1087 | |
| 1088 | icp_ocfDrvFreeFlatBuffer(pLocalOctetStringPV); |
| 1089 | memset(pPhase1OpData, 0, sizeof(CpaCyDhPhase1KeyGenOpData)); |
| 1090 | kmem_cache_free(drvDH_zone, pPhase1OpData); |
| 1091 | |
| 1092 | crypto_kdone(krp); |
| 1093 | |
| 1094 | return; |
| 1095 | } |
| 1096 | |
| 1097 | /* Name : icp_ocfDrvModExpCallBack |
| 1098 | * |
| 1099 | * Description : When this function returns it signifies that the LAC |
| 1100 | * component has completed the Mod Exp operation. |
| 1101 | */ |
| 1102 | static void |
| 1103 | icp_ocfDrvModExpCallBack(void *callbackTag, |
| 1104 | CpaStatus status, |
| 1105 | void *pOpdata, CpaFlatBuffer * pResult) |
| 1106 | { |
| 1107 | struct cryptkop *krp = NULL; |
| 1108 | CpaCyLnModExpOpData *pLnModExpOpData = NULL; |
| 1109 | |
| 1110 | if (NULL == callbackTag) { |
| 1111 | DPRINTK("%s(): Invalid input parameters - " |
| 1112 | "callbackTag data is NULL\n", __FUNCTION__); |
| 1113 | return; |
| 1114 | } |
| 1115 | krp = (struct cryptkop *)callbackTag; |
| 1116 | |
| 1117 | if (NULL == pOpdata) { |
| 1118 | DPRINTK("%s(): Invalid Mod Exp input parameters - " |
| 1119 | "Operation Data is NULL\n", __FUNCTION__); |
| 1120 | krp->krp_status = ECANCELED; |
| 1121 | crypto_kdone(krp); |
| 1122 | return; |
| 1123 | } |
| 1124 | pLnModExpOpData = (CpaCyLnModExpOpData *) pOpdata; |
| 1125 | |
| 1126 | if (NULL == pResult) { |
| 1127 | DPRINTK("%s(): Invalid input parameters - " |
| 1128 | "pResult data is NULL\n", __FUNCTION__); |
| 1129 | krp->krp_status = ECANCELED; |
| 1130 | memset(pLnModExpOpData, 0, sizeof(CpaCyLnModExpOpData)); |
| 1131 | kmem_cache_free(drvLnModExp_zone, pLnModExpOpData); |
| 1132 | crypto_kdone(krp); |
| 1133 | return; |
| 1134 | } |
| 1135 | |
| 1136 | if (CPA_STATUS_SUCCESS == status) { |
| 1137 | krp->krp_status = CRYPTO_OP_SUCCESS; |
| 1138 | } else { |
| 1139 | APRINTK("%s(): LAC Mod Exp Operation failed - " |
| 1140 | "Operation Status = %d\n", __FUNCTION__, status); |
| 1141 | krp->krp_status = ECANCELED; |
| 1142 | } |
| 1143 | |
| 1144 | icp_ocfDrvSwapBytes(pResult->pData, pResult->dataLenInBytes); |
| 1145 | |
| 1146 | /*switch base size value back to original */ |
| 1147 | if (pLnModExpOpData->base.pData == |
| 1148 | (uint8_t *) & (krp-> |
| 1149 | krp_param[ICP_MOD_EXP_KRP_PARAM_BASE_INDEX]. |
| 1150 | crp_nbits)) { |
| 1151 | *((uint32_t *) pLnModExpOpData->base.pData) = |
| 1152 | ntohl(*((uint32_t *) pLnModExpOpData->base.pData)); |
| 1153 | } |
| 1154 | icp_ocfDrvFreeFlatBuffer(pResult); |
| 1155 | memset(pLnModExpOpData, 0, sizeof(CpaCyLnModExpOpData)); |
| 1156 | kmem_cache_free(drvLnModExp_zone, pLnModExpOpData); |
| 1157 | |
| 1158 | crypto_kdone(krp); |
| 1159 | |
| 1160 | return; |
| 1161 | |
| 1162 | } |
| 1163 | |
| 1164 | /* Name : icp_ocfDrvModExpCRTCallBack |
| 1165 | * |
| 1166 | * Description : When this function returns it signifies that the LAC |
| 1167 | * component has completed the Mod Exp CRT operation. |
| 1168 | */ |
| 1169 | static void |
| 1170 | icp_ocfDrvModExpCRTCallBack(void *callbackTag, |
| 1171 | CpaStatus status, |
| 1172 | void *pOpData, CpaFlatBuffer * pOutputData) |
| 1173 | { |
| 1174 | struct cryptkop *krp = NULL; |
| 1175 | CpaCyRsaDecryptOpData *pDecryptData = NULL; |
| 1176 | |
| 1177 | if (NULL == callbackTag) { |
| 1178 | DPRINTK("%s(): Invalid input parameters - " |
| 1179 | "callbackTag data is NULL\n", __FUNCTION__); |
| 1180 | return; |
| 1181 | } |
| 1182 | |
| 1183 | krp = (struct cryptkop *)callbackTag; |
| 1184 | |
| 1185 | if (NULL == pOpData) { |
| 1186 | DPRINTK("%s(): Invalid input parameters - " |
| 1187 | "Operation Data is NULL\n", __FUNCTION__); |
| 1188 | krp->krp_status = ECANCELED; |
| 1189 | crypto_kdone(krp); |
| 1190 | return; |
| 1191 | } |
| 1192 | pDecryptData = (CpaCyRsaDecryptOpData *) pOpData; |
| 1193 | |
| 1194 | if (NULL == pOutputData) { |
| 1195 | DPRINTK("%s(): Invalid input parameter - " |
| 1196 | "pOutputData is NULL\n", __FUNCTION__); |
| 1197 | memset(pDecryptData->pRecipientPrivateKey, 0, |
| 1198 | sizeof(CpaCyRsaPrivateKey)); |
| 1199 | kmem_cache_free(drvRSAPrivateKey_zone, |
| 1200 | pDecryptData->pRecipientPrivateKey); |
| 1201 | memset(pDecryptData, 0, sizeof(CpaCyRsaDecryptOpData)); |
| 1202 | kmem_cache_free(drvRSADecrypt_zone, pDecryptData); |
| 1203 | krp->krp_status = ECANCELED; |
| 1204 | crypto_kdone(krp); |
| 1205 | return; |
| 1206 | } |
| 1207 | |
| 1208 | if (CPA_STATUS_SUCCESS == status) { |
| 1209 | krp->krp_status = CRYPTO_OP_SUCCESS; |
| 1210 | } else { |
| 1211 | APRINTK("%s(): LAC Mod Exp CRT operation failed - " |
| 1212 | "Operation Status = %d\n", __FUNCTION__, status); |
| 1213 | krp->krp_status = ECANCELED; |
| 1214 | } |
| 1215 | |
| 1216 | icp_ocfDrvSwapBytes(pOutputData->pData, pOutputData->dataLenInBytes); |
| 1217 | |
| 1218 | icp_ocfDrvFreeFlatBuffer(pOutputData); |
| 1219 | memset(pDecryptData->pRecipientPrivateKey, 0, |
| 1220 | sizeof(CpaCyRsaPrivateKey)); |
| 1221 | kmem_cache_free(drvRSAPrivateKey_zone, |
| 1222 | pDecryptData->pRecipientPrivateKey); |
| 1223 | memset(pDecryptData, 0, sizeof(CpaCyRsaDecryptOpData)); |
| 1224 | kmem_cache_free(drvRSADecrypt_zone, pDecryptData); |
| 1225 | |
| 1226 | crypto_kdone(krp); |
| 1227 | |
| 1228 | return; |
| 1229 | } |
| 1230 | |
| 1231 | /* Name : icp_ocfDrvDsaRSSignCallBack |
| 1232 | * |
| 1233 | * Description : When this function returns it signifies that the LAC |
| 1234 | * component has completed the DSA RS sign operation. |
| 1235 | */ |
| 1236 | static void |
| 1237 | icp_ocfDrvDsaRSSignCallBack(void *callbackTag, |
| 1238 | CpaStatus status, |
| 1239 | void *pOpData, |
| 1240 | CpaBoolean protocolStatus, |
| 1241 | CpaFlatBuffer * pR, CpaFlatBuffer * pS) |
| 1242 | { |
| 1243 | struct cryptkop *krp = NULL; |
| 1244 | CpaCyDsaRSSignOpData *pSignData = NULL; |
| 1245 | |
| 1246 | if (NULL == callbackTag) { |
| 1247 | DPRINTK("%s(): Invalid input parameters - " |
| 1248 | "callbackTag data is NULL\n", __FUNCTION__); |
| 1249 | return; |
| 1250 | } |
| 1251 | |
| 1252 | krp = (struct cryptkop *)callbackTag; |
| 1253 | |
| 1254 | if (NULL == pOpData) { |
| 1255 | DPRINTK("%s(): Invalid input parameters - " |
| 1256 | "Operation Data is NULL\n", __FUNCTION__); |
| 1257 | krp->krp_status = ECANCELED; |
| 1258 | crypto_kdone(krp); |
| 1259 | return; |
| 1260 | } |
| 1261 | pSignData = (CpaCyDsaRSSignOpData *) pOpData; |
| 1262 | |
| 1263 | if (NULL == pR) { |
| 1264 | DPRINTK("%s(): Invalid input parameter - " |
| 1265 | "pR sign is NULL\n", __FUNCTION__); |
| 1266 | icp_ocfDrvFreeFlatBuffer(pS); |
| 1267 | kmem_cache_free(drvDSARSSign_zone, pSignData); |
| 1268 | krp->krp_status = ECANCELED; |
| 1269 | crypto_kdone(krp); |
| 1270 | return; |
| 1271 | } |
| 1272 | |
| 1273 | if (NULL == pS) { |
| 1274 | DPRINTK("%s(): Invalid input parameter - " |
| 1275 | "pS sign is NULL\n", __FUNCTION__); |
| 1276 | icp_ocfDrvFreeFlatBuffer(pR); |
| 1277 | kmem_cache_free(drvDSARSSign_zone, pSignData); |
| 1278 | krp->krp_status = ECANCELED; |
| 1279 | crypto_kdone(krp); |
| 1280 | return; |
| 1281 | } |
| 1282 | |
| 1283 | if (CPA_STATUS_SUCCESS != status) { |
| 1284 | APRINTK("%s(): LAC DSA RS Sign operation failed - " |
| 1285 | "Operation Status = %d\n", __FUNCTION__, status); |
| 1286 | krp->krp_status = ECANCELED; |
| 1287 | } else { |
| 1288 | krp->krp_status = CRYPTO_OP_SUCCESS; |
| 1289 | |
| 1290 | if (CPA_TRUE != protocolStatus) { |
| 1291 | DPRINTK("%s(): LAC DSA RS Sign operation failed due " |
| 1292 | "to protocol error\n", __FUNCTION__); |
| 1293 | krp->krp_status = EIO; |
| 1294 | } |
| 1295 | } |
| 1296 | |
| 1297 | /* Swap bytes only when the callback status is successful and |
| 1298 | protocolStatus is set to true */ |
| 1299 | if (CPA_STATUS_SUCCESS == status && CPA_TRUE == protocolStatus) { |
| 1300 | icp_ocfDrvSwapBytes(pR->pData, pR->dataLenInBytes); |
| 1301 | icp_ocfDrvSwapBytes(pS->pData, pS->dataLenInBytes); |
| 1302 | } |
| 1303 | |
| 1304 | icp_ocfDrvFreeFlatBuffer(pR); |
| 1305 | icp_ocfDrvFreeFlatBuffer(pS); |
| 1306 | memset(pSignData->K.pData, 0, pSignData->K.dataLenInBytes); |
| 1307 | kmem_cache_free(drvDSARSSignKValue_zone, pSignData->K.pData); |
| 1308 | memset(pSignData, 0, sizeof(CpaCyDsaRSSignOpData)); |
| 1309 | kmem_cache_free(drvDSARSSign_zone, pSignData); |
| 1310 | crypto_kdone(krp); |
| 1311 | |
| 1312 | return; |
| 1313 | } |
| 1314 | |
| 1315 | /* Name : icp_ocfDrvDsaVerifyCallback |
| 1316 | * |
| 1317 | * Description : When this function returns it signifies that the LAC |
| 1318 | * component has completed the DSA Verify operation. |
| 1319 | */ |
| 1320 | static void |
| 1321 | icp_ocfDrvDsaVerifyCallBack(void *callbackTag, |
| 1322 | CpaStatus status, |
| 1323 | void *pOpData, CpaBoolean verifyStatus) |
| 1324 | { |
| 1325 | |
| 1326 | struct cryptkop *krp = NULL; |
| 1327 | CpaCyDsaVerifyOpData *pVerData = NULL; |
| 1328 | |
| 1329 | if (NULL == callbackTag) { |
| 1330 | DPRINTK("%s(): Invalid input parameters - " |
| 1331 | "callbackTag data is NULL\n", __FUNCTION__); |
| 1332 | return; |
| 1333 | } |
| 1334 | |
| 1335 | krp = (struct cryptkop *)callbackTag; |
| 1336 | |
| 1337 | if (NULL == pOpData) { |
| 1338 | DPRINTK("%s(): Invalid input parameters - " |
| 1339 | "Operation Data is NULL\n", __FUNCTION__); |
| 1340 | krp->krp_status = ECANCELED; |
| 1341 | crypto_kdone(krp); |
| 1342 | return; |
| 1343 | } |
| 1344 | pVerData = (CpaCyDsaVerifyOpData *) pOpData; |
| 1345 | |
| 1346 | if (CPA_STATUS_SUCCESS != status) { |
| 1347 | APRINTK("%s(): LAC DSA Verify operation failed - " |
| 1348 | "Operation Status = %d\n", __FUNCTION__, status); |
| 1349 | krp->krp_status = ECANCELED; |
| 1350 | } else { |
| 1351 | krp->krp_status = CRYPTO_OP_SUCCESS; |
| 1352 | |
| 1353 | if (CPA_TRUE != verifyStatus) { |
| 1354 | DPRINTK("%s(): DSA signature invalid\n", __FUNCTION__); |
| 1355 | krp->krp_status = EIO; |
| 1356 | } |
| 1357 | } |
| 1358 | |
| 1359 | /* Swap bytes only when the callback status is successful and |
| 1360 | verifyStatus is set to true */ |
| 1361 | /*Just swapping back the key values for now. Possibly all |
| 1362 | swapped buffers need to be reverted */ |
| 1363 | if (CPA_STATUS_SUCCESS == status && CPA_TRUE == verifyStatus) { |
| 1364 | icp_ocfDrvSwapBytes(pVerData->R.pData, |
| 1365 | pVerData->R.dataLenInBytes); |
| 1366 | icp_ocfDrvSwapBytes(pVerData->S.pData, |
| 1367 | pVerData->S.dataLenInBytes); |
| 1368 | } |
| 1369 | |
| 1370 | memset(pVerData, 0, sizeof(CpaCyDsaVerifyOpData)); |
| 1371 | kmem_cache_free(drvDSAVerify_zone, pVerData); |
| 1372 | crypto_kdone(krp); |
| 1373 | |
| 1374 | return; |
| 1375 | } |
| 1376 | |