| 1 | /*************************************************************************** |
| 2 | * |
| 3 | * This file is provided under a dual BSD/GPLv2 license. When using or |
| 4 | * redistributing this file, you may do so under either license. |
| 5 | * |
| 6 | * GPL LICENSE SUMMARY |
| 7 | * |
| 8 | * Copyright(c) 2007,2008 Intel Corporation. All rights reserved. |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify |
| 11 | * it under the terms of version 2 of the GNU General Public License as |
| 12 | * published by the Free Software Foundation. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, but |
| 15 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 17 | * General Public License for more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License |
| 20 | * along with this program; if not, write to the Free Software |
| 21 | * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 22 | * The full GNU General Public License is included in this distribution |
| 23 | * in the file called LICENSE.GPL. |
| 24 | * |
| 25 | * Contact Information: |
| 26 | * Intel Corporation |
| 27 | * |
| 28 | * BSD LICENSE |
| 29 | * |
| 30 | * Copyright(c) 2007,2008 Intel Corporation. All rights reserved. |
| 31 | * All rights reserved. |
| 32 | * |
| 33 | * Redistribution and use in source and binary forms, with or without |
| 34 | * modification, are permitted provided that the following conditions |
| 35 | * are met: |
| 36 | * |
| 37 | * * Redistributions of source code must retain the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer. |
| 39 | * * Redistributions in binary form must reproduce the above copyright |
| 40 | * notice, this list of conditions and the following disclaimer in |
| 41 | * the documentation and/or other materials provided with the |
| 42 | * distribution. |
| 43 | * * Neither the name of Intel Corporation nor the names of its |
| 44 | * contributors may be used to endorse or promote products derived |
| 45 | * from this software without specific prior written permission. |
| 46 | * |
| 47 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 48 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 49 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 50 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 51 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 52 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 53 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 54 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 55 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 56 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 57 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 58 | * |
| 59 | * |
| 60 | * version: Security.L.1.0.130 |
| 61 | * |
| 62 | ***************************************************************************/ |
| 63 | /* |
| 64 | * An OCF module that uses the API for IntelĀ® QuickAssist Technology to do the |
| 65 | * cryptography. |
| 66 | * |
| 67 | * This driver requires the ICP Access Library that is available from Intel in |
| 68 | * order to operate. |
| 69 | */ |
| 70 | |
| 71 | #include "icp_ocf.h" |
| 72 | |
| 73 | /*This is the call back function for all symmetric cryptographic processes. |
| 74 | Its main functionality is to free driver crypto operation structure and to |
| 75 | call back to OCF*/ |
| 76 | static void |
| 77 | icp_ocfDrvSymCallBack(void *callbackTag, |
| 78 | CpaStatus status, |
| 79 | const CpaCySymOp operationType, |
| 80 | void *pOpData, |
| 81 | CpaBufferList * pDstBuffer, CpaBoolean verifyResult); |
| 82 | |
| 83 | /*This function is used to extract crypto processing information from the OCF |
| 84 | inputs, so as that it may be passed onto LAC*/ |
| 85 | static int |
| 86 | icp_ocfDrvProcessDataSetup(struct icp_drvOpData *drvOpData, |
| 87 | struct cryptodesc *crp_desc); |
| 88 | |
| 89 | /*This function checks whether the crp_desc argument pertains to a digest or a |
| 90 | cipher operation*/ |
| 91 | static int icp_ocfDrvAlgCheck(struct cryptodesc *crp_desc); |
| 92 | |
| 93 | /*This function copies all the passed in session context information and stores |
| 94 | it in a LAC context structure*/ |
| 95 | static int |
| 96 | icp_ocfDrvAlgorithmSetup(struct cryptoini *cri, |
| 97 | CpaCySymSessionSetupData * lacSessCtx); |
| 98 | |
| 99 | /*This top level function is used to find a pointer to where a digest is |
| 100 | stored/needs to be inserted. */ |
| 101 | static uint8_t *icp_ocfDrvDigestPointerFind(struct icp_drvOpData *drvOpData, |
| 102 | struct cryptodesc *crp_desc); |
| 103 | |
| 104 | /*This function is called when a digest pointer has to be found within a |
| 105 | SKBUFF.*/ |
| 106 | static inline uint8_t *icp_ocfDrvSkbuffDigestPointerFind(struct icp_drvOpData |
| 107 | *drvOpData, |
| 108 | int offsetInBytes, |
| 109 | uint32_t |
| 110 | digestSizeInBytes); |
| 111 | |
| 112 | /*The following two functions are called if the SKBUFF digest pointer is not |
| 113 | positioned in the linear portion of the buffer (i.e. it is in a linked SKBUFF |
| 114 | or page fragment).*/ |
| 115 | /*This function takes care of the page fragment case.*/ |
| 116 | static inline uint8_t *icp_ocfDrvDigestSkbNRFragsCheck(struct sk_buff *skb, |
| 117 | struct skb_shared_info |
| 118 | *skb_shared, |
| 119 | int offsetInBytes, |
| 120 | uint32_t |
| 121 | digestSizeInBytes); |
| 122 | |
| 123 | /*This function takes care of the linked list case.*/ |
| 124 | static inline uint8_t *icp_ocfDrvDigestSkbFragListCheck(struct sk_buff *skb, |
| 125 | struct skb_shared_info |
| 126 | *skb_shared, |
| 127 | int offsetInBytes, |
| 128 | uint32_t |
| 129 | digestSizeInBytes); |
| 130 | |
| 131 | /*This function is used to free an OCF->OCF_DRV session object*/ |
| 132 | static void icp_ocfDrvFreeOCFSession(struct icp_drvSessionData *sessionData); |
| 133 | |
| 134 | /*max IOV buffs supported in a UIO structure*/ |
| 135 | #define NUM_IOV_SUPPORTED (1) |
| 136 | |
| 137 | /* Name : icp_ocfDrvSymCallBack |
| 138 | * |
| 139 | * Description : When this function returns it signifies that the LAC |
| 140 | * component has completed the relevant symmetric operation. |
| 141 | * |
| 142 | * Notes : The callbackTag is a pointer to an icp_drvOpData. This memory |
| 143 | * object was passed to LAC for the cryptographic processing and contains all |
| 144 | * the relevant information for cleaning up buffer handles etc. so that the |
| 145 | * OCF Tolapai Driver portion of this crypto operation can be fully completed. |
| 146 | */ |
| 147 | static void |
| 148 | icp_ocfDrvSymCallBack(void *callbackTag, |
| 149 | CpaStatus status, |
| 150 | const CpaCySymOp operationType, |
| 151 | void *pOpData, |
| 152 | CpaBufferList * pDstBuffer, CpaBoolean verifyResult) |
| 153 | { |
| 154 | struct cryptop *crp = NULL; |
| 155 | struct icp_drvOpData *temp_drvOpData = |
| 156 | (struct icp_drvOpData *)callbackTag; |
| 157 | uint64_t *tempBasePtr = NULL; |
| 158 | uint32_t tempLen = 0; |
| 159 | |
| 160 | if (NULL == temp_drvOpData) { |
| 161 | DPRINTK("%s(): The callback from the LAC component" |
| 162 | " has failed due to Null userOpaque data" |
| 163 | "(status == %d).\n", __FUNCTION__, status); |
| 164 | DPRINTK("%s(): Unable to call OCF back! \n", __FUNCTION__); |
| 165 | return; |
| 166 | } |
| 167 | |
| 168 | crp = temp_drvOpData->crp; |
| 169 | crp->crp_etype = ICP_OCF_DRV_NO_CRYPTO_PROCESS_ERROR; |
| 170 | |
| 171 | if (NULL == pOpData) { |
| 172 | DPRINTK("%s(): The callback from the LAC component" |
| 173 | " has failed due to Null Symmetric Op data" |
| 174 | "(status == %d).\n", __FUNCTION__, status); |
| 175 | crp->crp_etype = ECANCELED; |
| 176 | crypto_done(crp); |
| 177 | return; |
| 178 | } |
| 179 | |
| 180 | if (NULL == pDstBuffer) { |
| 181 | DPRINTK("%s(): The callback from the LAC component" |
| 182 | " has failed due to Null Dst Bufferlist data" |
| 183 | "(status == %d).\n", __FUNCTION__, status); |
| 184 | crp->crp_etype = ECANCELED; |
| 185 | crypto_done(crp); |
| 186 | return; |
| 187 | } |
| 188 | |
| 189 | if (CPA_STATUS_SUCCESS == status) { |
| 190 | |
| 191 | if (temp_drvOpData->bufferType == CRYPTO_F_SKBUF) { |
| 192 | if (ICP_OCF_DRV_STATUS_SUCCESS != |
| 193 | icp_ocfDrvBufferListToSkBuff(pDstBuffer, |
| 194 | (struct sk_buff **) |
| 195 | &(crp->crp_buf))) { |
| 196 | EPRINTK("%s(): BufferList to SkBuff " |
| 197 | "conversion error.\n", __FUNCTION__); |
| 198 | crp->crp_etype = EPERM; |
| 199 | } |
| 200 | } else { |
| 201 | icp_ocfDrvBufferListToPtrAndLen(pDstBuffer, |
| 202 | (void **)&tempBasePtr, |
| 203 | &tempLen); |
| 204 | crp->crp_olen = (int)tempLen; |
| 205 | } |
| 206 | |
| 207 | } else { |
| 208 | DPRINTK("%s(): The callback from the LAC component has failed" |
| 209 | "(status == %d).\n", __FUNCTION__, status); |
| 210 | |
| 211 | crp->crp_etype = ECANCELED; |
| 212 | } |
| 213 | |
| 214 | if (temp_drvOpData->numBufferListArray > |
| 215 | ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS) { |
| 216 | kfree(pDstBuffer->pBuffers); |
| 217 | } |
| 218 | icp_ocfDrvFreeMetaData(pDstBuffer); |
| 219 | kmem_cache_free(drvOpData_zone, temp_drvOpData); |
| 220 | |
| 221 | /* Invoke the OCF callback function */ |
| 222 | crypto_done(crp); |
| 223 | |
| 224 | return; |
| 225 | } |
| 226 | |
| 227 | /* Name : icp_ocfDrvNewSession |
| 228 | * |
| 229 | * Description : This function will create a new Driver<->OCF session |
| 230 | * |
| 231 | * Notes : LAC session registration happens during the first perform call. |
| 232 | * That is the first time we know all information about a given session. |
| 233 | */ |
| 234 | int icp_ocfDrvNewSession(device_t dev, uint32_t * sid, struct cryptoini *cri) |
| 235 | { |
| 236 | struct icp_drvSessionData *sessionData = NULL; |
| 237 | uint32_t delete_session = 0; |
| 238 | |
| 239 | /* The SID passed in should be our driver ID. We can return the */ |
| 240 | /* local ID (LID) which is a unique identifier which we can use */ |
| 241 | /* to differentiate between the encrypt/decrypt LAC session handles */ |
| 242 | if (NULL == sid) { |
| 243 | EPRINTK("%s(): Invalid input parameters - NULL sid.\n", |
| 244 | __FUNCTION__); |
| 245 | return EINVAL; |
| 246 | } |
| 247 | |
| 248 | if (NULL == cri) { |
| 249 | EPRINTK("%s(): Invalid input parameters - NULL cryptoini.\n", |
| 250 | __FUNCTION__); |
| 251 | return EINVAL; |
| 252 | } |
| 253 | |
| 254 | if (icp_ocfDrvDriverId != *sid) { |
| 255 | EPRINTK("%s(): Invalid input parameters - bad driver ID\n", |
| 256 | __FUNCTION__); |
| 257 | EPRINTK("\t sid = 0x08%p \n \t cri = 0x08%p \n", sid, cri); |
| 258 | return EINVAL; |
| 259 | } |
| 260 | |
| 261 | sessionData = kmem_cache_zalloc(drvSessionData_zone, GFP_ATOMIC); |
| 262 | if (NULL == sessionData) { |
| 263 | DPRINTK("%s():No memory for Session Data\n", __FUNCTION__); |
| 264 | return ENOMEM; |
| 265 | } |
| 266 | |
| 267 | /*ENTER CRITICAL SECTION */ |
| 268 | spin_lock_bh(&icp_ocfDrvSymSessInfoListSpinlock); |
| 269 | /*put this check in the spinlock so no new sessions can be added to the |
| 270 | linked list when we are exiting */ |
| 271 | if (CPA_TRUE == atomic_read(&icp_ocfDrvIsExiting)) { |
| 272 | delete_session++; |
| 273 | |
| 274 | } else if (NO_OCF_TO_DRV_MAX_SESSIONS != max_sessions) { |
| 275 | if (atomic_read(&num_ocf_to_drv_registered_sessions) >= |
| 276 | (max_sessions - |
| 277 | atomic_read(&lac_session_failed_dereg_count))) { |
| 278 | delete_session++; |
| 279 | } else { |
| 280 | atomic_inc(&num_ocf_to_drv_registered_sessions); |
| 281 | /* Add to session data linked list */ |
| 282 | list_add(&(sessionData->listNode), |
| 283 | &icp_ocfDrvGlobalSymListHead); |
| 284 | } |
| 285 | |
| 286 | } else if (NO_OCF_TO_DRV_MAX_SESSIONS == max_sessions) { |
| 287 | list_add(&(sessionData->listNode), |
| 288 | &icp_ocfDrvGlobalSymListHead); |
| 289 | } |
| 290 | |
| 291 | sessionData->inUse = ICP_SESSION_INITIALISED; |
| 292 | |
| 293 | /*EXIT CRITICAL SECTION */ |
| 294 | spin_unlock_bh(&icp_ocfDrvSymSessInfoListSpinlock); |
| 295 | |
| 296 | if (delete_session) { |
| 297 | DPRINTK("%s():No Session handles available\n", __FUNCTION__); |
| 298 | kmem_cache_free(drvSessionData_zone, sessionData); |
| 299 | return EPERM; |
| 300 | } |
| 301 | |
| 302 | if (ICP_OCF_DRV_STATUS_SUCCESS != |
| 303 | icp_ocfDrvAlgorithmSetup(cri, &(sessionData->lacSessCtx))) { |
| 304 | DPRINTK("%s():algorithm not supported\n", __FUNCTION__); |
| 305 | icp_ocfDrvFreeOCFSession(sessionData); |
| 306 | return EINVAL; |
| 307 | } |
| 308 | |
| 309 | if (cri->cri_next) { |
| 310 | if (cri->cri_next->cri_next != NULL) { |
| 311 | DPRINTK("%s():only two chained algorithms supported\n", |
| 312 | __FUNCTION__); |
| 313 | icp_ocfDrvFreeOCFSession(sessionData); |
| 314 | return EPERM; |
| 315 | } |
| 316 | |
| 317 | if (ICP_OCF_DRV_STATUS_SUCCESS != |
| 318 | icp_ocfDrvAlgorithmSetup(cri->cri_next, |
| 319 | &(sessionData->lacSessCtx))) { |
| 320 | DPRINTK("%s():second algorithm not supported\n", |
| 321 | __FUNCTION__); |
| 322 | icp_ocfDrvFreeOCFSession(sessionData); |
| 323 | return EINVAL; |
| 324 | } |
| 325 | |
| 326 | sessionData->lacSessCtx.symOperation = |
| 327 | CPA_CY_SYM_OP_ALGORITHM_CHAINING; |
| 328 | } |
| 329 | |
| 330 | *sid = (uint32_t) sessionData; |
| 331 | |
| 332 | return ICP_OCF_DRV_STATUS_SUCCESS; |
| 333 | } |
| 334 | |
| 335 | /* Name : icp_ocfDrvAlgorithmSetup |
| 336 | * |
| 337 | * Description : This function builds the session context data from the |
| 338 | * information supplied through OCF. Algorithm chain order and whether the |
| 339 | * session is Encrypt/Decrypt can only be found out at perform time however, so |
| 340 | * the session is registered with LAC at that time. |
| 341 | */ |
| 342 | static int |
| 343 | icp_ocfDrvAlgorithmSetup(struct cryptoini *cri, |
| 344 | CpaCySymSessionSetupData * lacSessCtx) |
| 345 | { |
| 346 | |
| 347 | lacSessCtx->sessionPriority = CPA_CY_PRIORITY_NORMAL; |
| 348 | |
| 349 | switch (cri->cri_alg) { |
| 350 | |
| 351 | case CRYPTO_NULL_CBC: |
| 352 | DPRINTK("%s(): NULL CBC\n", __FUNCTION__); |
| 353 | lacSessCtx->symOperation = CPA_CY_SYM_OP_CIPHER; |
| 354 | lacSessCtx->cipherSetupData.cipherAlgorithm = |
| 355 | CPA_CY_SYM_CIPHER_NULL; |
| 356 | lacSessCtx->cipherSetupData.cipherKeyLenInBytes = |
| 357 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 358 | lacSessCtx->cipherSetupData.pCipherKey = cri->cri_key; |
| 359 | break; |
| 360 | |
| 361 | case CRYPTO_DES_CBC: |
| 362 | DPRINTK("%s(): DES CBC\n", __FUNCTION__); |
| 363 | lacSessCtx->symOperation = CPA_CY_SYM_OP_CIPHER; |
| 364 | lacSessCtx->cipherSetupData.cipherAlgorithm = |
| 365 | CPA_CY_SYM_CIPHER_DES_CBC; |
| 366 | lacSessCtx->cipherSetupData.cipherKeyLenInBytes = |
| 367 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 368 | lacSessCtx->cipherSetupData.pCipherKey = cri->cri_key; |
| 369 | break; |
| 370 | |
| 371 | case CRYPTO_3DES_CBC: |
| 372 | DPRINTK("%s(): 3DES CBC\n", __FUNCTION__); |
| 373 | lacSessCtx->symOperation = CPA_CY_SYM_OP_CIPHER; |
| 374 | lacSessCtx->cipherSetupData.cipherAlgorithm = |
| 375 | CPA_CY_SYM_CIPHER_3DES_CBC; |
| 376 | lacSessCtx->cipherSetupData.cipherKeyLenInBytes = |
| 377 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 378 | lacSessCtx->cipherSetupData.pCipherKey = cri->cri_key; |
| 379 | break; |
| 380 | |
| 381 | case CRYPTO_AES_CBC: |
| 382 | DPRINTK("%s(): AES CBC\n", __FUNCTION__); |
| 383 | lacSessCtx->symOperation = CPA_CY_SYM_OP_CIPHER; |
| 384 | lacSessCtx->cipherSetupData.cipherAlgorithm = |
| 385 | CPA_CY_SYM_CIPHER_AES_CBC; |
| 386 | lacSessCtx->cipherSetupData.cipherKeyLenInBytes = |
| 387 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 388 | lacSessCtx->cipherSetupData.pCipherKey = cri->cri_key; |
| 389 | break; |
| 390 | |
| 391 | case CRYPTO_ARC4: |
| 392 | DPRINTK("%s(): ARC4\n", __FUNCTION__); |
| 393 | lacSessCtx->symOperation = CPA_CY_SYM_OP_CIPHER; |
| 394 | lacSessCtx->cipherSetupData.cipherAlgorithm = |
| 395 | CPA_CY_SYM_CIPHER_ARC4; |
| 396 | lacSessCtx->cipherSetupData.cipherKeyLenInBytes = |
| 397 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 398 | lacSessCtx->cipherSetupData.pCipherKey = cri->cri_key; |
| 399 | break; |
| 400 | |
| 401 | case CRYPTO_SHA1: |
| 402 | DPRINTK("%s(): SHA1\n", __FUNCTION__); |
| 403 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 404 | lacSessCtx->hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_SHA1; |
| 405 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_PLAIN; |
| 406 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 407 | (cri->cri_mlen ? |
| 408 | cri->cri_mlen : ICP_SHA1_DIGEST_SIZE_IN_BYTES); |
| 409 | |
| 410 | break; |
| 411 | |
| 412 | case CRYPTO_SHA1_HMAC: |
| 413 | DPRINTK("%s(): SHA1_HMAC\n", __FUNCTION__); |
| 414 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 415 | lacSessCtx->hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_SHA1; |
| 416 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_AUTH; |
| 417 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 418 | (cri->cri_mlen ? |
| 419 | cri->cri_mlen : ICP_SHA1_DIGEST_SIZE_IN_BYTES); |
| 420 | lacSessCtx->hashSetupData.authModeSetupData.authKey = |
| 421 | cri->cri_key; |
| 422 | lacSessCtx->hashSetupData.authModeSetupData.authKeyLenInBytes = |
| 423 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 424 | lacSessCtx->hashSetupData.authModeSetupData.aadLenInBytes = 0; |
| 425 | |
| 426 | break; |
| 427 | |
| 428 | case CRYPTO_SHA2_256: |
| 429 | DPRINTK("%s(): SHA256\n", __FUNCTION__); |
| 430 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 431 | lacSessCtx->hashSetupData.hashAlgorithm = |
| 432 | CPA_CY_SYM_HASH_SHA256; |
| 433 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_PLAIN; |
| 434 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 435 | (cri->cri_mlen ? |
| 436 | cri->cri_mlen : ICP_SHA256_DIGEST_SIZE_IN_BYTES); |
| 437 | |
| 438 | break; |
| 439 | |
| 440 | case CRYPTO_SHA2_256_HMAC: |
| 441 | DPRINTK("%s(): SHA256_HMAC\n", __FUNCTION__); |
| 442 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 443 | lacSessCtx->hashSetupData.hashAlgorithm = |
| 444 | CPA_CY_SYM_HASH_SHA256; |
| 445 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_AUTH; |
| 446 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 447 | (cri->cri_mlen ? |
| 448 | cri->cri_mlen : ICP_SHA256_DIGEST_SIZE_IN_BYTES); |
| 449 | lacSessCtx->hashSetupData.authModeSetupData.authKey = |
| 450 | cri->cri_key; |
| 451 | lacSessCtx->hashSetupData.authModeSetupData.authKeyLenInBytes = |
| 452 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 453 | lacSessCtx->hashSetupData.authModeSetupData.aadLenInBytes = 0; |
| 454 | |
| 455 | break; |
| 456 | |
| 457 | case CRYPTO_SHA2_384: |
| 458 | DPRINTK("%s(): SHA384\n", __FUNCTION__); |
| 459 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 460 | lacSessCtx->hashSetupData.hashAlgorithm = |
| 461 | CPA_CY_SYM_HASH_SHA384; |
| 462 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_PLAIN; |
| 463 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 464 | (cri->cri_mlen ? |
| 465 | cri->cri_mlen : ICP_SHA384_DIGEST_SIZE_IN_BYTES); |
| 466 | |
| 467 | break; |
| 468 | |
| 469 | case CRYPTO_SHA2_384_HMAC: |
| 470 | DPRINTK("%s(): SHA384_HMAC\n", __FUNCTION__); |
| 471 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 472 | lacSessCtx->hashSetupData.hashAlgorithm = |
| 473 | CPA_CY_SYM_HASH_SHA384; |
| 474 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_AUTH; |
| 475 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 476 | (cri->cri_mlen ? |
| 477 | cri->cri_mlen : ICP_SHA384_DIGEST_SIZE_IN_BYTES); |
| 478 | lacSessCtx->hashSetupData.authModeSetupData.authKey = |
| 479 | cri->cri_key; |
| 480 | lacSessCtx->hashSetupData.authModeSetupData.authKeyLenInBytes = |
| 481 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 482 | lacSessCtx->hashSetupData.authModeSetupData.aadLenInBytes = 0; |
| 483 | |
| 484 | break; |
| 485 | |
| 486 | case CRYPTO_SHA2_512: |
| 487 | DPRINTK("%s(): SHA512\n", __FUNCTION__); |
| 488 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 489 | lacSessCtx->hashSetupData.hashAlgorithm = |
| 490 | CPA_CY_SYM_HASH_SHA512; |
| 491 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_PLAIN; |
| 492 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 493 | (cri->cri_mlen ? |
| 494 | cri->cri_mlen : ICP_SHA512_DIGEST_SIZE_IN_BYTES); |
| 495 | |
| 496 | break; |
| 497 | |
| 498 | case CRYPTO_SHA2_512_HMAC: |
| 499 | DPRINTK("%s(): SHA512_HMAC\n", __FUNCTION__); |
| 500 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 501 | lacSessCtx->hashSetupData.hashAlgorithm = |
| 502 | CPA_CY_SYM_HASH_SHA512; |
| 503 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_AUTH; |
| 504 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 505 | (cri->cri_mlen ? |
| 506 | cri->cri_mlen : ICP_SHA512_DIGEST_SIZE_IN_BYTES); |
| 507 | lacSessCtx->hashSetupData.authModeSetupData.authKey = |
| 508 | cri->cri_key; |
| 509 | lacSessCtx->hashSetupData.authModeSetupData.authKeyLenInBytes = |
| 510 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 511 | lacSessCtx->hashSetupData.authModeSetupData.aadLenInBytes = 0; |
| 512 | |
| 513 | break; |
| 514 | |
| 515 | case CRYPTO_MD5: |
| 516 | DPRINTK("%s(): MD5\n", __FUNCTION__); |
| 517 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 518 | lacSessCtx->hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_MD5; |
| 519 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_PLAIN; |
| 520 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 521 | (cri->cri_mlen ? |
| 522 | cri->cri_mlen : ICP_MD5_DIGEST_SIZE_IN_BYTES); |
| 523 | |
| 524 | break; |
| 525 | |
| 526 | case CRYPTO_MD5_HMAC: |
| 527 | DPRINTK("%s(): MD5_HMAC\n", __FUNCTION__); |
| 528 | lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH; |
| 529 | lacSessCtx->hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_MD5; |
| 530 | lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_AUTH; |
| 531 | lacSessCtx->hashSetupData.digestResultLenInBytes = |
| 532 | (cri->cri_mlen ? |
| 533 | cri->cri_mlen : ICP_MD5_DIGEST_SIZE_IN_BYTES); |
| 534 | lacSessCtx->hashSetupData.authModeSetupData.authKey = |
| 535 | cri->cri_key; |
| 536 | lacSessCtx->hashSetupData.authModeSetupData.authKeyLenInBytes = |
| 537 | cri->cri_klen / NUM_BITS_IN_BYTE; |
| 538 | lacSessCtx->hashSetupData.authModeSetupData.aadLenInBytes = 0; |
| 539 | |
| 540 | break; |
| 541 | |
| 542 | default: |
| 543 | DPRINTK("%s(): ALG Setup FAIL\n", __FUNCTION__); |
| 544 | return ICP_OCF_DRV_STATUS_FAIL; |
| 545 | } |
| 546 | |
| 547 | return ICP_OCF_DRV_STATUS_SUCCESS; |
| 548 | } |
| 549 | |
| 550 | /* Name : icp_ocfDrvFreeOCFSession |
| 551 | * |
| 552 | * Description : This function deletes all existing Session data representing |
| 553 | * the Cryptographic session established between OCF and this driver. This |
| 554 | * also includes freeing the memory allocated for the session context. The |
| 555 | * session object is also removed from the session linked list. |
| 556 | */ |
| 557 | static void icp_ocfDrvFreeOCFSession(struct icp_drvSessionData *sessionData) |
| 558 | { |
| 559 | |
| 560 | sessionData->inUse = ICP_SESSION_DEREGISTERED; |
| 561 | |
| 562 | /*ENTER CRITICAL SECTION */ |
| 563 | spin_lock_bh(&icp_ocfDrvSymSessInfoListSpinlock); |
| 564 | |
| 565 | if (CPA_TRUE == atomic_read(&icp_ocfDrvIsExiting)) { |
| 566 | /*If the Driver is exiting, allow that process to |
| 567 | handle any deletions */ |
| 568 | /*EXIT CRITICAL SECTION */ |
| 569 | spin_unlock_bh(&icp_ocfDrvSymSessInfoListSpinlock); |
| 570 | return; |
| 571 | } |
| 572 | |
| 573 | atomic_dec(&num_ocf_to_drv_registered_sessions); |
| 574 | |
| 575 | list_del(&(sessionData->listNode)); |
| 576 | |
| 577 | /*EXIT CRITICAL SECTION */ |
| 578 | spin_unlock_bh(&icp_ocfDrvSymSessInfoListSpinlock); |
| 579 | |
| 580 | if (NULL != sessionData->sessHandle) { |
| 581 | kfree(sessionData->sessHandle); |
| 582 | } |
| 583 | kmem_cache_free(drvSessionData_zone, sessionData); |
| 584 | } |
| 585 | |
| 586 | /* Name : icp_ocfDrvFreeLACSession |
| 587 | * |
| 588 | * Description : This attempts to deregister a LAC session. If it fails, the |
| 589 | * deregistation retry function is called. |
| 590 | */ |
| 591 | int icp_ocfDrvFreeLACSession(device_t dev, uint64_t sid) |
| 592 | { |
| 593 | CpaCySymSessionCtx sessionToDeregister = NULL; |
| 594 | struct icp_drvSessionData *sessionData = NULL; |
| 595 | CpaStatus lacStatus = CPA_STATUS_SUCCESS; |
| 596 | int retval = 0; |
| 597 | |
| 598 | sessionData = (struct icp_drvSessionData *)CRYPTO_SESID2LID(sid); |
| 599 | if (NULL == sessionData) { |
| 600 | EPRINTK("%s(): OCF Free session called with Null Session ID.\n", |
| 601 | __FUNCTION__); |
| 602 | return EINVAL; |
| 603 | } |
| 604 | |
| 605 | sessionToDeregister = sessionData->sessHandle; |
| 606 | |
| 607 | if (ICP_SESSION_INITIALISED == sessionData->inUse) { |
| 608 | DPRINTK("%s() Session not registered with LAC\n", __FUNCTION__); |
| 609 | } else if (NULL == sessionData->sessHandle) { |
| 610 | EPRINTK |
| 611 | ("%s(): OCF Free session called with Null Session Handle.\n", |
| 612 | __FUNCTION__); |
| 613 | return EINVAL; |
| 614 | } else { |
| 615 | lacStatus = cpaCySymRemoveSession(CPA_INSTANCE_HANDLE_SINGLE, |
| 616 | sessionToDeregister); |
| 617 | if (CPA_STATUS_RETRY == lacStatus) { |
| 618 | if (ICP_OCF_DRV_STATUS_SUCCESS != |
| 619 | icp_ocfDrvDeregRetry(&sessionToDeregister)) { |
| 620 | /* the retry function increments the |
| 621 | dereg failed count */ |
| 622 | DPRINTK("%s(): LAC failed to deregister the " |
| 623 | "session. (localSessionId= %p)\n", |
| 624 | __FUNCTION__, sessionToDeregister); |
| 625 | retval = EPERM; |
| 626 | } |
| 627 | |
| 628 | } else if (CPA_STATUS_SUCCESS != lacStatus) { |
| 629 | DPRINTK("%s(): LAC failed to deregister the session. " |
| 630 | "localSessionId= %p, lacStatus = %d\n", |
| 631 | __FUNCTION__, sessionToDeregister, lacStatus); |
| 632 | atomic_inc(&lac_session_failed_dereg_count); |
| 633 | retval = EPERM; |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | icp_ocfDrvFreeOCFSession(sessionData); |
| 638 | return retval; |
| 639 | |
| 640 | } |
| 641 | |
| 642 | /* Name : icp_ocfDrvAlgCheck |
| 643 | * |
| 644 | * Description : This function checks whether the cryptodesc argument pertains |
| 645 | * to a sym or hash function |
| 646 | */ |
| 647 | static int icp_ocfDrvAlgCheck(struct cryptodesc *crp_desc) |
| 648 | { |
| 649 | |
| 650 | if (crp_desc->crd_alg == CRYPTO_3DES_CBC || |
| 651 | crp_desc->crd_alg == CRYPTO_AES_CBC || |
| 652 | crp_desc->crd_alg == CRYPTO_DES_CBC || |
| 653 | crp_desc->crd_alg == CRYPTO_NULL_CBC || |
| 654 | crp_desc->crd_alg == CRYPTO_ARC4) { |
| 655 | return ICP_OCF_DRV_ALG_CIPHER; |
| 656 | } |
| 657 | |
| 658 | return ICP_OCF_DRV_ALG_HASH; |
| 659 | } |
| 660 | |
| 661 | /* Name : icp_ocfDrvSymProcess |
| 662 | * |
| 663 | * Description : This function will map symmetric functionality calls from OCF |
| 664 | * to the LAC API. It will also allocate memory to store the session context. |
| 665 | * |
| 666 | * Notes: If it is the first perform call for a given session, then a LAC |
| 667 | * session is registered. After the session is registered, no checks as |
| 668 | * to whether session paramaters have changed (e.g. alg chain order) are |
| 669 | * done. |
| 670 | */ |
| 671 | int icp_ocfDrvSymProcess(device_t dev, struct cryptop *crp, int hint) |
| 672 | { |
| 673 | struct icp_drvSessionData *sessionData = NULL; |
| 674 | struct icp_drvOpData *drvOpData = NULL; |
| 675 | CpaStatus lacStatus = CPA_STATUS_SUCCESS; |
| 676 | Cpa32U sessionCtxSizeInBytes = 0; |
| 677 | uint16_t numBufferListArray = 0; |
| 678 | |
| 679 | if (NULL == crp) { |
| 680 | DPRINTK("%s(): Invalid input parameters, cryptop is NULL\n", |
| 681 | __FUNCTION__); |
| 682 | return EINVAL; |
| 683 | } |
| 684 | |
| 685 | if (NULL == crp->crp_desc) { |
| 686 | DPRINTK("%s(): Invalid input parameters, no crp_desc attached " |
| 687 | "to crp\n", __FUNCTION__); |
| 688 | crp->crp_etype = EINVAL; |
| 689 | return EINVAL; |
| 690 | } |
| 691 | |
| 692 | if (NULL == crp->crp_buf) { |
| 693 | DPRINTK("%s(): Invalid input parameters, no buffer attached " |
| 694 | "to crp\n", __FUNCTION__); |
| 695 | crp->crp_etype = EINVAL; |
| 696 | return EINVAL; |
| 697 | } |
| 698 | |
| 699 | if (CPA_TRUE == atomic_read(&icp_ocfDrvIsExiting)) { |
| 700 | crp->crp_etype = EFAULT; |
| 701 | return EFAULT; |
| 702 | } |
| 703 | |
| 704 | sessionData = (struct icp_drvSessionData *) |
| 705 | (CRYPTO_SESID2LID(crp->crp_sid)); |
| 706 | if (NULL == sessionData) { |
| 707 | DPRINTK("%s(): Invalid input parameters, Null Session ID \n", |
| 708 | __FUNCTION__); |
| 709 | crp->crp_etype = EINVAL; |
| 710 | return EINVAL; |
| 711 | } |
| 712 | |
| 713 | /*If we get a request against a deregisted session, cancel operation*/ |
| 714 | if (ICP_SESSION_DEREGISTERED == sessionData->inUse) { |
| 715 | DPRINTK("%s(): Session ID %d was deregistered \n", |
| 716 | __FUNCTION__, (int)(CRYPTO_SESID2LID(crp->crp_sid))); |
| 717 | crp->crp_etype = EFAULT; |
| 718 | return EFAULT; |
| 719 | } |
| 720 | |
| 721 | /*If none of the session states are set, then the session structure was either |
| 722 | not initialised properly or we are reading from a freed memory area (possible |
| 723 | due to OCF batch mode not removing queued requests against deregistered |
| 724 | sessions*/ |
| 725 | if (ICP_SESSION_INITIALISED != sessionData->inUse && |
| 726 | ICP_SESSION_RUNNING != sessionData->inUse) { |
| 727 | DPRINTK("%s(): Session - ID %d - not properly initialised or " |
| 728 | "memory freed back to the kernel \n", |
| 729 | __FUNCTION__, (int)(CRYPTO_SESID2LID(crp->crp_sid))); |
| 730 | crp->crp_etype = EINVAL; |
| 731 | return EINVAL; |
| 732 | } |
| 733 | |
| 734 | /*For the below checks, remember error checking is already done in LAC. |
| 735 | We're not validating inputs subsequent to registration */ |
| 736 | if (sessionData->inUse == ICP_SESSION_INITIALISED) { |
| 737 | DPRINTK("%s(): Initialising session\n", __FUNCTION__); |
| 738 | |
| 739 | if (NULL != crp->crp_desc->crd_next) { |
| 740 | if (ICP_OCF_DRV_ALG_CIPHER == |
| 741 | icp_ocfDrvAlgCheck(crp->crp_desc)) { |
| 742 | |
| 743 | sessionData->lacSessCtx.algChainOrder = |
| 744 | CPA_CY_SYM_ALG_CHAIN_ORDER_CIPHER_THEN_HASH; |
| 745 | |
| 746 | if (crp->crp_desc->crd_flags & CRD_F_ENCRYPT) { |
| 747 | sessionData->lacSessCtx.cipherSetupData. |
| 748 | cipherDirection = |
| 749 | CPA_CY_SYM_CIPHER_DIRECTION_ENCRYPT; |
| 750 | } else { |
| 751 | sessionData->lacSessCtx.cipherSetupData. |
| 752 | cipherDirection = |
| 753 | CPA_CY_SYM_CIPHER_DIRECTION_DECRYPT; |
| 754 | } |
| 755 | } else { |
| 756 | sessionData->lacSessCtx.algChainOrder = |
| 757 | CPA_CY_SYM_ALG_CHAIN_ORDER_HASH_THEN_CIPHER; |
| 758 | |
| 759 | if (crp->crp_desc->crd_next->crd_flags & |
| 760 | CRD_F_ENCRYPT) { |
| 761 | sessionData->lacSessCtx.cipherSetupData. |
| 762 | cipherDirection = |
| 763 | CPA_CY_SYM_CIPHER_DIRECTION_ENCRYPT; |
| 764 | } else { |
| 765 | sessionData->lacSessCtx.cipherSetupData. |
| 766 | cipherDirection = |
| 767 | CPA_CY_SYM_CIPHER_DIRECTION_DECRYPT; |
| 768 | } |
| 769 | |
| 770 | } |
| 771 | |
| 772 | } else if (ICP_OCF_DRV_ALG_CIPHER == |
| 773 | icp_ocfDrvAlgCheck(crp->crp_desc)) { |
| 774 | if (crp->crp_desc->crd_flags & CRD_F_ENCRYPT) { |
| 775 | sessionData->lacSessCtx.cipherSetupData. |
| 776 | cipherDirection = |
| 777 | CPA_CY_SYM_CIPHER_DIRECTION_ENCRYPT; |
| 778 | } else { |
| 779 | sessionData->lacSessCtx.cipherSetupData. |
| 780 | cipherDirection = |
| 781 | CPA_CY_SYM_CIPHER_DIRECTION_DECRYPT; |
| 782 | } |
| 783 | |
| 784 | } |
| 785 | |
| 786 | /*No action required for standalone Auth here */ |
| 787 | |
| 788 | /* Allocate memory for SymSessionCtx before the Session Registration */ |
| 789 | lacStatus = |
| 790 | cpaCySymSessionCtxGetSize(CPA_INSTANCE_HANDLE_SINGLE, |
| 791 | &(sessionData->lacSessCtx), |
| 792 | &sessionCtxSizeInBytes); |
| 793 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 794 | EPRINTK("%s(): cpaCySymSessionCtxGetSize failed - %d\n", |
| 795 | __FUNCTION__, lacStatus); |
| 796 | return EINVAL; |
| 797 | } |
| 798 | sessionData->sessHandle = |
| 799 | kmalloc(sessionCtxSizeInBytes, GFP_ATOMIC); |
| 800 | if (NULL == sessionData->sessHandle) { |
| 801 | EPRINTK |
| 802 | ("%s(): Failed to get memory for SymSessionCtx\n", |
| 803 | __FUNCTION__); |
| 804 | return ENOMEM; |
| 805 | } |
| 806 | |
| 807 | lacStatus = cpaCySymInitSession(CPA_INSTANCE_HANDLE_SINGLE, |
| 808 | icp_ocfDrvSymCallBack, |
| 809 | &(sessionData->lacSessCtx), |
| 810 | sessionData->sessHandle); |
| 811 | |
| 812 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 813 | EPRINTK("%s(): cpaCySymInitSession failed -%d \n", |
| 814 | __FUNCTION__, lacStatus); |
| 815 | return EFAULT; |
| 816 | } |
| 817 | |
| 818 | sessionData->inUse = ICP_SESSION_RUNNING; |
| 819 | } |
| 820 | |
| 821 | drvOpData = kmem_cache_zalloc(drvOpData_zone, GFP_ATOMIC); |
| 822 | if (NULL == drvOpData) { |
| 823 | EPRINTK("%s():Failed to get memory for drvOpData\n", |
| 824 | __FUNCTION__); |
| 825 | crp->crp_etype = ENOMEM; |
| 826 | return ENOMEM; |
| 827 | } |
| 828 | |
| 829 | drvOpData->lacOpData.pSessionCtx = sessionData->sessHandle; |
| 830 | drvOpData->digestSizeInBytes = sessionData->lacSessCtx.hashSetupData. |
| 831 | digestResultLenInBytes; |
| 832 | drvOpData->crp = crp; |
| 833 | |
| 834 | /* Set the default buffer list array memory allocation */ |
| 835 | drvOpData->srcBuffer.pBuffers = drvOpData->bufferListArray; |
| 836 | drvOpData->numBufferListArray = ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS; |
| 837 | |
| 838 | /* |
| 839 | * Allocate buffer list array memory allocation if the |
| 840 | * data fragment is more than the default allocation |
| 841 | */ |
| 842 | if (crp->crp_flags & CRYPTO_F_SKBUF) { |
| 843 | numBufferListArray = icp_ocfDrvGetSkBuffFrags((struct sk_buff *) |
| 844 | crp->crp_buf); |
| 845 | if (ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS < numBufferListArray) { |
| 846 | DPRINTK("%s() numBufferListArray more than default\n", |
| 847 | __FUNCTION__); |
| 848 | drvOpData->srcBuffer.pBuffers = NULL; |
| 849 | drvOpData->srcBuffer.pBuffers = |
| 850 | kmalloc(numBufferListArray * |
| 851 | sizeof(CpaFlatBuffer), GFP_ATOMIC); |
| 852 | if (NULL == drvOpData->srcBuffer.pBuffers) { |
| 853 | EPRINTK("%s() Failed to get memory for " |
| 854 | "pBuffers\n", __FUNCTION__); |
| 855 | kmem_cache_free(drvOpData_zone, drvOpData); |
| 856 | crp->crp_etype = ENOMEM; |
| 857 | return ENOMEM; |
| 858 | } |
| 859 | drvOpData->numBufferListArray = numBufferListArray; |
| 860 | } |
| 861 | } |
| 862 | |
| 863 | /* |
| 864 | * Check the type of buffer structure we got and convert it into |
| 865 | * CpaBufferList format. |
| 866 | */ |
| 867 | if (crp->crp_flags & CRYPTO_F_SKBUF) { |
| 868 | if (ICP_OCF_DRV_STATUS_SUCCESS != |
| 869 | icp_ocfDrvSkBuffToBufferList((struct sk_buff *)crp->crp_buf, |
| 870 | &(drvOpData->srcBuffer))) { |
| 871 | EPRINTK("%s():Failed to translate from SK_BUF " |
| 872 | "to bufferlist\n", __FUNCTION__); |
| 873 | crp->crp_etype = EINVAL; |
| 874 | goto err; |
| 875 | } |
| 876 | |
| 877 | drvOpData->bufferType = CRYPTO_F_SKBUF; |
| 878 | } else if (crp->crp_flags & CRYPTO_F_IOV) { |
| 879 | /* OCF only supports IOV of one entry. */ |
| 880 | if (NUM_IOV_SUPPORTED == |
| 881 | ((struct uio *)(crp->crp_buf))->uio_iovcnt) { |
| 882 | |
| 883 | icp_ocfDrvPtrAndLenToBufferList(((struct uio *)(crp-> |
| 884 | crp_buf))-> |
| 885 | uio_iov[0].iov_base, |
| 886 | ((struct uio *)(crp-> |
| 887 | crp_buf))-> |
| 888 | uio_iov[0].iov_len, |
| 889 | &(drvOpData-> |
| 890 | srcBuffer)); |
| 891 | |
| 892 | drvOpData->bufferType = CRYPTO_F_IOV; |
| 893 | |
| 894 | } else { |
| 895 | DPRINTK("%s():Unable to handle IOVs with lengths of " |
| 896 | "greater than one!\n", __FUNCTION__); |
| 897 | crp->crp_etype = EINVAL; |
| 898 | goto err; |
| 899 | } |
| 900 | |
| 901 | } else { |
| 902 | icp_ocfDrvPtrAndLenToBufferList(crp->crp_buf, |
| 903 | crp->crp_ilen, |
| 904 | &(drvOpData->srcBuffer)); |
| 905 | |
| 906 | drvOpData->bufferType = CRYPTO_BUF_CONTIG; |
| 907 | } |
| 908 | |
| 909 | if (ICP_OCF_DRV_STATUS_SUCCESS != |
| 910 | icp_ocfDrvProcessDataSetup(drvOpData, drvOpData->crp->crp_desc)) { |
| 911 | crp->crp_etype = EINVAL; |
| 912 | goto err; |
| 913 | } |
| 914 | |
| 915 | if (drvOpData->crp->crp_desc->crd_next != NULL) { |
| 916 | if (icp_ocfDrvProcessDataSetup(drvOpData, drvOpData->crp-> |
| 917 | crp_desc->crd_next)) { |
| 918 | crp->crp_etype = EINVAL; |
| 919 | goto err; |
| 920 | } |
| 921 | |
| 922 | } |
| 923 | |
| 924 | /* Allocate srcBuffer's private meta data */ |
| 925 | if (ICP_OCF_DRV_STATUS_SUCCESS != |
| 926 | icp_ocfDrvAllocMetaData(&(drvOpData->srcBuffer), drvOpData)) { |
| 927 | EPRINTK("%s() icp_ocfDrvAllocMetaData failed\n", __FUNCTION__); |
| 928 | memset(&(drvOpData->lacOpData), 0, sizeof(CpaCySymOpData)); |
| 929 | crp->crp_etype = EINVAL; |
| 930 | goto err; |
| 931 | } |
| 932 | |
| 933 | /* Perform "in-place" crypto operation */ |
| 934 | lacStatus = cpaCySymPerformOp(CPA_INSTANCE_HANDLE_SINGLE, |
| 935 | (void *)drvOpData, |
| 936 | &(drvOpData->lacOpData), |
| 937 | &(drvOpData->srcBuffer), |
| 938 | &(drvOpData->srcBuffer), |
| 939 | &(drvOpData->verifyResult)); |
| 940 | if (CPA_STATUS_RETRY == lacStatus) { |
| 941 | DPRINTK("%s(): cpaCySymPerformOp retry, lacStatus = %d\n", |
| 942 | __FUNCTION__, lacStatus); |
| 943 | memset(&(drvOpData->lacOpData), 0, sizeof(CpaCySymOpData)); |
| 944 | crp->crp_etype = EINVAL; |
| 945 | goto err; |
| 946 | } |
| 947 | if (CPA_STATUS_SUCCESS != lacStatus) { |
| 948 | EPRINTK("%s(): cpaCySymPerformOp failed, lacStatus = %d\n", |
| 949 | __FUNCTION__, lacStatus); |
| 950 | memset(&(drvOpData->lacOpData), 0, sizeof(CpaCySymOpData)); |
| 951 | crp->crp_etype = EINVAL; |
| 952 | goto err; |
| 953 | } |
| 954 | |
| 955 | return 0; //OCF success status value |
| 956 | |
| 957 | err: |
| 958 | if (drvOpData->numBufferListArray > ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS) { |
| 959 | kfree(drvOpData->srcBuffer.pBuffers); |
| 960 | } |
| 961 | icp_ocfDrvFreeMetaData(&(drvOpData->srcBuffer)); |
| 962 | kmem_cache_free(drvOpData_zone, drvOpData); |
| 963 | |
| 964 | return crp->crp_etype; |
| 965 | } |
| 966 | |
| 967 | /* Name : icp_ocfDrvProcessDataSetup |
| 968 | * |
| 969 | * Description : This function will setup all the cryptographic operation data |
| 970 | * that is required by LAC to execute the operation. |
| 971 | */ |
| 972 | static int icp_ocfDrvProcessDataSetup(struct icp_drvOpData *drvOpData, |
| 973 | struct cryptodesc *crp_desc) |
| 974 | { |
| 975 | CpaCyRandGenOpData randGenOpData; |
| 976 | CpaFlatBuffer randData; |
| 977 | |
| 978 | drvOpData->lacOpData.packetType = CPA_CY_SYM_PACKET_TYPE_FULL; |
| 979 | |
| 980 | /* Convert from the cryptop to the ICP LAC crypto parameters */ |
| 981 | switch (crp_desc->crd_alg) { |
| 982 | case CRYPTO_NULL_CBC: |
| 983 | drvOpData->lacOpData. |
| 984 | cryptoStartSrcOffsetInBytes = crp_desc->crd_skip; |
| 985 | drvOpData->lacOpData. |
| 986 | messageLenToCipherInBytes = crp_desc->crd_len; |
| 987 | drvOpData->verifyResult = CPA_FALSE; |
| 988 | drvOpData->lacOpData.ivLenInBytes = NULL_BLOCK_LEN; |
| 989 | break; |
| 990 | case CRYPTO_DES_CBC: |
| 991 | drvOpData->lacOpData. |
| 992 | cryptoStartSrcOffsetInBytes = crp_desc->crd_skip; |
| 993 | drvOpData->lacOpData. |
| 994 | messageLenToCipherInBytes = crp_desc->crd_len; |
| 995 | drvOpData->verifyResult = CPA_FALSE; |
| 996 | drvOpData->lacOpData.ivLenInBytes = DES_BLOCK_LEN; |
| 997 | break; |
| 998 | case CRYPTO_3DES_CBC: |
| 999 | drvOpData->lacOpData. |
| 1000 | cryptoStartSrcOffsetInBytes = crp_desc->crd_skip; |
| 1001 | drvOpData->lacOpData. |
| 1002 | messageLenToCipherInBytes = crp_desc->crd_len; |
| 1003 | drvOpData->verifyResult = CPA_FALSE; |
| 1004 | drvOpData->lacOpData.ivLenInBytes = DES3_BLOCK_LEN; |
| 1005 | break; |
| 1006 | case CRYPTO_ARC4: |
| 1007 | drvOpData->lacOpData. |
| 1008 | cryptoStartSrcOffsetInBytes = crp_desc->crd_skip; |
| 1009 | drvOpData->lacOpData. |
| 1010 | messageLenToCipherInBytes = crp_desc->crd_len; |
| 1011 | drvOpData->verifyResult = CPA_FALSE; |
| 1012 | drvOpData->lacOpData.ivLenInBytes = ARC4_COUNTER_LEN; |
| 1013 | break; |
| 1014 | case CRYPTO_AES_CBC: |
| 1015 | drvOpData->lacOpData. |
| 1016 | cryptoStartSrcOffsetInBytes = crp_desc->crd_skip; |
| 1017 | drvOpData->lacOpData. |
| 1018 | messageLenToCipherInBytes = crp_desc->crd_len; |
| 1019 | drvOpData->verifyResult = CPA_FALSE; |
| 1020 | drvOpData->lacOpData.ivLenInBytes = RIJNDAEL128_BLOCK_LEN; |
| 1021 | break; |
| 1022 | case CRYPTO_SHA1: |
| 1023 | case CRYPTO_SHA1_HMAC: |
| 1024 | case CRYPTO_SHA2_256: |
| 1025 | case CRYPTO_SHA2_256_HMAC: |
| 1026 | case CRYPTO_SHA2_384: |
| 1027 | case CRYPTO_SHA2_384_HMAC: |
| 1028 | case CRYPTO_SHA2_512: |
| 1029 | case CRYPTO_SHA2_512_HMAC: |
| 1030 | case CRYPTO_MD5: |
| 1031 | case CRYPTO_MD5_HMAC: |
| 1032 | drvOpData->lacOpData. |
| 1033 | hashStartSrcOffsetInBytes = crp_desc->crd_skip; |
| 1034 | drvOpData->lacOpData. |
| 1035 | messageLenToHashInBytes = crp_desc->crd_len; |
| 1036 | drvOpData->lacOpData. |
| 1037 | pDigestResult = |
| 1038 | icp_ocfDrvDigestPointerFind(drvOpData, crp_desc); |
| 1039 | |
| 1040 | if (NULL == drvOpData->lacOpData.pDigestResult) { |
| 1041 | DPRINTK("%s(): ERROR - could not calculate " |
| 1042 | "Digest Result memory address\n", __FUNCTION__); |
| 1043 | return ICP_OCF_DRV_STATUS_FAIL; |
| 1044 | } |
| 1045 | |
| 1046 | drvOpData->lacOpData.digestVerify = CPA_FALSE; |
| 1047 | break; |
| 1048 | default: |
| 1049 | DPRINTK("%s(): Crypto process error - algorithm not " |
| 1050 | "found \n", __FUNCTION__); |
| 1051 | return ICP_OCF_DRV_STATUS_FAIL; |
| 1052 | } |
| 1053 | |
| 1054 | /* Figure out what the IV is supposed to be */ |
| 1055 | if ((crp_desc->crd_alg == CRYPTO_DES_CBC) || |
| 1056 | (crp_desc->crd_alg == CRYPTO_3DES_CBC) || |
| 1057 | (crp_desc->crd_alg == CRYPTO_AES_CBC)) { |
| 1058 | /*ARC4 doesn't use an IV */ |
| 1059 | if (crp_desc->crd_flags & CRD_F_IV_EXPLICIT) { |
| 1060 | /* Explicit IV provided to OCF */ |
| 1061 | drvOpData->lacOpData.pIv = crp_desc->crd_iv; |
| 1062 | } else { |
| 1063 | /* IV is not explicitly provided to OCF */ |
| 1064 | |
| 1065 | /* Point the LAC OP Data IV pointer to our allocated |
| 1066 | storage location for this session. */ |
| 1067 | drvOpData->lacOpData.pIv = drvOpData->ivData; |
| 1068 | |
| 1069 | if ((crp_desc->crd_flags & CRD_F_ENCRYPT) && |
| 1070 | ((crp_desc->crd_flags & CRD_F_IV_PRESENT) == 0)) { |
| 1071 | |
| 1072 | /* Encrypting - need to create IV */ |
| 1073 | randGenOpData.generateBits = CPA_TRUE; |
| 1074 | randGenOpData.lenInBytes = MAX_IV_LEN_IN_BYTES; |
| 1075 | |
| 1076 | icp_ocfDrvPtrAndLenToFlatBuffer((Cpa8U *) |
| 1077 | drvOpData-> |
| 1078 | ivData, |
| 1079 | MAX_IV_LEN_IN_BYTES, |
| 1080 | &randData); |
| 1081 | |
| 1082 | if (CPA_STATUS_SUCCESS != |
| 1083 | cpaCyRandGen(CPA_INSTANCE_HANDLE_SINGLE, |
| 1084 | NULL, NULL, |
| 1085 | &randGenOpData, &randData)) { |
| 1086 | DPRINTK("%s(): ERROR - Failed to" |
| 1087 | " generate" |
| 1088 | " Initialisation Vector\n", |
| 1089 | __FUNCTION__); |
| 1090 | return ICP_OCF_DRV_STATUS_FAIL; |
| 1091 | } |
| 1092 | |
| 1093 | crypto_copyback(drvOpData->crp-> |
| 1094 | crp_flags, |
| 1095 | drvOpData->crp->crp_buf, |
| 1096 | crp_desc->crd_inject, |
| 1097 | drvOpData->lacOpData. |
| 1098 | ivLenInBytes, |
| 1099 | (caddr_t) (drvOpData->lacOpData. |
| 1100 | pIv)); |
| 1101 | } else { |
| 1102 | /* Reading IV from buffer */ |
| 1103 | crypto_copydata(drvOpData->crp-> |
| 1104 | crp_flags, |
| 1105 | drvOpData->crp->crp_buf, |
| 1106 | crp_desc->crd_inject, |
| 1107 | drvOpData->lacOpData. |
| 1108 | ivLenInBytes, |
| 1109 | (caddr_t) (drvOpData->lacOpData. |
| 1110 | pIv)); |
| 1111 | } |
| 1112 | |
| 1113 | } |
| 1114 | |
| 1115 | } |
| 1116 | |
| 1117 | return ICP_OCF_DRV_STATUS_SUCCESS; |
| 1118 | } |
| 1119 | |
| 1120 | /* Name : icp_ocfDrvDigestPointerFind |
| 1121 | * |
| 1122 | * Description : This function is used to find the memory address of where the |
| 1123 | * digest information shall be stored in. Input buffer types are an skbuff, iov |
| 1124 | * or flat buffer. The address is found using the buffer data start address and |
| 1125 | * an offset. |
| 1126 | * |
| 1127 | * Note: In the case of a linux skbuff, the digest address may exist within |
| 1128 | * a memory space linked to from the start buffer. These linked memory spaces |
| 1129 | * must be traversed by the data length offset in order to find the digest start |
| 1130 | * address. Whether there is enough space for the digest must also be checked. |
| 1131 | */ |
| 1132 | |
| 1133 | static uint8_t *icp_ocfDrvDigestPointerFind(struct icp_drvOpData *drvOpData, |
| 1134 | struct cryptodesc *crp_desc) |
| 1135 | { |
| 1136 | |
| 1137 | int offsetInBytes = crp_desc->crd_inject; |
| 1138 | uint32_t digestSizeInBytes = drvOpData->digestSizeInBytes; |
| 1139 | uint8_t *flat_buffer_base = NULL; |
| 1140 | int flat_buffer_length = 0; |
| 1141 | struct sk_buff *skb; |
| 1142 | |
| 1143 | if (drvOpData->crp->crp_flags & CRYPTO_F_SKBUF) { |
| 1144 | /*check if enough overall space to store hash */ |
| 1145 | skb = (struct sk_buff *)(drvOpData->crp->crp_buf); |
| 1146 | |
| 1147 | if (skb->len < (offsetInBytes + digestSizeInBytes)) { |
| 1148 | DPRINTK("%s() Not enough space for Digest" |
| 1149 | " payload after the offset (%d), " |
| 1150 | "digest size (%d) \n", __FUNCTION__, |
| 1151 | offsetInBytes, digestSizeInBytes); |
| 1152 | return NULL; |
| 1153 | } |
| 1154 | |
| 1155 | return icp_ocfDrvSkbuffDigestPointerFind(drvOpData, |
| 1156 | offsetInBytes, |
| 1157 | digestSizeInBytes); |
| 1158 | |
| 1159 | } else { |
| 1160 | /* IOV or flat buffer */ |
| 1161 | if (drvOpData->crp->crp_flags & CRYPTO_F_IOV) { |
| 1162 | /*single IOV check has already been done */ |
| 1163 | flat_buffer_base = ((struct uio *) |
| 1164 | (drvOpData->crp->crp_buf))-> |
| 1165 | uio_iov[0].iov_base; |
| 1166 | flat_buffer_length = ((struct uio *) |
| 1167 | (drvOpData->crp->crp_buf))-> |
| 1168 | uio_iov[0].iov_len; |
| 1169 | } else { |
| 1170 | flat_buffer_base = (uint8_t *) drvOpData->crp->crp_buf; |
| 1171 | flat_buffer_length = drvOpData->crp->crp_ilen; |
| 1172 | } |
| 1173 | |
| 1174 | if (flat_buffer_length < (offsetInBytes + digestSizeInBytes)) { |
| 1175 | DPRINTK("%s() Not enough space for Digest " |
| 1176 | "(IOV/Flat Buffer) \n", __FUNCTION__); |
| 1177 | return NULL; |
| 1178 | } else { |
| 1179 | return (uint8_t *) (flat_buffer_base + offsetInBytes); |
| 1180 | } |
| 1181 | } |
| 1182 | DPRINTK("%s() Should not reach this point\n", __FUNCTION__); |
| 1183 | return NULL; |
| 1184 | } |
| 1185 | |
| 1186 | /* Name : icp_ocfDrvSkbuffDigestPointerFind |
| 1187 | * |
| 1188 | * Description : This function is used by icp_ocfDrvDigestPointerFind to process |
| 1189 | * the non-linear portion of the skbuff if the fragmentation type is a linked |
| 1190 | * list (frag_list is not NULL in the skb_shared_info structure) |
| 1191 | */ |
| 1192 | static inline uint8_t *icp_ocfDrvSkbuffDigestPointerFind(struct icp_drvOpData |
| 1193 | *drvOpData, |
| 1194 | int offsetInBytes, |
| 1195 | uint32_t |
| 1196 | digestSizeInBytes) |
| 1197 | { |
| 1198 | |
| 1199 | struct sk_buff *skb = NULL; |
| 1200 | struct skb_shared_info *skb_shared = NULL; |
| 1201 | |
| 1202 | uint32_t skbuffisnonlinear = 0; |
| 1203 | |
| 1204 | uint32_t skbheadlen = 0; |
| 1205 | |
| 1206 | skb = (struct sk_buff *)(drvOpData->crp->crp_buf); |
| 1207 | skbuffisnonlinear = skb_is_nonlinear(skb); |
| 1208 | |
| 1209 | skbheadlen = skb_headlen(skb); |
| 1210 | |
| 1211 | /*Linear skb checks */ |
| 1212 | if (skbheadlen > offsetInBytes) { |
| 1213 | |
| 1214 | if (skbheadlen >= (offsetInBytes + digestSizeInBytes)) { |
| 1215 | return (uint8_t *) (skb->data + offsetInBytes); |
| 1216 | } else { |
| 1217 | DPRINTK("%s() Auth payload stretches " |
| 1218 | "accross contiguous memory\n", __FUNCTION__); |
| 1219 | return NULL; |
| 1220 | } |
| 1221 | } else { |
| 1222 | if (skbuffisnonlinear) { |
| 1223 | offsetInBytes -= skbheadlen; |
| 1224 | } else { |
| 1225 | DPRINTK("%s() Offset outside of buffer boundaries\n", |
| 1226 | __FUNCTION__); |
| 1227 | return NULL; |
| 1228 | } |
| 1229 | } |
| 1230 | |
| 1231 | /*Non Linear checks */ |
| 1232 | skb_shared = (struct skb_shared_info *)(skb->end); |
| 1233 | if (unlikely(NULL == skb_shared)) { |
| 1234 | DPRINTK("%s() skbuff shared info stucture is NULL! \n", |
| 1235 | __FUNCTION__); |
| 1236 | return NULL; |
| 1237 | } else if ((0 != skb_shared->nr_frags) && |
| 1238 | (skb_shared->frag_list != NULL)) { |
| 1239 | DPRINTK("%s() skbuff nr_frags AND " |
| 1240 | "frag_list not supported \n", __FUNCTION__); |
| 1241 | return NULL; |
| 1242 | } |
| 1243 | |
| 1244 | /*TCP segmentation more likely than IP fragmentation */ |
| 1245 | if (likely(0 != skb_shared->nr_frags)) { |
| 1246 | return icp_ocfDrvDigestSkbNRFragsCheck(skb, skb_shared, |
| 1247 | offsetInBytes, |
| 1248 | digestSizeInBytes); |
| 1249 | } else if (skb_shared->frag_list != NULL) { |
| 1250 | return icp_ocfDrvDigestSkbFragListCheck(skb, skb_shared, |
| 1251 | offsetInBytes, |
| 1252 | digestSizeInBytes); |
| 1253 | } else { |
| 1254 | DPRINTK("%s() skbuff is non-linear but does not show any " |
| 1255 | "linked data\n", __FUNCTION__); |
| 1256 | return NULL; |
| 1257 | } |
| 1258 | |
| 1259 | } |
| 1260 | |
| 1261 | /* Name : icp_ocfDrvDigestSkbNRFragsCheck |
| 1262 | * |
| 1263 | * Description : This function is used by icp_ocfDrvSkbuffDigestPointerFind to |
| 1264 | * process the non-linear portion of the skbuff, if the fragmentation type is |
| 1265 | * page fragments |
| 1266 | */ |
| 1267 | static inline uint8_t *icp_ocfDrvDigestSkbNRFragsCheck(struct sk_buff *skb, |
| 1268 | struct skb_shared_info |
| 1269 | *skb_shared, |
| 1270 | int offsetInBytes, |
| 1271 | uint32_t |
| 1272 | digestSizeInBytes) |
| 1273 | { |
| 1274 | int i = 0; |
| 1275 | /*nr_frags starts from 1 */ |
| 1276 | if (MAX_SKB_FRAGS < skb_shared->nr_frags) { |
| 1277 | DPRINTK("%s error processing skbuff " |
| 1278 | "page frame -- MAX FRAGS exceeded \n", __FUNCTION__); |
| 1279 | return NULL; |
| 1280 | } |
| 1281 | |
| 1282 | for (i = 0; i < skb_shared->nr_frags; i++) { |
| 1283 | |
| 1284 | if (offsetInBytes >= skb_shared->frags[i].size) { |
| 1285 | /*offset still greater than data position */ |
| 1286 | offsetInBytes -= skb_shared->frags[i].size; |
| 1287 | } else { |
| 1288 | /* found the page containing start of hash */ |
| 1289 | |
| 1290 | if (NULL == skb_shared->frags[i].page) { |
| 1291 | DPRINTK("%s() Linked page is NULL!\n", |
| 1292 | __FUNCTION__); |
| 1293 | return NULL; |
| 1294 | } |
| 1295 | |
| 1296 | if (offsetInBytes + digestSizeInBytes > |
| 1297 | skb_shared->frags[i].size) { |
| 1298 | DPRINTK("%s() Auth payload stretches accross " |
| 1299 | "contiguous memory\n", __FUNCTION__); |
| 1300 | return NULL; |
| 1301 | } else { |
| 1302 | return (uint8_t *) (skb_shared->frags[i].page + |
| 1303 | skb_shared->frags[i]. |
| 1304 | page_offset + |
| 1305 | offsetInBytes); |
| 1306 | } |
| 1307 | } |
| 1308 | /*only possible if internal page sizes are set wrong */ |
| 1309 | if (offsetInBytes < 0) { |
| 1310 | DPRINTK("%s error processing skbuff page frame " |
| 1311 | "-- offset calculation \n", __FUNCTION__); |
| 1312 | return NULL; |
| 1313 | } |
| 1314 | } |
| 1315 | /*only possible if internal page sizes are set wrong */ |
| 1316 | DPRINTK("%s error processing skbuff page frame " |
| 1317 | "-- ran out of page fragments, remaining offset = %d \n", |
| 1318 | __FUNCTION__, offsetInBytes); |
| 1319 | return NULL; |
| 1320 | |
| 1321 | } |
| 1322 | |
| 1323 | /* Name : icp_ocfDrvDigestSkbFragListCheck |
| 1324 | * |
| 1325 | * Description : This function is used by icp_ocfDrvSkbuffDigestPointerFind to |
| 1326 | * process the non-linear portion of the skbuff, if the fragmentation type is |
| 1327 | * a linked list |
| 1328 | * |
| 1329 | */ |
| 1330 | static inline uint8_t *icp_ocfDrvDigestSkbFragListCheck(struct sk_buff *skb, |
| 1331 | struct skb_shared_info |
| 1332 | *skb_shared, |
| 1333 | int offsetInBytes, |
| 1334 | uint32_t |
| 1335 | digestSizeInBytes) |
| 1336 | { |
| 1337 | |
| 1338 | struct sk_buff *skb_list = skb_shared->frag_list; |
| 1339 | /*check added for readability */ |
| 1340 | if (NULL == skb_list) { |
| 1341 | DPRINTK("%s error processing skbuff " |
| 1342 | "-- no more list! \n", __FUNCTION__); |
| 1343 | return NULL; |
| 1344 | } |
| 1345 | |
| 1346 | for (; skb_list; skb_list = skb_list->next) { |
| 1347 | if (NULL == skb_list) { |
| 1348 | DPRINTK("%s error processing skbuff " |
| 1349 | "-- no more list! \n", __FUNCTION__); |
| 1350 | return NULL; |
| 1351 | } |
| 1352 | |
| 1353 | if (offsetInBytes >= skb_list->len) { |
| 1354 | offsetInBytes -= skb_list->len; |
| 1355 | |
| 1356 | } else { |
| 1357 | if (offsetInBytes + digestSizeInBytes > skb_list->len) { |
| 1358 | DPRINTK("%s() Auth payload stretches accross " |
| 1359 | "contiguous memory\n", __FUNCTION__); |
| 1360 | return NULL; |
| 1361 | } else { |
| 1362 | return (uint8_t *) |
| 1363 | (skb_list->data + offsetInBytes); |
| 1364 | } |
| 1365 | |
| 1366 | } |
| 1367 | |
| 1368 | /*This check is only needed if internal skb_list length values |
| 1369 | are set wrong. */ |
| 1370 | if (0 > offsetInBytes) { |
| 1371 | DPRINTK("%s() error processing skbuff object -- offset " |
| 1372 | "calculation \n", __FUNCTION__); |
| 1373 | return NULL; |
| 1374 | } |
| 1375 | |
| 1376 | } |
| 1377 | |
| 1378 | /*catch all for unusual for-loop exit. |
| 1379 | This code should never be reached */ |
| 1380 | DPRINTK("%s() Catch-All hit! Process error.\n", __FUNCTION__); |
| 1381 | return NULL; |
| 1382 | } |
| 1383 | |