Root/target/linux/octeon/patches-2.6.30/018-dwc_otg.patch

1Signed-off-by: David Daney <ddaney@caviumnetworks.com>
2---
3 arch/mips/cavium-octeon/octeon-platform.c | 105 ++
4 arch/mips/include/asm/octeon/cvmx-usbcx-defs.h | 1199 ++++++++++++++++++++++++
5 arch/mips/include/asm/octeon/cvmx-usbnx-defs.h | 760 +++++++++++++++
6 3 files changed, 2064 insertions(+), 0 deletions(-)
7 create mode 100644 arch/mips/include/asm/octeon/cvmx-usbcx-defs.h
8 create mode 100644 arch/mips/include/asm/octeon/cvmx-usbnx-defs.h
9
10diff --git a/arch/mips/cavium-octeon/octeon-platform.c b/arch/mips/cavium-octeon/octeon-platform.c
11index cfdb4c2..20698a6 100644
12--- a/arch/mips/cavium-octeon/octeon-platform.c
13+++ b/arch/mips/cavium-octeon/octeon-platform.c
14@@ -7,13 +7,19 @@
15  * Copyright (C) 2008 Wind River Systems
16  */
17 
18+#include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/irq.h>
21+#include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/platform_device.h>
24 
25+#include <asm/time.h>
26+
27 #include <asm/octeon/octeon.h>
28 #include <asm/octeon/cvmx-rnm-defs.h>
29+#include <asm/octeon/cvmx-usbnx-defs.h>
30+#include <asm/octeon/cvmx-usbcx-defs.h>
31 
32 static struct octeon_cf_data octeon_cf_data;
33 
34@@ -247,6 +253,105 @@ out:
35 }
36 device_initcall(octeon_mgmt_device_init);
37 
38+/* Octeon USB. */
39+static int __init octeon_usb_device_init(void)
40+{
41+ int p_rtype_ref_clk = 2;
42+ int number_usb_ports;
43+ int usb_port;
44+ int ret = 0;
45+
46+ if (OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)) {
47+ number_usb_ports = 0;
48+ } else if (OCTEON_IS_MODEL(OCTEON_CN52XX)) {
49+ number_usb_ports = 2;
50+ /* CN52XX encodes this field differently */
51+ p_rtype_ref_clk = 1;
52+ } else {
53+ number_usb_ports = 1;
54+ }
55+
56+ for (usb_port = 0; usb_port < number_usb_ports; usb_port++) {
57+ int divisor;
58+ union cvmx_usbnx_clk_ctl usbn_clk_ctl;
59+ struct platform_device *pdev;
60+ struct resource usb_resource[2];
61+
62+ /*
63+ * Divide the core clock down such that USB is as
64+ * close as possible to 125Mhz.
65+ */
66+ divisor = DIV_ROUND_UP(mips_hpt_frequency, 125000000);
67+ /* Lower than 4 doesn't seem to work properly */
68+ if (divisor < 4)
69+ divisor = 4;
70+
71+ /* Fetch the value of the Register, and de-assert POR */
72+ usbn_clk_ctl.u64 = cvmx_read_csr(CVMX_USBNX_CLK_CTL(usb_port));
73+ usbn_clk_ctl.s.por = 0;
74+ if (OCTEON_IS_MODEL(OCTEON_CN3XXX)) {
75+ usbn_clk_ctl.cn31xx.p_rclk = 1;
76+ usbn_clk_ctl.cn31xx.p_xenbn = 0;
77+ } else {
78+ if (cvmx_sysinfo_get()->board_type !=
79+ CVMX_BOARD_TYPE_BBGW_REF)
80+ usbn_clk_ctl.cn56xx.p_rtype = p_rtype_ref_clk;
81+ else
82+ usbn_clk_ctl.cn56xx.p_rtype = 0;
83+ }
84+ usbn_clk_ctl.s.divide = divisor;
85+ usbn_clk_ctl.s.divide2 = 0;
86+ cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb_port), usbn_clk_ctl.u64);
87+
88+ /* Wait for POR */
89+ udelay(850);
90+
91+ usbn_clk_ctl.u64 = cvmx_read_csr(CVMX_USBNX_CLK_CTL(usb_port));
92+ usbn_clk_ctl.s.por = 0;
93+ if (OCTEON_IS_MODEL(OCTEON_CN3XXX)) {
94+ usbn_clk_ctl.cn31xx.p_rclk = 1;
95+ usbn_clk_ctl.cn31xx.p_xenbn = 0;
96+ } else {
97+ if (cvmx_sysinfo_get()->board_type !=
98+ CVMX_BOARD_TYPE_BBGW_REF)
99+ usbn_clk_ctl.cn56xx.p_rtype = p_rtype_ref_clk;
100+ else
101+ usbn_clk_ctl.cn56xx.p_rtype = 0;
102+ }
103+ usbn_clk_ctl.s.prst = 1;
104+ cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb_port), usbn_clk_ctl.u64);
105+
106+ udelay(1);
107+
108+ usbn_clk_ctl.s.hrst = 1;
109+ cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb_port), usbn_clk_ctl.u64);
110+ udelay(1);
111+
112+ memset(usb_resource, 0, sizeof(usb_resource));
113+ usb_resource[0].start =
114+ XKPHYS_TO_PHYS(CVMX_USBCX_GOTGCTL(usb_port));
115+ usb_resource[0].end = usb_resource[0].start + 0x10000;
116+ usb_resource[0].flags = IORESOURCE_MEM;
117+
118+ usb_resource[1].start = (usb_port == 0) ?
119+ OCTEON_IRQ_USB0 : OCTEON_IRQ_USB1;
120+ usb_resource[1].end = usb_resource[1].start;
121+ usb_resource[1].flags = IORESOURCE_IRQ;
122+
123+ pdev = platform_device_register_simple("dwc_otg",
124+ usb_port,
125+ usb_resource, 2);
126+ if (!pdev) {
127+ pr_err("dwc_otg: Failed to allocate platform device "
128+ "for USB%d\n", usb_port);
129+ ret = -ENOMEM;
130+ }
131+ }
132+
133+ return ret;
134+}
135+device_initcall(octeon_usb_device_init);
136+
137 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
138 MODULE_LICENSE("GPL");
139 MODULE_DESCRIPTION("Platform driver for Octeon SOC");
140diff --git a/arch/mips/include/asm/octeon/cvmx-usbcx-defs.h b/arch/mips/include/asm/octeon/cvmx-usbcx-defs.h
141new file mode 100644
142index 0000000..c1e078e
143--- /dev/null
144+++ b/arch/mips/include/asm/octeon/cvmx-usbcx-defs.h
145@@ -0,0 +1,1199 @@
146+/***********************license start***************
147+ * Author: Cavium Networks
148+ *
149+ * Contact: support@caviumnetworks.com
150+ * This file is part of the OCTEON SDK
151+ *
152+ * Copyright (c) 2003-2008 Cavium Networks
153+ *
154+ * This file is free software; you can redistribute it and/or modify
155+ * it under the terms of the GNU General Public License, Version 2, as
156+ * published by the Free Software Foundation.
157+ *
158+ * This file is distributed in the hope that it will be useful, but
159+ * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
160+ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
161+ * NONINFRINGEMENT. See the GNU General Public License for more
162+ * details.
163+ *
164+ * You should have received a copy of the GNU General Public License
165+ * along with this file; if not, write to the Free Software
166+ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
167+ * or visit http://www.gnu.org/licenses/.
168+ *
169+ * This file may also be available under a different license from Cavium.
170+ * Contact Cavium Networks for more information
171+ ***********************license end**************************************/
172+
173+#ifndef __CVMX_USBCX_DEFS_H__
174+#define __CVMX_USBCX_DEFS_H__
175+
176+#define CVMX_USBCX_DAINT(block_id) \
177+ CVMX_ADD_IO_SEG(0x00016F0010000818ull + (((block_id) & 1) * 0x100000000000ull))
178+#define CVMX_USBCX_DAINTMSK(block_id) \
179+ CVMX_ADD_IO_SEG(0x00016F001000081Cull + (((block_id) & 1) * 0x100000000000ull))
180+#define CVMX_USBCX_DCFG(block_id) \
181+ CVMX_ADD_IO_SEG(0x00016F0010000800ull + (((block_id) & 1) * 0x100000000000ull))
182+#define CVMX_USBCX_DCTL(block_id) \
183+ CVMX_ADD_IO_SEG(0x00016F0010000804ull + (((block_id) & 1) * 0x100000000000ull))
184+#define CVMX_USBCX_DIEPCTLX(offset, block_id) \
185+ CVMX_ADD_IO_SEG(0x00016F0010000900ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
186+#define CVMX_USBCX_DIEPINTX(offset, block_id) \
187+ CVMX_ADD_IO_SEG(0x00016F0010000908ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
188+#define CVMX_USBCX_DIEPMSK(block_id) \
189+ CVMX_ADD_IO_SEG(0x00016F0010000810ull + (((block_id) & 1) * 0x100000000000ull))
190+#define CVMX_USBCX_DIEPTSIZX(offset, block_id) \
191+ CVMX_ADD_IO_SEG(0x00016F0010000910ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
192+#define CVMX_USBCX_DOEPCTLX(offset, block_id) \
193+ CVMX_ADD_IO_SEG(0x00016F0010000B00ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
194+#define CVMX_USBCX_DOEPINTX(offset, block_id) \
195+ CVMX_ADD_IO_SEG(0x00016F0010000B08ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
196+#define CVMX_USBCX_DOEPMSK(block_id) \
197+ CVMX_ADD_IO_SEG(0x00016F0010000814ull + (((block_id) & 1) * 0x100000000000ull))
198+#define CVMX_USBCX_DOEPTSIZX(offset, block_id) \
199+ CVMX_ADD_IO_SEG(0x00016F0010000B10ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
200+#define CVMX_USBCX_DPTXFSIZX(offset, block_id) \
201+ CVMX_ADD_IO_SEG(0x00016F0010000100ull + (((offset) & 7) * 4) + (((block_id) & 1) * 0x100000000000ull))
202+#define CVMX_USBCX_DSTS(block_id) \
203+ CVMX_ADD_IO_SEG(0x00016F0010000808ull + (((block_id) & 1) * 0x100000000000ull))
204+#define CVMX_USBCX_DTKNQR1(block_id) \
205+ CVMX_ADD_IO_SEG(0x00016F0010000820ull + (((block_id) & 1) * 0x100000000000ull))
206+#define CVMX_USBCX_DTKNQR2(block_id) \
207+ CVMX_ADD_IO_SEG(0x00016F0010000824ull + (((block_id) & 1) * 0x100000000000ull))
208+#define CVMX_USBCX_DTKNQR3(block_id) \
209+ CVMX_ADD_IO_SEG(0x00016F0010000830ull + (((block_id) & 1) * 0x100000000000ull))
210+#define CVMX_USBCX_DTKNQR4(block_id) \
211+ CVMX_ADD_IO_SEG(0x00016F0010000834ull + (((block_id) & 1) * 0x100000000000ull))
212+#define CVMX_USBCX_GAHBCFG(block_id) \
213+ CVMX_ADD_IO_SEG(0x00016F0010000008ull + (((block_id) & 1) * 0x100000000000ull))
214+#define CVMX_USBCX_GHWCFG1(block_id) \
215+ CVMX_ADD_IO_SEG(0x00016F0010000044ull + (((block_id) & 1) * 0x100000000000ull))
216+#define CVMX_USBCX_GHWCFG2(block_id) \
217+ CVMX_ADD_IO_SEG(0x00016F0010000048ull + (((block_id) & 1) * 0x100000000000ull))
218+#define CVMX_USBCX_GHWCFG3(block_id) \
219+ CVMX_ADD_IO_SEG(0x00016F001000004Cull + (((block_id) & 1) * 0x100000000000ull))
220+#define CVMX_USBCX_GHWCFG4(block_id) \
221+ CVMX_ADD_IO_SEG(0x00016F0010000050ull + (((block_id) & 1) * 0x100000000000ull))
222+#define CVMX_USBCX_GINTMSK(block_id) \
223+ CVMX_ADD_IO_SEG(0x00016F0010000018ull + (((block_id) & 1) * 0x100000000000ull))
224+#define CVMX_USBCX_GINTSTS(block_id) \
225+ CVMX_ADD_IO_SEG(0x00016F0010000014ull + (((block_id) & 1) * 0x100000000000ull))
226+#define CVMX_USBCX_GNPTXFSIZ(block_id) \
227+ CVMX_ADD_IO_SEG(0x00016F0010000028ull + (((block_id) & 1) * 0x100000000000ull))
228+#define CVMX_USBCX_GNPTXSTS(block_id) \
229+ CVMX_ADD_IO_SEG(0x00016F001000002Cull + (((block_id) & 1) * 0x100000000000ull))
230+#define CVMX_USBCX_GOTGCTL(block_id) \
231+ CVMX_ADD_IO_SEG(0x00016F0010000000ull + (((block_id) & 1) * 0x100000000000ull))
232+#define CVMX_USBCX_GOTGINT(block_id) \
233+ CVMX_ADD_IO_SEG(0x00016F0010000004ull + (((block_id) & 1) * 0x100000000000ull))
234+#define CVMX_USBCX_GRSTCTL(block_id) \
235+ CVMX_ADD_IO_SEG(0x00016F0010000010ull + (((block_id) & 1) * 0x100000000000ull))
236+#define CVMX_USBCX_GRXFSIZ(block_id) \
237+ CVMX_ADD_IO_SEG(0x00016F0010000024ull + (((block_id) & 1) * 0x100000000000ull))
238+#define CVMX_USBCX_GRXSTSPD(block_id) \
239+ CVMX_ADD_IO_SEG(0x00016F0010040020ull + (((block_id) & 1) * 0x100000000000ull))
240+#define CVMX_USBCX_GRXSTSPH(block_id) \
241+ CVMX_ADD_IO_SEG(0x00016F0010000020ull + (((block_id) & 1) * 0x100000000000ull))
242+#define CVMX_USBCX_GRXSTSRD(block_id) \
243+ CVMX_ADD_IO_SEG(0x00016F001004001Cull + (((block_id) & 1) * 0x100000000000ull))
244+#define CVMX_USBCX_GRXSTSRH(block_id) \
245+ CVMX_ADD_IO_SEG(0x00016F001000001Cull + (((block_id) & 1) * 0x100000000000ull))
246+#define CVMX_USBCX_GSNPSID(block_id) \
247+ CVMX_ADD_IO_SEG(0x00016F0010000040ull + (((block_id) & 1) * 0x100000000000ull))
248+#define CVMX_USBCX_GUSBCFG(block_id) \
249+ CVMX_ADD_IO_SEG(0x00016F001000000Cull + (((block_id) & 1) * 0x100000000000ull))
250+#define CVMX_USBCX_HAINT(block_id) \
251+ CVMX_ADD_IO_SEG(0x00016F0010000414ull + (((block_id) & 1) * 0x100000000000ull))
252+#define CVMX_USBCX_HAINTMSK(block_id) \
253+ CVMX_ADD_IO_SEG(0x00016F0010000418ull + (((block_id) & 1) * 0x100000000000ull))
254+#define CVMX_USBCX_HCCHARX(offset, block_id) \
255+ CVMX_ADD_IO_SEG(0x00016F0010000500ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
256+#define CVMX_USBCX_HCFG(block_id) \
257+ CVMX_ADD_IO_SEG(0x00016F0010000400ull + (((block_id) & 1) * 0x100000000000ull))
258+#define CVMX_USBCX_HCINTMSKX(offset, block_id) \
259+ CVMX_ADD_IO_SEG(0x00016F001000050Cull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
260+#define CVMX_USBCX_HCINTX(offset, block_id) \
261+ CVMX_ADD_IO_SEG(0x00016F0010000508ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
262+#define CVMX_USBCX_HCSPLTX(offset, block_id) \
263+ CVMX_ADD_IO_SEG(0x00016F0010000504ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
264+#define CVMX_USBCX_HCTSIZX(offset, block_id) \
265+ CVMX_ADD_IO_SEG(0x00016F0010000510ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
266+#define CVMX_USBCX_HFIR(block_id) \
267+ CVMX_ADD_IO_SEG(0x00016F0010000404ull + (((block_id) & 1) * 0x100000000000ull))
268+#define CVMX_USBCX_HFNUM(block_id) \
269+ CVMX_ADD_IO_SEG(0x00016F0010000408ull + (((block_id) & 1) * 0x100000000000ull))
270+#define CVMX_USBCX_HPRT(block_id) \
271+ CVMX_ADD_IO_SEG(0x00016F0010000440ull + (((block_id) & 1) * 0x100000000000ull))
272+#define CVMX_USBCX_HPTXFSIZ(block_id) \
273+ CVMX_ADD_IO_SEG(0x00016F0010000100ull + (((block_id) & 1) * 0x100000000000ull))
274+#define CVMX_USBCX_HPTXSTS(block_id) \
275+ CVMX_ADD_IO_SEG(0x00016F0010000410ull + (((block_id) & 1) * 0x100000000000ull))
276+#define CVMX_USBCX_NPTXDFIFOX(offset, block_id) \
277+ CVMX_ADD_IO_SEG(0x00016F0010001000ull + (((offset) & 7) * 4096) + (((block_id) & 1) * 0x100000000000ull))
278+#define CVMX_USBCX_PCGCCTL(block_id) \
279+ CVMX_ADD_IO_SEG(0x00016F0010000E00ull + (((block_id) & 1) * 0x100000000000ull))
280+
281+union cvmx_usbcx_daint {
282+ uint32_t u32;
283+ struct cvmx_usbcx_daint_s {
284+ uint32_t outepint:16;
285+ uint32_t inepint:16;
286+ } s;
287+ struct cvmx_usbcx_daint_s cn30xx;
288+ struct cvmx_usbcx_daint_s cn31xx;
289+ struct cvmx_usbcx_daint_s cn50xx;
290+ struct cvmx_usbcx_daint_s cn52xx;
291+ struct cvmx_usbcx_daint_s cn52xxp1;
292+ struct cvmx_usbcx_daint_s cn56xx;
293+ struct cvmx_usbcx_daint_s cn56xxp1;
294+};
295+
296+union cvmx_usbcx_daintmsk {
297+ uint32_t u32;
298+ struct cvmx_usbcx_daintmsk_s {
299+ uint32_t outepmsk:16;
300+ uint32_t inepmsk:16;
301+ } s;
302+ struct cvmx_usbcx_daintmsk_s cn30xx;
303+ struct cvmx_usbcx_daintmsk_s cn31xx;
304+ struct cvmx_usbcx_daintmsk_s cn50xx;
305+ struct cvmx_usbcx_daintmsk_s cn52xx;
306+ struct cvmx_usbcx_daintmsk_s cn52xxp1;
307+ struct cvmx_usbcx_daintmsk_s cn56xx;
308+ struct cvmx_usbcx_daintmsk_s cn56xxp1;
309+};
310+
311+union cvmx_usbcx_dcfg {
312+ uint32_t u32;
313+ struct cvmx_usbcx_dcfg_s {
314+ uint32_t reserved_23_31:9;
315+ uint32_t epmiscnt:5;
316+ uint32_t reserved_13_17:5;
317+ uint32_t perfrint:2;
318+ uint32_t devaddr:7;
319+ uint32_t reserved_3_3:1;
320+ uint32_t nzstsouthshk:1;
321+ uint32_t devspd:2;
322+ } s;
323+ struct cvmx_usbcx_dcfg_s cn30xx;
324+ struct cvmx_usbcx_dcfg_s cn31xx;
325+ struct cvmx_usbcx_dcfg_s cn50xx;
326+ struct cvmx_usbcx_dcfg_s cn52xx;
327+ struct cvmx_usbcx_dcfg_s cn52xxp1;
328+ struct cvmx_usbcx_dcfg_s cn56xx;
329+ struct cvmx_usbcx_dcfg_s cn56xxp1;
330+};
331+
332+union cvmx_usbcx_dctl {
333+ uint32_t u32;
334+ struct cvmx_usbcx_dctl_s {
335+ uint32_t reserved_12_31:20;
336+ uint32_t pwronprgdone:1;
337+ uint32_t cgoutnak:1;
338+ uint32_t sgoutnak:1;
339+ uint32_t cgnpinnak:1;
340+ uint32_t sgnpinnak:1;
341+ uint32_t tstctl:3;
342+ uint32_t goutnaksts:1;
343+ uint32_t gnpinnaksts:1;
344+ uint32_t sftdiscon:1;
345+ uint32_t rmtwkupsig:1;
346+ } s;
347+ struct cvmx_usbcx_dctl_s cn30xx;
348+ struct cvmx_usbcx_dctl_s cn31xx;
349+ struct cvmx_usbcx_dctl_s cn50xx;
350+ struct cvmx_usbcx_dctl_s cn52xx;
351+ struct cvmx_usbcx_dctl_s cn52xxp1;
352+ struct cvmx_usbcx_dctl_s cn56xx;
353+ struct cvmx_usbcx_dctl_s cn56xxp1;
354+};
355+
356+union cvmx_usbcx_diepctlx {
357+ uint32_t u32;
358+ struct cvmx_usbcx_diepctlx_s {
359+ uint32_t epena:1;
360+ uint32_t epdis:1;
361+ uint32_t setd1pid:1;
362+ uint32_t setd0pid:1;
363+ uint32_t snak:1;
364+ uint32_t cnak:1;
365+ uint32_t txfnum:4;
366+ uint32_t stall:1;
367+ uint32_t reserved_20_20:1;
368+ uint32_t eptype:2;
369+ uint32_t naksts:1;
370+ uint32_t dpid:1;
371+ uint32_t usbactep:1;
372+ uint32_t nextep:4;
373+ uint32_t mps:11;
374+ } s;
375+ struct cvmx_usbcx_diepctlx_s cn30xx;
376+ struct cvmx_usbcx_diepctlx_s cn31xx;
377+ struct cvmx_usbcx_diepctlx_s cn50xx;
378+ struct cvmx_usbcx_diepctlx_s cn52xx;
379+ struct cvmx_usbcx_diepctlx_s cn52xxp1;
380+ struct cvmx_usbcx_diepctlx_s cn56xx;
381+ struct cvmx_usbcx_diepctlx_s cn56xxp1;
382+};
383+
384+union cvmx_usbcx_diepintx {
385+ uint32_t u32;
386+ struct cvmx_usbcx_diepintx_s {
387+ uint32_t reserved_7_31:25;
388+ uint32_t inepnakeff:1;
389+ uint32_t intknepmis:1;
390+ uint32_t intkntxfemp:1;
391+ uint32_t timeout:1;
392+ uint32_t ahberr:1;
393+ uint32_t epdisbld:1;
394+ uint32_t xfercompl:1;
395+ } s;
396+ struct cvmx_usbcx_diepintx_s cn30xx;
397+ struct cvmx_usbcx_diepintx_s cn31xx;
398+ struct cvmx_usbcx_diepintx_s cn50xx;
399+ struct cvmx_usbcx_diepintx_s cn52xx;
400+ struct cvmx_usbcx_diepintx_s cn52xxp1;
401+ struct cvmx_usbcx_diepintx_s cn56xx;
402+ struct cvmx_usbcx_diepintx_s cn56xxp1;
403+};
404+
405+union cvmx_usbcx_diepmsk {
406+ uint32_t u32;
407+ struct cvmx_usbcx_diepmsk_s {
408+ uint32_t reserved_7_31:25;
409+ uint32_t inepnakeffmsk:1;
410+ uint32_t intknepmismsk:1;
411+ uint32_t intkntxfempmsk:1;
412+ uint32_t timeoutmsk:1;
413+ uint32_t ahberrmsk:1;
414+ uint32_t epdisbldmsk:1;
415+ uint32_t xfercomplmsk:1;
416+ } s;
417+ struct cvmx_usbcx_diepmsk_s cn30xx;
418+ struct cvmx_usbcx_diepmsk_s cn31xx;
419+ struct cvmx_usbcx_diepmsk_s cn50xx;
420+ struct cvmx_usbcx_diepmsk_s cn52xx;
421+ struct cvmx_usbcx_diepmsk_s cn52xxp1;
422+ struct cvmx_usbcx_diepmsk_s cn56xx;
423+ struct cvmx_usbcx_diepmsk_s cn56xxp1;
424+};
425+
426+union cvmx_usbcx_dieptsizx {
427+ uint32_t u32;
428+ struct cvmx_usbcx_dieptsizx_s {
429+ uint32_t reserved_31_31:1;
430+ uint32_t mc:2;
431+ uint32_t pktcnt:10;
432+ uint32_t xfersize:19;
433+ } s;
434+ struct cvmx_usbcx_dieptsizx_s cn30xx;
435+ struct cvmx_usbcx_dieptsizx_s cn31xx;
436+ struct cvmx_usbcx_dieptsizx_s cn50xx;
437+ struct cvmx_usbcx_dieptsizx_s cn52xx;
438+ struct cvmx_usbcx_dieptsizx_s cn52xxp1;
439+ struct cvmx_usbcx_dieptsizx_s cn56xx;
440+ struct cvmx_usbcx_dieptsizx_s cn56xxp1;
441+};
442+
443+union cvmx_usbcx_doepctlx {
444+ uint32_t u32;
445+ struct cvmx_usbcx_doepctlx_s {
446+ uint32_t epena:1;
447+ uint32_t epdis:1;
448+ uint32_t setd1pid:1;
449+ uint32_t setd0pid:1;
450+ uint32_t snak:1;
451+ uint32_t cnak:1;
452+ uint32_t reserved_22_25:4;
453+ uint32_t stall:1;
454+ uint32_t snp:1;
455+ uint32_t eptype:2;
456+ uint32_t naksts:1;
457+ uint32_t dpid:1;
458+ uint32_t usbactep:1;
459+ uint32_t reserved_11_14:4;
460+ uint32_t mps:11;
461+ } s;
462+ struct cvmx_usbcx_doepctlx_s cn30xx;
463+ struct cvmx_usbcx_doepctlx_s cn31xx;
464+ struct cvmx_usbcx_doepctlx_s cn50xx;
465+ struct cvmx_usbcx_doepctlx_s cn52xx;
466+ struct cvmx_usbcx_doepctlx_s cn52xxp1;
467+ struct cvmx_usbcx_doepctlx_s cn56xx;
468+ struct cvmx_usbcx_doepctlx_s cn56xxp1;
469+};
470+
471+union cvmx_usbcx_doepintx {
472+ uint32_t u32;
473+ struct cvmx_usbcx_doepintx_s {
474+ uint32_t reserved_5_31:27;
475+ uint32_t outtknepdis:1;
476+ uint32_t setup:1;
477+ uint32_t ahberr:1;
478+ uint32_t epdisbld:1;
479+ uint32_t xfercompl:1;
480+ } s;
481+ struct cvmx_usbcx_doepintx_s cn30xx;
482+ struct cvmx_usbcx_doepintx_s cn31xx;
483+ struct cvmx_usbcx_doepintx_s cn50xx;
484+ struct cvmx_usbcx_doepintx_s cn52xx;
485+ struct cvmx_usbcx_doepintx_s cn52xxp1;
486+ struct cvmx_usbcx_doepintx_s cn56xx;
487+ struct cvmx_usbcx_doepintx_s cn56xxp1;
488+};
489+
490+union cvmx_usbcx_doepmsk {
491+ uint32_t u32;
492+ struct cvmx_usbcx_doepmsk_s {
493+ uint32_t reserved_5_31:27;
494+ uint32_t outtknepdismsk:1;
495+ uint32_t setupmsk:1;
496+ uint32_t ahberrmsk:1;
497+ uint32_t epdisbldmsk:1;
498+ uint32_t xfercomplmsk:1;
499+ } s;
500+ struct cvmx_usbcx_doepmsk_s cn30xx;
501+ struct cvmx_usbcx_doepmsk_s cn31xx;
502+ struct cvmx_usbcx_doepmsk_s cn50xx;
503+ struct cvmx_usbcx_doepmsk_s cn52xx;
504+ struct cvmx_usbcx_doepmsk_s cn52xxp1;
505+ struct cvmx_usbcx_doepmsk_s cn56xx;
506+ struct cvmx_usbcx_doepmsk_s cn56xxp1;
507+};
508+
509+union cvmx_usbcx_doeptsizx {
510+ uint32_t u32;
511+ struct cvmx_usbcx_doeptsizx_s {
512+ uint32_t reserved_31_31:1;
513+ uint32_t mc:2;
514+ uint32_t pktcnt:10;
515+ uint32_t xfersize:19;
516+ } s;
517+ struct cvmx_usbcx_doeptsizx_s cn30xx;
518+ struct cvmx_usbcx_doeptsizx_s cn31xx;
519+ struct cvmx_usbcx_doeptsizx_s cn50xx;
520+ struct cvmx_usbcx_doeptsizx_s cn52xx;
521+ struct cvmx_usbcx_doeptsizx_s cn52xxp1;
522+ struct cvmx_usbcx_doeptsizx_s cn56xx;
523+ struct cvmx_usbcx_doeptsizx_s cn56xxp1;
524+};
525+
526+union cvmx_usbcx_dptxfsizx {
527+ uint32_t u32;
528+ struct cvmx_usbcx_dptxfsizx_s {
529+ uint32_t dptxfsize:16;
530+ uint32_t dptxfstaddr:16;
531+ } s;
532+ struct cvmx_usbcx_dptxfsizx_s cn30xx;
533+ struct cvmx_usbcx_dptxfsizx_s cn31xx;
534+ struct cvmx_usbcx_dptxfsizx_s cn50xx;
535+ struct cvmx_usbcx_dptxfsizx_s cn52xx;
536+ struct cvmx_usbcx_dptxfsizx_s cn52xxp1;
537+ struct cvmx_usbcx_dptxfsizx_s cn56xx;
538+ struct cvmx_usbcx_dptxfsizx_s cn56xxp1;
539+};
540+
541+union cvmx_usbcx_dsts {
542+ uint32_t u32;
543+ struct cvmx_usbcx_dsts_s {
544+ uint32_t reserved_22_31:10;
545+ uint32_t soffn:14;
546+ uint32_t reserved_4_7:4;
547+ uint32_t errticerr:1;
548+ uint32_t enumspd:2;
549+ uint32_t suspsts:1;
550+ } s;
551+ struct cvmx_usbcx_dsts_s cn30xx;
552+ struct cvmx_usbcx_dsts_s cn31xx;
553+ struct cvmx_usbcx_dsts_s cn50xx;
554+ struct cvmx_usbcx_dsts_s cn52xx;
555+ struct cvmx_usbcx_dsts_s cn52xxp1;
556+ struct cvmx_usbcx_dsts_s cn56xx;
557+ struct cvmx_usbcx_dsts_s cn56xxp1;
558+};
559+
560+union cvmx_usbcx_dtknqr1 {
561+ uint32_t u32;
562+ struct cvmx_usbcx_dtknqr1_s {
563+ uint32_t eptkn:24;
564+ uint32_t wrapbit:1;
565+ uint32_t reserved_5_6:2;
566+ uint32_t intknwptr:5;
567+ } s;
568+ struct cvmx_usbcx_dtknqr1_s cn30xx;
569+ struct cvmx_usbcx_dtknqr1_s cn31xx;
570+ struct cvmx_usbcx_dtknqr1_s cn50xx;
571+ struct cvmx_usbcx_dtknqr1_s cn52xx;
572+ struct cvmx_usbcx_dtknqr1_s cn52xxp1;
573+ struct cvmx_usbcx_dtknqr1_s cn56xx;
574+ struct cvmx_usbcx_dtknqr1_s cn56xxp1;
575+};
576+
577+union cvmx_usbcx_dtknqr2 {
578+ uint32_t u32;
579+ struct cvmx_usbcx_dtknqr2_s {
580+ uint32_t eptkn:32;
581+ } s;
582+ struct cvmx_usbcx_dtknqr2_s cn30xx;
583+ struct cvmx_usbcx_dtknqr2_s cn31xx;
584+ struct cvmx_usbcx_dtknqr2_s cn50xx;
585+ struct cvmx_usbcx_dtknqr2_s cn52xx;
586+ struct cvmx_usbcx_dtknqr2_s cn52xxp1;
587+ struct cvmx_usbcx_dtknqr2_s cn56xx;
588+ struct cvmx_usbcx_dtknqr2_s cn56xxp1;
589+};
590+
591+union cvmx_usbcx_dtknqr3 {
592+ uint32_t u32;
593+ struct cvmx_usbcx_dtknqr3_s {
594+ uint32_t eptkn:32;
595+ } s;
596+ struct cvmx_usbcx_dtknqr3_s cn30xx;
597+ struct cvmx_usbcx_dtknqr3_s cn31xx;
598+ struct cvmx_usbcx_dtknqr3_s cn50xx;
599+ struct cvmx_usbcx_dtknqr3_s cn52xx;
600+ struct cvmx_usbcx_dtknqr3_s cn52xxp1;
601+ struct cvmx_usbcx_dtknqr3_s cn56xx;
602+ struct cvmx_usbcx_dtknqr3_s cn56xxp1;
603+};
604+
605+union cvmx_usbcx_dtknqr4 {
606+ uint32_t u32;
607+ struct cvmx_usbcx_dtknqr4_s {
608+ uint32_t eptkn:32;
609+ } s;
610+ struct cvmx_usbcx_dtknqr4_s cn30xx;
611+ struct cvmx_usbcx_dtknqr4_s cn31xx;
612+ struct cvmx_usbcx_dtknqr4_s cn50xx;
613+ struct cvmx_usbcx_dtknqr4_s cn52xx;
614+ struct cvmx_usbcx_dtknqr4_s cn52xxp1;
615+ struct cvmx_usbcx_dtknqr4_s cn56xx;
616+ struct cvmx_usbcx_dtknqr4_s cn56xxp1;
617+};
618+
619+union cvmx_usbcx_gahbcfg {
620+ uint32_t u32;
621+ struct cvmx_usbcx_gahbcfg_s {
622+ uint32_t reserved_9_31:23;
623+ uint32_t ptxfemplvl:1;
624+ uint32_t nptxfemplvl:1;
625+ uint32_t reserved_6_6:1;
626+ uint32_t dmaen:1;
627+ uint32_t hbstlen:4;
628+ uint32_t glblintrmsk:1;
629+ } s;
630+ struct cvmx_usbcx_gahbcfg_s cn30xx;
631+ struct cvmx_usbcx_gahbcfg_s cn31xx;
632+ struct cvmx_usbcx_gahbcfg_s cn50xx;
633+ struct cvmx_usbcx_gahbcfg_s cn52xx;
634+ struct cvmx_usbcx_gahbcfg_s cn52xxp1;
635+ struct cvmx_usbcx_gahbcfg_s cn56xx;
636+ struct cvmx_usbcx_gahbcfg_s cn56xxp1;
637+};
638+
639+union cvmx_usbcx_ghwcfg1 {
640+ uint32_t u32;
641+ struct cvmx_usbcx_ghwcfg1_s {
642+ uint32_t epdir:32;
643+ } s;
644+ struct cvmx_usbcx_ghwcfg1_s cn30xx;
645+ struct cvmx_usbcx_ghwcfg1_s cn31xx;
646+ struct cvmx_usbcx_ghwcfg1_s cn50xx;
647+ struct cvmx_usbcx_ghwcfg1_s cn52xx;
648+ struct cvmx_usbcx_ghwcfg1_s cn52xxp1;
649+ struct cvmx_usbcx_ghwcfg1_s cn56xx;
650+ struct cvmx_usbcx_ghwcfg1_s cn56xxp1;
651+};
652+
653+union cvmx_usbcx_ghwcfg2 {
654+ uint32_t u32;
655+ struct cvmx_usbcx_ghwcfg2_s {
656+ uint32_t reserved_31_31:1;
657+ uint32_t tknqdepth:5;
658+ uint32_t ptxqdepth:2;
659+ uint32_t nptxqdepth:2;
660+ uint32_t reserved_20_21:2;
661+ uint32_t dynfifosizing:1;
662+ uint32_t periosupport:1;
663+ uint32_t numhstchnl:4;
664+ uint32_t numdeveps:4;
665+ uint32_t fsphytype:2;
666+ uint32_t hsphytype:2;
667+ uint32_t singpnt:1;
668+ uint32_t otgarch:2;
669+ uint32_t otgmode:3;
670+ } s;
671+ struct cvmx_usbcx_ghwcfg2_s cn30xx;
672+ struct cvmx_usbcx_ghwcfg2_s cn31xx;
673+ struct cvmx_usbcx_ghwcfg2_s cn50xx;
674+ struct cvmx_usbcx_ghwcfg2_s cn52xx;
675+ struct cvmx_usbcx_ghwcfg2_s cn52xxp1;
676+ struct cvmx_usbcx_ghwcfg2_s cn56xx;
677+ struct cvmx_usbcx_ghwcfg2_s cn56xxp1;
678+};
679+
680+union cvmx_usbcx_ghwcfg3 {
681+ uint32_t u32;
682+ struct cvmx_usbcx_ghwcfg3_s {
683+ uint32_t dfifodepth:16;
684+ uint32_t reserved_13_15:3;
685+ uint32_t ahbphysync:1;
686+ uint32_t rsttype:1;
687+ uint32_t optfeature:1;
688+ uint32_t vendor_control_interface_support:1;
689+ uint32_t i2c_selection:1;
690+ uint32_t otgen:1;
691+ uint32_t pktsizewidth:3;
692+ uint32_t xfersizewidth:4;
693+ } s;
694+ struct cvmx_usbcx_ghwcfg3_s cn30xx;
695+ struct cvmx_usbcx_ghwcfg3_s cn31xx;
696+ struct cvmx_usbcx_ghwcfg3_s cn50xx;
697+ struct cvmx_usbcx_ghwcfg3_s cn52xx;
698+ struct cvmx_usbcx_ghwcfg3_s cn52xxp1;
699+ struct cvmx_usbcx_ghwcfg3_s cn56xx;
700+ struct cvmx_usbcx_ghwcfg3_s cn56xxp1;
701+};
702+
703+union cvmx_usbcx_ghwcfg4 {
704+ uint32_t u32;
705+ struct cvmx_usbcx_ghwcfg4_s {
706+ uint32_t reserved_30_31:2;
707+ uint32_t numdevmodinend:4;
708+ uint32_t endedtrfifo:1;
709+ uint32_t sessendfltr:1;
710+ uint32_t bvalidfltr:1;
711+ uint32_t avalidfltr:1;
712+ uint32_t vbusvalidfltr:1;
713+ uint32_t iddgfltr:1;
714+ uint32_t numctleps:4;
715+ uint32_t phydatawidth:2;
716+ uint32_t reserved_6_13:8;
717+ uint32_t ahbfreq:1;
718+ uint32_t enablepwropt:1;
719+ uint32_t numdevperioeps:4;
720+ } s;
721+ struct cvmx_usbcx_ghwcfg4_cn30xx {
722+ uint32_t reserved_25_31:7;
723+ uint32_t sessendfltr:1;
724+ uint32_t bvalidfltr:1;
725+ uint32_t avalidfltr:1;
726+ uint32_t vbusvalidfltr:1;
727+ uint32_t iddgfltr:1;
728+ uint32_t numctleps:4;
729+ uint32_t phydatawidth:2;
730+ uint32_t reserved_6_13:8;
731+ uint32_t ahbfreq:1;
732+ uint32_t enablepwropt:1;
733+ uint32_t numdevperioeps:4;
734+ } cn30xx;
735+ struct cvmx_usbcx_ghwcfg4_cn30xx cn31xx;
736+ struct cvmx_usbcx_ghwcfg4_s cn50xx;
737+ struct cvmx_usbcx_ghwcfg4_s cn52xx;
738+ struct cvmx_usbcx_ghwcfg4_s cn52xxp1;
739+ struct cvmx_usbcx_ghwcfg4_s cn56xx;
740+ struct cvmx_usbcx_ghwcfg4_s cn56xxp1;
741+};
742+
743+union cvmx_usbcx_gintmsk {
744+ uint32_t u32;
745+ struct cvmx_usbcx_gintmsk_s {
746+ uint32_t wkupintmsk:1;
747+ uint32_t sessreqintmsk:1;
748+ uint32_t disconnintmsk:1;
749+ uint32_t conidstschngmsk:1;
750+ uint32_t reserved_27_27:1;
751+ uint32_t ptxfempmsk:1;
752+ uint32_t hchintmsk:1;
753+ uint32_t prtintmsk:1;
754+ uint32_t reserved_23_23:1;
755+ uint32_t fetsuspmsk:1;
756+ uint32_t incomplpmsk:1;
757+ uint32_t incompisoinmsk:1;
758+ uint32_t oepintmsk:1;
759+ uint32_t inepintmsk:1;
760+ uint32_t epmismsk:1;
761+ uint32_t reserved_16_16:1;
762+ uint32_t eopfmsk:1;
763+ uint32_t isooutdropmsk:1;
764+ uint32_t enumdonemsk:1;
765+ uint32_t usbrstmsk:1;
766+ uint32_t usbsuspmsk:1;
767+ uint32_t erlysuspmsk:1;
768+ uint32_t i2cint:1;
769+ uint32_t ulpickintmsk:1;
770+ uint32_t goutnakeffmsk:1;
771+ uint32_t ginnakeffmsk:1;
772+ uint32_t nptxfempmsk:1;
773+ uint32_t rxflvlmsk:1;
774+ uint32_t sofmsk:1;
775+ uint32_t otgintmsk:1;
776+ uint32_t modemismsk:1;
777+ uint32_t reserved_0_0:1;
778+ } s;
779+ struct cvmx_usbcx_gintmsk_s cn30xx;
780+ struct cvmx_usbcx_gintmsk_s cn31xx;
781+ struct cvmx_usbcx_gintmsk_s cn50xx;
782+ struct cvmx_usbcx_gintmsk_s cn52xx;
783+ struct cvmx_usbcx_gintmsk_s cn52xxp1;
784+ struct cvmx_usbcx_gintmsk_s cn56xx;
785+ struct cvmx_usbcx_gintmsk_s cn56xxp1;
786+};
787+
788+union cvmx_usbcx_gintsts {
789+ uint32_t u32;
790+ struct cvmx_usbcx_gintsts_s {
791+ uint32_t wkupint:1;
792+ uint32_t sessreqint:1;
793+ uint32_t disconnint:1;
794+ uint32_t conidstschng:1;
795+ uint32_t reserved_27_27:1;
796+ uint32_t ptxfemp:1;
797+ uint32_t hchint:1;
798+ uint32_t prtint:1;
799+ uint32_t reserved_23_23:1;
800+ uint32_t fetsusp:1;
801+ uint32_t incomplp:1;
802+ uint32_t incompisoin:1;
803+ uint32_t oepint:1;
804+ uint32_t iepint:1;
805+ uint32_t epmis:1;
806+ uint32_t reserved_16_16:1;
807+ uint32_t eopf:1;
808+ uint32_t isooutdrop:1;
809+ uint32_t enumdone:1;
810+ uint32_t usbrst:1;
811+ uint32_t usbsusp:1;
812+ uint32_t erlysusp:1;
813+ uint32_t i2cint:1;
814+ uint32_t ulpickint:1;
815+ uint32_t goutnakeff:1;
816+ uint32_t ginnakeff:1;
817+ uint32_t nptxfemp:1;
818+ uint32_t rxflvl:1;
819+ uint32_t sof:1;
820+ uint32_t otgint:1;
821+ uint32_t modemis:1;
822+ uint32_t curmod:1;
823+ } s;
824+ struct cvmx_usbcx_gintsts_s cn30xx;
825+ struct cvmx_usbcx_gintsts_s cn31xx;
826+ struct cvmx_usbcx_gintsts_s cn50xx;
827+ struct cvmx_usbcx_gintsts_s cn52xx;
828+ struct cvmx_usbcx_gintsts_s cn52xxp1;
829+ struct cvmx_usbcx_gintsts_s cn56xx;
830+ struct cvmx_usbcx_gintsts_s cn56xxp1;
831+};
832+
833+union cvmx_usbcx_gnptxfsiz {
834+ uint32_t u32;
835+ struct cvmx_usbcx_gnptxfsiz_s {
836+ uint32_t nptxfdep:16;
837+ uint32_t nptxfstaddr:16;
838+ } s;
839+ struct cvmx_usbcx_gnptxfsiz_s cn30xx;
840+ struct cvmx_usbcx_gnptxfsiz_s cn31xx;
841+ struct cvmx_usbcx_gnptxfsiz_s cn50xx;
842+ struct cvmx_usbcx_gnptxfsiz_s cn52xx;
843+ struct cvmx_usbcx_gnptxfsiz_s cn52xxp1;
844+ struct cvmx_usbcx_gnptxfsiz_s cn56xx;
845+ struct cvmx_usbcx_gnptxfsiz_s cn56xxp1;
846+};
847+
848+union cvmx_usbcx_gnptxsts {
849+ uint32_t u32;
850+ struct cvmx_usbcx_gnptxsts_s {
851+ uint32_t reserved_31_31:1;
852+ uint32_t nptxqtop:7;
853+ uint32_t nptxqspcavail:8;
854+ uint32_t nptxfspcavail:16;
855+ } s;
856+ struct cvmx_usbcx_gnptxsts_s cn30xx;
857+ struct cvmx_usbcx_gnptxsts_s cn31xx;
858+ struct cvmx_usbcx_gnptxsts_s cn50xx;
859+ struct cvmx_usbcx_gnptxsts_s cn52xx;
860+ struct cvmx_usbcx_gnptxsts_s cn52xxp1;
861+ struct cvmx_usbcx_gnptxsts_s cn56xx;
862+ struct cvmx_usbcx_gnptxsts_s cn56xxp1;
863+};
864+
865+union cvmx_usbcx_gotgctl {
866+ uint32_t u32;
867+ struct cvmx_usbcx_gotgctl_s {
868+ uint32_t reserved_20_31:12;
869+ uint32_t bsesvld:1;
870+ uint32_t asesvld:1;
871+ uint32_t dbnctime:1;
872+ uint32_t conidsts:1;
873+ uint32_t reserved_12_15:4;
874+ uint32_t devhnpen:1;
875+ uint32_t hstsethnpen:1;
876+ uint32_t hnpreq:1;
877+ uint32_t hstnegscs:1;
878+ uint32_t reserved_2_7:6;
879+ uint32_t sesreq:1;
880+ uint32_t sesreqscs:1;
881+ } s;
882+ struct cvmx_usbcx_gotgctl_s cn30xx;
883+ struct cvmx_usbcx_gotgctl_s cn31xx;
884+ struct cvmx_usbcx_gotgctl_s cn50xx;
885+ struct cvmx_usbcx_gotgctl_s cn52xx;
886+ struct cvmx_usbcx_gotgctl_s cn52xxp1;
887+ struct cvmx_usbcx_gotgctl_s cn56xx;
888+ struct cvmx_usbcx_gotgctl_s cn56xxp1;
889+};
890+
891+union cvmx_usbcx_gotgint {
892+ uint32_t u32;
893+ struct cvmx_usbcx_gotgint_s {
894+ uint32_t reserved_20_31:12;
895+ uint32_t dbncedone:1;
896+ uint32_t adevtoutchg:1;
897+ uint32_t hstnegdet:1;
898+ uint32_t reserved_10_16:7;
899+ uint32_t hstnegsucstschng:1;
900+ uint32_t sesreqsucstschng:1;
901+ uint32_t reserved_3_7:5;
902+ uint32_t sesenddet:1;
903+ uint32_t reserved_0_1:2;
904+ } s;
905+ struct cvmx_usbcx_gotgint_s cn30xx;
906+ struct cvmx_usbcx_gotgint_s cn31xx;
907+ struct cvmx_usbcx_gotgint_s cn50xx;
908+ struct cvmx_usbcx_gotgint_s cn52xx;
909+ struct cvmx_usbcx_gotgint_s cn52xxp1;
910+ struct cvmx_usbcx_gotgint_s cn56xx;
911+ struct cvmx_usbcx_gotgint_s cn56xxp1;
912+};
913+
914+union cvmx_usbcx_grstctl {
915+ uint32_t u32;
916+ struct cvmx_usbcx_grstctl_s {
917+ uint32_t ahbidle:1;
918+ uint32_t dmareq:1;
919+ uint32_t reserved_11_29:19;
920+ uint32_t txfnum:5;
921+ uint32_t txfflsh:1;
922+ uint32_t rxfflsh:1;
923+ uint32_t intknqflsh:1;
924+ uint32_t frmcntrrst:1;
925+ uint32_t hsftrst:1;
926+ uint32_t csftrst:1;
927+ } s;
928+ struct cvmx_usbcx_grstctl_s cn30xx;
929+ struct cvmx_usbcx_grstctl_s cn31xx;
930+ struct cvmx_usbcx_grstctl_s cn50xx;
931+ struct cvmx_usbcx_grstctl_s cn52xx;
932+ struct cvmx_usbcx_grstctl_s cn52xxp1;
933+ struct cvmx_usbcx_grstctl_s cn56xx;
934+ struct cvmx_usbcx_grstctl_s cn56xxp1;
935+};
936+
937+union cvmx_usbcx_grxfsiz {
938+ uint32_t u32;
939+ struct cvmx_usbcx_grxfsiz_s {
940+ uint32_t reserved_16_31:16;
941+ uint32_t rxfdep:16;
942+ } s;
943+ struct cvmx_usbcx_grxfsiz_s cn30xx;
944+ struct cvmx_usbcx_grxfsiz_s cn31xx;
945+ struct cvmx_usbcx_grxfsiz_s cn50xx;
946+ struct cvmx_usbcx_grxfsiz_s cn52xx;
947+ struct cvmx_usbcx_grxfsiz_s cn52xxp1;
948+ struct cvmx_usbcx_grxfsiz_s cn56xx;
949+ struct cvmx_usbcx_grxfsiz_s cn56xxp1;
950+};
951+
952+union cvmx_usbcx_grxstspd {
953+ uint32_t u32;
954+ struct cvmx_usbcx_grxstspd_s {
955+ uint32_t reserved_25_31:7;
956+ uint32_t fn:4;
957+ uint32_t pktsts:4;
958+ uint32_t dpid:2;
959+ uint32_t bcnt:11;
960+ uint32_t epnum:4;
961+ } s;
962+ struct cvmx_usbcx_grxstspd_s cn30xx;
963+ struct cvmx_usbcx_grxstspd_s cn31xx;
964+ struct cvmx_usbcx_grxstspd_s cn50xx;
965+ struct cvmx_usbcx_grxstspd_s cn52xx;
966+ struct cvmx_usbcx_grxstspd_s cn52xxp1;
967+ struct cvmx_usbcx_grxstspd_s cn56xx;
968+ struct cvmx_usbcx_grxstspd_s cn56xxp1;
969+};
970+
971+union cvmx_usbcx_grxstsph {
972+ uint32_t u32;
973+ struct cvmx_usbcx_grxstsph_s {
974+ uint32_t reserved_21_31:11;
975+ uint32_t pktsts:4;
976+ uint32_t dpid:2;
977+ uint32_t bcnt:11;
978+ uint32_t chnum:4;
979+ } s;
980+ struct cvmx_usbcx_grxstsph_s cn30xx;
981+ struct cvmx_usbcx_grxstsph_s cn31xx;
982+ struct cvmx_usbcx_grxstsph_s cn50xx;
983+ struct cvmx_usbcx_grxstsph_s cn52xx;
984+ struct cvmx_usbcx_grxstsph_s cn52xxp1;
985+ struct cvmx_usbcx_grxstsph_s cn56xx;
986+ struct cvmx_usbcx_grxstsph_s cn56xxp1;
987+};
988+
989+union cvmx_usbcx_grxstsrd {
990+ uint32_t u32;
991+ struct cvmx_usbcx_grxstsrd_s {
992+ uint32_t reserved_25_31:7;
993+ uint32_t fn:4;
994+ uint32_t pktsts:4;
995+ uint32_t dpid:2;
996+ uint32_t bcnt:11;
997+ uint32_t epnum:4;
998+ } s;
999+ struct cvmx_usbcx_grxstsrd_s cn30xx;
1000+ struct cvmx_usbcx_grxstsrd_s cn31xx;
1001+ struct cvmx_usbcx_grxstsrd_s cn50xx;
1002+ struct cvmx_usbcx_grxstsrd_s cn52xx;
1003+ struct cvmx_usbcx_grxstsrd_s cn52xxp1;
1004+ struct cvmx_usbcx_grxstsrd_s cn56xx;
1005+ struct cvmx_usbcx_grxstsrd_s cn56xxp1;
1006+};
1007+
1008+union cvmx_usbcx_grxstsrh {
1009+ uint32_t u32;
1010+ struct cvmx_usbcx_grxstsrh_s {
1011+ uint32_t reserved_21_31:11;
1012+ uint32_t pktsts:4;
1013+ uint32_t dpid:2;
1014+ uint32_t bcnt:11;
1015+ uint32_t chnum:4;
1016+ } s;
1017+ struct cvmx_usbcx_grxstsrh_s cn30xx;
1018+ struct cvmx_usbcx_grxstsrh_s cn31xx;
1019+ struct cvmx_usbcx_grxstsrh_s cn50xx;
1020+ struct cvmx_usbcx_grxstsrh_s cn52xx;
1021+ struct cvmx_usbcx_grxstsrh_s cn52xxp1;
1022+ struct cvmx_usbcx_grxstsrh_s cn56xx;
1023+ struct cvmx_usbcx_grxstsrh_s cn56xxp1;
1024+};
1025+
1026+union cvmx_usbcx_gsnpsid {
1027+ uint32_t u32;
1028+ struct cvmx_usbcx_gsnpsid_s {
1029+ uint32_t synopsysid:32;
1030+ } s;
1031+ struct cvmx_usbcx_gsnpsid_s cn30xx;
1032+ struct cvmx_usbcx_gsnpsid_s cn31xx;
1033+ struct cvmx_usbcx_gsnpsid_s cn50xx;
1034+ struct cvmx_usbcx_gsnpsid_s cn52xx;
1035+ struct cvmx_usbcx_gsnpsid_s cn52xxp1;
1036+ struct cvmx_usbcx_gsnpsid_s cn56xx;
1037+ struct cvmx_usbcx_gsnpsid_s cn56xxp1;
1038+};
1039+
1040+union cvmx_usbcx_gusbcfg {
1041+ uint32_t u32;
1042+ struct cvmx_usbcx_gusbcfg_s {
1043+ uint32_t reserved_17_31:15;
1044+ uint32_t otgi2csel:1;
1045+ uint32_t phylpwrclksel:1;
1046+ uint32_t reserved_14_14:1;
1047+ uint32_t usbtrdtim:4;
1048+ uint32_t hnpcap:1;
1049+ uint32_t srpcap:1;
1050+ uint32_t ddrsel:1;
1051+ uint32_t physel:1;
1052+ uint32_t fsintf:1;
1053+ uint32_t ulpi_utmi_sel:1;
1054+ uint32_t phyif:1;
1055+ uint32_t toutcal:3;
1056+ } s;
1057+ struct cvmx_usbcx_gusbcfg_s cn30xx;
1058+ struct cvmx_usbcx_gusbcfg_s cn31xx;
1059+ struct cvmx_usbcx_gusbcfg_s cn50xx;
1060+ struct cvmx_usbcx_gusbcfg_s cn52xx;
1061+ struct cvmx_usbcx_gusbcfg_s cn52xxp1;
1062+ struct cvmx_usbcx_gusbcfg_s cn56xx;
1063+ struct cvmx_usbcx_gusbcfg_s cn56xxp1;
1064+};
1065+
1066+union cvmx_usbcx_haint {
1067+ uint32_t u32;
1068+ struct cvmx_usbcx_haint_s {
1069+ uint32_t reserved_16_31:16;
1070+ uint32_t haint:16;
1071+ } s;
1072+ struct cvmx_usbcx_haint_s cn30xx;
1073+ struct cvmx_usbcx_haint_s cn31xx;
1074+ struct cvmx_usbcx_haint_s cn50xx;
1075+ struct cvmx_usbcx_haint_s cn52xx;
1076+ struct cvmx_usbcx_haint_s cn52xxp1;
1077+ struct cvmx_usbcx_haint_s cn56xx;
1078+ struct cvmx_usbcx_haint_s cn56xxp1;
1079+};
1080+
1081+union cvmx_usbcx_haintmsk {
1082+ uint32_t u32;
1083+ struct cvmx_usbcx_haintmsk_s {
1084+ uint32_t reserved_16_31:16;
1085+ uint32_t haintmsk:16;
1086+ } s;
1087+ struct cvmx_usbcx_haintmsk_s cn30xx;
1088+ struct cvmx_usbcx_haintmsk_s cn31xx;
1089+ struct cvmx_usbcx_haintmsk_s cn50xx;
1090+ struct cvmx_usbcx_haintmsk_s cn52xx;
1091+ struct cvmx_usbcx_haintmsk_s cn52xxp1;
1092+ struct cvmx_usbcx_haintmsk_s cn56xx;
1093+ struct cvmx_usbcx_haintmsk_s cn56xxp1;
1094+};
1095+
1096+union cvmx_usbcx_hccharx {
1097+ uint32_t u32;
1098+ struct cvmx_usbcx_hccharx_s {
1099+ uint32_t chena:1;
1100+ uint32_t chdis:1;
1101+ uint32_t oddfrm:1;
1102+ uint32_t devaddr:7;
1103+ uint32_t ec:2;
1104+ uint32_t eptype:2;
1105+ uint32_t lspddev:1;
1106+ uint32_t reserved_16_16:1;
1107+ uint32_t epdir:1;
1108+ uint32_t epnum:4;
1109+ uint32_t mps:11;
1110+ } s;
1111+ struct cvmx_usbcx_hccharx_s cn30xx;
1112+ struct cvmx_usbcx_hccharx_s cn31xx;
1113+ struct cvmx_usbcx_hccharx_s cn50xx;
1114+ struct cvmx_usbcx_hccharx_s cn52xx;
1115+ struct cvmx_usbcx_hccharx_s cn52xxp1;
1116+ struct cvmx_usbcx_hccharx_s cn56xx;
1117+ struct cvmx_usbcx_hccharx_s cn56xxp1;
1118+};
1119+
1120+union cvmx_usbcx_hcfg {
1121+ uint32_t u32;
1122+ struct cvmx_usbcx_hcfg_s {
1123+ uint32_t reserved_3_31:29;
1124+ uint32_t fslssupp:1;
1125+ uint32_t fslspclksel:2;
1126+ } s;
1127+ struct cvmx_usbcx_hcfg_s cn30xx;
1128+ struct cvmx_usbcx_hcfg_s cn31xx;
1129+ struct cvmx_usbcx_hcfg_s cn50xx;
1130+ struct cvmx_usbcx_hcfg_s cn52xx;
1131+ struct cvmx_usbcx_hcfg_s cn52xxp1;
1132+ struct cvmx_usbcx_hcfg_s cn56xx;
1133+ struct cvmx_usbcx_hcfg_s cn56xxp1;
1134+};
1135+
1136+union cvmx_usbcx_hcintx {
1137+ uint32_t u32;
1138+ struct cvmx_usbcx_hcintx_s {
1139+ uint32_t reserved_11_31:21;
1140+ uint32_t datatglerr:1;
1141+ uint32_t frmovrun:1;
1142+ uint32_t bblerr:1;
1143+ uint32_t xacterr:1;
1144+ uint32_t nyet:1;
1145+ uint32_t ack:1;
1146+ uint32_t nak:1;
1147+ uint32_t stall:1;
1148+ uint32_t ahberr:1;
1149+ uint32_t chhltd:1;
1150+ uint32_t xfercompl:1;
1151+ } s;
1152+ struct cvmx_usbcx_hcintx_s cn30xx;
1153+ struct cvmx_usbcx_hcintx_s cn31xx;
1154+ struct cvmx_usbcx_hcintx_s cn50xx;
1155+ struct cvmx_usbcx_hcintx_s cn52xx;
1156+ struct cvmx_usbcx_hcintx_s cn52xxp1;
1157+ struct cvmx_usbcx_hcintx_s cn56xx;
1158+ struct cvmx_usbcx_hcintx_s cn56xxp1;
1159+};
1160+
1161+union cvmx_usbcx_hcintmskx {
1162+ uint32_t u32;
1163+ struct cvmx_usbcx_hcintmskx_s {
1164+ uint32_t reserved_11_31:21;
1165+ uint32_t datatglerrmsk:1;
1166+ uint32_t frmovrunmsk:1;
1167+ uint32_t bblerrmsk:1;
1168+ uint32_t xacterrmsk:1;
1169+ uint32_t nyetmsk:1;
1170+ uint32_t ackmsk:1;
1171+ uint32_t nakmsk:1;
1172+ uint32_t stallmsk:1;
1173+ uint32_t ahberrmsk:1;
1174+ uint32_t chhltdmsk:1;
1175+ uint32_t xfercomplmsk:1;
1176+ } s;
1177+ struct cvmx_usbcx_hcintmskx_s cn30xx;
1178+ struct cvmx_usbcx_hcintmskx_s cn31xx;
1179+ struct cvmx_usbcx_hcintmskx_s cn50xx;
1180+ struct cvmx_usbcx_hcintmskx_s cn52xx;
1181+ struct cvmx_usbcx_hcintmskx_s cn52xxp1;
1182+ struct cvmx_usbcx_hcintmskx_s cn56xx;
1183+ struct cvmx_usbcx_hcintmskx_s cn56xxp1;
1184+};
1185+
1186+union cvmx_usbcx_hcspltx {
1187+ uint32_t u32;
1188+ struct cvmx_usbcx_hcspltx_s {
1189+ uint32_t spltena:1;
1190+ uint32_t reserved_17_30:14;
1191+ uint32_t compsplt:1;
1192+ uint32_t xactpos:2;
1193+ uint32_t hubaddr:7;
1194+ uint32_t prtaddr:7;
1195+ } s;
1196+ struct cvmx_usbcx_hcspltx_s cn30xx;
1197+ struct cvmx_usbcx_hcspltx_s cn31xx;
1198+ struct cvmx_usbcx_hcspltx_s cn50xx;
1199+ struct cvmx_usbcx_hcspltx_s cn52xx;
1200+ struct cvmx_usbcx_hcspltx_s cn52xxp1;
1201+ struct cvmx_usbcx_hcspltx_s cn56xx;
1202+ struct cvmx_usbcx_hcspltx_s cn56xxp1;
1203+};
1204+
1205+union cvmx_usbcx_hctsizx {
1206+ uint32_t u32;
1207+ struct cvmx_usbcx_hctsizx_s {
1208+ uint32_t dopng:1;
1209+ uint32_t pid:2;
1210+ uint32_t pktcnt:10;
1211+ uint32_t xfersize:19;
1212+ } s;
1213+ struct cvmx_usbcx_hctsizx_s cn30xx;
1214+ struct cvmx_usbcx_hctsizx_s cn31xx;
1215+ struct cvmx_usbcx_hctsizx_s cn50xx;
1216+ struct cvmx_usbcx_hctsizx_s cn52xx;
1217+ struct cvmx_usbcx_hctsizx_s cn52xxp1;
1218+ struct cvmx_usbcx_hctsizx_s cn56xx;
1219+ struct cvmx_usbcx_hctsizx_s cn56xxp1;
1220+};
1221+
1222+union cvmx_usbcx_hfir {
1223+ uint32_t u32;
1224+ struct cvmx_usbcx_hfir_s {
1225+ uint32_t reserved_16_31:16;
1226+ uint32_t frint:16;
1227+ } s;
1228+ struct cvmx_usbcx_hfir_s cn30xx;
1229+ struct cvmx_usbcx_hfir_s cn31xx;
1230+ struct cvmx_usbcx_hfir_s cn50xx;
1231+ struct cvmx_usbcx_hfir_s cn52xx;
1232+ struct cvmx_usbcx_hfir_s cn52xxp1;
1233+ struct cvmx_usbcx_hfir_s cn56xx;
1234+ struct cvmx_usbcx_hfir_s cn56xxp1;
1235+};
1236+
1237+union cvmx_usbcx_hfnum {
1238+ uint32_t u32;
1239+ struct cvmx_usbcx_hfnum_s {
1240+ uint32_t frrem:16;
1241+ uint32_t frnum:16;
1242+ } s;
1243+ struct cvmx_usbcx_hfnum_s cn30xx;
1244+ struct cvmx_usbcx_hfnum_s cn31xx;
1245+ struct cvmx_usbcx_hfnum_s cn50xx;
1246+ struct cvmx_usbcx_hfnum_s cn52xx;
1247+ struct cvmx_usbcx_hfnum_s cn52xxp1;
1248+ struct cvmx_usbcx_hfnum_s cn56xx;
1249+ struct cvmx_usbcx_hfnum_s cn56xxp1;
1250+};
1251+
1252+union cvmx_usbcx_hprt {
1253+ uint32_t u32;
1254+ struct cvmx_usbcx_hprt_s {
1255+ uint32_t reserved_19_31:13;
1256+ uint32_t prtspd:2;
1257+ uint32_t prttstctl:4;
1258+ uint32_t prtpwr:1;
1259+ uint32_t prtlnsts:2;
1260+ uint32_t reserved_9_9:1;
1261+ uint32_t prtrst:1;
1262+ uint32_t prtsusp:1;
1263+ uint32_t prtres:1;
1264+ uint32_t prtovrcurrchng:1;
1265+ uint32_t prtovrcurract:1;
1266+ uint32_t prtenchng:1;
1267+ uint32_t prtena:1;
1268+ uint32_t prtconndet:1;
1269+ uint32_t prtconnsts:1;
1270+ } s;
1271+ struct cvmx_usbcx_hprt_s cn30xx;
1272+ struct cvmx_usbcx_hprt_s cn31xx;
1273+ struct cvmx_usbcx_hprt_s cn50xx;
1274+ struct cvmx_usbcx_hprt_s cn52xx;
1275+ struct cvmx_usbcx_hprt_s cn52xxp1;
1276+ struct cvmx_usbcx_hprt_s cn56xx;
1277+ struct cvmx_usbcx_hprt_s cn56xxp1;
1278+};
1279+
1280+union cvmx_usbcx_hptxfsiz {
1281+ uint32_t u32;
1282+ struct cvmx_usbcx_hptxfsiz_s {
1283+ uint32_t ptxfsize:16;
1284+ uint32_t ptxfstaddr:16;
1285+ } s;
1286+ struct cvmx_usbcx_hptxfsiz_s cn30xx;
1287+ struct cvmx_usbcx_hptxfsiz_s cn31xx;
1288+ struct cvmx_usbcx_hptxfsiz_s cn50xx;
1289+ struct cvmx_usbcx_hptxfsiz_s cn52xx;
1290+ struct cvmx_usbcx_hptxfsiz_s cn52xxp1;
1291+ struct cvmx_usbcx_hptxfsiz_s cn56xx;
1292+ struct cvmx_usbcx_hptxfsiz_s cn56xxp1;
1293+};
1294+
1295+union cvmx_usbcx_hptxsts {
1296+ uint32_t u32;
1297+ struct cvmx_usbcx_hptxsts_s {
1298+ uint32_t ptxqtop:8;
1299+ uint32_t ptxqspcavail:8;
1300+ uint32_t ptxfspcavail:16;
1301+ } s;
1302+ struct cvmx_usbcx_hptxsts_s cn30xx;
1303+ struct cvmx_usbcx_hptxsts_s cn31xx;
1304+ struct cvmx_usbcx_hptxsts_s cn50xx;
1305+ struct cvmx_usbcx_hptxsts_s cn52xx;
1306+ struct cvmx_usbcx_hptxsts_s cn52xxp1;
1307+ struct cvmx_usbcx_hptxsts_s cn56xx;
1308+ struct cvmx_usbcx_hptxsts_s cn56xxp1;
1309+};
1310+
1311+union cvmx_usbcx_nptxdfifox {
1312+ uint32_t u32;
1313+ struct cvmx_usbcx_nptxdfifox_s {
1314+ uint32_t data:32;
1315+ } s;
1316+ struct cvmx_usbcx_nptxdfifox_s cn30xx;
1317+ struct cvmx_usbcx_nptxdfifox_s cn31xx;
1318+ struct cvmx_usbcx_nptxdfifox_s cn50xx;
1319+ struct cvmx_usbcx_nptxdfifox_s cn52xx;
1320+ struct cvmx_usbcx_nptxdfifox_s cn52xxp1;
1321+ struct cvmx_usbcx_nptxdfifox_s cn56xx;
1322+ struct cvmx_usbcx_nptxdfifox_s cn56xxp1;
1323+};
1324+
1325+union cvmx_usbcx_pcgcctl {
1326+ uint32_t u32;
1327+ struct cvmx_usbcx_pcgcctl_s {
1328+ uint32_t reserved_5_31:27;
1329+ uint32_t physuspended:1;
1330+ uint32_t rstpdwnmodule:1;
1331+ uint32_t pwrclmp:1;
1332+ uint32_t gatehclk:1;
1333+ uint32_t stoppclk:1;
1334+ } s;
1335+ struct cvmx_usbcx_pcgcctl_s cn30xx;
1336+ struct cvmx_usbcx_pcgcctl_s cn31xx;
1337+ struct cvmx_usbcx_pcgcctl_s cn50xx;
1338+ struct cvmx_usbcx_pcgcctl_s cn52xx;
1339+ struct cvmx_usbcx_pcgcctl_s cn52xxp1;
1340+ struct cvmx_usbcx_pcgcctl_s cn56xx;
1341+ struct cvmx_usbcx_pcgcctl_s cn56xxp1;
1342+};
1343+
1344+#endif
1345diff --git a/arch/mips/include/asm/octeon/cvmx-usbnx-defs.h b/arch/mips/include/asm/octeon/cvmx-usbnx-defs.h
1346new file mode 100644
1347index 0000000..90be974
1348--- /dev/null
1349+++ b/arch/mips/include/asm/octeon/cvmx-usbnx-defs.h
1350@@ -0,0 +1,760 @@
1351+/***********************license start***************
1352+ * Author: Cavium Networks
1353+ *
1354+ * Contact: support@caviumnetworks.com
1355+ * This file is part of the OCTEON SDK
1356+ *
1357+ * Copyright (c) 2003-2008 Cavium Networks
1358+ *
1359+ * This file is free software; you can redistribute it and/or modify
1360+ * it under the terms of the GNU General Public License, Version 2, as
1361+ * published by the Free Software Foundation.
1362+ *
1363+ * This file is distributed in the hope that it will be useful, but
1364+ * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
1365+ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
1366+ * NONINFRINGEMENT. See the GNU General Public License for more
1367+ * details.
1368+ *
1369+ * You should have received a copy of the GNU General Public License
1370+ * along with this file; if not, write to the Free Software
1371+ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1372+ * or visit http://www.gnu.org/licenses/.
1373+ *
1374+ * This file may also be available under a different license from Cavium.
1375+ * Contact Cavium Networks for more information
1376+ ***********************license end**************************************/
1377+
1378+#ifndef __CVMX_USBNX_DEFS_H__
1379+#define __CVMX_USBNX_DEFS_H__
1380+
1381+#define CVMX_USBNX_BIST_STATUS(block_id) \
1382+ CVMX_ADD_IO_SEG(0x00011800680007F8ull + (((block_id) & 1) * 0x10000000ull))
1383+#define CVMX_USBNX_CLK_CTL(block_id) \
1384+ CVMX_ADD_IO_SEG(0x0001180068000010ull + (((block_id) & 1) * 0x10000000ull))
1385+#define CVMX_USBNX_CTL_STATUS(block_id) \
1386+ CVMX_ADD_IO_SEG(0x00016F0000000800ull + (((block_id) & 1) * 0x100000000000ull))
1387+#define CVMX_USBNX_DMA0_INB_CHN0(block_id) \
1388+ CVMX_ADD_IO_SEG(0x00016F0000000818ull + (((block_id) & 1) * 0x100000000000ull))
1389+#define CVMX_USBNX_DMA0_INB_CHN1(block_id) \
1390+ CVMX_ADD_IO_SEG(0x00016F0000000820ull + (((block_id) & 1) * 0x100000000000ull))
1391+#define CVMX_USBNX_DMA0_INB_CHN2(block_id) \
1392+ CVMX_ADD_IO_SEG(0x00016F0000000828ull + (((block_id) & 1) * 0x100000000000ull))
1393+#define CVMX_USBNX_DMA0_INB_CHN3(block_id) \
1394+ CVMX_ADD_IO_SEG(0x00016F0000000830ull + (((block_id) & 1) * 0x100000000000ull))
1395+#define CVMX_USBNX_DMA0_INB_CHN4(block_id) \
1396+ CVMX_ADD_IO_SEG(0x00016F0000000838ull + (((block_id) & 1) * 0x100000000000ull))
1397+#define CVMX_USBNX_DMA0_INB_CHN5(block_id) \
1398+ CVMX_ADD_IO_SEG(0x00016F0000000840ull + (((block_id) & 1) * 0x100000000000ull))
1399+#define CVMX_USBNX_DMA0_INB_CHN6(block_id) \
1400+ CVMX_ADD_IO_SEG(0x00016F0000000848ull + (((block_id) & 1) * 0x100000000000ull))
1401+#define CVMX_USBNX_DMA0_INB_CHN7(block_id) \
1402+ CVMX_ADD_IO_SEG(0x00016F0000000850ull + (((block_id) & 1) * 0x100000000000ull))
1403+#define CVMX_USBNX_DMA0_OUTB_CHN0(block_id) \
1404+ CVMX_ADD_IO_SEG(0x00016F0000000858ull + (((block_id) & 1) * 0x100000000000ull))
1405+#define CVMX_USBNX_DMA0_OUTB_CHN1(block_id) \
1406+ CVMX_ADD_IO_SEG(0x00016F0000000860ull + (((block_id) & 1) * 0x100000000000ull))
1407+#define CVMX_USBNX_DMA0_OUTB_CHN2(block_id) \
1408+ CVMX_ADD_IO_SEG(0x00016F0000000868ull + (((block_id) & 1) * 0x100000000000ull))
1409+#define CVMX_USBNX_DMA0_OUTB_CHN3(block_id) \
1410+ CVMX_ADD_IO_SEG(0x00016F0000000870ull + (((block_id) & 1) * 0x100000000000ull))
1411+#define CVMX_USBNX_DMA0_OUTB_CHN4(block_id) \
1412+ CVMX_ADD_IO_SEG(0x00016F0000000878ull + (((block_id) & 1) * 0x100000000000ull))
1413+#define CVMX_USBNX_DMA0_OUTB_CHN5(block_id) \
1414+ CVMX_ADD_IO_SEG(0x00016F0000000880ull + (((block_id) & 1) * 0x100000000000ull))
1415+#define CVMX_USBNX_DMA0_OUTB_CHN6(block_id) \
1416+ CVMX_ADD_IO_SEG(0x00016F0000000888ull + (((block_id) & 1) * 0x100000000000ull))
1417+#define CVMX_USBNX_DMA0_OUTB_CHN7(block_id) \
1418+ CVMX_ADD_IO_SEG(0x00016F0000000890ull + (((block_id) & 1) * 0x100000000000ull))
1419+#define CVMX_USBNX_DMA_TEST(block_id) \
1420+ CVMX_ADD_IO_SEG(0x00016F0000000808ull + (((block_id) & 1) * 0x100000000000ull))
1421+#define CVMX_USBNX_INT_ENB(block_id) \
1422+ CVMX_ADD_IO_SEG(0x0001180068000008ull + (((block_id) & 1) * 0x10000000ull))
1423+#define CVMX_USBNX_INT_SUM(block_id) \
1424+ CVMX_ADD_IO_SEG(0x0001180068000000ull + (((block_id) & 1) * 0x10000000ull))
1425+#define CVMX_USBNX_USBP_CTL_STATUS(block_id) \
1426+ CVMX_ADD_IO_SEG(0x0001180068000018ull + (((block_id) & 1) * 0x10000000ull))
1427+
1428+union cvmx_usbnx_bist_status {
1429+ uint64_t u64;
1430+ struct cvmx_usbnx_bist_status_s {
1431+ uint64_t reserved_7_63:57;
1432+ uint64_t u2nc_bis:1;
1433+ uint64_t u2nf_bis:1;
1434+ uint64_t e2hc_bis:1;
1435+ uint64_t n2uf_bis:1;
1436+ uint64_t usbc_bis:1;
1437+ uint64_t nif_bis:1;
1438+ uint64_t nof_bis:1;
1439+ } s;
1440+ struct cvmx_usbnx_bist_status_cn30xx {
1441+ uint64_t reserved_3_63:61;
1442+ uint64_t usbc_bis:1;
1443+ uint64_t nif_bis:1;
1444+ uint64_t nof_bis:1;
1445+ } cn30xx;
1446+ struct cvmx_usbnx_bist_status_cn30xx cn31xx;
1447+ struct cvmx_usbnx_bist_status_s cn50xx;
1448+ struct cvmx_usbnx_bist_status_s cn52xx;
1449+ struct cvmx_usbnx_bist_status_s cn52xxp1;
1450+ struct cvmx_usbnx_bist_status_s cn56xx;
1451+ struct cvmx_usbnx_bist_status_s cn56xxp1;
1452+};
1453+
1454+union cvmx_usbnx_clk_ctl {
1455+ uint64_t u64;
1456+ struct cvmx_usbnx_clk_ctl_s {
1457+ uint64_t reserved_20_63:44;
1458+ uint64_t divide2:2;
1459+ uint64_t hclk_rst:1;
1460+ uint64_t p_x_on:1;
1461+ uint64_t reserved_14_15:2;
1462+ uint64_t p_com_on:1;
1463+ uint64_t p_c_sel:2;
1464+ uint64_t cdiv_byp:1;
1465+ uint64_t sd_mode:2;
1466+ uint64_t s_bist:1;
1467+ uint64_t por:1;
1468+ uint64_t enable:1;
1469+ uint64_t prst:1;
1470+ uint64_t hrst:1;
1471+ uint64_t divide:3;
1472+ } s;
1473+ struct cvmx_usbnx_clk_ctl_cn30xx {
1474+ uint64_t reserved_18_63:46;
1475+ uint64_t hclk_rst:1;
1476+ uint64_t p_x_on:1;
1477+ uint64_t p_rclk:1;
1478+ uint64_t p_xenbn:1;
1479+ uint64_t p_com_on:1;
1480+ uint64_t p_c_sel:2;
1481+ uint64_t cdiv_byp:1;
1482+ uint64_t sd_mode:2;
1483+ uint64_t s_bist:1;
1484+ uint64_t por:1;
1485+ uint64_t enable:1;
1486+ uint64_t prst:1;
1487+ uint64_t hrst:1;
1488+ uint64_t divide:3;
1489+ } cn30xx;
1490+ struct cvmx_usbnx_clk_ctl_cn30xx cn31xx;
1491+ struct cvmx_usbnx_clk_ctl_cn50xx {
1492+ uint64_t reserved_20_63:44;
1493+ uint64_t divide2:2;
1494+ uint64_t hclk_rst:1;
1495+ uint64_t reserved_16_16:1;
1496+ uint64_t p_rtype:2;
1497+ uint64_t p_com_on:1;
1498+ uint64_t p_c_sel:2;
1499+ uint64_t cdiv_byp:1;
1500+ uint64_t sd_mode:2;
1501+ uint64_t s_bist:1;
1502+ uint64_t por:1;
1503+ uint64_t enable:1;
1504+ uint64_t prst:1;
1505+ uint64_t hrst:1;
1506+ uint64_t divide:3;
1507+ } cn50xx;
1508+ struct cvmx_usbnx_clk_ctl_cn50xx cn52xx;
1509+ struct cvmx_usbnx_clk_ctl_cn50xx cn52xxp1;
1510+ struct cvmx_usbnx_clk_ctl_cn50xx cn56xx;
1511+ struct cvmx_usbnx_clk_ctl_cn50xx cn56xxp1;
1512+};
1513+
1514+union cvmx_usbnx_ctl_status {
1515+ uint64_t u64;
1516+ struct cvmx_usbnx_ctl_status_s {
1517+ uint64_t reserved_6_63:58;
1518+ uint64_t dma_0pag:1;
1519+ uint64_t dma_stt:1;
1520+ uint64_t dma_test:1;
1521+ uint64_t inv_a2:1;
1522+ uint64_t l2c_emod:2;
1523+ } s;
1524+ struct cvmx_usbnx_ctl_status_s cn30xx;
1525+ struct cvmx_usbnx_ctl_status_s cn31xx;
1526+ struct cvmx_usbnx_ctl_status_s cn50xx;
1527+ struct cvmx_usbnx_ctl_status_s cn52xx;
1528+ struct cvmx_usbnx_ctl_status_s cn52xxp1;
1529+ struct cvmx_usbnx_ctl_status_s cn56xx;
1530+ struct cvmx_usbnx_ctl_status_s cn56xxp1;
1531+};
1532+
1533+union cvmx_usbnx_dma0_inb_chn0 {
1534+ uint64_t u64;
1535+ struct cvmx_usbnx_dma0_inb_chn0_s {
1536+ uint64_t reserved_36_63:28;
1537+ uint64_t addr:36;
1538+ } s;
1539+ struct cvmx_usbnx_dma0_inb_chn0_s cn30xx;
1540+ struct cvmx_usbnx_dma0_inb_chn0_s cn31xx;
1541+ struct cvmx_usbnx_dma0_inb_chn0_s cn50xx;
1542+ struct cvmx_usbnx_dma0_inb_chn0_s cn52xx;
1543+ struct cvmx_usbnx_dma0_inb_chn0_s cn52xxp1;
1544+ struct cvmx_usbnx_dma0_inb_chn0_s cn56xx;
1545+ struct cvmx_usbnx_dma0_inb_chn0_s cn56xxp1;
1546+};
1547+
1548+union cvmx_usbnx_dma0_inb_chn1 {
1549+ uint64_t u64;
1550+ struct cvmx_usbnx_dma0_inb_chn1_s {
1551+ uint64_t reserved_36_63:28;
1552+ uint64_t addr:36;
1553+ } s;
1554+ struct cvmx_usbnx_dma0_inb_chn1_s cn30xx;
1555+ struct cvmx_usbnx_dma0_inb_chn1_s cn31xx;
1556+ struct cvmx_usbnx_dma0_inb_chn1_s cn50xx;
1557+ struct cvmx_usbnx_dma0_inb_chn1_s cn52xx;
1558+ struct cvmx_usbnx_dma0_inb_chn1_s cn52xxp1;
1559+ struct cvmx_usbnx_dma0_inb_chn1_s cn56xx;
1560+ struct cvmx_usbnx_dma0_inb_chn1_s cn56xxp1;
1561+};
1562+
1563+union cvmx_usbnx_dma0_inb_chn2 {
1564+ uint64_t u64;
1565+ struct cvmx_usbnx_dma0_inb_chn2_s {
1566+ uint64_t reserved_36_63:28;
1567+ uint64_t addr:36;
1568+ } s;
1569+ struct cvmx_usbnx_dma0_inb_chn2_s cn30xx;
1570+ struct cvmx_usbnx_dma0_inb_chn2_s cn31xx;
1571+ struct cvmx_usbnx_dma0_inb_chn2_s cn50xx;
1572+ struct cvmx_usbnx_dma0_inb_chn2_s cn52xx;
1573+ struct cvmx_usbnx_dma0_inb_chn2_s cn52xxp1;
1574+ struct cvmx_usbnx_dma0_inb_chn2_s cn56xx;
1575+ struct cvmx_usbnx_dma0_inb_chn2_s cn56xxp1;
1576+};
1577+
1578+union cvmx_usbnx_dma0_inb_chn3 {
1579+ uint64_t u64;
1580+ struct cvmx_usbnx_dma0_inb_chn3_s {
1581+ uint64_t reserved_36_63:28;
1582+ uint64_t addr:36;
1583+ } s;
1584+ struct cvmx_usbnx_dma0_inb_chn3_s cn30xx;
1585+ struct cvmx_usbnx_dma0_inb_chn3_s cn31xx;
1586+ struct cvmx_usbnx_dma0_inb_chn3_s cn50xx;
1587+ struct cvmx_usbnx_dma0_inb_chn3_s cn52xx;
1588+ struct cvmx_usbnx_dma0_inb_chn3_s cn52xxp1;
1589+ struct cvmx_usbnx_dma0_inb_chn3_s cn56xx;
1590+ struct cvmx_usbnx_dma0_inb_chn3_s cn56xxp1;
1591+};
1592+
1593+union cvmx_usbnx_dma0_inb_chn4 {
1594+ uint64_t u64;
1595+ struct cvmx_usbnx_dma0_inb_chn4_s {
1596+ uint64_t reserved_36_63:28;
1597+ uint64_t addr:36;
1598+ } s;
1599+ struct cvmx_usbnx_dma0_inb_chn4_s cn30xx;
1600+ struct cvmx_usbnx_dma0_inb_chn4_s cn31xx;
1601+ struct cvmx_usbnx_dma0_inb_chn4_s cn50xx;
1602+ struct cvmx_usbnx_dma0_inb_chn4_s cn52xx;
1603+ struct cvmx_usbnx_dma0_inb_chn4_s cn52xxp1;
1604+ struct cvmx_usbnx_dma0_inb_chn4_s cn56xx;
1605+ struct cvmx_usbnx_dma0_inb_chn4_s cn56xxp1;
1606+};
1607+
1608+union cvmx_usbnx_dma0_inb_chn5 {
1609+ uint64_t u64;
1610+ struct cvmx_usbnx_dma0_inb_chn5_s {
1611+ uint64_t reserved_36_63:28;
1612+ uint64_t addr:36;
1613+ } s;
1614+ struct cvmx_usbnx_dma0_inb_chn5_s cn30xx;
1615+ struct cvmx_usbnx_dma0_inb_chn5_s cn31xx;
1616+ struct cvmx_usbnx_dma0_inb_chn5_s cn50xx;
1617+ struct cvmx_usbnx_dma0_inb_chn5_s cn52xx;
1618+ struct cvmx_usbnx_dma0_inb_chn5_s cn52xxp1;
1619+ struct cvmx_usbnx_dma0_inb_chn5_s cn56xx;
1620+ struct cvmx_usbnx_dma0_inb_chn5_s cn56xxp1;
1621+};
1622+
1623+union cvmx_usbnx_dma0_inb_chn6 {
1624+ uint64_t u64;
1625+ struct cvmx_usbnx_dma0_inb_chn6_s {
1626+ uint64_t reserved_36_63:28;
1627+ uint64_t addr:36;
1628+ } s;
1629+ struct cvmx_usbnx_dma0_inb_chn6_s cn30xx;
1630+ struct cvmx_usbnx_dma0_inb_chn6_s cn31xx;
1631+ struct cvmx_usbnx_dma0_inb_chn6_s cn50xx;
1632+ struct cvmx_usbnx_dma0_inb_chn6_s cn52xx;
1633+ struct cvmx_usbnx_dma0_inb_chn6_s cn52xxp1;
1634+ struct cvmx_usbnx_dma0_inb_chn6_s cn56xx;
1635+ struct cvmx_usbnx_dma0_inb_chn6_s cn56xxp1;
1636+};
1637+
1638+union cvmx_usbnx_dma0_inb_chn7 {
1639+ uint64_t u64;
1640+ struct cvmx_usbnx_dma0_inb_chn7_s {
1641+ uint64_t reserved_36_63:28;
1642+ uint64_t addr:36;
1643+ } s;
1644+ struct cvmx_usbnx_dma0_inb_chn7_s cn30xx;
1645+ struct cvmx_usbnx_dma0_inb_chn7_s cn31xx;
1646+ struct cvmx_usbnx_dma0_inb_chn7_s cn50xx;
1647+ struct cvmx_usbnx_dma0_inb_chn7_s cn52xx;
1648+ struct cvmx_usbnx_dma0_inb_chn7_s cn52xxp1;
1649+ struct cvmx_usbnx_dma0_inb_chn7_s cn56xx;
1650+ struct cvmx_usbnx_dma0_inb_chn7_s cn56xxp1;
1651+};
1652+
1653+union cvmx_usbnx_dma0_outb_chn0 {
1654+ uint64_t u64;
1655+ struct cvmx_usbnx_dma0_outb_chn0_s {
1656+ uint64_t reserved_36_63:28;
1657+ uint64_t addr:36;
1658+ } s;
1659+ struct cvmx_usbnx_dma0_outb_chn0_s cn30xx;
1660+ struct cvmx_usbnx_dma0_outb_chn0_s cn31xx;
1661+ struct cvmx_usbnx_dma0_outb_chn0_s cn50xx;
1662+ struct cvmx_usbnx_dma0_outb_chn0_s cn52xx;
1663+ struct cvmx_usbnx_dma0_outb_chn0_s cn52xxp1;
1664+ struct cvmx_usbnx_dma0_outb_chn0_s cn56xx;
1665+ struct cvmx_usbnx_dma0_outb_chn0_s cn56xxp1;
1666+};
1667+
1668+union cvmx_usbnx_dma0_outb_chn1 {
1669+ uint64_t u64;
1670+ struct cvmx_usbnx_dma0_outb_chn1_s {
1671+ uint64_t reserved_36_63:28;
1672+ uint64_t addr:36;
1673+ } s;
1674+ struct cvmx_usbnx_dma0_outb_chn1_s cn30xx;
1675+ struct cvmx_usbnx_dma0_outb_chn1_s cn31xx;
1676+ struct cvmx_usbnx_dma0_outb_chn1_s cn50xx;
1677+ struct cvmx_usbnx_dma0_outb_chn1_s cn52xx;
1678+ struct cvmx_usbnx_dma0_outb_chn1_s cn52xxp1;
1679+ struct cvmx_usbnx_dma0_outb_chn1_s cn56xx;
1680+ struct cvmx_usbnx_dma0_outb_chn1_s cn56xxp1;
1681+};
1682+
1683+union cvmx_usbnx_dma0_outb_chn2 {
1684+ uint64_t u64;
1685+ struct cvmx_usbnx_dma0_outb_chn2_s {
1686+ uint64_t reserved_36_63:28;
1687+ uint64_t addr:36;
1688+ } s;
1689+ struct cvmx_usbnx_dma0_outb_chn2_s cn30xx;
1690+ struct cvmx_usbnx_dma0_outb_chn2_s cn31xx;
1691+ struct cvmx_usbnx_dma0_outb_chn2_s cn50xx;
1692+ struct cvmx_usbnx_dma0_outb_chn2_s cn52xx;
1693+ struct cvmx_usbnx_dma0_outb_chn2_s cn52xxp1;
1694+ struct cvmx_usbnx_dma0_outb_chn2_s cn56xx;
1695+ struct cvmx_usbnx_dma0_outb_chn2_s cn56xxp1;
1696+};
1697+
1698+union cvmx_usbnx_dma0_outb_chn3 {
1699+ uint64_t u64;
1700+ struct cvmx_usbnx_dma0_outb_chn3_s {
1701+ uint64_t reserved_36_63:28;
1702+ uint64_t addr:36;
1703+ } s;
1704+ struct cvmx_usbnx_dma0_outb_chn3_s cn30xx;
1705+ struct cvmx_usbnx_dma0_outb_chn3_s cn31xx;
1706+ struct cvmx_usbnx_dma0_outb_chn3_s cn50xx;
1707+ struct cvmx_usbnx_dma0_outb_chn3_s cn52xx;
1708+ struct cvmx_usbnx_dma0_outb_chn3_s cn52xxp1;
1709+ struct cvmx_usbnx_dma0_outb_chn3_s cn56xx;
1710+ struct cvmx_usbnx_dma0_outb_chn3_s cn56xxp1;
1711+};
1712+
1713+union cvmx_usbnx_dma0_outb_chn4 {
1714+ uint64_t u64;
1715+ struct cvmx_usbnx_dma0_outb_chn4_s {
1716+ uint64_t reserved_36_63:28;
1717+ uint64_t addr:36;
1718+ } s;
1719+ struct cvmx_usbnx_dma0_outb_chn4_s cn30xx;
1720+ struct cvmx_usbnx_dma0_outb_chn4_s cn31xx;
1721+ struct cvmx_usbnx_dma0_outb_chn4_s cn50xx;
1722+ struct cvmx_usbnx_dma0_outb_chn4_s cn52xx;
1723+ struct cvmx_usbnx_dma0_outb_chn4_s cn52xxp1;
1724+ struct cvmx_usbnx_dma0_outb_chn4_s cn56xx;
1725+ struct cvmx_usbnx_dma0_outb_chn4_s cn56xxp1;
1726+};
1727+
1728+union cvmx_usbnx_dma0_outb_chn5 {
1729+ uint64_t u64;
1730+ struct cvmx_usbnx_dma0_outb_chn5_s {
1731+ uint64_t reserved_36_63:28;
1732+ uint64_t addr:36;
1733+ } s;
1734+ struct cvmx_usbnx_dma0_outb_chn5_s cn30xx;
1735+ struct cvmx_usbnx_dma0_outb_chn5_s cn31xx;
1736+ struct cvmx_usbnx_dma0_outb_chn5_s cn50xx;
1737+ struct cvmx_usbnx_dma0_outb_chn5_s cn52xx;
1738+ struct cvmx_usbnx_dma0_outb_chn5_s cn52xxp1;
1739+ struct cvmx_usbnx_dma0_outb_chn5_s cn56xx;
1740+ struct cvmx_usbnx_dma0_outb_chn5_s cn56xxp1;
1741+};
1742+
1743+union cvmx_usbnx_dma0_outb_chn6 {
1744+ uint64_t u64;
1745+ struct cvmx_usbnx_dma0_outb_chn6_s {
1746+ uint64_t reserved_36_63:28;
1747+ uint64_t addr:36;
1748+ } s;
1749+ struct cvmx_usbnx_dma0_outb_chn6_s cn30xx;
1750+ struct cvmx_usbnx_dma0_outb_chn6_s cn31xx;
1751+ struct cvmx_usbnx_dma0_outb_chn6_s cn50xx;
1752+ struct cvmx_usbnx_dma0_outb_chn6_s cn52xx;
1753+ struct cvmx_usbnx_dma0_outb_chn6_s cn52xxp1;
1754+ struct cvmx_usbnx_dma0_outb_chn6_s cn56xx;
1755+ struct cvmx_usbnx_dma0_outb_chn6_s cn56xxp1;
1756+};
1757+
1758+union cvmx_usbnx_dma0_outb_chn7 {
1759+ uint64_t u64;
1760+ struct cvmx_usbnx_dma0_outb_chn7_s {
1761+ uint64_t reserved_36_63:28;
1762+ uint64_t addr:36;
1763+ } s;
1764+ struct cvmx_usbnx_dma0_outb_chn7_s cn30xx;
1765+ struct cvmx_usbnx_dma0_outb_chn7_s cn31xx;
1766+ struct cvmx_usbnx_dma0_outb_chn7_s cn50xx;
1767+ struct cvmx_usbnx_dma0_outb_chn7_s cn52xx;
1768+ struct cvmx_usbnx_dma0_outb_chn7_s cn52xxp1;
1769+ struct cvmx_usbnx_dma0_outb_chn7_s cn56xx;
1770+ struct cvmx_usbnx_dma0_outb_chn7_s cn56xxp1;
1771+};
1772+
1773+union cvmx_usbnx_dma_test {
1774+ uint64_t u64;
1775+ struct cvmx_usbnx_dma_test_s {
1776+ uint64_t reserved_40_63:24;
1777+ uint64_t done:1;
1778+ uint64_t req:1;
1779+ uint64_t f_addr:18;
1780+ uint64_t count:11;
1781+ uint64_t channel:5;
1782+ uint64_t burst:4;
1783+ } s;
1784+ struct cvmx_usbnx_dma_test_s cn30xx;
1785+ struct cvmx_usbnx_dma_test_s cn31xx;
1786+ struct cvmx_usbnx_dma_test_s cn50xx;
1787+ struct cvmx_usbnx_dma_test_s cn52xx;
1788+ struct cvmx_usbnx_dma_test_s cn52xxp1;
1789+ struct cvmx_usbnx_dma_test_s cn56xx;
1790+ struct cvmx_usbnx_dma_test_s cn56xxp1;
1791+};
1792+
1793+union cvmx_usbnx_int_enb {
1794+ uint64_t u64;
1795+ struct cvmx_usbnx_int_enb_s {
1796+ uint64_t reserved_38_63:26;
1797+ uint64_t nd4o_dpf:1;
1798+ uint64_t nd4o_dpe:1;
1799+ uint64_t nd4o_rpf:1;
1800+ uint64_t nd4o_rpe:1;
1801+ uint64_t ltl_f_pf:1;
1802+ uint64_t ltl_f_pe:1;
1803+ uint64_t u2n_c_pe:1;
1804+ uint64_t u2n_c_pf:1;
1805+ uint64_t u2n_d_pf:1;
1806+ uint64_t u2n_d_pe:1;
1807+ uint64_t n2u_pe:1;
1808+ uint64_t n2u_pf:1;
1809+ uint64_t uod_pf:1;
1810+ uint64_t uod_pe:1;
1811+ uint64_t rq_q3_e:1;
1812+ uint64_t rq_q3_f:1;
1813+ uint64_t rq_q2_e:1;
1814+ uint64_t rq_q2_f:1;
1815+ uint64_t rg_fi_f:1;
1816+ uint64_t rg_fi_e:1;
1817+ uint64_t l2_fi_f:1;
1818+ uint64_t l2_fi_e:1;
1819+ uint64_t l2c_a_f:1;
1820+ uint64_t l2c_s_e:1;
1821+ uint64_t dcred_f:1;
1822+ uint64_t dcred_e:1;
1823+ uint64_t lt_pu_f:1;
1824+ uint64_t lt_po_e:1;
1825+ uint64_t nt_pu_f:1;
1826+ uint64_t nt_po_e:1;
1827+ uint64_t pt_pu_f:1;
1828+ uint64_t pt_po_e:1;
1829+ uint64_t lr_pu_f:1;
1830+ uint64_t lr_po_e:1;
1831+ uint64_t nr_pu_f:1;
1832+ uint64_t nr_po_e:1;
1833+ uint64_t pr_pu_f:1;
1834+ uint64_t pr_po_e:1;
1835+ } s;
1836+ struct cvmx_usbnx_int_enb_s cn30xx;
1837+ struct cvmx_usbnx_int_enb_s cn31xx;
1838+ struct cvmx_usbnx_int_enb_cn50xx {
1839+ uint64_t reserved_38_63:26;
1840+ uint64_t nd4o_dpf:1;
1841+ uint64_t nd4o_dpe:1;
1842+ uint64_t nd4o_rpf:1;
1843+ uint64_t nd4o_rpe:1;
1844+ uint64_t ltl_f_pf:1;
1845+ uint64_t ltl_f_pe:1;
1846+ uint64_t reserved_26_31:6;
1847+ uint64_t uod_pf:1;
1848+ uint64_t uod_pe:1;
1849+ uint64_t rq_q3_e:1;
1850+ uint64_t rq_q3_f:1;
1851+ uint64_t rq_q2_e:1;
1852+ uint64_t rq_q2_f:1;
1853+ uint64_t rg_fi_f:1;
1854+ uint64_t rg_fi_e:1;
1855+ uint64_t l2_fi_f:1;
1856+ uint64_t l2_fi_e:1;
1857+ uint64_t l2c_a_f:1;
1858+ uint64_t l2c_s_e:1;
1859+ uint64_t dcred_f:1;
1860+ uint64_t dcred_e:1;
1861+ uint64_t lt_pu_f:1;
1862+ uint64_t lt_po_e:1;
1863+ uint64_t nt_pu_f:1;
1864+ uint64_t nt_po_e:1;
1865+ uint64_t pt_pu_f:1;
1866+ uint64_t pt_po_e:1;
1867+ uint64_t lr_pu_f:1;
1868+ uint64_t lr_po_e:1;
1869+ uint64_t nr_pu_f:1;
1870+ uint64_t nr_po_e:1;
1871+ uint64_t pr_pu_f:1;
1872+ uint64_t pr_po_e:1;
1873+ } cn50xx;
1874+ struct cvmx_usbnx_int_enb_cn50xx cn52xx;
1875+ struct cvmx_usbnx_int_enb_cn50xx cn52xxp1;
1876+ struct cvmx_usbnx_int_enb_cn50xx cn56xx;
1877+ struct cvmx_usbnx_int_enb_cn50xx cn56xxp1;
1878+};
1879+
1880+union cvmx_usbnx_int_sum {
1881+ uint64_t u64;
1882+ struct cvmx_usbnx_int_sum_s {
1883+ uint64_t reserved_38_63:26;
1884+ uint64_t nd4o_dpf:1;
1885+ uint64_t nd4o_dpe:1;
1886+ uint64_t nd4o_rpf:1;
1887+ uint64_t nd4o_rpe:1;
1888+ uint64_t ltl_f_pf:1;
1889+ uint64_t ltl_f_pe:1;
1890+ uint64_t u2n_c_pe:1;
1891+ uint64_t u2n_c_pf:1;
1892+ uint64_t u2n_d_pf:1;
1893+ uint64_t u2n_d_pe:1;
1894+ uint64_t n2u_pe:1;
1895+ uint64_t n2u_pf:1;
1896+ uint64_t uod_pf:1;
1897+ uint64_t uod_pe:1;
1898+ uint64_t rq_q3_e:1;
1899+ uint64_t rq_q3_f:1;
1900+ uint64_t rq_q2_e:1;
1901+ uint64_t rq_q2_f:1;
1902+ uint64_t rg_fi_f:1;
1903+ uint64_t rg_fi_e:1;
1904+ uint64_t lt_fi_f:1;
1905+ uint64_t lt_fi_e:1;
1906+ uint64_t l2c_a_f:1;
1907+ uint64_t l2c_s_e:1;
1908+ uint64_t dcred_f:1;
1909+ uint64_t dcred_e:1;
1910+ uint64_t lt_pu_f:1;
1911+ uint64_t lt_po_e:1;
1912+ uint64_t nt_pu_f:1;
1913+ uint64_t nt_po_e:1;
1914+ uint64_t pt_pu_f:1;
1915+ uint64_t pt_po_e:1;
1916+ uint64_t lr_pu_f:1;
1917+ uint64_t lr_po_e:1;
1918+ uint64_t nr_pu_f:1;
1919+ uint64_t nr_po_e:1;
1920+ uint64_t pr_pu_f:1;
1921+ uint64_t pr_po_e:1;
1922+ } s;
1923+ struct cvmx_usbnx_int_sum_s cn30xx;
1924+ struct cvmx_usbnx_int_sum_s cn31xx;
1925+ struct cvmx_usbnx_int_sum_cn50xx {
1926+ uint64_t reserved_38_63:26;
1927+ uint64_t nd4o_dpf:1;
1928+ uint64_t nd4o_dpe:1;
1929+ uint64_t nd4o_rpf:1;
1930+ uint64_t nd4o_rpe:1;
1931+ uint64_t ltl_f_pf:1;
1932+ uint64_t ltl_f_pe:1;
1933+ uint64_t reserved_26_31:6;
1934+ uint64_t uod_pf:1;
1935+ uint64_t uod_pe:1;
1936+ uint64_t rq_q3_e:1;
1937+ uint64_t rq_q3_f:1;
1938+ uint64_t rq_q2_e:1;
1939+ uint64_t rq_q2_f:1;
1940+ uint64_t rg_fi_f:1;
1941+ uint64_t rg_fi_e:1;
1942+ uint64_t lt_fi_f:1;
1943+ uint64_t lt_fi_e:1;
1944+ uint64_t l2c_a_f:1;
1945+ uint64_t l2c_s_e:1;
1946+ uint64_t dcred_f:1;
1947+ uint64_t dcred_e:1;
1948+ uint64_t lt_pu_f:1;
1949+ uint64_t lt_po_e:1;
1950+ uint64_t nt_pu_f:1;
1951+ uint64_t nt_po_e:1;
1952+ uint64_t pt_pu_f:1;
1953+ uint64_t pt_po_e:1;
1954+ uint64_t lr_pu_f:1;
1955+ uint64_t lr_po_e:1;
1956+ uint64_t nr_pu_f:1;
1957+ uint64_t nr_po_e:1;
1958+ uint64_t pr_pu_f:1;
1959+ uint64_t pr_po_e:1;
1960+ } cn50xx;
1961+ struct cvmx_usbnx_int_sum_cn50xx cn52xx;
1962+ struct cvmx_usbnx_int_sum_cn50xx cn52xxp1;
1963+ struct cvmx_usbnx_int_sum_cn50xx cn56xx;
1964+ struct cvmx_usbnx_int_sum_cn50xx cn56xxp1;
1965+};
1966+
1967+union cvmx_usbnx_usbp_ctl_status {
1968+ uint64_t u64;
1969+ struct cvmx_usbnx_usbp_ctl_status_s {
1970+ uint64_t txrisetune:1;
1971+ uint64_t txvreftune:4;
1972+ uint64_t txfslstune:4;
1973+ uint64_t txhsxvtune:2;
1974+ uint64_t sqrxtune:3;
1975+ uint64_t compdistune:3;
1976+ uint64_t otgtune:3;
1977+ uint64_t otgdisable:1;
1978+ uint64_t portreset:1;
1979+ uint64_t drvvbus:1;
1980+ uint64_t lsbist:1;
1981+ uint64_t fsbist:1;
1982+ uint64_t hsbist:1;
1983+ uint64_t bist_done:1;
1984+ uint64_t bist_err:1;
1985+ uint64_t tdata_out:4;
1986+ uint64_t siddq:1;
1987+ uint64_t txpreemphasistune:1;
1988+ uint64_t dma_bmode:1;
1989+ uint64_t usbc_end:1;
1990+ uint64_t usbp_bist:1;
1991+ uint64_t tclk:1;
1992+ uint64_t dp_pulld:1;
1993+ uint64_t dm_pulld:1;
1994+ uint64_t hst_mode:1;
1995+ uint64_t tuning:4;
1996+ uint64_t tx_bs_enh:1;
1997+ uint64_t tx_bs_en:1;
1998+ uint64_t loop_enb:1;
1999+ uint64_t vtest_enb:1;
2000+ uint64_t bist_enb:1;
2001+ uint64_t tdata_sel:1;
2002+ uint64_t taddr_in:4;
2003+ uint64_t tdata_in:8;
2004+ uint64_t ate_reset:1;
2005+ } s;
2006+ struct cvmx_usbnx_usbp_ctl_status_cn30xx {
2007+ uint64_t reserved_38_63:26;
2008+ uint64_t bist_done:1;
2009+ uint64_t bist_err:1;
2010+ uint64_t tdata_out:4;
2011+ uint64_t reserved_30_31:2;
2012+ uint64_t dma_bmode:1;
2013+ uint64_t usbc_end:1;
2014+ uint64_t usbp_bist:1;
2015+ uint64_t tclk:1;
2016+ uint64_t dp_pulld:1;
2017+ uint64_t dm_pulld:1;
2018+ uint64_t hst_mode:1;
2019+ uint64_t tuning:4;
2020+ uint64_t tx_bs_enh:1;
2021+ uint64_t tx_bs_en:1;
2022+ uint64_t loop_enb:1;
2023+ uint64_t vtest_enb:1;
2024+ uint64_t bist_enb:1;
2025+ uint64_t tdata_sel:1;
2026+ uint64_t taddr_in:4;
2027+ uint64_t tdata_in:8;
2028+ uint64_t ate_reset:1;
2029+ } cn30xx;
2030+ struct cvmx_usbnx_usbp_ctl_status_cn30xx cn31xx;
2031+ struct cvmx_usbnx_usbp_ctl_status_cn50xx {
2032+ uint64_t txrisetune:1;
2033+ uint64_t txvreftune:4;
2034+ uint64_t txfslstune:4;
2035+ uint64_t txhsxvtune:2;
2036+ uint64_t sqrxtune:3;
2037+ uint64_t compdistune:3;
2038+ uint64_t otgtune:3;
2039+ uint64_t otgdisable:1;
2040+ uint64_t portreset:1;
2041+ uint64_t drvvbus:1;
2042+ uint64_t lsbist:1;
2043+ uint64_t fsbist:1;
2044+ uint64_t hsbist:1;
2045+ uint64_t bist_done:1;
2046+ uint64_t bist_err:1;
2047+ uint64_t tdata_out:4;
2048+ uint64_t reserved_31_31:1;
2049+ uint64_t txpreemphasistune:1;
2050+ uint64_t dma_bmode:1;
2051+ uint64_t usbc_end:1;
2052+ uint64_t usbp_bist:1;
2053+ uint64_t tclk:1;
2054+ uint64_t dp_pulld:1;
2055+ uint64_t dm_pulld:1;
2056+ uint64_t hst_mode:1;
2057+ uint64_t reserved_19_22:4;
2058+ uint64_t tx_bs_enh:1;
2059+ uint64_t tx_bs_en:1;
2060+ uint64_t loop_enb:1;
2061+ uint64_t vtest_enb:1;
2062+ uint64_t bist_enb:1;
2063+ uint64_t tdata_sel:1;
2064+ uint64_t taddr_in:4;
2065+ uint64_t tdata_in:8;
2066+ uint64_t ate_reset:1;
2067+ } cn50xx;
2068+ struct cvmx_usbnx_usbp_ctl_status_cn50xx cn52xx;
2069+ struct cvmx_usbnx_usbp_ctl_status_cn50xx cn52xxp1;
2070+ struct cvmx_usbnx_usbp_ctl_status_cn56xx {
2071+ uint64_t txrisetune:1;
2072+ uint64_t txvreftune:4;
2073+ uint64_t txfslstune:4;
2074+ uint64_t txhsxvtune:2;
2075+ uint64_t sqrxtune:3;
2076+ uint64_t compdistune:3;
2077+ uint64_t otgtune:3;
2078+ uint64_t otgdisable:1;
2079+ uint64_t portreset:1;
2080+ uint64_t drvvbus:1;
2081+ uint64_t lsbist:1;
2082+ uint64_t fsbist:1;
2083+ uint64_t hsbist:1;
2084+ uint64_t bist_done:1;
2085+ uint64_t bist_err:1;
2086+ uint64_t tdata_out:4;
2087+ uint64_t siddq:1;
2088+ uint64_t txpreemphasistune:1;
2089+ uint64_t dma_bmode:1;
2090+ uint64_t usbc_end:1;
2091+ uint64_t usbp_bist:1;
2092+ uint64_t tclk:1;
2093+ uint64_t dp_pulld:1;
2094+ uint64_t dm_pulld:1;
2095+ uint64_t hst_mode:1;
2096+ uint64_t reserved_19_22:4;
2097+ uint64_t tx_bs_enh:1;
2098+ uint64_t tx_bs_en:1;
2099+ uint64_t loop_enb:1;
2100+ uint64_t vtest_enb:1;
2101+ uint64_t bist_enb:1;
2102+ uint64_t tdata_sel:1;
2103+ uint64_t taddr_in:4;
2104+ uint64_t tdata_in:8;
2105+ uint64_t ate_reset:1;
2106+ } cn56xx;
2107+ struct cvmx_usbnx_usbp_ctl_status_cn50xx cn56xxp1;
2108+};
2109+
2110+#endif
2111--
21121.6.0.6
2113
2114--
2115To unsubscribe from this list: send the line "unsubscribe linux-usb" in
2116the body of a message to majordomo@vger.kernel.org
2117More majordomo info at http://vger.kernel.org/majordomo-info.htmlSigned-off-by: David Daney <ddaney@caviumnetworks.com>
2118---
2119 drivers/usb/host/Kconfig | 8 +
2120 drivers/usb/host/Makefile | 1 +
2121 drivers/usb/host/dwc_otg/Kbuild | 16 +
2122 drivers/usb/host/dwc_otg/dwc_otg_attr.c | 854 ++++++++
2123 drivers/usb/host/dwc_otg/dwc_otg_attr.h | 63 +
2124 drivers/usb/host/dwc_otg/dwc_otg_cil.c | 2887 ++++++++++++++++++++++++++
2125 drivers/usb/host/dwc_otg/dwc_otg_cil.h | 866 ++++++++
2126 drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c | 689 ++++++
2127 drivers/usb/host/dwc_otg/dwc_otg_driver.h | 63 +
2128 drivers/usb/host/dwc_otg/dwc_otg_hcd.c | 2878 +++++++++++++++++++++++++
2129 drivers/usb/host/dwc_otg/dwc_otg_hcd.h | 661 ++++++
2130 drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c | 1890 +++++++++++++++++
2131 drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c | 695 +++++++
2132 drivers/usb/host/dwc_otg/dwc_otg_octeon.c | 1078 ++++++++++
2133 drivers/usb/host/dwc_otg/dwc_otg_plat.h | 236 +++
2134 drivers/usb/host/dwc_otg/dwc_otg_regs.h | 2355 +++++++++++++++++++++
2135 16 files changed, 15240 insertions(+), 0 deletions(-)
2136 create mode 100644 drivers/usb/host/dwc_otg/Kbuild
2137 create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_attr.c
2138 create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_attr.h
2139 create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_cil.c
2140 create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_cil.h
2141 create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c
2142 create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_driver.h
2143 create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd.c
2144 create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd.h
2145 create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c
2146 create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c
2147 create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_octeon.c
2148 create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_plat.h
2149 create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_regs.h
2150
2151diff --git a/drivers/usb/host/Kconfig b/drivers/usb/host/Kconfig
2152index 9b43b22..342dc54 100644
2153--- a/drivers/usb/host/Kconfig
2154+++ b/drivers/usb/host/Kconfig
2155@@ -381,3 +381,11 @@ config USB_HWA_HCD
2156 
2157       To compile this driver a module, choose M here: the module
2158       will be called "hwa-hc".
2159+
2160+config USB_DWC_OTG
2161+ tristate "Cavium Octeon USB"
2162+ depends on USB && CPU_CAVIUM_OCTEON
2163+ ---help---
2164+ The Cavium Octeon on-chip USB controller. To compile this
2165+ driver as a module, choose M here: the module will be called
2166+ "dwc_otg".
2167diff --git a/drivers/usb/host/Makefile b/drivers/usb/host/Makefile
2168index f58b249..76faf12 100644
2169--- a/drivers/usb/host/Makefile
2170+++ b/drivers/usb/host/Makefile
2171@@ -15,6 +15,7 @@ endif
2172 xhci-objs := xhci-hcd.o xhci-mem.o xhci-pci.o xhci-ring.o xhci-hub.o xhci-dbg.o
2173 
2174 obj-$(CONFIG_USB_WHCI_HCD) += whci/
2175+obj-$(CONFIG_USB_DWC_OTG) += dwc_otg/
2176 
2177 obj-$(CONFIG_PCI) += pci-quirks.o
2178 
2179diff --git a/drivers/usb/host/dwc_otg/Kbuild b/drivers/usb/host/dwc_otg/Kbuild
2180new file mode 100644
2181index 0000000..cb32638
2182--- /dev/null
2183+++ b/drivers/usb/host/dwc_otg/Kbuild
2184@@ -0,0 +1,16 @@
2185+#
2186+# Makefile for DWC_otg Highspeed USB controller driver
2187+#
2188+
2189+# Use one of the following flags to compile the software in host-only or
2190+# device-only mode.
2191+#EXTRA_CFLAGS += -DDWC_HOST_ONLY
2192+#EXTRA_CFLAGS += -DDWC_DEVICE_ONLY
2193+
2194+EXTRA_CFLAGS += -DDWC_HOST_ONLY
2195+obj-$(CONFIG_USB_DWC_OTG) += dwc_otg.o
2196+
2197+dwc_otg-y := dwc_otg_octeon.o dwc_otg_attr.o
2198+dwc_otg-y += dwc_otg_cil.o dwc_otg_cil_intr.o
2199+dwc_otg-y += dwc_otg_hcd.o dwc_otg_hcd_intr.o dwc_otg_hcd_queue.o
2200+
2201diff --git a/drivers/usb/host/dwc_otg/dwc_otg_attr.c b/drivers/usb/host/dwc_otg/dwc_otg_attr.c
2202new file mode 100644
2203index 0000000..d854a79
2204--- /dev/null
2205+++ b/drivers/usb/host/dwc_otg/dwc_otg_attr.c
2206@@ -0,0 +1,854 @@
2207+/* ==========================================================================
2208+ *
2209+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
2210+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
2211+ * otherwise expressly agreed to in writing between Synopsys and you.
2212+ *
2213+ * The Software IS NOT an item of Licensed Software or Licensed Product under
2214+ * any End User Software License Agreement or Agreement for Licensed Product
2215+ * with Synopsys or any supplement thereto. You are permitted to use and
2216+ * redistribute this Software in source and binary forms, with or without
2217+ * modification, provided that redistributions of source code must retain this
2218+ * notice. You may not view, use, disclose, copy or distribute this file or
2219+ * any information contained herein except pursuant to this license grant from
2220+ * Synopsys. If you do not agree with this notice, including the disclaimer
2221+ * below, then you are not authorized to use the Software.
2222+ *
2223+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
2224+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2225+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2226+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
2227+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
2228+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
2229+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
2230+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2231+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2232+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
2233+ * DAMAGE.
2234+ * ========================================================================== */
2235+
2236+/*
2237+ *
2238+ * The diagnostic interface will provide access to the controller for
2239+ * bringing up the hardware and testing. The Linux driver attributes
2240+ * feature will be used to provide the Linux Diagnostic
2241+ * Interface. These attributes are accessed through sysfs.
2242+ */
2243+
2244+/** @page "Linux Module Attributes"
2245+ *
2246+ * The Linux module attributes feature is used to provide the Linux
2247+ * Diagnostic Interface. These attributes are accessed through sysfs.
2248+ * The diagnostic interface will provide access to the controller for
2249+ * bringing up the hardware and testing.
2250+
2251+ The following table shows the attributes.
2252+ <table>
2253+ <tr>
2254+ <td><b> Name</b></td>
2255+ <td><b> Description</b></td>
2256+ <td><b> Access</b></td>
2257+ </tr>
2258+
2259+ <tr>
2260+ <td> mode </td>
2261+ <td> Returns the current mode: 0 for device mode, 1 for host mode</td>
2262+ <td> Read</td>
2263+ </tr>
2264+
2265+ <tr>
2266+ <td> hnpcapable </td>
2267+ <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register.
2268+ Read returns the current value.</td>
2269+ <td> Read/Write</td>
2270+ </tr>
2271+
2272+ <tr>
2273+ <td> srpcapable </td>
2274+ <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register.
2275+ Read returns the current value.</td>
2276+ <td> Read/Write</td>
2277+ </tr>
2278+
2279+ <tr>
2280+ <td> hnp </td>
2281+ <td> Initiates the Host Negotiation Protocol. Read returns the status.</td>
2282+ <td> Read/Write</td>
2283+ </tr>
2284+
2285+ <tr>
2286+ <td> srp </td>
2287+ <td> Initiates the Session Request Protocol. Read returns the status.</td>
2288+ <td> Read/Write</td>
2289+ </tr>
2290+
2291+ <tr>
2292+ <td> buspower </td>
2293+ <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td>
2294+ <td> Read/Write</td>
2295+ </tr>
2296+
2297+ <tr>
2298+ <td> bussuspend </td>
2299+ <td> Suspends the USB bus.</td>
2300+ <td> Read/Write</td>
2301+ </tr>
2302+
2303+ <tr>
2304+ <td> busconnected </td>
2305+ <td> Gets the connection status of the bus</td>
2306+ <td> Read</td>
2307+ </tr>
2308+
2309+ <tr>
2310+ <td> gotgctl </td>
2311+ <td> Gets or sets the Core Control Status Register.</td>
2312+ <td> Read/Write</td>
2313+ </tr>
2314+
2315+ <tr>
2316+ <td> gusbcfg </td>
2317+ <td> Gets or sets the Core USB Configuration Register</td>
2318+ <td> Read/Write</td>
2319+ </tr>
2320+
2321+ <tr>
2322+ <td> grxfsiz </td>
2323+ <td> Gets or sets the Receive FIFO Size Register</td>
2324+ <td> Read/Write</td>
2325+ </tr>
2326+
2327+ <tr>
2328+ <td> gnptxfsiz </td>
2329+ <td> Gets or sets the non-periodic Transmit Size Register</td>
2330+ <td> Read/Write</td>
2331+ </tr>
2332+
2333+ <tr>
2334+ <td> gpvndctl </td>
2335+ <td> Gets or sets the PHY Vendor Control Register</td>
2336+ <td> Read/Write</td>
2337+ </tr>
2338+
2339+ <tr>
2340+ <td> ggpio </td>
2341+ <td> Gets the value in the lower 16-bits of the General Purpose IO Register
2342+ or sets the upper 16 bits.</td>
2343+ <td> Read/Write</td>
2344+ </tr>
2345+
2346+ <tr>
2347+ <td> guid </td>
2348+ <td> Gets or sets the value of the User ID Register</td>
2349+ <td> Read/Write</td>
2350+ </tr>
2351+
2352+ <tr>
2353+ <td> gsnpsid </td>
2354+ <td> Gets the value of the Synopsys ID Regester</td>
2355+ <td> Read</td>
2356+ </tr>
2357+
2358+ <tr>
2359+ <td> devspeed </td>
2360+ <td> Gets or sets the device speed setting in the DCFG register</td>
2361+ <td> Read/Write</td>
2362+ </tr>
2363+
2364+ <tr>
2365+ <td> enumspeed </td>
2366+ <td> Gets the device enumeration Speed.</td>
2367+ <td> Read</td>
2368+ </tr>
2369+
2370+ <tr>
2371+ <td> hptxfsiz </td>
2372+ <td> Gets the value of the Host Periodic Transmit FIFO</td>
2373+ <td> Read</td>
2374+ </tr>
2375+
2376+ <tr>
2377+ <td> hprt0 </td>
2378+ <td> Gets or sets the value in the Host Port Control and Status Register</td>
2379+ <td> Read/Write</td>
2380+ </tr>
2381+
2382+ <tr>
2383+ <td> regoffset </td>
2384+ <td> Sets the register offset for the next Register Access</td>
2385+ <td> Read/Write</td>
2386+ </tr>
2387+
2388+ <tr>
2389+ <td> regvalue </td>
2390+ <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td>
2391+ <td> Read/Write</td>
2392+ </tr>
2393+
2394+ <tr>
2395+ <td> remote_wakeup </td>
2396+ <td> On read, shows the status of Remote Wakeup. On write, initiates a remote
2397+ wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote
2398+ Wakeup signalling bit in the Device Control Register is set for 1
2399+ milli-second.</td>
2400+ <td> Read/Write</td>
2401+ </tr>
2402+
2403+ <tr>
2404+ <td> regdump </td>
2405+ <td> Dumps the contents of core registers.</td>
2406+ <td> Read</td>
2407+ </tr>
2408+
2409+ <tr>
2410+ <td> hcddump </td>
2411+ <td> Dumps the current HCD state.</td>
2412+ <td> Read</td>
2413+ </tr>
2414+
2415+ <tr>
2416+ <td> hcd_frrem </td>
2417+ <td> Shows the average value of the Frame Remaining
2418+ field in the Host Frame Number/Frame Remaining register when an SOF interrupt
2419+ occurs. This can be used to determine the average interrupt latency. Also
2420+ shows the average Frame Remaining value for start_transfer and the "a" and
2421+ "b" sample points. The "a" and "b" sample points may be used during debugging
2422+ bto determine how long it takes to execute a section of the HCD code.</td>
2423+ <td> Read</td>
2424+ </tr>
2425+
2426+ <tr>
2427+ <td> rd_reg_test </td>
2428+ <td> Displays the time required to read the GNPTXFSIZ register many times
2429+ (the output shows the number of times the register is read).
2430+ <td> Read</td>
2431+ </tr>
2432+
2433+ <tr>
2434+ <td> wr_reg_test </td>
2435+ <td> Displays the time required to write the GNPTXFSIZ register many times
2436+ (the output shows the number of times the register is written).
2437+ <td> Read</td>
2438+ </tr>
2439+
2440+ </table>
2441+
2442+ Example usage:
2443+ To get the current mode:
2444+ cat /sys/devices/lm0/mode
2445+
2446+ To power down the USB:
2447+ echo 0 > /sys/devices/lm0/buspower
2448+ */
2449+
2450+#include <linux/kernel.h>
2451+#include <linux/module.h>
2452+#include <linux/moduleparam.h>
2453+#include <linux/init.h>
2454+#include <linux/device.h>
2455+#include <linux/errno.h>
2456+#include <linux/types.h>
2457+#include <linux/stat.h> /* permission constants */
2458+
2459+#include <asm/io.h>
2460+
2461+#include "dwc_otg_plat.h"
2462+#include "dwc_otg_attr.h"
2463+#include "dwc_otg_driver.h"
2464+#ifndef DWC_HOST_ONLY
2465+#include "dwc_otg_pcd.h"
2466+#endif
2467+#include "dwc_otg_hcd.h"
2468+
2469+/*
2470+ * MACROs for defining sysfs attribute
2471+ */
2472+#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, _addr_, \
2473+ _mask_, _shift_, _string_) \
2474+ static ssize_t _otg_attr_name_##_show (struct device *_dev, \
2475+ struct device_attribute *attr, \
2476+ char *buf) \
2477+ { \
2478+ struct dwc_otg_device *otg_dev = _dev->platform_data; \
2479+ uint32_t val; \
2480+ val = dwc_read_reg32(_addr_); \
2481+ val = (val & (_mask_)) >> _shift_; \
2482+ return sprintf(buf, "%s = 0x%x\n", _string_, val); \
2483+ }
2484+
2485+#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_, _addr_, \
2486+ _mask_, _shift_, _string_) \
2487+ static ssize_t _otg_attr_name_##_store (struct device *_dev, \
2488+ struct device_attribute *attr, \
2489+ const char *buf, size_t count) \
2490+ { \
2491+ struct dwc_otg_device *otg_dev = _dev->platform_data; \
2492+ uint32_t set = simple_strtoul(buf, NULL, 16); \
2493+ uint32_t clear = set; \
2494+ clear = ((~clear) << _shift_) & _mask_; \
2495+ set = (set << _shift_) & _mask_; \
2496+ dev_dbg(_dev, \
2497+ "Storing Address=%p Set=0x%08x Clear=0x%08x\n", \
2498+ _addr_, set, clear); \
2499+ dwc_modify_reg32(_addr_, clear, set); \
2500+ return count; \
2501+ }
2502+
2503+#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_, _addr_, \
2504+ _mask_, _shift_, _string_) \
2505+ DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, _addr_, \
2506+ _mask_, _shift_, _string_) \
2507+ DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_, _addr_, \
2508+ _mask_, _shift_, _string_) \
2509+ DEVICE_ATTR(_otg_attr_name_, 0644, _otg_attr_name_##_show, \
2510+ _otg_attr_name_##_store);
2511+
2512+#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_, _addr_, \
2513+ _mask_, _shift_, _string_) \
2514+ DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, \
2515+ _addr_, _mask_, _shift_, _string_) \
2516+ DEVICE_ATTR(_otg_attr_name_, 0444, _otg_attr_name_##_show, NULL);
2517+
2518+/*
2519+ * MACROs for defining sysfs attribute for 32-bit registers
2520+ */
2521+#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _addr_, _string_) \
2522+ static ssize_t _otg_attr_name_##_show(struct device *_dev, \
2523+ struct device_attribute *attr, \
2524+ char *buf) \
2525+ { \
2526+ struct dwc_otg_device *otg_dev = _dev->platform_data; \
2527+ uint32_t val; \
2528+ val = dwc_read_reg32(_addr_); \
2529+ return sprintf(buf, "%s = 0x%08x\n", _string_, val); \
2530+ }
2531+
2532+#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_, _addr_, _string_) \
2533+ static ssize_t _otg_attr_name_##_store(struct device *_dev, \
2534+ struct device_attribute *attr, \
2535+ const char *buf, size_t count) \
2536+ { \
2537+ struct dwc_otg_device *otg_dev = _dev->platform_data; \
2538+ uint32_t val = simple_strtoul(buf, NULL, 16); \
2539+ dev_dbg(_dev, "Storing Address=%p Val=0x%08x\n", _addr_, val); \
2540+ dwc_write_reg32(_addr_, val); \
2541+ return count; \
2542+ }
2543+
2544+#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_, _addr_, _string_) \
2545+ DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _addr_, _string_) \
2546+ DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_, _addr_, _string_) \
2547+ DEVICE_ATTR(_otg_attr_name_, 0644, _otg_attr_name_##_show, \
2548+ _otg_attr_name_##_store);
2549+
2550+#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_, _addr_, _string_) \
2551+ DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _addr_, _string_) \
2552+ DEVICE_ATTR(_otg_attr_name_, 0444, _otg_attr_name_##_show, NULL);
2553+
2554+/**
2555+ * Show the register offset of the Register Access.
2556+ */
2557+static ssize_t regoffset_show(struct device *_dev,
2558+ struct device_attribute *attr, char *buf)
2559+{
2560+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2561+ return snprintf(buf, sizeof("0xFFFFFFFF\n") + 1, "0x%08x\n",
2562+ otg_dev->reg_offset);
2563+}
2564+
2565+/**
2566+ * Set the register offset for the next Register Access Read/Write
2567+ */
2568+static ssize_t regoffset_store(struct device *_dev,
2569+ struct device_attribute *attr, const char *buf,
2570+ size_t count)
2571+{
2572+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2573+ uint32_t offset = simple_strtoul(buf, NULL, 16);
2574+
2575+ if (offset < SZ_256K)
2576+ otg_dev->reg_offset = offset;
2577+ else
2578+ dev_err(_dev, "invalid offset\n");
2579+
2580+ return count;
2581+}
2582+
2583+DEVICE_ATTR(regoffset, S_IRUGO | S_IWUSR, regoffset_show, regoffset_store);
2584+
2585+/**
2586+ * Show the value of the register at the offset in the reg_offset
2587+ * attribute.
2588+ */
2589+static ssize_t regvalue_show(struct device *_dev, struct device_attribute *attr,
2590+ char *buf)
2591+{
2592+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2593+ uint32_t val;
2594+ uint32_t *addr;
2595+
2596+ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
2597+ /* Calculate the address */
2598+ addr = (uint32_t *) (otg_dev->reg_offset +
2599+ (uint8_t *) otg_dev->base);
2600+
2601+ val = dwc_read_reg32(addr);
2602+ return snprintf(buf,
2603+ sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n") + 1,
2604+ "Reg@0x%06x = 0x%08x\n", otg_dev->reg_offset,
2605+ val);
2606+ } else {
2607+ dev_err(_dev, "Invalid offset (0x%0x)\n", otg_dev->reg_offset);
2608+ return sprintf(buf, "invalid offset\n");
2609+ }
2610+}
2611+
2612+/**
2613+ * Store the value in the register at the offset in the reg_offset
2614+ * attribute.
2615+ *
2616+ */
2617+static ssize_t regvalue_store(struct device *_dev,
2618+ struct device_attribute *attr, const char *buf,
2619+ size_t count)
2620+{
2621+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2622+ uint32_t *addr;
2623+ uint32_t val = simple_strtoul(buf, NULL, 16);
2624+
2625+ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
2626+ /* Calculate the address */
2627+ addr = (uint32_t *) (otg_dev->reg_offset +
2628+ (uint8_t *) otg_dev->base);
2629+
2630+ dwc_write_reg32(addr, val);
2631+ } else {
2632+ dev_err(_dev, "Invalid Register Offset (0x%08x)\n",
2633+ otg_dev->reg_offset);
2634+ }
2635+ return count;
2636+}
2637+
2638+DEVICE_ATTR(regvalue, S_IRUGO | S_IWUSR, regvalue_show, regvalue_store);
2639+
2640+/*
2641+ * Attributes
2642+ */
2643+DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,
2644+ &(otg_dev->core_if->core_global_regs->gotgctl),
2645+ (1 << 20), 20, "Mode");
2646+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,
2647+ &(otg_dev->core_if->core_global_regs->gusbcfg),
2648+ (1 << 9), 9, "Mode");
2649+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,
2650+ &(otg_dev->core_if->core_global_regs->gusbcfg),
2651+ (1 << 8), 8, "Mode");
2652+#if 0
2653+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower, &(otg_dev->core_if->core_global_regs->gotgctl), (1<<8), 8, "Mode");
2654+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend, &(otg_dev->core_if->core_global_regs->gotgctl), (1<<8), 8, "Mode");
2655+#endif
2656+DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected, otg_dev->core_if->host_if->hprt0,
2657+ 0x01, 0, "Bus Connected");
2658+
2659+DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,
2660+ &(otg_dev->core_if->core_global_regs->gotgctl),
2661+ "GOTGCTL");
2662+DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,
2663+ &(otg_dev->core_if->core_global_regs->gusbcfg),
2664+ "GUSBCFG");
2665+DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,
2666+ &(otg_dev->core_if->core_global_regs->grxfsiz),
2667+ "GRXFSIZ");
2668+DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,
2669+ &(otg_dev->core_if->core_global_regs->gnptxfsiz),
2670+ "GNPTXFSIZ");
2671+DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,
2672+ &(otg_dev->core_if->core_global_regs->gpvndctl),
2673+ "GPVNDCTL");
2674+DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,
2675+ &(otg_dev->core_if->core_global_regs->ggpio),
2676+ "GGPIO");
2677+DWC_OTG_DEVICE_ATTR_REG32_RW(guid, &(otg_dev->core_if->core_global_regs->guid),
2678+ "GUID");
2679+DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,
2680+ &(otg_dev->core_if->core_global_regs->gsnpsid),
2681+ "GSNPSID");
2682+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,
2683+ &(otg_dev->core_if->dev_if->dev_global_regs->
2684+ dcfg), 0x3, 0, "Device Speed");
2685+DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,
2686+ &(otg_dev->core_if->dev_if->dev_global_regs->
2687+ dsts), 0x6, 1, "Device Enumeration Speed");
2688+
2689+DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,
2690+ &(otg_dev->core_if->core_global_regs->hptxfsiz),
2691+ "HPTXFSIZ");
2692+DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0, otg_dev->core_if->host_if->hprt0, "HPRT0");
2693+
2694+/**
2695+ * @todo Add code to initiate the HNP.
2696+ */
2697+/**
2698+ * Show the HNP status bit
2699+ */
2700+static ssize_t hnp_show(struct device *_dev, struct device_attribute *attr,
2701+ char *buf)
2702+{
2703+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2704+ union gotgctl_data val;
2705+ val.d32 =
2706+ dwc_read_reg32(&(otg_dev->core_if->core_global_regs->gotgctl));
2707+ return sprintf(buf, "HstNegScs = 0x%x\n", val.b.hstnegscs);
2708+}
2709+
2710+/**
2711+ * Set the HNP Request bit
2712+ */
2713+static ssize_t hnp_store(struct device *_dev, struct device_attribute *attr,
2714+ const char *buf, size_t count)
2715+{
2716+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2717+ uint32_t in = simple_strtoul(buf, NULL, 16);
2718+ uint32_t *addr =
2719+ (uint32_t *) &(otg_dev->core_if->core_global_regs->gotgctl);
2720+ union gotgctl_data mem;
2721+ mem.d32 = dwc_read_reg32(addr);
2722+ mem.b.hnpreq = in;
2723+ dev_dbg(_dev, "Storing Address=%p Data=0x%08x\n", addr, mem.d32);
2724+ dwc_write_reg32(addr, mem.d32);
2725+ return count;
2726+}
2727+
2728+DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store);
2729+
2730+/**
2731+ * @todo Add code to initiate the SRP.
2732+ */
2733+/**
2734+ * Show the SRP status bit
2735+ */
2736+static ssize_t srp_show(struct device *_dev, struct device_attribute *attr,
2737+ char *buf)
2738+{
2739+#ifndef DWC_HOST_ONLY
2740+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2741+ union gotgctl_data val;
2742+ val.d32 =
2743+ dwc_read_reg32(&(otg_dev->core_if->core_global_regs->gotgctl));
2744+ return sprintf(buf, "SesReqScs = 0x%x\n", val.b.sesreqscs);
2745+#else
2746+ return sprintf(buf, "Host Only Mode!\n");
2747+#endif
2748+}
2749+
2750+/**
2751+ * Set the SRP Request bit
2752+ */
2753+static ssize_t srp_store(struct device *_dev, struct device_attribute *attr,
2754+ const char *buf, size_t count)
2755+{
2756+#ifndef DWC_HOST_ONLY
2757+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2758+ dwc_otg_pcd_initiate_srp(otg_dev->pcd);
2759+#endif
2760+ return count;
2761+}
2762+
2763+DEVICE_ATTR(srp, 0644, srp_show, srp_store);
2764+
2765+/**
2766+ * @todo Need to do more for power on/off?
2767+ */
2768+/**
2769+ * Show the Bus Power status
2770+ */
2771+static ssize_t buspower_show(struct device *_dev, struct device_attribute *attr,
2772+ char *buf)
2773+{
2774+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2775+ union hprt0_data val;
2776+ val.d32 = dwc_read_reg32(otg_dev->core_if->host_if->hprt0);
2777+ return sprintf(buf, "Bus Power = 0x%x\n", val.b.prtpwr);
2778+}
2779+
2780+/**
2781+ * Set the Bus Power status
2782+ */
2783+static ssize_t buspower_store(struct device *_dev,
2784+ struct device_attribute *attr, const char *buf,
2785+ size_t count)
2786+{
2787+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2788+ uint32_t on = simple_strtoul(buf, NULL, 16);
2789+ uint32_t *addr = (uint32_t *) otg_dev->core_if->host_if->hprt0;
2790+ union hprt0_data mem;
2791+
2792+ mem.d32 = dwc_read_reg32(addr);
2793+ mem.b.prtpwr = on;
2794+
2795+ dwc_write_reg32(addr, mem.d32);
2796+
2797+ return count;
2798+}
2799+
2800+DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store);
2801+
2802+/**
2803+ * @todo Need to do more for suspend?
2804+ */
2805+/**
2806+ * Show the Bus Suspend status
2807+ */
2808+static ssize_t bussuspend_show(struct device *_dev,
2809+ struct device_attribute *attr, char *buf)
2810+{
2811+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2812+ union hprt0_data val;
2813+ val.d32 = dwc_read_reg32(otg_dev->core_if->host_if->hprt0);
2814+ return sprintf(buf, "Bus Suspend = 0x%x\n", val.b.prtsusp);
2815+}
2816+
2817+/**
2818+ * Set the Bus Suspend status
2819+ */
2820+static ssize_t bussuspend_store(struct device *_dev,
2821+ struct device_attribute *attr, const char *buf,
2822+ size_t count)
2823+{
2824+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2825+ uint32_t in = simple_strtoul(buf, NULL, 16);
2826+ uint32_t *addr = (uint32_t *) otg_dev->core_if->host_if->hprt0;
2827+ union hprt0_data mem;
2828+ mem.d32 = dwc_read_reg32(addr);
2829+ mem.b.prtsusp = in;
2830+ dev_dbg(_dev, "Storing Address=%p Data=0x%08x\n", addr, mem.d32);
2831+ dwc_write_reg32(addr, mem.d32);
2832+ return count;
2833+}
2834+
2835+DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store);
2836+
2837+/**
2838+ * Show the status of Remote Wakeup.
2839+ */
2840+static ssize_t remote_wakeup_show(struct device *_dev,
2841+ struct device_attribute *attr, char *buf)
2842+{
2843+#ifndef DWC_HOST_ONLY
2844+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2845+ union dctl_data val;
2846+ val.d32 =
2847+ dwc_read_reg32(&otg_dev->core_if->dev_if->dev_global_regs->dctl);
2848+ return sprintf(buf, "Remote Wakeup = %d Enabled = %d\n",
2849+ val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable);
2850+#else
2851+ return sprintf(buf, "Host Only Mode!\n");
2852+#endif
2853+}
2854+
2855+/**
2856+ * Initiate a remote wakeup of the host. The Device control register
2857+ * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable
2858+ * flag is set.
2859+ *
2860+ */
2861+static ssize_t remote_wakeup_store(struct device *_dev,
2862+ struct device_attribute *attr,
2863+ const char *buf, size_t count)
2864+{
2865+#ifndef DWC_HOST_ONLY
2866+ uint32_t val = simple_strtoul(buf, NULL, 16);
2867+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2868+ if (val & 1)
2869+ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1);
2870+ else
2871+ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0);
2872+#endif
2873+ return count;
2874+}
2875+
2876+DEVICE_ATTR(remote_wakeup, S_IRUGO | S_IWUSR, remote_wakeup_show,
2877+ remote_wakeup_store);
2878+
2879+/**
2880+ * Dump global registers and either host or device registers (depending on the
2881+ * current mode of the core).
2882+ */
2883+static ssize_t regdump_show(struct device *_dev, struct device_attribute *attr,
2884+ char *buf)
2885+{
2886+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2887+
2888+ dwc_otg_dump_global_registers(otg_dev->core_if);
2889+ if (dwc_otg_is_host_mode(otg_dev->core_if))
2890+ dwc_otg_dump_host_registers(otg_dev->core_if);
2891+ else
2892+ dwc_otg_dump_dev_registers(otg_dev->core_if);
2893+
2894+ return sprintf(buf, "Register Dump\n");
2895+}
2896+
2897+DEVICE_ATTR(regdump, S_IRUGO | S_IWUSR, regdump_show, 0);
2898+
2899+/**
2900+ * Dump the current hcd state.
2901+ */
2902+static ssize_t hcddump_show(struct device *_dev, struct device_attribute *attr,
2903+ char *buf)
2904+{
2905+#ifndef DWC_DEVICE_ONLY
2906+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2907+ dwc_otg_hcd_dump_state(otg_dev->hcd);
2908+#endif
2909+ return sprintf(buf, "HCD Dump\n");
2910+}
2911+
2912+DEVICE_ATTR(hcddump, S_IRUGO | S_IWUSR, hcddump_show, 0);
2913+
2914+/**
2915+ * Dump the average frame remaining at SOF. This can be used to
2916+ * determine average interrupt latency. Frame remaining is also shown for
2917+ * start transfer and two additional sample points.
2918+ */
2919+static ssize_t hcd_frrem_show(struct device *_dev,
2920+ struct device_attribute *attr, char *buf)
2921+{
2922+#ifndef DWC_DEVICE_ONLY
2923+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2924+ dwc_otg_hcd_dump_frrem(otg_dev->hcd);
2925+#endif
2926+ return sprintf(buf, "HCD Dump Frame Remaining\n");
2927+}
2928+
2929+DEVICE_ATTR(hcd_frrem, S_IRUGO | S_IWUSR, hcd_frrem_show, 0);
2930+
2931+/**
2932+ * Displays the time required to read the GNPTXFSIZ register many times (the
2933+ * output shows the number of times the register is read).
2934+ */
2935+#define RW_REG_COUNT 10000000
2936+#define MSEC_PER_JIFFIE (1000/HZ)
2937+static ssize_t rd_reg_test_show(struct device *_dev,
2938+ struct device_attribute *attr, char *buf)
2939+{
2940+ int i;
2941+ int time;
2942+ int start_jiffies;
2943+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2944+
2945+ pr_info("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
2946+ HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
2947+ start_jiffies = jiffies;
2948+ for (i = 0; i < RW_REG_COUNT; i++)
2949+ dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
2950+
2951+ time = jiffies - start_jiffies;
2952+ return sprintf(buf,
2953+ "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
2954+ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
2955+}
2956+
2957+DEVICE_ATTR(rd_reg_test, S_IRUGO | S_IWUSR, rd_reg_test_show, 0);
2958+
2959+/**
2960+ * Displays the time required to write the GNPTXFSIZ register many times (the
2961+ * output shows the number of times the register is written).
2962+ */
2963+static ssize_t wr_reg_test_show(struct device *_dev,
2964+ struct device_attribute *attr, char *buf)
2965+{
2966+ int i;
2967+ int time;
2968+ int start_jiffies;
2969+ struct dwc_otg_device *otg_dev = _dev->platform_data;
2970+ uint32_t reg_val;
2971+
2972+ pr_info("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
2973+ HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
2974+ reg_val =
2975+ dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
2976+ start_jiffies = jiffies;
2977+ for (i = 0; i < RW_REG_COUNT; i++)
2978+ dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz,
2979+ reg_val);
2980+
2981+ time = jiffies - start_jiffies;
2982+ return sprintf(buf,
2983+ "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
2984+ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
2985+}
2986+
2987+DEVICE_ATTR(wr_reg_test, S_IRUGO | S_IWUSR, wr_reg_test_show, 0);
2988+
2989+/*
2990+ * Create the device files
2991+ */
2992+void dwc_otg_attr_create(struct device *dev)
2993+{
2994+ int error;
2995+ error = device_create_file(dev, &dev_attr_regoffset);
2996+ error |= device_create_file(dev, &dev_attr_regvalue);
2997+ error |= device_create_file(dev, &dev_attr_mode);
2998+ error |= device_create_file(dev, &dev_attr_hnpcapable);
2999+ error |= device_create_file(dev, &dev_attr_srpcapable);
3000+ error |= device_create_file(dev, &dev_attr_hnp);
3001+ error |= device_create_file(dev, &dev_attr_srp);
3002+ error |= device_create_file(dev, &dev_attr_buspower);
3003+ error |= device_create_file(dev, &dev_attr_bussuspend);
3004+ error |= device_create_file(dev, &dev_attr_busconnected);
3005+ error |= device_create_file(dev, &dev_attr_gotgctl);
3006+ error |= device_create_file(dev, &dev_attr_gusbcfg);
3007+ error |= device_create_file(dev, &dev_attr_grxfsiz);
3008+ error |= device_create_file(dev, &dev_attr_gnptxfsiz);
3009+ error |= device_create_file(dev, &dev_attr_gpvndctl);
3010+ error |= device_create_file(dev, &dev_attr_ggpio);
3011+ error |= device_create_file(dev, &dev_attr_guid);
3012+ error |= device_create_file(dev, &dev_attr_gsnpsid);
3013+ error |= device_create_file(dev, &dev_attr_devspeed);
3014+ error |= device_create_file(dev, &dev_attr_enumspeed);
3015+ error |= device_create_file(dev, &dev_attr_hptxfsiz);
3016+ error |= device_create_file(dev, &dev_attr_hprt0);
3017+ error |= device_create_file(dev, &dev_attr_remote_wakeup);
3018+ error |= device_create_file(dev, &dev_attr_regdump);
3019+ error |= device_create_file(dev, &dev_attr_hcddump);
3020+ error |= device_create_file(dev, &dev_attr_hcd_frrem);
3021+ error |= device_create_file(dev, &dev_attr_rd_reg_test);
3022+ error |= device_create_file(dev, &dev_attr_wr_reg_test);
3023+ if (error)
3024+ pr_err("DWC_OTG: Creating some device files failed\n");
3025+}
3026+
3027+/*
3028+ * Remove the device files
3029+ */
3030+void dwc_otg_attr_remove(struct device *dev)
3031+{
3032+ device_remove_file(dev, &dev_attr_regoffset);
3033+ device_remove_file(dev, &dev_attr_regvalue);
3034+ device_remove_file(dev, &dev_attr_mode);
3035+ device_remove_file(dev, &dev_attr_hnpcapable);
3036+ device_remove_file(dev, &dev_attr_srpcapable);
3037+ device_remove_file(dev, &dev_attr_hnp);
3038+ device_remove_file(dev, &dev_attr_srp);
3039+ device_remove_file(dev, &dev_attr_buspower);
3040+ device_remove_file(dev, &dev_attr_bussuspend);
3041+ device_remove_file(dev, &dev_attr_busconnected);
3042+ device_remove_file(dev, &dev_attr_gotgctl);
3043+ device_remove_file(dev, &dev_attr_gusbcfg);
3044+ device_remove_file(dev, &dev_attr_grxfsiz);
3045+ device_remove_file(dev, &dev_attr_gnptxfsiz);
3046+ device_remove_file(dev, &dev_attr_gpvndctl);
3047+ device_remove_file(dev, &dev_attr_ggpio);
3048+ device_remove_file(dev, &dev_attr_guid);
3049+ device_remove_file(dev, &dev_attr_gsnpsid);
3050+ device_remove_file(dev, &dev_attr_devspeed);
3051+ device_remove_file(dev, &dev_attr_enumspeed);
3052+ device_remove_file(dev, &dev_attr_hptxfsiz);
3053+ device_remove_file(dev, &dev_attr_hprt0);
3054+ device_remove_file(dev, &dev_attr_remote_wakeup);
3055+ device_remove_file(dev, &dev_attr_regdump);
3056+ device_remove_file(dev, &dev_attr_hcddump);
3057+ device_remove_file(dev, &dev_attr_hcd_frrem);
3058+ device_remove_file(dev, &dev_attr_rd_reg_test);
3059+ device_remove_file(dev, &dev_attr_wr_reg_test);
3060+}
3061diff --git a/drivers/usb/host/dwc_otg/dwc_otg_attr.h b/drivers/usb/host/dwc_otg/dwc_otg_attr.h
3062new file mode 100644
3063index 0000000..925524f
3064--- /dev/null
3065+++ b/drivers/usb/host/dwc_otg/dwc_otg_attr.h
3066@@ -0,0 +1,63 @@
3067+/* ==========================================================================
3068+ *
3069+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
3070+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
3071+ * otherwise expressly agreed to in writing between Synopsys and you.
3072+ *
3073+ * The Software IS NOT an item of Licensed Software or Licensed Product under
3074+ * any End User Software License Agreement or Agreement for Licensed Product
3075+ * with Synopsys or any supplement thereto. You are permitted to use and
3076+ * redistribute this Software in source and binary forms, with or without
3077+ * modification, provided that redistributions of source code must retain this
3078+ * notice. You may not view, use, disclose, copy or distribute this file or
3079+ * any information contained herein except pursuant to this license grant from
3080+ * Synopsys. If you do not agree with this notice, including the disclaimer
3081+ * below, then you are not authorized to use the Software.
3082+ *
3083+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
3084+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3085+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3086+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
3087+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
3088+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
3089+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
3090+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3091+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3092+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
3093+ * DAMAGE.
3094+ * ========================================================================== */
3095+
3096+#if !defined(__DWC_OTG_ATTR_H__)
3097+#define __DWC_OTG_ATTR_H__
3098+
3099+/*
3100+ * This file contains the interface to the Linux device attributes.
3101+ */
3102+extern struct device_attribute dev_attr_regoffset;
3103+extern struct device_attribute dev_attr_regvalue;
3104+
3105+extern struct device_attribute dev_attr_mode;
3106+extern struct device_attribute dev_attr_hnpcapable;
3107+extern struct device_attribute dev_attr_srpcapable;
3108+extern struct device_attribute dev_attr_hnp;
3109+extern struct device_attribute dev_attr_srp;
3110+extern struct device_attribute dev_attr_buspower;
3111+extern struct device_attribute dev_attr_bussuspend;
3112+extern struct device_attribute dev_attr_busconnected;
3113+extern struct device_attribute dev_attr_gotgctl;
3114+extern struct device_attribute dev_attr_gusbcfg;
3115+extern struct device_attribute dev_attr_grxfsiz;
3116+extern struct device_attribute dev_attr_gnptxfsiz;
3117+extern struct device_attribute dev_attr_gpvndctl;
3118+extern struct device_attribute dev_attr_ggpio;
3119+extern struct device_attribute dev_attr_guid;
3120+extern struct device_attribute dev_attr_gsnpsid;
3121+extern struct device_attribute dev_attr_devspeed;
3122+extern struct device_attribute dev_attr_enumspeed;
3123+extern struct device_attribute dev_attr_hptxfsiz;
3124+extern struct device_attribute dev_attr_hprt0;
3125+
3126+void dwc_otg_attr_create(struct device *dev);
3127+void dwc_otg_attr_remove(struct device *dev);
3128+
3129+#endif
3130diff --git a/drivers/usb/host/dwc_otg/dwc_otg_cil.c b/drivers/usb/host/dwc_otg/dwc_otg_cil.c
3131new file mode 100644
3132index 0000000..86153ba
3133--- /dev/null
3134+++ b/drivers/usb/host/dwc_otg/dwc_otg_cil.c
3135@@ -0,0 +1,2887 @@
3136+/* ==========================================================================
3137+ *
3138+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
3139+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
3140+ * otherwise expressly agreed to in writing between Synopsys and you.
3141+ *
3142+ * The Software IS NOT an item of Licensed Software or Licensed Product under
3143+ * any End User Software License Agreement or Agreement for Licensed Product
3144+ * with Synopsys or any supplement thereto. You are permitted to use and
3145+ * redistribute this Software in source and binary forms, with or without
3146+ * modification, provided that redistributions of source code must retain this
3147+ * notice. You may not view, use, disclose, copy or distribute this file or
3148+ * any information contained herein except pursuant to this license grant from
3149+ * Synopsys. If you do not agree with this notice, including the disclaimer
3150+ * below, then you are not authorized to use the Software.
3151+ *
3152+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
3153+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3154+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3155+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
3156+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
3157+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
3158+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
3159+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3160+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3161+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
3162+ * DAMAGE.
3163+ * ========================================================================== */
3164+
3165+/*
3166+ *
3167+ * The Core Interface Layer provides basic services for accessing and
3168+ * managing the DWC_otg hardware. These services are used by both the
3169+ * Host Controller Driver and the Peripheral Controller Driver.
3170+ *
3171+ * The CIL manages the memory map for the core so that the HCD and PCD
3172+ * don't have to do this separately. It also handles basic tasks like
3173+ * reading/writing the registers and data FIFOs in the controller.
3174+ * Some of the data access functions provide encapsulation of several
3175+ * operations required to perform a task, such as writing multiple
3176+ * registers to start a transfer. Finally, the CIL performs basic
3177+ * services that are not specific to either the host or device modes
3178+ * of operation. These services include management of the OTG Host
3179+ * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A
3180+ * Diagnostic API is also provided to allow testing of the controller
3181+ * hardware.
3182+ *
3183+ * The Core Interface Layer has the following requirements:
3184+ * - Provides basic controller operations.
3185+ * - Minimal use of OS services.
3186+ * - The OS services used will be abstracted by using inline functions
3187+ * or macros.
3188+ *
3189+ */
3190+#include <asm/unaligned.h>
3191+#ifdef DEBUG
3192+#include <linux/jiffies.h>
3193+#endif
3194+
3195+#include "dwc_otg_plat.h"
3196+#include "dwc_otg_regs.h"
3197+#include "dwc_otg_cil.h"
3198+
3199+/**
3200+ * This function is called to initialize the DWC_otg CSR data
3201+ * structures. The register addresses in the device and host
3202+ * structures are initialized from the base address supplied by the
3203+ * caller. The calling function must make the OS calls to get the
3204+ * base address of the DWC_otg controller registers. The core_params
3205+ * argument holds the parameters that specify how the core should be
3206+ * configured.
3207+ *
3208+ * @reg_base_addr: Base address of DWC_otg core registers
3209+ * @core_params: Pointer to the core configuration parameters
3210+ *
3211+ */
3212+struct dwc_otg_core_if *dwc_otg_cil_init(const uint32_t *reg_base_addr,
3213+ struct dwc_otg_core_params *core_params)
3214+{
3215+ struct dwc_otg_core_if *core_if = 0;
3216+ struct dwc_otg_dev_if *dev_if = 0;
3217+ struct dwc_otg_host_if *host_if = 0;
3218+ uint8_t *reg_base = (uint8_t *) reg_base_addr;
3219+ int i = 0;
3220+
3221+ DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, reg_base_addr,
3222+ core_params);
3223+
3224+ core_if = kmalloc(sizeof(struct dwc_otg_core_if), GFP_KERNEL);
3225+ if (core_if == 0) {
3226+ DWC_DEBUGPL(DBG_CIL,
3227+ "Allocation of struct dwc_otg_core_if failed\n");
3228+ return 0;
3229+ }
3230+ memset(core_if, 0, sizeof(struct dwc_otg_core_if));
3231+
3232+ core_if->core_params = core_params;
3233+ core_if->core_global_regs =
3234+ (struct dwc_otg_core_global_regs *)reg_base;
3235+ /*
3236+ * Allocate the Device Mode structures.
3237+ */
3238+ dev_if = kmalloc(sizeof(struct dwc_otg_dev_if), GFP_KERNEL);
3239+ if (dev_if == 0) {
3240+ DWC_DEBUGPL(DBG_CIL, "Allocation of struct dwc_otg_dev_if "
3241+ "failed\n");
3242+ kfree(core_if);
3243+ return 0;
3244+ }
3245+
3246+ dev_if->dev_global_regs =
3247+ (struct dwc_otg_dev_global_regs *) (reg_base +
3248+ DWC_DEV_GLOBAL_REG_OFFSET);
3249+
3250+ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
3251+ dev_if->in_ep_regs[i] = (struct dwc_otg_dev_in_ep_regs *)
3252+ (reg_base + DWC_DEV_IN_EP_REG_OFFSET +
3253+ (i * DWC_EP_REG_OFFSET));
3254+
3255+ dev_if->out_ep_regs[i] = (struct dwc_otg_dev_out_ep_regs *)
3256+ (reg_base + DWC_DEV_OUT_EP_REG_OFFSET +
3257+ (i * DWC_EP_REG_OFFSET));
3258+ DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n",
3259+ i, &dev_if->in_ep_regs[i]->diepctl);
3260+ DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n",
3261+ i, &dev_if->out_ep_regs[i]->doepctl);
3262+ }
3263+ dev_if->speed = 0; /* unknown */
3264+ dev_if->num_eps = MAX_EPS_CHANNELS;
3265+ dev_if->num_perio_eps = 0;
3266+
3267+ core_if->dev_if = dev_if;
3268+ /*
3269+ * Allocate the Host Mode structures.
3270+ */
3271+ host_if = kmalloc(sizeof(struct dwc_otg_host_if), GFP_KERNEL);
3272+ if (host_if == 0) {
3273+ DWC_DEBUGPL(DBG_CIL,
3274+ "Allocation of struct dwc_otg_host_if failed\n");
3275+ kfree(dev_if);
3276+ kfree(core_if);
3277+ return 0;
3278+ }
3279+
3280+ host_if->host_global_regs = (struct dwc_otg_host_global_regs *)
3281+ (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET);
3282+ host_if->hprt0 =
3283+ (uint32_t *) (reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET);
3284+ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
3285+ host_if->hc_regs[i] = (struct dwc_otg_hc_regs *)
3286+ (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET +
3287+ (i * DWC_OTG_CHAN_REGS_OFFSET));
3288+ DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n",
3289+ i, &host_if->hc_regs[i]->hcchar);
3290+ }
3291+ host_if->num_host_channels = MAX_EPS_CHANNELS;
3292+ core_if->host_if = host_if;
3293+
3294+ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
3295+ core_if->data_fifo[i] =
3296+ (uint32_t *) (reg_base + DWC_OTG_DATA_FIFO_OFFSET +
3297+ (i * DWC_OTG_DATA_FIFO_SIZE));
3298+ DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=%p\n",
3299+ i, core_if->data_fifo[i]);
3300+ }
3301+
3302+ core_if->pcgcctl = (uint32_t *) (reg_base + DWC_OTG_PCGCCTL_OFFSET);
3303+
3304+ /*
3305+ * Store the contents of the hardware configuration registers here for
3306+ * easy access later.
3307+ */
3308+ core_if->hwcfg1.d32 =
3309+ dwc_read_reg32(&core_if->core_global_regs->ghwcfg1);
3310+ core_if->hwcfg2.d32 =
3311+ dwc_read_reg32(&core_if->core_global_regs->ghwcfg2);
3312+ core_if->hwcfg3.d32 =
3313+ dwc_read_reg32(&core_if->core_global_regs->ghwcfg3);
3314+ core_if->hwcfg4.d32 =
3315+ dwc_read_reg32(&core_if->core_global_regs->ghwcfg4);
3316+
3317+ DWC_DEBUGPL(DBG_CILV, "hwcfg1=%08x\n", core_if->hwcfg1.d32);
3318+ DWC_DEBUGPL(DBG_CILV, "hwcfg2=%08x\n", core_if->hwcfg2.d32);
3319+ DWC_DEBUGPL(DBG_CILV, "hwcfg3=%08x\n", core_if->hwcfg3.d32);
3320+ DWC_DEBUGPL(DBG_CILV, "hwcfg4=%08x\n", core_if->hwcfg4.d32);
3321+
3322+ DWC_DEBUGPL(DBG_CILV, "op_mode=%0x\n", core_if->hwcfg2.b.op_mode);
3323+ DWC_DEBUGPL(DBG_CILV, "arch=%0x\n", core_if->hwcfg2.b.architecture);
3324+ DWC_DEBUGPL(DBG_CILV, "num_dev_ep=%d\n", core_if->hwcfg2.b.num_dev_ep);
3325+ DWC_DEBUGPL(DBG_CILV, "num_host_chan=%d\n",
3326+ core_if->hwcfg2.b.num_host_chan);
3327+ DWC_DEBUGPL(DBG_CILV, "nonperio_tx_q_depth=0x%0x\n",
3328+ core_if->hwcfg2.b.nonperio_tx_q_depth);
3329+ DWC_DEBUGPL(DBG_CILV, "host_perio_tx_q_depth=0x%0x\n",
3330+ core_if->hwcfg2.b.host_perio_tx_q_depth);
3331+ DWC_DEBUGPL(DBG_CILV, "dev_token_q_depth=0x%0x\n",
3332+ core_if->hwcfg2.b.dev_token_q_depth);
3333+
3334+ DWC_DEBUGPL(DBG_CILV, "Total FIFO SZ=%d\n",
3335+ core_if->hwcfg3.b.dfifo_depth);
3336+ DWC_DEBUGPL(DBG_CILV, "xfer_size_cntr_width=%0x\n",
3337+ core_if->hwcfg3.b.xfer_size_cntr_width);
3338+
3339+ /*
3340+ * Set the SRP sucess bit for FS-I2c
3341+ */
3342+ core_if->srp_success = 0;
3343+ core_if->srp_timer_started = 0;
3344+
3345+ return core_if;
3346+}
3347+
3348+/**
3349+ * This function frees the structures allocated by dwc_otg_cil_init().
3350+ *
3351+ * @core_if: The core interface pointer returned from
3352+ * dwc_otg_cil_init().
3353+ *
3354+ */
3355+void dwc_otg_cil_remove(struct dwc_otg_core_if *core_if)
3356+{
3357+ /* Disable all interrupts */
3358+ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 1, 0);
3359+ dwc_write_reg32(&core_if->core_global_regs->gintmsk, 0);
3360+
3361+ kfree(core_if->dev_if);
3362+ kfree(core_if->host_if);
3363+
3364+ kfree(core_if);
3365+}
3366+
3367+/**
3368+ * This function enables the controller's Global Interrupt in the AHB Config
3369+ * register.
3370+ *
3371+ * @core_if: Programming view of DWC_otg controller.
3372+ */
3373+extern void dwc_otg_enable_global_interrupts(struct dwc_otg_core_if *core_if)
3374+{
3375+ union gahbcfg_data ahbcfg = {.d32 = 0 };
3376+ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
3377+ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32);
3378+}
3379+
3380+/**
3381+ * This function disables the controller's Global Interrupt in the AHB Config
3382+ * register.
3383+ *
3384+ * @core_if: Programming view of DWC_otg controller.
3385+ */
3386+extern void dwc_otg_disable_global_interrupts(struct dwc_otg_core_if *core_if)
3387+{
3388+ union gahbcfg_data ahbcfg = {.d32 = 0 };
3389+ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
3390+ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
3391+}
3392+
3393+/**
3394+ * This function initializes the commmon interrupts, used in both
3395+ * device and host modes.
3396+ *
3397+ * @core_if: Programming view of the DWC_otg controller
3398+ *
3399+ */
3400+static void dwc_otg_enable_common_interrupts(struct dwc_otg_core_if *core_if)
3401+{
3402+ struct dwc_otg_core_global_regs *global_regs =
3403+ core_if->core_global_regs;
3404+ union gintmsk_data intr_mask = {.d32 = 0 };
3405+ /* Clear any pending OTG Interrupts */
3406+ dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF);
3407+ /* Clear any pending interrupts */
3408+ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
3409+ /*
3410+ * Enable the interrupts in the GINTMSK.
3411+ */
3412+ intr_mask.b.modemismatch = 1;
3413+ intr_mask.b.otgintr = 1;
3414+ if (!core_if->dma_enable)
3415+ intr_mask.b.rxstsqlvl = 1;
3416+
3417+ intr_mask.b.conidstschng = 1;
3418+ intr_mask.b.wkupintr = 1;
3419+ intr_mask.b.disconnect = 1;
3420+ intr_mask.b.usbsuspend = 1;
3421+ intr_mask.b.sessreqintr = 1;
3422+ dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32);
3423+}
3424+
3425+/**
3426+ * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY
3427+ * type.
3428+ */
3429+static void init_fslspclksel(struct dwc_otg_core_if *core_if)
3430+{
3431+ uint32_t val;
3432+ union hcfg_data hcfg;
3433+
3434+ if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
3435+ (core_if->hwcfg2.b.fs_phy_type == 1) &&
3436+ (core_if->core_params->ulpi_fs_ls)) ||
3437+ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
3438+ /* Full speed PHY */
3439+ val = DWC_HCFG_48_MHZ;
3440+ } else {
3441+ /* High speed PHY running at full speed or high speed */
3442+ val = DWC_HCFG_30_60_MHZ;
3443+ }
3444+
3445+ DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val);
3446+ hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
3447+ hcfg.b.fslspclksel = val;
3448+ dwc_write_reg32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32);
3449+}
3450+
3451+/**
3452+ * Initializes the DevSpd field of the DCFG register depending on the PHY type
3453+ * and the enumeration speed of the device.
3454+ */
3455+static void init_devspd(struct dwc_otg_core_if *core_if)
3456+{
3457+ uint32_t val;
3458+ union dcfg_data dcfg;
3459+
3460+ if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
3461+ (core_if->hwcfg2.b.fs_phy_type == 1) &&
3462+ (core_if->core_params->ulpi_fs_ls)) ||
3463+ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
3464+ /* Full speed PHY */
3465+ val = 0x3;
3466+ } else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
3467+ /* High speed PHY running at full speed */
3468+ val = 0x1;
3469+ } else {
3470+ /* High speed PHY running at high speed */
3471+ val = 0x0;
3472+ }
3473+
3474+ DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val);
3475+ dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
3476+ dcfg.b.devspd = val;
3477+ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
3478+}
3479+
3480+/**
3481+ * This function initializes the DWC_otg controller registers and
3482+ * prepares the core for device mode or host mode operation.
3483+ *
3484+ * @core_if: Programming view of the DWC_otg controller
3485+ *
3486+ */
3487+void dwc_otg_core_init(struct dwc_otg_core_if *core_if)
3488+{
3489+ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
3490+ struct dwc_otg_dev_if *dev_if = core_if->dev_if;
3491+ int i = 0;
3492+ union gahbcfg_data ahbcfg = {.d32 = 0 };
3493+ union gusbcfg_data usbcfg = {.d32 = 0 };
3494+ union gi2cctl_data i2cctl = {.d32 = 0 };
3495+
3496+ DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", core_if);
3497+
3498+ /* Common Initialization */
3499+
3500+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
3501+
3502+ /* Program the ULPI External VBUS bit if needed */
3503+ usbcfg.b.ulpi_ext_vbus_drv =
3504+ (core_if->core_params->phy_ulpi_ext_vbus ==
3505+ DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0;
3506+
3507+ /* Set external TS Dline pulsing */
3508+ usbcfg.b.term_sel_dl_pulse =
3509+ (core_if->core_params->ts_dline == 1) ? 1 : 0;
3510+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
3511+
3512+ /* Reset the Controller */
3513+ dwc_otg_core_reset(core_if);
3514+
3515+ /* Initialize parameters from Hardware configuration registers. */
3516+ dev_if->num_eps = core_if->hwcfg2.b.num_dev_ep;
3517+ dev_if->num_perio_eps = core_if->hwcfg4.b.num_dev_perio_in_ep;
3518+
3519+ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n",
3520+ core_if->hwcfg4.b.num_dev_perio_in_ep);
3521+ for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
3522+ dev_if->perio_tx_fifo_size[i] =
3523+ dwc_read_reg32(&global_regs->dptxfsiz[i]) >> 16;
3524+ DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n",
3525+ i, dev_if->perio_tx_fifo_size[i]);
3526+ }
3527+
3528+ core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth;
3529+ core_if->rx_fifo_size = dwc_read_reg32(&global_regs->grxfsiz);
3530+ core_if->nperio_tx_fifo_size =
3531+ dwc_read_reg32(&global_regs->gnptxfsiz) >> 16;
3532+
3533+ DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", core_if->total_fifo_size);
3534+ DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", core_if->rx_fifo_size);
3535+ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n",
3536+ core_if->nperio_tx_fifo_size);
3537+
3538+ /* This programming sequence needs to happen in FS mode before any other
3539+ * programming occurs */
3540+ if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) &&
3541+ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
3542+ /* If FS mode with FS PHY */
3543+
3544+ /* core_init() is now called on every switch so only call the
3545+ * following for the first time through. */
3546+ if (!core_if->phy_init_done) {
3547+ core_if->phy_init_done = 1;
3548+ DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n");
3549+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
3550+ usbcfg.b.physel = 1;
3551+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
3552+
3553+ /* Reset after a PHY select */
3554+ dwc_otg_core_reset(core_if);
3555+ }
3556+
3557+ /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
3558+ * do this on HNP Dev/Host mode switches (done in dev_init and
3559+ * host_init). */
3560+ if (dwc_otg_is_host_mode(core_if))
3561+ init_fslspclksel(core_if);
3562+ else
3563+ init_devspd(core_if);
3564+
3565+ if (core_if->core_params->i2c_enable) {
3566+ DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n");
3567+ /* Program GUSBCFG.OtgUtmifsSel to I2C */
3568+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
3569+ usbcfg.b.otgutmifssel = 1;
3570+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
3571+
3572+ /* Program GI2CCTL.I2CEn */
3573+ i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl);
3574+ i2cctl.b.i2cdevaddr = 1;
3575+ i2cctl.b.i2cen = 0;
3576+ dwc_write_reg32(&global_regs->gi2cctl, i2cctl.d32);
3577+ i2cctl.b.i2cen = 1;
3578+ dwc_write_reg32(&global_regs->gi2cctl, i2cctl.d32);
3579+ }
3580+
3581+ }
3582+ /* endif speed == DWC_SPEED_PARAM_FULL */
3583+ else {
3584+ /* High speed PHY. */
3585+ if (!core_if->phy_init_done) {
3586+ core_if->phy_init_done = 1;
3587+ /* HS PHY parameters. These parameters are preserved
3588+ * during soft reset so only program the first time. Do
3589+ * a soft reset immediately after setting phyif. */
3590+ usbcfg.b.ulpi_utmi_sel =
3591+ (core_if->core_params->phy_type ==
3592+ DWC_PHY_TYPE_PARAM_ULPI);
3593+ if (usbcfg.b.ulpi_utmi_sel == 1) {
3594+ /* ULPI interface */
3595+ usbcfg.b.phyif = 0;
3596+ usbcfg.b.ddrsel =
3597+ core_if->core_params->phy_ulpi_ddr;
3598+ } else {
3599+ /* UTMI+ interface */
3600+ if (core_if->core_params->phy_utmi_width == 16)
3601+ usbcfg.b.phyif = 1;
3602+ else
3603+ usbcfg.b.phyif = 0;
3604+ }
3605+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
3606+
3607+ /* Reset after setting the PHY parameters */
3608+ dwc_otg_core_reset(core_if);
3609+ }
3610+ }
3611+
3612+ if ((core_if->hwcfg2.b.hs_phy_type == 2) &&
3613+ (core_if->hwcfg2.b.fs_phy_type == 1) &&
3614+ (core_if->core_params->ulpi_fs_ls)) {
3615+ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n");
3616+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
3617+ usbcfg.b.ulpi_fsls = 1;
3618+ usbcfg.b.ulpi_clk_sus_m = 1;
3619+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
3620+ } else {
3621+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
3622+ usbcfg.b.ulpi_fsls = 0;
3623+ usbcfg.b.ulpi_clk_sus_m = 0;
3624+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
3625+ }
3626+
3627+ /* Program the GAHBCFG Register. */
3628+ switch (core_if->hwcfg2.b.architecture) {
3629+
3630+ case DWC_SLAVE_ONLY_ARCH:
3631+ DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n");
3632+ ahbcfg.b.nptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
3633+ ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
3634+ core_if->dma_enable = 0;
3635+ break;
3636+
3637+ case DWC_EXT_DMA_ARCH:
3638+ DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n");
3639+ ahbcfg.b.hburstlen = core_if->core_params->dma_burst_size;
3640+ core_if->dma_enable = (core_if->core_params->dma_enable != 0);
3641+ break;
3642+
3643+ case DWC_INT_DMA_ARCH:
3644+ DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n");
3645+ ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR;
3646+ core_if->dma_enable = (core_if->core_params->dma_enable != 0);
3647+ break;
3648+
3649+ }
3650+ ahbcfg.b.dmaenable = core_if->dma_enable;
3651+ dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32);
3652+
3653+ /*
3654+ * Program the GUSBCFG register.
3655+ */
3656+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
3657+
3658+ switch (core_if->hwcfg2.b.op_mode) {
3659+ case DWC_MODE_HNP_SRP_CAPABLE:
3660+ usbcfg.b.hnpcap = (core_if->core_params->otg_cap ==
3661+ DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
3662+ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
3663+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
3664+ break;
3665+
3666+ case DWC_MODE_SRP_ONLY_CAPABLE:
3667+ usbcfg.b.hnpcap = 0;
3668+ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
3669+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
3670+ break;
3671+
3672+ case DWC_MODE_NO_HNP_SRP_CAPABLE:
3673+ usbcfg.b.hnpcap = 0;
3674+ usbcfg.b.srpcap = 0;
3675+ break;
3676+
3677+ case DWC_MODE_SRP_CAPABLE_DEVICE:
3678+ usbcfg.b.hnpcap = 0;
3679+ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
3680+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
3681+ break;
3682+
3683+ case DWC_MODE_NO_SRP_CAPABLE_DEVICE:
3684+ usbcfg.b.hnpcap = 0;
3685+ usbcfg.b.srpcap = 0;
3686+ break;
3687+
3688+ case DWC_MODE_SRP_CAPABLE_HOST:
3689+ usbcfg.b.hnpcap = 0;
3690+ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
3691+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
3692+ break;
3693+
3694+ case DWC_MODE_NO_SRP_CAPABLE_HOST:
3695+ usbcfg.b.hnpcap = 0;
3696+ usbcfg.b.srpcap = 0;
3697+ break;
3698+ }
3699+
3700+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
3701+
3702+ /* Enable common interrupts */
3703+ dwc_otg_enable_common_interrupts(core_if);
3704+
3705+ /* Do device or host intialization based on mode during PCD
3706+ * and HCD initialization */
3707+ if (dwc_otg_is_host_mode(core_if)) {
3708+ DWC_DEBUGPL(DBG_ANY, "Host Mode\n");
3709+ core_if->op_state = A_HOST;
3710+ } else {
3711+ DWC_DEBUGPL(DBG_ANY, "Device Mode\n");
3712+ core_if->op_state = B_PERIPHERAL;
3713+#ifdef DWC_DEVICE_ONLY
3714+ dwc_otg_core_dev_init(core_if);
3715+#endif
3716+ }
3717+}
3718+
3719+/**
3720+ * This function enables the Device mode interrupts.
3721+ *
3722+ * @core_if: Programming view of DWC_otg controller
3723+ */
3724+void dwc_otg_enable_device_interrupts(struct dwc_otg_core_if *core_if)
3725+{
3726+ union gintmsk_data intr_mask = {.d32 = 0 };
3727+ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
3728+
3729+ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
3730+
3731+ /* Disable all interrupts. */
3732+ dwc_write_reg32(&global_regs->gintmsk, 0);
3733+
3734+ /* Clear any pending interrupts */
3735+ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
3736+
3737+ /* Enable the common interrupts */
3738+ dwc_otg_enable_common_interrupts(core_if);
3739+
3740+ /* Enable interrupts */
3741+ intr_mask.b.usbreset = 1;
3742+ intr_mask.b.enumdone = 1;
3743+ intr_mask.b.epmismatch = 1;
3744+ intr_mask.b.inepintr = 1;
3745+ intr_mask.b.outepintr = 1;
3746+ intr_mask.b.erlysuspend = 1;
3747+
3748+#ifdef USE_PERIODIC_EP
3749+ /** @todo NGS: Should this be a module parameter? */
3750+ intr_mask.b.isooutdrop = 1;
3751+ intr_mask.b.eopframe = 1;
3752+ intr_mask.b.incomplisoin = 1;
3753+ intr_mask.b.incomplisoout = 1;
3754+#endif
3755+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
3756+
3757+ DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__,
3758+ dwc_read_reg32(&global_regs->gintmsk));
3759+}
3760+
3761+/**
3762+ * This function initializes the DWC_otg controller registers for
3763+ * device mode.
3764+ *
3765+ * @core_if: Programming view of DWC_otg controller
3766+ *
3767+ */
3768+void dwc_otg_core_dev_init(struct dwc_otg_core_if *core_if)
3769+{
3770+ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
3771+ struct dwc_otg_dev_if *dev_if = core_if->dev_if;
3772+ struct dwc_otg_core_params *params = core_if->core_params;
3773+ union dcfg_data dcfg = {.d32 = 0 };
3774+ union grstctl_data resetctl = {.d32 = 0 };
3775+ int i;
3776+ uint32_t rx_fifo_size;
3777+ union fifosize_data nptxfifosize;
3778+#ifdef USE_PERIODIC_EP
3779+ union fifosize_data ptxfifosize;
3780+#endif
3781+
3782+ /* Restart the Phy Clock */
3783+ dwc_write_reg32(core_if->pcgcctl, 0);
3784+
3785+ /* Device configuration register */
3786+ init_devspd(core_if);
3787+ dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
3788+ dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80;
3789+ dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
3790+
3791+ /* Configure data FIFO sizes */
3792+ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
3793+
3794+ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n",
3795+ core_if->total_fifo_size);
3796+ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n",
3797+ params->dev_rx_fifo_size);
3798+ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n",
3799+ params->dev_nperio_tx_fifo_size);
3800+
3801+ /* Rx FIFO */
3802+ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
3803+ dwc_read_reg32(&global_regs->grxfsiz));
3804+ rx_fifo_size = params->dev_rx_fifo_size;
3805+ dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size);
3806+ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
3807+ dwc_read_reg32(&global_regs->grxfsiz));
3808+
3809+ /* Non-periodic Tx FIFO */
3810+ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
3811+ dwc_read_reg32(&global_regs->gnptxfsiz));
3812+ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
3813+ nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
3814+ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
3815+ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
3816+ dwc_read_reg32(&global_regs->gnptxfsiz));
3817+
3818+#ifdef USE_PERIODIC_EP
3819+ /**@todo NGS: Fix Periodic FIFO Sizing! */
3820+ /*
3821+ * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15.
3822+ * Indexes of the FIFO size module parameters in the
3823+ * dev_perio_tx_fifo_size array and the FIFO size registers in
3824+ * the dptxfsiz array run from 0 to 14.
3825+ */
3826+ /** @todo Finish debug of this */
3827+ ptxfifosize.b.startaddr =
3828+ nptxfifosize.b.startaddr + nptxfifosize.b.depth;
3829+ for (i = 0; i < dev_if->num_perio_eps; i++) {
3830+ ptxfifosize.b.depth = params->dev_perio_tx_fifo_size[i];
3831+ DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz[%d]=%08x\n", i,
3832+ dwc_read_reg32(&global_regs->dptxfsiz[i]));
3833+ dwc_write_reg32(&global_regs->dptxfsiz[i],
3834+ ptxfifosize.d32);
3835+ DWC_DEBUGPL(DBG_CIL, "new dptxfsiz[%d]=%08x\n", i,
3836+ dwc_read_reg32(&global_regs->dptxfsiz[i]));
3837+ ptxfifosize.b.startaddr += ptxfifosize.b.depth;
3838+ }
3839+#endif
3840+ }
3841+ /* Flush the FIFOs */
3842+ dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */
3843+ dwc_otg_flush_rx_fifo(core_if);
3844+
3845+ /* Flush the Learning Queue. */
3846+ resetctl.b.intknqflsh = 1;
3847+ dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
3848+
3849+ /* Clear all pending Device Interrupts */
3850+ dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0);
3851+ dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0);
3852+ dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF);
3853+ dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0);
3854+
3855+ for (i = 0; i < dev_if->num_eps; i++) {
3856+ union depctl_data depctl;
3857+ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
3858+ if (depctl.b.epena) {
3859+ depctl.d32 = 0;
3860+ depctl.b.epdis = 1;
3861+ depctl.b.snak = 1;
3862+ } else {
3863+ depctl.d32 = 0;
3864+ }
3865+ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32);
3866+
3867+ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
3868+ if (depctl.b.epena) {
3869+ depctl.d32 = 0;
3870+ depctl.b.epdis = 1;
3871+ depctl.b.snak = 1;
3872+ } else {
3873+ depctl.d32 = 0;
3874+ }
3875+ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32);
3876+
3877+ dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0);
3878+ dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0);
3879+ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0);
3880+ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0);
3881+ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF);
3882+ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF);
3883+ }
3884+
3885+ dwc_otg_enable_device_interrupts(core_if);
3886+}
3887+
3888+/**
3889+ * This function enables the Host mode interrupts.
3890+ *
3891+ * @core_if: Programming view of DWC_otg controller
3892+ */
3893+void dwc_otg_enable_host_interrupts(struct dwc_otg_core_if *core_if)
3894+{
3895+ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
3896+ union gintmsk_data intr_mask = {.d32 = 0 };
3897+
3898+ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
3899+
3900+ /* Disable all interrupts. */
3901+ dwc_write_reg32(&global_regs->gintmsk, 0);
3902+
3903+ /* Clear any pending interrupts. */
3904+ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
3905+
3906+ /* Enable the common interrupts */
3907+ dwc_otg_enable_common_interrupts(core_if);
3908+
3909+ /*
3910+ * Enable host mode interrupts without disturbing common
3911+ * interrupts.
3912+ */
3913+ intr_mask.b.sofintr = 1;
3914+ intr_mask.b.portintr = 1;
3915+ intr_mask.b.hcintr = 1;
3916+
3917+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
3918+}
3919+
3920+/**
3921+ * This function disables the Host Mode interrupts.
3922+ *
3923+ * @core_if: Programming view of DWC_otg controller
3924+ */
3925+void dwc_otg_disable_host_interrupts(struct dwc_otg_core_if *core_if)
3926+{
3927+ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
3928+ union gintmsk_data intr_mask = {.d32 = 0 };
3929+
3930+ DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__);
3931+
3932+ /*
3933+ * Disable host mode interrupts without disturbing common
3934+ * interrupts.
3935+ */
3936+ intr_mask.b.sofintr = 1;
3937+ intr_mask.b.portintr = 1;
3938+ intr_mask.b.hcintr = 1;
3939+ intr_mask.b.ptxfempty = 1;
3940+ intr_mask.b.nptxfempty = 1;
3941+
3942+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
3943+}
3944+
3945+/**
3946+ * The FIFOs are established based on a default percentage of the
3947+ * total FIFO depth. This function converts the percentage into the
3948+ * proper setting.
3949+ *
3950+ */
3951+static inline uint32_t fifo_percentage(uint16_t total_fifo_size,
3952+ int32_t percentage)
3953+{
3954+ /* 16-byte aligned */
3955+ return ((total_fifo_size * percentage) / 100) & (-1 << 3);
3956+}
3957+
3958+/**
3959+ * This function initializes the DWC_otg controller registers for
3960+ * host mode.
3961+ *
3962+ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the
3963+ * request queues. Host channels are reset to ensure that they are ready for
3964+ * performing transfers.
3965+ *
3966+ * @core_if: Programming view of DWC_otg controller
3967+ *
3968+ */
3969+void dwc_otg_core_host_init(struct dwc_otg_core_if *core_if)
3970+{
3971+ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
3972+ struct dwc_otg_host_if *host_if = core_if->host_if;
3973+ struct dwc_otg_core_params *params = core_if->core_params;
3974+ union hprt0_data hprt0 = {.d32 = 0 };
3975+ union fifosize_data nptxfifosize;
3976+ union fifosize_data ptxfifosize;
3977+ int i;
3978+ union hcchar_data hcchar;
3979+ union hcfg_data hcfg;
3980+ struct dwc_otg_hc_regs *hc_regs;
3981+ int num_channels;
3982+ union gotgctl_data gotgctl = {.d32 = 0 };
3983+
3984+ DWC_DEBUGPL(DBG_CILV, "%s(%p)\n", __func__, core_if);
3985+
3986+ /* Restart the Phy Clock */
3987+ dwc_write_reg32(core_if->pcgcctl, 0);
3988+
3989+ /* Initialize Host Configuration Register */
3990+ init_fslspclksel(core_if);
3991+ if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
3992+ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
3993+ hcfg.b.fslssupp = 1;
3994+ dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32);
3995+ }
3996+
3997+ /* Configure data FIFO sizes */
3998+ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
3999+ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n",
4000+ core_if->total_fifo_size);
4001+ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n",
4002+ params->host_rx_fifo_size);
4003+ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n",
4004+ params->host_nperio_tx_fifo_size);
4005+ DWC_DEBUGPL(DBG_CIL, "P Tx FIFO Size=%d\n",
4006+ params->host_perio_tx_fifo_size);
4007+
4008+ /* Rx FIFO */
4009+ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
4010+ dwc_read_reg32(&global_regs->grxfsiz));
4011+ dwc_write_reg32(&global_regs->grxfsiz,
4012+ fifo_percentage(core_if->total_fifo_size,
4013+ dwc_param_host_rx_fifo_size_percentage));
4014+ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
4015+ dwc_read_reg32(&global_regs->grxfsiz));
4016+
4017+ /* Non-periodic Tx FIFO */
4018+ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
4019+ dwc_read_reg32(&global_regs->gnptxfsiz));
4020+ nptxfifosize.b.depth =
4021+ fifo_percentage(core_if->total_fifo_size,
4022+ dwc_param_host_nperio_tx_fifo_size_percentage);
4023+ nptxfifosize.b.startaddr =
4024+ dwc_read_reg32(&global_regs->grxfsiz);
4025+ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
4026+ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
4027+ dwc_read_reg32(&global_regs->gnptxfsiz));
4028+
4029+ /* Periodic Tx FIFO */
4030+ DWC_DEBUGPL(DBG_CIL, "initial hptxfsiz=%08x\n",
4031+ dwc_read_reg32(&global_regs->hptxfsiz));
4032+ ptxfifosize.b.depth =
4033+ core_if->total_fifo_size -
4034+ dwc_read_reg32(&global_regs->grxfsiz) -
4035+ nptxfifosize.b.depth;
4036+ ptxfifosize.b.startaddr =
4037+ nptxfifosize.b.startaddr + nptxfifosize.b.depth;
4038+ dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32);
4039+ DWC_DEBUGPL(DBG_CIL, "new hptxfsiz=%08x\n",
4040+ dwc_read_reg32(&global_regs->hptxfsiz));
4041+ }
4042+
4043+ /* Clear Host Set HNP Enable in the OTG Control Register */
4044+ gotgctl.b.hstsethnpen = 1;
4045+ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
4046+
4047+ /* Make sure the FIFOs are flushed. */
4048+ dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */
4049+ dwc_otg_flush_rx_fifo(core_if);
4050+
4051+ /* Flush out any leftover queued requests. */
4052+ num_channels = core_if->core_params->host_channels;
4053+ for (i = 0; i < num_channels; i++) {
4054+ hc_regs = core_if->host_if->hc_regs[i];
4055+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4056+ hcchar.b.chen = 0;
4057+ hcchar.b.chdis = 1;
4058+ hcchar.b.epdir = 0;
4059+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
4060+ }
4061+
4062+ /* Halt all channels to put them into a known state. */
4063+ for (i = 0; i < num_channels; i++) {
4064+ int count = 0;
4065+ hc_regs = core_if->host_if->hc_regs[i];
4066+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4067+ hcchar.b.chen = 1;
4068+ hcchar.b.chdis = 1;
4069+ hcchar.b.epdir = 0;
4070+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
4071+ DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i);
4072+ do {
4073+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4074+ if (++count > 1000) {
4075+ DWC_ERROR
4076+ ("%s: Unable to clear halt on channel %d\n",
4077+ __func__, i);
4078+ break;
4079+ }
4080+ } while (hcchar.b.chen);
4081+ }
4082+
4083+ /* Turn on the vbus power. */
4084+ DWC_PRINT("Init: Port Power? op_state=%d\n", core_if->op_state);
4085+ if (core_if->op_state == A_HOST) {
4086+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
4087+ DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr);
4088+ if (hprt0.b.prtpwr == 0) {
4089+ hprt0.b.prtpwr = 1;
4090+ dwc_write_reg32(host_if->hprt0, hprt0.d32);
4091+ }
4092+ }
4093+
4094+ dwc_otg_enable_host_interrupts(core_if);
4095+}
4096+
4097+/**
4098+ * Prepares a host channel for transferring packets to/from a specific
4099+ * endpoint. The HCCHARn register is set up with the characteristics specified
4100+ * in hc. Host channel interrupts that may need to be serviced while this
4101+ * transfer is in progress are enabled.
4102+ *
4103+ * @core_if: Programming view of DWC_otg controller
4104+ * @hc: Information needed to initialize the host channel
4105+ */
4106+void dwc_otg_hc_init(struct dwc_otg_core_if *core_if, struct dwc_hc *hc)
4107+{
4108+ uint32_t intr_enable;
4109+ union hcintmsk_data hc_intr_mask;
4110+ union gintmsk_data gintmsk = {.d32 = 0 };
4111+ union hcchar_data hcchar;
4112+ union hcsplt_data hcsplt;
4113+
4114+ uint8_t hc_num = hc->hc_num;
4115+ struct dwc_otg_host_if *host_if = core_if->host_if;
4116+ struct dwc_otg_hc_regs *hc_regs = host_if->hc_regs[hc_num];
4117+
4118+ /* Clear old interrupt conditions for this host channel. */
4119+ hc_intr_mask.d32 = 0xFFFFFFFF;
4120+ hc_intr_mask.b.reserved = 0;
4121+ dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32);
4122+
4123+ /* Enable channel interrupts required for this transfer. */
4124+ hc_intr_mask.d32 = 0;
4125+ hc_intr_mask.b.chhltd = 1;
4126+ if (core_if->dma_enable) {
4127+ hc_intr_mask.b.ahberr = 1;
4128+ if (hc->error_state && !hc->do_split &&
4129+ hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
4130+ hc_intr_mask.b.ack = 1;
4131+ if (hc->ep_is_in) {
4132+ hc_intr_mask.b.datatglerr = 1;
4133+ if (hc->ep_type != DWC_OTG_EP_TYPE_INTR)
4134+ hc_intr_mask.b.nak = 1;
4135+ }
4136+ }
4137+ } else {
4138+ switch (hc->ep_type) {
4139+ case DWC_OTG_EP_TYPE_CONTROL:
4140+ case DWC_OTG_EP_TYPE_BULK:
4141+ hc_intr_mask.b.xfercompl = 1;
4142+ hc_intr_mask.b.stall = 1;
4143+ hc_intr_mask.b.xacterr = 1;
4144+ hc_intr_mask.b.datatglerr = 1;
4145+ if (hc->ep_is_in) {
4146+ hc_intr_mask.b.bblerr = 1;
4147+ } else {
4148+ hc_intr_mask.b.nak = 1;
4149+ hc_intr_mask.b.nyet = 1;
4150+ if (hc->do_ping)
4151+ hc_intr_mask.b.ack = 1;
4152+ }
4153+
4154+ if (hc->do_split) {
4155+ hc_intr_mask.b.nak = 1;
4156+ if (hc->complete_split)
4157+ hc_intr_mask.b.nyet = 1;
4158+ else
4159+ hc_intr_mask.b.ack = 1;
4160+ }
4161+
4162+ if (hc->error_state)
4163+ hc_intr_mask.b.ack = 1;
4164+ break;
4165+ case DWC_OTG_EP_TYPE_INTR:
4166+ hc_intr_mask.b.xfercompl = 1;
4167+ hc_intr_mask.b.nak = 1;
4168+ hc_intr_mask.b.stall = 1;
4169+ hc_intr_mask.b.xacterr = 1;
4170+ hc_intr_mask.b.datatglerr = 1;
4171+ hc_intr_mask.b.frmovrun = 1;
4172+
4173+ if (hc->ep_is_in)
4174+ hc_intr_mask.b.bblerr = 1;
4175+ if (hc->error_state)
4176+ hc_intr_mask.b.ack = 1;
4177+ if (hc->do_split) {
4178+ if (hc->complete_split)
4179+ hc_intr_mask.b.nyet = 1;
4180+ else
4181+ hc_intr_mask.b.ack = 1;
4182+ }
4183+ break;
4184+ case DWC_OTG_EP_TYPE_ISOC:
4185+ hc_intr_mask.b.xfercompl = 1;
4186+ hc_intr_mask.b.frmovrun = 1;
4187+ hc_intr_mask.b.ack = 1;
4188+
4189+ if (hc->ep_is_in) {
4190+ hc_intr_mask.b.xacterr = 1;
4191+ hc_intr_mask.b.bblerr = 1;
4192+ }
4193+ break;
4194+ }
4195+ }
4196+ dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32);
4197+
4198+ /* Enable the top level host channel interrupt. */
4199+ intr_enable = (1 << hc_num);
4200+ dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
4201+
4202+ /* Make sure host channel interrupts are enabled. */
4203+ gintmsk.b.hcintr = 1;
4204+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
4205+
4206+ /*
4207+ * Program the HCCHARn register with the endpoint characteristics for
4208+ * the current transfer.
4209+ */
4210+ hcchar.d32 = 0;
4211+ hcchar.b.devaddr = hc->dev_addr;
4212+ hcchar.b.epnum = hc->ep_num;
4213+ hcchar.b.epdir = hc->ep_is_in;
4214+ hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW);
4215+ hcchar.b.eptype = hc->ep_type;
4216+ hcchar.b.mps = hc->max_packet;
4217+
4218+ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
4219+
4220+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
4221+ DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr);
4222+ DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum);
4223+ DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir);
4224+ DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev);
4225+ DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype);
4226+ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
4227+ DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt);
4228+
4229+ /*
4230+ * Program the HCSPLIT register for SPLITs
4231+ */
4232+ hcsplt.d32 = 0;
4233+ if (hc->do_split) {
4234+ DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n",
4235+ hc->hc_num,
4236+ hc->complete_split ? "CSPLIT" : "SSPLIT");
4237+ hcsplt.b.compsplt = hc->complete_split;
4238+ hcsplt.b.xactpos = hc->xact_pos;
4239+ hcsplt.b.hubaddr = hc->hub_addr;
4240+ hcsplt.b.prtaddr = hc->port_addr;
4241+ DWC_DEBUGPL(DBG_HCDV, " comp split %d\n",
4242+ hc->complete_split);
4243+ DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", hc->xact_pos);
4244+ DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", hc->hub_addr);
4245+ DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", hc->port_addr);
4246+ DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", hc->ep_is_in);
4247+ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
4248+ DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", hc->xfer_len);
4249+ }
4250+ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
4251+
4252+}
4253+
4254+/**
4255+ * Attempts to halt a host channel. This function should only be called in
4256+ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
4257+ * normal circumstances in DMA mode, the controller halts the channel when the
4258+ * transfer is complete or a condition occurs that requires application
4259+ * intervention.
4260+ *
4261+ * In slave mode, checks for a free request queue entry, then sets the Channel
4262+ * Enable and Channel Disable bits of the Host Channel Characteristics
4263+ * register of the specified channel to intiate the halt. If there is no free
4264+ * request queue entry, sets only the Channel Disable bit of the HCCHARn
4265+ * register to flush requests for this channel. In the latter case, sets a
4266+ * flag to indicate that the host channel needs to be halted when a request
4267+ * queue slot is open.
4268+ *
4269+ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
4270+ * HCCHARn register. The controller ensures there is space in the request
4271+ * queue before submitting the halt request.
4272+ *
4273+ * Some time may elapse before the core flushes any posted requests for this
4274+ * host channel and halts. The Channel Halted interrupt handler completes the
4275+ * deactivation of the host channel.
4276+ *
4277+ * @core_if: Controller register interface.
4278+ * @hc: Host channel to halt.
4279+ * @halt_status: Reason for halting the channel.
4280+ */
4281+void dwc_otg_hc_halt(struct dwc_otg_core_if *core_if,
4282+ struct dwc_hc *hc, enum dwc_otg_halt_status halt_status)
4283+{
4284+ union gnptxsts_data nptxsts;
4285+ union hptxsts_data hptxsts;
4286+ union hcchar_data hcchar;
4287+ struct dwc_otg_hc_regs *hc_regs;
4288+ struct dwc_otg_core_global_regs *global_regs;
4289+ struct dwc_otg_host_global_regs *host_global_regs;
4290+
4291+ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
4292+ global_regs = core_if->core_global_regs;
4293+ host_global_regs = core_if->host_if->host_global_regs;
4294+
4295+ WARN_ON(halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS);
4296+
4297+ if (halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
4298+ halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
4299+ /*
4300+ * Disable all channel interrupts except Ch Halted. The QTD
4301+ * and QH state associated with this transfer has been cleared
4302+ * (in the case of URB_DEQUEUE), so the channel needs to be
4303+ * shut down carefully to prevent crashes.
4304+ */
4305+ union hcintmsk_data hcintmsk;
4306+ hcintmsk.d32 = 0;
4307+ hcintmsk.b.chhltd = 1;
4308+ dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32);
4309+
4310+ /*
4311+ * Make sure no other interrupts besides halt are currently
4312+ * pending. Handling another interrupt could cause a crash due
4313+ * to the QTD and QH state.
4314+ */
4315+ dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32);
4316+
4317+ /*
4318+ * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
4319+ * even if the channel was already halted for some other
4320+ * reason.
4321+ */
4322+ hc->halt_status = halt_status;
4323+
4324+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4325+ if (hcchar.b.chen == 0) {
4326+ /*
4327+ * The channel is either already halted or it hasn't
4328+ * started yet. In DMA mode, the transfer may halt if
4329+ * it finishes normally or a condition occurs that
4330+ * requires driver intervention. Don't want to halt
4331+ * the channel again. In either Slave or DMA mode,
4332+ * it's possible that the transfer has been assigned
4333+ * to a channel, but not started yet when an URB is
4334+ * dequeued. Don't want to halt a channel that hasn't
4335+ * started yet.
4336+ */
4337+ return;
4338+ }
4339+ }
4340+
4341+ if (hc->halt_pending) {
4342+ /*
4343+ * A halt has already been issued for this channel. This might
4344+ * happen when a transfer is aborted by a higher level in
4345+ * the stack.
4346+ */
4347+#ifdef DEBUG
4348+ DWC_PRINT
4349+ ("*** %s: Channel %d, hc->halt_pending already set ***\n",
4350+ __func__, hc->hc_num);
4351+
4352+/* dwc_otg_dump_global_registers(core_if); */
4353+/* dwc_otg_dump_host_registers(core_if); */
4354+#endif
4355+ return;
4356+ }
4357+
4358+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4359+ hcchar.b.chen = 1;
4360+ hcchar.b.chdis = 1;
4361+
4362+ if (!core_if->dma_enable) {
4363+ /* Check for space in the request queue to issue the halt. */
4364+ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
4365+ hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
4366+ nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts);
4367+ if (nptxsts.b.nptxqspcavail == 0)
4368+ hcchar.b.chen = 0;
4369+ } else {
4370+ hptxsts.d32 =
4371+ dwc_read_reg32(&host_global_regs->hptxsts);
4372+ if ((hptxsts.b.ptxqspcavail == 0)
4373+ || (core_if->queuing_high_bandwidth)) {
4374+ hcchar.b.chen = 0;
4375+ }
4376+ }
4377+ }
4378+
4379+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
4380+
4381+ hc->halt_status = halt_status;
4382+
4383+ if (hcchar.b.chen) {
4384+ hc->halt_pending = 1;
4385+ hc->halt_on_queue = 0;
4386+ } else {
4387+ hc->halt_on_queue = 1;
4388+ }
4389+
4390+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
4391+ DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32);
4392+ DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", hc->halt_pending);
4393+ DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", hc->halt_on_queue);
4394+ DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", hc->halt_status);
4395+
4396+ return;
4397+}
4398+
4399+/**
4400+ * Clears the transfer state for a host channel. This function is normally
4401+ * called after a transfer is done and the host channel is being released.
4402+ *
4403+ * @core_if: Programming view of DWC_otg controller.
4404+ * @hc: Identifies the host channel to clean up.
4405+ */
4406+void dwc_otg_hc_cleanup(struct dwc_otg_core_if *core_if, struct dwc_hc *hc)
4407+{
4408+ struct dwc_otg_hc_regs *hc_regs;
4409+
4410+ hc->xfer_started = 0;
4411+
4412+ /*
4413+ * Clear channel interrupt enables and any unhandled channel interrupt
4414+ * conditions.
4415+ */
4416+ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
4417+ dwc_write_reg32(&hc_regs->hcintmsk, 0);
4418+ dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF);
4419+
4420+#ifdef DEBUG
4421+ del_timer(&core_if->hc_xfer_timer[hc->hc_num]);
4422+ {
4423+ union hcchar_data hcchar;
4424+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4425+ if (hcchar.b.chdis) {
4426+ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
4427+ __func__, hc->hc_num, hcchar.d32);
4428+ }
4429+ }
4430+#endif
4431+}
4432+
4433+/**
4434+ * Sets the channel property that indicates in which frame a periodic transfer
4435+ * should occur. This is always set to the _next_ frame. This function has no
4436+ * effect on non-periodic transfers.
4437+ *
4438+ * @core_if: Programming view of DWC_otg controller.
4439+ * @hc: Identifies the host channel to set up and its properties.
4440+ * @hcchar: Current value of the HCCHAR register for the specified host
4441+ * channel.
4442+ */
4443+static inline void hc_set_even_odd_frame(struct dwc_otg_core_if *core_if,
4444+ struct dwc_hc *hc,
4445+ union hcchar_data *hcchar)
4446+{
4447+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
4448+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
4449+ union hfnum_data hfnum;
4450+ hfnum.d32 =
4451+ dwc_read_reg32(&core_if->host_if->host_global_regs->hfnum);
4452+ /* 1 if _next_ frame is odd, 0 if it's even */
4453+ hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
4454+#ifdef DEBUG
4455+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR && hc->do_split
4456+ && !hc->complete_split) {
4457+ switch (hfnum.b.frnum & 0x7) {
4458+ case 7:
4459+ core_if->hfnum_7_samples++;
4460+ core_if->hfnum_7_frrem_accum += hfnum.b.frrem;
4461+ break;
4462+ case 0:
4463+ core_if->hfnum_0_samples++;
4464+ core_if->hfnum_0_frrem_accum += hfnum.b.frrem;
4465+ break;
4466+ default:
4467+ core_if->hfnum_other_samples++;
4468+ core_if->hfnum_other_frrem_accum +=
4469+ hfnum.b.frrem;
4470+ break;
4471+ }
4472+ }
4473+#endif
4474+ }
4475+}
4476+
4477+#ifdef DEBUG
4478+static void hc_xfer_timeout(unsigned long _ptr)
4479+{
4480+ struct hc_xfer_info *xfer_info = (struct hc_xfer_info *) _ptr;
4481+ int hc_num = xfer_info->hc->hc_num;
4482+ DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num);
4483+ DWC_WARN(" start_hcchar_val 0x%08x\n",
4484+ xfer_info->core_if->start_hcchar_val[hc_num]);
4485+}
4486+#endif
4487+
4488+/**
4489+ * This function does the setup for a data transfer for a host channel and
4490+ * starts the transfer. May be called in either Slave mode or DMA mode. In
4491+ * Slave mode, the caller must ensure that there is sufficient space in the
4492+ * request queue and Tx Data FIFO.
4493+ *
4494+ * For an OUT transfer in Slave mode, it loads a data packet into the
4495+ * appropriate FIFO. If necessary, additional data packets will be loaded in
4496+ * the Host ISR.
4497+ *
4498+ * For an IN transfer in Slave mode, a data packet is requested. The data
4499+ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
4500+ * additional data packets are requested in the Host ISR.
4501+ *
4502+ * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
4503+ * register along with a packet count of 1 and the channel is enabled. This
4504+ * causes a single PING transaction to occur. Other fields in HCTSIZ are
4505+ * simply set to 0 since no data transfer occurs in this case.
4506+ *
4507+ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
4508+ * all the information required to perform the subsequent data transfer. In
4509+ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
4510+ * controller performs the entire PING protocol, then starts the data
4511+ * transfer.
4512+ *
4513+ * @core_if: Programming view of DWC_otg controller.
4514+ * @hc: Information needed to initialize the host channel. The xfer_len
4515+ * value may be reduced to accommodate the max widths of the XferSize and
4516+ * PktCnt fields in the HCTSIZn register. The multi_count value may be changed
4517+ * to reflect the final xfer_len value.
4518+ */
4519+void dwc_otg_hc_start_transfer(struct dwc_otg_core_if *core_if,
4520+ struct dwc_hc *hc)
4521+{
4522+ union hcchar_data hcchar;
4523+ union hctsiz_data hctsiz;
4524+ uint16_t num_packets;
4525+ uint32_t max_hc_xfer_size = core_if->core_params->max_transfer_size;
4526+ uint16_t max_hc_pkt_count = core_if->core_params->max_packet_count;
4527+ struct dwc_otg_hc_regs *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
4528+
4529+ hctsiz.d32 = 0;
4530+
4531+ if (hc->do_ping) {
4532+ if (!core_if->dma_enable) {
4533+ dwc_otg_hc_do_ping(core_if, hc);
4534+ hc->xfer_started = 1;
4535+ return;
4536+ } else {
4537+ hctsiz.b.dopng = 1;
4538+ }
4539+ }
4540+
4541+ if (hc->do_split) {
4542+ num_packets = 1;
4543+
4544+ if (hc->complete_split && !hc->ep_is_in) {
4545+ /* For CSPLIT OUT Transfer, set the size to 0 so the
4546+ * core doesn't expect any data written to the FIFO */
4547+ hc->xfer_len = 0;
4548+ } else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet)) {
4549+ hc->xfer_len = hc->max_packet;
4550+ } else if (!hc->ep_is_in && (hc->xfer_len > 188)) {
4551+ hc->xfer_len = 188;
4552+ }
4553+
4554+ hctsiz.b.xfersize = hc->xfer_len;
4555+ } else {
4556+ /*
4557+ * Ensure that the transfer length and packet count will fit
4558+ * in the widths allocated for them in the HCTSIZn register.
4559+ */
4560+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
4561+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
4562+ /*
4563+ * Make sure the transfer size is no larger than one
4564+ * (micro)frame's worth of data. (A check was done
4565+ * when the periodic transfer was accepted to ensure
4566+ * that a (micro)frame's worth of data can be
4567+ * programmed into a channel.)
4568+ */
4569+ uint32_t max_periodic_len =
4570+ hc->multi_count * hc->max_packet;
4571+ if (hc->xfer_len > max_periodic_len)
4572+ hc->xfer_len = max_periodic_len;
4573+ } else if (hc->xfer_len > max_hc_xfer_size) {
4574+ /*
4575+ * Make sure that xfer_len is a multiple of
4576+ * max packet size.
4577+ */
4578+ hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1;
4579+ }
4580+
4581+ if (hc->xfer_len > 0) {
4582+ num_packets =
4583+ (hc->xfer_len + hc->max_packet -
4584+ 1) / hc->max_packet;
4585+ if (num_packets > max_hc_pkt_count) {
4586+ num_packets = max_hc_pkt_count;
4587+ hc->xfer_len = num_packets * hc->max_packet;
4588+ }
4589+ } else {
4590+ /* Need 1 packet for transfer length of 0. */
4591+ num_packets = 1;
4592+ }
4593+
4594+ if (hc->ep_is_in) {
4595+ /*
4596+ * Always program an integral # of max packets
4597+ * for IN transfers.
4598+ */
4599+ hc->xfer_len = num_packets * hc->max_packet;
4600+ }
4601+
4602+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
4603+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
4604+ /*
4605+ * Make sure that the multi_count field matches the
4606+ * actual transfer length.
4607+ */
4608+ hc->multi_count = num_packets;
4609+
4610+ }
4611+
4612+ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
4613+ /* Set up the initial PID for the transfer. */
4614+ if (hc->speed == DWC_OTG_EP_SPEED_HIGH) {
4615+ if (hc->ep_is_in) {
4616+ if (hc->multi_count == 1) {
4617+ hc->data_pid_start =
4618+ DWC_OTG_HC_PID_DATA0;
4619+ } else if (hc->multi_count == 2) {
4620+ hc->data_pid_start =
4621+ DWC_OTG_HC_PID_DATA1;
4622+ } else {
4623+ hc->data_pid_start =
4624+ DWC_OTG_HC_PID_DATA2;
4625+ }
4626+ } else {
4627+ if (hc->multi_count == 1) {
4628+ hc->data_pid_start =
4629+ DWC_OTG_HC_PID_DATA0;
4630+ } else {
4631+ hc->data_pid_start =
4632+ DWC_OTG_HC_PID_MDATA;
4633+ }
4634+ }
4635+ } else {
4636+ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
4637+ }
4638+ }
4639+
4640+ hctsiz.b.xfersize = hc->xfer_len;
4641+ }
4642+
4643+ hc->start_pkt_count = num_packets;
4644+ hctsiz.b.pktcnt = num_packets;
4645+ hctsiz.b.pid = hc->data_pid_start;
4646+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
4647+
4648+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
4649+ DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize);
4650+ DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt);
4651+ DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid);
4652+
4653+ if (core_if->dma_enable) {
4654+#ifdef CONFIG_CPU_CAVIUM_OCTEON
4655+ /* Octeon uses external DMA */
4656+ const uint64_t USBN_DMA0_OUTB_CHN0 =
4657+ CVMX_USBNX_DMA0_OUTB_CHN0(core_if->usb_num);
4658+ wmb();
4659+ cvmx_write_csr(USBN_DMA0_OUTB_CHN0 + hc->hc_num * 8,
4660+ (unsigned long)hc->xfer_buff);
4661+ cvmx_read_csr(USBN_DMA0_OUTB_CHN0 + hc->hc_num * 8);
4662+ DWC_DEBUGPL(DBG_HCDV,
4663+ "OUT: hc->hc_num = %d, hc->xfer_buff = %p\n",
4664+ hc->hc_num, hc->xfer_buff);
4665+#else
4666+ dwc_write_reg32(&hc_regs->hcdma,
4667+ (uint32_t) (long)hc->xfer_buff);
4668+#endif /* CONFIG_CPU_CAVIUM_OCTEON */
4669+ }
4670+
4671+ /* Start the split */
4672+ if (hc->do_split) {
4673+ union hcsplt_data hcsplt;
4674+ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
4675+ hcsplt.b.spltena = 1;
4676+ dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32);
4677+ }
4678+
4679+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4680+ hcchar.b.multicnt = hc->multi_count;
4681+ hc_set_even_odd_frame(core_if, hc, &hcchar);
4682+#ifdef DEBUG
4683+ core_if->start_hcchar_val[hc->hc_num] = hcchar.d32;
4684+ if (hcchar.b.chdis) {
4685+ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
4686+ __func__, hc->hc_num, hcchar.d32);
4687+ }
4688+#endif
4689+
4690+ /* Set host channel enable after all other setup is complete. */
4691+ hcchar.b.chen = 1;
4692+ hcchar.b.chdis = 0;
4693+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
4694+
4695+ hc->xfer_started = 1;
4696+ hc->requests++;
4697+
4698+ if (!core_if->dma_enable && !hc->ep_is_in && hc->xfer_len > 0) {
4699+ /* Load OUT packet into the appropriate Tx FIFO. */
4700+ dwc_otg_hc_write_packet(core_if, hc);
4701+ }
4702+#ifdef DEBUG
4703+ /* Start a timer for this transfer. */
4704+ core_if->hc_xfer_timer[hc->hc_num].function = hc_xfer_timeout;
4705+ core_if->hc_xfer_info[hc->hc_num].core_if = core_if;
4706+ core_if->hc_xfer_info[hc->hc_num].hc = hc;
4707+ core_if->hc_xfer_timer[hc->hc_num].data =
4708+ (unsigned long)(&core_if->hc_xfer_info[hc->hc_num]);
4709+ core_if->hc_xfer_timer[hc->hc_num].expires = jiffies + (HZ * 10);
4710+ add_timer(&core_if->hc_xfer_timer[hc->hc_num]);
4711+#endif
4712+}
4713+
4714+/**
4715+ * This function continues a data transfer that was started by previous call
4716+ * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is
4717+ * sufficient space in the request queue and Tx Data FIFO. This function
4718+ * should only be called in Slave mode. In DMA mode, the controller acts
4719+ * autonomously to complete transfers programmed to a host channel.
4720+ *
4721+ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
4722+ * if there is any data remaining to be queued. For an IN transfer, another
4723+ * data packet is always requested. For the SETUP phase of a control transfer,
4724+ * this function does nothing.
4725+ *
4726+ * Returns 1 if a new request is queued, 0 if no more requests are required
4727+ * for this transfer.
4728+ */
4729+int dwc_otg_hc_continue_transfer(struct dwc_otg_core_if *core_if,
4730+ struct dwc_hc *hc)
4731+{
4732+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
4733+
4734+ if (hc->do_split) {
4735+ /* SPLITs always queue just once per channel */
4736+ return 0;
4737+ } else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
4738+ /* SETUPs are queued only once since they can't be NAKed. */
4739+ return 0;
4740+ } else if (hc->ep_is_in) {
4741+ /*
4742+ * Always queue another request for other IN transfers. If
4743+ * back-to-back INs are issued and NAKs are received for both,
4744+ * the driver may still be processing the first NAK when the
4745+ * second NAK is received. When the interrupt handler clears
4746+ * the NAK interrupt for the first NAK, the second NAK will
4747+ * not be seen. So we can't depend on the NAK interrupt
4748+ * handler to requeue a NAKed request. Instead, IN requests
4749+ * are issued each time this function is called. When the
4750+ * transfer completes, the extra requests for the channel will
4751+ * be flushed.
4752+ */
4753+ union hcchar_data hcchar;
4754+ struct dwc_otg_hc_regs *hc_regs =
4755+ core_if->host_if->hc_regs[hc->hc_num];
4756+
4757+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4758+ hc_set_even_odd_frame(core_if, hc, &hcchar);
4759+ hcchar.b.chen = 1;
4760+ hcchar.b.chdis = 0;
4761+ DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n",
4762+ hcchar.d32);
4763+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
4764+ hc->requests++;
4765+ return 1;
4766+ } else {
4767+ /* OUT transfers. */
4768+ if (hc->xfer_count < hc->xfer_len) {
4769+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
4770+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
4771+ union hcchar_data hcchar;
4772+ struct dwc_otg_hc_regs *hc_regs;
4773+ hc_regs =
4774+ core_if->host_if->hc_regs[hc->hc_num];
4775+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4776+ hc_set_even_odd_frame(core_if, hc, &hcchar);
4777+ }
4778+
4779+ /* Load OUT packet into the appropriate Tx FIFO. */
4780+ dwc_otg_hc_write_packet(core_if, hc);
4781+ hc->requests++;
4782+ return 1;
4783+ } else {
4784+ return 0;
4785+ }
4786+ }
4787+}
4788+
4789+/**
4790+ * Starts a PING transfer. This function should only be called in Slave mode.
4791+ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
4792+ */
4793+void dwc_otg_hc_do_ping(struct dwc_otg_core_if *core_if, struct dwc_hc *hc)
4794+{
4795+ union hcchar_data hcchar;
4796+ union hctsiz_data hctsiz;
4797+ struct dwc_otg_hc_regs *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
4798+
4799+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
4800+
4801+ hctsiz.d32 = 0;
4802+ hctsiz.b.dopng = 1;
4803+ hctsiz.b.pktcnt = 1;
4804+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
4805+
4806+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4807+ hcchar.b.chen = 1;
4808+ hcchar.b.chdis = 0;
4809+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
4810+}
4811+
4812+/*
4813+ * This function writes a packet into the Tx FIFO associated with the Host
4814+ * Channel. For a channel associated with a non-periodic EP, the non-periodic
4815+ * Tx FIFO is written. For a channel associated with a periodic EP, the
4816+ * periodic Tx FIFO is written. This function should only be called in Slave
4817+ * mode.
4818+ *
4819+ * Upon return the xfer_buff and xfer_count fields in hc are incremented by
4820+ * then number of bytes written to the Tx FIFO.
4821+ */
4822+void dwc_otg_hc_write_packet(struct dwc_otg_core_if *core_if, struct dwc_hc *hc)
4823+{
4824+ uint32_t i;
4825+ uint32_t remaining_count;
4826+ uint32_t byte_count;
4827+ uint32_t dword_count;
4828+
4829+ uint32_t *data_buff = (uint32_t *) (hc->xfer_buff);
4830+ uint32_t *data_fifo = core_if->data_fifo[hc->hc_num];
4831+
4832+ remaining_count = hc->xfer_len - hc->xfer_count;
4833+ if (remaining_count > hc->max_packet)
4834+ byte_count = hc->max_packet;
4835+ else
4836+ byte_count = remaining_count;
4837+
4838+ dword_count = (byte_count + 3) / 4;
4839+
4840+ if ((((unsigned long)data_buff) & 0x3) == 0) {
4841+ /* xfer_buff is DWORD aligned. */
4842+ for (i = 0; i < dword_count; i++, data_buff++)
4843+ dwc_write_reg32(data_fifo, *data_buff);
4844+ } else {
4845+ /* xfer_buff is not DWORD aligned. */
4846+ for (i = 0; i < dword_count; i++, data_buff++)
4847+ dwc_write_reg32(data_fifo, get_unaligned(data_buff));
4848+ }
4849+
4850+ hc->xfer_count += byte_count;
4851+ hc->xfer_buff += byte_count;
4852+}
4853+
4854+/**
4855+ * Gets the current USB frame number. This is the frame number from the last
4856+ * SOF packet.
4857+ */
4858+uint32_t dwc_otg_get_frame_number(struct dwc_otg_core_if *core_if)
4859+{
4860+ union dsts_data dsts;
4861+ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
4862+
4863+ /* read current frame/microfreme number from DSTS register */
4864+ return dsts.b.soffn;
4865+}
4866+
4867+/**
4868+ * This function reads a setup packet from the Rx FIFO into the destination
4869+ * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl)
4870+ * Interrupt routine when a SETUP packet has been received in Slave mode.
4871+ *
4872+ * @core_if: Programming view of DWC_otg controller.
4873+ * @dest: Destination buffer for packet data.
4874+ */
4875+void dwc_otg_read_setup_packet(struct dwc_otg_core_if *core_if, uint32_t *dest)
4876+{
4877+ /* Get the 8 bytes of a setup transaction data */
4878+
4879+ /* Pop 2 DWORDS off the receive data FIFO into memory */
4880+ dest[0] = dwc_read_reg32(core_if->data_fifo[0]);
4881+ dest[1] = dwc_read_reg32(core_if->data_fifo[0]);
4882+}
4883+
4884+/**
4885+ * This function enables EP0 OUT to receive SETUP packets and configures EP0
4886+ * IN for transmitting packets. It is normally called when the
4887+ * "Enumeration Done" interrupt occurs.
4888+ *
4889+ * @core_if: Programming view of DWC_otg controller.
4890+ * @ep: The EP0 data.
4891+ */
4892+void dwc_otg_ep0_activate(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
4893+{
4894+ struct dwc_otg_dev_if *dev_if = core_if->dev_if;
4895+ union dsts_data dsts;
4896+ union depctl_data diepctl;
4897+ union depctl_data doepctl;
4898+ union dctl_data dctl = {.d32 = 0 };
4899+
4900+ /* Read the Device Status and Endpoint 0 Control registers */
4901+ dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts);
4902+ diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl);
4903+ doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl);
4904+
4905+ /* Set the MPS of the IN EP based on the enumeration speed */
4906+ switch (dsts.b.enumspd) {
4907+ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
4908+ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
4909+ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
4910+ diepctl.b.mps = DWC_DEP0CTL_MPS_64;
4911+ break;
4912+ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
4913+ diepctl.b.mps = DWC_DEP0CTL_MPS_8;
4914+ break;
4915+ }
4916+
4917+ dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
4918+
4919+ /* Enable OUT EP for receive */
4920+ doepctl.b.epena = 1;
4921+ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
4922+
4923+#ifdef VERBOSE
4924+ DWC_DEBUGPL(DBG_PCDV, "doepctl0=%0x\n",
4925+ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
4926+ DWC_DEBUGPL(DBG_PCDV, "diepctl0=%0x\n",
4927+ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
4928+#endif
4929+ dctl.b.cgnpinnak = 1;
4930+ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
4931+ DWC_DEBUGPL(DBG_PCDV, "dctl=%0x\n",
4932+ dwc_read_reg32(&dev_if->dev_global_regs->dctl));
4933+}
4934+
4935+/**
4936+ * This function activates an EP. The Device EP control register for
4937+ * the EP is configured as defined in the ep structure. Note: This
4938+ * function is not used for EP0.
4939+ *
4940+ * @core_if: Programming view of DWC_otg controller.
4941+ * @ep: The EP to activate.
4942+ */
4943+void dwc_otg_ep_activate(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
4944+{
4945+ struct dwc_otg_dev_if *dev_if = core_if->dev_if;
4946+ union depctl_data depctl;
4947+ uint32_t *addr;
4948+ union daint_data daintmsk = {.d32 = 0 };
4949+
4950+ DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, ep->num,
4951+ (ep->is_in ? "IN" : "OUT"));
4952+
4953+ /* Read DEPCTLn register */
4954+ if (ep->is_in == 1) {
4955+ addr = &dev_if->in_ep_regs[ep->num]->diepctl;
4956+ daintmsk.ep.in = 1 << ep->num;
4957+ } else {
4958+ addr = &dev_if->out_ep_regs[ep->num]->doepctl;
4959+ daintmsk.ep.out = 1 << ep->num;
4960+ }
4961+
4962+ /* If the EP is already active don't change the EP Control
4963+ * register. */
4964+ depctl.d32 = dwc_read_reg32(addr);
4965+ if (!depctl.b.usbactep) {
4966+ depctl.b.mps = ep->maxpacket;
4967+ depctl.b.eptype = ep->type;
4968+ depctl.b.txfnum = ep->tx_fifo_num;
4969+
4970+ if (ep->type != DWC_OTG_EP_TYPE_ISOC)
4971+ depctl.b.setd0pid = 1;
4972+
4973+ depctl.b.usbactep = 1;
4974+
4975+ dwc_write_reg32(addr, depctl.d32);
4976+ DWC_DEBUGPL(DBG_PCDV, "DEPCTL=%08x\n", dwc_read_reg32(addr));
4977+ }
4978+
4979+ /* Enable the Interrupt for this EP */
4980+ dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk, 0, daintmsk.d32);
4981+ DWC_DEBUGPL(DBG_PCDV, "DAINTMSK=%0x\n",
4982+ dwc_read_reg32(&dev_if->dev_global_regs->daintmsk));
4983+ return;
4984+}
4985+
4986+/**
4987+ * This function deactivates an EP. This is done by clearing the USB Active
4988+ * EP bit in the Device EP control register. Note: This function is not used
4989+ * for EP0. EP0 cannot be deactivated.
4990+ *
4991+ * @core_if: Programming view of DWC_otg controller.
4992+ * @ep: The EP to deactivate.
4993+ */
4994+void dwc_otg_ep_deactivate(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
4995+{
4996+ union depctl_data depctl = {.d32 = 0 };
4997+ uint32_t *addr;
4998+ union daint_data daintmsk = {.d32 = 0 };
4999+
5000+ /* Read DEPCTLn register */
5001+ if (ep->is_in == 1) {
5002+ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
5003+ daintmsk.ep.in = 1 << ep->num;
5004+ } else {
5005+ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
5006+ daintmsk.ep.out = 1 << ep->num;
5007+ }
5008+
5009+ depctl.b.usbactep = 0;
5010+ dwc_write_reg32(addr, depctl.d32);
5011+
5012+ /* Disable the Interrupt for this EP */
5013+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->daintmsk,
5014+ daintmsk.d32, 0);
5015+
5016+ return;
5017+}
5018+
5019+/**
5020+ * This function does the setup for a data transfer for an EP and
5021+ * starts the transfer. For an IN transfer, the packets will be
5022+ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
5023+ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
5024+ *
5025+ * @core_if: Programming view of DWC_otg controller.
5026+ * @ep: The EP to start the transfer on.
5027+ */
5028+void dwc_otg_ep_start_transfer(struct dwc_otg_core_if *core_if,
5029+ struct dwc_ep *ep)
5030+{
5031+ /*
5032+ * @todo Refactor this funciton to check the transfer size
5033+ * count value does not execed the number bits in the Transfer
5034+ * count register.
5035+ */
5036+ union depctl_data depctl;
5037+ union deptsiz_data deptsiz;
5038+ union gintmsk_data intr_mask = {.d32 = 0 };
5039+
5040+#ifdef CHECK_PACKET_COUNTER_WIDTH
5041+ const uint32_t MAX_XFER_SIZE = core_if->core_params->max_transfer_size;
5042+ const uint32_t MAX_PKT_COUNT = core_if->core_params->max_packet_count;
5043+ uint32_t num_packets;
5044+ uint32_t transfer_len;
5045+ struct dwc_otg_dev_out_ep_regs *out_regs =
5046+ core_if->dev_if->out_ep_regs[ep->num];
5047+ struct dwc_otg_dev_in_ep_regs *in_regs =
5048+ core_if->dev_if->in_ep_regs[ep->num];
5049+ union gnptxsts_data txstatus;
5050+
5051+ int lvl = SET_DEBUG_LEVEL(DBG_PCD);
5052+
5053+ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
5054+ "xfer_buff=%p start_xfer_buff=%p\n",
5055+ ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len,
5056+ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff);
5057+
5058+ transfer_len = ep->xfer_len - ep->xfer_count;
5059+ if (transfer_len > MAX_XFER_SIZE)
5060+ transfer_len = MAX_XFER_SIZE;
5061+
5062+ if (transfer_len == 0) {
5063+ num_packets = 1;
5064+ /* OUT EP to recieve Zero-length packet set transfer
5065+ * size to maxpacket size. */
5066+ if (!ep->is_in)
5067+ transfer_len = ep->maxpacket;
5068+ } else {
5069+ num_packets =
5070+ (transfer_len + ep->maxpacket - 1) / ep->maxpacket;
5071+ if (num_packets > MAX_PKT_COUNT)
5072+ num_packets = MAX_PKT_COUNT;
5073+ }
5074+ DWC_DEBUGPL(DBG_PCD, "transfer_len=%d #pckt=%d\n", transfer_len,
5075+ num_packets);
5076+
5077+ deptsiz.b.xfersize = transfer_len;
5078+ deptsiz.b.pktcnt = num_packets;
5079+
5080+ /* IN endpoint */
5081+ if (ep->is_in == 1) {
5082+ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
5083+ } else { /* OUT endpoint */
5084+ depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
5085+ }
5086+
5087+ /* EP enable, IN data in FIFO */
5088+ depctl.b.cnak = 1;
5089+ depctl.b.epena = 1;
5090+ /* IN endpoint */
5091+ if (ep->is_in == 1) {
5092+ txstatus.d32 =
5093+ dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
5094+ if (txstatus.b.nptxqspcavail == 0) {
5095+ DWC_DEBUGPL(DBG_ANY, "TX Queue Full (0x%0x)\n",
5096+ txstatus.d32);
5097+ return;
5098+ }
5099+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
5100+ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
5101+ /*
5102+ * Enable the Non-Periodic Tx FIFO empty interrupt, the
5103+ * data will be written into the fifo by the ISR.
5104+ */
5105+ if (core_if->dma_enable) {
5106+ dwc_write_reg32(&in_regs->diepdma,
5107+ (uint32_t) ep->xfer_buff);
5108+ } else {
5109+ intr_mask.b.nptxfempty = 1;
5110+ dwc_modify_reg32(&core_if->core_global_regs->gintsts,
5111+ intr_mask.d32, 0);
5112+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
5113+ intr_mask.d32, intr_mask.d32);
5114+ }
5115+ } else { /* OUT endpoint */
5116+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
5117+ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
5118+ if (core_if->dma_enable) {
5119+ dwc_write_reg32(&out_regs->doepdma,
5120+ (uint32_t) ep->xfer_buff);
5121+ }
5122+ }
5123+ DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n",
5124+ dwc_read_reg32(&out_regs->doepctl),
5125+ dwc_read_reg32(&out_regs->doeptsiz));
5126+ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
5127+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->
5128+ daintmsk),
5129+ dwc_read_reg32(&core_if->core_global_regs->gintmsk));
5130+
5131+ SET_DEBUG_LEVEL(lvl);
5132+#endif
5133+ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
5134+
5135+ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
5136+ "xfer_buff=%p start_xfer_buff=%p\n",
5137+ ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len,
5138+ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff);
5139+
5140+ /* IN endpoint */
5141+ if (ep->is_in == 1) {
5142+ struct dwc_otg_dev_in_ep_regs *in_regs =
5143+ core_if->dev_if->in_ep_regs[ep->num];
5144+ union gnptxsts_data txstatus;
5145+
5146+ txstatus.d32 =
5147+ dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
5148+ if (txstatus.b.nptxqspcavail == 0) {
5149+#ifdef DEBUG
5150+ DWC_PRINT("TX Queue Full (0x%0x)\n", txstatus.d32);
5151+#endif
5152+ return;
5153+ }
5154+
5155+ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
5156+ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
5157+
5158+ /* Zero Length Packet? */
5159+ if (ep->xfer_len == 0) {
5160+ deptsiz.b.xfersize = 0;
5161+ deptsiz.b.pktcnt = 1;
5162+ } else {
5163+
5164+ /* Program the transfer size and packet count
5165+ * as follows: xfersize = N * maxpacket +
5166+ * short_packet pktcnt = N + (short_packet
5167+ * exist ? 1 : 0)
5168+ */
5169+ deptsiz.b.xfersize = ep->xfer_len;
5170+ deptsiz.b.pktcnt =
5171+ (ep->xfer_len - 1 + ep->maxpacket) /
5172+ ep->maxpacket;
5173+ }
5174+
5175+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
5176+
5177+ /* Write the DMA register */
5178+ if (core_if->dma_enable) {
5179+ dwc_write_reg32(&(in_regs->diepdma),
5180+ (uint32_t) ep->dma_addr);
5181+ } else {
5182+ /*
5183+ * Enable the Non-Periodic Tx FIFO empty interrupt,
5184+ * the data will be written into the fifo by the ISR.
5185+ */
5186+ intr_mask.b.nptxfempty = 1;
5187+ dwc_modify_reg32(&core_if->core_global_regs->gintsts,
5188+ intr_mask.d32, 0);
5189+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
5190+ intr_mask.d32, intr_mask.d32);
5191+ }
5192+
5193+ /* EP enable, IN data in FIFO */
5194+ depctl.b.cnak = 1;
5195+ depctl.b.epena = 1;
5196+ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
5197+
5198+ depctl.d32 =
5199+ dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl);
5200+ depctl.b.nextep = ep->num;
5201+ dwc_write_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl,
5202+ depctl.d32);
5203+
5204+ } else {
5205+ /* OUT endpoint */
5206+ struct dwc_otg_dev_out_ep_regs *out_regs =
5207+ core_if->dev_if->out_ep_regs[ep->num];
5208+
5209+ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
5210+ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
5211+
5212+ /* Program the transfer size and packet count as follows:
5213+ *
5214+ * pktcnt = N
5215+ * xfersize = N * maxpacket
5216+ */
5217+ if (ep->xfer_len == 0) {
5218+ /* Zero Length Packet */
5219+ deptsiz.b.xfersize = ep->maxpacket;
5220+ deptsiz.b.pktcnt = 1;
5221+ } else {
5222+ deptsiz.b.pktcnt =
5223+ (ep->xfer_len + (ep->maxpacket - 1)) /
5224+ ep->maxpacket;
5225+ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
5226+ }
5227+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
5228+
5229+ DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n",
5230+ ep->num, deptsiz.b.xfersize, deptsiz.b.pktcnt);
5231+
5232+ if (core_if->dma_enable) {
5233+ dwc_write_reg32(&(out_regs->doepdma),
5234+ (uint32_t) ep->dma_addr);
5235+ }
5236+
5237+ if (ep->type == DWC_OTG_EP_TYPE_ISOC) {
5238+ /*
5239+ * @todo NGS: dpid is read-only. Use setd0pid
5240+ * or setd1pid.
5241+ */
5242+ depctl.b.dpid = ep->even_odd_frame;
5243+ }
5244+
5245+ /* EP enable */
5246+ depctl.b.cnak = 1;
5247+ depctl.b.epena = 1;
5248+
5249+ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
5250+
5251+ DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n",
5252+ dwc_read_reg32(&out_regs->doepctl),
5253+ dwc_read_reg32(&out_regs->doeptsiz));
5254+ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
5255+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->
5256+ daintmsk),
5257+ dwc_read_reg32(&core_if->core_global_regs->
5258+ gintmsk));
5259+ }
5260+}
5261+
5262+/**
5263+ * This function does the setup for a data transfer for EP0 and starts
5264+ * the transfer. For an IN transfer, the packets will be loaded into
5265+ * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are
5266+ * unloaded from the Rx FIFO in the ISR.
5267+ *
5268+ * @core_if: Programming view of DWC_otg controller.
5269+ * @ep: The EP0 data.
5270+ */
5271+void dwc_otg_ep0_start_transfer(struct dwc_otg_core_if *core_if,
5272+ struct dwc_ep *ep)
5273+{
5274+ union depctl_data depctl;
5275+ union deptsiz0_data deptsiz;
5276+ union gintmsk_data intr_mask = {.d32 = 0 };
5277+
5278+ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
5279+ "xfer_buff=%p start_xfer_buff=%p total_len=%d\n",
5280+ ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len,
5281+ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff,
5282+ ep->total_len);
5283+ ep->total_len = ep->xfer_len;
5284+
5285+ /* IN endpoint */
5286+ if (ep->is_in == 1) {
5287+ struct dwc_otg_dev_in_ep_regs *in_regs =
5288+ core_if->dev_if->in_ep_regs[0];
5289+ union gnptxsts_data tx_status = {.d32 = 0 };
5290+
5291+ tx_status.d32 =
5292+ dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
5293+ if (tx_status.b.nptxqspcavail == 0) {
5294+#ifdef DEBUG
5295+ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
5296+ DWC_DEBUGPL(DBG_PCD, "DIEPCTL0=%0x\n",
5297+ dwc_read_reg32(&in_regs->diepctl));
5298+ DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n",
5299+ deptsiz.d32,
5300+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
5301+ DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n",
5302+ tx_status.d32);
5303+#endif
5304+
5305+ return;
5306+ }
5307+
5308+ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
5309+ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
5310+
5311+ /* Zero Length Packet? */
5312+ if (ep->xfer_len == 0) {
5313+ deptsiz.b.xfersize = 0;
5314+ deptsiz.b.pktcnt = 1;
5315+ } else {
5316+ /* Program the transfer size and packet count
5317+ * as follows: xfersize = N * maxpacket +
5318+ * short_packet pktcnt = N + (short_packet
5319+ * exist ? 1 : 0)
5320+ */
5321+ if (ep->xfer_len > ep->maxpacket) {
5322+ ep->xfer_len = ep->maxpacket;
5323+ deptsiz.b.xfersize = ep->maxpacket;
5324+ } else {
5325+ deptsiz.b.xfersize = ep->xfer_len;
5326+ }
5327+ deptsiz.b.pktcnt = 1;
5328+
5329+ }
5330+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
5331+ DWC_DEBUGPL(DBG_PCDV,
5332+ "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
5333+ ep->xfer_len, deptsiz.b.xfersize, deptsiz.b.pktcnt,
5334+ deptsiz.d32);
5335+
5336+ /* Write the DMA register */
5337+ if (core_if->dma_enable) {
5338+ dwc_write_reg32(&(in_regs->diepdma),
5339+ (uint32_t) ep->dma_addr);
5340+ }
5341+
5342+ /* EP enable, IN data in FIFO */
5343+ depctl.b.cnak = 1;
5344+ depctl.b.epena = 1;
5345+ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
5346+
5347+ /*
5348+ * Enable the Non-Periodic Tx FIFO empty interrupt, the
5349+ * data will be written into the fifo by the ISR.
5350+ */
5351+ if (!core_if->dma_enable) {
5352+ /* First clear it from GINTSTS */
5353+ intr_mask.b.nptxfempty = 1;
5354+ dwc_modify_reg32(&core_if->core_global_regs->gintsts,
5355+ intr_mask.d32, 0);
5356+
5357+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
5358+ intr_mask.d32, intr_mask.d32);
5359+ }
5360+
5361+ } else { /* OUT endpoint */
5362+ struct dwc_otg_dev_out_ep_regs *out_regs =
5363+ core_if->dev_if->out_ep_regs[ep->num];
5364+
5365+ depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
5366+ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
5367+
5368+ /* Program the transfer size and packet count as follows:
5369+ * xfersize = N * (maxpacket + 4 - (maxpacket % 4))
5370+ * pktcnt = N */
5371+ if (ep->xfer_len == 0) {
5372+ /* Zero Length Packet */
5373+ deptsiz.b.xfersize = ep->maxpacket;
5374+ deptsiz.b.pktcnt = 1;
5375+ } else {
5376+ deptsiz.b.pktcnt =
5377+ (ep->xfer_len + (ep->maxpacket - 1)) /
5378+ ep->maxpacket;
5379+ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
5380+ }
5381+
5382+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
5383+ DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n",
5384+ ep->xfer_len,
5385+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
5386+
5387+ if (core_if->dma_enable) {
5388+ dwc_write_reg32(&(out_regs->doepdma),
5389+ (uint32_t) ep->dma_addr);
5390+ }
5391+
5392+ /* EP enable */
5393+ depctl.b.cnak = 1;
5394+ depctl.b.epena = 1;
5395+ dwc_write_reg32(&(out_regs->doepctl), depctl.d32);
5396+ }
5397+}
5398+
5399+/**
5400+ * This function continues control IN transfers started by
5401+ * dwc_otg_ep0_start_transfer, when the transfer does not fit in a
5402+ * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one
5403+ * bit for the packet count.
5404+ *
5405+ * @core_if: Programming view of DWC_otg controller.
5406+ * @ep: The EP0 data.
5407+ */
5408+void dwc_otg_ep0_continue_transfer(struct dwc_otg_core_if *core_if,
5409+ struct dwc_ep *ep)
5410+{
5411+ union depctl_data depctl;
5412+ union deptsiz0_data deptsiz;
5413+ union gintmsk_data intr_mask = {.d32 = 0 };
5414+
5415+ if (ep->is_in == 1) {
5416+ struct dwc_otg_dev_in_ep_regs *in_regs =
5417+ core_if->dev_if->in_ep_regs[0];
5418+ union gnptxsts_data tx_status = {.d32 = 0 };
5419+
5420+ tx_status.d32 =
5421+ dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
5422+ /*
5423+ * @todo Should there be check for room in the Tx
5424+ * Status Queue. If not remove the code above this comment.
5425+ */
5426+
5427+ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
5428+ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
5429+
5430+ /*
5431+ * Program the transfer size and packet count
5432+ * as follows: xfersize = N * maxpacket +
5433+ * short_packet pktcnt = N + (short_packet
5434+ * exist ? 1 : 0)
5435+ */
5436+ deptsiz.b.xfersize =
5437+ (ep->total_len - ep->xfer_count) >
5438+ ep->maxpacket ? ep->maxpacket : (ep->total_len -
5439+ ep->xfer_count);
5440+ deptsiz.b.pktcnt = 1;
5441+ ep->xfer_len += deptsiz.b.xfersize;
5442+
5443+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
5444+ DWC_DEBUGPL(DBG_PCDV,
5445+ "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
5446+ ep->xfer_len, deptsiz.b.xfersize, deptsiz.b.pktcnt,
5447+ deptsiz.d32);
5448+
5449+ /* Write the DMA register */
5450+ if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
5451+ dwc_write_reg32(&(in_regs->diepdma),
5452+ (uint32_t) ep->dma_addr);
5453+ }
5454+
5455+ /* EP enable, IN data in FIFO */
5456+ depctl.b.cnak = 1;
5457+ depctl.b.epena = 1;
5458+ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
5459+
5460+ /*
5461+ * Enable the Non-Periodic Tx FIFO empty interrupt, the
5462+ * data will be written into the fifo by the ISR.
5463+ */
5464+ if (!core_if->dma_enable) {
5465+ /* First clear it from GINTSTS */
5466+ intr_mask.b.nptxfempty = 1;
5467+ dwc_write_reg32(&core_if->core_global_regs->gintsts,
5468+ intr_mask.d32);
5469+
5470+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
5471+ intr_mask.d32, intr_mask.d32);
5472+ }
5473+
5474+ }
5475+
5476+}
5477+
5478+#ifdef DEBUG
5479+void dump_msg(const u8 *buf, unsigned int length)
5480+{
5481+ unsigned int start, num, i;
5482+ char line[52], *p;
5483+
5484+ if (length >= 512)
5485+ return;
5486+ start = 0;
5487+ while (length > 0) {
5488+ num = min(length, 16u);
5489+ p = line;
5490+ for (i = 0; i < num; ++i) {
5491+ if (i == 8)
5492+ *p++ = ' ';
5493+ sprintf(p, " %02x", buf[i]);
5494+ p += 3;
5495+ }
5496+ *p = 0;
5497+ DWC_PRINT("%6x: %s\n", start, line);
5498+ buf += num;
5499+ start += num;
5500+ length -= num;
5501+ }
5502+}
5503+#else
5504+static inline void dump_msg(const u8 *buf, unsigned int length)
5505+{
5506+}
5507+#endif
5508+
5509+/**
5510+ * This function writes a packet into the Tx FIFO associated with the
5511+ * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For
5512+ * periodic EPs the periodic Tx FIFO associated with the EP is written
5513+ * with all packets for the next micro-frame.
5514+ *
5515+ * @core_if: Programming view of DWC_otg controller.
5516+ * @ep: The EP to write packet for.
5517+ * @_dma: Indicates if DMA is being used.
5518+ */
5519+void dwc_otg_ep_write_packet(struct dwc_otg_core_if *core_if,
5520+ struct dwc_ep *ep,
5521+ int _dma)
5522+{
5523+ /**
5524+ * The buffer is padded to DWORD on a per packet basis in
5525+ * slave/dma mode if the MPS is not DWORD aligned. The last
5526+ * packet, if short, is also padded to a multiple of DWORD.
5527+ *
5528+ * ep->xfer_buff always starts DWORD aligned in memory and is a
5529+ * multiple of DWORD in length
5530+ *
5531+ * ep->xfer_len can be any number of bytes
5532+ *
5533+ * ep->xfer_count is a multiple of ep->maxpacket until the last
5534+ * packet
5535+ *
5536+ * FIFO access is DWORD */
5537+
5538+ uint32_t i;
5539+ uint32_t byte_count;
5540+ uint32_t dword_count;
5541+ uint32_t *fifo;
5542+ uint32_t *data_buff = (uint32_t *) ep->xfer_buff;
5543+
5544+ if (ep->xfer_count >= ep->xfer_len) {
5545+ DWC_WARN("%s() No data for EP%d!!!\n", __func__, ep->num);
5546+ return;
5547+ }
5548+
5549+ /* Find the byte length of the packet either short packet or MPS */
5550+ if ((ep->xfer_len - ep->xfer_count) < ep->maxpacket)
5551+ byte_count = ep->xfer_len - ep->xfer_count;
5552+ else
5553+ byte_count = ep->maxpacket;
5554+
5555+ /* Find the DWORD length, padded by extra bytes as neccessary if MPS
5556+ * is not a multiple of DWORD */
5557+ dword_count = (byte_count + 3) / 4;
5558+
5559+#ifdef VERBOSE
5560+ dump_msg(ep->xfer_buff, byte_count);
5561+#endif
5562+ if (ep->type == DWC_OTG_EP_TYPE_ISOC)
5563+ /*
5564+ *@todo NGS Where are the Periodic Tx FIFO addresses
5565+ * intialized? What should this be?
5566+ */
5567+ fifo = core_if->data_fifo[ep->tx_fifo_num];
5568+ else
5569+ fifo = core_if->data_fifo[ep->num];
5570+
5571+ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n",
5572+ fifo, data_buff, *data_buff, byte_count);
5573+
5574+ if (!_dma) {
5575+ for (i = 0; i < dword_count; i++, data_buff++)
5576+ dwc_write_reg32(fifo, *data_buff);
5577+ }
5578+
5579+ ep->xfer_count += byte_count;
5580+ ep->xfer_buff += byte_count;
5581+}
5582+
5583+/**
5584+ * Set the EP STALL.
5585+ *
5586+ * @core_if: Programming view of DWC_otg controller.
5587+ * @ep: The EP to set the stall on.
5588+ */
5589+void dwc_otg_ep_set_stall(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
5590+{
5591+ union depctl_data depctl;
5592+ uint32_t *depctl_addr;
5593+
5594+ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num,
5595+ (ep->is_in ? "IN" : "OUT"));
5596+
5597+ if (ep->is_in == 1) {
5598+ depctl_addr =
5599+ &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
5600+ depctl.d32 = dwc_read_reg32(depctl_addr);
5601+
5602+ /* set the disable and stall bits */
5603+ if (depctl.b.epena)
5604+ depctl.b.epdis = 1;
5605+ depctl.b.stall = 1;
5606+ dwc_write_reg32(depctl_addr, depctl.d32);
5607+
5608+ } else {
5609+ depctl_addr =
5610+ &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
5611+ depctl.d32 = dwc_read_reg32(depctl_addr);
5612+
5613+ /* set the stall bit */
5614+ depctl.b.stall = 1;
5615+ dwc_write_reg32(depctl_addr, depctl.d32);
5616+ }
5617+ DWC_DEBUGPL(DBG_PCD, "DEPCTL=%0x\n", dwc_read_reg32(depctl_addr));
5618+ return;
5619+}
5620+
5621+/**
5622+ * Clear the EP STALL.
5623+ *
5624+ * @core_if: Programming view of DWC_otg controller.
5625+ * @ep: The EP to clear stall from.
5626+ */
5627+void dwc_otg_ep_clear_stall(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
5628+{
5629+ union depctl_data depctl;
5630+ uint32_t *depctl_addr;
5631+
5632+ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num,
5633+ (ep->is_in ? "IN" : "OUT"));
5634+
5635+ if (ep->is_in == 1) {
5636+ depctl_addr =
5637+ &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
5638+ } else {
5639+ depctl_addr =
5640+ &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
5641+ }
5642+
5643+ depctl.d32 = dwc_read_reg32(depctl_addr);
5644+
5645+ /* clear the stall bits */
5646+ depctl.b.stall = 0;
5647+
5648+ /*
5649+ * USB Spec 9.4.5: For endpoints using data toggle, regardless
5650+ * of whether an endpoint has the Halt feature set, a
5651+ * ClearFeature(ENDPOINT_HALT) request always results in the
5652+ * data toggle being reinitialized to DATA0.
5653+ */
5654+ if (ep->type == DWC_OTG_EP_TYPE_INTR ||
5655+ ep->type == DWC_OTG_EP_TYPE_BULK) {
5656+ depctl.b.setd0pid = 1; /* DATA0 */
5657+ }
5658+
5659+ dwc_write_reg32(depctl_addr, depctl.d32);
5660+ DWC_DEBUGPL(DBG_PCD, "DEPCTL=%0x\n", dwc_read_reg32(depctl_addr));
5661+ return;
5662+}
5663+
5664+/**
5665+ * This function reads a packet from the Rx FIFO into the destination
5666+ * buffer. To read SETUP data use dwc_otg_read_setup_packet.
5667+ *
5668+ * @core_if: Programming view of DWC_otg controller.
5669+ * @dest: Destination buffer for the packet.
5670+ * @bytes: Number of bytes to copy to the destination.
5671+ */
5672+void dwc_otg_read_packet(struct dwc_otg_core_if *core_if,
5673+ uint8_t *dest, uint16_t bytes)
5674+{
5675+ int i;
5676+ int word_count = (bytes + 3) / 4;
5677+
5678+ uint32_t *fifo = core_if->data_fifo[0];
5679+ uint32_t *data_buff = (uint32_t *) dest;
5680+
5681+ /**
5682+ * @todo Account for the case where dest is not dword aligned. This
5683+ * requires reading data from the FIFO into a uint32_t temp buffer,
5684+ * then moving it into the data buffer.
5685+ */
5686+
5687+ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__,
5688+ core_if, dest, bytes);
5689+
5690+ for (i = 0; i < word_count; i++, data_buff++)
5691+ *data_buff = dwc_read_reg32(fifo);
5692+ return;
5693+}
5694+
5695+/**
5696+ * This functions reads the device registers and prints them
5697+ *
5698+ * @core_if: Programming view of DWC_otg controller.
5699+ */
5700+void dwc_otg_dump_dev_registers(struct dwc_otg_core_if *core_if)
5701+{
5702+ int i;
5703+ uint32_t *addr;
5704+
5705+ DWC_PRINT("Device Global Registers\n");
5706+ addr = &core_if->dev_if->dev_global_regs->dcfg;
5707+ DWC_PRINT("DCFG @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5708+ addr = &core_if->dev_if->dev_global_regs->dctl;
5709+ DWC_PRINT("DCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5710+ addr = &core_if->dev_if->dev_global_regs->dsts;
5711+ DWC_PRINT("DSTS @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5712+ addr = &core_if->dev_if->dev_global_regs->diepmsk;
5713+ DWC_PRINT("DIEPMSK @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5714+ addr = &core_if->dev_if->dev_global_regs->doepmsk;
5715+ DWC_PRINT("DOEPMSK @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5716+ addr = &core_if->dev_if->dev_global_regs->daint;
5717+ DWC_PRINT("DAINT @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5718+ addr = &core_if->dev_if->dev_global_regs->dtknqr1;
5719+ DWC_PRINT("DTKNQR1 @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5720+ if (core_if->hwcfg2.b.dev_token_q_depth > 6) {
5721+ addr = &core_if->dev_if->dev_global_regs->dtknqr2;
5722+ DWC_PRINT("DTKNQR2 @%p : 0x%08X\n",
5723+ addr, dwc_read_reg32(addr));
5724+ }
5725+
5726+ addr = &core_if->dev_if->dev_global_regs->dvbusdis;
5727+ DWC_PRINT("DVBUSID @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5728+
5729+ addr = &core_if->dev_if->dev_global_regs->dvbuspulse;
5730+ DWC_PRINT("DVBUSPULSE @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5731+
5732+ if (core_if->hwcfg2.b.dev_token_q_depth > 14) {
5733+ addr = &core_if->dev_if->dev_global_regs->dtknqr3;
5734+ DWC_PRINT("DTKNQR3 @%p : 0x%08X\n",
5735+ addr, dwc_read_reg32(addr));
5736+ }
5737+
5738+ if (core_if->hwcfg2.b.dev_token_q_depth > 22) {
5739+ addr = &core_if->dev_if->dev_global_regs->dtknqr4;
5740+ DWC_PRINT("DTKNQR4 @%p : 0x%08X\n",
5741+ addr, dwc_read_reg32(addr));
5742+ }
5743+
5744+ for (i = 0; i < core_if->dev_if->num_eps; i++) {
5745+ DWC_PRINT("Device IN EP %d Registers\n", i);
5746+ addr = &core_if->dev_if->in_ep_regs[i]->diepctl;
5747+ DWC_PRINT("DIEPCTL @%p : 0x%08X\n", addr,
5748+ dwc_read_reg32(addr));
5749+ addr = &core_if->dev_if->in_ep_regs[i]->diepint;
5750+ DWC_PRINT("DIEPINT @%p : 0x%08X\n", addr,
5751+ dwc_read_reg32(addr));
5752+ addr = &core_if->dev_if->in_ep_regs[i]->dieptsiz;
5753+ DWC_PRINT("DIETSIZ @%p : 0x%08X\n", addr,
5754+ dwc_read_reg32(addr));
5755+ addr = &core_if->dev_if->in_ep_regs[i]->diepdma;
5756+ DWC_PRINT("DIEPDMA @%p : 0x%08X\n", addr,
5757+ dwc_read_reg32(addr));
5758+
5759+ DWC_PRINT("Device OUT EP %d Registers\n", i);
5760+ addr = &core_if->dev_if->out_ep_regs[i]->doepctl;
5761+ DWC_PRINT("DOEPCTL @%p : 0x%08X\n", addr,
5762+ dwc_read_reg32(addr));
5763+ addr = &core_if->dev_if->out_ep_regs[i]->doepfn;
5764+ DWC_PRINT("DOEPFN @%p : 0x%08X\n", addr,
5765+ dwc_read_reg32(addr));
5766+ addr = &core_if->dev_if->out_ep_regs[i]->doepint;
5767+ DWC_PRINT("DOEPINT @%p : 0x%08X\n", addr,
5768+ dwc_read_reg32(addr));
5769+ addr = &core_if->dev_if->out_ep_regs[i]->doeptsiz;
5770+ DWC_PRINT("DOETSIZ @%p : 0x%08X\n", addr,
5771+ dwc_read_reg32(addr));
5772+ addr = &core_if->dev_if->out_ep_regs[i]->doepdma;
5773+ DWC_PRINT("DOEPDMA @%p : 0x%08X\n", addr,
5774+ dwc_read_reg32(addr));
5775+ }
5776+ return;
5777+}
5778+
5779+/**
5780+ * This function reads the host registers and prints them
5781+ *
5782+ * @core_if: Programming view of DWC_otg controller.
5783+ */
5784+void dwc_otg_dump_host_registers(struct dwc_otg_core_if *core_if)
5785+{
5786+ int i;
5787+ uint32_t *addr;
5788+
5789+ DWC_PRINT("Host Global Registers\n");
5790+ addr = &core_if->host_if->host_global_regs->hcfg;
5791+ DWC_PRINT("HCFG @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5792+ addr = &core_if->host_if->host_global_regs->hfir;
5793+ DWC_PRINT("HFIR @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5794+ addr = &core_if->host_if->host_global_regs->hfnum;
5795+ DWC_PRINT("HFNUM @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5796+ addr = &core_if->host_if->host_global_regs->hptxsts;
5797+ DWC_PRINT("HPTXSTS @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5798+ addr = &core_if->host_if->host_global_regs->haint;
5799+ DWC_PRINT("HAINT @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5800+ addr = &core_if->host_if->host_global_regs->haintmsk;
5801+ DWC_PRINT("HAINTMSK @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5802+ addr = core_if->host_if->hprt0;
5803+ DWC_PRINT("HPRT0 @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5804+
5805+ for (i = 0; i < core_if->core_params->host_channels; i++) {
5806+ DWC_PRINT("Host Channel %d Specific Registers\n", i);
5807+ addr = &core_if->host_if->hc_regs[i]->hcchar;
5808+ DWC_PRINT("HCCHAR @%p : 0x%08X\n", addr,
5809+ dwc_read_reg32(addr));
5810+ addr = &core_if->host_if->hc_regs[i]->hcsplt;
5811+ DWC_PRINT("HCSPLT @%p : 0x%08X\n", addr,
5812+ dwc_read_reg32(addr));
5813+ addr = &core_if->host_if->hc_regs[i]->hcint;
5814+ DWC_PRINT("HCINT @%p : 0x%08X\n", addr,
5815+ dwc_read_reg32(addr));
5816+ addr = &core_if->host_if->hc_regs[i]->hcintmsk;
5817+ DWC_PRINT("HCINTMSK @%p : 0x%08X\n", addr,
5818+ dwc_read_reg32(addr));
5819+ addr = &core_if->host_if->hc_regs[i]->hctsiz;
5820+ DWC_PRINT("HCTSIZ @%p : 0x%08X\n", addr,
5821+ dwc_read_reg32(addr));
5822+ addr = &core_if->host_if->hc_regs[i]->hcdma;
5823+ DWC_PRINT("HCDMA @%p : 0x%08X\n", addr,
5824+ dwc_read_reg32(addr));
5825+
5826+ }
5827+ return;
5828+}
5829+
5830+/**
5831+ * This function reads the core global registers and prints them
5832+ *
5833+ * @core_if: Programming view of DWC_otg controller.
5834+ */
5835+void dwc_otg_dump_global_registers(struct dwc_otg_core_if *core_if)
5836+{
5837+ int i;
5838+ uint32_t *addr;
5839+
5840+ DWC_PRINT("Core Global Registers\n");
5841+ addr = &core_if->core_global_regs->gotgctl;
5842+ DWC_PRINT("GOTGCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5843+ addr = &core_if->core_global_regs->gotgint;
5844+ DWC_PRINT("GOTGINT @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5845+ addr = &core_if->core_global_regs->gahbcfg;
5846+ DWC_PRINT("GAHBCFG @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5847+ addr = &core_if->core_global_regs->gusbcfg;
5848+ DWC_PRINT("GUSBCFG @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5849+ addr = &core_if->core_global_regs->grstctl;
5850+ DWC_PRINT("GRSTCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5851+ addr = &core_if->core_global_regs->gintsts;
5852+ DWC_PRINT("GINTSTS @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5853+ addr = &core_if->core_global_regs->gintmsk;
5854+ DWC_PRINT("GINTMSK @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5855+ addr = &core_if->core_global_regs->grxstsr;
5856+ DWC_PRINT("GRXSTSR @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5857+ addr = &core_if->core_global_regs->grxfsiz;
5858+ DWC_PRINT("GRXFSIZ @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5859+ addr = &core_if->core_global_regs->gnptxfsiz;
5860+ DWC_PRINT("GNPTXFSIZ @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5861+ addr = &core_if->core_global_regs->gnptxsts;
5862+ DWC_PRINT("GNPTXSTS @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5863+ addr = &core_if->core_global_regs->gi2cctl;
5864+ DWC_PRINT("GI2CCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5865+ addr = &core_if->core_global_regs->gpvndctl;
5866+ DWC_PRINT("GPVNDCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5867+ addr = &core_if->core_global_regs->ggpio;
5868+ DWC_PRINT("GGPIO @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5869+ addr = &core_if->core_global_regs->guid;
5870+ DWC_PRINT("GUID @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5871+ addr = &core_if->core_global_regs->gsnpsid;
5872+ DWC_PRINT("GSNPSID @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5873+ addr = &core_if->core_global_regs->ghwcfg1;
5874+ DWC_PRINT("GHWCFG1 @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5875+ addr = &core_if->core_global_regs->ghwcfg2;
5876+ DWC_PRINT("GHWCFG2 @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5877+ addr = &core_if->core_global_regs->ghwcfg3;
5878+ DWC_PRINT("GHWCFG3 @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5879+ addr = &core_if->core_global_regs->ghwcfg4;
5880+ DWC_PRINT("GHWCFG4 @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5881+ addr = &core_if->core_global_regs->hptxfsiz;
5882+ DWC_PRINT("HPTXFSIZ @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
5883+
5884+ for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
5885+ addr = &core_if->core_global_regs->dptxfsiz[i];
5886+ DWC_PRINT("DPTXFSIZ[%d] @%p : 0x%08X\n", i, addr,
5887+ dwc_read_reg32(addr));
5888+ }
5889+
5890+}
5891+
5892+/**
5893+ * Flush a Tx FIFO.
5894+ *
5895+ * @core_if: Programming view of DWC_otg controller.
5896+ * @_num: Tx FIFO to flush.
5897+ */
5898+extern void dwc_otg_flush_tx_fifo(struct dwc_otg_core_if *core_if, const int _num)
5899+{
5900+ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
5901+ union grstctl_data greset = {.d32 = 0 };
5902+ int count = 0;
5903+
5904+ DWC_DEBUGPL((DBG_CIL | DBG_PCDV), "Flush Tx FIFO %d\n", _num);
5905+
5906+ greset.b.txfflsh = 1;
5907+ greset.b.txfnum = _num;
5908+ dwc_write_reg32(&global_regs->grstctl, greset.d32);
5909+
5910+ do {
5911+ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
5912+ if (++count > 10000) {
5913+ DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
5914+ __func__, greset.d32,
5915+ dwc_read_reg32(&global_regs->gnptxsts));
5916+ break;
5917+ }
5918+
5919+ } while (greset.b.txfflsh == 1);
5920+ /* Wait for 3 PHY Clocks */
5921+ udelay(1);
5922+}
5923+
5924+/**
5925+ * Flush Rx FIFO.
5926+ *
5927+ * @core_if: Programming view of DWC_otg controller.
5928+ */
5929+extern void dwc_otg_flush_rx_fifo(struct dwc_otg_core_if *core_if)
5930+{
5931+ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
5932+ union grstctl_data greset = {.d32 = 0 };
5933+ int count = 0;
5934+
5935+ DWC_DEBUGPL((DBG_CIL | DBG_PCDV), "%s\n", __func__);
5936+ /*
5937+ *
5938+ */
5939+ greset.b.rxfflsh = 1;
5940+ dwc_write_reg32(&global_regs->grstctl, greset.d32);
5941+
5942+ do {
5943+ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
5944+ if (++count > 10000) {
5945+ DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__,
5946+ greset.d32);
5947+ break;
5948+ }
5949+ } while (greset.b.rxfflsh == 1);
5950+ /* Wait for 3 PHY Clocks */
5951+ udelay(1);
5952+}
5953+
5954+/**
5955+ * Do core a soft reset of the core. Be careful with this because it
5956+ * resets all the internal state machines of the core.
5957+ */
5958+void dwc_otg_core_reset(struct dwc_otg_core_if *core_if)
5959+{
5960+ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
5961+ union grstctl_data greset = {.d32 = 0 };
5962+ int count = 0;
5963+
5964+ DWC_DEBUGPL(DBG_CILV, "%s\n", __func__);
5965+ /* Wait for AHB master IDLE state. */
5966+ do {
5967+ udelay(10);
5968+ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
5969+ if (++count > 100000) {
5970+ DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__,
5971+ greset.d32);
5972+ return;
5973+ }
5974+ } while (greset.b.ahbidle == 0);
5975+
5976+ /* Core Soft Reset */
5977+ count = 0;
5978+ greset.b.csftrst = 1;
5979+ dwc_write_reg32(&global_regs->grstctl, greset.d32);
5980+ do {
5981+ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
5982+ if (++count > 10000) {
5983+ DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n",
5984+ __func__, greset.d32);
5985+ break;
5986+ }
5987+ } while (greset.b.csftrst == 1);
5988+ /* Wait for 3 PHY Clocks */
5989+ mdelay(100);
5990+}
5991+
5992+/**
5993+ * Register HCD callbacks. The callbacks are used to start and stop
5994+ * the HCD for interrupt processing.
5995+ *
5996+ * @core_if: Programming view of DWC_otg controller.
5997+ * @_cb: the HCD callback structure.
5998+ * @_p: pointer to be passed to callback function (usb_hcd*).
5999+ */
6000+extern void dwc_otg_cil_register_hcd_callbacks(struct dwc_otg_core_if *core_if,
6001+ struct dwc_otg_cil_callbacks *_cb,
6002+ void *_p)
6003+{
6004+ core_if->hcd_cb = _cb;
6005+ _cb->p = _p;
6006+}
6007+
6008+/**
6009+ * Register PCD callbacks. The callbacks are used to start and stop
6010+ * the PCD for interrupt processing.
6011+ *
6012+ * @core_if: Programming view of DWC_otg controller.
6013+ * @_cb: the PCD callback structure.
6014+ * @_p: pointer to be passed to callback function (pcd*).
6015+ */
6016+extern void dwc_otg_cil_register_pcd_callbacks(struct dwc_otg_core_if *core_if,
6017+ struct dwc_otg_cil_callbacks *_cb,
6018+ void *_p)
6019+{
6020+ core_if->pcd_cb = _cb;
6021+ _cb->p = _p;
6022+}
6023diff --git a/drivers/usb/host/dwc_otg/dwc_otg_cil.h b/drivers/usb/host/dwc_otg/dwc_otg_cil.h
6024new file mode 100644
6025index 0000000..36ef561
6026--- /dev/null
6027+++ b/drivers/usb/host/dwc_otg/dwc_otg_cil.h
6028@@ -0,0 +1,866 @@
6029+/* ==========================================================================
6030+ *
6031+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
6032+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
6033+ * otherwise expressly agreed to in writing between Synopsys and you.
6034+ *
6035+ * The Software IS NOT an item of Licensed Software or Licensed Product under
6036+ * any End User Software License Agreement or Agreement for Licensed Product
6037+ * with Synopsys or any supplement thereto. You are permitted to use and
6038+ * redistribute this Software in source and binary forms, with or without
6039+ * modification, provided that redistributions of source code must retain this
6040+ * notice. You may not view, use, disclose, copy or distribute this file or
6041+ * any information contained herein except pursuant to this license grant from
6042+ * Synopsys. If you do not agree with this notice, including the disclaimer
6043+ * below, then you are not authorized to use the Software.
6044+ *
6045+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
6046+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
6047+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
6048+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
6049+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
6050+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
6051+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
6052+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
6053+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
6054+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
6055+ * DAMAGE.
6056+ * ========================================================================== */
6057+
6058+#if !defined(__DWC_CIL_H__)
6059+#define __DWC_CIL_H__
6060+
6061+#include "dwc_otg_plat.h"
6062+#include "dwc_otg_regs.h"
6063+#ifdef DEBUG
6064+#include "linux/timer.h"
6065+#endif
6066+
6067+/*
6068+ * This file contains the interface to the Core Interface Layer.
6069+ */
6070+
6071+/**
6072+ * The <code>dwc_ep</code> structure represents the state of a single
6073+ * endpoint when acting in device mode. It contains the data items
6074+ * needed for an endpoint to be activated and transfer packets.
6075+ */
6076+struct dwc_ep {
6077+ /** EP number used for register address lookup */
6078+ uint8_t num;
6079+ /** EP direction 0 = OUT */
6080+ unsigned is_in:1;
6081+ /** EP active. */
6082+ unsigned active:1;
6083+
6084+ /*
6085+ * Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use
6086+ * non-periodic Tx FIFO
6087+ */
6088+ unsigned tx_fifo_num:4;
6089+ /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */
6090+ unsigned type:2;
6091+#define DWC_OTG_EP_TYPE_CONTROL 0
6092+#define DWC_OTG_EP_TYPE_ISOC 1
6093+#define DWC_OTG_EP_TYPE_BULK 2
6094+#define DWC_OTG_EP_TYPE_INTR 3
6095+
6096+ /** DATA start PID for INTR and BULK EP */
6097+ unsigned data_pid_start:1;
6098+ /** Frame (even/odd) for ISOC EP */
6099+ unsigned even_odd_frame:1;
6100+ /** Max Packet bytes */
6101+ unsigned maxpacket:11;
6102+
6103+ /** @name Transfer state */
6104+ /** @{ */
6105+
6106+ /**
6107+ * Pointer to the beginning of the transfer buffer -- do not modify
6108+ * during transfer.
6109+ */
6110+
6111+ uint32_t dma_addr;
6112+
6113+ uint8_t *start_xfer_buff;
6114+ /** pointer to the transfer buffer */
6115+ uint8_t *xfer_buff;
6116+ /** Number of bytes to transfer */
6117+ unsigned xfer_len:19;
6118+ /** Number of bytes transferred. */
6119+ unsigned xfer_count:19;
6120+ /** Sent ZLP */
6121+ unsigned sent_zlp:1;
6122+ /** Total len for control transfer */
6123+ unsigned total_len:19;
6124+
6125+ /** @} */
6126+};
6127+
6128+/*
6129+ * Reasons for halting a host channel.
6130+ */
6131+enum dwc_otg_halt_status {
6132+ DWC_OTG_HC_XFER_NO_HALT_STATUS,
6133+ DWC_OTG_HC_XFER_COMPLETE,
6134+ DWC_OTG_HC_XFER_URB_COMPLETE,
6135+ DWC_OTG_HC_XFER_ACK,
6136+ DWC_OTG_HC_XFER_NAK,
6137+ DWC_OTG_HC_XFER_NYET,
6138+ DWC_OTG_HC_XFER_STALL,
6139+ DWC_OTG_HC_XFER_XACT_ERR,
6140+ DWC_OTG_HC_XFER_FRAME_OVERRUN,
6141+ DWC_OTG_HC_XFER_BABBLE_ERR,
6142+ DWC_OTG_HC_XFER_DATA_TOGGLE_ERR,
6143+ DWC_OTG_HC_XFER_AHB_ERR,
6144+ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE,
6145+ DWC_OTG_HC_XFER_URB_DEQUEUE
6146+};
6147+
6148+/**
6149+ * Host channel descriptor. This structure represents the state of a single
6150+ * host channel when acting in host mode. It contains the data items needed to
6151+ * transfer packets to an endpoint via a host channel.
6152+ */
6153+struct dwc_hc {
6154+ /** Host channel number used for register address lookup */
6155+ uint8_t hc_num;
6156+
6157+ /** Device to access */
6158+ unsigned dev_addr:7;
6159+
6160+ /** EP to access */
6161+ unsigned ep_num:4;
6162+
6163+ /** EP direction. 0: OUT, 1: IN */
6164+ unsigned ep_is_in:1;
6165+
6166+ /**
6167+ * EP speed.
6168+ * One of the following values:
6169+ * - DWC_OTG_EP_SPEED_LOW
6170+ * - DWC_OTG_EP_SPEED_FULL
6171+ * - DWC_OTG_EP_SPEED_HIGH
6172+ */
6173+ unsigned speed:2;
6174+#define DWC_OTG_EP_SPEED_LOW 0
6175+#define DWC_OTG_EP_SPEED_FULL 1
6176+#define DWC_OTG_EP_SPEED_HIGH 2
6177+
6178+ /**
6179+ * Endpoint type.
6180+ * One of the following values:
6181+ * - DWC_OTG_EP_TYPE_CONTROL: 0
6182+ * - DWC_OTG_EP_TYPE_ISOC: 1
6183+ * - DWC_OTG_EP_TYPE_BULK: 2
6184+ * - DWC_OTG_EP_TYPE_INTR: 3
6185+ */
6186+ unsigned ep_type:2;
6187+
6188+ /** Max packet size in bytes */
6189+ unsigned max_packet:11;
6190+
6191+ /**
6192+ * PID for initial transaction.
6193+ * 0: DATA0,<br>
6194+ * 1: DATA2,<br>
6195+ * 2: DATA1,<br>
6196+ * 3: MDATA (non-Control EP),
6197+ * SETUP (Control EP)
6198+ */
6199+ unsigned data_pid_start:2;
6200+#define DWC_OTG_HC_PID_DATA0 0
6201+#define DWC_OTG_HC_PID_DATA2 1
6202+#define DWC_OTG_HC_PID_DATA1 2
6203+#define DWC_OTG_HC_PID_MDATA 3
6204+#define DWC_OTG_HC_PID_SETUP 3
6205+
6206+ /** Number of periodic transactions per (micro)frame */
6207+ unsigned multi_count:2;
6208+
6209+ /** @name Transfer State */
6210+ /** @{ */
6211+
6212+ /** Pointer to the current transfer buffer position. */
6213+ uint8_t *xfer_buff;
6214+ /** Total number of bytes to transfer. */
6215+ uint32_t xfer_len;
6216+ /** Number of bytes transferred so far. */
6217+ uint32_t xfer_count;
6218+ /** Packet count at start of transfer.*/
6219+ uint16_t start_pkt_count;
6220+
6221+ /**
6222+ * Flag to indicate whether the transfer has been started. Set to 1 if
6223+ * it has been started, 0 otherwise.
6224+ */
6225+ uint8_t xfer_started;
6226+
6227+ /**
6228+ * Set to 1 to indicate that a PING request should be issued on this
6229+ * channel. If 0, process normally.
6230+ */
6231+ uint8_t do_ping;
6232+
6233+ /**
6234+ * Set to 1 to indicate that the error count for this transaction is
6235+ * non-zero. Set to 0 if the error count is 0.
6236+ */
6237+ uint8_t error_state;
6238+
6239+ /**
6240+ * Set to 1 to indicate that this channel should be halted the next
6241+ * time a request is queued for the channel. This is necessary in
6242+ * slave mode if no request queue space is available when an attempt
6243+ * is made to halt the channel.
6244+ */
6245+ uint8_t halt_on_queue;
6246+
6247+ /**
6248+ * Set to 1 if the host channel has been halted, but the core is not
6249+ * finished flushing queued requests. Otherwise 0.
6250+ */
6251+ uint8_t halt_pending;
6252+
6253+ /**
6254+ * Reason for halting the host channel.
6255+ */
6256+ enum dwc_otg_halt_status halt_status;
6257+
6258+ /*
6259+ * Split settings for the host channel
6260+ */
6261+ uint8_t do_split; /**< Enable split for the channel */
6262+ uint8_t complete_split; /**< Enable complete split */
6263+ uint8_t hub_addr; /**< Address of high speed hub */
6264+
6265+ uint8_t port_addr; /**< Port of the low/full speed device */
6266+ /** Split transaction position
6267+ * One of the following values:
6268+ * - DWC_HCSPLIT_XACTPOS_MID
6269+ * - DWC_HCSPLIT_XACTPOS_BEGIN
6270+ * - DWC_HCSPLIT_XACTPOS_END
6271+ * - DWC_HCSPLIT_XACTPOS_ALL */
6272+ uint8_t xact_pos;
6273+
6274+ /** Set when the host channel does a short read. */
6275+ uint8_t short_read;
6276+
6277+ /**
6278+ * Number of requests issued for this channel since it was assigned to
6279+ * the current transfer (not counting PINGs).
6280+ */
6281+ uint8_t requests;
6282+
6283+ /**
6284+ * Queue Head for the transfer being processed by this channel.
6285+ */
6286+ struct dwc_otg_qh *qh;
6287+
6288+ /** @} */
6289+
6290+ /** Entry in list of host channels. */
6291+ struct list_head hc_list_entry;
6292+};
6293+
6294+/**
6295+ * The following parameters may be specified when starting the module. These
6296+ * parameters define how the DWC_otg controller should be configured.
6297+ * Parameter values are passed to the CIL initialization function
6298+ * dwc_otg_cil_init.
6299+ */
6300+struct dwc_otg_core_params {
6301+ int32_t opt;
6302+#define dwc_param_opt_default 1
6303+
6304+ /*
6305+ * Specifies the OTG capabilities. The driver will automatically
6306+ * detect the value for this parameter if none is specified.
6307+ * 0 - HNP and SRP capable (default)
6308+ * 1 - SRP Only capable
6309+ * 2 - No HNP/SRP capable
6310+ */
6311+ int32_t otg_cap;
6312+#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
6313+#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
6314+#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
6315+#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE
6316+
6317+ /*
6318+ * Specifies whether to use slave or DMA mode for accessing the data
6319+ * FIFOs. The driver will automatically detect the value for this
6320+ * parameter if none is specified.
6321+ * 0 - Slave
6322+ * 1 - DMA (default, if available)
6323+ */
6324+ int32_t dma_enable;
6325+#define dwc_param_dma_enable_default 1
6326+
6327+ /*
6328+ * The DMA Burst size (applicable only for External DMA
6329+ * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32)
6330+ */
6331+ int32_t dma_burst_size; /* Translate this to GAHBCFG values */
6332+#define dwc_param_dma_burst_size_default 32
6333+
6334+ /*
6335+ * Specifies the maximum speed of operation in host and device mode.
6336+ * The actual speed depends on the speed of the attached device and
6337+ * the value of phy_type. The actual speed depends on the speed of the
6338+ * attached device.
6339+ * 0 - High Speed (default)
6340+ * 1 - Full Speed
6341+ */
6342+ int32_t speed;
6343+#define dwc_param_speed_default 0
6344+#define DWC_SPEED_PARAM_HIGH 0
6345+#define DWC_SPEED_PARAM_FULL 1
6346+
6347+ /** Specifies whether low power mode is supported when attached
6348+ * to a Full Speed or Low Speed device in host mode.
6349+ * 0 - Don't support low power mode (default)
6350+ * 1 - Support low power mode
6351+ */
6352+ int32_t host_support_fs_ls_low_power;
6353+#define dwc_param_host_support_fs_ls_low_power_default 0
6354+
6355+ /** Specifies the PHY clock rate in low power mode when connected to a
6356+ * Low Speed device in host mode. This parameter is applicable only if
6357+ * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
6358+ * then defaults to 6 MHZ otherwise 48 MHZ.
6359+ *
6360+ * 0 - 48 MHz
6361+ * 1 - 6 MHz
6362+ */
6363+ int32_t host_ls_low_power_phy_clk;
6364+#define dwc_param_host_ls_low_power_phy_clk_default 0
6365+#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
6366+#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
6367+
6368+ /**
6369+ * 0 - Use cC FIFO size parameters
6370+ * 1 - Allow dynamic FIFO sizing (default)
6371+ */
6372+ int32_t enable_dynamic_fifo;
6373+#define dwc_param_enable_dynamic_fifo_default 1
6374+
6375+ /** Total number of 4-byte words in the data FIFO memory. This
6376+ * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic
6377+ * Tx FIFOs.
6378+ * 32 to 32768 (default 8192)
6379+ * Note: The total FIFO memory depth in the FPGA configuration is 8192.
6380+ */
6381+ int32_t data_fifo_size;
6382+#define dwc_param_data_fifo_size_default 8192
6383+
6384+ /** Number of 4-byte words in the Rx FIFO in device mode when dynamic
6385+ * FIFO sizing is enabled.
6386+ * 16 to 32768 (default 1064)
6387+ */
6388+ int32_t dev_rx_fifo_size;
6389+#define dwc_param_dev_rx_fifo_size_default 1064
6390+
6391+ /** Number of 4-byte words in the non-periodic Tx FIFO in device mode
6392+ * when dynamic FIFO sizing is enabled.
6393+ * 16 to 32768 (default 1024)
6394+ */
6395+ int32_t dev_nperio_tx_fifo_size;
6396+#define dwc_param_dev_nperio_tx_fifo_size_default 1024
6397+
6398+ /** Number of 4-byte words in each of the periodic Tx FIFOs in device
6399+ * mode when dynamic FIFO sizing is enabled.
6400+ * 4 to 768 (default 256)
6401+ */
6402+ uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS];
6403+#define dwc_param_dev_perio_tx_fifo_size_default 256
6404+
6405+ /** Number of 4-byte words in the Rx FIFO in host mode when dynamic
6406+ * FIFO sizing is enabled.
6407+ * 16 to 32768 (default 1024)
6408+ */
6409+ int32_t host_rx_fifo_size;
6410+#define dwc_param_host_rx_fifo_size_default 1024
6411+#define dwc_param_host_rx_fifo_size_percentage 30
6412+
6413+ /** Number of 4-byte words in the non-periodic Tx FIFO in host mode
6414+ * when Dynamic FIFO sizing is enabled in the core.
6415+ * 16 to 32768 (default 1024)
6416+ */
6417+ int32_t host_nperio_tx_fifo_size;
6418+#define dwc_param_host_nperio_tx_fifo_size_default 1024
6419+#define dwc_param_host_nperio_tx_fifo_size_percentage 40
6420+
6421+ /*
6422+ * Number of 4-byte words in the host periodic Tx FIFO when dynamic
6423+ * FIFO sizing is enabled.
6424+ * 16 to 32768 (default 1024)
6425+ */
6426+ int32_t host_perio_tx_fifo_size;
6427+#define dwc_param_host_perio_tx_fifo_size_default 1024
6428+#define dwc_param_host_perio_tx_fifo_size_percentage 30
6429+
6430+ /*
6431+ * The maximum transfer size supported in bytes.
6432+ * 2047 to 65,535 (default 65,535)
6433+ */
6434+ int32_t max_transfer_size;
6435+#define dwc_param_max_transfer_size_default 65535
6436+
6437+ /*
6438+ * The maximum number of packets in a transfer.
6439+ * 15 to 511 (default 511)
6440+ */
6441+ int32_t max_packet_count;
6442+#define dwc_param_max_packet_count_default 511
6443+
6444+ /*
6445+ * The number of host channel registers to use.
6446+ * 1 to 16 (default 12)
6447+ * Note: The FPGA configuration supports a maximum of 12 host channels.
6448+ */
6449+ int32_t host_channels;
6450+#define dwc_param_host_channels_default 12
6451+
6452+ /*
6453+ * The number of endpoints in addition to EP0 available for device
6454+ * mode operations.
6455+ * 1 to 15 (default 6 IN and OUT)
6456+ * Note: The FPGA configuration supports a maximum of 6 IN and OUT
6457+ * endpoints in addition to EP0.
6458+ */
6459+ int32_t dev_endpoints;
6460+#define dwc_param_dev_endpoints_default 6
6461+
6462+ /*
6463+ * Specifies the type of PHY interface to use. By default, the driver
6464+ * will automatically detect the phy_type.
6465+ *
6466+ * 0 - Full Speed PHY
6467+ * 1 - UTMI+ (default)
6468+ * 2 - ULPI
6469+ */
6470+ int32_t phy_type;
6471+#define DWC_PHY_TYPE_PARAM_FS 0
6472+#define DWC_PHY_TYPE_PARAM_UTMI 1
6473+#define DWC_PHY_TYPE_PARAM_ULPI 2
6474+#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
6475+
6476+ /*
6477+ * Specifies the UTMI+ Data Width. This parameter is
6478+ * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
6479+ * PHY_TYPE, this parameter indicates the data width between
6480+ * the MAC and the ULPI Wrapper.) Also, this parameter is
6481+ * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
6482+ * to "8 and 16 bits", meaning that the core has been
6483+ * configured to work at either data path width.
6484+ *
6485+ * 8 or 16 bits (default 16)
6486+ */
6487+ int32_t phy_utmi_width;
6488+#define dwc_param_phy_utmi_width_default 16
6489+
6490+ /*
6491+ * Specifies whether the ULPI operates at double or single
6492+ * data rate. This parameter is only applicable if PHY_TYPE is
6493+ * ULPI.
6494+ *
6495+ * 0 - single data rate ULPI interface with 8 bit wide data
6496+ * bus (default)
6497+ * 1 - double data rate ULPI interface with 4 bit wide data
6498+ * bus
6499+ */
6500+ int32_t phy_ulpi_ddr;
6501+#define dwc_param_phy_ulpi_ddr_default 0
6502+
6503+ /*
6504+ * Specifies whether to use the internal or external supply to
6505+ * drive the vbus with a ULPI phy.
6506+ */
6507+ int32_t phy_ulpi_ext_vbus;
6508+#define DWC_PHY_ULPI_INTERNAL_VBUS 0
6509+#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
6510+#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
6511+
6512+ /*
6513+ * Specifies whether to use the I2Cinterface for full speed PHY. This
6514+ * parameter is only applicable if PHY_TYPE is FS.
6515+ * 0 - No (default)
6516+ * 1 - Yes
6517+ */
6518+ int32_t i2c_enable;
6519+#define dwc_param_i2c_enable_default 0
6520+
6521+ int32_t ulpi_fs_ls;
6522+#define dwc_param_ulpi_fs_ls_default 0
6523+
6524+ int32_t ts_dline;
6525+#define dwc_param_ts_dline_default 0
6526+
6527+};
6528+
6529+/**
6530+ * The FIFOs are established based on a default percentage of the total
6531+ * FIFO depth. This check insures that the defaults are reasonable.
6532+ */
6533+#if (((dwc_param_host_rx_fifo_size_percentage) \
6534+ +(dwc_param_host_nperio_tx_fifo_size_percentage) \
6535+ +(dwc_param_host_perio_tx_fifo_size_percentage)) > 100)
6536+#error Invalid FIFO allocation
6537+#endif
6538+
6539+#ifdef DEBUG
6540+struct dwc_otg_core_if;
6541+struct hc_xfer_info {
6542+ struct dwc_otg_core_if *core_if;
6543+ struct dwc_hc *hc;
6544+};
6545+#endif
6546+
6547+/*
6548+ * The <code>dwc_otg_core_if</code> structure contains information
6549+ * needed to manage the DWC_otg controller acting in either host or
6550+ * device mode. It represents the programming view of the controller
6551+ * as a whole.
6552+ */
6553+struct dwc_otg_core_if {
6554+ /** USB block index number for Octeon's that support multiple */
6555+ int usb_num;
6556+
6557+ /** Parameters that define how the core should be configured.*/
6558+ struct dwc_otg_core_params *core_params;
6559+
6560+ /** Core Global registers starting at offset 000h. */
6561+ struct dwc_otg_core_global_regs *core_global_regs;
6562+
6563+ /** Device-specific information */
6564+ struct dwc_otg_dev_if *dev_if;
6565+ /** Host-specific information */
6566+ struct dwc_otg_host_if *host_if;
6567+
6568+ /*
6569+ * Set to 1 if the core PHY interface bits in USBCFG have been
6570+ * initialized.
6571+ */
6572+ uint8_t phy_init_done;
6573+
6574+ /*
6575+ * SRP Success flag, set by srp success interrupt in FS I2C mode
6576+ */
6577+ uint8_t srp_success;
6578+ uint8_t srp_timer_started;
6579+
6580+ /* Common configuration information */
6581+ /** Power and Clock Gating Control Register */
6582+ uint32_t *pcgcctl;
6583+#define DWC_OTG_PCGCCTL_OFFSET 0xE00
6584+
6585+ /** Push/pop addresses for endpoints or host channels.*/
6586+ uint32_t *data_fifo[MAX_EPS_CHANNELS];
6587+#define DWC_OTG_DATA_FIFO_OFFSET 0x1000
6588+#define DWC_OTG_DATA_FIFO_SIZE 0x1000
6589+
6590+ /** Total RAM for FIFOs (Bytes) */
6591+ uint16_t total_fifo_size;
6592+ /** Size of Rx FIFO (Bytes) */
6593+ uint16_t rx_fifo_size;
6594+ /** Size of Non-periodic Tx FIFO (Bytes) */
6595+ uint16_t nperio_tx_fifo_size;
6596+
6597+ /** 1 if DMA is enabled, 0 otherwise. */
6598+ uint8_t dma_enable;
6599+
6600+ /** Set to 1 if multiple packets of a high-bandwidth transfer is in
6601+ * process of being queued */
6602+ uint8_t queuing_high_bandwidth;
6603+
6604+ /** Hardware Configuration -- stored here for convenience.*/
6605+ union hwcfg1_data hwcfg1;
6606+ union hwcfg2_data hwcfg2;
6607+ union hwcfg3_data hwcfg3;
6608+ union hwcfg4_data hwcfg4;
6609+
6610+ /*
6611+ * The operational State, during transations
6612+ * (a_host>>a_peripherial and b_device=>b_host) this may not
6613+ * match the core but allows the software to determine
6614+ * transitions.
6615+ */
6616+ uint8_t op_state;
6617+
6618+ /*
6619+ * Set to 1 if the HCD needs to be restarted on a session request
6620+ * interrupt. This is required if no connector ID status change has
6621+ * occurred since the HCD was last disconnected.
6622+ */
6623+ uint8_t restart_hcd_on_session_req;
6624+
6625+ /** HCD callbacks */
6626+ /** A-Device is a_host */
6627+#define A_HOST (1)
6628+ /** A-Device is a_suspend */
6629+#define A_SUSPEND (2)
6630+ /** A-Device is a_peripherial */
6631+#define A_PERIPHERAL (3)
6632+ /** B-Device is operating as a Peripheral. */
6633+#define B_PERIPHERAL (4)
6634+ /** B-Device is operating as a Host. */
6635+#define B_HOST (5)
6636+
6637+ /** HCD callbacks */
6638+ struct dwc_otg_cil_callbacks *hcd_cb;
6639+ /** PCD callbacks */
6640+ struct dwc_otg_cil_callbacks *pcd_cb;
6641+
6642+#ifdef DEBUG
6643+ uint32_t start_hcchar_val[MAX_EPS_CHANNELS];
6644+
6645+ struct hc_xfer_info hc_xfer_info[MAX_EPS_CHANNELS];
6646+ struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS];
6647+
6648+ uint32_t hfnum_7_samples;
6649+ uint64_t hfnum_7_frrem_accum;
6650+ uint32_t hfnum_0_samples;
6651+ uint64_t hfnum_0_frrem_accum;
6652+ uint32_t hfnum_other_samples;
6653+ uint64_t hfnum_other_frrem_accum;
6654+#endif
6655+
6656+};
6657+
6658+/*
6659+ * The following functions support initialization of the CIL driver component
6660+ * and the DWC_otg controller.
6661+ */
6662+extern struct dwc_otg_core_if *dwc_otg_cil_init(const uint32_t *reg_base_addr,
6663+ struct dwc_otg_core_params *
6664+ _core_params);
6665+extern void dwc_otg_cil_remove(struct dwc_otg_core_if *core_if);
6666+extern void dwc_otg_core_init(struct dwc_otg_core_if *core_if);
6667+extern void dwc_otg_core_host_init(struct dwc_otg_core_if *core_if);
6668+extern void dwc_otg_core_dev_init(struct dwc_otg_core_if *core_if);
6669+extern void dwc_otg_enable_global_interrupts(struct dwc_otg_core_if *core_if);
6670+extern void dwc_otg_disable_global_interrupts(struct dwc_otg_core_if *core_if);
6671+
6672+/* Device CIL Functions
6673+ * The following functions support managing the DWC_otg controller in device
6674+ * mode.
6675+ */
6676+
6677+extern void dwc_otg_wakeup(struct dwc_otg_core_if *core_if);
6678+extern void dwc_otg_read_setup_packet(struct dwc_otg_core_if *core_if,
6679+ uint32_t *dest);
6680+extern uint32_t dwc_otg_get_frame_number(struct dwc_otg_core_if *core_if);
6681+extern void dwc_otg_ep0_activate(struct dwc_otg_core_if *core_if,
6682+ struct dwc_ep *ep);
6683+extern void dwc_otg_ep_activate(struct dwc_otg_core_if *core_if,
6684+ struct dwc_ep *ep);
6685+extern void dwc_otg_ep_deactivate(struct dwc_otg_core_if *core_if,
6686+ struct dwc_ep *ep);
6687+extern void dwc_otg_ep_start_transfer(struct dwc_otg_core_if *core_if,
6688+ struct dwc_ep *ep);
6689+extern void dwc_otg_ep0_start_transfer(struct dwc_otg_core_if *core_if,
6690+ struct dwc_ep *ep);
6691+extern void dwc_otg_ep0_continue_transfer(struct dwc_otg_core_if *core_if,
6692+ struct dwc_ep *ep);
6693+extern void dwc_otg_ep_write_packet(struct dwc_otg_core_if *core_if,
6694+ struct dwc_ep *ep, int _dma);
6695+extern void dwc_otg_ep_set_stall(struct dwc_otg_core_if *core_if,
6696+ struct dwc_ep *ep);
6697+extern void dwc_otg_ep_clear_stall(struct dwc_otg_core_if *core_if,
6698+ struct dwc_ep *ep);
6699+extern void dwc_otg_enable_device_interrupts(struct dwc_otg_core_if *core_if);
6700+extern void dwc_otg_dump_dev_registers(struct dwc_otg_core_if *core_if);
6701+
6702+/* Host CIL Functions
6703+ * The following functions support managing the DWC_otg controller in host
6704+ * mode.
6705+ */
6706+
6707+extern void dwc_otg_hc_init(struct dwc_otg_core_if *core_if, struct dwc_hc *hc);
6708+extern void dwc_otg_hc_halt(struct dwc_otg_core_if *core_if,
6709+ struct dwc_hc *hc,
6710+ enum dwc_otg_halt_status halt_status);
6711+extern void dwc_otg_hc_cleanup(struct dwc_otg_core_if *core_if,
6712+ struct dwc_hc *hc);
6713+extern void dwc_otg_hc_start_transfer(struct dwc_otg_core_if *core_if,
6714+ struct dwc_hc *hc);
6715+extern int dwc_otg_hc_continue_transfer(struct dwc_otg_core_if *core_if,
6716+ struct dwc_hc *hc);
6717+extern void dwc_otg_hc_do_ping(struct dwc_otg_core_if *core_if,
6718+ struct dwc_hc *hc);
6719+extern void dwc_otg_hc_write_packet(struct dwc_otg_core_if *core_if,
6720+ struct dwc_hc *hc);
6721+extern void dwc_otg_enable_host_interrupts(struct dwc_otg_core_if *core_if);
6722+extern void dwc_otg_disable_host_interrupts(struct dwc_otg_core_if *core_if);
6723+
6724+/**
6725+ * This function Reads HPRT0 in preparation to modify. It keeps the
6726+ * WC bits 0 so that if they are read as 1, they won't clear when you
6727+ * write it back
6728+ */
6729+static inline uint32_t dwc_otg_read_hprt0(struct dwc_otg_core_if *core_if)
6730+{
6731+ union hprt0_data hprt0;
6732+ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
6733+ hprt0.b.prtena = 0;
6734+ hprt0.b.prtconndet = 0;
6735+ hprt0.b.prtenchng = 0;
6736+ hprt0.b.prtovrcurrchng = 0;
6737+ return hprt0.d32;
6738+}
6739+
6740+extern void dwc_otg_dump_host_registers(struct dwc_otg_core_if *core_if);
6741+
6742+/* Common CIL Functions
6743+ * The following functions support managing the DWC_otg controller in either
6744+ * device or host mode.
6745+ */
6746+
6747+
6748+extern void dwc_otg_read_packet(struct dwc_otg_core_if *core_if,
6749+ uint8_t *dest, uint16_t bytes);
6750+
6751+extern void dwc_otg_dump_global_registers(struct dwc_otg_core_if *core_if);
6752+
6753+extern void dwc_otg_flush_tx_fifo(struct dwc_otg_core_if *core_if,
6754+ const int _num);
6755+extern void dwc_otg_flush_rx_fifo(struct dwc_otg_core_if *core_if);
6756+extern void dwc_otg_core_reset(struct dwc_otg_core_if *core_if);
6757+
6758+/**
6759+ * This function returns the Core Interrupt register.
6760+ */
6761+static inline uint32_t dwc_otg_read_core_intr(struct dwc_otg_core_if *core_if)
6762+{
6763+ return dwc_read_reg32(&core_if->core_global_regs->gintsts) &
6764+ dwc_read_reg32(&core_if->core_global_regs->gintmsk);
6765+}
6766+
6767+/**
6768+ * This function returns the OTG Interrupt register.
6769+ */
6770+static inline uint32_t dwc_otg_read_otg_intr(struct dwc_otg_core_if *core_if)
6771+{
6772+ return dwc_read_reg32(&core_if->core_global_regs->gotgint);
6773+}
6774+
6775+/**
6776+ * This function reads the Device All Endpoints Interrupt register and
6777+ * returns the IN endpoint interrupt bits.
6778+ */
6779+static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(struct dwc_otg_core_if *
6780+ core_if)
6781+{
6782+ uint32_t v;
6783+ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
6784+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
6785+ return v & 0xffff;
6786+
6787+}
6788+
6789+/**
6790+ * This function reads the Device All Endpoints Interrupt register and
6791+ * returns the OUT endpoint interrupt bits.
6792+ */
6793+static inline uint32_t
6794+dwc_otg_read_dev_all_out_ep_intr(struct dwc_otg_core_if *core_if)
6795+{
6796+ uint32_t v;
6797+ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
6798+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
6799+ return (v & 0xffff0000) >> 16;
6800+}
6801+
6802+/**
6803+ * This function returns the Device IN EP Interrupt register
6804+ */
6805+static inline uint32_t
6806+dwc_otg_read_dev_in_ep_intr(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
6807+{
6808+ struct dwc_otg_dev_if *dev_if = core_if->dev_if;
6809+ uint32_t v;
6810+ v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) &
6811+ dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
6812+ return v;
6813+}
6814+
6815+/**
6816+ * This function returns the Device OUT EP Interrupt register
6817+ */
6818+static inline uint32_t dwc_otg_read_dev_out_ep_intr(struct dwc_otg_core_if *
6819+ core_if, struct dwc_ep *ep)
6820+{
6821+ struct dwc_otg_dev_if *dev_if = core_if->dev_if;
6822+ uint32_t v;
6823+ v = dwc_read_reg32(&dev_if->out_ep_regs[ep->num]->doepint) &
6824+ dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
6825+ return v;
6826+}
6827+
6828+/**
6829+ * This function returns the Host All Channel Interrupt register
6830+ */
6831+static inline uint32_t
6832+dwc_otg_read_host_all_channels_intr(struct dwc_otg_core_if *core_if)
6833+{
6834+ return dwc_read_reg32(&core_if->host_if->host_global_regs->haint);
6835+}
6836+
6837+static inline uint32_t
6838+dwc_otg_read_host_channel_intr(struct dwc_otg_core_if *core_if,
6839+ struct dwc_hc *hc)
6840+{
6841+ return dwc_read_reg32(&core_if->host_if->hc_regs[hc->hc_num]->hcint);
6842+}
6843+
6844+/**
6845+ * This function returns the mode of the operation, host or device.
6846+ *
6847+ * Returns 0 - Device Mode, 1 - Host Mode
6848+ */
6849+static inline uint32_t dwc_otg_mode(struct dwc_otg_core_if *core_if)
6850+{
6851+ return dwc_read_reg32(&core_if->core_global_regs->gintsts) & 0x1;
6852+}
6853+
6854+static inline uint8_t dwc_otg_is_device_mode(struct dwc_otg_core_if *core_if)
6855+{
6856+ return dwc_otg_mode(core_if) != DWC_HOST_MODE;
6857+}
6858+
6859+static inline uint8_t dwc_otg_is_host_mode(struct dwc_otg_core_if *core_if)
6860+{
6861+ return dwc_otg_mode(core_if) == DWC_HOST_MODE;
6862+}
6863+
6864+extern int32_t dwc_otg_handle_common_intr(struct dwc_otg_core_if *core_if);
6865+
6866+/*
6867+ * DWC_otg CIL callback structure. This structure allows the HCD and
6868+ * PCD to register functions used for starting and stopping the PCD
6869+ * and HCD for role change on for a DRD.
6870+ */
6871+struct dwc_otg_cil_callbacks {
6872+ /* Start function for role change */
6873+ int (*start) (void *p);
6874+ /* Stop Function for role change */
6875+ int (*stop) (void *p);
6876+ /* Disconnect Function for role change */
6877+ int (*disconnect) (void *p);
6878+ /* Resume/Remote wakeup Function */
6879+ int (*resume_wakeup) (void *p);
6880+ /* Suspend function */
6881+ int (*suspend) (void *p);
6882+ /* Session Start (SRP) */
6883+ int (*session_start) (void *p);
6884+ /* Pointer passed to start() and stop() */
6885+ void *p;
6886+};
6887+
6888+extern void dwc_otg_cil_register_pcd_callbacks(struct dwc_otg_core_if *core_if,
6889+ struct dwc_otg_cil_callbacks *cb,
6890+ void *p);
6891+extern void dwc_otg_cil_register_hcd_callbacks(struct dwc_otg_core_if *core_if,
6892+ struct dwc_otg_cil_callbacks *cb,
6893+ void *p);
6894+#endif
6895diff --git a/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c b/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c
6896new file mode 100644
6897index 0000000..38c46df
6898--- /dev/null
6899+++ b/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c
6900@@ -0,0 +1,689 @@
6901+/* ==========================================================================
6902+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
6903+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
6904+ * otherwise expressly agreed to in writing between Synopsys and you.
6905+ *
6906+ * The Software IS NOT an item of Licensed Software or Licensed Product under
6907+ * any End User Software License Agreement or Agreement for Licensed Product
6908+ * with Synopsys or any supplement thereto. You are permitted to use and
6909+ * redistribute this Software in source and binary forms, with or without
6910+ * modification, provided that redistributions of source code must retain this
6911+ * notice. You may not view, use, disclose, copy or distribute this file or
6912+ * any information contained herein except pursuant to this license grant from
6913+ * Synopsys. If you do not agree with this notice, including the disclaimer
6914+ * below, then you are not authorized to use the Software.
6915+ *
6916+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
6917+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
6918+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
6919+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
6920+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
6921+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
6922+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
6923+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
6924+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
6925+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
6926+ * DAMAGE.
6927+ * ========================================================================== */
6928+
6929+/**
6930+ *
6931+ * The Core Interface Layer provides basic services for accessing and
6932+ * managing the DWC_otg hardware. These services are used by both the
6933+ * Host Controller Driver and the Peripheral Controller Driver.
6934+ *
6935+ * This file contains the Common Interrupt handlers.
6936+ */
6937+#include "dwc_otg_plat.h"
6938+#include "dwc_otg_regs.h"
6939+#include "dwc_otg_cil.h"
6940+
6941+#ifdef DEBUG
6942+inline const char *op_state_str(struct dwc_otg_core_if *core_if)
6943+{
6944+ return (core_if->op_state == A_HOST ? "a_host" :
6945+ (core_if->op_state == A_SUSPEND ? "a_suspend" :
6946+ (core_if->op_state == A_PERIPHERAL ? "a_peripheral" :
6947+ (core_if->op_state == B_PERIPHERAL ? "b_peripheral" :
6948+ (core_if->op_state == B_HOST ? "b_host" : "unknown")))));
6949+}
6950+#endif
6951+
6952+/** This function will log a debug message
6953+ *
6954+ * @core_if: Programming view of DWC_otg controller.
6955+ */
6956+int32_t dwc_otg_handle_mode_mismatch_intr(struct dwc_otg_core_if *core_if)
6957+{
6958+ union gintsts_data gintsts;
6959+ DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n",
6960+ dwc_otg_mode(core_if) ? "Host" : "Device");
6961+
6962+ /* Clear interrupt */
6963+ gintsts.d32 = 0;
6964+ gintsts.b.modemismatch = 1;
6965+ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
6966+ return 1;
6967+}
6968+
6969+/** Start the HCD. Helper function for using the HCD callbacks.
6970+ *
6971+ * @core_if: Programming view of DWC_otg controller.
6972+ */
6973+static inline void hcd_start(struct dwc_otg_core_if *core_if)
6974+{
6975+ if (core_if->hcd_cb && core_if->hcd_cb->start)
6976+ core_if->hcd_cb->start(core_if->hcd_cb->p);
6977+}
6978+
6979+/** Stop the HCD. Helper function for using the HCD callbacks.
6980+ *
6981+ * @core_if: Programming view of DWC_otg controller.
6982+ */
6983+static inline void hcd_stop(struct dwc_otg_core_if *core_if)
6984+{
6985+ if (core_if->hcd_cb && core_if->hcd_cb->stop)
6986+ core_if->hcd_cb->stop(core_if->hcd_cb->p);
6987+}
6988+
6989+/** Disconnect the HCD. Helper function for using the HCD callbacks.
6990+ *
6991+ * @core_if: Programming view of DWC_otg controller.
6992+ */
6993+static inline void hcd_disconnect(struct dwc_otg_core_if *core_if)
6994+{
6995+ if (core_if->hcd_cb && core_if->hcd_cb->disconnect)
6996+ core_if->hcd_cb->disconnect(core_if->hcd_cb->p);
6997+}
6998+
6999+/** Inform the HCD the a New Session has begun. Helper function for
7000+ * using the HCD callbacks.
7001+ *
7002+ * @core_if: Programming view of DWC_otg controller.
7003+ */
7004+static inline void hcd_session_start(struct dwc_otg_core_if *core_if)
7005+{
7006+ if (core_if->hcd_cb && core_if->hcd_cb->session_start)
7007+ core_if->hcd_cb->session_start(core_if->hcd_cb->p);
7008+}
7009+
7010+/** Start the PCD. Helper function for using the PCD callbacks.
7011+ *
7012+ * @core_if: Programming view of DWC_otg controller.
7013+ */
7014+static inline void pcd_start(struct dwc_otg_core_if *core_if)
7015+{
7016+ if (core_if->pcd_cb && core_if->pcd_cb->start)
7017+ core_if->pcd_cb->start(core_if->pcd_cb->p);
7018+}
7019+
7020+/** Stop the PCD. Helper function for using the PCD callbacks.
7021+ *
7022+ * @core_if: Programming view of DWC_otg controller.
7023+ */
7024+static inline void pcd_stop(struct dwc_otg_core_if *core_if)
7025+{
7026+ if (core_if->pcd_cb && core_if->pcd_cb->stop)
7027+ core_if->pcd_cb->stop(core_if->pcd_cb->p);
7028+}
7029+
7030+/** Suspend the PCD. Helper function for using the PCD callbacks.
7031+ *
7032+ * @core_if: Programming view of DWC_otg controller.
7033+ */
7034+static inline void pcd_suspend(struct dwc_otg_core_if *core_if)
7035+{
7036+ if (core_if->pcd_cb && core_if->pcd_cb->suspend)
7037+ core_if->pcd_cb->suspend(core_if->pcd_cb->p);
7038+}
7039+
7040+/** Resume the PCD. Helper function for using the PCD callbacks.
7041+ *
7042+ * @core_if: Programming view of DWC_otg controller.
7043+ */
7044+static inline void pcd_resume(struct dwc_otg_core_if *core_if)
7045+{
7046+ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup)
7047+ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
7048+}
7049+
7050+/**
7051+ * This function handles the OTG Interrupts. It reads the OTG
7052+ * Interrupt Register (GOTGINT) to determine what interrupt has
7053+ * occurred.
7054+ *
7055+ * @core_if: Programming view of DWC_otg controller.
7056+ */
7057+int32_t dwc_otg_handle_otg_intr(struct dwc_otg_core_if *core_if)
7058+{
7059+ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
7060+ union gotgint_data gotgint;
7061+ union gotgctl_data gotgctl;
7062+ union gintmsk_data gintmsk;
7063+
7064+ gotgint.d32 = dwc_read_reg32(&global_regs->gotgint);
7065+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
7066+ DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32,
7067+ op_state_str(core_if));
7068+
7069+ if (gotgint.b.sesenddet) {
7070+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
7071+ "Session End Detected++ (%s)\n",
7072+ op_state_str(core_if));
7073+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
7074+
7075+ if (core_if->op_state == B_HOST) {
7076+ pcd_start(core_if);
7077+ core_if->op_state = B_PERIPHERAL;
7078+ } else {
7079+ /* If not B_HOST and Device HNP still set. HNP
7080+ * Did not succeed!*/
7081+ if (gotgctl.b.devhnpen) {
7082+ DWC_DEBUGPL(DBG_ANY, "Session End Detected\n");
7083+ DWC_ERROR("Device Not Connected/Responding!\n");
7084+ }
7085+
7086+ /* If Session End Detected the B-Cable has
7087+ * been disconnected. */
7088+ /* Reset PCD and Gadget driver to a
7089+ * clean state. */
7090+ pcd_stop(core_if);
7091+ }
7092+ gotgctl.d32 = 0;
7093+ gotgctl.b.devhnpen = 1;
7094+ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
7095+ }
7096+ if (gotgint.b.sesreqsucstschng) {
7097+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
7098+ "Session Reqeust Success Status Change++\n");
7099+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
7100+ if (gotgctl.b.sesreqscs) {
7101+ if ((core_if->core_params->phy_type ==
7102+ DWC_PHY_TYPE_PARAM_FS)
7103+ && (core_if->core_params->i2c_enable)) {
7104+ core_if->srp_success = 1;
7105+ } else {
7106+ pcd_resume(core_if);
7107+ /* Clear Session Request */
7108+ gotgctl.d32 = 0;
7109+ gotgctl.b.sesreq = 1;
7110+ dwc_modify_reg32(&global_regs->gotgctl,
7111+ gotgctl.d32, 0);
7112+ }
7113+ }
7114+ }
7115+ if (gotgint.b.hstnegsucstschng) {
7116+ /* Print statements during the HNP interrupt handling
7117+ * can cause it to fail.*/
7118+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
7119+ if (gotgctl.b.hstnegscs) {
7120+ if (dwc_otg_is_host_mode(core_if)) {
7121+ core_if->op_state = B_HOST;
7122+ /*
7123+ * Need to disable SOF interrupt immediately.
7124+ * When switching from device to host, the PCD
7125+ * interrupt handler won't handle the
7126+ * interrupt if host mode is already set. The
7127+ * HCD interrupt handler won't get called if
7128+ * the HCD state is HALT. This means that the
7129+ * interrupt does not get handled and Linux
7130+ * complains loudly.
7131+ */
7132+ gintmsk.d32 = 0;
7133+ gintmsk.b.sofintr = 1;
7134+ dwc_modify_reg32(&global_regs->gintmsk,
7135+ gintmsk.d32, 0);
7136+ pcd_stop(core_if);
7137+ /*
7138+ * Initialize the Core for Host mode.
7139+ */
7140+ hcd_start(core_if);
7141+ core_if->op_state = B_HOST;
7142+ }
7143+ } else {
7144+ gotgctl.d32 = 0;
7145+ gotgctl.b.hnpreq = 1;
7146+ gotgctl.b.devhnpen = 1;
7147+ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
7148+ DWC_DEBUGPL(DBG_ANY, "HNP Failed\n");
7149+ DWC_ERROR("Device Not Connected/Responding\n");
7150+ }
7151+ }
7152+ if (gotgint.b.hstnegdet) {
7153+ /* The disconnect interrupt is set at the same time as
7154+ * Host Negotiation Detected. During the mode
7155+ * switch all interrupts are cleared so the disconnect
7156+ * interrupt handler will not get executed.
7157+ */
7158+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
7159+ "Host Negotiation Detected++ (%s)\n",
7160+ (dwc_otg_is_host_mode(core_if) ? "Host" :
7161+ "Device"));
7162+ if (dwc_otg_is_device_mode(core_if)) {
7163+ DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n",
7164+ core_if->op_state);
7165+ hcd_disconnect(core_if);
7166+ pcd_start(core_if);
7167+ core_if->op_state = A_PERIPHERAL;
7168+ } else {
7169+ /*
7170+ * Need to disable SOF interrupt immediately. When
7171+ * switching from device to host, the PCD interrupt
7172+ * handler won't handle the interrupt if host mode is
7173+ * already set. The HCD interrupt handler won't get
7174+ * called if the HCD state is HALT. This means that
7175+ * the interrupt does not get handled and Linux
7176+ * complains loudly.
7177+ */
7178+ gintmsk.d32 = 0;
7179+ gintmsk.b.sofintr = 1;
7180+ dwc_modify_reg32(&global_regs->gintmsk, gintmsk.d32, 0);
7181+ pcd_stop(core_if);
7182+ hcd_start(core_if);
7183+ core_if->op_state = A_HOST;
7184+ }
7185+ }
7186+ if (gotgint.b.adevtoutchng)
7187+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
7188+ "A-Device Timeout Change++\n");
7189+ if (gotgint.b.debdone)
7190+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " "Debounce Done++\n");
7191+
7192+ /* Clear GOTGINT */
7193+ dwc_write_reg32(&core_if->core_global_regs->gotgint, gotgint.d32);
7194+
7195+ return 1;
7196+}
7197+
7198+/**
7199+ * This function handles the Connector ID Status Change Interrupt. It
7200+ * reads the OTG Interrupt Register (GOTCTL) to determine whether this
7201+ * is a Device to Host Mode transition or a Host Mode to Device
7202+ * Transition.
7203+ *
7204+ * This only occurs when the cable is connected/removed from the PHY
7205+ * connector.
7206+ *
7207+ * @core_if: Programming view of DWC_otg controller.
7208+ */
7209+int32_t dwc_otg_handle_conn_id_status_change_intr(struct dwc_otg_core_if *core_if)
7210+{
7211+ uint32_t count = 0;
7212+
7213+ union gintsts_data gintsts = {.d32 = 0 };
7214+ union gintmsk_data gintmsk = {.d32 = 0 };
7215+ union gotgctl_data gotgctl = {.d32 = 0 };
7216+
7217+ /*
7218+ * Need to disable SOF interrupt immediately. If switching from device
7219+ * to host, the PCD interrupt handler won't handle the interrupt if
7220+ * host mode is already set. The HCD interrupt handler won't get
7221+ * called if the HCD state is HALT. This means that the interrupt does
7222+ * not get handled and Linux complains loudly.
7223+ */
7224+ gintmsk.b.sofintr = 1;
7225+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
7226+
7227+ DWC_DEBUGPL(DBG_CIL,
7228+ " ++Connector ID Status Change Interrupt++ (%s)\n",
7229+ (dwc_otg_is_host_mode(core_if) ? "Host" : "Device"));
7230+ gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
7231+ DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32);
7232+ DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts);
7233+
7234+ /* B-Device connector (Device Mode) */
7235+ if (gotgctl.b.conidsts) {
7236+ /* Wait for switch to device mode. */
7237+ while (!dwc_otg_is_device_mode(core_if)) {
7238+ DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n",
7239+ (dwc_otg_is_host_mode(core_if) ? "Host" :
7240+ "Peripheral"));
7241+ mdelay(100);
7242+ if (++count > 10000)
7243+ *(uint32_t *) NULL = 0;
7244+ }
7245+ core_if->op_state = B_PERIPHERAL;
7246+ dwc_otg_core_init(core_if);
7247+ dwc_otg_enable_global_interrupts(core_if);
7248+ pcd_start(core_if);
7249+ } else {
7250+ /* A-Device connector (Host Mode) */
7251+ while (!dwc_otg_is_host_mode(core_if)) {
7252+ DWC_PRINT("Waiting for Host Mode, Mode=%s\n",
7253+ (dwc_otg_is_host_mode(core_if) ? "Host" :
7254+ "Peripheral"));
7255+ mdelay(100);
7256+ if (++count > 10000)
7257+ *(uint32_t *) NULL = 0;
7258+ }
7259+ core_if->op_state = A_HOST;
7260+ /*
7261+ * Initialize the Core for Host mode.
7262+ */
7263+ dwc_otg_core_init(core_if);
7264+ dwc_otg_enable_global_interrupts(core_if);
7265+ hcd_start(core_if);
7266+ }
7267+
7268+ /* Set flag and clear interrupt */
7269+ gintsts.b.conidstschng = 1;
7270+ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
7271+
7272+ return 1;
7273+}
7274+
7275+/**
7276+ * This interrupt indicates that a device is initiating the Session
7277+ * Request Protocol to request the host to turn on bus power so a new
7278+ * session can begin. The handler responds by turning on bus power. If
7279+ * the DWC_otg controller is in low power mode, the handler brings the
7280+ * controller out of low power mode before turning on bus power.
7281+ *
7282+ * @core_if: Programming view of DWC_otg controller.
7283+ */
7284+int32_t dwc_otg_handle_session_req_intr(struct dwc_otg_core_if *core_if)
7285+{
7286+ union gintsts_data gintsts;
7287+#ifndef DWC_HOST_ONLY
7288+ union hprt0_data hprt0;
7289+
7290+ DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n");
7291+
7292+ if (dwc_otg_is_device_mode(core_if)) {
7293+ DWC_PRINT("SRP: Device mode\n");
7294+ } else {
7295+ DWC_PRINT("SRP: Host mode\n");
7296+
7297+ /* Turn on the port power bit. */
7298+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
7299+ hprt0.b.prtpwr = 1;
7300+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
7301+
7302+ /* Start the Connection timer. So a message can be displayed
7303+ * if connect does not occur within 10 seconds. */
7304+ hcd_session_start(core_if);
7305+ }
7306+#endif
7307+
7308+ /* Clear interrupt */
7309+ gintsts.d32 = 0;
7310+ gintsts.b.sessreqintr = 1;
7311+ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
7312+
7313+ return 1;
7314+}
7315+
7316+/**
7317+ * This interrupt indicates that the DWC_otg controller has detected a
7318+ * resume or remote wakeup sequence. If the DWC_otg controller is in
7319+ * low power mode, the handler must brings the controller out of low
7320+ * power mode. The controller automatically begins resume
7321+ * signaling. The handler schedules a time to stop resume signaling.
7322+ */
7323+int32_t dwc_otg_handle_wakeup_detected_intr(struct dwc_otg_core_if *core_if)
7324+{
7325+ union gintsts_data gintsts;
7326+
7327+ DWC_DEBUGPL(DBG_ANY,
7328+ "++Resume and Remote Wakeup Detected Interrupt++\n");
7329+
7330+ if (dwc_otg_is_device_mode(core_if)) {
7331+ union dctl_data dctl = {.d32 = 0 };
7332+ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n",
7333+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->
7334+ dsts));
7335+#ifdef PARTIAL_POWER_DOWN
7336+ if (core_if->hwcfg4.b.power_optimiz) {
7337+ union pcgcctl_data power = {.d32 = 0 };
7338+
7339+ power.d32 = dwc_read_reg32(core_if->pcgcctl);
7340+ DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32);
7341+
7342+ power.b.stoppclk = 0;
7343+ dwc_write_reg32(core_if->pcgcctl, power.d32);
7344+
7345+ power.b.pwrclmp = 0;
7346+ dwc_write_reg32(core_if->pcgcctl, power.d32);
7347+
7348+ power.b.rstpdwnmodule = 0;
7349+ dwc_write_reg32(core_if->pcgcctl, power.d32);
7350+ }
7351+#endif
7352+ /* Clear the Remote Wakeup Signalling */
7353+ dctl.b.rmtwkupsig = 1;
7354+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
7355+ dctl.d32, 0);
7356+
7357+ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup)
7358+ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
7359+ } else {
7360+ /*
7361+ * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
7362+ * so that OPT tests pass with all PHYs).
7363+ */
7364+ union hprt0_data hprt0 = {.d32 = 0 };
7365+ union pcgcctl_data pcgcctl = {.d32 = 0 };
7366+ /* Restart the Phy Clock */
7367+ pcgcctl.b.stoppclk = 1;
7368+ dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0);
7369+ udelay(10);
7370+
7371+ /* Now wait for 70 ms. */
7372+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
7373+ DWC_DEBUGPL(DBG_ANY, "Resume: HPRT0=%0x\n", hprt0.d32);
7374+ mdelay(70);
7375+ hprt0.b.prtres = 0; /* Resume */
7376+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
7377+ DWC_DEBUGPL(DBG_ANY, "Clear Resume: HPRT0=%0x\n",
7378+ dwc_read_reg32(core_if->host_if->hprt0));
7379+ }
7380+
7381+ /* Clear interrupt */
7382+ gintsts.d32 = 0;
7383+ gintsts.b.wkupintr = 1;
7384+ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
7385+
7386+ return 1;
7387+}
7388+
7389+/**
7390+ * This interrupt indicates that a device has been disconnected from
7391+ * the root port.
7392+ */
7393+int32_t dwc_otg_handle_disconnect_intr(struct dwc_otg_core_if *core_if)
7394+{
7395+ union gintsts_data gintsts;
7396+
7397+ DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n",
7398+ (dwc_otg_is_host_mode(core_if) ? "Host" : "Device"),
7399+ op_state_str(core_if));
7400+
7401+/** @todo Consolidate this if statement. */
7402+#ifndef DWC_HOST_ONLY
7403+ if (core_if->op_state == B_HOST) {
7404+ /* If in device mode Disconnect and stop the HCD, then
7405+ * start the PCD. */
7406+ hcd_disconnect(core_if);
7407+ pcd_start(core_if);
7408+ core_if->op_state = B_PERIPHERAL;
7409+ } else if (dwc_otg_is_device_mode(core_if)) {
7410+ union gotgctl_data gotgctl = {.d32 = 0 };
7411+ gotgctl.d32 =
7412+ dwc_read_reg32(&core_if->core_global_regs->gotgctl);
7413+ if (gotgctl.b.hstsethnpen == 1) {
7414+ /* Do nothing, if HNP in process the OTG
7415+ * interrupt "Host Negotiation Detected"
7416+ * interrupt will do the mode switch.
7417+ */
7418+ } else if (gotgctl.b.devhnpen == 0) {
7419+ /* If in device mode Disconnect and stop the HCD, then
7420+ * start the PCD. */
7421+ hcd_disconnect(core_if);
7422+ pcd_start(core_if);
7423+ core_if->op_state = B_PERIPHERAL;
7424+ } else {
7425+ DWC_DEBUGPL(DBG_ANY, "!a_peripheral && !devhnpen\n");
7426+ }
7427+ } else {
7428+ if (core_if->op_state == A_HOST) {
7429+ /* A-Cable still connected but device disconnected. */
7430+ hcd_disconnect(core_if);
7431+ }
7432+ }
7433+#endif
7434+
7435+ gintsts.d32 = 0;
7436+ gintsts.b.disconnect = 1;
7437+ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
7438+ return 1;
7439+}
7440+
7441+/**
7442+ * This interrupt indicates that SUSPEND state has been detected on
7443+ * the USB.
7444+ *
7445+ * For HNP the USB Suspend interrupt signals the change from
7446+ * "a_peripheral" to "a_host".
7447+ *
7448+ * When power management is enabled the core will be put in low power
7449+ * mode.
7450+ */
7451+int32_t dwc_otg_handle_usb_suspend_intr(struct dwc_otg_core_if *core_if)
7452+{
7453+ union dsts_data dsts;
7454+ union gintsts_data gintsts;
7455+
7456+ DWC_DEBUGPL(DBG_ANY, "USB SUSPEND\n");
7457+
7458+ if (dwc_otg_is_device_mode(core_if)) {
7459+ /* Check the Device status register to determine if the Suspend
7460+ * state is active. */
7461+ dsts.d32 =
7462+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
7463+ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32);
7464+ DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d "
7465+ "HWCFG4.power Optimize=%d\n",
7466+ dsts.b.suspsts, core_if->hwcfg4.b.power_optimiz);
7467+
7468+#ifdef PARTIAL_POWER_DOWN
7469+/** @todo Add a module parameter for power management. */
7470+
7471+ if (dsts.b.suspsts && core_if->hwcfg4.b.power_optimiz) {
7472+ union pcgcctl_data_t power = {.d32 = 0 };
7473+ DWC_DEBUGPL(DBG_CIL, "suspend\n");
7474+
7475+ power.b.pwrclmp = 1;
7476+ dwc_write_reg32(core_if->pcgcctl, power.d32);
7477+
7478+ power.b.rstpdwnmodule = 1;
7479+ dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
7480+
7481+ power.b.stoppclk = 1;
7482+ dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
7483+
7484+ } else {
7485+ DWC_DEBUGPL(DBG_ANY, "disconnect?\n");
7486+ }
7487+#endif
7488+ /* PCD callback for suspend. */
7489+ pcd_suspend(core_if);
7490+ } else {
7491+ if (core_if->op_state == A_PERIPHERAL) {
7492+ DWC_DEBUGPL(DBG_ANY, "a_peripheral->a_host\n");
7493+ /* Clear the a_peripheral flag, back to a_host. */
7494+ pcd_stop(core_if);
7495+ hcd_start(core_if);
7496+ core_if->op_state = A_HOST;
7497+ }
7498+ }
7499+
7500+ /* Clear interrupt */
7501+ gintsts.d32 = 0;
7502+ gintsts.b.usbsuspend = 1;
7503+ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
7504+
7505+ return 1;
7506+}
7507+
7508+/**
7509+ * This function returns the Core Interrupt register.
7510+ */
7511+static inline uint32_t dwc_otg_read_common_intr(struct dwc_otg_core_if *core_if)
7512+{
7513+ union gintsts_data gintsts;
7514+ union gintmsk_data gintmsk;
7515+ union gintmsk_data gintmsk_common = {.d32 = 0 };
7516+ gintmsk_common.b.wkupintr = 1;
7517+ gintmsk_common.b.sessreqintr = 1;
7518+ gintmsk_common.b.conidstschng = 1;
7519+ gintmsk_common.b.otgintr = 1;
7520+ gintmsk_common.b.modemismatch = 1;
7521+ gintmsk_common.b.disconnect = 1;
7522+ gintmsk_common.b.usbsuspend = 1;
7523+ /*
7524+ * @todo: The port interrupt occurs while in device
7525+ * mode. Added code to CIL to clear the interrupt for now!
7526+ */
7527+ gintmsk_common.b.portintr = 1;
7528+
7529+ gintsts.d32 = dwc_read_reg32(&core_if->core_global_regs->gintsts);
7530+ gintmsk.d32 = dwc_read_reg32(&core_if->core_global_regs->gintmsk);
7531+#ifdef DEBUG
7532+ /* if any common interrupts set */
7533+ if (gintsts.d32 & gintmsk_common.d32) {
7534+ DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n",
7535+ gintsts.d32, gintmsk.d32);
7536+ }
7537+#endif
7538+
7539+ return (gintsts.d32 & gintmsk.d32) & gintmsk_common.d32;
7540+
7541+}
7542+
7543+/**
7544+ * Common interrupt handler.
7545+ *
7546+ * The common interrupts are those that occur in both Host and Device mode.
7547+ * This handler handles the following interrupts:
7548+ * - Mode Mismatch Interrupt
7549+ * - Disconnect Interrupt
7550+ * - OTG Interrupt
7551+ * - Connector ID Status Change Interrupt
7552+ * - Session Request Interrupt.
7553+ * - Resume / Remote Wakeup Detected Interrupt.
7554+ *
7555+ */
7556+extern int32_t dwc_otg_handle_common_intr(struct dwc_otg_core_if *core_if)
7557+{
7558+ int retval = 0;
7559+ union gintsts_data gintsts;
7560+
7561+ gintsts.d32 = dwc_otg_read_common_intr(core_if);
7562+
7563+ if (gintsts.b.modemismatch)
7564+ retval |= dwc_otg_handle_mode_mismatch_intr(core_if);
7565+ if (gintsts.b.otgintr)
7566+ retval |= dwc_otg_handle_otg_intr(core_if);
7567+ if (gintsts.b.conidstschng)
7568+ retval |= dwc_otg_handle_conn_id_status_change_intr(core_if);
7569+ if (gintsts.b.disconnect)
7570+ retval |= dwc_otg_handle_disconnect_intr(core_if);
7571+ if (gintsts.b.sessreqintr)
7572+ retval |= dwc_otg_handle_session_req_intr(core_if);
7573+ if (gintsts.b.wkupintr)
7574+ retval |= dwc_otg_handle_wakeup_detected_intr(core_if);
7575+ if (gintsts.b.usbsuspend)
7576+ retval |= dwc_otg_handle_usb_suspend_intr(core_if);
7577+ if (gintsts.b.portintr && dwc_otg_is_device_mode(core_if)) {
7578+ /* The port interrupt occurs while in device mode with HPRT0
7579+ * Port Enable/Disable.
7580+ */
7581+ gintsts.d32 = 0;
7582+ gintsts.b.portintr = 1;
7583+ dwc_write_reg32(&core_if->core_global_regs->gintsts,
7584+ gintsts.d32);
7585+ retval |= 1;
7586+
7587+ }
7588+ return retval;
7589+}
7590diff --git a/drivers/usb/host/dwc_otg/dwc_otg_driver.h b/drivers/usb/host/dwc_otg/dwc_otg_driver.h
7591new file mode 100644
7592index 0000000..1cc116d
7593--- /dev/null
7594+++ b/drivers/usb/host/dwc_otg/dwc_otg_driver.h
7595@@ -0,0 +1,63 @@
7596+/* ==========================================================================
7597+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
7598+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
7599+ * otherwise expressly agreed to in writing between Synopsys and you.
7600+ *
7601+ * The Software IS NOT an item of Licensed Software or Licensed Product under
7602+ * any End User Software License Agreement or Agreement for Licensed Product
7603+ * with Synopsys or any supplement thereto. You are permitted to use and
7604+ * redistribute this Software in source and binary forms, with or without
7605+ * modification, provided that redistributions of source code must retain this
7606+ * notice. You may not view, use, disclose, copy or distribute this file or
7607+ * any information contained herein except pursuant to this license grant from
7608+ * Synopsys. If you do not agree with this notice, including the disclaimer
7609+ * below, then you are not authorized to use the Software.
7610+ *
7611+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
7612+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
7613+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
7614+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
7615+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
7616+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
7617+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
7618+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
7619+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
7620+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
7621+ * DAMAGE.
7622+ * ========================================================================== */
7623+
7624+#ifndef __DWC_OTG_DRIVER_H__
7625+#define __DWC_OTG_DRIVER_H__
7626+
7627+#include "dwc_otg_cil.h"
7628+
7629+/* Type declarations */
7630+struct dwc_otg_pcd;
7631+struct dwc_otg_hcd;
7632+
7633+/**
7634+ * This structure is a wrapper that encapsulates the driver components used to
7635+ * manage a single DWC_otg controller.
7636+ */
7637+struct dwc_otg_device {
7638+ /** Base address returned from ioremap() */
7639+ void *base;
7640+
7641+ /** Pointer to the core interface structure. */
7642+ struct dwc_otg_core_if *core_if;
7643+
7644+ /** Register offset for Diagnostic API.*/
7645+ uint32_t reg_offset;
7646+
7647+ /** Pointer to the PCD structure. */
7648+ struct dwc_otg_pcd *pcd;
7649+
7650+ /** Pointer to the HCD structure. */
7651+ struct dwc_otg_hcd *hcd;
7652+
7653+ /** Flag to indicate whether the common IRQ handler is installed. */
7654+ uint8_t common_irq_installed;
7655+
7656+};
7657+
7658+#endif
7659diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd.c b/drivers/usb/host/dwc_otg/dwc_otg_hcd.c
7660new file mode 100644
7661index 0000000..a4392f5
7662--- /dev/null
7663+++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd.c
7664@@ -0,0 +1,2878 @@
7665+/* ==========================================================================
7666+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
7667+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
7668+ * otherwise expressly agreed to in writing between Synopsys and you.
7669+ *
7670+ * The Software IS NOT an item of Licensed Software or Licensed Product under
7671+ * any End User Software License Agreement or Agreement for Licensed Product
7672+ * with Synopsys or any supplement thereto. You are permitted to use and
7673+ * redistribute this Software in source and binary forms, with or without
7674+ * modification, provided that redistributions of source code must retain this
7675+ * notice. You may not view, use, disclose, copy or distribute this file or
7676+ * any information contained herein except pursuant to this license grant from
7677+ * Synopsys. If you do not agree with this notice, including the disclaimer
7678+ * below, then you are not authorized to use the Software.
7679+ *
7680+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
7681+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
7682+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
7683+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
7684+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
7685+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
7686+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
7687+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
7688+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
7689+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
7690+ * DAMAGE.
7691+ * ========================================================================== */
7692+#ifndef DWC_DEVICE_ONLY
7693+
7694+/**
7695+ *
7696+ * This file contains the implementation of the HCD. In Linux, the HCD
7697+ * implements the hc_driver API.
7698+ */
7699+#include <linux/kernel.h>
7700+#include <linux/module.h>
7701+#include <linux/moduleparam.h>
7702+#include <linux/init.h>
7703+#include <linux/device.h>
7704+#include <linux/errno.h>
7705+#include <linux/list.h>
7706+#include <linux/interrupt.h>
7707+#include <linux/string.h>
7708+#include <linux/dma-mapping.h>
7709+#include <linux/workqueue.h>
7710+#include <linux/platform_device.h>
7711+
7712+#include "dwc_otg_driver.h"
7713+#include "dwc_otg_hcd.h"
7714+#include "dwc_otg_regs.h"
7715+
7716+static const char dwc_otg_hcd_name[] = "dwc_otg_hcd";
7717+
7718+static const struct hc_driver dwc_otg_hc_driver = {
7719+
7720+ .description = dwc_otg_hcd_name,
7721+ .product_desc = "DWC OTG Controller",
7722+ .hcd_priv_size = sizeof(struct dwc_otg_hcd),
7723+
7724+ .irq = dwc_otg_hcd_irq,
7725+
7726+ .flags = HCD_MEMORY | HCD_USB2,
7727+
7728+ .start = dwc_otg_hcd_start,
7729+ .stop = dwc_otg_hcd_stop,
7730+
7731+ .urb_enqueue = dwc_otg_hcd_urb_enqueue,
7732+ .urb_dequeue = dwc_otg_hcd_urb_dequeue,
7733+ .endpoint_disable = dwc_otg_hcd_endpoint_disable,
7734+
7735+ .get_frame_number = dwc_otg_hcd_get_frame_number,
7736+
7737+ .hub_status_data = dwc_otg_hcd_hub_status_data,
7738+ .hub_control = dwc_otg_hcd_hub_control,
7739+};
7740+
7741+/**
7742+ * Work queue function for starting the HCD when A-Cable is connected.
7743+ * The dwc_otg_hcd_start() must be called in a process context.
7744+ */
7745+static void hcd_start_func(struct work_struct *work)
7746+{
7747+ void *_vp =
7748+ (void *)(atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
7749+ struct usb_hcd *usb_hcd = (struct usb_hcd *)_vp;
7750+ DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd);
7751+ if (usb_hcd)
7752+ dwc_otg_hcd_start(usb_hcd);
7753+}
7754+
7755+/**
7756+ * HCD Callback function for starting the HCD when A-Cable is
7757+ * connected.
7758+ *
7759+ * @_p: void pointer to the <code>struct usb_hcd</code>
7760+ */
7761+static int32_t dwc_otg_hcd_start_cb(void *_p)
7762+{
7763+ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p);
7764+ struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if;
7765+ union hprt0_data hprt0;
7766+
7767+ if (core_if->op_state == B_HOST) {
7768+ /*
7769+ * Reset the port. During a HNP mode switch the reset
7770+ * needs to occur within 1ms and have a duration of at
7771+ * least 50ms.
7772+ */
7773+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
7774+ hprt0.b.prtrst = 1;
7775+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
7776+ ((struct usb_hcd *)_p)->self.is_b_host = 1;
7777+ } else {
7778+ ((struct usb_hcd *)_p)->self.is_b_host = 0;
7779+ }
7780+
7781+ /* Need to start the HCD in a non-interrupt context. */
7782+ INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
7783+ atomic_long_set(&dwc_otg_hcd->start_work.data, (long)_p);
7784+ schedule_work(&dwc_otg_hcd->start_work);
7785+
7786+ return 1;
7787+}
7788+
7789+/**
7790+ * HCD Callback function for stopping the HCD.
7791+ *
7792+ * @_p: void pointer to the <code>struct usb_hcd</code>
7793+ */
7794+static int32_t dwc_otg_hcd_stop_cb(void *_p)
7795+{
7796+ struct usb_hcd *usb_hcd = (struct usb_hcd *)_p;
7797+ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p);
7798+ dwc_otg_hcd_stop(usb_hcd);
7799+ return 1;
7800+}
7801+
7802+static void del_xfer_timers(struct dwc_otg_hcd *hcd)
7803+{
7804+#ifdef DEBUG
7805+ int i;
7806+ int num_channels = hcd->core_if->core_params->host_channels;
7807+ for (i = 0; i < num_channels; i++)
7808+ del_timer(&hcd->core_if->hc_xfer_timer[i]);
7809+#endif
7810+}
7811+
7812+static void del_timers(struct dwc_otg_hcd *hcd)
7813+{
7814+ del_xfer_timers(hcd);
7815+ del_timer(&hcd->conn_timer);
7816+}
7817+
7818+/**
7819+ * Processes all the URBs in a single list of QHs. Completes them with
7820+ * -ETIMEDOUT and frees the QTD.
7821+ */
7822+static void kill_urbs_in_qh_list(struct dwc_otg_hcd *hcd,
7823+ struct list_head *_qh_list)
7824+{
7825+ struct dwc_otg_qh *qh;
7826+ struct dwc_otg_qtd *qtd;
7827+ struct dwc_otg_qtd *qtd_next;
7828+
7829+ list_for_each_entry(qh, _qh_list, qh_list_entry) {
7830+ list_for_each_entry_safe(qtd, qtd_next, &qh->qtd_list,
7831+ qtd_list_entry) {
7832+ if (qtd->urb != NULL) {
7833+ dwc_otg_hcd_complete_urb(hcd, qtd->urb,
7834+ -ETIMEDOUT);
7835+ qtd->urb = NULL;
7836+ }
7837+ dwc_otg_hcd_qtd_remove_and_free(qtd);
7838+ }
7839+ }
7840+}
7841+
7842+/**
7843+ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
7844+ * and periodic schedules. The QTD associated with each URB is removed from
7845+ * the schedule and freed. This function may be called when a disconnect is
7846+ * detected or when the HCD is being stopped.
7847+ */
7848+static void kill_all_urbs(struct dwc_otg_hcd *hcd)
7849+{
7850+ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive);
7851+ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active);
7852+ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive);
7853+ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready);
7854+ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned);
7855+ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued);
7856+}
7857+
7858+/**
7859+ * HCD Callback function for disconnect of the HCD.
7860+ *
7861+ * @_p: void pointer to the <code>struct usb_hcd</code>
7862+ */
7863+static int32_t dwc_otg_hcd_disconnect_cb(void *_p)
7864+{
7865+ union gintsts_data intr;
7866+ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p);
7867+
7868+ /*
7869+ * Set status flags for the hub driver.
7870+ */
7871+ dwc_otg_hcd->flags.b.port_connect_status_change = 1;
7872+ dwc_otg_hcd->flags.b.port_connect_status = 0;
7873+
7874+ /*
7875+ * Shutdown any transfers in process by clearing the Tx FIFO Empty
7876+ * interrupt mask and status bits and disabling subsequent host
7877+ * channel interrupts.
7878+ */
7879+ intr.d32 = 0;
7880+ intr.b.nptxfempty = 1;
7881+ intr.b.ptxfempty = 1;
7882+ intr.b.hcintr = 1;
7883+ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk,
7884+ intr.d32, 0);
7885+ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts,
7886+ intr.d32, 0);
7887+
7888+ del_timers(dwc_otg_hcd);
7889+
7890+ /*
7891+ * Turn off the vbus power only if the core has transitioned to device
7892+ * mode. If still in host mode, need to keep power on to detect a
7893+ * reconnection.
7894+ */
7895+ if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) {
7896+ if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) {
7897+ union hprt0_data hprt0 = {.d32 = 0 };
7898+ DWC_PRINT("Disconnect: PortPower off\n");
7899+ hprt0.b.prtpwr = 0;
7900+ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0,
7901+ hprt0.d32);
7902+ }
7903+
7904+ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
7905+ }
7906+
7907+ /* Respond with an error status to all URBs in the schedule. */
7908+ kill_all_urbs(dwc_otg_hcd);
7909+
7910+ if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) {
7911+ /* Clean up any host channels that were in use. */
7912+ int num_channels;
7913+ int i;
7914+ struct dwc_hc *channel;
7915+ struct dwc_otg_hc_regs *hc_regs;
7916+ union hcchar_data hcchar;
7917+
7918+ num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
7919+
7920+ if (!dwc_otg_hcd->core_if->dma_enable) {
7921+ /* Flush out any channel requests in slave mode. */
7922+ for (i = 0; i < num_channels; i++) {
7923+ channel = dwc_otg_hcd->hc_ptr_array[i];
7924+ if (list_empty(&channel->hc_list_entry)) {
7925+ hc_regs =
7926+ dwc_otg_hcd->core_if->host_if->
7927+ hc_regs[i];
7928+ hcchar.d32 =
7929+ dwc_read_reg32(&hc_regs->hcchar);
7930+ if (hcchar.b.chen) {
7931+ hcchar.b.chen = 0;
7932+ hcchar.b.chdis = 1;
7933+ hcchar.b.epdir = 0;
7934+ dwc_write_reg32(&hc_regs->
7935+ hcchar,
7936+ hcchar.d32);
7937+ }
7938+ }
7939+ }
7940+ }
7941+
7942+ for (i = 0; i < num_channels; i++) {
7943+ channel = dwc_otg_hcd->hc_ptr_array[i];
7944+ if (list_empty(&channel->hc_list_entry)) {
7945+ hc_regs =
7946+ dwc_otg_hcd->core_if->host_if->hc_regs[i];
7947+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
7948+ if (hcchar.b.chen) {
7949+ /* Halt the channel. */
7950+ hcchar.b.chdis = 1;
7951+ dwc_write_reg32(&hc_regs->hcchar,
7952+ hcchar.d32);
7953+ }
7954+
7955+ dwc_otg_hc_cleanup(dwc_otg_hcd->core_if,
7956+ channel);
7957+ list_add_tail(&channel->hc_list_entry,
7958+ &dwc_otg_hcd->free_hc_list);
7959+ }
7960+ }
7961+ }
7962+
7963+ /* A disconnect will end the session so the B-Device is no
7964+ * longer a B-host. */
7965+ ((struct usb_hcd *)_p)->self.is_b_host = 0;
7966+ return 1;
7967+}
7968+
7969+/**
7970+ * Connection timeout function. An OTG host is required to display a
7971+ * message if the device does not connect within 10 seconds.
7972+ */
7973+void dwc_otg_hcd_connect_timeout(unsigned long _ptr)
7974+{
7975+ DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)_ptr);
7976+ DWC_PRINT("Connect Timeout\n");
7977+ DWC_ERROR("Device Not Connected/Responding\n");
7978+}
7979+
7980+/**
7981+ * Start the connection timer. An OTG host is required to display a
7982+ * message if the device does not connect within 10 seconds. The
7983+ * timer is deleted if a port connect interrupt occurs before the
7984+ * timer expires.
7985+ */
7986+static void dwc_otg_hcd_start_connect_timer(struct dwc_otg_hcd *hcd)
7987+{
7988+ init_timer(&hcd->conn_timer);
7989+ hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
7990+ hcd->conn_timer.data = (unsigned long)0;
7991+ hcd->conn_timer.expires = jiffies + (HZ * 10);
7992+ add_timer(&hcd->conn_timer);
7993+}
7994+
7995+/**
7996+ * HCD Callback function for disconnect of the HCD.
7997+ *
7998+ * @_p: void pointer to the <code>struct usb_hcd</code>
7999+ */
8000+static int32_t dwc_otg_hcd_session_start_cb(void *_p)
8001+{
8002+ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p);
8003+ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p);
8004+ dwc_otg_hcd_start_connect_timer(dwc_otg_hcd);
8005+ return 1;
8006+}
8007+
8008+/**
8009+ * HCD Callback structure for handling mode switching.
8010+ */
8011+static struct dwc_otg_cil_callbacks hcd_cil_callbacks = {
8012+ .start = dwc_otg_hcd_start_cb,
8013+ .stop = dwc_otg_hcd_stop_cb,
8014+ .disconnect = dwc_otg_hcd_disconnect_cb,
8015+ .session_start = dwc_otg_hcd_session_start_cb,
8016+ .p = 0,
8017+};
8018+
8019+/**
8020+ * Reset tasklet function
8021+ */
8022+static void reset_tasklet_func(unsigned long data)
8023+{
8024+ struct dwc_otg_hcd *dwc_otg_hcd = (struct dwc_otg_hcd *)data;
8025+ struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if;
8026+ union hprt0_data hprt0;
8027+
8028+ DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n");
8029+
8030+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
8031+ hprt0.b.prtrst = 1;
8032+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8033+ mdelay(60);
8034+
8035+ hprt0.b.prtrst = 0;
8036+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8037+ dwc_otg_hcd->flags.b.port_reset_change = 1;
8038+
8039+ return;
8040+}
8041+
8042+static struct tasklet_struct reset_tasklet = {
8043+ .next = NULL,
8044+ .state = 0,
8045+ .count = ATOMIC_INIT(0),
8046+ .func = reset_tasklet_func,
8047+ .data = 0,
8048+};
8049+
8050+static enum hrtimer_restart delayed_enable(struct hrtimer *t)
8051+{
8052+ struct dwc_otg_hcd *hcd = container_of(t, struct dwc_otg_hcd,
8053+ poll_rate_limit);
8054+ struct dwc_otg_core_global_regs *global_regs =
8055+ hcd->core_if->core_global_regs;
8056+ union gintmsk_data intr_mask = {.d32 = 0 };
8057+ intr_mask.b.nptxfempty = 1;
8058+ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
8059+
8060+ return HRTIMER_NORESTART;
8061+}
8062+
8063+/**
8064+ * Initializes the HCD. This function allocates memory for and initializes the
8065+ * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the
8066+ * USB bus with the core and calls the hc_driver->start() function. It returns
8067+ * a negative error on failure.
8068+ */
8069+int __devinit dwc_otg_hcd_init(struct device *dev)
8070+{
8071+ struct usb_hcd *hcd = NULL;
8072+ struct dwc_otg_hcd *dwc_otg_hcd = NULL;
8073+ struct dwc_otg_device *otg_dev = dev->platform_data;
8074+
8075+ int num_channels;
8076+ int i;
8077+ struct dwc_hc *channel;
8078+
8079+ int retval = 0;
8080+
8081+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n");
8082+
8083+ /* Set device flags indicating whether the HCD supports DMA. */
8084+ if (otg_dev->core_if->dma_enable) {
8085+ DWC_PRINT("Using DMA mode\n");
8086+ dev->coherent_dma_mask = ~0;
8087+ dev->dma_mask = &dev->coherent_dma_mask;
8088+ } else {
8089+ DWC_PRINT("Using Slave mode\n");
8090+ dev->coherent_dma_mask = 0;
8091+ dev->dma_mask = NULL;
8092+ }
8093+
8094+ /*
8095+ * Allocate memory for the base HCD plus the DWC OTG HCD.
8096+ * Initialize the base HCD.
8097+ */
8098+ hcd = usb_create_hcd(&dwc_otg_hc_driver, dev, dev_name(dev));
8099+ if (hcd == NULL) {
8100+ retval = -ENOMEM;
8101+ goto error1;
8102+ }
8103+ hcd->regs = otg_dev->base;
8104+ hcd->self.otg_port = 1;
8105+
8106+ /* Integrate TT in root hub, by default this is disbled. */
8107+ hcd->has_tt = 1;
8108+
8109+ /* Initialize the DWC OTG HCD. */
8110+ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8111+
8112+ spin_lock_init(&dwc_otg_hcd->global_lock);
8113+
8114+ dwc_otg_hcd->core_if = otg_dev->core_if;
8115+ otg_dev->hcd = dwc_otg_hcd;
8116+
8117+ /* Register the HCD CIL Callbacks */
8118+ dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if,
8119+ &hcd_cil_callbacks, hcd);
8120+
8121+ /* Initialize the non-periodic schedule. */
8122+ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive);
8123+ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active);
8124+
8125+ /* Initialize the periodic schedule. */
8126+ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive);
8127+ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready);
8128+ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned);
8129+ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued);
8130+
8131+ /*
8132+ * Create a host channel descriptor for each host channel implemented
8133+ * in the controller. Initialize the channel descriptor array.
8134+ */
8135+ INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list);
8136+ num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
8137+ for (i = 0; i < num_channels; i++) {
8138+ channel = kmalloc(sizeof(struct dwc_hc), GFP_KERNEL);
8139+ if (channel == NULL) {
8140+ retval = -ENOMEM;
8141+ DWC_ERROR("%s: host channel allocation failed\n",
8142+ __func__);
8143+ goto error2;
8144+ }
8145+ memset(channel, 0, sizeof(struct dwc_hc));
8146+ channel->hc_num = i;
8147+ dwc_otg_hcd->hc_ptr_array[i] = channel;
8148+#ifdef DEBUG
8149+ init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]);
8150+#endif
8151+
8152+ DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i,
8153+ channel);
8154+ }
8155+
8156+ /* Initialize the Connection timeout timer. */
8157+ init_timer(&dwc_otg_hcd->conn_timer);
8158+
8159+ /* Initialize reset tasklet. */
8160+ reset_tasklet.data = (unsigned long)dwc_otg_hcd;
8161+ dwc_otg_hcd->reset_tasklet = &reset_tasklet;
8162+
8163+ hrtimer_init(&dwc_otg_hcd->poll_rate_limit, CLOCK_MONOTONIC,
8164+ HRTIMER_MODE_REL);
8165+ dwc_otg_hcd->poll_rate_limit.function = delayed_enable;
8166+
8167+ /*
8168+ * Finish generic HCD initialization and start the HCD. This function
8169+ * allocates the DMA buffer pool, registers the USB bus, requests the
8170+ * IRQ line, and calls dwc_otg_hcd_start method.
8171+ */
8172+ retval =
8173+ usb_add_hcd(hcd, platform_get_irq(to_platform_device(dev), 0),
8174+ IRQF_SHARED);
8175+ if (retval < 0)
8176+ goto error2;
8177+
8178+ /*
8179+ * Allocate space for storing data on status transactions. Normally no
8180+ * data is sent, but this space acts as a bit bucket. This must be
8181+ * done after usb_add_hcd since that function allocates the DMA buffer
8182+ * pool.
8183+ */
8184+ if (otg_dev->core_if->dma_enable) {
8185+ dwc_otg_hcd->status_buf =
8186+ dma_alloc_coherent(dev,
8187+ DWC_OTG_HCD_STATUS_BUF_SIZE,
8188+ &dwc_otg_hcd->status_buf_dma,
8189+ GFP_KERNEL | GFP_DMA);
8190+ } else {
8191+ dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
8192+ GFP_KERNEL);
8193+ }
8194+ if (dwc_otg_hcd->status_buf == NULL) {
8195+ retval = -ENOMEM;
8196+ DWC_ERROR("%s: status_buf allocation failed\n", __func__);
8197+ goto error3;
8198+ }
8199+
8200+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, usbbus=%d\n",
8201+ hcd->self.busnum);
8202+
8203+ return 0;
8204+
8205+ /* Error conditions */
8206+error3:
8207+ usb_remove_hcd(hcd);
8208+error2:
8209+ dwc_otg_hcd_free(hcd);
8210+ usb_put_hcd(hcd);
8211+error1:
8212+ return retval;
8213+}
8214+
8215+/**
8216+ * Removes the HCD.
8217+ * Frees memory and resources associated with the HCD and deregisters the bus.
8218+ */
8219+void dwc_otg_hcd_remove(struct device *dev)
8220+{
8221+ struct dwc_otg_device *otg_dev = dev->platform_data;
8222+ struct dwc_otg_hcd *dwc_otg_hcd = otg_dev->hcd;
8223+ struct usb_hcd *hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd);
8224+
8225+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n");
8226+
8227+ /* Turn off all interrupts */
8228+ dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0);
8229+ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1,
8230+ 0);
8231+
8232+ usb_remove_hcd(hcd);
8233+ dwc_otg_hcd_free(hcd);
8234+ usb_put_hcd(hcd);
8235+
8236+ return;
8237+}
8238+
8239+/* =========================================================================
8240+ * Linux HC Driver Functions
8241+ * ========================================================================= */
8242+
8243+/**
8244+ * Initializes dynamic portions of the DWC_otg HCD state.
8245+ */
8246+static void hcd_reinit(struct dwc_otg_hcd *hcd)
8247+{
8248+ struct list_head *item;
8249+ int num_channels;
8250+ int i;
8251+ struct dwc_hc *channel;
8252+
8253+ hcd->flags.d32 = 0;
8254+
8255+ hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active;
8256+ hcd->non_periodic_channels = 0;
8257+ hcd->periodic_channels = 0;
8258+
8259+ /*
8260+ * Put all channels in the free channel list and clean up channel
8261+ * states.
8262+ */
8263+ item = hcd->free_hc_list.next;
8264+ while (item != &hcd->free_hc_list) {
8265+ list_del(item);
8266+ item = hcd->free_hc_list.next;
8267+ }
8268+ num_channels = hcd->core_if->core_params->host_channels;
8269+ for (i = 0; i < num_channels; i++) {
8270+ channel = hcd->hc_ptr_array[i];
8271+ list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list);
8272+ dwc_otg_hc_cleanup(hcd->core_if, channel);
8273+ }
8274+
8275+ /* Initialize the DWC core for host mode operation. */
8276+ dwc_otg_core_host_init(hcd->core_if);
8277+}
8278+
8279+/** Initializes the DWC_otg controller and its root hub and prepares it for host
8280+ * mode operation. Activates the root port. Returns 0 on success and a negative
8281+ * error code on failure. */
8282+int dwc_otg_hcd_start(struct usb_hcd *hcd)
8283+{
8284+ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8285+ struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if;
8286+ unsigned long flags;
8287+
8288+ struct usb_bus *bus;
8289+
8290+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n");
8291+
8292+ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
8293+
8294+ bus = hcd_to_bus(hcd);
8295+
8296+ /* Initialize the bus state. If the core is in Device Mode
8297+ * HALT the USB bus and return. */
8298+ if (dwc_otg_is_device_mode(core_if)) {
8299+ hcd->state = HC_STATE_HALT;
8300+ goto out;
8301+ }
8302+ hcd->state = HC_STATE_RUNNING;
8303+
8304+ hcd_reinit(dwc_otg_hcd);
8305+out:
8306+ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
8307+
8308+ return 0;
8309+}
8310+
8311+static void qh_list_free(struct dwc_otg_hcd *hcd, struct list_head *_qh_list)
8312+{
8313+ struct list_head *item;
8314+ struct dwc_otg_qh *qh;
8315+
8316+ if (_qh_list->next == NULL) {
8317+ /* The list hasn't been initialized yet. */
8318+ return;
8319+ }
8320+
8321+ /* Ensure there are no QTDs or URBs left. */
8322+ kill_urbs_in_qh_list(hcd, _qh_list);
8323+
8324+ for (item = _qh_list->next; item != _qh_list; item = _qh_list->next) {
8325+ qh = list_entry(item, struct dwc_otg_qh, qh_list_entry);
8326+ dwc_otg_hcd_qh_remove_and_free(hcd, qh);
8327+ }
8328+}
8329+
8330+/**
8331+ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
8332+ * stopped.
8333+ */
8334+void dwc_otg_hcd_stop(struct usb_hcd *hcd)
8335+{
8336+ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8337+ union hprt0_data hprt0 = {.d32 = 0 };
8338+
8339+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n");
8340+
8341+ /* Turn off all host-specific interrupts. */
8342+ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
8343+
8344+ /*
8345+ * The root hub should be disconnected before this function is called.
8346+ * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
8347+ * and the QH lists (via ..._hcd_endpoint_disable).
8348+ */
8349+
8350+ /* Turn off the vbus power */
8351+ DWC_PRINT("PortPower off\n");
8352+ hprt0.b.prtpwr = 0;
8353+ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
8354+
8355+ return;
8356+}
8357+
8358+/** Returns the current frame number. */
8359+int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd)
8360+{
8361+ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8362+ union hfnum_data hfnum;
8363+
8364+ hfnum.d32 =
8365+ dwc_read_reg32(&dwc_otg_hcd->core_if->host_if->host_global_regs->
8366+ hfnum);
8367+
8368+#ifdef DEBUG_SOF
8369+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n",
8370+ hfnum.b.frnum);
8371+#endif
8372+ return hfnum.b.frnum;
8373+}
8374+
8375+/**
8376+ * Frees secondary storage associated with the dwc_otg_hcd structure contained
8377+ * in the struct usb_hcd field.
8378+ */
8379+void dwc_otg_hcd_free(struct usb_hcd *hcd)
8380+{
8381+ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8382+ int i;
8383+
8384+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n");
8385+
8386+ del_timers(dwc_otg_hcd);
8387+
8388+ /* Free memory for QH/QTD lists */
8389+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive);
8390+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active);
8391+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive);
8392+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready);
8393+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned);
8394+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued);
8395+
8396+ /* Free memory for the host channels. */
8397+ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
8398+ struct dwc_hc *hc = dwc_otg_hcd->hc_ptr_array[i];
8399+ if (hc != NULL) {
8400+ DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n",
8401+ i, hc);
8402+ kfree(hc);
8403+ }
8404+ }
8405+
8406+ if (dwc_otg_hcd->core_if->dma_enable) {
8407+ if (dwc_otg_hcd->status_buf_dma) {
8408+ dma_free_coherent(hcd->self.controller,
8409+ DWC_OTG_HCD_STATUS_BUF_SIZE,
8410+ dwc_otg_hcd->status_buf,
8411+ dwc_otg_hcd->status_buf_dma);
8412+ }
8413+ } else if (dwc_otg_hcd->status_buf != NULL) {
8414+ kfree(dwc_otg_hcd->status_buf);
8415+ }
8416+
8417+ return;
8418+}
8419+
8420+#ifdef DEBUG
8421+static void dump_urb_info(struct urb *urb, char *_fn_name)
8422+{
8423+ DWC_PRINT("%s, urb %p\n", _fn_name, urb);
8424+ DWC_PRINT(" Device address: %d\n", usb_pipedevice(urb->pipe));
8425+ DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
8426+ (usb_pipein(urb->pipe) ? "IN" : "OUT"));
8427+ DWC_PRINT(" Endpoint type: %s\n",
8428+ ({
8429+ char *pipetype;
8430+ switch (usb_pipetype(urb->pipe)) {
8431+ case PIPE_CONTROL:
8432+ pipetype = "CONTROL";
8433+ break;
8434+ case PIPE_BULK:
8435+ pipetype = "BULK";
8436+ break;
8437+ case PIPE_INTERRUPT:
8438+ pipetype = "INTERRUPT";
8439+ break;
8440+ case PIPE_ISOCHRONOUS:
8441+ pipetype = "ISOCHRONOUS";
8442+ break;
8443+ default:
8444+ pipetype = "UNKNOWN";
8445+ break;
8446+ }
8447+ pipetype;
8448+ })) ;
8449+ DWC_PRINT(" Speed: %s\n",
8450+ ({
8451+ char *speed;
8452+ switch (urb->dev->speed) {
8453+ case USB_SPEED_HIGH:
8454+ speed = "HIGH";
8455+ break;
8456+ case USB_SPEED_FULL:
8457+ speed = "FULL";
8458+ break;
8459+ case USB_SPEED_LOW:
8460+ speed = "LOW";
8461+ break;
8462+ default:
8463+ speed = "UNKNOWN";
8464+ break;
8465+ }
8466+ speed;
8467+ }));
8468+ DWC_PRINT(" Max packet size: %d\n",
8469+ usb_maxpacket(urb->dev, urb->pipe,
8470+ usb_pipeout(urb->pipe)));
8471+ DWC_PRINT(" Data buffer length: %d\n", urb->transfer_buffer_length);
8472+ DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n",
8473+ urb->transfer_buffer, (void *)urb->transfer_dma);
8474+ DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n",
8475+ urb->setup_packet, (void *)urb->setup_dma);
8476+ DWC_PRINT(" Interval: %d\n", urb->interval);
8477+ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
8478+ int i;
8479+ for (i = 0; i < urb->number_of_packets; i++) {
8480+ DWC_PRINT(" ISO Desc %d:\n", i);
8481+ DWC_PRINT(" offset: %d, length %d\n",
8482+ urb->iso_frame_desc[i].offset,
8483+ urb->iso_frame_desc[i].length);
8484+ }
8485+ }
8486+}
8487+
8488+static void dump_channel_info(struct dwc_otg_hcd *hcd, struct dwc_otg_qh * qh)
8489+{
8490+ if (qh->channel != NULL) {
8491+ struct dwc_hc *hc = qh->channel;
8492+ struct list_head *item;
8493+ struct dwc_otg_qh *qh_item;
8494+ int num_channels = hcd->core_if->core_params->host_channels;
8495+ int i;
8496+
8497+ struct dwc_otg_hc_regs *hc_regs;
8498+ union hcchar_data hcchar;
8499+ union hcsplt_data hcsplt;
8500+ union hctsiz_data hctsiz;
8501+ uint32_t hcdma;
8502+
8503+ hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num];
8504+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8505+ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
8506+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
8507+ hcdma = dwc_read_reg32(&hc_regs->hcdma);
8508+
8509+ DWC_PRINT(" Assigned to channel %p:\n", hc);
8510+ DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32,
8511+ hcsplt.d32);
8512+ DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32,
8513+ hcdma);
8514+ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
8515+ hc->dev_addr, hc->ep_num, hc->ep_is_in);
8516+ DWC_PRINT(" ep_type: %d\n", hc->ep_type);
8517+ DWC_PRINT(" max_packet: %d\n", hc->max_packet);
8518+ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
8519+ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
8520+ DWC_PRINT(" halt_status: %d\n", hc->halt_status);
8521+ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
8522+ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
8523+ DWC_PRINT(" qh: %p\n", hc->qh);
8524+ DWC_PRINT(" NP inactive sched:\n");
8525+ list_for_each(item, &hcd->non_periodic_sched_inactive) {
8526+ qh_item = list_entry(item, struct dwc_otg_qh,
8527+ qh_list_entry);
8528+ DWC_PRINT(" %p\n", qh_item);
8529+ }
8530+ DWC_PRINT(" NP active sched:\n");
8531+ list_for_each(item, &hcd->non_periodic_sched_active) {
8532+ qh_item = list_entry(item, struct dwc_otg_qh,
8533+ qh_list_entry);
8534+ DWC_PRINT(" %p\n", qh_item);
8535+ }
8536+ DWC_PRINT(" Channels: \n");
8537+ for (i = 0; i < num_channels; i++) {
8538+ struct dwc_hc *hc = hcd->hc_ptr_array[i];
8539+ DWC_PRINT(" %2d: %p\n", i, hc);
8540+ }
8541+ }
8542+}
8543+#endif
8544+
8545+/* Starts processing a USB transfer request specified by a USB Request Block
8546+ * (URB). mem_flags indicates the type of memory allocation to use while
8547+ * processing this URB. */
8548+int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
8549+ struct urb *urb, unsigned _mem_flags)
8550+{
8551+ unsigned long flags;
8552+ int retval = 0;
8553+ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8554+ struct dwc_otg_qtd *qtd;
8555+
8556+ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
8557+
8558+ /*
8559+ * Make sure the start of frame interrupt is enabled now that
8560+ * we know we should have queued data. The SOF interrupt
8561+ * handler automatically disables itself when idle to reduce
8562+ * the number of interrupts. See dwc_otg_hcd_handle_sof_intr()
8563+ * for the disable
8564+ */
8565+ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0,
8566+ DWC_SOF_INTR_MASK);
8567+
8568+#ifdef DEBUG
8569+ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB))
8570+ dump_urb_info(urb, "dwc_otg_hcd_urb_enqueue");
8571+#endif
8572+ if (!dwc_otg_hcd->flags.b.port_connect_status) {
8573+ /* No longer connected. */
8574+ retval = -ENODEV;
8575+ goto out;
8576+ }
8577+
8578+ qtd = dwc_otg_hcd_qtd_create(urb);
8579+ if (qtd == NULL) {
8580+ DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n");
8581+ retval = -ENOMEM;
8582+ goto out;
8583+ }
8584+
8585+ retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd);
8586+ if (retval < 0) {
8587+ DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. "
8588+ "Error status %d\n", retval);
8589+ dwc_otg_hcd_qtd_free(qtd);
8590+ }
8591+out:
8592+ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
8593+
8594+ return retval;
8595+}
8596+
8597+/** Aborts/cancels a USB transfer request. Always returns 0 to indicate
8598+ * success. */
8599+int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
8600+{
8601+ unsigned long flags;
8602+ struct dwc_otg_hcd *dwc_otg_hcd;
8603+ struct dwc_otg_qtd *urb_qtd;
8604+
8605+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n");
8606+
8607+ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8608+
8609+ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
8610+
8611+ urb_qtd = urb->hcpriv;
8612+
8613+#ifdef DEBUG
8614+ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
8615+ dump_urb_info(urb, "dwc_otg_hcd_urb_dequeue");
8616+ if (urb_qtd == urb_qtd->qh->qtd_in_process)
8617+ dump_channel_info(dwc_otg_hcd, urb_qtd->qh);
8618+ }
8619+#endif
8620+
8621+ if (urb_qtd == urb_qtd->qh->qtd_in_process) {
8622+ /* The QTD is in process (it has been assigned to a channel). */
8623+
8624+ if (dwc_otg_hcd->flags.b.port_connect_status) {
8625+ /*
8626+ * If still connected (i.e. in host mode), halt the
8627+ * channel so it can be used for other transfers. If
8628+ * no longer connected, the host registers can't be
8629+ * written to halt the channel since the core is in
8630+ * device mode.
8631+ */
8632+ dwc_otg_hc_halt(dwc_otg_hcd->core_if,
8633+ urb_qtd->qh->channel,
8634+ DWC_OTG_HC_XFER_URB_DEQUEUE);
8635+ }
8636+ }
8637+
8638+ /*
8639+ * Free the QTD and clean up the associated QH. Leave the QH in the
8640+ * schedule if it has any remaining QTDs.
8641+ */
8642+ dwc_otg_hcd_qtd_remove_and_free(urb_qtd);
8643+ if (urb_qtd == urb_qtd->qh->qtd_in_process) {
8644+ dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, urb_qtd->qh, 0);
8645+ urb_qtd->qh->channel = NULL;
8646+ urb_qtd->qh->qtd_in_process = NULL;
8647+ } else if (list_empty(&urb_qtd->qh->qtd_list)) {
8648+ dwc_otg_hcd_qh_remove(dwc_otg_hcd, urb_qtd->qh);
8649+ }
8650+
8651+ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
8652+
8653+ urb->hcpriv = NULL;
8654+
8655+ /* Higher layer software sets URB status. */
8656+ usb_hcd_giveback_urb(hcd, urb, status);
8657+ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
8658+ DWC_PRINT("Called usb_hcd_giveback_urb()\n");
8659+ DWC_PRINT(" urb->status = %d\n", urb->status);
8660+ }
8661+
8662+ return 0;
8663+}
8664+
8665+/* Frees resources in the DWC_otg controller related to a given endpoint. Also
8666+ * clears state in the HCD related to the endpoint. Any URBs for the endpoint
8667+ * must already be dequeued. */
8668+void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
8669+ struct usb_host_endpoint *_ep)
8670+{
8671+ unsigned long flags;
8672+ struct dwc_otg_qh *qh;
8673+ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8674+
8675+ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
8676+
8677+ DWC_DEBUGPL(DBG_HCD,
8678+ "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, "
8679+ "endpoint=%d\n", _ep->desc.bEndpointAddress,
8680+ dwc_ep_addr_to_endpoint(_ep->desc.bEndpointAddress));
8681+
8682+ qh = _ep->hcpriv;
8683+ if (qh != NULL) {
8684+#if 1
8685+ /*
8686+ * FIXME: Kludge to not crash on Octeon in SMP
8687+ * mode. Normally dwc_otg_hcd_qh_remove_and_free() is
8688+ * called even if the list isn't empty. This causes a
8689+ * crash on SMP, so we don't call it now. It works
8690+ * better, but probably does evil things I don't know
8691+ * about.
8692+ */
8693+ /* Check that the QTD list is really empty */
8694+ if (!list_empty(&qh->qtd_list)) {
8695+ pr_err("DWC OTG HCD EP DISABLE:"
8696+ " QTD List for this endpoint is not empty\n");
8697+ } else
8698+#endif
8699+ {
8700+ dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh);
8701+ _ep->hcpriv = NULL;
8702+ }
8703+ }
8704+
8705+ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
8706+
8707+ return;
8708+}
8709+
8710+/* Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
8711+ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
8712+ * interrupt.
8713+ *
8714+ * This function is called by the USB core when an interrupt occurs */
8715+irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd)
8716+{
8717+ irqreturn_t result;
8718+ unsigned long flags;
8719+ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8720+
8721+ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
8722+
8723+ result = IRQ_RETVAL(dwc_otg_hcd_handle_intr(dwc_otg_hcd));
8724+
8725+ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
8726+
8727+ return result;
8728+}
8729+
8730+/** Creates Status Change bitmap for the root hub and root port. The bitmap is
8731+ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
8732+ * is the status change indicator for the single root port. Returns 1 if either
8733+ * change indicator is 1, otherwise returns 0. */
8734+int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *_buf)
8735+{
8736+ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8737+
8738+ _buf[0] = 0;
8739+ _buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change ||
8740+ dwc_otg_hcd->flags.b.port_reset_change ||
8741+ dwc_otg_hcd->flags.b.port_enable_change ||
8742+ dwc_otg_hcd->flags.b.port_suspend_change ||
8743+ dwc_otg_hcd->flags.b.port_over_current_change) << 1;
8744+
8745+#ifdef DEBUG
8746+ if (_buf[0]) {
8747+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:"
8748+ " Root port status changed\n");
8749+ DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n",
8750+ dwc_otg_hcd->flags.b.port_connect_status_change);
8751+ DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n",
8752+ dwc_otg_hcd->flags.b.port_reset_change);
8753+ DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n",
8754+ dwc_otg_hcd->flags.b.port_enable_change);
8755+ DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n",
8756+ dwc_otg_hcd->flags.b.port_suspend_change);
8757+ DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n",
8758+ dwc_otg_hcd->flags.b.port_over_current_change);
8759+ }
8760+#endif
8761+ return (_buf[0] != 0);
8762+}
8763+
8764+#ifdef DWC_HS_ELECT_TST
8765+/*
8766+ * Quick and dirty hack to implement the HS Electrical Test
8767+ * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature.
8768+ *
8769+ * This code was copied from our userspace app "hset". It sends a
8770+ * Get Device Descriptor control sequence in two parts, first the
8771+ * Setup packet by itself, followed some time later by the In and
8772+ * Ack packets. Rather than trying to figure out how to add this
8773+ * functionality to the normal driver code, we just hijack the
8774+ * hardware, using these two function to drive the hardware
8775+ * directly.
8776+ */
8777+
8778+struct dwc_otg_core_global_regs *global_regs;
8779+struct dwc_otg_host_global_regs *hc_global_regs;
8780+struct dwc_otg_hc_regs *hc_regs;
8781+uint32_t *data_fifo;
8782+
8783+static void do_setup(void)
8784+{
8785+ union gintsts_data gintsts;
8786+ union hctsiz_data hctsiz;
8787+ union hcchar_data hcchar;
8788+ union haint_data haint;
8789+ union hcint_data hcint;
8790+
8791+ /* Enable HAINTs */
8792+ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
8793+
8794+ /* Enable HCINTs */
8795+ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
8796+
8797+ /* Read GINTSTS */
8798+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8799+
8800+ /* Read HAINT */
8801+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8802+
8803+ /* Read HCINT */
8804+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8805+
8806+ /* Read HCCHAR */
8807+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8808+
8809+ /* Clear HCINT */
8810+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8811+
8812+ /* Clear HAINT */
8813+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8814+
8815+ /* Clear GINTSTS */
8816+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8817+
8818+ /* Read GINTSTS */
8819+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8820+
8821+ /*
8822+ * Send Setup packet (Get Device Descriptor)
8823+ */
8824+
8825+ /* Make sure channel is disabled */
8826+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8827+ if (hcchar.b.chen) {
8828+ hcchar.b.chdis = 1;
8829+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8830+
8831+ mdelay(1000);
8832+
8833+ /* Read GINTSTS */
8834+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8835+
8836+ /* Read HAINT */
8837+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8838+
8839+ /* Read HCINT */
8840+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8841+
8842+ /* Read HCCHAR */
8843+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8844+
8845+ /* Clear HCINT */
8846+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8847+
8848+ /* Clear HAINT */
8849+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8850+
8851+ /* Clear GINTSTS */
8852+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8853+
8854+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8855+ }
8856+
8857+ /* Set HCTSIZ */
8858+ hctsiz.d32 = 0;
8859+ hctsiz.b.xfersize = 8;
8860+ hctsiz.b.pktcnt = 1;
8861+ hctsiz.b.pid = DWC_OTG_HC_PID_SETUP;
8862+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
8863+
8864+ /* Set HCCHAR */
8865+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8866+ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
8867+ hcchar.b.epdir = 0;
8868+ hcchar.b.epnum = 0;
8869+ hcchar.b.mps = 8;
8870+ hcchar.b.chen = 1;
8871+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8872+
8873+ /* Fill FIFO with Setup data for Get Device Descriptor */
8874+ data_fifo = (uint32_t *) ((char *)global_regs + 0x1000);
8875+ dwc_write_reg32(data_fifo++, 0x01000680);
8876+ dwc_write_reg32(data_fifo++, 0x00080000);
8877+
8878+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8879+
8880+ /* Wait for host channel interrupt */
8881+ do {
8882+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8883+ } while (gintsts.b.hcintr == 0);
8884+
8885+
8886+ /* Disable HCINTs */
8887+ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
8888+
8889+ /* Disable HAINTs */
8890+ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
8891+
8892+ /* Read HAINT */
8893+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8894+
8895+ /* Read HCINT */
8896+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8897+
8898+ /* Read HCCHAR */
8899+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8900+
8901+ /* Clear HCINT */
8902+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8903+
8904+ /* Clear HAINT */
8905+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8906+
8907+ /* Clear GINTSTS */
8908+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8909+
8910+ /* Read GINTSTS */
8911+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8912+}
8913+
8914+static void do_in_ack(void)
8915+{
8916+ union gintsts_data gintsts;
8917+ union hctsiz_data hctsiz;
8918+ union hcchar_data hcchar;
8919+ union haint_data haint;
8920+ union hcint_data hcint;
8921+ union host_grxsts_data grxsts;
8922+
8923+ /* Enable HAINTs */
8924+ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
8925+
8926+ /* Enable HCINTs */
8927+ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
8928+
8929+ /* Read GINTSTS */
8930+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8931+
8932+ /* Read HAINT */
8933+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8934+
8935+ /* Read HCINT */
8936+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8937+
8938+ /* Read HCCHAR */
8939+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8940+
8941+ /* Clear HCINT */
8942+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8943+
8944+ /* Clear HAINT */
8945+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8946+
8947+ /* Clear GINTSTS */
8948+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8949+
8950+ /* Read GINTSTS */
8951+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8952+
8953+ /*
8954+ * Receive Control In packet
8955+ */
8956+
8957+ /* Make sure channel is disabled */
8958+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8959+ if (hcchar.b.chen) {
8960+ hcchar.b.chdis = 1;
8961+ hcchar.b.chen = 1;
8962+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8963+
8964+ mdelay(1000);
8965+
8966+ /* Read GINTSTS */
8967+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8968+
8969+ /* Read HAINT */
8970+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8971+
8972+ /* Read HCINT */
8973+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8974+
8975+ /* Read HCCHAR */
8976+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8977+
8978+ /* Clear HCINT */
8979+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8980+
8981+ /* Clear HAINT */
8982+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8983+
8984+ /* Clear GINTSTS */
8985+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8986+
8987+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8988+ }
8989+
8990+ /* Set HCTSIZ */
8991+ hctsiz.d32 = 0;
8992+ hctsiz.b.xfersize = 8;
8993+ hctsiz.b.pktcnt = 1;
8994+ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
8995+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
8996+
8997+ /* Set HCCHAR */
8998+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8999+ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
9000+ hcchar.b.epdir = 1;
9001+ hcchar.b.epnum = 0;
9002+ hcchar.b.mps = 8;
9003+ hcchar.b.chen = 1;
9004+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9005+
9006+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9007+
9008+ /* Wait for receive status queue interrupt */
9009+ do {
9010+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9011+ } while (gintsts.b.rxstsqlvl == 0);
9012+
9013+ /* Read RXSTS */
9014+ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
9015+
9016+ /* Clear RXSTSQLVL in GINTSTS */
9017+ gintsts.d32 = 0;
9018+ gintsts.b.rxstsqlvl = 1;
9019+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9020+
9021+ switch (grxsts.b.pktsts) {
9022+ case DWC_GRXSTS_PKTSTS_IN:
9023+ /* Read the data into the host buffer */
9024+ if (grxsts.b.bcnt > 0) {
9025+ int i;
9026+ int word_count = (grxsts.b.bcnt + 3) / 4;
9027+
9028+ data_fifo = (uint32_t *) ((char *)global_regs + 0x1000);
9029+
9030+ for (i = 0; i < word_count; i++)
9031+ (void)dwc_read_reg32(data_fifo++);
9032+ }
9033+ break;
9034+
9035+ default:
9036+ break;
9037+ }
9038+
9039+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9040+
9041+ /* Wait for receive status queue interrupt */
9042+ do {
9043+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9044+ } while (gintsts.b.rxstsqlvl == 0);
9045+
9046+
9047+ /* Read RXSTS */
9048+ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
9049+
9050+ /* Clear RXSTSQLVL in GINTSTS */
9051+ gintsts.d32 = 0;
9052+ gintsts.b.rxstsqlvl = 1;
9053+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9054+
9055+ switch (grxsts.b.pktsts) {
9056+ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
9057+ break;
9058+
9059+ default:
9060+ break;
9061+ }
9062+
9063+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9064+
9065+ /* Wait for host channel interrupt */
9066+ do {
9067+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9068+ } while (gintsts.b.hcintr == 0);
9069+
9070+
9071+ /* Read HAINT */
9072+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9073+
9074+ /* Read HCINT */
9075+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9076+
9077+ /* Read HCCHAR */
9078+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9079+
9080+ /* Clear HCINT */
9081+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9082+
9083+ /* Clear HAINT */
9084+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9085+
9086+ /* Clear GINTSTS */
9087+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9088+
9089+ /* Read GINTSTS */
9090+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9091+
9092+ mdelay(1);
9093+
9094+ /*
9095+ * Send handshake packet
9096+ */
9097+
9098+ /* Read HAINT */
9099+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9100+
9101+ /* Read HCINT */
9102+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9103+
9104+ /* Read HCCHAR */
9105+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9106+
9107+ /* Clear HCINT */
9108+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9109+
9110+ /* Clear HAINT */
9111+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9112+
9113+ /* Clear GINTSTS */
9114+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9115+
9116+ /* Read GINTSTS */
9117+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9118+
9119+ /* Make sure channel is disabled */
9120+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9121+ if (hcchar.b.chen) {
9122+ hcchar.b.chdis = 1;
9123+ hcchar.b.chen = 1;
9124+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9125+
9126+ mdelay(1000);
9127+
9128+ /* Read GINTSTS */
9129+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9130+
9131+ /* Read HAINT */
9132+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9133+
9134+ /* Read HCINT */
9135+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9136+
9137+ /* Read HCCHAR */
9138+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9139+
9140+ /* Clear HCINT */
9141+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9142+
9143+ /* Clear HAINT */
9144+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9145+
9146+ /* Clear GINTSTS */
9147+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9148+
9149+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9150+ }
9151+
9152+ /* Set HCTSIZ */
9153+ hctsiz.d32 = 0;
9154+ hctsiz.b.xfersize = 0;
9155+ hctsiz.b.pktcnt = 1;
9156+ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
9157+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
9158+
9159+ /* Set HCCHAR */
9160+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9161+ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
9162+ hcchar.b.epdir = 0;
9163+ hcchar.b.epnum = 0;
9164+ hcchar.b.mps = 8;
9165+ hcchar.b.chen = 1;
9166+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9167+
9168+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9169+
9170+ /* Wait for host channel interrupt */
9171+ do {
9172+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9173+ } while (gintsts.b.hcintr == 0);
9174+
9175+
9176+ /* Disable HCINTs */
9177+ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
9178+
9179+ /* Disable HAINTs */
9180+ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
9181+
9182+ /* Read HAINT */
9183+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9184+
9185+ /* Read HCINT */
9186+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9187+
9188+ /* Read HCCHAR */
9189+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9190+
9191+ /* Clear HCINT */
9192+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9193+
9194+ /* Clear HAINT */
9195+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9196+
9197+ /* Clear GINTSTS */
9198+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9199+
9200+ /* Read GINTSTS */
9201+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9202+}
9203+#endif /* DWC_HS_ELECT_TST */
9204+
9205+/* Handles hub class-specific requests.*/
9206+int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
9207+ u16 _typeReq,
9208+ u16 _wValue, u16 _wIndex, char *_buf, u16 _wLength)
9209+{
9210+ int retval = 0;
9211+ unsigned long flags;
9212+
9213+ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
9214+ struct dwc_otg_core_if *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if;
9215+ struct usb_hub_descriptor *desc;
9216+ union hprt0_data hprt0 = {.d32 = 0 };
9217+
9218+ uint32_t port_status;
9219+#ifdef DWC_HS_ELECT_TST
9220+ uint32_t t;
9221+ union gintmsk_data gintmsk;
9222+#endif
9223+ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
9224+
9225+ switch (_typeReq) {
9226+ case ClearHubFeature:
9227+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9228+ "ClearHubFeature 0x%x\n", _wValue);
9229+ switch (_wValue) {
9230+ case C_HUB_LOCAL_POWER:
9231+ case C_HUB_OVER_CURRENT:
9232+ /* Nothing required here */
9233+ break;
9234+ default:
9235+ retval = -EINVAL;
9236+ DWC_ERROR("DWC OTG HCD - "
9237+ "ClearHubFeature request %xh unknown\n",
9238+ _wValue);
9239+ }
9240+ break;
9241+ case ClearPortFeature:
9242+ if (!_wIndex || _wIndex > 1)
9243+ goto error;
9244+
9245+ switch (_wValue) {
9246+ case USB_PORT_FEAT_ENABLE:
9247+ DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - "
9248+ "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
9249+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
9250+ hprt0.b.prtena = 1;
9251+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9252+ break;
9253+ case USB_PORT_FEAT_SUSPEND:
9254+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9255+ "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
9256+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
9257+ hprt0.b.prtres = 1;
9258+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9259+ /* Clear Resume bit */
9260+ mdelay(100);
9261+ hprt0.b.prtres = 0;
9262+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9263+ break;
9264+ case USB_PORT_FEAT_POWER:
9265+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9266+ "ClearPortFeature USB_PORT_FEAT_POWER\n");
9267+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
9268+ hprt0.b.prtpwr = 0;
9269+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9270+ break;
9271+ case USB_PORT_FEAT_INDICATOR:
9272+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9273+ "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
9274+ /* Port inidicator not supported */
9275+ break;
9276+ case USB_PORT_FEAT_C_CONNECTION:
9277+ /* Clears drivers internal connect status change
9278+ * flag */
9279+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9280+ "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
9281+ dwc_otg_hcd->flags.b.port_connect_status_change = 0;
9282+ break;
9283+ case USB_PORT_FEAT_C_RESET:
9284+ /* Clears the driver's internal Port Reset Change
9285+ * flag */
9286+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9287+ "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
9288+ dwc_otg_hcd->flags.b.port_reset_change = 0;
9289+ break;
9290+ case USB_PORT_FEAT_C_ENABLE:
9291+ /* Clears the driver's internal Port
9292+ * Enable/Disable Change flag */
9293+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9294+ "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
9295+ dwc_otg_hcd->flags.b.port_enable_change = 0;
9296+ break;
9297+ case USB_PORT_FEAT_C_SUSPEND:
9298+ /* Clears the driver's internal Port Suspend
9299+ * Change flag, which is set when resume signaling on
9300+ * the host port is complete */
9301+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9302+ "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
9303+ dwc_otg_hcd->flags.b.port_suspend_change = 0;
9304+ break;
9305+ case USB_PORT_FEAT_C_OVER_CURRENT:
9306+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9307+ "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
9308+ dwc_otg_hcd->flags.b.port_over_current_change = 0;
9309+ break;
9310+ default:
9311+ retval = -EINVAL;
9312+ DWC_ERROR("DWC OTG HCD - "
9313+ "ClearPortFeature request %xh "
9314+ "unknown or unsupported\n", _wValue);
9315+ }
9316+ break;
9317+ case GetHubDescriptor:
9318+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9319+ "GetHubDescriptor\n");
9320+ desc = (struct usb_hub_descriptor *)_buf;
9321+ desc->bDescLength = 9;
9322+ desc->bDescriptorType = 0x29;
9323+ desc->bNbrPorts = 1;
9324+ desc->wHubCharacteristics = 0x08;
9325+ desc->bPwrOn2PwrGood = 1;
9326+ desc->bHubContrCurrent = 0;
9327+ desc->bitmap[0] = 0;
9328+ desc->bitmap[1] = 0xff;
9329+ break;
9330+ case GetHubStatus:
9331+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9332+ "GetHubStatus\n");
9333+ memset(_buf, 0, 4);
9334+ break;
9335+ case GetPortStatus:
9336+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9337+ "GetPortStatus\n");
9338+
9339+ if (!_wIndex || _wIndex > 1)
9340+ goto error;
9341+
9342+ port_status = 0;
9343+
9344+ if (dwc_otg_hcd->flags.b.port_connect_status_change)
9345+ port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
9346+
9347+ if (dwc_otg_hcd->flags.b.port_enable_change)
9348+ port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
9349+
9350+ if (dwc_otg_hcd->flags.b.port_suspend_change)
9351+ port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
9352+
9353+ if (dwc_otg_hcd->flags.b.port_reset_change)
9354+ port_status |= (1 << USB_PORT_FEAT_C_RESET);
9355+
9356+ if (dwc_otg_hcd->flags.b.port_over_current_change) {
9357+ DWC_ERROR("Device Not Supported\n");
9358+ port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
9359+ }
9360+
9361+ if (!dwc_otg_hcd->flags.b.port_connect_status) {
9362+ /*
9363+ * The port is disconnected, which means the core is
9364+ * either in device mode or it soon will be. Just
9365+ * return 0's for the remainder of the port status
9366+ * since the port register can't be read if the core
9367+ * is in device mode.
9368+ */
9369+ *((__le32 *) _buf) = cpu_to_le32(port_status);
9370+ break;
9371+ }
9372+
9373+ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
9374+ DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32);
9375+
9376+ if (hprt0.b.prtconnsts)
9377+ port_status |= (1 << USB_PORT_FEAT_CONNECTION);
9378+
9379+ if (hprt0.b.prtena)
9380+ port_status |= (1 << USB_PORT_FEAT_ENABLE);
9381+
9382+ if (hprt0.b.prtsusp)
9383+ port_status |= (1 << USB_PORT_FEAT_SUSPEND);
9384+
9385+ if (hprt0.b.prtovrcurract)
9386+ port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
9387+
9388+ if (hprt0.b.prtrst)
9389+ port_status |= (1 << USB_PORT_FEAT_RESET);
9390+
9391+ if (hprt0.b.prtpwr)
9392+ port_status |= (1 << USB_PORT_FEAT_POWER);
9393+
9394+ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
9395+ port_status |= (1 << USB_PORT_FEAT_HIGHSPEED);
9396+ else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
9397+ port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
9398+
9399+ if (hprt0.b.prttstctl)
9400+ port_status |= (1 << USB_PORT_FEAT_TEST);
9401+
9402+ /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
9403+
9404+ *((__le32 *) _buf) = cpu_to_le32(port_status);
9405+
9406+ break;
9407+ case SetHubFeature:
9408+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9409+ "SetHubFeature\n");
9410+ /* No HUB features supported */
9411+ break;
9412+ case SetPortFeature:
9413+ if (_wValue != USB_PORT_FEAT_TEST && (!_wIndex || _wIndex > 1))
9414+ goto error;
9415+
9416+ if (!dwc_otg_hcd->flags.b.port_connect_status) {
9417+ /*
9418+ * The port is disconnected, which means the core is
9419+ * either in device mode or it soon will be. Just
9420+ * return without doing anything since the port
9421+ * register can't be written if the core is in device
9422+ * mode.
9423+ */
9424+ break;
9425+ }
9426+
9427+ switch (_wValue) {
9428+ case USB_PORT_FEAT_SUSPEND:
9429+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9430+ "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
9431+ if (hcd->self.otg_port == _wIndex &&
9432+ hcd->self.b_hnp_enable) {
9433+ union gotgctl_data gotgctl = {.d32 = 0 };
9434+ gotgctl.b.hstsethnpen = 1;
9435+ dwc_modify_reg32(&core_if->core_global_regs->
9436+ gotgctl, 0, gotgctl.d32);
9437+ core_if->op_state = A_SUSPEND;
9438+ }
9439+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
9440+ hprt0.b.prtsusp = 1;
9441+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9442+ /* Suspend the Phy Clock */
9443+ {
9444+ union pcgcctl_data pcgcctl = {.d32 = 0 };
9445+ pcgcctl.b.stoppclk = 1;
9446+ dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
9447+ }
9448+
9449+ /*
9450+ * For HNP the bus must be suspended for at
9451+ * least 200ms.
9452+ */
9453+ if (hcd->self.b_hnp_enable)
9454+ mdelay(200);
9455+ break;
9456+ case USB_PORT_FEAT_POWER:
9457+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9458+ "SetPortFeature - USB_PORT_FEAT_POWER\n");
9459+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
9460+ hprt0.b.prtpwr = 1;
9461+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9462+ break;
9463+ case USB_PORT_FEAT_RESET:
9464+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9465+ "SetPortFeature - USB_PORT_FEAT_RESET\n");
9466+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
9467+ /* When B-Host the Port reset bit is set in
9468+ * the Start HCD Callback function, so that
9469+ * the reset is started within 1ms of the HNP
9470+ * success interrupt. */
9471+ if (!hcd->self.is_b_host) {
9472+ hprt0.b.prtrst = 1;
9473+ dwc_write_reg32(core_if->host_if->hprt0,
9474+ hprt0.d32);
9475+ }
9476+ /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
9477+ mdelay(60);
9478+ hprt0.b.prtrst = 0;
9479+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9480+ break;
9481+
9482+#ifdef DWC_HS_ELECT_TST
9483+ case USB_PORT_FEAT_TEST:
9484+ t = (_wIndex >> 8); /* MSB wIndex USB */
9485+ DWC_DEBUGPL(DBG_HCD,
9486+ "DWC OTG HCD HUB CONTROL - "
9487+ "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t);
9488+ warn("USB_PORT_FEAT_TEST %d\n", t);
9489+ if (t < 6) {
9490+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
9491+ hprt0.b.prttstctl = t;
9492+ dwc_write_reg32(core_if->host_if->hprt0,
9493+ hprt0.d32);
9494+ } else {
9495+ /* Setup global vars with reg
9496+ * addresses (quick and dirty hack,
9497+ * should be cleaned up)
9498+ */
9499+ global_regs = core_if->core_global_regs;
9500+ hc_global_regs =
9501+ core_if->host_if->host_global_regs;
9502+ hc_regs =
9503+ (struct dwc_otg_hc_regs *) ((char *)
9504+ global_regs +
9505+ 0x500);
9506+ data_fifo =
9507+ (uint32_t *) ((char *)global_regs +
9508+ 0x1000);
9509+
9510+ if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */
9511+ /* Save current interrupt mask */
9512+ gintmsk.d32 =
9513+ dwc_read_reg32(&global_regs->gintmsk);
9514+
9515+ /* Disable all interrupts
9516+ * while we muck with the
9517+ * hardware directly
9518+ */
9519+ dwc_write_reg32(&global_regs->gintmsk,
9520+ 0);
9521+
9522+ /* 15 second delay per the test spec */
9523+ mdelay(15000);
9524+
9525+ /* Drive suspend on the root port */
9526+ hprt0.d32 =
9527+ dwc_otg_read_hprt0(core_if);
9528+ hprt0.b.prtsusp = 1;
9529+ hprt0.b.prtres = 0;
9530+ dwc_write_reg32(core_if->host_if->hprt0,
9531+ hprt0.d32);
9532+
9533+ /* 15 second delay per the test spec */
9534+ mdelay(15000);
9535+
9536+ /* Drive resume on the root port */
9537+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
9538+ hprt0.b.prtsusp = 0;
9539+ hprt0.b.prtres = 1;
9540+ dwc_write_reg32(core_if->host_if->hprt0,
9541+ hprt0.d32);
9542+ mdelay(100);
9543+
9544+ /* Clear the resume bit */
9545+ hprt0.b.prtres = 0;
9546+ dwc_write_reg32(core_if->host_if->hprt0,
9547+ hprt0.d32);
9548+
9549+ /* Restore interrupts */
9550+ dwc_write_reg32(&global_regs->gintmsk,
9551+ gintmsk.d32);
9552+ } else if (t == 7) {
9553+ /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
9554+ /* Save current interrupt mask */
9555+ gintmsk.d32 =
9556+ dwc_read_reg32(&global_regs->gintmsk);
9557+
9558+ /*
9559+ * Disable all interrupts
9560+ * while we muck with the
9561+ * hardware directly
9562+ */
9563+ dwc_write_reg32(&global_regs->gintmsk,
9564+ 0);
9565+
9566+ /* 15 second delay per the test spec */
9567+ mdelay(15000);
9568+
9569+ /* Send the Setup packet */
9570+ do_setup();
9571+
9572+ /*
9573+ * 15 second delay so nothing
9574+ * else happens for awhile.
9575+ */
9576+ mdelay(15000);
9577+
9578+ /* Restore interrupts */
9579+ dwc_write_reg32(&global_regs->gintmsk,
9580+ gintmsk.d32);
9581+ } else if (t == 8) {
9582+ /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
9583+ /* Save current interrupt mask */
9584+ gintmsk.d32 =
9585+ dwc_read_reg32(&global_regs->gintmsk);
9586+
9587+ /*
9588+ * Disable all interrupts
9589+ * while we muck with the
9590+ * hardware directly
9591+ */
9592+ dwc_write_reg32(&global_regs->gintmsk,
9593+ 0);
9594+
9595+ /* Send the Setup packet */
9596+ do_setup();
9597+
9598+ /* 15 second delay so nothing else happens for awhile */
9599+ mdelay(15000);
9600+
9601+ /* Send the In and Ack packets */
9602+ do_in_ack();
9603+
9604+ /* 15 second delay so nothing else happens for awhile */
9605+ mdelay(15000);
9606+
9607+ /* Restore interrupts */
9608+ dwc_write_reg32(&global_regs->gintmsk,
9609+ gintmsk.d32);
9610+ }
9611+ }
9612+ break;
9613+#endif /* DWC_HS_ELECT_TST */
9614+
9615+ case USB_PORT_FEAT_INDICATOR:
9616+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9617+ "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
9618+ /* Not supported */
9619+ break;
9620+ default:
9621+ retval = -EINVAL;
9622+ DWC_ERROR("DWC OTG HCD - "
9623+ "SetPortFeature request %xh "
9624+ "unknown or unsupported\n", _wValue);
9625+ break;
9626+ }
9627+ break;
9628+ default:
9629+error:
9630+ retval = -EINVAL;
9631+ DWC_WARN("DWC OTG HCD - Unknown hub control request type or "
9632+ "invalid typeReq: %xh wIndex: %xh wValue: %xh\n",
9633+ _typeReq, _wIndex, _wValue);
9634+ break;
9635+ }
9636+
9637+ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
9638+
9639+ return retval;
9640+}
9641+
9642+/**
9643+ * Assigns transactions from a QTD to a free host channel and initializes the
9644+ * host channel to perform the transactions. The host channel is removed from
9645+ * the free list.
9646+ *
9647+ * @hcd: The HCD state structure.
9648+ * @_qh: Transactions from the first QTD for this QH are selected and
9649+ * assigned to a free host channel.
9650+ */
9651+static void assign_and_init_hc(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *_qh)
9652+{
9653+ struct dwc_hc *hc;
9654+ struct dwc_otg_qtd *qtd;
9655+ struct urb *urb;
9656+
9657+ DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, hcd, _qh);
9658+
9659+ hc = list_entry(hcd->free_hc_list.next, struct dwc_hc, hc_list_entry);
9660+
9661+ /* Remove the host channel from the free list. */
9662+ list_del_init(&hc->hc_list_entry);
9663+
9664+ qtd = list_entry(_qh->qtd_list.next, struct dwc_otg_qtd,
9665+ qtd_list_entry);
9666+ urb = qtd->urb;
9667+ _qh->channel = hc;
9668+ _qh->qtd_in_process = qtd;
9669+
9670+ /*
9671+ * Use usb_pipedevice to determine device address. This address is
9672+ * 0 before the SET_ADDRESS command and the correct address afterward.
9673+ */
9674+ hc->dev_addr = usb_pipedevice(urb->pipe);
9675+ hc->ep_num = usb_pipeendpoint(urb->pipe);
9676+
9677+ if (urb->dev->speed == USB_SPEED_LOW)
9678+ hc->speed = DWC_OTG_EP_SPEED_LOW;
9679+ else if (urb->dev->speed == USB_SPEED_FULL)
9680+ hc->speed = DWC_OTG_EP_SPEED_FULL;
9681+ else
9682+ hc->speed = DWC_OTG_EP_SPEED_HIGH;
9683+
9684+ hc->max_packet = dwc_max_packet(_qh->maxp);
9685+
9686+ hc->xfer_started = 0;
9687+ hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
9688+ hc->error_state = (qtd->error_count > 0);
9689+ hc->halt_on_queue = 0;
9690+ hc->halt_pending = 0;
9691+ hc->requests = 0;
9692+
9693+ /*
9694+ * The following values may be modified in the transfer type section
9695+ * below. The xfer_len value may be reduced when the transfer is
9696+ * started to accommodate the max widths of the XferSize and PktCnt
9697+ * fields in the HCTSIZn register.
9698+ */
9699+ hc->do_ping = _qh->ping_state;
9700+ hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
9701+ hc->data_pid_start = _qh->data_toggle;
9702+ hc->multi_count = 1;
9703+
9704+ if (hcd->core_if->dma_enable) {
9705+#ifdef CONFIG_CPU_CAVIUM_OCTEON
9706+ const uint64_t USBN_DMA0_INB_CHN0 =
9707+ CVMX_USBNX_DMA0_INB_CHN0(hcd->core_if->usb_num);
9708+#endif /* CONFIG_CPU_CAVIUM_OCTEON */
9709+ hc->xfer_buff =
9710+ (uint8_t *) (unsigned long)urb->transfer_dma +
9711+ urb->actual_length;
9712+#ifdef CONFIG_CPU_CAVIUM_OCTEON
9713+ /* Octeon uses external DMA */
9714+ wmb();
9715+ cvmx_write_csr(USBN_DMA0_INB_CHN0 + hc->hc_num * 8,
9716+ (unsigned long)hc->xfer_buff);
9717+ cvmx_read_csr(USBN_DMA0_INB_CHN0 + hc->hc_num * 8);
9718+ DWC_DEBUGPL(DBG_HCDV,
9719+ "IN: hc->hc_num = %d, hc->xfer_buff = %p\n",
9720+ hc->hc_num, hc->xfer_buff);
9721+#endif /* CONFIG_CPU_CAVIUM_OCTEON */
9722+ } else {
9723+ hc->xfer_buff =
9724+ (uint8_t *) urb->transfer_buffer + urb->actual_length;
9725+ }
9726+ hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
9727+ hc->xfer_count = 0;
9728+
9729+ /*
9730+ * Set the split attributes
9731+ */
9732+ hc->do_split = 0;
9733+ if (_qh->do_split) {
9734+ hc->do_split = 1;
9735+ hc->xact_pos = qtd->isoc_split_pos;
9736+ hc->complete_split = qtd->complete_split;
9737+ hc->hub_addr = urb->dev->tt->hub->devnum;
9738+ hc->port_addr = urb->dev->ttport;
9739+ }
9740+
9741+ switch (usb_pipetype(urb->pipe)) {
9742+ case PIPE_CONTROL:
9743+ hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
9744+ switch (qtd->control_phase) {
9745+ case DWC_OTG_CONTROL_SETUP:
9746+ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n");
9747+ hc->do_ping = 0;
9748+ hc->ep_is_in = 0;
9749+ hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
9750+ if (hcd->core_if->dma_enable) {
9751+ hc->xfer_buff =
9752+ (uint8_t *) (unsigned long)urb->setup_dma;
9753+ } else {
9754+ hc->xfer_buff = (uint8_t *) urb->setup_packet;
9755+ }
9756+ hc->xfer_len = 8;
9757+ break;
9758+ case DWC_OTG_CONTROL_DATA:
9759+ DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n");
9760+ hc->data_pid_start = qtd->data_toggle;
9761+ break;
9762+ case DWC_OTG_CONTROL_STATUS:
9763+ /*
9764+ * Direction is opposite of data direction or IN if no
9765+ * data.
9766+ */
9767+ DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n");
9768+ if (urb->transfer_buffer_length == 0) {
9769+ hc->ep_is_in = 1;
9770+ } else {
9771+ hc->ep_is_in =
9772+ (usb_pipein(urb->pipe) != USB_DIR_IN);
9773+ }
9774+ if (hc->ep_is_in)
9775+ hc->do_ping = 0;
9776+ hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
9777+ hc->xfer_len = 0;
9778+ if (hcd->core_if->dma_enable) {
9779+ hc->xfer_buff =
9780+ (uint8_t *) (unsigned long)hcd->
9781+ status_buf_dma;
9782+ } else {
9783+ hc->xfer_buff = (uint8_t *) hcd->status_buf;
9784+ }
9785+ break;
9786+ }
9787+ break;
9788+ case PIPE_BULK:
9789+ hc->ep_type = DWC_OTG_EP_TYPE_BULK;
9790+ break;
9791+ case PIPE_INTERRUPT:
9792+ hc->ep_type = DWC_OTG_EP_TYPE_INTR;
9793+ break;
9794+ case PIPE_ISOCHRONOUS:
9795+ {
9796+ struct usb_iso_packet_descriptor *frame_desc;
9797+ frame_desc =
9798+ &urb->iso_frame_desc[qtd->isoc_frame_index];
9799+ hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
9800+ if (hcd->core_if->dma_enable) {
9801+ hc->xfer_buff =
9802+ (uint8_t *) (unsigned long)urb->
9803+ transfer_dma;
9804+ } else {
9805+ hc->xfer_buff =
9806+ (uint8_t *) urb->transfer_buffer;
9807+ }
9808+ hc->xfer_buff +=
9809+ frame_desc->offset + qtd->isoc_split_offset;
9810+ hc->xfer_len =
9811+ frame_desc->length - qtd->isoc_split_offset;
9812+
9813+ if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
9814+ if (hc->xfer_len <= 188) {
9815+ hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
9816+ } else {
9817+ hc->xact_pos =
9818+ DWC_HCSPLIT_XACTPOS_BEGIN;
9819+ }
9820+ }
9821+ }
9822+ break;
9823+ }
9824+
9825+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
9826+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
9827+ /*
9828+ * This value may be modified when the transfer is started to
9829+ * reflect the actual transfer length.
9830+ */
9831+ hc->multi_count = dwc_hb_mult(_qh->maxp);
9832+ }
9833+
9834+ dwc_otg_hc_init(hcd->core_if, hc);
9835+ hc->qh = _qh;
9836+}
9837+
9838+/**
9839+ * This function selects transactions from the HCD transfer schedule and
9840+ * assigns them to available host channels. It is called from HCD interrupt
9841+ * handler functions.
9842+ *
9843+ * @hcd: The HCD state structure.
9844+ *
9845+ * Returns The types of new transactions that were assigned to host channels.
9846+ */
9847+enum dwc_otg_transaction_type dwc_otg_hcd_select_transactions(struct dwc_otg_hcd
9848+ *hcd)
9849+{
9850+ struct list_head *qh_ptr;
9851+ struct dwc_otg_qh *qh;
9852+ int num_channels;
9853+ enum dwc_otg_transaction_type ret_val = DWC_OTG_TRANSACTION_NONE;
9854+
9855+#ifdef DEBUG_SOF
9856+ DWC_DEBUGPL(DBG_HCD, " Select Transactions\n");
9857+#endif
9858+
9859+ /* Process entries in the periodic ready list. */
9860+ qh_ptr = hcd->periodic_sched_ready.next;
9861+ while (qh_ptr != &hcd->periodic_sched_ready &&
9862+ !list_empty(&hcd->free_hc_list)) {
9863+
9864+ qh = list_entry(qh_ptr, struct dwc_otg_qh, qh_list_entry);
9865+ assign_and_init_hc(hcd, qh);
9866+
9867+ /*
9868+ * Move the QH from the periodic ready schedule to the
9869+ * periodic assigned schedule.
9870+ */
9871+ qh_ptr = qh_ptr->next;
9872+ list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned);
9873+
9874+ ret_val = DWC_OTG_TRANSACTION_PERIODIC;
9875+ }
9876+
9877+ /*
9878+ * Process entries in the inactive portion of the non-periodic
9879+ * schedule. Some free host channels may not be used if they are
9880+ * reserved for periodic transfers.
9881+ */
9882+ qh_ptr = hcd->non_periodic_sched_inactive.next;
9883+ num_channels = hcd->core_if->core_params->host_channels;
9884+ while (qh_ptr != &hcd->non_periodic_sched_inactive &&
9885+ (hcd->non_periodic_channels <
9886+ num_channels - hcd->periodic_channels) &&
9887+ !list_empty(&hcd->free_hc_list)) {
9888+
9889+ qh = list_entry(qh_ptr, struct dwc_otg_qh, qh_list_entry);
9890+ assign_and_init_hc(hcd, qh);
9891+
9892+ /*
9893+ * Move the QH from the non-periodic inactive schedule to the
9894+ * non-periodic active schedule.
9895+ */
9896+ qh_ptr = qh_ptr->next;
9897+ list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active);
9898+
9899+ if (ret_val == DWC_OTG_TRANSACTION_NONE)
9900+ ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
9901+ else
9902+ ret_val = DWC_OTG_TRANSACTION_ALL;
9903+
9904+ hcd->non_periodic_channels++;
9905+ }
9906+
9907+ return ret_val;
9908+}
9909+
9910+/**
9911+ * Attempts to queue a single transaction request for a host channel
9912+ * associated with either a periodic or non-periodic transfer. This function
9913+ * assumes that there is space available in the appropriate request queue. For
9914+ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
9915+ * is available in the appropriate Tx FIFO.
9916+ *
9917+ * @hcd: The HCD state structure.
9918+ * @_hc: Host channel descriptor associated with either a periodic or
9919+ * non-periodic transfer.
9920+ * @_fifo_dwords_avail: Number of DWORDs available in the periodic Tx
9921+ * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic
9922+ * transfers.
9923+ *
9924+ * Returns 1 if a request is queued and more requests may be needed to
9925+ * complete the transfer, 0 if no more requests are required for this
9926+ * transfer, -1 if there is insufficient space in the Tx FIFO.
9927+ */
9928+static int queue_transaction(struct dwc_otg_hcd *hcd,
9929+ struct dwc_hc *_hc, uint16_t _fifo_dwords_avail)
9930+{
9931+ int retval;
9932+
9933+ if (hcd->core_if->dma_enable) {
9934+ if (!_hc->xfer_started) {
9935+ dwc_otg_hc_start_transfer(hcd->core_if, _hc);
9936+ _hc->qh->ping_state = 0;
9937+ }
9938+ retval = 0;
9939+ } else if (_hc->halt_pending) {
9940+ /* Don't queue a request if the channel has been halted. */
9941+ retval = 0;
9942+ } else if (_hc->halt_on_queue) {
9943+ dwc_otg_hc_halt(hcd->core_if, _hc, _hc->halt_status);
9944+ retval = 0;
9945+ } else if (_hc->do_ping) {
9946+ if (!_hc->xfer_started)
9947+ dwc_otg_hc_start_transfer(hcd->core_if, _hc);
9948+ retval = 0;
9949+ } else if (!_hc->ep_is_in ||
9950+ _hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
9951+ if ((_fifo_dwords_avail * 4) >= _hc->max_packet) {
9952+ if (!_hc->xfer_started) {
9953+ dwc_otg_hc_start_transfer(hcd->core_if, _hc);
9954+ retval = 1;
9955+ } else {
9956+ retval =
9957+ dwc_otg_hc_continue_transfer(hcd->core_if,
9958+ _hc);
9959+ }
9960+ } else {
9961+ retval = -1;
9962+ }
9963+ } else {
9964+ if (!_hc->xfer_started) {
9965+ dwc_otg_hc_start_transfer(hcd->core_if, _hc);
9966+ retval = 1;
9967+ } else {
9968+ retval =
9969+ dwc_otg_hc_continue_transfer(hcd->core_if, _hc);
9970+ }
9971+ }
9972+
9973+ return retval;
9974+}
9975+
9976+/**
9977+ * Processes active non-periodic channels and queues transactions for these
9978+ * channels to the DWC_otg controller. After queueing transactions, the NP Tx
9979+ * FIFO Empty interrupt is enabled if there are more transactions to queue as
9980+ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
9981+ * FIFO Empty interrupt is disabled.
9982+ */
9983+static void process_non_periodic_channels(struct dwc_otg_hcd *hcd)
9984+{
9985+ union gnptxsts_data tx_status;
9986+ struct list_head *orig_qh_ptr;
9987+ struct dwc_otg_qh *qh;
9988+ int status;
9989+ int no_queue_space = 0;
9990+ int no_fifo_space = 0;
9991+ int more_to_do = 0;
9992+
9993+ struct dwc_otg_core_global_regs *global_regs =
9994+ hcd->core_if->core_global_regs;
9995+
9996+ DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n");
9997+#ifdef DEBUG
9998+ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
9999+ DWC_DEBUGPL(DBG_HCDV,
10000+ " NP Tx Req Queue Space Avail (before queue): %d\n",
10001+ tx_status.b.nptxqspcavail);
10002+ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n",
10003+ tx_status.b.nptxfspcavail);
10004+#endif
10005+ /*
10006+ * Keep track of the starting point. Skip over the start-of-list
10007+ * entry.
10008+ */
10009+ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active)
10010+ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
10011+
10012+ orig_qh_ptr = hcd->non_periodic_qh_ptr;
10013+
10014+ /*
10015+ * Process once through the active list or until no more space is
10016+ * available in the request queue or the Tx FIFO.
10017+ */
10018+ do {
10019+ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
10020+ if (!hcd->core_if->dma_enable
10021+ && tx_status.b.nptxqspcavail == 0) {
10022+ no_queue_space = 1;
10023+ break;
10024+ }
10025+
10026+ qh = list_entry(hcd->non_periodic_qh_ptr, struct dwc_otg_qh,
10027+ qh_list_entry);
10028+ status =
10029+ queue_transaction(hcd, qh->channel,
10030+ tx_status.b.nptxfspcavail);
10031+
10032+ if (status > 0) {
10033+ more_to_do = 1;
10034+ } else if (status < 0) {
10035+ no_fifo_space = 1;
10036+ break;
10037+ }
10038+
10039+ /* Advance to next QH, skipping start-of-list entry. */
10040+ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
10041+ if (hcd->non_periodic_qh_ptr ==
10042+ &hcd->non_periodic_sched_active) {
10043+ hcd->non_periodic_qh_ptr =
10044+ hcd->non_periodic_qh_ptr->next;
10045+ }
10046+
10047+ } while (hcd->non_periodic_qh_ptr != orig_qh_ptr);
10048+
10049+ if (!hcd->core_if->dma_enable) {
10050+ union gintmsk_data intr_mask = {.d32 = 0 };
10051+ intr_mask.b.nptxfempty = 1;
10052+
10053+#ifdef DEBUG
10054+ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
10055+ DWC_DEBUGPL(DBG_HCDV,
10056+ " NP Tx Req Queue Space Avail (after queue): %d\n",
10057+ tx_status.b.nptxqspcavail);
10058+ DWC_DEBUGPL(DBG_HCDV,
10059+ " NP Tx FIFO Space Avail (after queue): %d\n",
10060+ tx_status.b.nptxfspcavail);
10061+#endif
10062+ if (no_queue_space || no_fifo_space) {
10063+ /*
10064+ * May need to queue more transactions as the request
10065+ * queue or Tx FIFO empties. Enable the non-periodic
10066+ * Tx FIFO empty interrupt. (Always use the half-empty
10067+ * level to ensure that new requests are loaded as
10068+ * soon as possible.)
10069+ */
10070+ dwc_modify_reg32(&global_regs->gintmsk, 0,
10071+ intr_mask.d32);
10072+ } else {
10073+ /*
10074+ * Disable the Tx FIFO empty interrupt since there are
10075+ * no more transactions that need to be queued right
10076+ * now. This function is called from interrupt
10077+ * handlers to queue more transactions as transfer
10078+ * states change.
10079+ */
10080+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32,
10081+ 0);
10082+ if (more_to_do) {
10083+ /* When not using DMA, many USB
10084+ * devices cause excessive loads on
10085+ * the serial bus simply because they
10086+ * continuously poll the device for
10087+ * status. Here we use the timer to
10088+ * rate limit how fast we can get the
10089+ * the NP TX fifo empty interrupt. We
10090+ * leave the interrupt disable until
10091+ * the timer fires and reenables it */
10092+
10093+ /* We'll rate limit the interrupt at
10094+ * 20000 per second. Making this
10095+ * faster improves USB performance but
10096+ * uses more CPU */
10097+ hrtimer_start_range_ns(&hcd->poll_rate_limit,
10098+ ktime_set(0, 50000),
10099+ 5000, HRTIMER_MODE_REL);
10100+ }
10101+ }
10102+ }
10103+}
10104+
10105+/**
10106+ * Processes periodic channels for the next frame and queues transactions for
10107+ * these channels to the DWC_otg controller. After queueing transactions, the
10108+ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
10109+ * to queue as Periodic Tx FIFO or request queue space becomes available.
10110+ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
10111+ */
10112+static void process_periodic_channels(struct dwc_otg_hcd *hcd)
10113+{
10114+ union hptxsts_data tx_status;
10115+ struct list_head *qh_ptr;
10116+ struct dwc_otg_qh *qh;
10117+ int status;
10118+ int no_queue_space = 0;
10119+ int no_fifo_space = 0;
10120+
10121+ struct dwc_otg_host_global_regs *host_regs;
10122+ host_regs = hcd->core_if->host_if->host_global_regs;
10123+
10124+ DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n");
10125+#ifdef DEBUG
10126+ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
10127+ DWC_DEBUGPL(DBG_HCDV,
10128+ " P Tx Req Queue Space Avail (before queue): %d\n",
10129+ tx_status.b.ptxqspcavail);
10130+ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n",
10131+ tx_status.b.ptxfspcavail);
10132+#endif
10133+
10134+ qh_ptr = hcd->periodic_sched_assigned.next;
10135+ while (qh_ptr != &hcd->periodic_sched_assigned) {
10136+ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
10137+ if (tx_status.b.ptxqspcavail == 0) {
10138+ no_queue_space = 1;
10139+ break;
10140+ }
10141+
10142+ qh = list_entry(qh_ptr, struct dwc_otg_qh, qh_list_entry);
10143+
10144+ /*
10145+ * Set a flag if we're queuing high-bandwidth in slave mode.
10146+ * The flag prevents any halts to get into the request queue in
10147+ * the middle of multiple high-bandwidth packets getting queued.
10148+ */
10149+ if ((!hcd->core_if->dma_enable) &&
10150+ (qh->channel->multi_count > 1)) {
10151+ hcd->core_if->queuing_high_bandwidth = 1;
10152+ }
10153+
10154+ status =
10155+ queue_transaction(hcd, qh->channel,
10156+ tx_status.b.ptxfspcavail);
10157+ if (status < 0) {
10158+ no_fifo_space = 1;
10159+ break;
10160+ }
10161+
10162+ /*
10163+ * In Slave mode, stay on the current transfer until there is
10164+ * nothing more to do or the high-bandwidth request count is
10165+ * reached. In DMA mode, only need to queue one request. The
10166+ * controller automatically handles multiple packets for
10167+ * high-bandwidth transfers.
10168+ */
10169+ if (hcd->core_if->dma_enable ||
10170+ (status == 0 ||
10171+ qh->channel->requests == qh->channel->multi_count)) {
10172+ qh_ptr = qh_ptr->next;
10173+ /*
10174+ * Move the QH from the periodic assigned schedule to
10175+ * the periodic queued schedule.
10176+ */
10177+ list_move(&qh->qh_list_entry,
10178+ &hcd->periodic_sched_queued);
10179+
10180+ /* done queuing high bandwidth */
10181+ hcd->core_if->queuing_high_bandwidth = 0;
10182+ }
10183+ }
10184+
10185+ if (!hcd->core_if->dma_enable) {
10186+ struct dwc_otg_core_global_regs *global_regs;
10187+ union gintmsk_data intr_mask = {.d32 = 0 };
10188+
10189+ global_regs = hcd->core_if->core_global_regs;
10190+ intr_mask.b.ptxfempty = 1;
10191+#ifdef DEBUG
10192+ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
10193+ DWC_DEBUGPL(DBG_HCDV,
10194+ " P Tx Req Queue Space Avail (after queue): %d\n",
10195+ tx_status.b.ptxqspcavail);
10196+ DWC_DEBUGPL(DBG_HCDV,
10197+ " P Tx FIFO Space Avail (after queue): %d\n",
10198+ tx_status.b.ptxfspcavail);
10199+#endif
10200+ if (!(list_empty(&hcd->periodic_sched_assigned)) ||
10201+ no_queue_space || no_fifo_space) {
10202+ /*
10203+ * May need to queue more transactions as the request
10204+ * queue or Tx FIFO empties. Enable the periodic Tx
10205+ * FIFO empty interrupt. (Always use the half-empty
10206+ * level to ensure that new requests are loaded as
10207+ * soon as possible.)
10208+ */
10209+ dwc_modify_reg32(&global_regs->gintmsk, 0,
10210+ intr_mask.d32);
10211+ } else {
10212+ /*
10213+ * Disable the Tx FIFO empty interrupt since there are
10214+ * no more transactions that need to be queued right
10215+ * now. This function is called from interrupt
10216+ * handlers to queue more transactions as transfer
10217+ * states change.
10218+ */
10219+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32,
10220+ 0);
10221+ }
10222+ }
10223+}
10224+
10225+/**
10226+ * This function processes the currently active host channels and queues
10227+ * transactions for these channels to the DWC_otg controller. It is called
10228+ * from HCD interrupt handler functions.
10229+ *
10230+ * @hcd: The HCD state structure.
10231+ * @_tr_type: The type(s) of transactions to queue (non-periodic,
10232+ * periodic, or both).
10233+ */
10234+void dwc_otg_hcd_queue_transactions(struct dwc_otg_hcd *hcd,
10235+ enum dwc_otg_transaction_type _tr_type)
10236+{
10237+#ifdef DEBUG_SOF
10238+ DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n");
10239+#endif
10240+ /* Process host channels associated with periodic transfers. */
10241+ if ((_tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
10242+ _tr_type == DWC_OTG_TRANSACTION_ALL) &&
10243+ !list_empty(&hcd->periodic_sched_assigned)) {
10244+
10245+ process_periodic_channels(hcd);
10246+ }
10247+
10248+ /* Process host channels associated with non-periodic transfers. */
10249+ if ((_tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
10250+ _tr_type == DWC_OTG_TRANSACTION_ALL)) {
10251+ if (!list_empty(&hcd->non_periodic_sched_active)) {
10252+ process_non_periodic_channels(hcd);
10253+ } else {
10254+ /*
10255+ * Ensure NP Tx FIFO empty interrupt is disabled when
10256+ * there are no non-periodic transfers to process.
10257+ */
10258+ union gintmsk_data gintmsk = {.d32 = 0 };
10259+ gintmsk.b.nptxfempty = 1;
10260+ dwc_modify_reg32(&hcd->core_if->core_global_regs->
10261+ gintmsk, gintmsk.d32, 0);
10262+ }
10263+ }
10264+}
10265+
10266+/**
10267+ * Sets the final status of an URB and returns it to the device driver. Any
10268+ * required cleanup of the URB is performed.
10269+ */
10270+void dwc_otg_hcd_complete_urb(struct dwc_otg_hcd *hcd, struct urb *urb,
10271+ int status)
10272+{
10273+#ifdef DEBUG
10274+ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
10275+ DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n",
10276+ __func__, urb, usb_pipedevice(urb->pipe),
10277+ usb_pipeendpoint(urb->pipe),
10278+ usb_pipein(urb->pipe) ? "IN" : "OUT", status);
10279+ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
10280+ int i;
10281+ for (i = 0; i < urb->number_of_packets; i++) {
10282+ DWC_PRINT(" ISO Desc %d status: %d\n",
10283+ i, urb->iso_frame_desc[i].status);
10284+ }
10285+ }
10286+ }
10287+#endif
10288+
10289+ urb->status = status;
10290+ urb->hcpriv = NULL;
10291+
10292+ usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status);
10293+}
10294+
10295+/*
10296+ * Returns the Queue Head for an URB.
10297+ */
10298+struct dwc_otg_qh *dwc_urb_to_qh(struct urb *urb)
10299+{
10300+ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
10301+ return ep->hcpriv;
10302+}
10303+
10304+#ifdef DEBUG
10305+void dwc_print_setup_data(uint8_t *setup)
10306+{
10307+ int i;
10308+ if (CHK_DEBUG_LEVEL(DBG_HCD)) {
10309+ DWC_PRINT("Setup Data = MSB ");
10310+ for (i = 7; i >= 0; i--)
10311+ DWC_PRINT("%02x ", setup[i]);
10312+ DWC_PRINT("\n");
10313+ DWC_PRINT(" bmRequestType Tranfer = %s\n",
10314+ (setup[0] & 0x80) ? "Device-to-Host" :
10315+ "Host-to-Device");
10316+ DWC_PRINT(" bmRequestType Type = ");
10317+ switch ((setup[0] & 0x60) >> 5) {
10318+ case 0:
10319+ DWC_PRINT("Standard\n");
10320+ break;
10321+ case 1:
10322+ DWC_PRINT("Class\n");
10323+ break;
10324+ case 2:
10325+ DWC_PRINT("Vendor\n");
10326+ break;
10327+ case 3:
10328+ DWC_PRINT("Reserved\n");
10329+ break;
10330+ }
10331+ DWC_PRINT(" bmRequestType Recipient = ");
10332+ switch (setup[0] & 0x1f) {
10333+ case 0:
10334+ DWC_PRINT("Device\n");
10335+ break;
10336+ case 1:
10337+ DWC_PRINT("Interface\n");
10338+ break;
10339+ case 2:
10340+ DWC_PRINT("Endpoint\n");
10341+ break;
10342+ case 3:
10343+ DWC_PRINT("Other\n");
10344+ break;
10345+ default:
10346+ DWC_PRINT("Reserved\n");
10347+ break;
10348+ }
10349+ DWC_PRINT(" bRequest = 0x%0x\n", setup[1]);
10350+ DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *) &setup[2]));
10351+ DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *) &setup[4]));
10352+ DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *) &setup[6]));
10353+ }
10354+}
10355+#endif
10356+
10357+void dwc_otg_hcd_dump_frrem(struct dwc_otg_hcd *hcd)
10358+{
10359+#ifdef DEBUG
10360+ DWC_PRINT("Frame remaining at SOF:\n");
10361+ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
10362+ hcd->frrem_samples, hcd->frrem_accum,
10363+ (hcd->frrem_samples > 0) ?
10364+ hcd->frrem_accum / hcd->frrem_samples : 0);
10365+
10366+ DWC_PRINT("\n");
10367+ DWC_PRINT("Frame remaining at start_transfer (uframe 7):\n");
10368+ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
10369+ hcd->core_if->hfnum_7_samples,
10370+ hcd->core_if->hfnum_7_frrem_accum,
10371+ (hcd->core_if->hfnum_7_samples >
10372+ 0) ? hcd->core_if->hfnum_7_frrem_accum /
10373+ hcd->core_if->hfnum_7_samples : 0);
10374+ DWC_PRINT("Frame remaining at start_transfer (uframe 0):\n");
10375+ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
10376+ hcd->core_if->hfnum_0_samples,
10377+ hcd->core_if->hfnum_0_frrem_accum,
10378+ (hcd->core_if->hfnum_0_samples >
10379+ 0) ? hcd->core_if->hfnum_0_frrem_accum /
10380+ hcd->core_if->hfnum_0_samples : 0);
10381+ DWC_PRINT("Frame remaining at start_transfer (uframe 1-6):\n");
10382+ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
10383+ hcd->core_if->hfnum_other_samples,
10384+ hcd->core_if->hfnum_other_frrem_accum,
10385+ (hcd->core_if->hfnum_other_samples >
10386+ 0) ? hcd->core_if->hfnum_other_frrem_accum /
10387+ hcd->core_if->hfnum_other_samples : 0);
10388+
10389+ DWC_PRINT("\n");
10390+ DWC_PRINT("Frame remaining at sample point A (uframe 7):\n");
10391+ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
10392+ hcd->hfnum_7_samples_a, hcd->hfnum_7_frrem_accum_a,
10393+ (hcd->hfnum_7_samples_a > 0) ?
10394+ hcd->hfnum_7_frrem_accum_a / hcd->hfnum_7_samples_a : 0);
10395+ DWC_PRINT("Frame remaining at sample point A (uframe 0):\n");
10396+ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
10397+ hcd->hfnum_0_samples_a, hcd->hfnum_0_frrem_accum_a,
10398+ (hcd->hfnum_0_samples_a > 0) ?
10399+ hcd->hfnum_0_frrem_accum_a / hcd->hfnum_0_samples_a : 0);
10400+ DWC_PRINT("Frame remaining at sample point A (uframe 1-6):\n");
10401+ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
10402+ hcd->hfnum_other_samples_a, hcd->hfnum_other_frrem_accum_a,
10403+ (hcd->hfnum_other_samples_a > 0) ?
10404+ hcd->hfnum_other_frrem_accum_a /
10405+ hcd->hfnum_other_samples_a : 0);
10406+
10407+ DWC_PRINT("\n");
10408+ DWC_PRINT("Frame remaining at sample point B (uframe 7):\n");
10409+ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
10410+ hcd->hfnum_7_samples_b, hcd->hfnum_7_frrem_accum_b,
10411+ (hcd->hfnum_7_samples_b > 0) ?
10412+ hcd->hfnum_7_frrem_accum_b / hcd->hfnum_7_samples_b : 0);
10413+ DWC_PRINT("Frame remaining at sample point B (uframe 0):\n");
10414+ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
10415+ hcd->hfnum_0_samples_b, hcd->hfnum_0_frrem_accum_b,
10416+ (hcd->hfnum_0_samples_b > 0) ?
10417+ hcd->hfnum_0_frrem_accum_b / hcd->hfnum_0_samples_b : 0);
10418+ DWC_PRINT("Frame remaining at sample point B (uframe 1-6):\n");
10419+ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
10420+ hcd->hfnum_other_samples_b, hcd->hfnum_other_frrem_accum_b,
10421+ (hcd->hfnum_other_samples_b > 0) ?
10422+ hcd->hfnum_other_frrem_accum_b /
10423+ hcd->hfnum_other_samples_b : 0);
10424+#endif
10425+}
10426+
10427+void dwc_otg_hcd_dump_state(struct dwc_otg_hcd *hcd)
10428+{
10429+#ifdef DEBUG
10430+ int num_channels;
10431+ int i;
10432+ union gnptxsts_data np_tx_status;
10433+ union hptxsts_data p_tx_status;
10434+
10435+ num_channels = hcd->core_if->core_params->host_channels;
10436+ DWC_PRINT("\n");
10437+ DWC_PRINT
10438+ ("************************************************************\n");
10439+ DWC_PRINT("HCD State:\n");
10440+ DWC_PRINT(" Num channels: %d\n", num_channels);
10441+ for (i = 0; i < num_channels; i++) {
10442+ struct dwc_hc *hc = hcd->hc_ptr_array[i];
10443+ DWC_PRINT(" Channel %d:\n", i);
10444+ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
10445+ hc->dev_addr, hc->ep_num, hc->ep_is_in);
10446+ DWC_PRINT(" speed: %d\n", hc->speed);
10447+ DWC_PRINT(" ep_type: %d\n", hc->ep_type);
10448+ DWC_PRINT(" max_packet: %d\n", hc->max_packet);
10449+ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
10450+ DWC_PRINT(" multi_count: %d\n", hc->multi_count);
10451+ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
10452+ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
10453+ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
10454+ DWC_PRINT(" xfer_count: %d\n", hc->xfer_count);
10455+ DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue);
10456+ DWC_PRINT(" halt_pending: %d\n", hc->halt_pending);
10457+ DWC_PRINT(" halt_status: %d\n", hc->halt_status);
10458+ DWC_PRINT(" do_split: %d\n", hc->do_split);
10459+ DWC_PRINT(" complete_split: %d\n", hc->complete_split);
10460+ DWC_PRINT(" hub_addr: %d\n", hc->hub_addr);
10461+ DWC_PRINT(" port_addr: %d\n", hc->port_addr);
10462+ DWC_PRINT(" xact_pos: %d\n", hc->xact_pos);
10463+ DWC_PRINT(" requests: %d\n", hc->requests);
10464+ DWC_PRINT(" qh: %p\n", hc->qh);
10465+ if (hc->xfer_started) {
10466+ union hfnum_data hfnum;
10467+ union hcchar_data hcchar;
10468+ union hctsiz_data hctsiz;
10469+ union hcint_data hcint;
10470+ union hcintmsk_data hcintmsk;
10471+ hfnum.d32 =
10472+ dwc_read_reg32(&hcd->core_if->host_if->
10473+ host_global_regs->hfnum);
10474+ hcchar.d32 =
10475+ dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->
10476+ hcchar);
10477+ hctsiz.d32 =
10478+ dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->
10479+ hctsiz);
10480+ hcint.d32 =
10481+ dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->
10482+ hcint);
10483+ hcintmsk.d32 =
10484+ dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->
10485+ hcintmsk);
10486+ DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32);
10487+ DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32);
10488+ DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32);
10489+ DWC_PRINT(" hcint: 0x%08x\n", hcint.d32);
10490+ DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32);
10491+ }
10492+ if (hc->xfer_started && (hc->qh != NULL)
10493+ && (hc->qh->qtd_in_process != NULL)) {
10494+ struct dwc_otg_qtd *qtd;
10495+ struct urb *urb;
10496+ qtd = hc->qh->qtd_in_process;
10497+ urb = qtd->urb;
10498+ DWC_PRINT(" URB Info:\n");
10499+ DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb);
10500+ if (urb != NULL) {
10501+ DWC_PRINT(" Dev: %d, EP: %d %s\n",
10502+ usb_pipedevice(urb->pipe),
10503+ usb_pipeendpoint(urb->pipe),
10504+ usb_pipein(urb->pipe) ? "IN" : "OUT");
10505+ DWC_PRINT(" Max packet size: %d\n",
10506+ usb_maxpacket(urb->dev, urb->pipe,
10507+ usb_pipeout(urb->
10508+ pipe)));
10509+ DWC_PRINT(" transfer_buffer: %p\n",
10510+ urb->transfer_buffer);
10511+ DWC_PRINT(" transfer_dma: %p\n",
10512+ (void *)urb->transfer_dma);
10513+ DWC_PRINT(" transfer_buffer_length: %d\n",
10514+ urb->transfer_buffer_length);
10515+ DWC_PRINT(" actual_length: %d\n",
10516+ urb->actual_length);
10517+ }
10518+ }
10519+ }
10520+ DWC_PRINT(" non_periodic_channels: %d\n", hcd->non_periodic_channels);
10521+ DWC_PRINT(" periodic_channels: %d\n", hcd->periodic_channels);
10522+ DWC_PRINT(" periodic_usecs: %d\n", hcd->periodic_usecs);
10523+ np_tx_status.d32 =
10524+ dwc_read_reg32(&hcd->core_if->core_global_regs->gnptxsts);
10525+ DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n",
10526+ np_tx_status.b.nptxqspcavail);
10527+ DWC_PRINT(" NP Tx FIFO Space Avail: %d\n",
10528+ np_tx_status.b.nptxfspcavail);
10529+ p_tx_status.d32 =
10530+ dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hptxsts);
10531+ DWC_PRINT(" P Tx Req Queue Space Avail: %d\n",
10532+ p_tx_status.b.ptxqspcavail);
10533+ DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail);
10534+ dwc_otg_hcd_dump_frrem(hcd);
10535+ dwc_otg_dump_global_registers(hcd->core_if);
10536+ dwc_otg_dump_host_registers(hcd->core_if);
10537+ DWC_PRINT
10538+ ("************************************************************\n");
10539+ DWC_PRINT("\n");
10540+#endif
10541+}
10542+#endif /* DWC_DEVICE_ONLY */
10543diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd.h b/drivers/usb/host/dwc_otg/dwc_otg_hcd.h
10544new file mode 100644
10545index 0000000..6dcf1f5
10546--- /dev/null
10547+++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd.h
10548@@ -0,0 +1,661 @@
10549+/* ==========================================================================
10550+ *
10551+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
10552+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
10553+ * otherwise expressly agreed to in writing between Synopsys and you.
10554+ *
10555+ * The Software IS NOT an item of Licensed Software or Licensed Product under
10556+ * any End User Software License Agreement or Agreement for Licensed Product
10557+ * with Synopsys or any supplement thereto. You are permitted to use and
10558+ * redistribute this Software in source and binary forms, with or without
10559+ * modification, provided that redistributions of source code must retain this
10560+ * notice. You may not view, use, disclose, copy or distribute this file or
10561+ * any information contained herein except pursuant to this license grant from
10562+ * Synopsys. If you do not agree with this notice, including the disclaimer
10563+ * below, then you are not authorized to use the Software.
10564+ *
10565+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
10566+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
10567+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
10568+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
10569+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
10570+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
10571+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
10572+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
10573+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
10574+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
10575+ * DAMAGE.
10576+ * ========================================================================== */
10577+#ifndef DWC_DEVICE_ONLY
10578+#if !defined(__DWC_HCD_H__)
10579+#define __DWC_HCD_H__
10580+
10581+#include <linux/list.h>
10582+#include <linux/usb.h>
10583+#include <linux/hrtimer.h>
10584+
10585+#include <../drivers/usb/core/hcd.h>
10586+
10587+struct dwc_otg_device;
10588+
10589+#include "dwc_otg_cil.h"
10590+
10591+/**
10592+ *
10593+ * This file contains the structures, constants, and interfaces for
10594+ * the Host Contoller Driver (HCD).
10595+ *
10596+ * The Host Controller Driver (HCD) is responsible for translating requests
10597+ * from the USB Driver into the appropriate actions on the DWC_otg controller.
10598+ * It isolates the USBD from the specifics of the controller by providing an
10599+ * API to the USBD.
10600+ */
10601+
10602+/**
10603+ * Phases for control transfers.
10604+ */
10605+enum dwc_otg_control_phase {
10606+ DWC_OTG_CONTROL_SETUP,
10607+ DWC_OTG_CONTROL_DATA,
10608+ DWC_OTG_CONTROL_STATUS
10609+};
10610+
10611+/** Transaction types. */
10612+enum dwc_otg_transaction_type {
10613+ DWC_OTG_TRANSACTION_NONE,
10614+ DWC_OTG_TRANSACTION_PERIODIC,
10615+ DWC_OTG_TRANSACTION_NON_PERIODIC,
10616+ DWC_OTG_TRANSACTION_ALL
10617+};
10618+
10619+struct dwc_otg_qh;
10620+
10621+/*
10622+ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
10623+ * interrupt, or isochronous transfer. A single QTD is created for each URB
10624+ * (of one of these types) submitted to the HCD. The transfer associated with
10625+ * a QTD may require one or multiple transactions.
10626+ *
10627+ * A QTD is linked to a Queue Head, which is entered in either the
10628+ * non-periodic or periodic schedule for execution. When a QTD is chosen for
10629+ * execution, some or all of its transactions may be executed. After
10630+ * execution, the state of the QTD is updated. The QTD may be retired if all
10631+ * its transactions are complete or if an error occurred. Otherwise, it
10632+ * remains in the schedule so more transactions can be executed later.
10633+ */
10634+struct dwc_otg_qtd {
10635+ /*
10636+ * Determines the PID of the next data packet for the data phase of
10637+ * control transfers. Ignored for other transfer types.<br>
10638+ * One of the following values:
10639+ * - DWC_OTG_HC_PID_DATA0
10640+ * - DWC_OTG_HC_PID_DATA1
10641+ */
10642+ uint8_t data_toggle;
10643+
10644+ /** Current phase for control transfers (Setup, Data, or Status). */
10645+ enum dwc_otg_control_phase control_phase;
10646+
10647+ /** Keep track of the current split type
10648+ * for FS/LS endpoints on a HS Hub */
10649+ uint8_t complete_split;
10650+
10651+ /** How many bytes transferred during SSPLIT OUT */
10652+ uint32_t ssplit_out_xfer_count;
10653+
10654+ /**
10655+ * Holds the number of bus errors that have occurred for a transaction
10656+ * within this transfer.
10657+ */
10658+ uint8_t error_count;
10659+
10660+ /**
10661+ * Index of the next frame descriptor for an isochronous transfer. A
10662+ * frame descriptor describes the buffer position and length of the
10663+ * data to be transferred in the next scheduled (micro)frame of an
10664+ * isochronous transfer. It also holds status for that transaction.
10665+ * The frame index starts at 0.
10666+ */
10667+ int isoc_frame_index;
10668+
10669+ /** Position of the ISOC split on full/low speed */
10670+ uint8_t isoc_split_pos;
10671+
10672+ /** Position of the ISOC split in the buffer for the current frame */
10673+ uint16_t isoc_split_offset;
10674+
10675+ /** URB for this transfer */
10676+ struct urb *urb;
10677+
10678+ /* The queue head for this transfer. */
10679+ struct dwc_otg_qh *qh;
10680+
10681+ /** This list of QTDs */
10682+ struct list_head qtd_list_entry;
10683+
10684+};
10685+
10686+/**
10687+ * A Queue Head (QH) holds the static characteristics of an endpoint and
10688+ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
10689+ * be entered in either the non-periodic or periodic schedule.
10690+ */
10691+struct dwc_otg_qh {
10692+ /**
10693+ * Endpoint type.
10694+ * One of the following values:
10695+ * - USB_ENDPOINT_XFER_CONTROL
10696+ * - USB_ENDPOINT_XFER_ISOC
10697+ * - USB_ENDPOINT_XFER_BULK
10698+ * - USB_ENDPOINT_XFER_INT
10699+ */
10700+ uint8_t ep_type;
10701+ uint8_t ep_is_in;
10702+
10703+ /** wMaxPacketSize Field of Endpoint Descriptor. */
10704+ uint16_t maxp;
10705+
10706+ /**
10707+ * Determines the PID of the next data packet for non-control
10708+ * transfers. Ignored for control transfers.<br>
10709+ * One of the following values:
10710+ * - DWC_OTG_HC_PID_DATA0
10711+ * - DWC_OTG_HC_PID_DATA1
10712+ */
10713+ uint8_t data_toggle;
10714+
10715+ /** Ping state if 1. */
10716+ uint8_t ping_state;
10717+
10718+ /**
10719+ * List of QTDs for this QH.
10720+ */
10721+ struct list_head qtd_list;
10722+
10723+ /** Host channel currently processing transfers for this QH. */
10724+ struct dwc_hc *channel;
10725+
10726+ /** QTD currently assigned to a host channel for this QH. */
10727+ struct dwc_otg_qtd *qtd_in_process;
10728+
10729+ /** Full/low speed endpoint on high-speed hub requires split. */
10730+ uint8_t do_split;
10731+
10732+ /** @name Periodic schedule information */
10733+ /** @{ */
10734+
10735+ /** Bandwidth in microseconds per (micro)frame. */
10736+ uint8_t usecs;
10737+
10738+ /** Interval between transfers in (micro)frames. */
10739+ uint16_t interval;
10740+
10741+ /**
10742+ * (micro)frame to initialize a periodic transfer. The transfer
10743+ * executes in the following (micro)frame.
10744+ */
10745+ uint16_t sched_frame;
10746+
10747+ /** (micro)frame at which last start split was initialized. */
10748+ uint16_t start_split_frame;
10749+
10750+ /** @} */
10751+
10752+ /** Entry for QH in either the periodic or non-periodic schedule. */
10753+ struct list_head qh_list_entry;
10754+};
10755+
10756+/**
10757+ * This structure holds the state of the HCD, including the non-periodic and
10758+ * periodic schedules.
10759+ */
10760+struct dwc_otg_hcd {
10761+
10762+ /** DWC OTG Core Interface Layer */
10763+ struct dwc_otg_core_if *core_if;
10764+
10765+ /** Internal DWC HCD Flags */
10766+ union dwc_otg_hcd_internal_flags {
10767+ uint32_t d32;
10768+ struct {
10769+#ifdef __BIG_ENDIAN_BITFIELD
10770+ unsigned reserved:26;
10771+ unsigned port_over_current_change:1;
10772+ unsigned port_suspend_change:1;
10773+ unsigned port_enable_change:1;
10774+ unsigned port_reset_change:1;
10775+ unsigned port_connect_status:1;
10776+ unsigned port_connect_status_change:1;
10777+#else
10778+ unsigned port_connect_status_change:1;
10779+ unsigned port_connect_status:1;
10780+ unsigned port_reset_change:1;
10781+ unsigned port_enable_change:1;
10782+ unsigned port_suspend_change:1;
10783+ unsigned port_over_current_change:1;
10784+ unsigned reserved:26;
10785+#endif
10786+ } b;
10787+ } flags;
10788+
10789+ /**
10790+ * Inactive items in the non-periodic schedule. This is a list of
10791+ * Queue Heads. Transfers associated with these Queue Heads are not
10792+ * currently assigned to a host channel.
10793+ */
10794+ struct list_head non_periodic_sched_inactive;
10795+
10796+ /**
10797+ * Active items in the non-periodic schedule. This is a list of
10798+ * Queue Heads. Transfers associated with these Queue Heads are
10799+ * currently assigned to a host channel.
10800+ */
10801+ struct list_head non_periodic_sched_active;
10802+
10803+ /**
10804+ * Pointer to the next Queue Head to process in the active
10805+ * non-periodic schedule.
10806+ */
10807+ struct list_head *non_periodic_qh_ptr;
10808+
10809+ /**
10810+ * Inactive items in the periodic schedule. This is a list of QHs for
10811+ * periodic transfers that are _not_ scheduled for the next frame.
10812+ * Each QH in the list has an interval counter that determines when it
10813+ * needs to be scheduled for execution. This scheduling mechanism
10814+ * allows only a simple calculation for periodic bandwidth used (i.e.
10815+ * must assume that all periodic transfers may need to execute in the
10816+ * same frame). However, it greatly simplifies scheduling and should
10817+ * be sufficient for the vast majority of OTG hosts, which need to
10818+ * connect to a small number of peripherals at one time.
10819+ *
10820+ * Items move from this list to periodic_sched_ready when the QH
10821+ * interval counter is 0 at SOF.
10822+ */
10823+ struct list_head periodic_sched_inactive;
10824+
10825+ /**
10826+ * List of periodic QHs that are ready for execution in the next
10827+ * frame, but have not yet been assigned to host channels.
10828+ *
10829+ * Items move from this list to periodic_sched_assigned as host
10830+ * channels become available during the current frame.
10831+ */
10832+ struct list_head periodic_sched_ready;
10833+
10834+ /**
10835+ * List of periodic QHs to be executed in the next frame that are
10836+ * assigned to host channels.
10837+ *
10838+ * Items move from this list to periodic_sched_queued as the
10839+ * transactions for the QH are queued to the DWC_otg controller.
10840+ */
10841+ struct list_head periodic_sched_assigned;
10842+
10843+ /**
10844+ * List of periodic QHs that have been queued for execution.
10845+ *
10846+ * Items move from this list to either periodic_sched_inactive or
10847+ * periodic_sched_ready when the channel associated with the transfer
10848+ * is released. If the interval for the QH is 1, the item moves to
10849+ * periodic_sched_ready because it must be rescheduled for the next
10850+ * frame. Otherwise, the item moves to periodic_sched_inactive.
10851+ */
10852+ struct list_head periodic_sched_queued;
10853+
10854+ /**
10855+ * Total bandwidth claimed so far for periodic transfers. This value
10856+ * is in microseconds per (micro)frame. The assumption is that all
10857+ * periodic transfers may occur in the same (micro)frame.
10858+ */
10859+ uint16_t periodic_usecs;
10860+
10861+ /**
10862+ * Frame number read from the core at SOF. The value ranges from 0 to
10863+ * DWC_HFNUM_MAX_FRNUM.
10864+ */
10865+ uint16_t frame_number;
10866+
10867+ /**
10868+ * Free host channels in the controller. This is a list of
10869+ * struct dwc_hc items.
10870+ */
10871+ struct list_head free_hc_list;
10872+
10873+ /**
10874+ * Number of host channels assigned to periodic transfers. Currently
10875+ * assuming that there is a dedicated host channel for each periodic
10876+ * transaction and at least one host channel available for
10877+ * non-periodic transactions.
10878+ */
10879+ int periodic_channels;
10880+
10881+ /**
10882+ * Number of host channels assigned to non-periodic transfers.
10883+ */
10884+ int non_periodic_channels;
10885+
10886+ /**
10887+ * Array of pointers to the host channel descriptors. Allows accessing
10888+ * a host channel descriptor given the host channel number. This is
10889+ * useful in interrupt handlers.
10890+ */
10891+ struct dwc_hc *hc_ptr_array[MAX_EPS_CHANNELS];
10892+
10893+ /**
10894+ * Buffer to use for any data received during the status phase of a
10895+ * control transfer. Normally no data is transferred during the status
10896+ * phase. This buffer is used as a bit bucket.
10897+ */
10898+ uint8_t *status_buf;
10899+
10900+ /**
10901+ * DMA address for status_buf.
10902+ */
10903+ dma_addr_t status_buf_dma;
10904+#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
10905+
10906+ /**
10907+ * Structure to allow starting the HCD in a non-interrupt context
10908+ * during an OTG role change.
10909+ */
10910+ struct work_struct start_work;
10911+
10912+ /**
10913+ * Connection timer. An OTG host must display a message if the device
10914+ * does not connect. Started when the VBus power is turned on via
10915+ * sysfs attribute "buspower".
10916+ */
10917+ struct timer_list conn_timer;
10918+
10919+ /* Tasket to do a reset */
10920+ struct tasklet_struct *reset_tasklet;
10921+
10922+ struct hrtimer poll_rate_limit;
10923+
10924+ spinlock_t global_lock;
10925+
10926+#ifdef DEBUG
10927+ uint32_t frrem_samples;
10928+ uint64_t frrem_accum;
10929+
10930+ uint32_t hfnum_7_samples_a;
10931+ uint64_t hfnum_7_frrem_accum_a;
10932+ uint32_t hfnum_0_samples_a;
10933+ uint64_t hfnum_0_frrem_accum_a;
10934+ uint32_t hfnum_other_samples_a;
10935+ uint64_t hfnum_other_frrem_accum_a;
10936+
10937+ uint32_t hfnum_7_samples_b;
10938+ uint64_t hfnum_7_frrem_accum_b;
10939+ uint32_t hfnum_0_samples_b;
10940+ uint64_t hfnum_0_frrem_accum_b;
10941+ uint32_t hfnum_other_samples_b;
10942+ uint64_t hfnum_other_frrem_accum_b;
10943+#endif
10944+
10945+};
10946+
10947+/** Gets the dwc_otg_hcd from a struct usb_hcd */
10948+static inline struct dwc_otg_hcd *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
10949+{
10950+ return (struct dwc_otg_hcd *)(hcd->hcd_priv);
10951+}
10952+
10953+/** Gets the struct usb_hcd that contains a struct dwc_otg_hcd. */
10954+static inline struct usb_hcd *dwc_otg_hcd_to_hcd(struct dwc_otg_hcd
10955+ *dwc_otg_hcd)
10956+{
10957+ return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv);
10958+}
10959+
10960+/** @name HCD Create/Destroy Functions */
10961+/** @{ */
10962+extern int __init dwc_otg_hcd_init(struct device *_dev);
10963+extern void dwc_otg_hcd_remove(struct device *_dev);
10964+/** @} */
10965+
10966+/** @name Linux HC Driver API Functions */
10967+
10968+extern int dwc_otg_hcd_start(struct usb_hcd *hcd);
10969+extern void dwc_otg_hcd_stop(struct usb_hcd *hcd);
10970+extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
10971+extern void dwc_otg_hcd_free(struct usb_hcd *hcd);
10972+extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
10973+ struct urb *urb, unsigned mem_flags);
10974+extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
10975+ struct urb *urb, int status);
10976+extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
10977+ struct usb_host_endpoint *ep);
10978+extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd);
10979+extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf);
10980+extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
10981+ u16 typeReq,
10982+ u16 wValue,
10983+ u16 wIndex, char *buf, u16 wLength);
10984+
10985+
10986+/** @name Transaction Execution Functions */
10987+extern enum dwc_otg_transaction_type dwc_otg_hcd_select_transactions(struct
10988+ dwc_otg_hcd
10989+ *hcd);
10990+extern void dwc_otg_hcd_queue_transactions(struct dwc_otg_hcd *hcd,
10991+ enum dwc_otg_transaction_type tr_type);
10992+extern void dwc_otg_hcd_complete_urb(struct dwc_otg_hcd *hcd, struct urb *urb,
10993+ int status);
10994+
10995+/** @name Interrupt Handler Functions */
10996+extern int32_t dwc_otg_hcd_handle_intr(struct dwc_otg_hcd *dwc_otg_hcd);
10997+extern int32_t dwc_otg_hcd_handle_sof_intr(struct dwc_otg_hcd *dwc_otg_hcd);
10998+extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(struct dwc_otg_hcd
10999+ *dwc_otg_hcd);
11000+extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(struct dwc_otg_hcd
11001+ *dwc_otg_hcd);
11002+extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(struct dwc_otg_hcd
11003+ *dwc_otg_hcd);
11004+extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(struct dwc_otg_hcd
11005+ *dwc_otg_hcd);
11006+extern int32_t dwc_otg_hcd_handle_port_intr(struct dwc_otg_hcd *dwc_otg_hcd);
11007+extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(struct dwc_otg_hcd
11008+ *dwc_otg_hcd);
11009+extern int32_t dwc_otg_hcd_handle_disconnect_intr(struct dwc_otg_hcd
11010+ *dwc_otg_hcd);
11011+extern int32_t dwc_otg_hcd_handle_hc_intr(struct dwc_otg_hcd *dwc_otg_hcd);
11012+extern int32_t dwc_otg_hcd_handle_hc_n_intr(struct dwc_otg_hcd *dwc_otg_hcd,
11013+ uint32_t num);
11014+extern int32_t dwc_otg_hcd_handle_session_req_intr(struct dwc_otg_hcd
11015+ *dwc_otg_hcd);
11016+extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(struct dwc_otg_hcd
11017+ *dwc_otg_hcd);
11018+
11019+/** @name Schedule Queue Functions */
11020+
11021+/* Implemented in dwc_otg_hcd_queue.c */
11022+extern struct dwc_otg_qh *dwc_otg_hcd_qh_create(struct dwc_otg_hcd *hcd,
11023+ struct urb *urb);
11024+extern void dwc_otg_hcd_qh_init(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh,
11025+ struct urb *urb);
11026+extern void dwc_otg_hcd_qh_free(struct dwc_otg_qh *qh);
11027+extern int dwc_otg_hcd_qh_add(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh);
11028+extern void dwc_otg_hcd_qh_remove(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh);
11029+extern void dwc_otg_hcd_qh_deactivate(struct dwc_otg_hcd *hcd,
11030+ struct dwc_otg_qh *qh, int sched_csplit);
11031+
11032+/** Remove and free a QH */
11033+static inline void dwc_otg_hcd_qh_remove_and_free(struct dwc_otg_hcd *hcd,
11034+ struct dwc_otg_qh *qh)
11035+{
11036+ dwc_otg_hcd_qh_remove(hcd, qh);
11037+ dwc_otg_hcd_qh_free(qh);
11038+}
11039+
11040+/** Allocates memory for a QH structure.
11041+ * Returns Returns the memory allocate or NULL on error. */
11042+static inline struct dwc_otg_qh *dwc_otg_hcd_qh_alloc(void)
11043+{
11044+ return kmalloc(sizeof(struct dwc_otg_qh), GFP_ATOMIC);
11045+}
11046+
11047+extern struct dwc_otg_qtd *dwc_otg_hcd_qtd_create(struct urb *urb);
11048+extern void dwc_otg_hcd_qtd_init(struct dwc_otg_qtd *qtd, struct urb *urb);
11049+extern int dwc_otg_hcd_qtd_add(struct dwc_otg_qtd *qtd,
11050+ struct dwc_otg_hcd *dwc_otg_hcd);
11051+
11052+/** Allocates memory for a QTD structure.
11053+ * Returns Returns the memory allocate or NULL on error. */
11054+static inline struct dwc_otg_qtd *dwc_otg_hcd_qtd_alloc(void)
11055+{
11056+ return kmalloc(sizeof(struct dwc_otg_qtd), GFP_ATOMIC);
11057+}
11058+
11059+/**
11060+ * Frees the memory for a QTD structure. QTD should already be removed from
11061+ * list.
11062+ * @qtd: QTD to free.
11063+ */
11064+static inline void dwc_otg_hcd_qtd_free(struct dwc_otg_qtd *qtd)
11065+{
11066+ kfree(qtd);
11067+}
11068+
11069+/**
11070+ * Removes a QTD from list.
11071+ * @qtd: QTD to remove from list.
11072+ */
11073+static inline void dwc_otg_hcd_qtd_remove(struct dwc_otg_qtd *qtd)
11074+{
11075+ list_del(&qtd->qtd_list_entry);
11076+}
11077+
11078+/** Remove and free a QTD */
11079+static inline void dwc_otg_hcd_qtd_remove_and_free(struct dwc_otg_qtd *qtd)
11080+{
11081+ dwc_otg_hcd_qtd_remove(qtd);
11082+ dwc_otg_hcd_qtd_free(qtd);
11083+}
11084+
11085+/** @name Internal Functions */
11086+struct dwc_otg_qh *dwc_urb_to_qh(struct urb *urb);
11087+void dwc_otg_hcd_dump_frrem(struct dwc_otg_hcd *hcd);
11088+void dwc_otg_hcd_dump_state(struct dwc_otg_hcd *hcd);
11089+
11090+/** Gets the usb_host_endpoint associated with an URB. */
11091+static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *urb)
11092+{
11093+ struct usb_device *dev = urb->dev;
11094+ int ep_num = usb_pipeendpoint(urb->pipe);
11095+
11096+ if (usb_pipein(urb->pipe))
11097+ return dev->ep_in[ep_num];
11098+ else
11099+ return dev->ep_out[ep_num];
11100+}
11101+
11102+/*
11103+ * Gets the endpoint number from a bEndpointAddress argument. The endpoint is
11104+ * qualified with its direction (possible 32 endpoints per device).
11105+ */
11106+#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) \
11107+ ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
11108+ ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
11109+
11110+/** Gets the QH that contains the list_head */
11111+#define dwc_list_to_qh(_list_head_ptr_) \
11112+ (container_of(_list_head_ptr_, struct dwc_otg_qh, qh_list_entry))
11113+
11114+/** Gets the QTD that contains the list_head */
11115+#define dwc_list_to_qtd(_list_head_ptr_) \
11116+ (container_of(_list_head_ptr_, struct dwc_otg_qtd, qtd_list_entry))
11117+
11118+/** Check if QH is non-periodic */
11119+#define dwc_qh_is_non_per(_qh_ptr_) \
11120+ ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \
11121+ (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
11122+
11123+/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
11124+#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
11125+
11126+/** Packet size for any kind of endpoint descriptor */
11127+#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
11128+
11129+/**
11130+ * Returns true if frame1 is less than or equal to frame2. The comparison is
11131+ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
11132+ * frame number when the max frame number is reached.
11133+ */
11134+static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2)
11135+{
11136+ return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <=
11137+ (DWC_HFNUM_MAX_FRNUM >> 1);
11138+}
11139+
11140+/**
11141+ * Returns true if frame1 is greater than frame2. The comparison is done
11142+ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
11143+ * number when the max frame number is reached.
11144+ */
11145+static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2)
11146+{
11147+ return (frame1 != frame2) &&
11148+ (((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) <
11149+ (DWC_HFNUM_MAX_FRNUM >> 1));
11150+}
11151+
11152+/**
11153+ * Increments frame by the amount specified by inc. The addition is done
11154+ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
11155+ */
11156+static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc)
11157+{
11158+ return (frame + inc) & DWC_HFNUM_MAX_FRNUM;
11159+}
11160+
11161+static inline uint16_t dwc_full_frame_num(uint16_t frame)
11162+{
11163+ return (frame & DWC_HFNUM_MAX_FRNUM) >> 3;
11164+}
11165+
11166+static inline uint16_t dwc_micro_frame_num(uint16_t frame)
11167+{
11168+ return frame & 0x7;
11169+}
11170+
11171+#ifdef DEBUG
11172+/**
11173+ * Macro to sample the remaining PHY clocks left in the current frame. This
11174+ * may be used during debugging to determine the average time it takes to
11175+ * execute sections of code. There are two possible sample points, "a" and
11176+ * "b", so the letter argument must be one of these values.
11177+ *
11178+ * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
11179+ * example, "cat /sys/devices/lm0/hcd_frrem".
11180+ */
11181+#define dwc_sample_frrem(_hcd, _qh, _letter) \
11182+{ \
11183+ union hfnum_data hfnum; \
11184+ struct dwc_otg_qtd *qtd; \
11185+ qtd = list_entry(_qh->qtd_list.next, struct dwc_otg_qtd, qtd_list_entry); \
11186+ if (usb_pipeint(qtd->urb->pipe) && qh->start_split_frame != 0 && !qtd->complete_split) { \
11187+ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
11188+ switch (hfnum.b.frnum & 0x7) { \
11189+ case 7: \
11190+ _hcd->hfnum_7_samples_##_letter++; \
11191+ _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
11192+ break; \
11193+ case 0: \
11194+ _hcd->hfnum_0_samples_##_letter++; \
11195+ _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
11196+ break; \
11197+ default: \
11198+ _hcd->hfnum_other_samples_##_letter++; \
11199+ _hcd->hfnum_other_frrem_accum_##_letter += \
11200+ hfnum.b.frrem; \
11201+ break; \
11202+ } \
11203+ } \
11204+}
11205+#else
11206+#define dwc_sample_frrem(hcd, qh, letter)
11207+#endif
11208+#endif
11209+#endif /* DWC_DEVICE_ONLY */
11210diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c b/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c
11211new file mode 100644
11212index 0000000..2c4266f
11213--- /dev/null
11214+++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c
11215@@ -0,0 +1,1890 @@
11216+/* ==========================================================================
11217+ *
11218+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
11219+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
11220+ * otherwise expressly agreed to in writing between Synopsys and you.
11221+ *
11222+ * The Software IS NOT an item of Licensed Software or Licensed Product under
11223+ * any End User Software License Agreement or Agreement for Licensed Product
11224+ * with Synopsys or any supplement thereto. You are permitted to use and
11225+ * redistribute this Software in source and binary forms, with or without
11226+ * modification, provided that redistributions of source code must retain this
11227+ * notice. You may not view, use, disclose, copy or distribute this file or
11228+ * any information contained herein except pursuant to this license grant from
11229+ * Synopsys. If you do not agree with this notice, including the disclaimer
11230+ * below, then you are not authorized to use the Software.
11231+ *
11232+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
11233+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
11234+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
11235+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
11236+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
11237+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
11238+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
11239+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
11240+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
11241+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
11242+ * DAMAGE.
11243+ * ========================================================================== */
11244+#ifndef DWC_DEVICE_ONLY
11245+
11246+#include "dwc_otg_driver.h"
11247+#include "dwc_otg_hcd.h"
11248+#include "dwc_otg_regs.h"
11249+
11250+/*
11251+ * This file contains the implementation of the HCD Interrupt handlers.
11252+ */
11253+
11254+/* This function handles interrupts for the HCD. */
11255+int32_t dwc_otg_hcd_handle_intr(struct dwc_otg_hcd *dwc_otg_hcd)
11256+{
11257+ int retval = 0;
11258+
11259+ struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if;
11260+ union gintsts_data gintsts;
11261+#ifdef DEBUG
11262+ struct dwc_otg_core_global_regs *global_regs =
11263+ core_if->core_global_regs;
11264+#endif
11265+
11266+ /* Check if HOST Mode */
11267+ if (dwc_otg_is_host_mode(core_if)) {
11268+ gintsts.d32 = dwc_otg_read_core_intr(core_if);
11269+ if (!gintsts.d32)
11270+ return 0;
11271+#ifdef DEBUG
11272+ /* Don't print debug message in the interrupt handler on SOF */
11273+# ifndef DEBUG_SOF
11274+ if (gintsts.d32 != DWC_SOF_INTR_MASK)
11275+# endif
11276+ DWC_DEBUGPL(DBG_HCD, "\n");
11277+#endif
11278+
11279+#ifdef DEBUG
11280+# ifndef DEBUG_SOF
11281+ if (gintsts.d32 != DWC_SOF_INTR_MASK)
11282+# endif
11283+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected "
11284+ "gintsts&gintmsk=0x%08x\n",
11285+ gintsts.d32);
11286+#endif
11287+
11288+ if (gintsts.b.sofintr)
11289+ retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd);
11290+
11291+ if (gintsts.b.rxstsqlvl)
11292+ retval |=
11293+ dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd);
11294+
11295+ if (gintsts.b.nptxfempty)
11296+ retval |=
11297+ dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd);
11298+
11299+ if (gintsts.b.i2cintr)
11300+ ;/** @todo Implement i2cintr handler. */
11301+
11302+ if (gintsts.b.portintr)
11303+ retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd);
11304+
11305+ if (gintsts.b.hcintr)
11306+ retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd);
11307+
11308+ if (gintsts.b.ptxfempty) {
11309+ retval |=
11310+ dwc_otg_hcd_handle_perio_tx_fifo_empty_intr
11311+ (dwc_otg_hcd);
11312+ }
11313+#ifdef DEBUG
11314+# ifndef DEBUG_SOF
11315+ if (gintsts.d32 != DWC_SOF_INTR_MASK)
11316+# endif
11317+ {
11318+ DWC_DEBUGPL(DBG_HCD,
11319+ "DWC OTG HCD Finished Servicing Interrupts\n");
11320+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n",
11321+ dwc_read_reg32(&global_regs->gintsts));
11322+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n",
11323+ dwc_read_reg32(&global_regs->gintmsk));
11324+ }
11325+#endif
11326+
11327+#ifdef DEBUG
11328+# ifndef DEBUG_SOF
11329+ if (gintsts.d32 != DWC_SOF_INTR_MASK)
11330+# endif
11331+ DWC_DEBUGPL(DBG_HCD, "\n");
11332+#endif
11333+
11334+ }
11335+
11336+ return retval;
11337+}
11338+
11339+#ifdef DWC_TRACK_MISSED_SOFS
11340+#warning Compiling code to track missed SOFs
11341+#define FRAME_NUM_ARRAY_SIZE 1000
11342+/**
11343+ * This function is for debug only.
11344+ */
11345+static inline void track_missed_sofs(uint16_t _curr_frame_number)
11346+{
11347+ static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE];
11348+ static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE];
11349+ static int frame_num_idx;
11350+ static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM;
11351+ static int dumped_frame_num_array;
11352+
11353+ if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) {
11354+ if ((((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) !=
11355+ _curr_frame_number)) {
11356+ frame_num_array[frame_num_idx] = _curr_frame_number;
11357+ last_frame_num_array[frame_num_idx++] = last_frame_num;
11358+ }
11359+ } else if (!dumped_frame_num_array) {
11360+ int i;
11361+ printk(KERN_EMERG USB_DWC "Frame Last Frame\n");
11362+ printk(KERN_EMERG USB_DWC "----- ----------\n");
11363+ for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) {
11364+ printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n",
11365+ frame_num_array[i], last_frame_num_array[i]);
11366+ }
11367+ dumped_frame_num_array = 1;
11368+ }
11369+ last_frame_num = _curr_frame_number;
11370+}
11371+#endif
11372+
11373+/**
11374+ * Handles the start-of-frame interrupt in host mode. Non-periodic
11375+ * transactions may be queued to the DWC_otg controller for the current
11376+ * (micro)frame. Periodic transactions may be queued to the controller for the
11377+ * next (micro)frame.
11378+ */
11379+int32_t dwc_otg_hcd_handle_sof_intr(struct dwc_otg_hcd *hcd)
11380+{
11381+ union hfnum_data hfnum;
11382+ struct list_head *qh_entry;
11383+ struct dwc_otg_qh *qh;
11384+ enum dwc_otg_transaction_type tr_type;
11385+ union gintsts_data gintsts = {.d32 = 0 };
11386+
11387+ hfnum.d32 =
11388+ dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
11389+
11390+#ifdef DEBUG_SOF
11391+ DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n");
11392+#endif
11393+
11394+ hcd->frame_number = hfnum.b.frnum;
11395+
11396+#ifdef DEBUG
11397+ hcd->frrem_accum += hfnum.b.frrem;
11398+ hcd->frrem_samples++;
11399+#endif
11400+
11401+#ifdef DWC_TRACK_MISSED_SOFS
11402+ track_missed_sofs(hcd->frame_number);
11403+#endif
11404+
11405+ /* Determine whether any periodic QHs should be executed. */
11406+ qh_entry = hcd->periodic_sched_inactive.next;
11407+ while (qh_entry != &hcd->periodic_sched_inactive) {
11408+ qh = list_entry(qh_entry, struct dwc_otg_qh, qh_list_entry);
11409+ qh_entry = qh_entry->next;
11410+ if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) {
11411+ /*
11412+ * Move QH to the ready list to be executed next
11413+ * (micro)frame.
11414+ */
11415+ list_move(&qh->qh_list_entry,
11416+ &hcd->periodic_sched_ready);
11417+ }
11418+ }
11419+
11420+ tr_type = dwc_otg_hcd_select_transactions(hcd);
11421+ if (tr_type != DWC_OTG_TRANSACTION_NONE) {
11422+ dwc_otg_hcd_queue_transactions(hcd, tr_type);
11423+ } else if (list_empty(&hcd->periodic_sched_inactive) &&
11424+ list_empty(&hcd->periodic_sched_ready) &&
11425+ list_empty(&hcd->periodic_sched_assigned) &&
11426+ list_empty(&hcd->periodic_sched_queued)) {
11427+ /*
11428+ * We don't have USB data to send. Unfortunately the
11429+ * Synopsis block continues to generate interrupts at
11430+ * about 8k/sec. In order not waste time on these
11431+ * useless interrupts, we're going to disable the SOF
11432+ * interrupt. It will be re-enabled when a new packet
11433+ * is enqueued in dwc_otg_hcd_urb_enqueue()
11434+ */
11435+ dwc_modify_reg32(&hcd->core_if->core_global_regs->gintmsk,
11436+ DWC_SOF_INTR_MASK, 0);
11437+ }
11438+
11439+ /* Clear interrupt */
11440+ gintsts.b.sofintr = 1;
11441+ dwc_write_reg32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32);
11442+
11443+ return 1;
11444+}
11445+
11446+/* Handles the Rx Status Queue Level Interrupt, which indicates that
11447+ * there is at least one packet in the Rx FIFO. The packets are moved
11448+ * from the FIFO to memory if the DWC_otg controller is operating in
11449+ * Slave mode. */
11450+int32_t
11451+dwc_otg_hcd_handle_rx_status_q_level_intr(struct dwc_otg_hcd *dwc_otg_hcd)
11452+{
11453+ union host_grxsts_data grxsts;
11454+ struct dwc_hc *hc = NULL;
11455+
11456+ DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n");
11457+
11458+ grxsts.d32 =
11459+ dwc_read_reg32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp);
11460+
11461+ hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum];
11462+
11463+ /* Packet Status */
11464+ DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum);
11465+ DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt);
11466+ DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid,
11467+ hc->data_pid_start);
11468+ DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts);
11469+
11470+ switch (grxsts.b.pktsts) {
11471+ case DWC_GRXSTS_PKTSTS_IN:
11472+ /* Read the data into the host buffer. */
11473+ if (grxsts.b.bcnt > 0) {
11474+ dwc_otg_read_packet(dwc_otg_hcd->core_if,
11475+ hc->xfer_buff, grxsts.b.bcnt);
11476+
11477+ /* Update the HC fields for the next packet received. */
11478+ hc->xfer_count += grxsts.b.bcnt;
11479+ hc->xfer_buff += grxsts.b.bcnt;
11480+ }
11481+
11482+ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
11483+ case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
11484+ case DWC_GRXSTS_PKTSTS_CH_HALTED:
11485+ /* Handled in interrupt, just ignore data */
11486+ break;
11487+ default:
11488+ DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n",
11489+ grxsts.b.pktsts);
11490+ break;
11491+ }
11492+
11493+ return 1;
11494+}
11495+
11496+/* This interrupt occurs when the non-periodic Tx FIFO is
11497+ * half-empty. More data packets may be written to the FIFO for OUT
11498+ * transfers. More requests may be written to the non-periodic request
11499+ * queue for IN transfers. This interrupt is enabled only in Slave
11500+ * mode. */
11501+int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(struct dwc_otg_hcd *
11502+ dwc_otg_hcd)
11503+{
11504+ DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n");
11505+ dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
11506+ DWC_OTG_TRANSACTION_NON_PERIODIC);
11507+ return 1;
11508+}
11509+
11510+/* This interrupt occurs when the periodic Tx FIFO is half-empty. More
11511+ * data packets may be written to the FIFO for OUT transfers. More
11512+ * requests may be written to the periodic request queue for IN
11513+ * transfers. This interrupt is enabled only in Slave mode. */
11514+int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(struct dwc_otg_hcd *
11515+ dwc_otg_hcd)
11516+{
11517+ DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n");
11518+ dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
11519+ DWC_OTG_TRANSACTION_PERIODIC);
11520+ return 1;
11521+}
11522+
11523+/* There are multiple conditions that can cause a port interrupt. This
11524+ * function determines which interrupt conditions have occurred and
11525+ * handles them appropriately. */
11526+int32_t dwc_otg_hcd_handle_port_intr(struct dwc_otg_hcd *dwc_otg_hcd)
11527+{
11528+ int retval = 0;
11529+ union hprt0_data hprt0;
11530+ union hprt0_data hprt0_modify;
11531+
11532+ hprt0.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
11533+ hprt0_modify.d32 =
11534+ dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
11535+
11536+ /* Clear appropriate bits in HPRT0 to clear the interrupt bit in
11537+ * GINTSTS */
11538+
11539+ hprt0_modify.b.prtena = 0;
11540+ hprt0_modify.b.prtconndet = 0;
11541+ hprt0_modify.b.prtenchng = 0;
11542+ hprt0_modify.b.prtovrcurrchng = 0;
11543+
11544+ /* Port Connect Detected
11545+ * Set flag and clear if detected */
11546+ if (hprt0.b.prtconndet) {
11547+ DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x "
11548+ "Port Connect Detected--\n", hprt0.d32);
11549+ dwc_otg_hcd->flags.b.port_connect_status_change = 1;
11550+ dwc_otg_hcd->flags.b.port_connect_status = 1;
11551+ hprt0_modify.b.prtconndet = 1;
11552+
11553+ /* B-Device has connected, Delete the connection timer. */
11554+ del_timer(&dwc_otg_hcd->conn_timer);
11555+
11556+ /* The Hub driver asserts a reset when it sees port connect
11557+ * status change flag */
11558+ retval |= 1;
11559+ }
11560+
11561+ /* Port Enable Changed
11562+ * Clear if detected - Set internal flag if disabled */
11563+ if (hprt0.b.prtenchng) {
11564+ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
11565+ "Port Enable Changed--\n", hprt0.d32);
11566+ hprt0_modify.b.prtenchng = 1;
11567+ if (hprt0.b.prtena == 1) {
11568+ int do_reset = 0;
11569+ struct dwc_otg_core_params *params =
11570+ dwc_otg_hcd->core_if->core_params;
11571+ struct dwc_otg_core_global_regs *global_regs =
11572+ dwc_otg_hcd->core_if->core_global_regs;
11573+ struct dwc_otg_host_if *host_if =
11574+ dwc_otg_hcd->core_if->host_if;
11575+
11576+ /* Check if we need to adjust the PHY clock speed for
11577+ * low power and adjust it */
11578+ if (params->host_support_fs_ls_low_power) {
11579+ union gusbcfg_data usbcfg;
11580+
11581+ usbcfg.d32 =
11582+ dwc_read_reg32(&global_regs->gusbcfg);
11583+
11584+ if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
11585+ || (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED)) {
11586+ /*
11587+ * Low power
11588+ */
11589+ union hcfg_data hcfg;
11590+ if (usbcfg.b.phylpwrclksel == 0) {
11591+ /* Set PHY low power clock select for FS/LS devices */
11592+ usbcfg.b.phylpwrclksel = 1;
11593+ dwc_write_reg32(&global_regs->gusbcfg,
11594+ usbcfg.d32);
11595+ do_reset = 1;
11596+ }
11597+
11598+ hcfg.d32 =
11599+ dwc_read_reg32(&host_if->host_global_regs->hcfg);
11600+
11601+ if ((hprt0.b.prtspd ==
11602+ DWC_HPRT0_PRTSPD_LOW_SPEED)
11603+ && (params->
11604+ host_ls_low_power_phy_clk ==
11605+ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) {
11606+ /* 6 MHZ */
11607+ DWC_DEBUGPL(DBG_CIL,
11608+ "FS_PHY programming HCFG to 6 MHz (Low Power)\n");
11609+ if (hcfg.b.fslspclksel !=
11610+ DWC_HCFG_6_MHZ) {
11611+ hcfg.b.fslspclksel =
11612+ DWC_HCFG_6_MHZ;
11613+ dwc_write_reg32(&host_if->host_global_regs->hcfg,
11614+ hcfg.d32);
11615+ do_reset = 1;
11616+ }
11617+ } else {
11618+ /* 48 MHZ */
11619+ DWC_DEBUGPL(DBG_CIL,
11620+ "FS_PHY programming HCFG to 48 MHz ()\n");
11621+ if (hcfg.b.fslspclksel !=
11622+ DWC_HCFG_48_MHZ) {
11623+ hcfg.b.fslspclksel = DWC_HCFG_48_MHZ;
11624+ dwc_write_reg32(&host_if->host_global_regs->hcfg,
11625+ hcfg.d32);
11626+ do_reset = 1;
11627+ }
11628+ }
11629+ } else {
11630+ /*
11631+ * Not low power
11632+ */
11633+ if (usbcfg.b.phylpwrclksel == 1) {
11634+ usbcfg.b.phylpwrclksel = 0;
11635+ dwc_write_reg32(&global_regs->gusbcfg,
11636+ usbcfg.d32);
11637+ do_reset = 1;
11638+ }
11639+ }
11640+ if (do_reset)
11641+ tasklet_schedule(dwc_otg_hcd->reset_tasklet);
11642+ }
11643+ if (!do_reset)
11644+ /*
11645+ * Port has been enabled set the reset
11646+ * change flag
11647+ */
11648+ dwc_otg_hcd->flags.b.port_reset_change = 1;
11649+ } else {
11650+ dwc_otg_hcd->flags.b.port_enable_change = 1;
11651+ }
11652+ retval |= 1;
11653+ }
11654+
11655+ /** Overcurrent Change Interrupt */
11656+ if (hprt0.b.prtovrcurrchng) {
11657+ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
11658+ "Port Overcurrent Changed--\n", hprt0.d32);
11659+ dwc_otg_hcd->flags.b.port_over_current_change = 1;
11660+ hprt0_modify.b.prtovrcurrchng = 1;
11661+ retval |= 1;
11662+ }
11663+
11664+ /* Clear Port Interrupts */
11665+ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0,
11666+ hprt0_modify.d32);
11667+
11668+ return retval;
11669+}
11670+
11671+/** This interrupt indicates that one or more host channels has a pending
11672+ * interrupt. There are multiple conditions that can cause each host channel
11673+ * interrupt. This function determines which conditions have occurred for each
11674+ * host channel interrupt and handles them appropriately. */
11675+int32_t dwc_otg_hcd_handle_hc_intr(struct dwc_otg_hcd *dwc_otg_hcd)
11676+{
11677+ int i;
11678+ int retval = 0;
11679+ union haint_data haint;
11680+
11681+ /* Clear appropriate bits in HCINTn to clear the interrupt bit in
11682+ * GINTSTS */
11683+
11684+ haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if);
11685+
11686+ for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) {
11687+ if (haint.b2.chint & (1 << i))
11688+ retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i);
11689+ }
11690+
11691+ return retval;
11692+}
11693+
11694+/* Macro used to clear one channel interrupt */
11695+#define clear_hc_int(_hc_regs_, _intr_) \
11696+do { \
11697+ union hcint_data hcint_clear = {.d32 = 0}; \
11698+ hcint_clear.b._intr_ = 1; \
11699+ dwc_write_reg32(&((_hc_regs_)->hcint), hcint_clear.d32); \
11700+} while (0)
11701+
11702+/*
11703+ * Macro used to disable one channel interrupt. Channel interrupts are
11704+ * disabled when the channel is halted or released by the interrupt handler.
11705+ * There is no need to handle further interrupts of that type until the
11706+ * channel is re-assigned. In fact, subsequent handling may cause crashes
11707+ * because the channel structures are cleaned up when the channel is released.
11708+ */
11709+#define disable_hc_int(_hc_regs_, _intr_) \
11710+ do { \
11711+ union hcintmsk_data hcintmsk = {.d32 = 0}; \
11712+ hcintmsk.b._intr_ = 1; \
11713+ dwc_modify_reg32(&((_hc_regs_)->hcintmsk), hcintmsk.d32, 0); \
11714+ } while (0)
11715+
11716+/**
11717+ * Gets the actual length of a transfer after the transfer halts. _halt_status
11718+ * holds the reason for the halt.
11719+ *
11720+ * For IN transfers where _halt_status is DWC_OTG_HC_XFER_COMPLETE,
11721+ * *_short_read is set to 1 upon return if less than the requested
11722+ * number of bytes were transferred. Otherwise, *_short_read is set to 0 upon
11723+ * return. _short_read may also be NULL on entry, in which case it remains
11724+ * unchanged.
11725+ */
11726+static uint32_t get_actual_xfer_length(struct dwc_hc *hc,
11727+ struct dwc_otg_hc_regs *hc_regs,
11728+ struct dwc_otg_qtd *qtd,
11729+ enum dwc_otg_halt_status _halt_status,
11730+ int *_short_read)
11731+{
11732+ union hctsiz_data hctsiz;
11733+ uint32_t length;
11734+
11735+ if (_short_read != NULL)
11736+ *_short_read = 0;
11737+
11738+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
11739+
11740+ if (_halt_status == DWC_OTG_HC_XFER_COMPLETE) {
11741+ if (hc->ep_is_in) {
11742+ length = hc->xfer_len - hctsiz.b.xfersize;
11743+ if (_short_read != NULL)
11744+ *_short_read = (hctsiz.b.xfersize != 0);
11745+ } else if (hc->qh->do_split) {
11746+ length = qtd->ssplit_out_xfer_count;
11747+ } else {
11748+ length = hc->xfer_len;
11749+ }
11750+ } else {
11751+ /*
11752+ * Must use the hctsiz.pktcnt field to determine how much data
11753+ * has been transferred. This field reflects the number of
11754+ * packets that have been transferred via the USB. This is
11755+ * always an integral number of packets if the transfer was
11756+ * halted before its normal completion. (Can't use the
11757+ * hctsiz.xfersize field because that reflects the number of
11758+ * bytes transferred via the AHB, not the USB).
11759+ */
11760+ length =
11761+ (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet;
11762+ }
11763+
11764+ return length;
11765+}
11766+
11767+/**
11768+ * Updates the state of the URB after a Transfer Complete interrupt on the
11769+ * host channel. Updates the actual_length field of the URB based on the
11770+ * number of bytes transferred via the host channel. Sets the URB status
11771+ * if the data transfer is finished.
11772+ *
11773+ * Returns 1 if the data transfer specified by the URB is completely finished,
11774+ * 0 otherwise.
11775+ */
11776+static int update_urb_state_xfer_comp(struct dwc_hc *hc,
11777+ struct dwc_otg_hc_regs *hc_regs,
11778+ struct urb *urb, struct dwc_otg_qtd *qtd)
11779+{
11780+ int xfer_done = 0;
11781+ int short_read = 0;
11782+
11783+ urb->actual_length += get_actual_xfer_length(hc, hc_regs, qtd,
11784+ DWC_OTG_HC_XFER_COMPLETE,
11785+ &short_read);
11786+
11787+ if (short_read || (urb->actual_length == urb->transfer_buffer_length)) {
11788+ xfer_done = 1;
11789+ if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK))
11790+ urb->status = -EREMOTEIO;
11791+ else
11792+ urb->status = 0;
11793+ }
11794+#ifdef DEBUG
11795+ {
11796+ union hctsiz_data hctsiz;
11797+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
11798+ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
11799+ __func__, (hc->ep_is_in ? "IN" : "OUT"),
11800+ hc->hc_num);
11801+ DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", hc->xfer_len);
11802+ DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n",
11803+ hctsiz.b.xfersize);
11804+ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
11805+ urb->transfer_buffer_length);
11806+ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n",
11807+ urb->actual_length);
11808+ DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n",
11809+ short_read, xfer_done);
11810+ }
11811+#endif
11812+
11813+ return xfer_done;
11814+}
11815+
11816+/*
11817+ * Save the starting data toggle for the next transfer. The data toggle is
11818+ * saved in the QH for non-control transfers and it's saved in the QTD for
11819+ * control transfers.
11820+ */
11821+static void save_data_toggle(struct dwc_hc *hc,
11822+ struct dwc_otg_hc_regs *hc_regs,
11823+ struct dwc_otg_qtd *qtd)
11824+{
11825+ union hctsiz_data hctsiz;
11826+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
11827+
11828+ if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) {
11829+ struct dwc_otg_qh *qh = hc->qh;
11830+ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0)
11831+ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
11832+ else
11833+ qh->data_toggle = DWC_OTG_HC_PID_DATA1;
11834+ } else {
11835+ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0)
11836+ qtd->data_toggle = DWC_OTG_HC_PID_DATA0;
11837+ else
11838+ qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
11839+ }
11840+}
11841+
11842+/**
11843+ * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic
11844+ * QHs, removes the QH from the active non-periodic schedule. If any QTDs are
11845+ * still linked to the QH, the QH is added to the end of the inactive
11846+ * non-periodic schedule. For periodic QHs, removes the QH from the periodic
11847+ * schedule if no more QTDs are linked to the QH.
11848+ */
11849+static void deactivate_qh(struct dwc_otg_hcd *hcd,
11850+ struct dwc_otg_qh *qh, int free_qtd)
11851+{
11852+ int continue_split = 0;
11853+ struct dwc_otg_qtd *qtd;
11854+
11855+ DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd);
11856+
11857+ qtd = list_entry(qh->qtd_list.next, struct dwc_otg_qtd, qtd_list_entry);
11858+
11859+ if (qtd->complete_split) {
11860+ continue_split = 1;
11861+ } else if ((qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID) ||
11862+ (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END)) {
11863+ continue_split = 1;
11864+ }
11865+
11866+ if (free_qtd) {
11867+ dwc_otg_hcd_qtd_remove_and_free(qtd);
11868+ continue_split = 0;
11869+ }
11870+
11871+ qh->channel = NULL;
11872+ qh->qtd_in_process = NULL;
11873+ dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split);
11874+}
11875+
11876+/**
11877+ * Updates the state of an Isochronous URB when the transfer is stopped for
11878+ * any reason. The fields of the current entry in the frame descriptor array
11879+ * are set based on the transfer state and the input _halt_status. Completes
11880+ * the Isochronous URB if all the URB frames have been completed.
11881+ *
11882+ * Returns DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be
11883+ * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE.
11884+ */
11885+static enum dwc_otg_halt_status
11886+update_isoc_urb_state(struct dwc_otg_hcd *hcd,
11887+ struct dwc_hc *hc,
11888+ struct dwc_otg_hc_regs *hc_regs,
11889+ struct dwc_otg_qtd *qtd,
11890+ enum dwc_otg_halt_status halt_status)
11891+{
11892+ struct urb *urb = qtd->urb;
11893+ enum dwc_otg_halt_status ret_val = halt_status;
11894+ struct usb_iso_packet_descriptor *frame_desc;
11895+
11896+ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
11897+ switch (halt_status) {
11898+ case DWC_OTG_HC_XFER_COMPLETE:
11899+ frame_desc->status = 0;
11900+ frame_desc->actual_length =
11901+ get_actual_xfer_length(hc, hc_regs, qtd,
11902+ halt_status, NULL);
11903+ break;
11904+ case DWC_OTG_HC_XFER_FRAME_OVERRUN:
11905+ urb->error_count++;
11906+ if (hc->ep_is_in)
11907+ frame_desc->status = -ENOSR;
11908+ else
11909+ frame_desc->status = -ECOMM;
11910+ frame_desc->actual_length = 0;
11911+ break;
11912+ case DWC_OTG_HC_XFER_BABBLE_ERR:
11913+ urb->error_count++;
11914+ frame_desc->status = -EOVERFLOW;
11915+ /* Don't need to update actual_length in this case. */
11916+ break;
11917+ case DWC_OTG_HC_XFER_XACT_ERR:
11918+ urb->error_count++;
11919+ frame_desc->status = -EPROTO;
11920+ frame_desc->actual_length =
11921+ get_actual_xfer_length(hc, hc_regs, qtd,
11922+ halt_status, NULL);
11923+ break;
11924+ default:
11925+ DWC_ERROR("%s: Unhandled halt_status (%d)\n", __func__,
11926+ halt_status);
11927+ BUG();
11928+ break;
11929+ }
11930+
11931+ if (++qtd->isoc_frame_index == urb->number_of_packets) {
11932+ /*
11933+ * urb->status is not used for isoc transfers.
11934+ * The individual frame_desc statuses are used instead.
11935+ */
11936+ dwc_otg_hcd_complete_urb(hcd, urb, 0);
11937+ qtd->urb = NULL;
11938+ ret_val = DWC_OTG_HC_XFER_URB_COMPLETE;
11939+ } else {
11940+ ret_val = DWC_OTG_HC_XFER_COMPLETE;
11941+ }
11942+
11943+ return ret_val;
11944+}
11945+
11946+/**
11947+ * Releases a host channel for use by other transfers. Attempts to select and
11948+ * queue more transactions since at least one host channel is available.
11949+ *
11950+ * @hcd: The HCD state structure.
11951+ * @hc: The host channel to release.
11952+ * @qtd: The QTD associated with the host channel. This QTD may be freed
11953+ * if the transfer is complete or an error has occurred.
11954+ * @_halt_status: Reason the channel is being released. This status
11955+ * determines the actions taken by this function.
11956+ */
11957+static void release_channel(struct dwc_otg_hcd *hcd,
11958+ struct dwc_hc *hc,
11959+ struct dwc_otg_qtd *qtd,
11960+ enum dwc_otg_halt_status halt_status)
11961+{
11962+ enum dwc_otg_transaction_type tr_type;
11963+ int free_qtd;
11964+
11965+ DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n",
11966+ __func__, hc->hc_num, halt_status);
11967+
11968+ switch (halt_status) {
11969+ case DWC_OTG_HC_XFER_URB_COMPLETE:
11970+ free_qtd = 1;
11971+ break;
11972+ case DWC_OTG_HC_XFER_AHB_ERR:
11973+ case DWC_OTG_HC_XFER_STALL:
11974+ case DWC_OTG_HC_XFER_BABBLE_ERR:
11975+ free_qtd = 1;
11976+ break;
11977+ case DWC_OTG_HC_XFER_XACT_ERR:
11978+ if (qtd->error_count >= 3) {
11979+ DWC_DEBUGPL(DBG_HCDV,
11980+ " Complete URB with transaction error\n");
11981+ free_qtd = 1;
11982+ qtd->urb->status = -EPROTO;
11983+ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO);
11984+ qtd->urb = NULL;
11985+ } else {
11986+ free_qtd = 0;
11987+ }
11988+ break;
11989+ case DWC_OTG_HC_XFER_URB_DEQUEUE:
11990+ /*
11991+ * The QTD has already been removed and the QH has been
11992+ * deactivated. Don't want to do anything except release the
11993+ * host channel and try to queue more transfers.
11994+ */
11995+ goto cleanup;
11996+ case DWC_OTG_HC_XFER_NO_HALT_STATUS:
11997+ DWC_ERROR("%s: No halt_status, channel %d\n", __func__,
11998+ hc->hc_num);
11999+ free_qtd = 0;
12000+ break;
12001+ default:
12002+ free_qtd = 0;
12003+ break;
12004+ }
12005+
12006+ deactivate_qh(hcd, hc->qh, free_qtd);
12007+
12008+cleanup:
12009+ /*
12010+ * Release the host channel for use by other transfers. The cleanup
12011+ * function clears the channel interrupt enables and conditions, so
12012+ * there's no need to clear the Channel Halted interrupt separately.
12013+ */
12014+ dwc_otg_hc_cleanup(hcd->core_if, hc);
12015+ list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list);
12016+
12017+ switch (hc->ep_type) {
12018+ case DWC_OTG_EP_TYPE_CONTROL:
12019+ case DWC_OTG_EP_TYPE_BULK:
12020+ hcd->non_periodic_channels--;
12021+ break;
12022+
12023+ default:
12024+ /*
12025+ * Don't release reservations for periodic channels here.
12026+ * That's done when a periodic transfer is descheduled (i.e.
12027+ * when the QH is removed from the periodic schedule).
12028+ */
12029+ break;
12030+ }
12031+
12032+ /* Try to queue more transfers now that there's a free channel. */
12033+ tr_type = dwc_otg_hcd_select_transactions(hcd);
12034+ if (tr_type != DWC_OTG_TRANSACTION_NONE)
12035+ dwc_otg_hcd_queue_transactions(hcd, tr_type);
12036+}
12037+
12038+/**
12039+ * Halts a host channel. If the channel cannot be halted immediately because
12040+ * the request queue is full, this function ensures that the FIFO empty
12041+ * interrupt for the appropriate queue is enabled so that the halt request can
12042+ * be queued when there is space in the request queue.
12043+ *
12044+ * This function may also be called in DMA mode. In that case, the channel is
12045+ * simply released since the core always halts the channel automatically in
12046+ * DMA mode.
12047+ */
12048+static void halt_channel(struct dwc_otg_hcd *hcd,
12049+ struct dwc_hc *hc,
12050+ struct dwc_otg_qtd *qtd,
12051+ enum dwc_otg_halt_status halt_status)
12052+{
12053+ if (hcd->core_if->dma_enable) {
12054+ release_channel(hcd, hc, qtd, halt_status);
12055+ return;
12056+ }
12057+
12058+ /* Slave mode processing... */
12059+ dwc_otg_hc_halt(hcd->core_if, hc, halt_status);
12060+
12061+ if (hc->halt_on_queue) {
12062+ union gintmsk_data gintmsk = {.d32 = 0 };
12063+ struct dwc_otg_core_global_regs *global_regs;
12064+ global_regs = hcd->core_if->core_global_regs;
12065+
12066+ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
12067+ hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
12068+ /*
12069+ * Make sure the Non-periodic Tx FIFO empty interrupt
12070+ * is enabled so that the non-periodic schedule will
12071+ * be processed.
12072+ */
12073+ gintmsk.b.nptxfempty = 1;
12074+ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
12075+ } else {
12076+ /*
12077+ * Move the QH from the periodic queued schedule to
12078+ * the periodic assigned schedule. This allows the
12079+ * halt to be queued when the periodic schedule is
12080+ * processed.
12081+ */
12082+ list_move(&hc->qh->qh_list_entry,
12083+ &hcd->periodic_sched_assigned);
12084+
12085+ /*
12086+ * Make sure the Periodic Tx FIFO Empty interrupt is
12087+ * enabled so that the periodic schedule will be
12088+ * processed.
12089+ */
12090+ gintmsk.b.ptxfempty = 1;
12091+ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
12092+ }
12093+ }
12094+}
12095+
12096+/**
12097+ * Performs common cleanup for non-periodic transfers after a Transfer
12098+ * Complete interrupt. This function should be called after any endpoint type
12099+ * specific handling is finished to release the host channel.
12100+ */
12101+static void complete_non_periodic_xfer(struct dwc_otg_hcd *hcd,
12102+ struct dwc_hc *hc,
12103+ struct dwc_otg_hc_regs *hc_regs,
12104+ struct dwc_otg_qtd *qtd,
12105+ enum dwc_otg_halt_status halt_status)
12106+{
12107+ union hcint_data hcint;
12108+
12109+ qtd->error_count = 0;
12110+
12111+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
12112+ if (hcint.b.nyet) {
12113+ /*
12114+ * Got a NYET on the last transaction of the transfer. This
12115+ * means that the endpoint should be in the PING state at the
12116+ * beginning of the next transfer.
12117+ */
12118+ hc->qh->ping_state = 1;
12119+ clear_hc_int(hc_regs, nyet);
12120+ }
12121+
12122+ /*
12123+ * Always halt and release the host channel to make it available for
12124+ * more transfers. There may still be more phases for a control
12125+ * transfer or more data packets for a bulk transfer at this point,
12126+ * but the host channel is still halted. A channel will be reassigned
12127+ * to the transfer when the non-periodic schedule is processed after
12128+ * the channel is released. This allows transactions to be queued
12129+ * properly via dwc_otg_hcd_queue_transactions, which also enables the
12130+ * Tx FIFO Empty interrupt if necessary.
12131+ */
12132+ if (hc->ep_is_in) {
12133+ /*
12134+ * IN transfers in Slave mode require an explicit disable to
12135+ * halt the channel. (In DMA mode, this call simply releases
12136+ * the channel.)
12137+ */
12138+ halt_channel(hcd, hc, qtd, halt_status);
12139+ } else {
12140+ /*
12141+ * The channel is automatically disabled by the core for OUT
12142+ * transfers in Slave mode.
12143+ */
12144+ release_channel(hcd, hc, qtd, halt_status);
12145+ }
12146+}
12147+
12148+/**
12149+ * Performs common cleanup for periodic transfers after a Transfer Complete
12150+ * interrupt. This function should be called after any endpoint type specific
12151+ * handling is finished to release the host channel.
12152+ */
12153+static void complete_periodic_xfer(struct dwc_otg_hcd *hcd,
12154+ struct dwc_hc *hc,
12155+ struct dwc_otg_hc_regs *hc_regs,
12156+ struct dwc_otg_qtd *qtd,
12157+ enum dwc_otg_halt_status halt_status)
12158+{
12159+ union hctsiz_data hctsiz;
12160+ qtd->error_count = 0;
12161+
12162+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
12163+ if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) {
12164+ /* Core halts channel in these cases. */
12165+ release_channel(hcd, hc, qtd, halt_status);
12166+ } else {
12167+ /* Flush any outstanding requests from the Tx queue. */
12168+ halt_channel(hcd, hc, qtd, halt_status);
12169+ }
12170+}
12171+
12172+/**
12173+ * Handles a host channel Transfer Complete interrupt. This handler may be
12174+ * called in either DMA mode or Slave mode.
12175+ */
12176+static int32_t handle_hc_xfercomp_intr(struct dwc_otg_hcd *hcd,
12177+ struct dwc_hc *hc,
12178+ struct dwc_otg_hc_regs *hc_regs,
12179+ struct dwc_otg_qtd *qtd)
12180+{
12181+ int urb_xfer_done;
12182+ enum dwc_otg_halt_status halt_status = DWC_OTG_HC_XFER_COMPLETE;
12183+ struct urb *urb = qtd->urb;
12184+ int pipe_type = usb_pipetype(urb->pipe);
12185+
12186+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12187+ "Transfer Complete--\n", hc->hc_num);
12188+
12189+ /*
12190+ * Handle xfer complete on CSPLIT.
12191+ */
12192+ if (hc->qh->do_split)
12193+ qtd->complete_split = 0;
12194+
12195+ /* Update the QTD and URB states. */
12196+ switch (pipe_type) {
12197+ case PIPE_CONTROL:
12198+ switch (qtd->control_phase) {
12199+ case DWC_OTG_CONTROL_SETUP:
12200+ if (urb->transfer_buffer_length > 0)
12201+ qtd->control_phase = DWC_OTG_CONTROL_DATA;
12202+ else
12203+ qtd->control_phase = DWC_OTG_CONTROL_STATUS;
12204+ DWC_DEBUGPL(DBG_HCDV,
12205+ " Control setup transaction done\n");
12206+ halt_status = DWC_OTG_HC_XFER_COMPLETE;
12207+ break;
12208+ case DWC_OTG_CONTROL_DATA:{
12209+ urb_xfer_done =
12210+ update_urb_state_xfer_comp(hc, hc_regs,
12211+ urb, qtd);
12212+ if (urb_xfer_done) {
12213+ qtd->control_phase =
12214+ DWC_OTG_CONTROL_STATUS;
12215+ DWC_DEBUGPL(DBG_HCDV,
12216+ " Control data transfer done\n");
12217+ } else {
12218+ save_data_toggle(hc, hc_regs, qtd);
12219+ }
12220+ halt_status = DWC_OTG_HC_XFER_COMPLETE;
12221+ break;
12222+ }
12223+ case DWC_OTG_CONTROL_STATUS:
12224+ DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n");
12225+ if (urb->status == -EINPROGRESS)
12226+ urb->status = 0;
12227+ dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
12228+ qtd->urb = NULL;
12229+ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
12230+ break;
12231+ }
12232+
12233+ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd,
12234+ halt_status);
12235+ break;
12236+ case PIPE_BULK:
12237+ DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n");
12238+ urb_xfer_done =
12239+ update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
12240+ if (urb_xfer_done) {
12241+ dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
12242+ qtd->urb = NULL;
12243+ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
12244+ } else {
12245+ halt_status = DWC_OTG_HC_XFER_COMPLETE;
12246+ }
12247+
12248+ save_data_toggle(hc, hc_regs, qtd);
12249+ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd,
12250+ halt_status);
12251+ break;
12252+ case PIPE_INTERRUPT:
12253+ DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n");
12254+ update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
12255+
12256+ /*
12257+ * Interrupt URB is done on the first transfer complete
12258+ * interrupt.
12259+ */
12260+ dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
12261+ qtd->urb = NULL;
12262+ save_data_toggle(hc, hc_regs, qtd);
12263+ complete_periodic_xfer(hcd, hc, hc_regs, qtd,
12264+ DWC_OTG_HC_XFER_URB_COMPLETE);
12265+ break;
12266+ case PIPE_ISOCHRONOUS:
12267+ DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n");
12268+ if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) {
12269+ halt_status =
12270+ update_isoc_urb_state(hcd, hc, hc_regs, qtd,
12271+ DWC_OTG_HC_XFER_COMPLETE);
12272+ }
12273+ complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
12274+ break;
12275+ }
12276+
12277+ disable_hc_int(hc_regs, xfercompl);
12278+
12279+ return 1;
12280+}
12281+
12282+/**
12283+ * Handles a host channel STALL interrupt. This handler may be called in
12284+ * either DMA mode or Slave mode.
12285+ */
12286+static int32_t handle_hc_stall_intr(struct dwc_otg_hcd *hcd,
12287+ struct dwc_hc *hc,
12288+ struct dwc_otg_hc_regs *hc_regs,
12289+ struct dwc_otg_qtd *qtd)
12290+{
12291+ struct urb *urb = qtd->urb;
12292+ int pipe_type = usb_pipetype(urb->pipe);
12293+
12294+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12295+ "STALL Received--\n", hc->hc_num);
12296+
12297+ if (pipe_type == PIPE_CONTROL) {
12298+ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPIPE);
12299+ qtd->urb = NULL;
12300+ }
12301+
12302+ if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) {
12303+ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPIPE);
12304+ qtd->urb = NULL;
12305+ /*
12306+ * USB protocol requires resetting the data toggle for bulk
12307+ * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT)
12308+ * setup command is issued to the endpoint. Anticipate the
12309+ * CLEAR_FEATURE command since a STALL has occurred and reset
12310+ * the data toggle now.
12311+ */
12312+ hc->qh->data_toggle = 0;
12313+ }
12314+
12315+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL);
12316+
12317+ disable_hc_int(hc_regs, stall);
12318+
12319+ return 1;
12320+}
12321+
12322+/*
12323+ * Updates the state of the URB when a transfer has been stopped due to an
12324+ * abnormal condition before the transfer completes. Modifies the
12325+ * actual_length field of the URB to reflect the number of bytes that have
12326+ * actually been transferred via the host channel.
12327+ */
12328+static void update_urb_state_xfer_intr(struct dwc_hc *hc,
12329+ struct dwc_otg_hc_regs *hc_regs,
12330+ struct urb *urb,
12331+ struct dwc_otg_qtd *qtd,
12332+ enum dwc_otg_halt_status halt_status)
12333+{
12334+ uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd,
12335+ halt_status, NULL);
12336+ urb->actual_length += bytes_transferred;
12337+
12338+#ifdef DEBUG
12339+ {
12340+ union hctsiz_data hctsiz;
12341+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
12342+ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
12343+ __func__, (hc->ep_is_in ? "IN" : "OUT"),
12344+ hc->hc_num);
12345+ DWC_DEBUGPL(DBG_HCDV, " hc->start_pkt_count %d\n",
12346+ hc->start_pkt_count);
12347+ DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt);
12348+ DWC_DEBUGPL(DBG_HCDV, " hc->max_packet %d\n",
12349+ hc->max_packet);
12350+ DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n",
12351+ bytes_transferred);
12352+ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n",
12353+ urb->actual_length);
12354+ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
12355+ urb->transfer_buffer_length);
12356+ }
12357+#endif
12358+}
12359+
12360+/**
12361+ * Handles a host channel NAK interrupt. This handler may be called in either
12362+ * DMA mode or Slave mode.
12363+ */
12364+static int32_t handle_hc_nak_intr(struct dwc_otg_hcd *hcd,
12365+ struct dwc_hc *hc,
12366+ struct dwc_otg_hc_regs *hc_regs,
12367+ struct dwc_otg_qtd *qtd)
12368+{
12369+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12370+ "NAK Received--\n", hc->hc_num);
12371+
12372+ /*
12373+ * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and
12374+ * interrupt. Re-start the SSPLIT transfer.
12375+ */
12376+ if (hc->do_split) {
12377+ if (hc->complete_split)
12378+ qtd->error_count = 0;
12379+ qtd->complete_split = 0;
12380+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
12381+ goto handle_nak_done;
12382+ }
12383+
12384+ switch (usb_pipetype(qtd->urb->pipe)) {
12385+ case PIPE_CONTROL:
12386+ case PIPE_BULK:
12387+ if (hcd->core_if->dma_enable && hc->ep_is_in) {
12388+ /*
12389+ * NAK interrupts are enabled on bulk/control IN
12390+ * transfers in DMA mode for the sole purpose of
12391+ * resetting the error count after a transaction error
12392+ * occurs. The core will continue transferring data.
12393+ */
12394+ qtd->error_count = 0;
12395+ goto handle_nak_done;
12396+ }
12397+
12398+ /*
12399+ * NAK interrupts normally occur during OUT transfers in DMA
12400+ * or Slave mode. For IN transfers, more requests will be
12401+ * queued as request queue space is available.
12402+ */
12403+ qtd->error_count = 0;
12404+
12405+ if (!hc->qh->ping_state) {
12406+ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
12407+ qtd, DWC_OTG_HC_XFER_NAK);
12408+ save_data_toggle(hc, hc_regs, qtd);
12409+ if (qtd->urb->dev->speed == USB_SPEED_HIGH)
12410+ hc->qh->ping_state = 1;
12411+ }
12412+
12413+ /*
12414+ * Halt the channel so the transfer can be re-started from
12415+ * the appropriate point or the PING protocol will
12416+ * start/continue.
12417+ */
12418+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
12419+ break;
12420+ case PIPE_INTERRUPT:
12421+ qtd->error_count = 0;
12422+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
12423+ break;
12424+ case PIPE_ISOCHRONOUS:
12425+ /* Should never get called for isochronous transfers. */
12426+ BUG();
12427+ break;
12428+ }
12429+
12430+handle_nak_done:
12431+ disable_hc_int(hc_regs, nak);
12432+
12433+ return 1;
12434+}
12435+
12436+/**
12437+ * Handles a host channel ACK interrupt. This interrupt is enabled when
12438+ * performing the PING protocol in Slave mode, when errors occur during
12439+ * either Slave mode or DMA mode, and during Start Split transactions.
12440+ */
12441+static int32_t handle_hc_ack_intr(struct dwc_otg_hcd *hcd,
12442+ struct dwc_hc *hc,
12443+ struct dwc_otg_hc_regs *hc_regs,
12444+ struct dwc_otg_qtd *qtd)
12445+{
12446+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12447+ "ACK Received--\n", hc->hc_num);
12448+
12449+ if (hc->do_split) {
12450+ /*
12451+ * Handle ACK on SSPLIT.
12452+ * ACK should not occur in CSPLIT.
12453+ */
12454+ if ((!hc->ep_is_in)
12455+ && (hc->data_pid_start != DWC_OTG_HC_PID_SETUP)) {
12456+ qtd->ssplit_out_xfer_count = hc->xfer_len;
12457+ }
12458+ if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) {
12459+ /* Don't need complete for isochronous out transfers. */
12460+ qtd->complete_split = 1;
12461+ }
12462+
12463+ /* ISOC OUT */
12464+ if ((hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && !hc->ep_is_in) {
12465+ switch (hc->xact_pos) {
12466+ case DWC_HCSPLIT_XACTPOS_ALL:
12467+ break;
12468+ case DWC_HCSPLIT_XACTPOS_END:
12469+ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
12470+ qtd->isoc_split_offset = 0;
12471+ break;
12472+ case DWC_HCSPLIT_XACTPOS_BEGIN:
12473+ case DWC_HCSPLIT_XACTPOS_MID:
12474+ /*
12475+ * For BEGIN or MID, calculate the length for
12476+ * the next microframe to determine the correct
12477+ * SSPLIT token, either MID or END.
12478+ */
12479+ do {
12480+ struct usb_iso_packet_descriptor
12481+ *frame_desc;
12482+
12483+ frame_desc =
12484+ &qtd->urb->iso_frame_desc[qtd->isoc_frame_index];
12485+ qtd->isoc_split_offset += 188;
12486+
12487+ if ((frame_desc->length -
12488+ qtd->isoc_split_offset) <= 188) {
12489+ qtd->isoc_split_pos =
12490+ DWC_HCSPLIT_XACTPOS_END;
12491+ } else {
12492+ qtd->isoc_split_pos =
12493+ DWC_HCSPLIT_XACTPOS_MID;
12494+ }
12495+
12496+ } while (0);
12497+ break;
12498+ }
12499+ } else {
12500+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
12501+ }
12502+ } else {
12503+ qtd->error_count = 0;
12504+
12505+ if (hc->qh->ping_state) {
12506+ hc->qh->ping_state = 0;
12507+ /*
12508+ * Halt the channel so the transfer can be re-started
12509+ * from the appropriate point. This only happens in
12510+ * Slave mode. In DMA mode, the ping_state is cleared
12511+ * when the transfer is started because the core
12512+ * automatically executes the PING, then the transfer.
12513+ */
12514+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
12515+ }
12516+ }
12517+
12518+ /*
12519+ * If the ACK occurred when _not_ in the PING state, let the channel
12520+ * continue transferring data after clearing the error count.
12521+ */
12522+
12523+ disable_hc_int(hc_regs, ack);
12524+
12525+ return 1;
12526+}
12527+
12528+/**
12529+ * Handles a host channel NYET interrupt. This interrupt should only occur on
12530+ * Bulk and Control OUT endpoints and for complete split transactions. If a
12531+ * NYET occurs at the same time as a Transfer Complete interrupt, it is
12532+ * handled in the xfercomp interrupt handler, not here. This handler may be
12533+ * called in either DMA mode or Slave mode.
12534+ */
12535+static int32_t handle_hc_nyet_intr(struct dwc_otg_hcd *hcd,
12536+ struct dwc_hc *hc,
12537+ struct dwc_otg_hc_regs *hc_regs,
12538+ struct dwc_otg_qtd *qtd)
12539+{
12540+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12541+ "NYET Received--\n", hc->hc_num);
12542+
12543+ /*
12544+ * NYET on CSPLIT
12545+ * re-do the CSPLIT immediately on non-periodic
12546+ */
12547+ if ((hc->do_split) && (hc->complete_split)) {
12548+ if ((hc->ep_type == DWC_OTG_EP_TYPE_INTR) ||
12549+ (hc->ep_type == DWC_OTG_EP_TYPE_ISOC)) {
12550+ int frnum =
12551+ dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd
12552+ (hcd));
12553+
12554+ if (dwc_full_frame_num(frnum) !=
12555+ dwc_full_frame_num(hc->qh->sched_frame)) {
12556+ /*
12557+ * No longer in the same full speed frame.
12558+ * Treat this as a transaction error.
12559+ */
12560+#if 0
12561+ /** @todo Fix system performance so this can
12562+ * be treated as an error. Right now complete
12563+ * splits cannot be scheduled precisely enough
12564+ * due to other system activity, so this error
12565+ * occurs regularly in Slave mode.
12566+ */
12567+ qtd->error_count++;
12568+#endif
12569+ qtd->complete_split = 0;
12570+ halt_channel(hcd, hc, qtd,
12571+ DWC_OTG_HC_XFER_XACT_ERR);
12572+ /** @todo add support for isoc release */
12573+ goto handle_nyet_done;
12574+ }
12575+ }
12576+
12577+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
12578+ goto handle_nyet_done;
12579+ }
12580+
12581+ hc->qh->ping_state = 1;
12582+ qtd->error_count = 0;
12583+
12584+ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd,
12585+ DWC_OTG_HC_XFER_NYET);
12586+ save_data_toggle(hc, hc_regs, qtd);
12587+
12588+ /*
12589+ * Halt the channel and re-start the transfer so the PING
12590+ * protocol will start.
12591+ */
12592+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
12593+
12594+handle_nyet_done:
12595+ disable_hc_int(hc_regs, nyet);
12596+ return 1;
12597+}
12598+
12599+/**
12600+ * Handles a host channel babble interrupt. This handler may be called in
12601+ * either DMA mode or Slave mode.
12602+ */
12603+static int32_t handle_hc_babble_intr(struct dwc_otg_hcd *hcd,
12604+ struct dwc_hc *hc,
12605+ struct dwc_otg_hc_regs *hc_regs,
12606+ struct dwc_otg_qtd *qtd)
12607+{
12608+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12609+ "Babble Error--\n", hc->hc_num);
12610+ if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
12611+ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW);
12612+ qtd->urb = NULL;
12613+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR);
12614+ } else {
12615+ enum dwc_otg_halt_status halt_status;
12616+ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
12617+ DWC_OTG_HC_XFER_BABBLE_ERR);
12618+ halt_channel(hcd, hc, qtd, halt_status);
12619+ }
12620+ disable_hc_int(hc_regs, bblerr);
12621+ return 1;
12622+}
12623+
12624+/**
12625+ * Handles a host channel AHB error interrupt. This handler is only called in
12626+ * DMA mode.
12627+ */
12628+static int32_t handle_hc_ahberr_intr(struct dwc_otg_hcd *hcd,
12629+ struct dwc_hc *hc,
12630+ struct dwc_otg_hc_regs *hc_regs,
12631+ struct dwc_otg_qtd *qtd)
12632+{
12633+ union hcchar_data hcchar;
12634+ union hcsplt_data hcsplt;
12635+ union hctsiz_data hctsiz;
12636+ uint32_t hcdma;
12637+ struct urb *urb = qtd->urb;
12638+
12639+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12640+ "AHB Error--\n", hc->hc_num);
12641+
12642+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
12643+ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
12644+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
12645+ hcdma = dwc_read_reg32(&hc_regs->hcdma);
12646+
12647+ DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num);
12648+ DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
12649+ DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
12650+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n");
12651+ DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe));
12652+ DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
12653+ (usb_pipein(urb->pipe) ? "IN" : "OUT"));
12654+ DWC_ERROR(" Endpoint type: %s\n",
12655+ ({
12656+ char *pipetype;
12657+ switch (usb_pipetype(urb->pipe)) {
12658+ case PIPE_CONTROL:
12659+ pipetype = "CONTROL";
12660+ break;
12661+ case PIPE_BULK:
12662+ pipetype = "BULK";
12663+ break;
12664+ case PIPE_INTERRUPT:
12665+ pipetype = "INTERRUPT";
12666+ break;
12667+ case PIPE_ISOCHRONOUS:
12668+ pipetype = "ISOCHRONOUS";
12669+ break;
12670+ default:
12671+ pipetype = "UNKNOWN";
12672+ break;
12673+ }
12674+ pipetype;
12675+ }));
12676+ DWC_ERROR(" Speed: %s\n",
12677+ ({
12678+ char *speed;
12679+ switch (urb->dev->speed) {
12680+ case USB_SPEED_HIGH:
12681+ speed = "HIGH";
12682+ break;
12683+ case USB_SPEED_FULL:
12684+ speed = "FULL";
12685+ break;
12686+ case USB_SPEED_LOW:
12687+ speed = "LOW";
12688+ break;
12689+ default:
12690+ speed = "UNKNOWN";
12691+ break;
12692+ }
12693+ speed;
12694+ }));
12695+ DWC_ERROR(" Max packet size: %d\n",
12696+ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
12697+ DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length);
12698+ DWC_ERROR(" Transfer buffer: %p, Transfer DMA: 0x%llx\n",
12699+ urb->transfer_buffer, (unsigned long long)urb->transfer_dma);
12700+ DWC_ERROR(" Setup buffer: %p, Setup DMA: 0x%llx\n",
12701+ urb->setup_packet, (unsigned long long)urb->setup_dma);
12702+ DWC_ERROR(" Interval: %d\n", urb->interval);
12703+
12704+ dwc_otg_hcd_complete_urb(hcd, urb, -EIO);
12705+ qtd->urb = NULL;
12706+
12707+ /*
12708+ * Force a channel halt. Don't call halt_channel because that won't
12709+ * write to the HCCHARn register in DMA mode to force the halt.
12710+ */
12711+ dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR);
12712+
12713+ disable_hc_int(hc_regs, ahberr);
12714+ return 1;
12715+}
12716+
12717+/**
12718+ * Handles a host channel transaction error interrupt. This handler may be
12719+ * called in either DMA mode or Slave mode.
12720+ */
12721+static int32_t handle_hc_xacterr_intr(struct dwc_otg_hcd *hcd,
12722+ struct dwc_hc *hc,
12723+ struct dwc_otg_hc_regs *hc_regs,
12724+ struct dwc_otg_qtd *qtd)
12725+{
12726+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12727+ "Transaction Error--\n", hc->hc_num);
12728+
12729+ switch (usb_pipetype(qtd->urb->pipe)) {
12730+ case PIPE_CONTROL:
12731+ case PIPE_BULK:
12732+ qtd->error_count++;
12733+ if (!hc->qh->ping_state) {
12734+ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
12735+ qtd,
12736+ DWC_OTG_HC_XFER_XACT_ERR);
12737+ save_data_toggle(hc, hc_regs, qtd);
12738+ if (!hc->ep_is_in
12739+ && qtd->urb->dev->speed == USB_SPEED_HIGH) {
12740+ hc->qh->ping_state = 1;
12741+ }
12742+ }
12743+
12744+ /*
12745+ * Halt the channel so the transfer can be re-started from
12746+ * the appropriate point or the PING protocol will start.
12747+ */
12748+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
12749+ break;
12750+ case PIPE_INTERRUPT:
12751+ qtd->error_count++;
12752+ if ((hc->do_split) && (hc->complete_split))
12753+ qtd->complete_split = 0;
12754+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
12755+ break;
12756+ case PIPE_ISOCHRONOUS:
12757+ {
12758+ enum dwc_otg_halt_status halt_status;
12759+ halt_status =
12760+ update_isoc_urb_state(hcd, hc, hc_regs, qtd,
12761+ DWC_OTG_HC_XFER_XACT_ERR);
12762+
12763+ halt_channel(hcd, hc, qtd, halt_status);
12764+ }
12765+ break;
12766+ }
12767+
12768+ disable_hc_int(hc_regs, xacterr);
12769+
12770+ return 1;
12771+}
12772+
12773+/**
12774+ * Handles a host channel frame overrun interrupt. This handler may be called
12775+ * in either DMA mode or Slave mode.
12776+ */
12777+static int32_t handle_hc_frmovrun_intr(struct dwc_otg_hcd *hcd,
12778+ struct dwc_hc *hc,
12779+ struct dwc_otg_hc_regs *hc_regs,
12780+ struct dwc_otg_qtd *qtd)
12781+{
12782+ enum dwc_otg_halt_status halt_status;
12783+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12784+ "Frame Overrun--\n", hc->hc_num);
12785+
12786+ switch (usb_pipetype(qtd->urb->pipe)) {
12787+ case PIPE_CONTROL:
12788+ case PIPE_BULK:
12789+ break;
12790+ case PIPE_INTERRUPT:
12791+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN);
12792+ break;
12793+ case PIPE_ISOCHRONOUS:
12794+ halt_status =
12795+ update_isoc_urb_state(hcd, hc, hc_regs, qtd,
12796+ DWC_OTG_HC_XFER_FRAME_OVERRUN);
12797+ halt_channel(hcd, hc, qtd, halt_status);
12798+ break;
12799+ }
12800+
12801+ disable_hc_int(hc_regs, frmovrun);
12802+
12803+ return 1;
12804+}
12805+
12806+/**
12807+ * Handles a host channel data toggle error interrupt. This handler may be
12808+ * called in either DMA mode or Slave mode.
12809+ */
12810+static int32_t handle_hc_datatglerr_intr(struct dwc_otg_hcd *hcd,
12811+ struct dwc_hc *hc,
12812+ struct dwc_otg_hc_regs *hc_regs,
12813+ struct dwc_otg_qtd *qtd)
12814+{
12815+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12816+ "Data Toggle Error--\n", hc->hc_num);
12817+
12818+ if (hc->ep_is_in) {
12819+ qtd->error_count = 0;
12820+ } else {
12821+ DWC_ERROR("Data Toggle Error on OUT transfer,"
12822+ "channel %d\n", hc->hc_num);
12823+ }
12824+
12825+ disable_hc_int(hc_regs, datatglerr);
12826+
12827+ return 1;
12828+}
12829+
12830+#ifdef DEBUG
12831+/**
12832+ * This function is for debug only. It checks that a valid halt status is set
12833+ * and that HCCHARn.chdis is clear. If there's a problem, corrective action is
12834+ * taken and a warning is issued.
12835+ * Returns 1 if halt status is ok, 0 otherwise.
12836+ */
12837+static inline int halt_status_ok(struct dwc_otg_hcd *hcd,
12838+ struct dwc_hc *hc,
12839+ struct dwc_otg_hc_regs *hc_regs,
12840+ struct dwc_otg_qtd *qtd)
12841+{
12842+ union hcchar_data hcchar;
12843+ union hctsiz_data hctsiz;
12844+ union hcint_data hcint;
12845+ union hcintmsk_data hcintmsk;
12846+ union hcsplt_data hcsplt;
12847+
12848+ if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) {
12849+ /*
12850+ * This code is here only as a check. This condition should
12851+ * never happen. Ignore the halt if it does occur.
12852+ */
12853+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
12854+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
12855+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
12856+ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
12857+ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
12858+ DWC_WARN
12859+ ("%s: hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, "
12860+ "channel %d, hcchar 0x%08x, hctsiz 0x%08x, "
12861+ "hcint 0x%08x, hcintmsk 0x%08x, "
12862+ "hcsplt 0x%08x, qtd->complete_split %d\n", __func__,
12863+ hc->hc_num, hcchar.d32, hctsiz.d32, hcint.d32,
12864+ hcintmsk.d32, hcsplt.d32, qtd->complete_split);
12865+
12866+ DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n",
12867+ __func__, hc->hc_num);
12868+ DWC_WARN("\n");
12869+ clear_hc_int(hc_regs, chhltd);
12870+ return 0;
12871+ }
12872+
12873+ /*
12874+ * This code is here only as a check. hcchar.chdis should
12875+ * never be set when the halt interrupt occurs. Halt the
12876+ * channel again if it does occur.
12877+ */
12878+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
12879+ if (hcchar.b.chdis) {
12880+ DWC_WARN("%s: hcchar.chdis set unexpectedly, "
12881+ "hcchar 0x%08x, trying to halt again\n",
12882+ __func__, hcchar.d32);
12883+ clear_hc_int(hc_regs, chhltd);
12884+ hc->halt_pending = 0;
12885+ halt_channel(hcd, hc, qtd, hc->halt_status);
12886+ return 0;
12887+ }
12888+
12889+ return 1;
12890+}
12891+#endif
12892+
12893+/**
12894+ * Handles a host Channel Halted interrupt in DMA mode. This handler
12895+ * determines the reason the channel halted and proceeds accordingly.
12896+ */
12897+static void handle_hc_chhltd_intr_dma(struct dwc_otg_hcd *hcd,
12898+ struct dwc_hc *hc,
12899+ struct dwc_otg_hc_regs *hc_regs,
12900+ struct dwc_otg_qtd *qtd)
12901+{
12902+ union hcint_data hcint;
12903+ union hcintmsk_data hcintmsk;
12904+
12905+ if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
12906+ hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
12907+ /*
12908+ * Just release the channel. A dequeue can happen on a
12909+ * transfer timeout. In the case of an AHB Error, the channel
12910+ * was forced to halt because there's no way to gracefully
12911+ * recover.
12912+ */
12913+ release_channel(hcd, hc, qtd, hc->halt_status);
12914+ return;
12915+ }
12916+
12917+ /* Read the HCINTn register to determine the cause for the halt. */
12918+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
12919+ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
12920+
12921+ if (hcint.b.xfercomp) {
12922+ /*
12923+ * @todo This is here because of a possible hardware
12924+ * bug. Spec says that on SPLIT-ISOC OUT transfers in
12925+ * DMA mode that a HALT interrupt w/ACK bit set should
12926+ * occur, but I only see the XFERCOMP bit, even with
12927+ * it masked out. This is a workaround for that
12928+ * behavior. Should fix this when hardware is fixed.
12929+ */
12930+ if ((hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && (!hc->ep_is_in))
12931+ handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
12932+ handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd);
12933+ } else if (hcint.b.stall) {
12934+ handle_hc_stall_intr(hcd, hc, hc_regs, qtd);
12935+ } else if (hcint.b.xacterr) {
12936+ /*
12937+ * Must handle xacterr before nak or ack. Could get a xacterr
12938+ * at the same time as either of these on a BULK/CONTROL OUT
12939+ * that started with a PING. The xacterr takes precedence.
12940+ */
12941+ handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd);
12942+ } else if (hcint.b.nyet) {
12943+ /*
12944+ * Must handle nyet before nak or ack. Could get a nyet at the
12945+ * same time as either of those on a BULK/CONTROL OUT that
12946+ * started with a PING. The nyet takes precedence.
12947+ */
12948+ handle_hc_nyet_intr(hcd, hc, hc_regs, qtd);
12949+ } else if (hcint.b.bblerr) {
12950+ handle_hc_babble_intr(hcd, hc, hc_regs, qtd);
12951+ } else if (hcint.b.frmovrun) {
12952+ handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd);
12953+ } else if (hcint.b.nak && !hcintmsk.b.nak) {
12954+ /*
12955+ * If nak is not masked, it's because a non-split IN transfer
12956+ * is in an error state. In that case, the nak is handled by
12957+ * the nak interrupt handler, not here. Handle nak here for
12958+ * BULK/CONTROL OUT transfers, which halt on a NAK to allow
12959+ * rewinding the buffer pointer.
12960+ */
12961+ handle_hc_nak_intr(hcd, hc, hc_regs, qtd);
12962+ } else if (hcint.b.ack && !hcintmsk.b.ack) {
12963+ /*
12964+ * If ack is not masked, it's because a non-split IN transfer
12965+ * is in an error state. In that case, the ack is handled by
12966+ * the ack interrupt handler, not here. Handle ack here for
12967+ * split transfers. Start splits halt on ACK.
12968+ */
12969+ handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
12970+ } else {
12971+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
12972+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
12973+ /*
12974+ * A periodic transfer halted with no other channel
12975+ * interrupts set. Assume it was halted by the core
12976+ * because it could not be completed in its scheduled
12977+ * (micro)frame.
12978+ */
12979+#ifdef DEBUG
12980+ DWC_PRINT("%s: Halt channel %d (assume incomplete "
12981+ "periodic transfer)\n",
12982+ __func__, hc->hc_num);
12983+#endif
12984+ halt_channel(hcd, hc, qtd,
12985+ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE);
12986+ } else {
12987+ DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, "
12988+ "but reason for halting is unknown, hcint "
12989+ "0x%08x, intsts 0x%08x\n",
12990+ __func__, hc->hc_num, hcint.d32,
12991+ dwc_read_reg32(&hcd->core_if->core_global_regs->
12992+ gintsts));
12993+ }
12994+ }
12995+}
12996+
12997+/**
12998+ * Handles a host channel Channel Halted interrupt.
12999+ *
13000+ * In slave mode, this handler is called only when the driver specifically
13001+ * requests a halt. This occurs during handling other host channel interrupts
13002+ * (e.g. nak, xacterr, stall, nyet, etc.).
13003+ *
13004+ * In DMA mode, this is the interrupt that occurs when the core has finished
13005+ * processing a transfer on a channel. Other host channel interrupts (except
13006+ * ahberr) are disabled in DMA mode.
13007+ */
13008+static int32_t handle_hc_chhltd_intr(struct dwc_otg_hcd *hcd,
13009+ struct dwc_hc *hc,
13010+ struct dwc_otg_hc_regs *hc_regs,
13011+ struct dwc_otg_qtd *qtd)
13012+{
13013+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
13014+ "Channel Halted--\n", hc->hc_num);
13015+
13016+ if (hcd->core_if->dma_enable) {
13017+ handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd);
13018+ } else {
13019+#ifdef DEBUG
13020+ if (!halt_status_ok(hcd, hc, hc_regs, qtd))
13021+ return 1;
13022+#endif
13023+ release_channel(hcd, hc, qtd, hc->halt_status);
13024+ }
13025+
13026+ return 1;
13027+}
13028+
13029+/** Handles interrupt for a specific Host Channel */
13030+int32_t dwc_otg_hcd_handle_hc_n_intr(struct dwc_otg_hcd *dwc_otg_hcd,
13031+ uint32_t _num)
13032+{
13033+ int retval = 0;
13034+ union hcint_data hcint;
13035+ union hcintmsk_data hcintmsk;
13036+ struct dwc_hc *hc;
13037+ struct dwc_otg_hc_regs *hc_regs;
13038+ struct dwc_otg_qtd *qtd;
13039+
13040+ DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", _num);
13041+
13042+ hc = dwc_otg_hcd->hc_ptr_array[_num];
13043+ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[_num];
13044+ qtd = list_entry(hc->qh->qtd_list.next, struct dwc_otg_qtd,
13045+ qtd_list_entry);
13046+
13047+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
13048+ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
13049+ DWC_DEBUGPL(DBG_HCDV,
13050+ " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n",
13051+ hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32));
13052+ hcint.d32 = hcint.d32 & hcintmsk.d32;
13053+
13054+ if (!dwc_otg_hcd->core_if->dma_enable) {
13055+ if ((hcint.b.chhltd) && (hcint.d32 != 0x2))
13056+ hcint.b.chhltd = 0;
13057+ }
13058+
13059+ if (hcint.b.xfercomp) {
13060+ retval |=
13061+ handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13062+ /*
13063+ * If NYET occurred at same time as Xfer Complete, the NYET is
13064+ * handled by the Xfer Complete interrupt handler. Don't want
13065+ * to call the NYET interrupt handler in this case.
13066+ */
13067+ hcint.b.nyet = 0;
13068+ }
13069+ if (hcint.b.chhltd)
13070+ retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13071+
13072+ if (hcint.b.ahberr)
13073+ retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13074+
13075+ if (hcint.b.stall)
13076+ retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13077+
13078+ if (hcint.b.nak)
13079+ retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13080+
13081+ if (hcint.b.ack)
13082+ retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13083+
13084+ if (hcint.b.nyet)
13085+ retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13086+
13087+ if (hcint.b.xacterr)
13088+ retval |=
13089+ handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13090+
13091+ if (hcint.b.bblerr)
13092+ retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13093+
13094+ if (hcint.b.frmovrun)
13095+ retval |=
13096+ handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13097+
13098+ if (hcint.b.datatglerr)
13099+ retval |=
13100+ handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13101+
13102+ return retval;
13103+}
13104+
13105+#endif /* DWC_DEVICE_ONLY */
13106diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c b/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c
13107new file mode 100644
13108index 0000000..e4c96f2
13109--- /dev/null
13110+++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c
13111@@ -0,0 +1,695 @@
13112+/* ==========================================================================
13113+ *
13114+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
13115+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
13116+ * otherwise expressly agreed to in writing between Synopsys and you.
13117+ *
13118+ * The Software IS NOT an item of Licensed Software or Licensed Product under
13119+ * any End User Software License Agreement or Agreement for Licensed Product
13120+ * with Synopsys or any supplement thereto. You are permitted to use and
13121+ * redistribute this Software in source and binary forms, with or without
13122+ * modification, provided that redistributions of source code must retain this
13123+ * notice. You may not view, use, disclose, copy or distribute this file or
13124+ * any information contained herein except pursuant to this license grant from
13125+ * Synopsys. If you do not agree with this notice, including the disclaimer
13126+ * below, then you are not authorized to use the Software.
13127+ *
13128+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
13129+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
13130+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13131+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
13132+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
13133+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
13134+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
13135+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
13136+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
13137+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
13138+ * DAMAGE.
13139+ * ========================================================================== */
13140+#ifndef DWC_DEVICE_ONLY
13141+
13142+/*
13143+ *
13144+ * This file contains the functions to manage Queue Heads and Queue
13145+ * Transfer Descriptors.
13146+ */
13147+#include <linux/kernel.h>
13148+#include <linux/module.h>
13149+#include <linux/moduleparam.h>
13150+#include <linux/init.h>
13151+#include <linux/device.h>
13152+#include <linux/errno.h>
13153+#include <linux/list.h>
13154+#include <linux/interrupt.h>
13155+#include <linux/string.h>
13156+
13157+#include "dwc_otg_driver.h"
13158+#include "dwc_otg_hcd.h"
13159+#include "dwc_otg_regs.h"
13160+
13161+/**
13162+ * This function allocates and initializes a QH.
13163+ *
13164+ * @hcd: The HCD state structure for the DWC OTG controller.
13165+ * @urb: Holds the information about the device/endpoint that we need
13166+ * to initialize the QH.
13167+ *
13168+ * Returns Returns pointer to the newly allocated QH, or NULL on error. */
13169+struct dwc_otg_qh *dwc_otg_hcd_qh_create(struct dwc_otg_hcd *hcd,
13170+ struct urb *urb)
13171+{
13172+ struct dwc_otg_qh *qh;
13173+
13174+ /* Allocate memory */
13175+ /** @todo add memflags argument */
13176+ qh = dwc_otg_hcd_qh_alloc();
13177+ if (qh == NULL)
13178+ return NULL;
13179+
13180+ dwc_otg_hcd_qh_init(hcd, qh, urb);
13181+ return qh;
13182+}
13183+
13184+/** Free each QTD in the QH's QTD-list then free the QH. QH should already be
13185+ * removed from a list. QTD list should already be empty if called from URB
13186+ * Dequeue.
13187+ *
13188+ * @qh: The QH to free.
13189+ */
13190+void dwc_otg_hcd_qh_free(struct dwc_otg_qh *qh)
13191+{
13192+ struct dwc_otg_qtd *qtd;
13193+ struct list_head *pos;
13194+
13195+ /* Free each QTD in the QTD list */
13196+ for (pos = qh->qtd_list.next;
13197+ pos != &qh->qtd_list; pos = qh->qtd_list.next) {
13198+ list_del(pos);
13199+ qtd = dwc_list_to_qtd(pos);
13200+ dwc_otg_hcd_qtd_free(qtd);
13201+ }
13202+
13203+ kfree(qh);
13204+ return;
13205+}
13206+
13207+/** Initializes a QH structure.
13208+ *
13209+ * @hcd: The HCD state structure for the DWC OTG controller.
13210+ * @qh: The QH to init.
13211+ * @urb: Holds the information about the device/endpoint that we need
13212+ * to initialize the QH. */
13213+#define SCHEDULE_SLOP 10
13214+void dwc_otg_hcd_qh_init(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh,
13215+ struct urb *urb)
13216+{
13217+ memset(qh, 0, sizeof(struct dwc_otg_qh));
13218+
13219+ /* Initialize QH */
13220+ switch (usb_pipetype(urb->pipe)) {
13221+ case PIPE_CONTROL:
13222+ qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
13223+ break;
13224+ case PIPE_BULK:
13225+ qh->ep_type = USB_ENDPOINT_XFER_BULK;
13226+ break;
13227+ case PIPE_ISOCHRONOUS:
13228+ qh->ep_type = USB_ENDPOINT_XFER_ISOC;
13229+ break;
13230+ case PIPE_INTERRUPT:
13231+ qh->ep_type = USB_ENDPOINT_XFER_INT;
13232+ break;
13233+ }
13234+
13235+ qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0;
13236+
13237+ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
13238+ qh->maxp =
13239+ usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe)));
13240+ INIT_LIST_HEAD(&qh->qtd_list);
13241+ INIT_LIST_HEAD(&qh->qh_list_entry);
13242+ qh->channel = NULL;
13243+
13244+ /* FS/LS Enpoint on HS Hub
13245+ * NOT virtual root hub */
13246+ qh->do_split = 0;
13247+ if (((urb->dev->speed == USB_SPEED_LOW) ||
13248+ (urb->dev->speed == USB_SPEED_FULL)) &&
13249+ (urb->dev->tt) && (urb->dev->tt->hub->devnum != 1)) {
13250+ DWC_DEBUGPL(DBG_HCD,
13251+ "QH init: EP %d: TT found at hub addr %d, for "
13252+ "port %d\n",
13253+ usb_pipeendpoint(urb->pipe),
13254+ urb->dev->tt->hub->devnum, urb->dev->ttport);
13255+ qh->do_split = 1;
13256+ }
13257+
13258+ if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
13259+ qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
13260+ /* Compute scheduling parameters once and save them. */
13261+ union hprt0_data hprt;
13262+
13263+ /* todo Account for split transfers in the bus time. */
13264+ int bytecount =
13265+ dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp);
13266+ /*
13267+ * The results from usb_calc_bus_time are in nanosecs,
13268+ * so divide the result by 1000 to convert to
13269+ * microsecs expected by this driver
13270+ */
13271+ qh->usecs = usb_calc_bus_time(urb->dev->speed,
13272+ usb_pipein(urb->pipe),
13273+ (qh->ep_type ==
13274+ USB_ENDPOINT_XFER_ISOC),
13275+ bytecount) / 1000;
13276+
13277+ /* Start in a slightly future (micro)frame. */
13278+ qh->sched_frame = dwc_frame_num_inc(hcd->frame_number,
13279+ SCHEDULE_SLOP);
13280+ qh->interval = urb->interval;
13281+#if 0
13282+ /* Increase interrupt polling rate for debugging. */
13283+ if (qh->ep_type == USB_ENDPOINT_XFER_INT)
13284+ qh->interval = 8;
13285+#endif
13286+ hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0);
13287+ if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) &&
13288+ ((urb->dev->speed == USB_SPEED_LOW) ||
13289+ (urb->dev->speed == USB_SPEED_FULL))) {
13290+ qh->interval *= 8;
13291+ qh->sched_frame |= 0x7;
13292+ qh->start_split_frame = qh->sched_frame;
13293+ }
13294+
13295+ }
13296+
13297+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
13298+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", qh);
13299+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n",
13300+ urb->dev->devnum);
13301+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n",
13302+ usb_pipeendpoint(urb->pipe),
13303+ usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT");
13304+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n",
13305+ ({
13306+ char *speed;
13307+ switch (urb->dev->speed) {
13308+ case USB_SPEED_LOW:
13309+ speed = "low";
13310+ break;
13311+ case USB_SPEED_FULL:
13312+ speed = "full";
13313+ break;
13314+ case USB_SPEED_HIGH:
13315+ speed = "high";
13316+ break;
13317+ default:
13318+ speed = "?";
13319+ break;
13320+ }
13321+ speed;
13322+ }));
13323+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n",
13324+ ({
13325+ char *type;
13326+ switch (qh->ep_type) {
13327+ case USB_ENDPOINT_XFER_ISOC:
13328+ type = "isochronous";
13329+ break;
13330+ case USB_ENDPOINT_XFER_INT:
13331+ type = "interrupt";
13332+ break;
13333+ case USB_ENDPOINT_XFER_CONTROL:
13334+ type = "control";
13335+ break;
13336+ case USB_ENDPOINT_XFER_BULK:
13337+ type = "bulk";
13338+ break;
13339+ default:
13340+ type = "?";
13341+ break;
13342+ }
13343+ type;
13344+ }));
13345+#ifdef DEBUG
13346+ if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
13347+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
13348+ qh->usecs);
13349+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
13350+ qh->interval);
13351+ }
13352+#endif
13353+
13354+ return;
13355+}
13356+
13357+/**
13358+ * Checks that a channel is available for a periodic transfer.
13359+ *
13360+ * Returns 0 if successful, negative error code otherise.
13361+ */
13362+static int periodic_channel_available(struct dwc_otg_hcd *hcd)
13363+{
13364+ /*
13365+ * Currently assuming that there is a dedicated host channnel for each
13366+ * periodic transaction plus at least one host channel for
13367+ * non-periodic transactions.
13368+ */
13369+ int status;
13370+ int num_channels;
13371+
13372+ num_channels = hcd->core_if->core_params->host_channels;
13373+ if ((hcd->periodic_channels + hcd->non_periodic_channels <
13374+ num_channels) && (hcd->periodic_channels < num_channels - 1)) {
13375+ status = 0;
13376+ } else {
13377+ DWC_NOTICE
13378+ ("%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
13379+ __func__, num_channels, hcd->periodic_channels,
13380+ hcd->non_periodic_channels);
13381+ status = -ENOSPC;
13382+ }
13383+
13384+ return status;
13385+}
13386+
13387+/**
13388+ * Checks that there is sufficient bandwidth for the specified QH in the
13389+ * periodic schedule. For simplicity, this calculation assumes that all the
13390+ * transfers in the periodic schedule may occur in the same (micro)frame.
13391+ *
13392+ * @hcd: The HCD state structure for the DWC OTG controller.
13393+ * @qh: QH containing periodic bandwidth required.
13394+ *
13395+ * Returns 0 if successful, negative error code otherwise.
13396+ */
13397+static int check_periodic_bandwidth(struct dwc_otg_hcd *hcd,
13398+ struct dwc_otg_qh *qh)
13399+{
13400+ int status;
13401+ uint16_t max_claimed_usecs;
13402+
13403+ status = 0;
13404+
13405+ if (hcd->core_if->core_params->speed == DWC_SPEED_PARAM_HIGH) {
13406+ /*
13407+ * High speed mode.
13408+ * Max periodic usecs is 80% x 125 usec = 100 usec.
13409+ */
13410+ max_claimed_usecs = 100 - qh->usecs;
13411+ } else {
13412+ /*
13413+ * Full speed mode.
13414+ * Max periodic usecs is 90% x 1000 usec = 900 usec.
13415+ */
13416+ max_claimed_usecs = 900 - qh->usecs;
13417+ }
13418+
13419+ if (hcd->periodic_usecs > max_claimed_usecs) {
13420+ DWC_NOTICE("%s: already claimed usecs %d, required usecs %d\n",
13421+ __func__, hcd->periodic_usecs, qh->usecs);
13422+ status = -ENOSPC;
13423+ }
13424+
13425+ return status;
13426+}
13427+
13428+/**
13429+ * Checks that the max transfer size allowed in a host channel is large enough
13430+ * to handle the maximum data transfer in a single (micro)frame for a periodic
13431+ * transfer.
13432+ *
13433+ * @hcd: The HCD state structure for the DWC OTG controller.
13434+ * @qh: QH for a periodic endpoint.
13435+ *
13436+ * Returns 0 if successful, negative error code otherwise.
13437+ */
13438+static int check_max_xfer_size(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh)
13439+{
13440+ int status;
13441+ uint32_t max_xfer_size;
13442+ uint32_t max_channel_xfer_size;
13443+
13444+ status = 0;
13445+
13446+ max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp);
13447+ max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size;
13448+
13449+ if (max_xfer_size > max_channel_xfer_size) {
13450+ DWC_NOTICE("%s: Periodic xfer length %d > "
13451+ "max xfer length for channel %d\n",
13452+ __func__, max_xfer_size, max_channel_xfer_size);
13453+ status = -ENOSPC;
13454+ }
13455+
13456+ return status;
13457+}
13458+
13459+/**
13460+ * Schedules an interrupt or isochronous transfer in the periodic schedule.
13461+ *
13462+ * @hcd: The HCD state structure for the DWC OTG controller.
13463+ * @qh: QH for the periodic transfer. The QH should already contain the
13464+ * scheduling information.
13465+ *
13466+ * Returns 0 if successful, negative error code otherwise.
13467+ */
13468+static int schedule_periodic(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh)
13469+{
13470+ int status = 0;
13471+
13472+ status = periodic_channel_available(hcd);
13473+ if (status) {
13474+ DWC_NOTICE("%s: No host channel available for periodic "
13475+ "transfer.\n", __func__);
13476+ return status;
13477+ }
13478+
13479+ status = check_periodic_bandwidth(hcd, qh);
13480+ if (status) {
13481+ DWC_NOTICE("%s: Insufficient periodic bandwidth for "
13482+ "periodic transfer.\n", __func__);
13483+ return status;
13484+ }
13485+
13486+ status = check_max_xfer_size(hcd, qh);
13487+ if (status) {
13488+ DWC_NOTICE("%s: Channel max transfer size too small "
13489+ "for periodic transfer.\n", __func__);
13490+ return status;
13491+ }
13492+
13493+ /* Always start in the inactive schedule. */
13494+ list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive);
13495+
13496+ /* Reserve the periodic channel. */
13497+ hcd->periodic_channels++;
13498+
13499+ /* Update claimed usecs per (micro)frame. */
13500+ hcd->periodic_usecs += qh->usecs;
13501+
13502+ /*
13503+ * Update average periodic bandwidth claimed and # periodic
13504+ * reqs for usbfs.
13505+ */
13506+ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated +=
13507+ qh->usecs / qh->interval;
13508+ if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
13509+ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs++;
13510+ DWC_DEBUGPL(DBG_HCD,
13511+ "Scheduled intr: qh %p, usecs %d, period %d\n", qh,
13512+ qh->usecs, qh->interval);
13513+ } else {
13514+ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs++;
13515+ DWC_DEBUGPL(DBG_HCD,
13516+ "Scheduled isoc: qh %p, usecs %d, period %d\n", qh,
13517+ qh->usecs, qh->interval);
13518+ }
13519+
13520+ return status;
13521+}
13522+
13523+/**
13524+ * This function adds a QH to either the non periodic or periodic schedule if
13525+ * it is not already in the schedule. If the QH is already in the schedule, no
13526+ * action is taken.
13527+ *
13528+ * Returns 0 if successful, negative error code otherwise.
13529+ */
13530+int dwc_otg_hcd_qh_add(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh)
13531+{
13532+ int status = 0;
13533+
13534+ if (!spin_is_locked(&hcd->global_lock)) {
13535+ pr_err("%s don't have hcd->global_lock", __func__);
13536+ BUG();
13537+ }
13538+
13539+ if (!list_empty(&qh->qh_list_entry)) {
13540+ /* QH already in a schedule. */
13541+ goto done;
13542+ }
13543+
13544+ /* Add the new QH to the appropriate schedule */
13545+ if (dwc_qh_is_non_per(qh)) {
13546+ /* Always start in the inactive schedule. */
13547+ list_add_tail(&qh->qh_list_entry,
13548+ &hcd->non_periodic_sched_inactive);
13549+ } else {
13550+ status = schedule_periodic(hcd, qh);
13551+ }
13552+
13553+done:
13554+ return status;
13555+}
13556+
13557+/**
13558+ * Removes an interrupt or isochronous transfer from the periodic schedule.
13559+ *
13560+ * @hcd: The HCD state structure for the DWC OTG controller.
13561+ * @qh: QH for the periodic transfer.
13562+ */
13563+static void deschedule_periodic(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh)
13564+{
13565+ list_del_init(&qh->qh_list_entry);
13566+
13567+ /* Release the periodic channel reservation. */
13568+ hcd->periodic_channels--;
13569+
13570+ /* Update claimed usecs per (micro)frame. */
13571+ hcd->periodic_usecs -= qh->usecs;
13572+
13573+ /*
13574+ * Update average periodic bandwidth claimed and # periodic
13575+ * reqs for usbfs.
13576+ */
13577+ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated -=
13578+ qh->usecs / qh->interval;
13579+
13580+ if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
13581+ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs--;
13582+ DWC_DEBUGPL(DBG_HCD,
13583+ "Descheduled intr: qh %p, usecs %d, period %d\n",
13584+ qh, qh->usecs, qh->interval);
13585+ } else {
13586+ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs--;
13587+ DWC_DEBUGPL(DBG_HCD,
13588+ "Descheduled isoc: qh %p, usecs %d, period %d\n",
13589+ qh, qh->usecs, qh->interval);
13590+ }
13591+}
13592+
13593+/**
13594+ * Removes a QH from either the non-periodic or periodic schedule. Memory is
13595+ * not freed.
13596+ *
13597+ * @hcd: The HCD state structure.
13598+ * @qh: QH to remove from schedule. */
13599+void dwc_otg_hcd_qh_remove(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh)
13600+{
13601+ if (!spin_is_locked(&hcd->global_lock)) {
13602+ pr_err("%s don't have hcd->global_lock", __func__);
13603+ BUG();
13604+ }
13605+
13606+ if (list_empty(&qh->qh_list_entry)) {
13607+ /* QH is not in a schedule. */
13608+ goto done;
13609+ }
13610+
13611+ if (dwc_qh_is_non_per(qh)) {
13612+ if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) {
13613+ hcd->non_periodic_qh_ptr =
13614+ hcd->non_periodic_qh_ptr->next;
13615+ }
13616+ list_del_init(&qh->qh_list_entry);
13617+ } else {
13618+ deschedule_periodic(hcd, qh);
13619+ }
13620+
13621+done:
13622+ ;
13623+}
13624+
13625+/**
13626+ * Deactivates a QH. For non-periodic QHs, removes the QH from the active
13627+ * non-periodic schedule. The QH is added to the inactive non-periodic
13628+ * schedule if any QTDs are still attached to the QH.
13629+ *
13630+ * For periodic QHs, the QH is removed from the periodic queued schedule. If
13631+ * there are any QTDs still attached to the QH, the QH is added to either the
13632+ * periodic inactive schedule or the periodic ready schedule and its next
13633+ * scheduled frame is calculated. The QH is placed in the ready schedule if
13634+ * the scheduled frame has been reached already. Otherwise it's placed in the
13635+ * inactive schedule. If there are no QTDs attached to the QH, the QH is
13636+ * completely removed from the periodic schedule.
13637+ */
13638+void dwc_otg_hcd_qh_deactivate(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh,
13639+ int sched_next_periodic_split)
13640+{
13641+ uint16_t frame_number;
13642+
13643+ if (!spin_is_locked(&hcd->global_lock)) {
13644+ pr_err("%s don't have hcd->global_lock", __func__);
13645+ BUG();
13646+ }
13647+
13648+ if (dwc_qh_is_non_per(qh)) {
13649+ dwc_otg_hcd_qh_remove(hcd, qh);
13650+ if (!list_empty(&qh->qtd_list))
13651+ /* Add back to inactive non-periodic schedule. */
13652+ dwc_otg_hcd_qh_add(hcd, qh);
13653+ return;
13654+ }
13655+
13656+ frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
13657+
13658+ if (qh->do_split) {
13659+ /* Schedule the next continuing periodic split transfer */
13660+ if (sched_next_periodic_split) {
13661+
13662+ qh->sched_frame = frame_number;
13663+ if (dwc_frame_num_le(frame_number,
13664+ dwc_frame_num_inc(qh->start_split_frame,
13665+ 1))) {
13666+ /*
13667+ * Allow one frame to elapse after
13668+ * start split microframe before
13669+ * scheduling complete split, but DONT
13670+ * if we are doing the next start
13671+ * split in the same frame for an ISOC
13672+ * out.
13673+ */
13674+ if ((qh->ep_type != USB_ENDPOINT_XFER_ISOC)
13675+ || (qh->ep_is_in != 0)) {
13676+ qh->sched_frame =
13677+ dwc_frame_num_inc(qh->sched_frame,
13678+ 1);
13679+ }
13680+ }
13681+ } else {
13682+ qh->sched_frame =
13683+ dwc_frame_num_inc(qh->start_split_frame,
13684+ qh->interval);
13685+ if (dwc_frame_num_le(qh->sched_frame, frame_number))
13686+ qh->sched_frame = frame_number;
13687+
13688+ qh->sched_frame |= 0x7;
13689+ qh->start_split_frame = qh->sched_frame;
13690+ }
13691+ } else {
13692+ qh->sched_frame = dwc_frame_num_inc(qh->sched_frame,
13693+ qh->interval);
13694+ if (dwc_frame_num_le(qh->sched_frame, frame_number))
13695+ qh->sched_frame = frame_number;
13696+ }
13697+
13698+ if (list_empty(&qh->qtd_list)) {
13699+ dwc_otg_hcd_qh_remove(hcd, qh);
13700+ } else {
13701+ /*
13702+ * Remove from periodic_sched_queued and move to
13703+ * appropriate queue.
13704+ */
13705+ if (qh->sched_frame == frame_number) {
13706+ list_move(&qh->qh_list_entry,
13707+ &hcd->periodic_sched_ready);
13708+ } else {
13709+ list_move(&qh->qh_list_entry,
13710+ &hcd->periodic_sched_inactive);
13711+ }
13712+ }
13713+}
13714+
13715+/**
13716+ * This function allocates and initializes a QTD.
13717+ *
13718+ * @urb: The URB to create a QTD from. Each URB-QTD pair will end up
13719+ * pointing to each other so each pair should have a unique correlation.
13720+ *
13721+ * Returns Returns pointer to the newly allocated QTD, or NULL on error. */
13722+struct dwc_otg_qtd *dwc_otg_hcd_qtd_create(struct urb *urb)
13723+{
13724+ struct dwc_otg_qtd *qtd;
13725+
13726+ qtd = dwc_otg_hcd_qtd_alloc();
13727+ if (qtd == NULL)
13728+ return NULL;
13729+
13730+ dwc_otg_hcd_qtd_init(qtd, urb);
13731+ return qtd;
13732+}
13733+
13734+/**
13735+ * Initializes a QTD structure.
13736+ *
13737+ * @qtd: The QTD to initialize.
13738+ * @urb: The URB to use for initialization.
13739+ */
13740+void dwc_otg_hcd_qtd_init(struct dwc_otg_qtd *qtd, struct urb *urb)
13741+{
13742+ memset(qtd, 0, sizeof(struct dwc_otg_qtd));
13743+ qtd->urb = urb;
13744+ if (usb_pipecontrol(urb->pipe)) {
13745+ /*
13746+ * The only time the QTD data toggle is used is on the data
13747+ * phase of control transfers. This phase always starts with
13748+ * DATA1.
13749+ */
13750+ qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
13751+ qtd->control_phase = DWC_OTG_CONTROL_SETUP;
13752+ }
13753+
13754+ /* start split */
13755+ qtd->complete_split = 0;
13756+ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
13757+ qtd->isoc_split_offset = 0;
13758+
13759+ /* Store the qtd ptr in the urb to reference what QTD. */
13760+ urb->hcpriv = qtd;
13761+ return;
13762+}
13763+
13764+/**
13765+ * This function adds a QTD to the QTD-list of a QH. It will find the correct
13766+ * QH to place the QTD into. If it does not find a QH, then it will create a
13767+ * new QH. If the QH to which the QTD is added is not currently scheduled, it
13768+ * is placed into the proper schedule based on its EP type.
13769+ *
13770+ * @qtd: The QTD to add
13771+ * @dwc_otg_hcd: The DWC HCD structure
13772+ *
13773+ * Returns 0 if successful, negative error code otherwise.
13774+ */
13775+int dwc_otg_hcd_qtd_add(struct dwc_otg_qtd *qtd,
13776+ struct dwc_otg_hcd *dwc_otg_hcd)
13777+{
13778+ struct usb_host_endpoint *ep;
13779+ struct dwc_otg_qh *qh;
13780+ int retval = 0;
13781+
13782+ struct urb *urb = qtd->urb;
13783+
13784+ /*
13785+ * Get the QH which holds the QTD-list to insert to. Create QH if it
13786+ * doesn't exist.
13787+ */
13788+ ep = dwc_urb_to_endpoint(urb);
13789+ qh = ep->hcpriv;
13790+ if (qh == NULL) {
13791+ qh = dwc_otg_hcd_qh_create(dwc_otg_hcd, urb);
13792+ if (qh == NULL) {
13793+ retval = -ENOMEM;
13794+ goto done;
13795+ }
13796+ ep->hcpriv = qh;
13797+ }
13798+ qtd->qh = qh;
13799+ retval = dwc_otg_hcd_qh_add(dwc_otg_hcd, qh);
13800+ if (retval == 0)
13801+ list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
13802+done:
13803+ return retval;
13804+}
13805+
13806+#endif /* DWC_DEVICE_ONLY */
13807diff --git a/drivers/usb/host/dwc_otg/dwc_otg_octeon.c b/drivers/usb/host/dwc_otg/dwc_otg_octeon.c
13808new file mode 100644
13809index 0000000..5e92b3c
13810--- /dev/null
13811+++ b/drivers/usb/host/dwc_otg/dwc_otg_octeon.c
13812@@ -0,0 +1,1078 @@
13813+/* ==========================================================================
13814+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
13815+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
13816+ * otherwise expressly agreed to in writing between Synopsys and you.
13817+ *
13818+ * The Software IS NOT an item of Licensed Software or Licensed Product under
13819+ * any End User Software License Agreement or Agreement for Licensed Product
13820+ * with Synopsys or any supplement thereto. You are permitted to use and
13821+ * redistribute this Software in source and binary forms, with or without
13822+ * modification, provided that redistributions of source code must retain this
13823+ * notice. You may not view, use, disclose, copy or distribute this file or
13824+ * any information contained herein except pursuant to this license grant from
13825+ * Synopsys. If you do not agree with this notice, including the disclaimer
13826+ * below, then you are not authorized to use the Software.
13827+ *
13828+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
13829+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
13830+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13831+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
13832+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
13833+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
13834+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
13835+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
13836+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
13837+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
13838+ * DAMAGE.
13839+ * ========================================================================== */
13840+
13841+#include <linux/kernel.h>
13842+#include <linux/module.h>
13843+#include <linux/moduleparam.h>
13844+#include <linux/init.h>
13845+#include <linux/device.h>
13846+#include <linux/errno.h>
13847+#include <linux/types.h>
13848+#include <linux/stat.h> /* permission constants */
13849+#include <linux/platform_device.h>
13850+#include <linux/io.h>
13851+
13852+#include "dwc_otg_plat.h"
13853+#include "dwc_otg_attr.h"
13854+#include "dwc_otg_driver.h"
13855+#include "dwc_otg_cil.h"
13856+#ifndef DWC_HOST_ONLY
13857+#include "dwc_otg_pcd.h"
13858+#endif
13859+#include "dwc_otg_hcd.h"
13860+
13861+#define DWC_DRIVER_VERSION "2.40a 10-APR-2006"
13862+#define DWC_DRIVER_DESC "HS OTG USB Controller driver"
13863+
13864+static const char dwc_driver_name[] = "dwc_otg";
13865+int dwc_errata_write_count; /* See dwc_otg_plat.h, dwc_write_reg32 */
13866+
13867+/*-------------------------------------------------------------------------*/
13868+/* Encapsulate the module parameter settings */
13869+
13870+static struct dwc_otg_core_params dwc_otg_module_params = {
13871+ .opt = -1,
13872+ .otg_cap = -1,
13873+ .dma_enable = -1,
13874+ .dma_burst_size = -1,
13875+ .speed = -1,
13876+ .host_support_fs_ls_low_power = -1,
13877+ .host_ls_low_power_phy_clk = -1,
13878+ .enable_dynamic_fifo = -1,
13879+ .data_fifo_size = -1,
13880+ .dev_rx_fifo_size = -1,
13881+ .dev_nperio_tx_fifo_size = -1,
13882+ .dev_perio_tx_fifo_size = {-1, /* dev_perio_tx_fifo_size_1 */
13883+ -1,
13884+ -1,
13885+ -1,
13886+ -1,
13887+ -1,
13888+ -1,
13889+ -1,
13890+ -1,
13891+ -1,
13892+ -1,
13893+ -1,
13894+ -1,
13895+ -1,
13896+ -1}, /* 15 */
13897+ .host_rx_fifo_size = -1,
13898+ .host_nperio_tx_fifo_size = -1,
13899+ .host_perio_tx_fifo_size = -1,
13900+ .max_transfer_size = -1,
13901+ .max_packet_count = -1,
13902+ .host_channels = -1,
13903+ .dev_endpoints = -1,
13904+ .phy_type = -1,
13905+ .phy_utmi_width = -1,
13906+ .phy_ulpi_ddr = -1,
13907+ .phy_ulpi_ext_vbus = -1,
13908+ .i2c_enable = -1,
13909+ .ulpi_fs_ls = -1,
13910+ .ts_dline = -1,
13911+};
13912+
13913+/**
13914+ * Global Debug Level Mask.
13915+ */
13916+uint32_t g_dbg_lvl; /* 0 -> OFF */
13917+
13918+/**
13919+ * This function shows the Driver Version.
13920+ */
13921+static ssize_t version_show(struct device_driver *dev, char *buf)
13922+{
13923+ return snprintf(buf, sizeof(DWC_DRIVER_VERSION) + 2, "%s\n",
13924+ DWC_DRIVER_VERSION);
13925+}
13926+
13927+static DRIVER_ATTR(version, S_IRUGO, version_show, NULL);
13928+
13929+/**
13930+ * This function is called during module intialization to verify that
13931+ * the module parameters are in a valid state.
13932+ */
13933+static int check_parameters(struct dwc_otg_core_if *core_if)
13934+{
13935+ int i;
13936+ int retval = 0;
13937+
13938+/* Checks if the parameter is outside of its valid range of values */
13939+#define DWC_OTG_PARAM_TEST(_param_, _low_, _high_) \
13940+ ((dwc_otg_module_params._param_ < (_low_)) || \
13941+ (dwc_otg_module_params._param_ > (_high_)))
13942+
13943+/* If the parameter has been set by the user, check that the parameter value is
13944+ * within the value range of values. If not, report a module error. */
13945+#define DWC_OTG_PARAM_ERR(_param_, _low_, _high_, _string_) \
13946+ do { \
13947+ if (dwc_otg_module_params._param_ != -1) { \
13948+ if (DWC_OTG_PARAM_TEST(_param_, (_low_), (_high_))) { \
13949+ DWC_ERROR("`%d' invalid for parameter `%s'\n", \
13950+ dwc_otg_module_params._param_, _string_); \
13951+ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
13952+ retval++; \
13953+ } \
13954+ } \
13955+ } while (0)
13956+
13957+ DWC_OTG_PARAM_ERR(opt, 0, 1, "opt");
13958+ DWC_OTG_PARAM_ERR(otg_cap, 0, 2, "otg_cap");
13959+ DWC_OTG_PARAM_ERR(dma_enable, 0, 1, "dma_enable");
13960+ DWC_OTG_PARAM_ERR(speed, 0, 1, "speed");
13961+ DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power, 0, 1,
13962+ "host_support_fs_ls_low_power");
13963+ DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk, 0, 1,
13964+ "host_ls_low_power_phy_clk");
13965+ DWC_OTG_PARAM_ERR(enable_dynamic_fifo, 0, 1, "enable_dynamic_fifo");
13966+ DWC_OTG_PARAM_ERR(data_fifo_size, 32, 32768, "data_fifo_size");
13967+ DWC_OTG_PARAM_ERR(dev_rx_fifo_size, 16, 32768, "dev_rx_fifo_size");
13968+ DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size, 16, 32768,
13969+ "dev_nperio_tx_fifo_size");
13970+ DWC_OTG_PARAM_ERR(host_rx_fifo_size, 16, 32768, "host_rx_fifo_size");
13971+ DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size, 16, 32768,
13972+ "host_nperio_tx_fifo_size");
13973+ DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size, 16, 32768,
13974+ "host_perio_tx_fifo_size");
13975+ DWC_OTG_PARAM_ERR(max_transfer_size, 2047, 524288, "max_transfer_size");
13976+ DWC_OTG_PARAM_ERR(max_packet_count, 15, 511, "max_packet_count");
13977+ DWC_OTG_PARAM_ERR(host_channels, 1, 16, "host_channels");
13978+ DWC_OTG_PARAM_ERR(dev_endpoints, 1, 15, "dev_endpoints");
13979+ DWC_OTG_PARAM_ERR(phy_type, 0, 2, "phy_type");
13980+ DWC_OTG_PARAM_ERR(phy_ulpi_ddr, 0, 1, "phy_ulpi_ddr");
13981+ DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus, 0, 1, "phy_ulpi_ext_vbus");
13982+ DWC_OTG_PARAM_ERR(i2c_enable, 0, 1, "i2c_enable");
13983+ DWC_OTG_PARAM_ERR(ulpi_fs_ls, 0, 1, "ulpi_fs_ls");
13984+ DWC_OTG_PARAM_ERR(ts_dline, 0, 1, "ts_dline");
13985+
13986+ if (dwc_otg_module_params.dma_burst_size != -1) {
13987+ if (DWC_OTG_PARAM_TEST(dma_burst_size, 1, 1) &&
13988+ DWC_OTG_PARAM_TEST(dma_burst_size, 4, 4) &&
13989+ DWC_OTG_PARAM_TEST(dma_burst_size, 8, 8) &&
13990+ DWC_OTG_PARAM_TEST(dma_burst_size, 16, 16) &&
13991+ DWC_OTG_PARAM_TEST(dma_burst_size, 32, 32) &&
13992+ DWC_OTG_PARAM_TEST(dma_burst_size, 64, 64) &&
13993+ DWC_OTG_PARAM_TEST(dma_burst_size, 128, 128) &&
13994+ DWC_OTG_PARAM_TEST(dma_burst_size, 256, 256)) {
13995+ DWC_ERROR
13996+ ("`%d' invalid for parameter `dma_burst_size'\n",
13997+ dwc_otg_module_params.dma_burst_size);
13998+ dwc_otg_module_params.dma_burst_size = 32;
13999+ retval++;
14000+ }
14001+ }
14002+
14003+ if (dwc_otg_module_params.phy_utmi_width != -1) {
14004+ if (DWC_OTG_PARAM_TEST(phy_utmi_width, 8, 8) &&
14005+ DWC_OTG_PARAM_TEST(phy_utmi_width, 16, 16)) {
14006+ DWC_ERROR
14007+ ("`%d' invalid for parameter `phy_utmi_width'\n",
14008+ dwc_otg_module_params.phy_utmi_width);
14009+ dwc_otg_module_params.phy_utmi_width = 16;
14010+ retval++;
14011+ }
14012+ }
14013+
14014+ for (i = 0; i < 15; i++) {
14015+ /* @todo should be like above */
14016+ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] !=
14017+ (unsigned)-1) {
14018+ if (DWC_OTG_PARAM_TEST
14019+ (dev_perio_tx_fifo_size[i], 4, 768)) {
14020+ DWC_ERROR
14021+ ("`%d' invalid for parameter `%s_%d'\n",
14022+ dwc_otg_module_params.
14023+ dev_perio_tx_fifo_size[i],
14024+ "dev_perio_tx_fifo_size", i);
14025+ dwc_otg_module_params.
14026+ dev_perio_tx_fifo_size[i] =
14027+ dwc_param_dev_perio_tx_fifo_size_default;
14028+ retval++;
14029+ }
14030+ }
14031+ }
14032+
14033+ /* At this point, all module parameters that have been set by the user
14034+ * are valid, and those that have not are left unset. Now set their
14035+ * default values and/or check the parameters against the hardware
14036+ * configurations of the OTG core. */
14037+
14038+/* This sets the parameter to the default value if it has not been set by the
14039+ * user */
14040+#define PARAM_SET_DEFAULT(_param_) \
14041+ ({ \
14042+ int changed = 1; \
14043+ if (dwc_otg_module_params._param_ == -1) { \
14044+ changed = 0; \
14045+ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
14046+ } \
14047+ changed; \
14048+ })
14049+
14050+/* This checks the macro agains the hardware configuration to see if it is
14051+ * valid. It is possible that the default value could be invalid. In this
14052+ * case, it will report a module error if the user touched the parameter.
14053+ * Otherwise it will adjust the value without any error. */
14054+#define PARAM_CHECK_VALID(_param_, _str_, _is_valid_, _set_valid_) \
14055+ ({ \
14056+ int changed = PARAM_SET_DEFAULT(_param_); \
14057+ int error = 0; \
14058+ if (!(_is_valid_)) { \
14059+ if (changed) { \
14060+ DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_, _str_); \
14061+ error = 1; \
14062+ } \
14063+ dwc_otg_module_params._param_ = (_set_valid_); \
14064+ } \
14065+ error; \
14066+ })
14067+
14068+ /* OTG Cap */
14069+ retval += PARAM_CHECK_VALID(otg_cap, "otg_cap",
14070+ ({
14071+ int valid;
14072+ valid = 1;
14073+ switch (dwc_otg_module_params.otg_cap) {
14074+ case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE:
14075+ if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
14076+ valid = 0;
14077+ break;
14078+ case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE:
14079+ if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
14080+ && (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG)
14081+ && (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE)
14082+ && (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST))
14083+ valid = 0;
14084+ break;
14085+ case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE:
14086+ /* always valid */
14087+ break;
14088+ }
14089+ valid;
14090+ }),
14091+ (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
14092+ || (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG)
14093+ || (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE)
14094+ || (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST))
14095+ ?
14096+ DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE : DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE));
14097+
14098+ retval += PARAM_CHECK_VALID(dma_enable, "dma_enable",
14099+ ((dwc_otg_module_params.
14100+ dma_enable == 1)
14101+ && (core_if->hwcfg2.b.
14102+ architecture == 0)) ? 0 : 1,
14103+ 0);
14104+
14105+ retval += PARAM_CHECK_VALID(opt, "opt", 1, 0);
14106+
14107+ PARAM_SET_DEFAULT(dma_burst_size);
14108+
14109+ retval += PARAM_CHECK_VALID(host_support_fs_ls_low_power,
14110+ "host_support_fs_ls_low_power",
14111+ 1, 0);
14112+
14113+ retval += PARAM_CHECK_VALID(enable_dynamic_fifo,
14114+ "enable_dynamic_fifo",
14115+ ((dwc_otg_module_params.enable_dynamic_fifo == 0)
14116+ || (core_if->hwcfg2.b.dynamic_fifo == 1)), 0);
14117+
14118+ retval += PARAM_CHECK_VALID(data_fifo_size,
14119+ "data_fifo_size",
14120+ dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth,
14121+ core_if->hwcfg3.b.dfifo_depth);
14122+
14123+ retval += PARAM_CHECK_VALID(dev_rx_fifo_size,
14124+ "dev_rx_fifo_size",
14125+ (dwc_otg_module_params.dev_rx_fifo_size <=
14126+ dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
14127+ dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
14128+
14129+ retval += PARAM_CHECK_VALID(dev_nperio_tx_fifo_size,
14130+ "dev_nperio_tx_fifo_size",
14131+ dwc_otg_module_params.dev_nperio_tx_fifo_size <=
14132+ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16),
14133+ dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16);
14134+
14135+ retval += PARAM_CHECK_VALID(host_rx_fifo_size,
14136+ "host_rx_fifo_size",
14137+ dwc_otg_module_params.host_rx_fifo_size <=
14138+ dwc_read_reg32(&core_if->core_global_regs->grxfsiz),
14139+ dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
14140+
14141+ retval += PARAM_CHECK_VALID(host_nperio_tx_fifo_size,
14142+ "host_nperio_tx_fifo_size",
14143+ dwc_otg_module_params.host_nperio_tx_fifo_size <=
14144+ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16),
14145+ dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16);
14146+
14147+ retval += PARAM_CHECK_VALID(host_perio_tx_fifo_size,
14148+ "host_perio_tx_fifo_size",
14149+ dwc_otg_module_params.host_perio_tx_fifo_size <=
14150+ (dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16),
14151+ (dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16));
14152+
14153+ retval += PARAM_CHECK_VALID(max_transfer_size,
14154+ "max_transfer_size",
14155+ dwc_otg_module_params.max_transfer_size <
14156+ (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)),
14157+ (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1);
14158+
14159+ retval += PARAM_CHECK_VALID(max_packet_count,
14160+ "max_packet_count",
14161+ dwc_otg_module_params.max_packet_count <
14162+ (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)),
14163+ (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1);
14164+
14165+ retval += PARAM_CHECK_VALID(host_channels,
14166+ "host_channels",
14167+ dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1),
14168+ core_if->hwcfg2.b.num_host_chan + 1);
14169+
14170+ retval += PARAM_CHECK_VALID(dev_endpoints,
14171+ "dev_endpoints",
14172+ dwc_otg_module_params.dev_endpoints <= core_if->hwcfg2.b.num_dev_ep,
14173+ core_if->hwcfg2.b.num_dev_ep);
14174+
14175+/*
14176+ * Define the following to disable the FS PHY Hardware checking. This is for
14177+ * internal testing only.
14178+ *
14179+ * #define NO_FS_PHY_HW_CHECKS
14180+ */
14181+
14182+#ifdef NO_FS_PHY_HW_CHECKS
14183+ retval += PARAM_CHECK_VALID(phy_type, "phy_type", 1, 0);
14184+#else
14185+ retval += PARAM_CHECK_VALID(phy_type, "phy_type",
14186+ ({
14187+ int valid = 0;
14188+ if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) && ((core_if->hwcfg2.b.hs_phy_type == 1) || (core_if->hwcfg2.b.hs_phy_type == 3)))
14189+ valid = 1;
14190+ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) && ((core_if->hwcfg2.b.hs_phy_type == 2) || (core_if->hwcfg2.b.hs_phy_type == 3)))
14191+ valid = 1;
14192+ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) && (core_if->hwcfg2.b.fs_phy_type == 1))
14193+ valid = 1;
14194+ valid;
14195+ }),
14196+ ({
14197+ int set = DWC_PHY_TYPE_PARAM_FS;
14198+ if (core_if->hwcfg2.b.hs_phy_type) {
14199+ if ((core_if->hwcfg2.b.hs_phy_type == 3)
14200+ || (core_if->hwcfg2.b.hs_phy_type == 1))
14201+ set = DWC_PHY_TYPE_PARAM_UTMI;
14202+ else
14203+ set = DWC_PHY_TYPE_PARAM_ULPI;
14204+ }
14205+ set;
14206+ }));
14207+#endif
14208+
14209+ retval += PARAM_CHECK_VALID(speed, "speed",
14210+ dwc_otg_module_params.speed == 0
14211+ && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
14212+ dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0);
14213+
14214+ retval += PARAM_CHECK_VALID(host_ls_low_power_phy_clk,
14215+ "host_ls_low_power_phy_clk",
14216+ dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ
14217+ && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
14218+ (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ?
14219+ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ);
14220+
14221+ PARAM_SET_DEFAULT(phy_ulpi_ddr);
14222+ PARAM_SET_DEFAULT(phy_ulpi_ext_vbus);
14223+ PARAM_SET_DEFAULT(phy_utmi_width);
14224+ PARAM_SET_DEFAULT(ulpi_fs_ls);
14225+ PARAM_SET_DEFAULT(ts_dline);
14226+
14227+#ifdef NO_FS_PHY_HW_CHECKS
14228+ retval += PARAM_CHECK_VALID(i2c_enable, "i2c_enable", 1, 0);
14229+#else
14230+ retval += PARAM_CHECK_VALID(i2c_enable, "i2c_enable",
14231+ dwc_otg_module_params.i2c_enable == 1
14232+ && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1, 0);
14233+#endif
14234+
14235+ for (i = 0; i < 15; i++) {
14236+
14237+ int changed = 1;
14238+ int error = 0;
14239+
14240+ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) {
14241+ changed = 0;
14242+ dwc_otg_module_params.dev_perio_tx_fifo_size[i] =
14243+ dwc_param_dev_perio_tx_fifo_size_default;
14244+ }
14245+ if (!
14246+ (dwc_otg_module_params.dev_perio_tx_fifo_size[i] <=
14247+ (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz[i])))) {
14248+ if (changed) {
14249+ DWC_ERROR("`%d' invalid for parameter "
14250+ "`dev_perio_fifo_size_%d'. "
14251+ "Check HW configuration.\n",
14252+ dwc_otg_module_params.
14253+ dev_perio_tx_fifo_size[i], i);
14254+ error = 1;
14255+ }
14256+ dwc_otg_module_params.dev_perio_tx_fifo_size[i] =
14257+ dwc_read_reg32(&core_if->core_global_regs->
14258+ dptxfsiz[i]);
14259+ }
14260+ retval += error;
14261+ }
14262+
14263+ return retval;
14264+}
14265+
14266+/**
14267+ * This function is the top level interrupt handler for the Common
14268+ * (Device and host modes) interrupts.
14269+ */
14270+static irqreturn_t dwc_otg_common_irq(int _irq, void *_dev)
14271+{
14272+ struct dwc_otg_device *otg_dev = _dev;
14273+ int32_t retval = IRQ_NONE;
14274+ unsigned long flags;
14275+
14276+ spin_lock_irqsave(&otg_dev->hcd->global_lock, flags);
14277+
14278+ retval = dwc_otg_handle_common_intr(otg_dev->core_if);
14279+
14280+ spin_unlock_irqrestore(&otg_dev->hcd->global_lock, flags);
14281+
14282+ return IRQ_RETVAL(retval);
14283+}
14284+
14285+/**
14286+ * This function is called when a device is unregistered with the
14287+ * dwc_otg_driver. This happens, for example, when the rmmod command is
14288+ * executed. The device may or may not be electrically present. If it is
14289+ * present, the driver stops device processing. Any resources used on behalf
14290+ * of this device are freed.
14291+ *
14292+ * @dev:
14293+ */
14294+static int dwc_otg_driver_remove(struct platform_device *pdev)
14295+{
14296+ struct device *dev = &pdev->dev;
14297+ struct dwc_otg_device *otg_dev = dev->platform_data;
14298+ DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, dev);
14299+
14300+ if (otg_dev == NULL)
14301+ /* Memory allocation for the dwc_otg_device failed. */
14302+ return -ENOMEM;
14303+
14304+ /*
14305+ * Free the IRQ
14306+ */
14307+ if (otg_dev->common_irq_installed)
14308+ free_irq(platform_get_irq(to_platform_device(dev), 0), otg_dev);
14309+
14310+#ifndef DWC_DEVICE_ONLY
14311+ if (otg_dev->hcd != NULL)
14312+ dwc_otg_hcd_remove(dev);
14313+#endif
14314+
14315+#ifndef DWC_HOST_ONLY
14316+ if (otg_dev->pcd != NULL)
14317+ dwc_otg_pcd_remove(dev);
14318+#endif
14319+ if (otg_dev->core_if != NULL)
14320+ dwc_otg_cil_remove(otg_dev->core_if);
14321+
14322+ /*
14323+ * Remove the device attributes
14324+ */
14325+ dwc_otg_attr_remove(dev);
14326+
14327+ /*
14328+ * Clear the platform_data pointer.
14329+ */
14330+ dev->platform_data = 0;
14331+ return 0;
14332+}
14333+
14334+/**
14335+ * This function is called when an device is bound to a
14336+ * dwc_otg_driver. It creates the driver components required to
14337+ * control the device (CIL, HCD, and PCD) and it initializes the
14338+ * device. The driver components are stored in a dwc_otg_device
14339+ * structure. A reference to the dwc_otg_device is saved in the
14340+ * device. This allows the driver to access the dwc_otg_device
14341+ * structure on subsequent calls to driver methods for this device.
14342+ *
14343+ * @dev: device definition
14344+ */
14345+static __devinit int dwc_otg_driver_probe(struct platform_device *pdev)
14346+{
14347+ struct resource *res_base;
14348+ struct device *dev = &pdev->dev;
14349+ struct dwc_otg_device *dwc_otg_device;
14350+ int32_t snpsid;
14351+ unsigned long flags;
14352+ int irq;
14353+ int retval;
14354+
14355+ dev_dbg(dev, "dwc_otg_driver_probe(%p)\n", dev);
14356+
14357+ dwc_otg_device = devm_kzalloc(&pdev->dev,
14358+ sizeof(struct dwc_otg_device),
14359+ GFP_KERNEL);
14360+ if (!dwc_otg_device) {
14361+ dev_err(dev, "kmalloc of dwc_otg_device failed\n");
14362+ return -ENOMEM;
14363+ }
14364+ dwc_otg_device->reg_offset = 0xFFFFFFFF;
14365+
14366+ /*
14367+ * Map the DWC_otg Core memory into virtual address space.
14368+ */
14369+ res_base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
14370+ if (!res_base)
14371+ goto err_ports;
14372+
14373+ dwc_otg_device->base =
14374+ devm_ioremap_nocache(&pdev->dev,
14375+ res_base->start,
14376+ res_base->end - res_base->start);
14377+
14378+ if (!dwc_otg_device->base)
14379+ goto err_ports;
14380+
14381+ dev_dbg(dev, "base=%p\n", dwc_otg_device->base);
14382+
14383+ /*
14384+ * Attempt to ensure this device is really a DWC_otg Controller.
14385+ * Read and verify the SNPSID register contents. The value should be
14386+ * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX".
14387+ */
14388+ snpsid =
14389+ dwc_read_reg32((uint32_t *) ((uint8_t *) dwc_otg_device->base +
14390+ 0x40));
14391+ if ((snpsid & 0xFFFFF000) != 0x4F542000) {
14392+ dev_err(dev, "Bad value for SNPSID: 0x%08x\n", snpsid);
14393+ goto err_ports;
14394+ }
14395+
14396+ /*
14397+ * Initialize driver data to point to the global DWC_otg
14398+ * Device structure.
14399+ */
14400+ dev->platform_data = dwc_otg_device;
14401+ dev_dbg(dev, "dwc_otg_device=0x%p\n", dwc_otg_device);
14402+
14403+ dwc_otg_device->core_if = dwc_otg_cil_init(dwc_otg_device->base,
14404+ &dwc_otg_module_params);
14405+ if (dwc_otg_device->core_if == 0) {
14406+ dev_err(dev, "CIL initialization failed!\n");
14407+ goto err_ports;
14408+ }
14409+ dwc_otg_device->core_if->usb_num = to_platform_device(dev)->id;
14410+
14411+ /*
14412+ * Validate parameter values.
14413+ */
14414+ if (check_parameters(dwc_otg_device->core_if) != 0)
14415+ goto err_ports;
14416+
14417+ /*
14418+ * Create Device Attributes in sysfs
14419+ */
14420+ dwc_otg_attr_create(dev);
14421+
14422+ /*
14423+ * Disable the global interrupt until all the interrupt
14424+ * handlers are installed.
14425+ */
14426+ dwc_otg_disable_global_interrupts(dwc_otg_device->core_if);
14427+ /*
14428+ * Install the interrupt handler for the common interrupts before
14429+ * enabling common interrupts in core_init below.
14430+ */
14431+ irq = platform_get_irq(to_platform_device(dev), 0);
14432+ DWC_DEBUGPL(DBG_CIL, "registering (common) handler for irq%d\n", irq);
14433+ retval = request_irq(irq, dwc_otg_common_irq,
14434+ IRQF_SHARED, "dwc_otg", dwc_otg_device);
14435+ if (retval != 0) {
14436+ DWC_ERROR("request of irq%d failed\n", irq);
14437+ goto err_ports;
14438+ } else {
14439+ dwc_otg_device->common_irq_installed = 1;
14440+ }
14441+
14442+ /*
14443+ * Initialize the DWC_otg core.
14444+ */
14445+ dwc_otg_core_init(dwc_otg_device->core_if);
14446+
14447+#ifndef DWC_HOST_ONLY
14448+ /*
14449+ * Initialize the PCD
14450+ */
14451+ retval = dwc_otg_pcd_init(dev);
14452+ if (retval != 0) {
14453+ DWC_ERROR("dwc_otg_pcd_init failed\n");
14454+ dwc_otg_device->pcd = NULL;
14455+ goto err_ports;
14456+ }
14457+#endif
14458+#ifndef DWC_DEVICE_ONLY
14459+ /*
14460+ * Initialize the HCD
14461+ */
14462+ retval = dwc_otg_hcd_init(dev);
14463+ if (retval != 0) {
14464+ DWC_ERROR("dwc_otg_hcd_init failed\n");
14465+ dwc_otg_device->hcd = NULL;
14466+ goto err_ports;
14467+ }
14468+#endif
14469+
14470+ /*
14471+ * Enable the global interrupt after all the interrupt
14472+ * handlers are installed.
14473+ */
14474+ local_irq_save(flags);
14475+ dwc_otg_enable_global_interrupts(dwc_otg_device->core_if);
14476+ local_irq_restore(flags);
14477+
14478+ return 0;
14479+
14480+err_ports:
14481+ devm_kfree(&pdev->dev, dwc_otg_device);
14482+ return -ENOENT;
14483+}
14484+
14485+/**
14486+ * This structure defines the methods to be called by a bus driver
14487+ * during the lifecycle of a device on that bus. Both drivers and
14488+ * devices are registered with a bus driver. The bus driver matches
14489+ * devices to drivers based on information in the device and driver
14490+ * structures.
14491+ *
14492+ * The probe function is called when the bus driver matches a device
14493+ * to this driver. The remove function is called when a device is
14494+ * unregistered with the bus driver.
14495+ */
14496+static struct platform_driver dwc_otg_driver = {
14497+ .probe = dwc_otg_driver_probe,
14498+ .remove = dwc_otg_driver_remove,
14499+ .driver = {
14500+ .name = dwc_driver_name,
14501+ .owner = THIS_MODULE},
14502+};
14503+
14504+/**
14505+ * This function is called when the dwc_otg_driver is installed with the
14506+ * insmod command. It registers the dwc_otg_driver structure with the
14507+ * appropriate bus driver. This will cause the dwc_otg_driver_probe function
14508+ * to be called. In addition, the bus driver will automatically expose
14509+ * attributes defined for the device and driver in the special sysfs file
14510+ * system.
14511+ *
14512+ * Returns
14513+ */
14514+static int __init dwc_otg_driver_init(void)
14515+{
14516+ int retval;
14517+
14518+ pr_info("%s: version %s\n", dwc_driver_name, DWC_DRIVER_VERSION);
14519+
14520+ /* Though core was configured for external dma override that with slave
14521+ mode only for CN31XX. DMA is broken in this chip */
14522+ if (OCTEON_IS_MODEL(OCTEON_CN31XX))
14523+ dwc_otg_module_params.dma_enable = 0;
14524+
14525+ retval = platform_driver_register(&dwc_otg_driver);
14526+
14527+ if (retval < 0) {
14528+ pr_err("%s retval=%d\n", __func__, retval);
14529+ return retval;
14530+ }
14531+ if (driver_create_file(&dwc_otg_driver.driver, &driver_attr_version))
14532+ pr_warning("DWC_OTG: Failed to create driver version file\n");
14533+
14534+ return retval;
14535+}
14536+module_init(dwc_otg_driver_init);
14537+
14538+/**
14539+ * This function is called when the driver is removed from the kernel
14540+ * with the rmmod command. The driver unregisters itself with its bus
14541+ * driver.
14542+ *
14543+ */
14544+static void __exit dwc_otg_driver_cleanup(void)
14545+{
14546+ printk(KERN_DEBUG "dwc_otg_driver_cleanup()\n");
14547+
14548+ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version);
14549+
14550+ platform_driver_unregister(&dwc_otg_driver);
14551+
14552+ printk(KERN_INFO "%s module removed\n", dwc_driver_name);
14553+}
14554+module_exit(dwc_otg_driver_cleanup);
14555+
14556+MODULE_DESCRIPTION(DWC_DRIVER_DESC);
14557+MODULE_AUTHOR("Synopsys Inc.");
14558+MODULE_LICENSE("GPL");
14559+
14560+module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444);
14561+MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None");
14562+module_param_named(opt, dwc_otg_module_params.opt, int, 0444);
14563+MODULE_PARM_DESC(opt, "OPT Mode");
14564+module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444);
14565+MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled");
14566+module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int,
14567+ 0444);
14568+MODULE_PARM_DESC(dma_burst_size,
14569+ "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256");
14570+module_param_named(speed, dwc_otg_module_params.speed, int, 0444);
14571+MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed");
14572+module_param_named(host_support_fs_ls_low_power,
14573+ dwc_otg_module_params.host_support_fs_ls_low_power, int,
14574+ 0444);
14575+MODULE_PARM_DESC(host_support_fs_ls_low_power,
14576+ "Support Low Power w/FS or LS 0=Support 1=Don't Support");
14577+module_param_named(host_ls_low_power_phy_clk,
14578+ dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444);
14579+MODULE_PARM_DESC(host_ls_low_power_phy_clk,
14580+ "Low Speed Low Power Clock 0=48Mhz 1=6Mhz");
14581+module_param_named(enable_dynamic_fifo,
14582+ dwc_otg_module_params.enable_dynamic_fifo, int, 0444);
14583+MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing");
14584+module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int,
14585+ 0444);
14586+MODULE_PARM_DESC(data_fifo_size,
14587+ "Total number of words in the data FIFO memory 32-32768");
14588+module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size,
14589+ int, 0444);
14590+MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
14591+module_param_named(dev_nperio_tx_fifo_size,
14592+ dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444);
14593+MODULE_PARM_DESC(dev_nperio_tx_fifo_size,
14594+ "Number of words in the non-periodic Tx FIFO 16-32768");
14595+module_param_named(dev_perio_tx_fifo_size_1,
14596+ dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444);
14597+MODULE_PARM_DESC(dev_perio_tx_fifo_size_1,
14598+ "Number of words in the periodic Tx FIFO 4-768");
14599+module_param_named(dev_perio_tx_fifo_size_2,
14600+ dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444);
14601+MODULE_PARM_DESC(dev_perio_tx_fifo_size_2,
14602+ "Number of words in the periodic Tx FIFO 4-768");
14603+module_param_named(dev_perio_tx_fifo_size_3,
14604+ dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444);
14605+MODULE_PARM_DESC(dev_perio_tx_fifo_size_3,
14606+ "Number of words in the periodic Tx FIFO 4-768");
14607+module_param_named(dev_perio_tx_fifo_size_4,
14608+ dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444);
14609+MODULE_PARM_DESC(dev_perio_tx_fifo_size_4,
14610+ "Number of words in the periodic Tx FIFO 4-768");
14611+module_param_named(dev_perio_tx_fifo_size_5,
14612+ dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444);
14613+MODULE_PARM_DESC(dev_perio_tx_fifo_size_5,
14614+ "Number of words in the periodic Tx FIFO 4-768");
14615+module_param_named(dev_perio_tx_fifo_size_6,
14616+ dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444);
14617+MODULE_PARM_DESC(dev_perio_tx_fifo_size_6,
14618+ "Number of words in the periodic Tx FIFO 4-768");
14619+module_param_named(dev_perio_tx_fifo_size_7,
14620+ dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444);
14621+MODULE_PARM_DESC(dev_perio_tx_fifo_size_7,
14622+ "Number of words in the periodic Tx FIFO 4-768");
14623+module_param_named(dev_perio_tx_fifo_size_8,
14624+ dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444);
14625+MODULE_PARM_DESC(dev_perio_tx_fifo_size_8,
14626+ "Number of words in the periodic Tx FIFO 4-768");
14627+module_param_named(dev_perio_tx_fifo_size_9,
14628+ dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444);
14629+MODULE_PARM_DESC(dev_perio_tx_fifo_size_9,
14630+ "Number of words in the periodic Tx FIFO 4-768");
14631+module_param_named(dev_perio_tx_fifo_size_10,
14632+ dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444);
14633+MODULE_PARM_DESC(dev_perio_tx_fifo_size_10,
14634+ "Number of words in the periodic Tx FIFO 4-768");
14635+module_param_named(dev_perio_tx_fifo_size_11,
14636+ dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444);
14637+MODULE_PARM_DESC(dev_perio_tx_fifo_size_11,
14638+ "Number of words in the periodic Tx FIFO 4-768");
14639+module_param_named(dev_perio_tx_fifo_size_12,
14640+ dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444);
14641+MODULE_PARM_DESC(dev_perio_tx_fifo_size_12,
14642+ "Number of words in the periodic Tx FIFO 4-768");
14643+module_param_named(dev_perio_tx_fifo_size_13,
14644+ dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444);
14645+MODULE_PARM_DESC(dev_perio_tx_fifo_size_13,
14646+ "Number of words in the periodic Tx FIFO 4-768");
14647+module_param_named(dev_perio_tx_fifo_size_14,
14648+ dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444);
14649+MODULE_PARM_DESC(dev_perio_tx_fifo_size_14,
14650+ "Number of words in the periodic Tx FIFO 4-768");
14651+module_param_named(dev_perio_tx_fifo_size_15,
14652+ dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444);
14653+MODULE_PARM_DESC(dev_perio_tx_fifo_size_15,
14654+ "Number of words in the periodic Tx FIFO 4-768");
14655+module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size,
14656+ int, 0444);
14657+MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
14658+module_param_named(host_nperio_tx_fifo_size,
14659+ dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444);
14660+MODULE_PARM_DESC(host_nperio_tx_fifo_size,
14661+ "Number of words in the non-periodic Tx FIFO 16-32768");
14662+module_param_named(host_perio_tx_fifo_size,
14663+ dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444);
14664+MODULE_PARM_DESC(host_perio_tx_fifo_size,
14665+ "Number of words in the host periodic Tx FIFO 16-32768");
14666+module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size,
14667+ int, 0444);
14668+/** @todo Set the max to 512K, modify checks */
14669+MODULE_PARM_DESC(max_transfer_size,
14670+ "The maximum transfer size supported in bytes 2047-65535");
14671+module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count,
14672+ int, 0444);
14673+MODULE_PARM_DESC(max_packet_count,
14674+ "The maximum number of packets in a transfer 15-511");
14675+module_param_named(host_channels, dwc_otg_module_params.host_channels, int,
14676+ 0444);
14677+MODULE_PARM_DESC(host_channels,
14678+ "The number of host channel registers to use 1-16");
14679+module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int,
14680+ 0444);
14681+MODULE_PARM_DESC(dev_endpoints,
14682+ "The number of endpoints in addition to EP0 available "
14683+ "for device mode 1-15");
14684+module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444);
14685+MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI");
14686+module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int,
14687+ 0444);
14688+MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits");
14689+module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444);
14690+MODULE_PARM_DESC(phy_ulpi_ddr,
14691+ "ULPI at double or single data rate 0=Single 1=Double");
14692+module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus,
14693+ int, 0444);
14694+MODULE_PARM_DESC(phy_ulpi_ext_vbus,
14695+ "ULPI PHY using internal or external vbus 0=Internal");
14696+module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444);
14697+MODULE_PARM_DESC(i2c_enable, "FS PHY Interface");
14698+module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444);
14699+MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only");
14700+module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444);
14701+MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs");
14702+module_param_named(debug, g_dbg_lvl, int, 0644);
14703+MODULE_PARM_DESC(debug, "");
14704+
14705+/** @page "Module Parameters"
14706+ *
14707+ * The following parameters may be specified when starting the module.
14708+ * These parameters define how the DWC_otg controller should be
14709+ * configured. Parameter values are passed to the CIL initialization
14710+ * function dwc_otg_cil_init
14711+ *
14712+ * Example: <code>modprobe dwc_otg speed=1 otg_cap=1</code>
14713+ *
14714+
14715+ <table>
14716+ <tr><td>Parameter Name</td><td>Meaning</td></tr>
14717+
14718+ <tr>
14719+ <td>otg_cap</td>
14720+ <td>Specifies the OTG capabilities. The driver will automatically detect the
14721+ value for this parameter if none is specified.
14722+ - 0: HNP and SRP capable (default, if available)
14723+ - 1: SRP Only capable
14724+ - 2: No HNP/SRP capable
14725+ </td></tr>
14726+
14727+ <tr>
14728+ <td>dma_enable</td>
14729+ <td>Specifies whether to use slave or DMA mode for accessing the data FIFOs.
14730+ The driver will automatically detect the value for this parameter if none is
14731+ specified.
14732+ - 0: Slave
14733+ - 1: DMA (default, if available)
14734+ </td></tr>
14735+
14736+ <tr>
14737+ <td>dma_burst_size</td>
14738+ <td>The DMA Burst size (applicable only for External DMA Mode).
14739+ - Values: 1, 4, 8 16, 32, 64, 128, 256 (default 32)
14740+ </td></tr>
14741+
14742+ <tr>
14743+ <td>speed</td>
14744+ <td>Specifies the maximum speed of operation in host and device mode. The
14745+ actual speed depends on the speed of the attached device and the value of
14746+ phy_type.
14747+ - 0: High Speed (default)
14748+ - 1: Full Speed
14749+ </td></tr>
14750+
14751+ <tr>
14752+ <td>host_support_fs_ls_low_power</td>
14753+ <td>Specifies whether low power mode is supported when attached to a Full
14754+ Speed or Low Speed device in host mode.
14755+ - 0: Don't support low power mode (default)
14756+ - 1: Support low power mode
14757+ </td></tr>
14758+
14759+ <tr>
14760+ <td>host_ls_low_power_phy_clk</td>
14761+ <td>Specifies the PHY clock rate in low power mode when connected to a Low
14762+ Speed device in host mode. This parameter is applicable only if
14763+ HOST_SUPPORT_FS_LS_LOW_POWER is enabled.
14764+ - 0: 48 MHz (default)
14765+ - 1: 6 MHz
14766+ </td></tr>
14767+
14768+ <tr>
14769+ <td>enable_dynamic_fifo</td>
14770+ <td> Specifies whether FIFOs may be resized by the driver software.
14771+ - 0: Use cC FIFO size parameters
14772+ - 1: Allow dynamic FIFO sizing (default)
14773+ </td></tr>
14774+
14775+ <tr>
14776+ <td>data_fifo_size</td>
14777+ <td>Total number of 4-byte words in the data FIFO memory. This memory
14778+ includes the Rx FIFO, non-periodic Tx FIFO, and periodic Tx FIFOs.
14779+ - Values: 32 to 32768 (default 8192)
14780+
14781+ Note: The total FIFO memory depth in the FPGA configuration is 8192.
14782+ </td></tr>
14783+
14784+ <tr>
14785+ <td>dev_rx_fifo_size</td>
14786+ <td>Number of 4-byte words in the Rx FIFO in device mode when dynamic
14787+ FIFO sizing is enabled.
14788+ - Values: 16 to 32768 (default 1064)
14789+ </td></tr>
14790+
14791+ <tr>
14792+ <td>dev_nperio_tx_fifo_size</td>
14793+ <td>Number of 4-byte words in the non-periodic Tx FIFO in device mode when
14794+ dynamic FIFO sizing is enabled.
14795+ - Values: 16 to 32768 (default 1024)
14796+ </td></tr>
14797+
14798+ <tr>
14799+ <td>dev_perio_tx_fifo_size_n (n = 1 to 15)</td>
14800+ <td>Number of 4-byte words in each of the periodic Tx FIFOs in device mode
14801+ when dynamic FIFO sizing is enabled.
14802+ - Values: 4 to 768 (default 256)
14803+ </td></tr>
14804+
14805+ <tr>
14806+ <td>host_rx_fifo_size</td>
14807+ <td>Number of 4-byte words in the Rx FIFO in host mode when dynamic FIFO
14808+ sizing is enabled.
14809+ - Values: 16 to 32768 (default 1024)
14810+ </td></tr>
14811+
14812+ <tr>
14813+ <td>host_nperio_tx_fifo_size</td>
14814+ <td>Number of 4-byte words in the non-periodic Tx FIFO in host mode when
14815+ dynamic FIFO sizing is enabled in the core.
14816+ - Values: 16 to 32768 (default 1024)
14817+ </td></tr>
14818+
14819+ <tr>
14820+ <td>host_perio_tx_fifo_size</td>
14821+ <td>Number of 4-byte words in the host periodic Tx FIFO when dynamic FIFO
14822+ sizing is enabled.
14823+ - Values: 16 to 32768 (default 1024)
14824+ </td></tr>
14825+
14826+ <tr>
14827+ <td>max_transfer_size</td>
14828+ <td>The maximum transfer size supported in bytes.
14829+ - Values: 2047 to 65,535 (default 65,535)
14830+ </td></tr>
14831+
14832+ <tr>
14833+ <td>max_packet_count</td>
14834+ <td>The maximum number of packets in a transfer.
14835+ - Values: 15 to 511 (default 511)
14836+ </td></tr>
14837+
14838+ <tr>
14839+ <td>host_channels</td>
14840+ <td>The number of host channel registers to use.
14841+ - Values: 1 to 16 (default 12)
14842+
14843+ Note: The FPGA configuration supports a maximum of 12 host channels.
14844+ </td></tr>
14845+
14846+ <tr>
14847+ <td>dev_endpoints</td>
14848+ <td>The number of endpoints in addition to EP0 available for device mode
14849+ operations.
14850+ - Values: 1 to 15 (default 6 IN and OUT)
14851+
14852+ Note: The FPGA configuration supports a maximum of 6 IN and OUT endpoints in
14853+ addition to EP0.
14854+ </td></tr>
14855+
14856+ <tr>
14857+ <td>phy_type</td>
14858+ <td>Specifies the type of PHY interface to use. By default, the driver will
14859+ automatically detect the phy_type.
14860+ - 0: Full Speed
14861+ - 1: UTMI+ (default, if available)
14862+ - 2: ULPI
14863+ </td></tr>
14864+
14865+ <tr>
14866+ <td>phy_utmi_width</td>
14867+ <td>Specifies the UTMI+ Data Width. This parameter is applicable for a
14868+ phy_type of UTMI+. Also, this parameter is applicable only if the
14869+ OTG_HSPHY_WIDTH cC parameter was set to "8 and 16 bits", meaning that the
14870+ core has been configured to work at either data path width.
14871+ - Values: 8 or 16 bits (default 16)
14872+ </td></tr>
14873+
14874+ <tr>
14875+ <td>phy_ulpi_ddr</td>
14876+ <td>Specifies whether the ULPI operates at double or single data rate. This
14877+ parameter is only applicable if phy_type is ULPI.
14878+ - 0: single data rate ULPI interface with 8 bit wide data bus (default)
14879+ - 1: double data rate ULPI interface with 4 bit wide data bus
14880+ </td></tr>
14881+
14882+ <tr>
14883+ <td>i2c_enable</td>
14884+ <td>Specifies whether to use the I2C interface for full speed PHY. This
14885+ parameter is only applicable if PHY_TYPE is FS.
14886+ - 0: Disabled (default)
14887+ - 1: Enabled
14888+ </td></tr>
14889+
14890+*/
14891diff --git a/drivers/usb/host/dwc_otg/dwc_otg_plat.h b/drivers/usb/host/dwc_otg/dwc_otg_plat.h
14892new file mode 100644
14893index 0000000..93ef282
14894--- /dev/null
14895+++ b/drivers/usb/host/dwc_otg/dwc_otg_plat.h
14896@@ -0,0 +1,236 @@
14897+/* ==========================================================================
14898+ *
14899+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
14900+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
14901+ * otherwise expressly agreed to in writing between Synopsys and you.
14902+ *
14903+ * The Software IS NOT an item of Licensed Software or Licensed Product under
14904+ * any End User Software License Agreement or Agreement for Licensed Product
14905+ * with Synopsys or any supplement thereto. You are permitted to use and
14906+ * redistribute this Software in source and binary forms, with or without
14907+ * modification, provided that redistributions of source code must retain this
14908+ * notice. You may not view, use, disclose, copy or distribute this file or
14909+ * any information contained herein except pursuant to this license grant from
14910+ * Synopsys. If you do not agree with this notice, including the disclaimer
14911+ * below, then you are not authorized to use the Software.
14912+ *
14913+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
14914+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
14915+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
14916+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
14917+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
14918+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
14919+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
14920+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
14921+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
14922+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
14923+ * DAMAGE.
14924+ * ========================================================================== */
14925+
14926+#if !defined(__DWC_OTG_PLAT_H__)
14927+#define __DWC_OTG_PLAT_H__
14928+
14929+#include <linux/types.h>
14930+#include <linux/slab.h>
14931+#include <linux/list.h>
14932+#include <linux/delay.h>
14933+#include <linux/device.h>
14934+#include <linux/io.h>
14935+
14936+#include <asm/octeon/octeon.h>
14937+#include <asm/octeon/cvmx-usbnx-defs.h>
14938+
14939+#define SZ_256K 0x00040000
14940+#ifndef CONFIG_64BIT
14941+#define OCTEON_USB_BASE_ADDRESS 0x80016F0010000000ull
14942+#endif
14943+
14944+/**
14945+ * @file
14946+ *
14947+ * This file contains the Platform Specific constants, interfaces
14948+ * (functions and macros) for Linux.
14949+ *
14950+ */
14951+
14952+/**
14953+ * Reads the content of a register.
14954+ *
14955+ * @_reg: address of register to read.
14956+ * Returns contents of the register.
14957+ *
14958+
14959+ * Usage:<br>
14960+ * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code>
14961+ */
14962+static inline uint32_t dwc_read_reg32(uint32_t *_reg)
14963+{
14964+ uint32_t result;
14965+ /* USB device registers on Octeon are 32bit address swapped */
14966+#ifdef CONFIG_64BIT
14967+ uint64_t address = (unsigned long)_reg ^ 4;
14968+#else
14969+ uint64_t address = OCTEON_USB_BASE_ADDRESS | ((unsigned long)_reg ^ 4);
14970+#endif
14971+ result = cvmx_read64_uint32(address);
14972+ return result;
14973+};
14974+
14975+/**
14976+ * Writes a register with a 32 bit value.
14977+ *
14978+ * @_reg: address of register to read.
14979+ * @_value: to write to _reg.
14980+ *
14981+ * Usage:<br>
14982+ * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code>
14983+ */
14984+static inline void dwc_write_reg32(uint32_t *_reg,
14985+ const uint32_t _value)
14986+{
14987+ /* USB device registers on Octeon are 32bit address swapped */
14988+#ifdef CONFIG_64BIT
14989+ uint64_t address = (unsigned long)_reg ^ 4;
14990+#else
14991+ uint64_t address = OCTEON_USB_BASE_ADDRESS | ((unsigned long)_reg ^ 4);
14992+#endif
14993+ wmb();
14994+ cvmx_write64_uint32(address, _value);
14995+
14996+#ifdef CONFIG_CPU_CAVIUM_OCTEON
14997+ /* O2P/O1P pass 1 bug workaround: A read must occur for at least
14998+ every 3rd write to insure that the writes do not overrun the
14999+ USBN. */
15000+ if (OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN30XX)) {
15001+ extern int dwc_errata_write_count;
15002+ if (++dwc_errata_write_count > 2) {
15003+ cvmx_read_csr(CVMX_USBNX_DMA0_INB_CHN0(0));
15004+ dwc_errata_write_count = 0;
15005+ }
15006+ }
15007+#endif
15008+};
15009+
15010+/**
15011+ * This function modifies bit values in a register. Using the
15012+ * algorithm: (reg_contents & ~clear_mask) | set_mask.
15013+ *
15014+ * @_reg: address of register to read.
15015+ * @_clear_mask: bit mask to be cleared.
15016+ * @_set_mask: bit mask to be set.
15017+ *
15018+ * Usage:<br>
15019+ * <code> // Clear the SOF Interrupt Mask bit and <br>
15020+ * // set the OTG Interrupt mask bit, leaving all others as they were.
15021+ * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code>
15022+ */
15023+static inline void dwc_modify_reg32(uint32_t *_reg,
15024+ const uint32_t _clear_mask,
15025+ const uint32_t _set_mask)
15026+{
15027+ uint32_t value = dwc_read_reg32(_reg);
15028+ value &= ~_clear_mask;
15029+ value |= _set_mask;
15030+ dwc_write_reg32(_reg, value);
15031+};
15032+
15033+/*
15034+ * Debugging support vanishes in non-debug builds.
15035+ */
15036+
15037+/**
15038+ * The Debug Level bit-mask variable.
15039+ */
15040+extern uint32_t g_dbg_lvl;
15041+/**
15042+ * Set the Debug Level variable.
15043+ */
15044+static inline uint32_t SET_DEBUG_LEVEL(const uint32_t _new)
15045+{
15046+ uint32_t old = g_dbg_lvl;
15047+ g_dbg_lvl = _new;
15048+ return old;
15049+}
15050+
15051+/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */
15052+#define DBG_CIL (0x2)
15053+/** When debug level has the DBG_CILV bit set, display CIL Verbose debug
15054+ * messages */
15055+#define DBG_CILV (0x20)
15056+/** When debug level has the DBG_PCD bit set, display PCD (Device) debug
15057+ * messages */
15058+#define DBG_PCD (0x4)
15059+/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug
15060+ * messages */
15061+#define DBG_PCDV (0x40)
15062+/** When debug level has the DBG_HCD bit set, display Host debug messages */
15063+#define DBG_HCD (0x8)
15064+/** When debug level has the DBG_HCDV bit set, display Verbose Host debug
15065+ * messages */
15066+#define DBG_HCDV (0x80)
15067+/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host
15068+ * mode. */
15069+#define DBG_HCD_URB (0x800)
15070+
15071+/** When debug level has any bit set, display debug messages */
15072+#define DBG_ANY (0xFF)
15073+
15074+/** All debug messages off */
15075+#define DBG_OFF 0
15076+
15077+/** Prefix string for DWC_DEBUG print macros. */
15078+#define USB_DWC "DWC_otg: "
15079+
15080+/**
15081+ * Print a debug message when the Global debug level variable contains
15082+ * the bit defined in <code>lvl</code>.
15083+ *
15084+ * @lvl: - Debug level, use one of the DBG_ constants above.
15085+ * @x: - like printf
15086+ *
15087+ * Example:<p>
15088+ * <code>
15089+ * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr);
15090+ * </code>
15091+ * <br>
15092+ * results in:<br>
15093+ * <code>
15094+ * usb-DWC_otg: dwc_otg_cil_init(ca867000)
15095+ * </code>
15096+ */
15097+#ifdef DEBUG
15098+
15099+# define DWC_DEBUGPL(lvl, x...) \
15100+ do { \
15101+ if ((lvl)&g_dbg_lvl) \
15102+ printk(KERN_DEBUG USB_DWC x); \
15103+ } while (0)
15104+# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x)
15105+
15106+# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl)
15107+
15108+#else
15109+
15110+# define DWC_DEBUGPL(lvl, x...) do { } while (0)
15111+# define DWC_DEBUGP(x...)
15112+
15113+# define CHK_DEBUG_LEVEL(level) (0)
15114+
15115+#endif /*DEBUG*/
15116+/*
15117+ * Print an Error message.
15118+ */
15119+#define DWC_ERROR(x...) printk(KERN_ERR USB_DWC x)
15120+/*
15121+ * Print a Warning message.
15122+ */
15123+#define DWC_WARN(x...) printk(KERN_WARNING USB_DWC x)
15124+/*
15125+ * Print a notice (normal but significant message).
15126+ */
15127+#define DWC_NOTICE(x...) printk(KERN_NOTICE USB_DWC x)
15128+/*
15129+ * Basic message printing.
15130+ */
15131+#define DWC_PRINT(x...) printk(KERN_INFO USB_DWC x)
15132+#endif
15133diff --git a/drivers/usb/host/dwc_otg/dwc_otg_regs.h b/drivers/usb/host/dwc_otg/dwc_otg_regs.h
15134new file mode 100644
15135index 0000000..34cc4f7
15136--- /dev/null
15137+++ b/drivers/usb/host/dwc_otg/dwc_otg_regs.h
15138@@ -0,0 +1,2355 @@
15139+/* ==========================================================================
15140+ *
15141+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
15142+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
15143+ * otherwise expressly agreed to in writing between Synopsys and you.
15144+ *
15145+ * The Software IS NOT an item of Licensed Software or Licensed Product under
15146+ * any End User Software License Agreement or Agreement for Licensed Product
15147+ * with Synopsys or any supplement thereto. You are permitted to use and
15148+ * redistribute this Software in source and binary forms, with or without
15149+ * modification, provided that redistributions of source code must retain this
15150+ * notice. You may not view, use, disclose, copy or distribute this file or
15151+ * any information contained herein except pursuant to this license grant from
15152+ * Synopsys. If you do not agree with this notice, including the disclaimer
15153+ * below, then you are not authorized to use the Software.
15154+ *
15155+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
15156+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15157+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
15158+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
15159+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
15160+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
15161+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
15162+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
15163+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
15164+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
15165+ * DAMAGE.
15166+ * ========================================================================== */
15167+
15168+#ifndef __DWC_OTG_REGS_H__
15169+#define __DWC_OTG_REGS_H__
15170+
15171+/*
15172+ *
15173+ * This file contains the data structures for accessing the DWC_otg
15174+ * core registers.
15175+ *
15176+ * The application interfaces with the HS OTG core by reading from and
15177+ * writing to the Control and Status Register (CSR) space through the
15178+ * AHB Slave interface. These registers are 32 bits wide, and the
15179+ * addresses are 32-bit-block aligned.
15180+ * CSRs are classified as follows:
15181+ * - Core Global Registers
15182+ * - Device Mode Registers
15183+ * - Device Global Registers
15184+ * - Device Endpoint Specific Registers
15185+ * - Host Mode Registers
15186+ * - Host Global Registers
15187+ * - Host Port CSRs
15188+ * - Host Channel Specific Registers
15189+ *
15190+ * Only the Core Global registers can be accessed in both Device and
15191+ * Host modes. When the HS OTG core is operating in one mode, either
15192+ * Device or Host, the application must not access registers from the
15193+ * other mode. When the core switches from one mode to another, the
15194+ * registers in the new mode of operation must be reprogrammed as they
15195+ * would be after a power-on reset.
15196+ */
15197+
15198+/****************************************************************************/
15199+/* DWC_otg Core registers .
15200+ * The dwc_otg_core_global_regs structure defines the size
15201+ * and relative field offsets for the Core Global registers.
15202+ */
15203+struct dwc_otg_core_global_regs {
15204+ /* OTG Control and Status Register. Offset: 000h */
15205+ uint32_t gotgctl;
15206+ /* OTG Interrupt Register. Offset: 004h */
15207+ uint32_t gotgint;
15208+ /* Core AHB Configuration Register. Offset: 008h */
15209+ uint32_t gahbcfg;
15210+#define DWC_GLBINTRMASK 0x0001
15211+#define DWC_DMAENABLE 0x0020
15212+#define DWC_NPTXEMPTYLVL_EMPTY 0x0080
15213+#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000
15214+#define DWC_PTXEMPTYLVL_EMPTY 0x0100
15215+#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000
15216+
15217+ /* Core USB Configuration Register. Offset: 00Ch */
15218+ uint32_t gusbcfg;
15219+ /* Core Reset Register. Offset: 010h */
15220+ uint32_t grstctl;
15221+ /* Core Interrupt Register. Offset: 014h */
15222+ uint32_t gintsts;
15223+ /* Core Interrupt Mask Register. Offset: 018h */
15224+ uint32_t gintmsk;
15225+ /* Receive Status Queue Read Register (Read Only). Offset: 01Ch */
15226+ uint32_t grxstsr;
15227+ /* Receive Status Queue Read & POP Register (Read Only). Offset: 020h*/
15228+ uint32_t grxstsp;
15229+ /* Receive FIFO Size Register. Offset: 024h */
15230+ uint32_t grxfsiz;
15231+ /* Non Periodic Transmit FIFO Size Register. Offset: 028h */
15232+ uint32_t gnptxfsiz;
15233+ /*
15234+ *Non Periodic Transmit FIFO/Queue Status Register (Read
15235+ * Only). Offset: 02Ch
15236+ */
15237+ uint32_t gnptxsts;
15238+ /* I2C Access Register. Offset: 030h */
15239+ uint32_t gi2cctl;
15240+ /* PHY Vendor Control Register. Offset: 034h */
15241+ uint32_t gpvndctl;
15242+ /* General Purpose Input/Output Register. Offset: 038h */
15243+ uint32_t ggpio;
15244+ /* User ID Register. Offset: 03Ch */
15245+ uint32_t guid;
15246+ /* Synopsys ID Register (Read Only). Offset: 040h */
15247+ uint32_t gsnpsid;
15248+ /* User HW Config1 Register (Read Only). Offset: 044h */
15249+ uint32_t ghwcfg1;
15250+ /* User HW Config2 Register (Read Only). Offset: 048h */
15251+ uint32_t ghwcfg2;
15252+#define DWC_SLAVE_ONLY_ARCH 0
15253+#define DWC_EXT_DMA_ARCH 1
15254+#define DWC_INT_DMA_ARCH 2
15255+
15256+#define DWC_MODE_HNP_SRP_CAPABLE 0
15257+#define DWC_MODE_SRP_ONLY_CAPABLE 1
15258+#define DWC_MODE_NO_HNP_SRP_CAPABLE 2
15259+#define DWC_MODE_SRP_CAPABLE_DEVICE 3
15260+#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4
15261+#define DWC_MODE_SRP_CAPABLE_HOST 5
15262+#define DWC_MODE_NO_SRP_CAPABLE_HOST 6
15263+
15264+ /* User HW Config3 Register (Read Only). Offset: 04Ch */
15265+ uint32_t ghwcfg3;
15266+ /* User HW Config4 Register (Read Only). Offset: 050h*/
15267+ uint32_t ghwcfg4;
15268+ /* Reserved Offset: 054h-0FFh */
15269+ uint32_t reserved[43];
15270+ /* Host Periodic Transmit FIFO Size Register. Offset: 100h */
15271+ uint32_t hptxfsiz;
15272+ /*
15273+ * Device Periodic Transmit FIFO#n Register.
15274+ * Offset: 104h + (FIFO_Number-1)*04h,
15275+ * 1 <= FIFO Number <= 15 (1<=n<=15).
15276+ */
15277+ uint32_t dptxfsiz[15];
15278+};
15279+
15280+/*
15281+ * This union represents the bit fields of the Core OTG Control
15282+ * and Status Register (GOTGCTL). Set the bits using the bit
15283+ * fields then write the d32 value to the register.
15284+ */
15285+union gotgctl_data {
15286+ /* raw register data */
15287+ uint32_t d32;
15288+ /* register bits */
15289+ struct {
15290+#ifdef __BIG_ENDIAN_BITFIELD
15291+ unsigned reserved21_31:11;
15292+ unsigned currmod:1;
15293+ unsigned bsesvld:1;
15294+ unsigned asesvld:1;
15295+ unsigned reserved17:1;
15296+ unsigned conidsts:1;
15297+ unsigned reserved12_15:4;
15298+ unsigned devhnpen:1;
15299+ unsigned hstsethnpen:1;
15300+ unsigned hnpreq:1;
15301+ unsigned hstnegscs:1;
15302+ unsigned reserved2_7:6;
15303+ unsigned sesreq:1;
15304+ unsigned sesreqscs:1;
15305+#else
15306+ unsigned sesreqscs:1;
15307+ unsigned sesreq:1;
15308+ unsigned reserved2_7:6;
15309+ unsigned hstnegscs:1;
15310+ unsigned hnpreq:1;
15311+ unsigned hstsethnpen:1;
15312+ unsigned devhnpen:1;
15313+ unsigned reserved12_15:4;
15314+ unsigned conidsts:1;
15315+ unsigned reserved17:1;
15316+ unsigned asesvld:1;
15317+ unsigned bsesvld:1;
15318+ unsigned currmod:1;
15319+ unsigned reserved21_31:11;
15320+#endif
15321+ } b;
15322+};
15323+
15324+/*
15325+ * This union represents the bit fields of the Core OTG Interrupt Register
15326+ * (GOTGINT). Set/clear the bits using the bit fields then write the d32
15327+ * value to the register.
15328+ */
15329+union gotgint_data {
15330+ /* raw register data */
15331+ uint32_t d32;
15332+ /* register bits */
15333+ struct {
15334+#ifdef __BIG_ENDIAN_BITFIELD
15335+ unsigned reserved31_20:12;
15336+ unsigned debdone:1;
15337+ unsigned adevtoutchng:1;
15338+ unsigned hstnegdet:1;
15339+ unsigned reserver10_16:7;
15340+ unsigned hstnegsucstschng:1;
15341+ unsigned sesreqsucstschng:1;
15342+ unsigned reserved3_7:5;
15343+ unsigned sesenddet:1;
15344+ unsigned reserved0_1:2;
15345+#else
15346+
15347+ /* Current Mode */
15348+ unsigned reserved0_1:2;
15349+
15350+ /* Session End Detected */
15351+ unsigned sesenddet:1;
15352+
15353+ unsigned reserved3_7:5;
15354+
15355+ /* Session Request Success Status Change */
15356+ unsigned sesreqsucstschng:1;
15357+ /* Host Negotiation Success Status Change */
15358+ unsigned hstnegsucstschng:1;
15359+
15360+ unsigned reserver10_16:7;
15361+
15362+ /* Host Negotiation Detected */
15363+ unsigned hstnegdet:1;
15364+ /* A-Device Timeout Change */
15365+ unsigned adevtoutchng:1;
15366+ /* Debounce Done */
15367+ unsigned debdone:1;
15368+
15369+ unsigned reserved31_20:12;
15370+#endif
15371+ } b;
15372+};
15373+
15374+/*
15375+ * This union represents the bit fields of the Core AHB Configuration
15376+ * Register (GAHBCFG). Set/clear the bits using the bit fields then
15377+ * write the d32 value to the register.
15378+ */
15379+union gahbcfg_data {
15380+ /* raw register data */
15381+ uint32_t d32;
15382+ /* register bits */
15383+ struct {
15384+#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0
15385+#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1
15386+#define DWC_GAHBCFG_DMAENABLE 1
15387+#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7
15388+#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5
15389+#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3
15390+#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1
15391+#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0
15392+#define DWC_GAHBCFG_GLBINT_ENABLE 1
15393+
15394+#ifdef __BIG_ENDIAN_BITFIELD
15395+ unsigned reserved9_31:23;
15396+ unsigned ptxfemplvl:1;
15397+ unsigned nptxfemplvl:1;
15398+ unsigned reserved:1;
15399+ unsigned dmaenable:1;
15400+ unsigned hburstlen:4;
15401+ unsigned glblintrmsk:1;
15402+#else
15403+ unsigned glblintrmsk:1;
15404+ unsigned hburstlen:4;
15405+ unsigned dmaenable:1;
15406+ unsigned reserved:1;
15407+ unsigned nptxfemplvl:1;
15408+ unsigned ptxfemplvl:1;
15409+ unsigned reserved9_31:23;
15410+#endif
15411+ } b;
15412+};
15413+
15414+/*
15415+ * This union represents the bit fields of the Core USB Configuration
15416+ * Register (GUSBCFG). Set the bits using the bit fields then write
15417+ * the d32 value to the register.
15418+ */
15419+union gusbcfg_data {
15420+ /* raw register data */
15421+ uint32_t d32;
15422+ /* register bits */
15423+ struct {
15424+#ifdef __BIG_ENDIAN_BITFIELD
15425+ unsigned reserved:9;
15426+ unsigned term_sel_dl_pulse:1;
15427+ unsigned ulpi_int_vbus_indicator:1;
15428+ unsigned ulpi_ext_vbus_drv:1;
15429+ unsigned ulpi_clk_sus_m:1;
15430+ unsigned ulpi_auto_res:1;
15431+ unsigned ulpi_fsls:1;
15432+ unsigned otgutmifssel:1;
15433+ unsigned phylpwrclksel:1;
15434+ unsigned nptxfrwnden:1;
15435+ unsigned usbtrdtim:4;
15436+ unsigned hnpcap:1;
15437+ unsigned srpcap:1;
15438+ unsigned ddrsel:1;
15439+ unsigned physel:1;
15440+ unsigned fsintf:1;
15441+ unsigned ulpi_utmi_sel:1;
15442+ unsigned phyif:1;
15443+ unsigned toutcal:3;
15444+#else
15445+ unsigned toutcal:3;
15446+ unsigned phyif:1;
15447+ unsigned ulpi_utmi_sel:1;
15448+ unsigned fsintf:1;
15449+ unsigned physel:1;
15450+ unsigned ddrsel:1;
15451+ unsigned srpcap:1;
15452+ unsigned hnpcap:1;
15453+ unsigned usbtrdtim:4;
15454+ unsigned nptxfrwnden:1;
15455+ unsigned phylpwrclksel:1;
15456+ unsigned otgutmifssel:1;
15457+ unsigned ulpi_fsls:1;
15458+ unsigned ulpi_auto_res:1;
15459+ unsigned ulpi_clk_sus_m:1;
15460+ unsigned ulpi_ext_vbus_drv:1;
15461+ unsigned ulpi_int_vbus_indicator:1;
15462+ unsigned term_sel_dl_pulse:1;
15463+ unsigned reserved:9;
15464+#endif
15465+ } b;
15466+};
15467+
15468+/*
15469+ * This union represents the bit fields of the Core Reset Register
15470+ * (GRSTCTL). Set/clear the bits using the bit fields then write the
15471+ * d32 value to the register.
15472+ */
15473+union grstctl_data {
15474+ /* raw register data */
15475+ uint32_t d32;
15476+ /* register bits */
15477+ struct {
15478+#ifdef __BIG_ENDIAN_BITFIELD
15479+ unsigned ahbidle:1;
15480+ unsigned dmareq:1;
15481+ unsigned reserved11_29:19;
15482+ unsigned txfnum:5;
15483+ unsigned txfflsh:1;
15484+ unsigned rxfflsh:1;
15485+ unsigned intknqflsh:1;
15486+ unsigned hstfrm:1;
15487+ unsigned hsftrst:1;
15488+ unsigned csftrst:1;
15489+#else
15490+
15491+ /*
15492+ * Core Soft Reset (CSftRst) (Device and Host)
15493+ *
15494+ * The application can flush the control logic in the
15495+ * entire core using this bit. This bit resets the
15496+ * pipelines in the AHB Clock domain as well as the
15497+ * PHY Clock domain.
15498+ *
15499+ * The state machines are reset to an IDLE state, the
15500+ * control bits in the CSRs are cleared, all the
15501+ * transmit FIFOs and the receive FIFO are flushed.
15502+ *
15503+ * The status mask bits that control the generation of
15504+ * the interrupt, are cleared, to clear the
15505+ * interrupt. The interrupt status bits are not
15506+ * cleared, so the application can get the status of
15507+ * any events that occurred in the core after it has
15508+ * set this bit.
15509+ *
15510+ * Any transactions on the AHB are terminated as soon
15511+ * as possible following the protocol. Any
15512+ * transactions on the USB are terminated immediately.
15513+ *
15514+ * The configuration settings in the CSRs are
15515+ * unchanged, so the software doesn't have to
15516+ * reprogram these registers (Device
15517+ * Configuration/Host Configuration/Core System
15518+ * Configuration/Core PHY Configuration).
15519+ *
15520+ * The application can write to this bit, any time it
15521+ * wants to reset the core. This is a self clearing
15522+ * bit and the core clears this bit after all the
15523+ * necessary logic is reset in the core, which may
15524+ * take several clocks, depending on the current state
15525+ * of the core.
15526+ */
15527+ unsigned csftrst:1;
15528+ /*
15529+ * Hclk Soft Reset
15530+ *
15531+ * The application uses this bit to reset the control logic in
15532+ * the AHB clock domain. Only AHB clock domain pipelines are
15533+ * reset.
15534+ */
15535+ unsigned hsftrst:1;
15536+ /*
15537+ * Host Frame Counter Reset (Host Only)<br>
15538+ *
15539+ * The application can reset the (micro)frame number
15540+ * counter inside the core, using this bit. When the
15541+ * (micro)frame counter is reset, the subsequent SOF
15542+ * sent out by the core, will have a (micro)frame
15543+ * number of 0.
15544+ */
15545+ unsigned hstfrm:1;
15546+ /*
15547+ * In Token Sequence Learning Queue Flush
15548+ * (INTknQFlsh) (Device Only)
15549+ */
15550+ unsigned intknqflsh:1;
15551+ /*
15552+ * RxFIFO Flush (RxFFlsh) (Device and Host)
15553+ *
15554+ * The application can flush the entire Receive FIFO
15555+ * using this bit. <p>The application must first
15556+ * ensure that the core is not in the middle of a
15557+ * transaction. <p>The application should write into
15558+ * this bit, only after making sure that neither the
15559+ * DMA engine is reading from the RxFIFO nor the MAC
15560+ * is writing the data in to the FIFO. <p>The
15561+ * application should wait until the bit is cleared
15562+ * before performing any other operations. This bit
15563+ * will takes 8 clocks (slowest of PHY or AHB clock)
15564+ * to clear.
15565+ */
15566+ unsigned rxfflsh:1;
15567+ /*
15568+ * TxFIFO Flush (TxFFlsh) (Device and Host).
15569+ *
15570+ * This bit is used to selectively flush a single or
15571+ * all transmit FIFOs. The application must first
15572+ * ensure that the core is not in the middle of a
15573+ * transaction. <p>The application should write into
15574+ * this bit, only after making sure that neither the
15575+ * DMA engine is writing into the TxFIFO nor the MAC
15576+ * is reading the data out of the FIFO. <p>The
15577+ * application should wait until the core clears this
15578+ * bit, before performing any operations. This bit
15579+ * will takes 8 clocks (slowest of PHY or AHB clock)
15580+ * to clear.
15581+ */
15582+ unsigned txfflsh:1;
15583+
15584+ /*
15585+ * TxFIFO Number (TxFNum) (Device and Host).
15586+ *
15587+ * This is the FIFO number which needs to be flushed,
15588+ * using the TxFIFO Flush bit. This field should not
15589+ * be changed until the TxFIFO Flush bit is cleared by
15590+ * the core.
15591+ * - 0x0:Non Periodic TxFIFO Flush
15592+ * - 0x1:Periodic TxFIFO #1 Flush in device mode
15593+ * or Periodic TxFIFO in host mode
15594+ * - 0x2:Periodic TxFIFO #2 Flush in device mode.
15595+ * - ...
15596+ * - 0xF:Periodic TxFIFO #15 Flush in device mode
15597+ * - 0x10: Flush all the Transmit NonPeriodic and
15598+ * Transmit Periodic FIFOs in the core
15599+ */
15600+ unsigned txfnum:5;
15601+ /* Reserved */
15602+ unsigned reserved11_29:19;
15603+ /*
15604+ * DMA Request Signal. Indicated DMA request is in
15605+ * probress. Used for debug purpose.
15606+ */
15607+ unsigned dmareq:1;
15608+ /*
15609+ * AHB Master Idle. Indicates the AHB Master State
15610+ * Machine is in IDLE condition.
15611+ */
15612+ unsigned ahbidle:1;
15613+#endif
15614+ } b;
15615+};
15616+
15617+/*
15618+ * This union represents the bit fields of the Core Interrupt Mask
15619+ * Register (GINTMSK). Set/clear the bits using the bit fields then
15620+ * write the d32 value to the register.
15621+ */
15622+union gintmsk_data {
15623+ /* raw register data */
15624+ uint32_t d32;
15625+ /* register bits */
15626+ struct {
15627+#ifdef __BIG_ENDIAN_BITFIELD
15628+ unsigned wkupintr:1;
15629+ unsigned sessreqintr:1;
15630+ unsigned disconnect:1;
15631+ unsigned conidstschng:1;
15632+ unsigned reserved27:1;
15633+ unsigned ptxfempty:1;
15634+ unsigned hcintr:1;
15635+ unsigned portintr:1;
15636+ unsigned reserved22_23:2;
15637+ unsigned incomplisoout:1;
15638+ unsigned incomplisoin:1;
15639+ unsigned outepintr:1;
15640+ unsigned inepintr:1;
15641+ unsigned epmismatch:1;
15642+ unsigned reserved16:1;
15643+ unsigned eopframe:1;
15644+ unsigned isooutdrop:1;
15645+ unsigned enumdone:1;
15646+ unsigned usbreset:1;
15647+ unsigned usbsuspend:1;
15648+ unsigned erlysuspend:1;
15649+ unsigned i2cintr:1;
15650+ unsigned reserved8:1;
15651+ unsigned goutnakeff:1;
15652+ unsigned ginnakeff:1;
15653+ unsigned nptxfempty:1;
15654+ unsigned rxstsqlvl:1;
15655+ unsigned sofintr:1;
15656+ unsigned otgintr:1;
15657+ unsigned modemismatch:1;
15658+ unsigned reserved0:1;
15659+#else
15660+ unsigned reserved0:1;
15661+ unsigned modemismatch:1;
15662+ unsigned otgintr:1;
15663+ unsigned sofintr:1;
15664+ unsigned rxstsqlvl:1;
15665+ unsigned nptxfempty:1;
15666+ unsigned ginnakeff:1;
15667+ unsigned goutnakeff:1;
15668+ unsigned reserved8:1;
15669+ unsigned i2cintr:1;
15670+ unsigned erlysuspend:1;
15671+ unsigned usbsuspend:1;
15672+ unsigned usbreset:1;
15673+ unsigned enumdone:1;
15674+ unsigned isooutdrop:1;
15675+ unsigned eopframe:1;
15676+ unsigned reserved16:1;
15677+ unsigned epmismatch:1;
15678+ unsigned inepintr:1;
15679+ unsigned outepintr:1;
15680+ unsigned incomplisoin:1;
15681+ unsigned incomplisoout:1;
15682+ unsigned reserved22_23:2;
15683+ unsigned portintr:1;
15684+ unsigned hcintr:1;
15685+ unsigned ptxfempty:1;
15686+ unsigned reserved27:1;
15687+ unsigned conidstschng:1;
15688+ unsigned disconnect:1;
15689+ unsigned sessreqintr:1;
15690+ unsigned wkupintr:1;
15691+#endif
15692+ } b;
15693+};
15694+
15695+/*
15696+ * This union represents the bit fields of the Core Interrupt Register
15697+ * (GINTSTS). Set/clear the bits using the bit fields then write the
15698+ * d32 value to the register.
15699+ */
15700+union gintsts_data {
15701+ /* raw register data */
15702+ uint32_t d32;
15703+#define DWC_SOF_INTR_MASK 0x0008
15704+
15705+ /* register bits */
15706+ struct {
15707+#define DWC_HOST_MODE 1
15708+#ifdef __BIG_ENDIAN_BITFIELD
15709+ unsigned wkupintr:1;
15710+ unsigned sessreqintr:1;
15711+ unsigned disconnect:1;
15712+ unsigned conidstschng:1;
15713+ unsigned reserved27:1;
15714+ unsigned ptxfempty:1;
15715+ unsigned hcintr:1;
15716+ unsigned portintr:1;
15717+ unsigned reserved22_23:2;
15718+ unsigned incomplisoout:1;
15719+ unsigned incomplisoin:1;
15720+ unsigned outepintr:1;
15721+ unsigned inepint:1;
15722+ unsigned epmismatch:1;
15723+ unsigned intokenrx:1;
15724+ unsigned eopframe:1;
15725+ unsigned isooutdrop:1;
15726+ unsigned enumdone:1;
15727+ unsigned usbreset:1;
15728+ unsigned usbsuspend:1;
15729+ unsigned erlysuspend:1;
15730+ unsigned i2cintr:1;
15731+ unsigned reserved8:1;
15732+ unsigned goutnakeff:1;
15733+ unsigned ginnakeff:1;
15734+ unsigned nptxfempty:1;
15735+ unsigned rxstsqlvl:1;
15736+ unsigned sofintr:1;
15737+ unsigned otgintr:1;
15738+ unsigned modemismatch:1;
15739+ unsigned curmode:1;
15740+#else
15741+ unsigned curmode:1;
15742+ unsigned modemismatch:1;
15743+ unsigned otgintr:1;
15744+ unsigned sofintr:1;
15745+ unsigned rxstsqlvl:1;
15746+ unsigned nptxfempty:1;
15747+ unsigned ginnakeff:1;
15748+ unsigned goutnakeff:1;
15749+ unsigned reserved8:1;
15750+ unsigned i2cintr:1;
15751+ unsigned erlysuspend:1;
15752+ unsigned usbsuspend:1;
15753+ unsigned usbreset:1;
15754+ unsigned enumdone:1;
15755+ unsigned isooutdrop:1;
15756+ unsigned eopframe:1;
15757+ unsigned intokenrx:1;
15758+ unsigned epmismatch:1;
15759+ unsigned inepint:1;
15760+ unsigned outepintr:1;
15761+ unsigned incomplisoin:1;
15762+ unsigned incomplisoout:1;
15763+ unsigned reserved22_23:2;
15764+ unsigned portintr:1;
15765+ unsigned hcintr:1;
15766+ unsigned ptxfempty:1;
15767+ unsigned reserved27:1;
15768+ unsigned conidstschng:1;
15769+ unsigned disconnect:1;
15770+ unsigned sessreqintr:1;
15771+ unsigned wkupintr:1;
15772+#endif
15773+ } b;
15774+};
15775+
15776+/*
15777+ * This union represents the bit fields in the Device Receive Status Read and
15778+ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the d32
15779+ * element then read out the bits using the bit elements.
15780+ */
15781+union device_grxsts_data {
15782+ /* raw register data */
15783+ uint32_t d32;
15784+ /* register bits */
15785+ struct {
15786+#define DWC_DSTS_SETUP_UPDT 0x6 /* SETUP Packet */
15787+#define DWC_DSTS_SETUP_COMP 0x4 /* Setup Phase Complete */
15788+#define DWC_DSTS_GOUT_NAK 0x1 /* Global OUT NAK */
15789+#define DWC_STS_XFER_COMP 0x3 /* OUT Data Transfer Complete */
15790+#define DWC_STS_DATA_UPDT 0x2 /* OUT Data Packet */
15791+
15792+#ifdef __BIG_ENDIAN_BITFIELD
15793+ unsigned reserved:7;
15794+ unsigned fn:4;
15795+ unsigned pktsts:4;
15796+ unsigned dpid:2;
15797+ unsigned bcnt:11;
15798+ unsigned epnum:4;
15799+#else
15800+ unsigned epnum:4;
15801+ unsigned bcnt:11;
15802+ unsigned dpid:2;
15803+ unsigned pktsts:4;
15804+ unsigned fn:4;
15805+ unsigned reserved:7;
15806+#endif
15807+ } b;
15808+};
15809+
15810+/*
15811+ * This union represents the bit fields in the Host Receive Status Read and
15812+ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the d32
15813+ * element then read out the bits using the bit elements.
15814+ */
15815+union host_grxsts_data {
15816+ /* raw register data */
15817+ uint32_t d32;
15818+ /* register bits */
15819+ struct {
15820+#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7
15821+#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5
15822+#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3
15823+#define DWC_GRXSTS_PKTSTS_IN 0x2
15824+
15825+#ifdef __BIG_ENDIAN_BITFIELD
15826+ unsigned reserved:11;
15827+ unsigned pktsts:4;
15828+ unsigned dpid:2;
15829+ unsigned bcnt:11;
15830+ unsigned chnum:4;
15831+#else
15832+ unsigned chnum:4;
15833+ unsigned bcnt:11;
15834+ unsigned dpid:2;
15835+ unsigned pktsts:4;
15836+ unsigned reserved:11;
15837+#endif
15838+ } b;
15839+};
15840+
15841+/*
15842+ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ,
15843+ * GNPTXFSIZ, DPTXFSIZn). Read the register into the d32 element then
15844+ * read out the bits using the bit elements.
15845+ */
15846+union fifosize_data {
15847+ /* raw register data */
15848+ uint32_t d32;
15849+ /* register bits */
15850+ struct {
15851+#ifdef __BIG_ENDIAN_BITFIELD
15852+ unsigned depth:16;
15853+ unsigned startaddr:16;
15854+#else
15855+ unsigned startaddr:16;
15856+ unsigned depth:16;
15857+#endif
15858+ } b;
15859+};
15860+
15861+/*
15862+ * This union represents the bit fields in the Non-Periodic Transmit
15863+ * FIFO/Queue Status Register (GNPTXSTS). Read the register into the
15864+ * d32 element then read out the bits using the bit
15865+ * elements.
15866+ */
15867+union gnptxsts_data {
15868+ /* raw register data */
15869+ uint32_t d32;
15870+ /* register bits */
15871+ struct {
15872+#ifdef __BIG_ENDIAN_BITFIELD
15873+ unsigned reserved:1;
15874+ unsigned nptxqtop_chnep:4;
15875+ unsigned nptxqtop_token:2;
15876+ unsigned nptxqtop_terminate:1;
15877+ unsigned nptxqspcavail:8;
15878+ unsigned nptxfspcavail:16;
15879+#else
15880+ unsigned nptxfspcavail:16;
15881+ unsigned nptxqspcavail:8;
15882+ /*
15883+ * Top of the Non-Periodic Transmit Request Queue
15884+ * - bit 24 - Terminate (Last entry for the selected
15885+ * channel/EP)
15886+ * - bits 26:25 - Token Type
15887+ * - 2'b00 - IN/OUT
15888+ * - 2'b01 - Zero Length OUT
15889+ * - 2'b10 - PING/Complete Split
15890+ * - 2'b11 - Channel Halt
15891+ * - bits 30:27 - Channel/EP Number
15892+ */
15893+ unsigned nptxqtop_terminate:1;
15894+ unsigned nptxqtop_token:2;
15895+ unsigned nptxqtop_chnep:4;
15896+ unsigned reserved:1;
15897+#endif
15898+ } b;
15899+};
15900+
15901+/*
15902+ * This union represents the bit fields in the I2C Control Register
15903+ * (I2CCTL). Read the register into the d32 element then read out the
15904+ * bits using the bit elements.
15905+ */
15906+union gi2cctl_data {
15907+ /* raw register data */
15908+ uint32_t d32;
15909+ /* register bits */
15910+ struct {
15911+#ifdef __BIG_ENDIAN_BITFIELD
15912+ unsigned bsydne:1;
15913+ unsigned rw:1;
15914+ unsigned reserved:2;
15915+ unsigned i2cdevaddr:2;
15916+ unsigned i2csuspctl:1;
15917+ unsigned ack:1;
15918+ unsigned i2cen:1;
15919+ unsigned addr:7;
15920+ unsigned regaddr:8;
15921+ unsigned rwdata:8;
15922+#else
15923+ unsigned rwdata:8;
15924+ unsigned regaddr:8;
15925+ unsigned addr:7;
15926+ unsigned i2cen:1;
15927+ unsigned ack:1;
15928+ unsigned i2csuspctl:1;
15929+ unsigned i2cdevaddr:2;
15930+ unsigned reserved:2;
15931+ unsigned rw:1;
15932+ unsigned bsydne:1;
15933+#endif
15934+ } b;
15935+};
15936+
15937+/*
15938+ * This union represents the bit fields in the User HW Config1
15939+ * Register. Read the register into the d32 element then read
15940+ * out the bits using the bit elements.
15941+ */
15942+union hwcfg1_data {
15943+ /* raw register data */
15944+ uint32_t d32;
15945+ /* register bits */
15946+ struct {
15947+#ifdef __BIG_ENDIAN_BITFIELD
15948+ unsigned ep_dir15:2;
15949+ unsigned ep_dir14:2;
15950+ unsigned ep_dir13:2;
15951+ unsigned ep_dir12:2;
15952+ unsigned ep_dir11:2;
15953+ unsigned ep_dir10:2;
15954+ unsigned ep_dir9:2;
15955+ unsigned ep_dir8:2;
15956+ unsigned ep_dir7:2;
15957+ unsigned ep_dir6:2;
15958+ unsigned ep_dir5:2;
15959+ unsigned ep_dir4:2;
15960+ unsigned ep_dir3:2;
15961+ unsigned ep_dir2:2;
15962+ unsigned ep_dir1:2;
15963+ unsigned ep_dir0:2;
15964+#else
15965+ unsigned ep_dir0:2;
15966+ unsigned ep_dir1:2;
15967+ unsigned ep_dir2:2;
15968+ unsigned ep_dir3:2;
15969+ unsigned ep_dir4:2;
15970+ unsigned ep_dir5:2;
15971+ unsigned ep_dir6:2;
15972+ unsigned ep_dir7:2;
15973+ unsigned ep_dir8:2;
15974+ unsigned ep_dir9:2;
15975+ unsigned ep_dir10:2;
15976+ unsigned ep_dir11:2;
15977+ unsigned ep_dir12:2;
15978+ unsigned ep_dir13:2;
15979+ unsigned ep_dir14:2;
15980+ unsigned ep_dir15:2;
15981+#endif
15982+ } b;
15983+};
15984+
15985+/*
15986+ * This union represents the bit fields in the User HW Config2
15987+ * Register. Read the register into the d32 element then read
15988+ * out the bits using the bit elements.
15989+ */
15990+union hwcfg2_data {
15991+ /* raw register data */
15992+ uint32_t d32;
15993+ /* register bits */
15994+ struct {
15995+#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3
15996+#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2
15997+#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1
15998+#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0
15999+#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6
16000+#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5
16001+#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4
16002+#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3
16003+#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2
16004+#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1
16005+#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0
16006+
16007+#ifdef __BIG_ENDIAN_BITFIELD
16008+ unsigned reserved31:1;
16009+ unsigned dev_token_q_depth:5;
16010+ unsigned host_perio_tx_q_depth:2;
16011+ unsigned nonperio_tx_q_depth:2;
16012+ unsigned rx_status_q_depth:2;
16013+ unsigned dynamic_fifo:1;
16014+ unsigned perio_ep_supported:1;
16015+ unsigned num_host_chan:4;
16016+ unsigned num_dev_ep:4;
16017+ unsigned fs_phy_type:2;
16018+ unsigned hs_phy_type:2;
16019+ unsigned point2point:1;
16020+ unsigned architecture:2;
16021+ unsigned op_mode:3;
16022+#else
16023+ unsigned op_mode:3;
16024+ unsigned architecture:2;
16025+ unsigned point2point:1;
16026+ unsigned hs_phy_type:2;
16027+ unsigned fs_phy_type:2;
16028+ unsigned num_dev_ep:4;
16029+ unsigned num_host_chan:4;
16030+ unsigned perio_ep_supported:1;
16031+ unsigned dynamic_fifo:1;
16032+ unsigned rx_status_q_depth:2;
16033+ unsigned nonperio_tx_q_depth:2;
16034+ unsigned host_perio_tx_q_depth:2;
16035+ unsigned dev_token_q_depth:5;
16036+ unsigned reserved31:1;
16037+#endif
16038+ } b;
16039+};
16040+
16041+/**
16042+ * This union represents the bit fields in the User HW Config3
16043+ * Register. Read the register into the d32 element then read
16044+ * out the bits using the bit elements.
16045+ */
16046+union hwcfg3_data {
16047+ /* raw register data */
16048+ uint32_t d32;
16049+ /* register bits */
16050+ struct {
16051+ /* GHWCFG3 */
16052+#ifdef __BIG_ENDIAN_BITFIELD
16053+ unsigned dfifo_depth:16;
16054+ unsigned reserved15_13:3;
16055+ unsigned ahb_phy_clock_synch:1;
16056+ unsigned synch_reset_type:1;
16057+ unsigned optional_features:1;
16058+ unsigned vendor_ctrl_if:1;
16059+ unsigned i2c:1;
16060+ unsigned otg_func:1;
16061+ unsigned packet_size_cntr_width:3;
16062+ unsigned xfer_size_cntr_width:4;
16063+#else
16064+ unsigned xfer_size_cntr_width:4;
16065+ unsigned packet_size_cntr_width:3;
16066+ unsigned otg_func:1;
16067+ unsigned i2c:1;
16068+ unsigned vendor_ctrl_if:1;
16069+ unsigned optional_features:1;
16070+ unsigned synch_reset_type:1;
16071+ unsigned ahb_phy_clock_synch:1;
16072+ unsigned reserved15_13:3;
16073+ unsigned dfifo_depth:16;
16074+#endif
16075+ } b;
16076+};
16077+
16078+/**
16079+ * This union represents the bit fields in the User HW Config4
16080+ * Register. Read the register into the d32 element then read
16081+ * out the bits using the bit elements.
16082+ */
16083+union hwcfg4_data {
16084+ /* raw register data */
16085+ uint32_t d32;
16086+ /* register bits */
16087+ struct {
16088+#ifdef __BIG_ENDIAN_BITFIELD
16089+ unsigned reserved31_25:7;
16090+ unsigned session_end_filt_en:1;
16091+ unsigned b_valid_filt_en:1;
16092+ unsigned a_valid_filt_en:1;
16093+ unsigned vbus_valid_filt_en:1;
16094+ unsigned iddig_filt_en:1;
16095+ unsigned num_dev_mode_ctrl_ep:4;
16096+ unsigned utmi_phy_data_width:2;
16097+ unsigned min_ahb_freq:9;
16098+ unsigned power_optimiz:1;
16099+ unsigned num_dev_perio_in_ep:4;
16100+#else
16101+ unsigned num_dev_perio_in_ep:4;
16102+ unsigned power_optimiz:1;
16103+ unsigned min_ahb_freq:9;
16104+ unsigned utmi_phy_data_width:2;
16105+ unsigned num_dev_mode_ctrl_ep:4;
16106+ unsigned iddig_filt_en:1;
16107+ unsigned vbus_valid_filt_en:1;
16108+ unsigned a_valid_filt_en:1;
16109+ unsigned b_valid_filt_en:1;
16110+ unsigned session_end_filt_en:1;
16111+ unsigned reserved31_25:7;
16112+#endif
16113+ } b;
16114+};
16115+
16116+
16117+/*
16118+ * Device Global Registers. Offsets 800h-BFFh
16119+ *
16120+ * The following structures define the size and relative field offsets
16121+ * for the Device Mode Registers.
16122+ *
16123+ * These registers are visible only in Device mode and must not be
16124+ * accessed in Host mode, as the results are unknown.
16125+ */
16126+struct dwc_otg_dev_global_regs {
16127+ /* Device Configuration Register. Offset 800h */
16128+ uint32_t dcfg;
16129+ /* Device Control Register. Offset: 804h */
16130+ uint32_t dctl;
16131+ /* Device Status Register (Read Only). Offset: 808h */
16132+ uint32_t dsts;
16133+ /* Reserved. Offset: 80Ch */
16134+ uint32_t unused;
16135+ /*
16136+ * Device IN Endpoint Common Interrupt Mask Register. Offset: 810h
16137+ */
16138+ uint32_t diepmsk;
16139+ /*
16140+ * Device OUT Endpoint Common Interrupt Mask
16141+ * Register. Offset: 814h
16142+ */
16143+ uint32_t doepmsk;
16144+ /*
16145+ * Device All Endpoints Interrupt Register. Offset: 818h
16146+ */
16147+ uint32_t daint;
16148+ /*
16149+ * Device All Endpoints Interrupt Mask Register. Offset:
16150+ * 81Ch
16151+ */
16152+ uint32_t daintmsk;
16153+ /*
16154+ * Device IN Token Queue Read Register-1 (Read Only).
16155+ * Offset: 820h
16156+ */
16157+ uint32_t dtknqr1;
16158+ /*
16159+ * Device IN Token Queue Read Register-2 (Read Only).
16160+ * Offset: 824h
16161+ */
16162+ uint32_t dtknqr2;
16163+ /*
16164+ * Device VBUS discharge Register. Offset: 828h
16165+ */
16166+ uint32_t dvbusdis;
16167+ /*
16168+ * Device VBUS Pulse Register. Offset: 82Ch
16169+ */
16170+ uint32_t dvbuspulse;
16171+ /*
16172+ * Device IN Token Queue Read Register-3 (Read Only).
16173+ * Offset: 830h
16174+ */
16175+ uint32_t dtknqr3;
16176+ /*
16177+ * Device IN Token Queue Read Register-4 (Read Only).
16178+ * Offset: 834h
16179+ */
16180+ uint32_t dtknqr4;
16181+};
16182+
16183+/*
16184+ * This union represents the bit fields in the Device Configuration
16185+ * Register. Read the register into the d32 member then
16186+ * set/clear the bits using the bit elements. Write the
16187+ * d32 member to the dcfg register.
16188+ */
16189+union dcfg_data {
16190+ /* raw register data */
16191+ uint32_t d32;
16192+ /* register bits */
16193+ struct {
16194+#define DWC_DCFG_FRAME_INTERVAL_95 3
16195+#define DWC_DCFG_FRAME_INTERVAL_90 2
16196+#define DWC_DCFG_FRAME_INTERVAL_85 1
16197+#define DWC_DCFG_FRAME_INTERVAL_80 0
16198+#define DWC_DCFG_SEND_STALL 1
16199+
16200+#ifdef __BIG_ENDIAN_BITFIELD
16201+ unsigned reserved9:10;
16202+ unsigned epmscnt:4;
16203+ unsigned reserved13_17:5;
16204+ unsigned perfrint:2;
16205+ unsigned devaddr:7;
16206+ unsigned reserved3:1;
16207+ unsigned nzstsouthshk:1;
16208+ unsigned devspd:2;
16209+#else
16210+
16211+ /* Device Speed */
16212+ unsigned devspd:2;
16213+ /* Non Zero Length Status OUT Handshake */
16214+ unsigned nzstsouthshk:1;
16215+ unsigned reserved3:1;
16216+ /* Device Addresses */
16217+ unsigned devaddr:7;
16218+ /* Periodic Frame Interval */
16219+ unsigned perfrint:2;
16220+ unsigned reserved13_17:5;
16221+ /* In Endpoint Mis-match count */
16222+ unsigned epmscnt:4;
16223+ unsigned reserved9:10;
16224+#endif
16225+ } b;
16226+};
16227+
16228+/**
16229+ * This union represents the bit fields in the Device Control
16230+ * Register. Read the register into the d32 member then
16231+ * set/clear the bits using the bit elements.
16232+ */
16233+union dctl_data {
16234+ /* raw register data */
16235+ uint32_t d32;
16236+ /* register bits */
16237+ struct {
16238+#ifdef __BIG_ENDIAN_BITFIELD
16239+ unsigned reserved:21;
16240+ unsigned cgoutnak:1;
16241+ unsigned sgoutnak:1;
16242+ unsigned cgnpinnak:1;
16243+ unsigned sgnpinnak:1;
16244+ unsigned tstctl:3;
16245+ unsigned goutnaksts:1;
16246+ unsigned gnpinnaksts:1;
16247+ unsigned sftdiscon:1;
16248+ unsigned rmtwkupsig:1;
16249+#else
16250+
16251+ /* Remote Wakeup */
16252+ unsigned rmtwkupsig:1;
16253+ /* Soft Disconnect */
16254+ unsigned sftdiscon:1;
16255+ /* Global Non-Periodic IN NAK Status */
16256+ unsigned gnpinnaksts:1;
16257+ /* Global OUT NAK Status */
16258+ unsigned goutnaksts:1;
16259+ /* Test Control */
16260+ unsigned tstctl:3;
16261+ /* Set Global Non-Periodic IN NAK */
16262+ unsigned sgnpinnak:1;
16263+ /* Clear Global Non-Periodic IN NAK */
16264+ unsigned cgnpinnak:1;
16265+ /* Set Global OUT NAK */
16266+ unsigned sgoutnak:1;
16267+ /* Clear Global OUT NAK */
16268+ unsigned cgoutnak:1;
16269+
16270+ unsigned reserved:21;
16271+#endif
16272+ } b;
16273+};
16274+
16275+/*
16276+ * This union represents the bit fields in the Device Status
16277+ * Register. Read the register into the d32 member then
16278+ * set/clear the bits using the bit elements.
16279+ */
16280+union dsts_data {
16281+ /* raw register data */
16282+ uint32_t d32;
16283+ /* register bits */
16284+ struct {
16285+#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3
16286+#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2
16287+#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1
16288+#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0
16289+
16290+#ifdef __BIG_ENDIAN_BITFIELD
16291+ unsigned reserved22_31:10;
16292+ unsigned soffn:14;
16293+ unsigned reserved4_7:4;
16294+ unsigned errticerr:1;
16295+ unsigned enumspd:2;
16296+ unsigned suspsts:1;
16297+#else
16298+
16299+ /* Suspend Status */
16300+ unsigned suspsts:1;
16301+ /* Enumerated Speed */
16302+ unsigned enumspd:2;
16303+ /* Erratic Error */
16304+ unsigned errticerr:1;
16305+ unsigned reserved4_7:4;
16306+ /* Frame or Microframe Number of the received SOF */
16307+ unsigned soffn:14;
16308+ unsigned reserved22_31:10;
16309+#endif
16310+ } b;
16311+};
16312+
16313+/**
16314+ * This union represents the bit fields in the Device IN EP Interrupt
16315+ * Register and the Device IN EP Common Mask Register.
16316+ *
16317+ * It also represents the bit fields in the Device IN EP Common
16318+ * Interrupt Mask Register.
16319+
16320+ * - Read the register into the d32 member then set/clear the
16321+ * bits using the bit elements.
16322+ */
16323+union diepint_data {
16324+ /* raw register data */
16325+ uint32_t d32;
16326+ /* register bits */
16327+ struct {
16328+#ifdef __BIG_ENDIAN_BITFIELD
16329+ unsigned reserved07_31:25;
16330+ unsigned inepnakeff:1;
16331+ unsigned intknepmis:1;
16332+ unsigned intktxfemp:1;
16333+ unsigned timeout:1;
16334+ unsigned ahberr:1;
16335+ unsigned epdisabled:1;
16336+ unsigned xfercompl:1;
16337+#else
16338+
16339+y /* Transfer complete mask */
16340+ unsigned xfercompl:1;
16341+ /* Endpoint disable mask */
16342+ unsigned epdisabled:1;
16343+ /* AHB Error mask */
16344+ unsigned ahberr:1;
16345+ /* TimeOUT Handshake mask (non-ISOC EPs) */
16346+ unsigned timeout:1;
16347+ /* IN Token received with TxF Empty mask */
16348+ unsigned intktxfemp:1;
16349+ /* IN Token Received with EP mismatch mask */
16350+ unsigned intknepmis:1;
16351+ /* IN Endpoint HAK Effective mask */
16352+ unsigned inepnakeff:1;
16353+ unsigned reserved07_31:25;
16354+#endif
16355+ } b;
16356+};
16357+
16358+/**
16359+ * This union represents the bit fields in the Device OUT EP Interrupt
16360+ * Registerand Device OUT EP Common Interrupt Mask Register.
16361+ *
16362+ * It also represents the bit fields in the Device OUT EP Common
16363+ * Interrupt Mask Register.
16364+ *
16365+ * - Read the register into the d32 member then set/clear the
16366+ * bits using the bit elements.
16367+ */
16368+union doepint_data {
16369+ /* raw register data */
16370+ uint32_t d32;
16371+ /* register bits */
16372+ struct {
16373+#ifdef __BIG_ENDIAN_BITFIELD
16374+ unsigned reserved04_31:28;
16375+ unsigned setup:1;
16376+ unsigned ahberr:1;
16377+ unsigned epdisabled:1;
16378+ unsigned xfercompl:1;
16379+#else
16380+
16381+ /* Transfer complete */
16382+ unsigned xfercompl:1;
16383+ /* Endpoint disable */
16384+ unsigned epdisabled:1;
16385+ /* AHB Error */
16386+ unsigned ahberr:1;
16387+ /* Setup Phase Done (contorl EPs) */
16388+ unsigned setup:1;
16389+ unsigned reserved04_31:28;
16390+#endif
16391+ } b;
16392+};
16393+
16394+/*
16395+ * This union represents the bit fields in the Device All EP Interrupt
16396+ * and Mask Registers.
16397+ * - Read the register into the d32 member then set/clear the
16398+ * bits using the bit elements.
16399+ */
16400+union daint_data {
16401+ /* raw register data */
16402+ uint32_t d32;
16403+ /* register bits */
16404+ struct {
16405+#ifdef __BIG_ENDIAN_BITFIELD
16406+ unsigned out:16;
16407+ unsigned in:16;
16408+#else
16409+
16410+ /* IN Endpoint bits */
16411+ unsigned in:16;
16412+ /* OUT Endpoint bits */
16413+ unsigned out:16;
16414+#endif
16415+ } ep;
16416+ struct {
16417+#ifdef __BIG_ENDIAN_BITFIELD
16418+ unsigned outep15:1;
16419+ unsigned outep14:1;
16420+ unsigned outep13:1;
16421+ unsigned outep12:1;
16422+ unsigned outep11:1;
16423+ unsigned outep10:1;
16424+ unsigned outep9:1;
16425+ unsigned outep8:1;
16426+ unsigned outep7:1;
16427+ unsigned outep6:1;
16428+ unsigned outep5:1;
16429+ unsigned outep4:1;
16430+ unsigned outep3:1;
16431+ unsigned outep2:1;
16432+ unsigned outep1:1;
16433+ unsigned outep0:1;
16434+ unsigned inep15:1;
16435+ unsigned inep14:1;
16436+ unsigned inep13:1;
16437+ unsigned inep12:1;
16438+ unsigned inep11:1;
16439+ unsigned inep10:1;
16440+ unsigned inep9:1;
16441+ unsigned inep8:1;
16442+ unsigned inep7:1;
16443+ unsigned inep6:1;
16444+ unsigned inep5:1;
16445+ unsigned inep4:1;
16446+ unsigned inep3:1;
16447+ unsigned inep2:1;
16448+ unsigned inep1:1;
16449+ unsigned inep0:1;
16450+#else
16451+
16452+ /* IN Endpoint bits */
16453+ unsigned inep0:1;
16454+ unsigned inep1:1;
16455+ unsigned inep2:1;
16456+ unsigned inep3:1;
16457+ unsigned inep4:1;
16458+ unsigned inep5:1;
16459+ unsigned inep6:1;
16460+ unsigned inep7:1;
16461+ unsigned inep8:1;
16462+ unsigned inep9:1;
16463+ unsigned inep10:1;
16464+ unsigned inep11:1;
16465+ unsigned inep12:1;
16466+ unsigned inep13:1;
16467+ unsigned inep14:1;
16468+ unsigned inep15:1;
16469+ /* OUT Endpoint bits */
16470+ unsigned outep0:1;
16471+ unsigned outep1:1;
16472+ unsigned outep2:1;
16473+ unsigned outep3:1;
16474+ unsigned outep4:1;
16475+ unsigned outep5:1;
16476+ unsigned outep6:1;
16477+ unsigned outep7:1;
16478+ unsigned outep8:1;
16479+ unsigned outep9:1;
16480+ unsigned outep10:1;
16481+ unsigned outep11:1;
16482+ unsigned outep12:1;
16483+ unsigned outep13:1;
16484+ unsigned outep14:1;
16485+ unsigned outep15:1;
16486+#endif
16487+ } b;
16488+};
16489+
16490+/*
16491+ * This union represents the bit fields in the Device IN Token Queue
16492+ * Read Registers.
16493+ * - Read the register into the d32 member.
16494+ * - READ-ONLY Register
16495+ */
16496+union dtknq1_data {
16497+ /* raw register data */
16498+ uint32_t d32;
16499+ /* register bits */
16500+ struct {
16501+#ifdef __BIG_ENDIAN_BITFIELD
16502+ unsigned epnums0_5:24;
16503+ unsigned wrap_bit:1;
16504+ unsigned reserved05_06:2;
16505+ unsigned intknwptr:5;
16506+#else
16507+
16508+ /* In Token Queue Write Pointer */
16509+ unsigned intknwptr:5;
16510+ /* Reserved */
16511+ unsigned reserved05_06:2;
16512+ /* write pointer has wrapped. */
16513+ unsigned wrap_bit:1;
16514+ /* EP Numbers of IN Tokens 0 ... 4 */
16515+ unsigned epnums0_5:24;
16516+#endif
16517+ } b;
16518+};
16519+
16520+/*
16521+ * Device Logical IN Endpoint-Specific Registers. Offsets
16522+ * 900h-AFCh
16523+ *
16524+ * There will be one set of endpoint registers per logical endpoint
16525+ * implemented.
16526+ *
16527+ * These registers are visible only in Device mode and must not be
16528+ * accessed in Host mode, as the results are unknown.
16529+ */
16530+struct dwc_otg_dev_in_ep_regs {
16531+ /*
16532+ * Device IN Endpoint Control Register. Offset:900h +
16533+ * (ep_num * 20h) + 00h
16534+ */
16535+ uint32_t diepctl;
16536+ /* Reserved. Offset:900h + (ep_num * 20h) + 04h */
16537+ uint32_t reserved04;
16538+ /*
16539+ * Device IN Endpoint Interrupt Register. Offset:900h +
16540+ * (ep_num * 20h) + 08h
16541+ */
16542+ uint32_t diepint;
16543+ /* Reserved. Offset:900h + (ep_num * 20h) + 0Ch */
16544+ uint32_t reserved0C;
16545+ /*
16546+ * Device IN Endpoint Transfer Size
16547+ * Register. Offset:900h + (ep_num * 20h) + 10h
16548+ */
16549+ uint32_t dieptsiz;
16550+ /*
16551+ * Device IN Endpoint DMA Address Register. Offset:900h +
16552+ * (ep_num * 20h) + 14h
16553+ */
16554+ uint32_t diepdma;
16555+ /*
16556+ * Reserved. Offset:900h + (ep_num * 20h) + 18h - 900h +
16557+ * (ep_num * 20h) + 1Ch
16558+ */
16559+ uint32_t reserved18[2];
16560+};
16561+
16562+/**
16563+ * Device Logical OUT Endpoint-Specific Registers. Offsets:
16564+ * B00h-CFCh
16565+ *
16566+ * There will be one set of endpoint registers per logical endpoint
16567+ * implemented.
16568+ *
16569+ * These registers are visible only in Device mode and must not be
16570+ * accessed in Host mode, as the results are unknown.
16571+ */
16572+struct dwc_otg_dev_out_ep_regs {
16573+ /*
16574+ * Device OUT Endpoint Control Register. Offset:B00h +
16575+ * (ep_num * 20h) + 00h
16576+ */
16577+ uint32_t doepctl;
16578+ /*
16579+ * Device OUT Endpoint Frame number Register. Offset:
16580+ * B00h + (ep_num * 20h) + 04h
16581+ */
16582+ uint32_t doepfn;
16583+ /*
16584+ * Device OUT Endpoint Interrupt Register. Offset:B00h +
16585+ * (ep_num * 20h) + 08h
16586+ */
16587+ uint32_t doepint;
16588+ /*
16589+ * Reserved. Offset:B00h + (ep_num * 20h) + 0Ch */
16590+ uint32_t reserved0C;
16591+ /*
16592+ * Device OUT Endpoint Transfer Size Register. Offset:
16593+ * B00h + (ep_num * 20h) + 10h
16594+ */
16595+ uint32_t doeptsiz;
16596+ /*
16597+ * Device OUT Endpoint DMA Address Register. Offset:B00h
16598+ * + (ep_num * 20h) + 14h
16599+ */
16600+ uint32_t doepdma;
16601+ /*
16602+ * Reserved. Offset:B00h + (ep_num * 20h) + 18h - B00h +
16603+ * (ep_num * 20h) + 1Ch
16604+ */
16605+ uint32_t unused[2];
16606+};
16607+
16608+/*
16609+ * This union represents the bit fields in the Device EP Control
16610+ * Register. Read the register into the d32 member then
16611+ * set/clear the bits using the bit elements.
16612+ */
16613+union depctl_data {
16614+ /* raw register data */
16615+ uint32_t d32;
16616+ /* register bits */
16617+ struct {
16618+#define DWC_DEP0CTL_MPS_64 0
16619+#define DWC_DEP0CTL_MPS_32 1
16620+#define DWC_DEP0CTL_MPS_16 2
16621+#define DWC_DEP0CTL_MPS_8 3
16622+
16623+#ifdef __BIG_ENDIAN_BITFIELD
16624+ unsigned mps:11;
16625+ unsigned epena:1;
16626+ unsigned epdis:1;
16627+ unsigned setd1pid:1;
16628+ unsigned setd0pid:1;
16629+ unsigned snak:1;
16630+ unsigned cnak:1;
16631+ unsigned txfnum:4;
16632+ unsigned stall:1;
16633+ unsigned snp:1;
16634+ unsigned eptype:2;
16635+ unsigned naksts:1;
16636+ unsigned dpid:1;
16637+ unsigned usbactep:1;
16638+ unsigned nextep:4;
16639+#else
16640+
16641+ /*
16642+ * Maximum Packet Size
16643+ * IN/OUT EPn
16644+ * IN/OUT EP0 - 2 bits
16645+ * 2'b00: 64 Bytes
16646+ * 2'b01: 32
16647+ * 2'b10: 16
16648+ * 2'b11: 8
16649+ */
16650+ unsigned mps:11;
16651+ /*
16652+ * Next Endpoint
16653+ * IN EPn/IN EP0
16654+ * OUT EPn/OUT EP0 - reserved
16655+ */
16656+ unsigned nextep:4;
16657+
16658+ /* USB Active Endpoint */
16659+ unsigned usbactep:1;
16660+
16661+ /*
16662+ * Endpoint DPID (INTR/Bulk IN and OUT endpoints)
16663+ * This field contains the PID of the packet going to
16664+ * be received or transmitted on this endpoint. The
16665+ * application should program the PID of the first
16666+ * packet going to be received or transmitted on this
16667+ * endpoint , after the endpoint is
16668+ * activated. Application use the SetD1PID and
16669+ * SetD0PID fields of this register to program either
16670+ * D0 or D1 PID.
16671+ *
16672+ * The encoding for this field is
16673+ * - 0: D0
16674+ * - 1: D1
16675+ */
16676+ unsigned dpid:1;
16677+
16678+ /* NAK Status */
16679+ unsigned naksts:1;
16680+
16681+ /*
16682+ * Endpoint Type
16683+ * 2'b00: Control
16684+ * 2'b01: Isochronous
16685+ * 2'b10: Bulk
16686+ * 2'b11: Interrupt
16687+ */
16688+ unsigned eptype:2;
16689+
16690+ /*
16691+ * Snoop Mode
16692+ * OUT EPn/OUT EP0
16693+ * IN EPn/IN EP0 - reserved
16694+ */
16695+ unsigned snp:1;
16696+
16697+ /* Stall Handshake */
16698+ unsigned stall:1;
16699+
16700+ /*
16701+ * Tx Fifo Number
16702+ * IN EPn/IN EP0
16703+ * OUT EPn/OUT EP0 - reserved
16704+ */
16705+ unsigned txfnum:4;
16706+
16707+ /* Clear NAK */
16708+ unsigned cnak:1;
16709+ /* Set NAK */
16710+ unsigned snak:1;
16711+ /*
16712+ * Set DATA0 PID (INTR/Bulk IN and OUT endpoints)
16713+ * Writing to this field sets the Endpoint DPID (DPID)
16714+ * field in this register to DATA0. Set Even
16715+ * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints)
16716+ * Writing to this field sets the Even/Odd
16717+ * (micro)frame (EO_FrNum) field to even (micro)
16718+ * frame.
16719+ */
16720+ unsigned setd0pid:1;
16721+ /*
16722+ * Set DATA1 PID (INTR/Bulk IN and OUT endpoints)
16723+ * Writing to this field sets the Endpoint DPID (DPID)
16724+ * field in this register to DATA1 Set Odd
16725+ * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints)
16726+ * Writing to this field sets the Even/Odd
16727+ * (micro)frame (EO_FrNum) field to odd (micro) frame.
16728+ */
16729+ unsigned setd1pid:1;
16730+
16731+ /* Endpoint Disable */
16732+ unsigned epdis:1;
16733+ /* Endpoint Enable */
16734+ unsigned epena:1;
16735+#endif
16736+ } b;
16737+};
16738+
16739+/*
16740+ * This union represents the bit fields in the Device EP Transfer
16741+ * Size Register. Read the register into the d32 member then
16742+ * set/clear the bits using the bit elements.
16743+ */
16744+union deptsiz_data {
16745+ /* raw register data */
16746+ uint32_t d32;
16747+ /* register bits */
16748+ struct {
16749+#ifdef __BIG_ENDIAN_BITFIELD
16750+ unsigned reserved:1;
16751+ unsigned mc:2;
16752+ unsigned pktcnt:10;
16753+ unsigned xfersize:19;
16754+#else
16755+
16756+ /* Transfer size */
16757+ unsigned xfersize:19;
16758+ /* Packet Count */
16759+ unsigned pktcnt:10;
16760+ /* Multi Count - Periodic IN endpoints */
16761+ unsigned mc:2;
16762+ unsigned reserved:1;
16763+#endif
16764+ } b;
16765+};
16766+
16767+/*
16768+ * This union represents the bit fields in the Device EP 0 Transfer
16769+ * Size Register. Read the register into the d32 member then
16770+ * set/clear the bits using the bit elements.
16771+ */
16772+union deptsiz0_data {
16773+ /* raw register data */
16774+ uint32_t d32;
16775+ /* register bits */
16776+ struct {
16777+#ifdef __BIG_ENDIAN_BITFIELD
16778+ unsigned reserved31:1;
16779+ unsigned supcnt:2;
16780+ unsigned reserved20_28:9;
16781+ unsigned pktcnt:1;
16782+ unsigned reserved7_18:12;
16783+ unsigned xfersize:7;
16784+#else
16785+
16786+ /* Transfer size */
16787+ unsigned xfersize:7;
16788+ /* Reserved */
16789+ unsigned reserved7_18:12;
16790+ /* Packet Count */
16791+ unsigned pktcnt:1;
16792+ /* Reserved */
16793+ unsigned reserved20_28:9;
16794+ /* Setup Packet Count (DOEPTSIZ0 Only) */
16795+ unsigned supcnt:2;
16796+ unsigned reserved31:1;
16797+#endif
16798+ } b;
16799+};
16800+
16801+/** Maximum number of Periodic FIFOs */
16802+#define MAX_PERIO_FIFOS 15
16803+
16804+/** Maximum number of Endpoints/HostChannels */
16805+#define MAX_EPS_CHANNELS 16
16806+
16807+/*
16808+ * The dwc_otg_dev_if structure contains information needed to manage
16809+ * the DWC_otg controller acting in device mode. It represents the
16810+ * programming view of the device-specific aspects of the controller.
16811+ */
16812+struct dwc_otg_dev_if {
16813+ /*
16814+ * Pointer to device Global registers.
16815+ * Device Global Registers starting at offset 800h
16816+ */
16817+ struct dwc_otg_dev_global_regs *dev_global_regs;
16818+#define DWC_DEV_GLOBAL_REG_OFFSET 0x800
16819+
16820+ /*
16821+ * Device Logical IN Endpoint-Specific Registers 900h-AFCh
16822+ */
16823+ struct dwc_otg_dev_in_ep_regs *in_ep_regs[MAX_EPS_CHANNELS];
16824+#define DWC_DEV_IN_EP_REG_OFFSET 0x900
16825+#define DWC_EP_REG_OFFSET 0x20
16826+
16827+ /* Device Logical OUT Endpoint-Specific Registers B00h-CFCh */
16828+ struct dwc_otg_dev_out_ep_regs *out_ep_regs[MAX_EPS_CHANNELS];
16829+#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00
16830+
16831+ /* Device configuration information */
16832+ uint8_t speed; /* Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */
16833+ uint8_t num_eps; /* Number of EPs range: 1-16 (includes EP0) */
16834+ uint8_t num_perio_eps; /* # of Periodic EP range: 0-15 */
16835+
16836+ /* Size of periodic FIFOs (Bytes) */
16837+ uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS];
16838+
16839+};
16840+
16841+
16842+/* Host Mode Register Structures */
16843+
16844+/*
16845+ * The Host Global Registers structure defines the size and relative
16846+ * field offsets for the Host Mode Global Registers. Host Global
16847+ * Registers offsets 400h-7FFh.
16848+ */
16849+struct dwc_otg_host_global_regs {
16850+ /* Host Configuration Register. Offset: 400h */
16851+ uint32_t hcfg;
16852+ /* Host Frame Interval Register. Offset: 404h */
16853+ uint32_t hfir;
16854+ /* Host Frame Number / Frame Remaining Register. Offset: 408h */
16855+ uint32_t hfnum;
16856+ /* Reserved. Offset: 40Ch */
16857+ uint32_t reserved40C;
16858+ /* Host Periodic Transmit FIFO/ Queue Status Register. Offset: 410h */
16859+ uint32_t hptxsts;
16860+ /* Host All Channels Interrupt Register. Offset: 414h */
16861+ uint32_t haint;
16862+ /* Host All Channels Interrupt Mask Register. Offset: 418h */
16863+ uint32_t haintmsk;
16864+};
16865+
16866+/*
16867+ * This union represents the bit fields in the Host Configuration Register.
16868+ * Read the register into the d32 member then set/clear the bits using
16869+ * the bit elements. Write the d32 member to the hcfg register.
16870+ */
16871+union hcfg_data {
16872+ /** raw register data */
16873+ uint32_t d32;
16874+
16875+ /** register bits */
16876+ struct {
16877+#define DWC_HCFG_6_MHZ 2
16878+#define DWC_HCFG_48_MHZ 1
16879+#define DWC_HCFG_30_60_MHZ 0
16880+
16881+#ifdef __BIG_ENDIAN_BITFIELD
16882+ unsigned reserved:29;
16883+ unsigned fslssupp:1;
16884+ unsigned fslspclksel:2;
16885+#else
16886+
16887+ /* FS/LS Phy Clock Select */
16888+ unsigned fslspclksel:2;
16889+ /* FS/LS Only Support */
16890+ unsigned fslssupp:1;
16891+ unsigned reserved:29;
16892+#endif
16893+ } b;
16894+};
16895+
16896+/**
16897+ * This union represents the bit fields in the Host Frame Remaing/Number
16898+ * Register.
16899+ */
16900+union hfir_data {
16901+ /* raw register data */
16902+ uint32_t d32;
16903+
16904+ /* register bits */
16905+ struct {
16906+#ifdef __BIG_ENDIAN_BITFIELD
16907+ unsigned reserved:16;
16908+ unsigned frint:16;
16909+#else
16910+ unsigned frint:16;
16911+ unsigned reserved:16;
16912+#endif
16913+ } b;
16914+};
16915+
16916+/**
16917+ * This union represents the bit fields in the Host Frame Remaing/Number
16918+ * Register.
16919+ */
16920+union hfnum_data {
16921+ /* raw register data */
16922+ uint32_t d32;
16923+
16924+ /* register bits */
16925+ struct {
16926+#define DWC_HFNUM_MAX_FRNUM 0x3FFF
16927+
16928+#ifdef __BIG_ENDIAN_BITFIELD
16929+ unsigned frrem:16;
16930+ unsigned frnum:16;
16931+#else
16932+ unsigned frnum:16;
16933+ unsigned frrem:16;
16934+#endif
16935+ } b;
16936+};
16937+
16938+union hptxsts_data {
16939+ /* raw register data */
16940+ uint32_t d32;
16941+
16942+ /* register bits */
16943+ struct {
16944+#ifdef __BIG_ENDIAN_BITFIELD
16945+ unsigned ptxqtop_odd:1;
16946+ unsigned ptxqtop_chnum:4;
16947+ unsigned ptxqtop_token:2;
16948+ unsigned ptxqtop_terminate:1;
16949+ unsigned ptxqspcavail:8;
16950+ unsigned ptxfspcavail:16;
16951+#else
16952+ unsigned ptxfspcavail:16;
16953+ unsigned ptxqspcavail:8;
16954+ /*
16955+ * Top of the Periodic Transmit Request Queue
16956+ * - bit 24 - Terminate (last entry for the selected channel)
16957+ * - bits 26:25 - Token Type
16958+ * - 2'b00 - Zero length
16959+ * - 2'b01 - Ping
16960+ * - 2'b10 - Disable
16961+ * - bits 30:27 - Channel Number
16962+ * - bit 31 - Odd/even microframe
16963+ */
16964+ unsigned ptxqtop_terminate:1;
16965+ unsigned ptxqtop_token:2;
16966+ unsigned ptxqtop_chnum:4;
16967+ unsigned ptxqtop_odd:1;
16968+#endif
16969+ } b;
16970+};
16971+
16972+/**
16973+ * This union represents the bit fields in the Host Port Control and Status
16974+ * Register. Read the register into the d32 member then set/clear the
16975+ * bits using the bit elements. Write the d32 member to the
16976+ * hprt0 register.
16977+ */
16978+union hprt0_data {
16979+ /** raw register data */
16980+ uint32_t d32;
16981+ /** register bits */
16982+ struct {
16983+#define DWC_HPRT0_PRTSPD_LOW_SPEED 2
16984+#define DWC_HPRT0_PRTSPD_FULL_SPEED 1
16985+#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0
16986+
16987+#ifdef __BIG_ENDIAN_BITFIELD
16988+ unsigned reserved19_31:13;
16989+ unsigned prtspd:2;
16990+ unsigned prttstctl:4;
16991+ unsigned prtpwr:1;
16992+ unsigned prtlnsts:2;
16993+ unsigned reserved9:1;
16994+ unsigned prtrst:1;
16995+ unsigned prtsusp:1;
16996+ unsigned prtres:1;
16997+ unsigned prtovrcurrchng:1;
16998+ unsigned prtovrcurract:1;
16999+ unsigned prtenchng:1;
17000+ unsigned prtena:1;
17001+ unsigned prtconndet:1;
17002+ unsigned prtconnsts:1;
17003+#else
17004+ unsigned prtconnsts:1;
17005+ unsigned prtconndet:1;
17006+ unsigned prtena:1;
17007+ unsigned prtenchng:1;
17008+ unsigned prtovrcurract:1;
17009+ unsigned prtovrcurrchng:1;
17010+ unsigned prtres:1;
17011+ unsigned prtsusp:1;
17012+ unsigned prtrst:1;
17013+ unsigned reserved9:1;
17014+ unsigned prtlnsts:2;
17015+ unsigned prtpwr:1;
17016+ unsigned prttstctl:4;
17017+ unsigned prtspd:2;
17018+ unsigned reserved19_31:13;
17019+#endif
17020+ } b;
17021+};
17022+
17023+/**
17024+ * This union represents the bit fields in the Host All Interrupt
17025+ * Register.
17026+ */
17027+union haint_data {
17028+ /** raw register data */
17029+ uint32_t d32;
17030+ /** register bits */
17031+ struct {
17032+#ifdef __BIG_ENDIAN_BITFIELD
17033+ unsigned reserved:16;
17034+ unsigned ch15:1;
17035+ unsigned ch14:1;
17036+ unsigned ch13:1;
17037+ unsigned ch12:1;
17038+ unsigned ch11:1;
17039+ unsigned ch10:1;
17040+ unsigned ch9:1;
17041+ unsigned ch8:1;
17042+ unsigned ch7:1;
17043+ unsigned ch6:1;
17044+ unsigned ch5:1;
17045+ unsigned ch4:1;
17046+ unsigned ch3:1;
17047+ unsigned ch2:1;
17048+ unsigned ch1:1;
17049+ unsigned ch0:1;
17050+#else
17051+ unsigned ch0:1;
17052+ unsigned ch1:1;
17053+ unsigned ch2:1;
17054+ unsigned ch3:1;
17055+ unsigned ch4:1;
17056+ unsigned ch5:1;
17057+ unsigned ch6:1;
17058+ unsigned ch7:1;
17059+ unsigned ch8:1;
17060+ unsigned ch9:1;
17061+ unsigned ch10:1;
17062+ unsigned ch11:1;
17063+ unsigned ch12:1;
17064+ unsigned ch13:1;
17065+ unsigned ch14:1;
17066+ unsigned ch15:1;
17067+ unsigned reserved:16;
17068+#endif
17069+ } b;
17070+ struct {
17071+#ifdef __BIG_ENDIAN_BITFIELD
17072+ unsigned reserved:16;
17073+ unsigned chint:16;
17074+#else
17075+ unsigned chint:16;
17076+ unsigned reserved:16;
17077+#endif
17078+ } b2;
17079+};
17080+
17081+/**
17082+ * This union represents the bit fields in the Host All Interrupt
17083+ * Register.
17084+ */
17085+union haintmsk_data {
17086+ /** raw register data */
17087+ uint32_t d32;
17088+ /** register bits */
17089+ struct {
17090+#ifdef __BIG_ENDIAN_BITFIELD
17091+ unsigned reserved:16;
17092+ unsigned ch15:1;
17093+ unsigned ch14:1;
17094+ unsigned ch13:1;
17095+ unsigned ch12:1;
17096+ unsigned ch11:1;
17097+ unsigned ch10:1;
17098+ unsigned ch9:1;
17099+ unsigned ch8:1;
17100+ unsigned ch7:1;
17101+ unsigned ch6:1;
17102+ unsigned ch5:1;
17103+ unsigned ch4:1;
17104+ unsigned ch3:1;
17105+ unsigned ch2:1;
17106+ unsigned ch1:1;
17107+ unsigned ch0:1;
17108+#else
17109+ unsigned ch0:1;
17110+ unsigned ch1:1;
17111+ unsigned ch2:1;
17112+ unsigned ch3:1;
17113+ unsigned ch4:1;
17114+ unsigned ch5:1;
17115+ unsigned ch6:1;
17116+ unsigned ch7:1;
17117+ unsigned ch8:1;
17118+ unsigned ch9:1;
17119+ unsigned ch10:1;
17120+ unsigned ch11:1;
17121+ unsigned ch12:1;
17122+ unsigned ch13:1;
17123+ unsigned ch14:1;
17124+ unsigned ch15:1;
17125+ unsigned reserved:16;
17126+#endif
17127+ } b;
17128+ struct {
17129+#ifdef __BIG_ENDIAN_BITFIELD
17130+ unsigned reserved:16;
17131+ unsigned chint:16;
17132+#else
17133+ unsigned chint:16;
17134+ unsigned reserved:16;
17135+#endif
17136+ } b2;
17137+};
17138+
17139+/*
17140+ * Host Channel Specific Registers. 500h-5FCh
17141+ */
17142+struct dwc_otg_hc_regs {
17143+ /*
17144+ * Host Channel 0 Characteristic Register.
17145+ * Offset: 500h + (chan_num * 20h) + 00h
17146+ */
17147+ uint32_t hcchar;
17148+ /*
17149+ * Host Channel 0 Split Control Register.
17150+ * Offset: 500h + (chan_num * 20h) + 04h
17151+ */
17152+ uint32_t hcsplt;
17153+ /*
17154+ * Host Channel 0 Interrupt Register.
17155+ * Offset: 500h + (chan_num * 20h) + 08h
17156+ */
17157+ uint32_t hcint;
17158+ /*
17159+ * Host Channel 0 Interrupt Mask Register.
17160+ * Offset: 500h + (chan_num * 20h) + 0Ch
17161+ */
17162+ uint32_t hcintmsk;
17163+ /*
17164+ * Host Channel 0 Transfer Size Register.
17165+ * Offset: 500h + (chan_num * 20h) + 10h
17166+ */
17167+ uint32_t hctsiz;
17168+ /*
17169+ * Host Channel 0 DMA Address Register.
17170+ * Offset: 500h + (chan_num * 20h) + 14h
17171+ */
17172+ uint32_t hcdma;
17173+ /*
17174+ * Reserved.
17175+ * Offset: 500h + (chan_num * 20h) + 18h -
17176+ * 500h + (chan_num * 20h) + 1Ch
17177+ */
17178+ uint32_t reserved[2];
17179+};
17180+
17181+/**
17182+ * This union represents the bit fields in the Host Channel Characteristics
17183+ * Register. Read the register into the d32 member then set/clear the
17184+ * bits using the bit elements. Write the d32 member to the
17185+ * hcchar register.
17186+ */
17187+union hcchar_data {
17188+ /** raw register data */
17189+ uint32_t d32;
17190+
17191+ /** register bits */
17192+ struct {
17193+#ifdef __BIG_ENDIAN_BITFIELD
17194+ unsigned chen:1;
17195+ unsigned chdis:1;
17196+ unsigned oddfrm:1;
17197+ unsigned devaddr:7;
17198+ unsigned multicnt:2;
17199+ unsigned eptype:2;
17200+ unsigned lspddev:1;
17201+ unsigned reserved:1;
17202+ unsigned epdir:1;
17203+ unsigned epnum:4;
17204+ unsigned mps:11;
17205+#else
17206+
17207+ /* Maximum packet size in bytes */
17208+ unsigned mps:11;
17209+
17210+ /* Endpoint number */
17211+ unsigned epnum:4;
17212+
17213+ /* 0: OUT, 1: IN */
17214+ unsigned epdir:1;
17215+
17216+ unsigned reserved:1;
17217+
17218+ /* 0: Full/high speed device, 1: Low speed device */
17219+ unsigned lspddev:1;
17220+
17221+ /* 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
17222+ unsigned eptype:2;
17223+
17224+ /* Packets per frame for periodic transfers. 0 is reserved. */
17225+ unsigned multicnt:2;
17226+
17227+ /* Device address */
17228+ unsigned devaddr:7;
17229+
17230+ /*
17231+ * Frame to transmit periodic transaction.
17232+ * 0: even, 1: odd
17233+ */
17234+ unsigned oddfrm:1;
17235+
17236+ /* Channel disable */
17237+ unsigned chdis:1;
17238+
17239+ /* Channel enable */
17240+ unsigned chen:1;
17241+#endif
17242+ } b;
17243+};
17244+
17245+union hcsplt_data {
17246+ /* raw register data */
17247+ uint32_t d32;
17248+
17249+ /* register bits */
17250+ struct {
17251+#define DWC_HCSPLIT_XACTPOS_ALL 3
17252+#define DWC_HCSPLIT_XACTPOS_BEGIN 2
17253+#define DWC_HCSPLIT_XACTPOS_END 1
17254+#define DWC_HCSPLIT_XACTPOS_MID 0
17255+
17256+#ifdef __BIG_ENDIAN_BITFIELD
17257+ unsigned spltena:1;
17258+ unsigned reserved:14;
17259+ unsigned compsplt:1;
17260+ unsigned xactpos:2;
17261+ unsigned hubaddr:7;
17262+ unsigned prtaddr:7;
17263+#else
17264+
17265+ /* Port Address */
17266+ unsigned prtaddr:7;
17267+
17268+ /* Hub Address */
17269+ unsigned hubaddr:7;
17270+
17271+ /* Transaction Position */
17272+ unsigned xactpos:2;
17273+
17274+ /* Do Complete Split */
17275+ unsigned compsplt:1;
17276+
17277+ /* Reserved */
17278+ unsigned reserved:14;
17279+
17280+ /* Split Enble */
17281+ unsigned spltena:1;
17282+#endif
17283+ } b;
17284+};
17285+
17286+/**
17287+ * This union represents the bit fields in the Host All Interrupt
17288+ * Register.
17289+ */
17290+union hcint_data {
17291+ /* raw register data */
17292+ uint32_t d32;
17293+ /* register bits */
17294+ struct {
17295+#ifdef __BIG_ENDIAN_BITFIELD
17296+ unsigned reserved:21;
17297+ unsigned datatglerr:1;
17298+ unsigned frmovrun:1;
17299+ unsigned bblerr:1;
17300+ unsigned xacterr:1;
17301+ unsigned nyet:1;
17302+ unsigned ack:1;
17303+ unsigned nak:1;
17304+ unsigned stall:1;
17305+ unsigned ahberr:1;
17306+ unsigned chhltd:1;
17307+ unsigned xfercomp:1;
17308+#else
17309+
17310+ /* Transfer Complete */
17311+ unsigned xfercomp:1;
17312+ /* Channel Halted */
17313+ unsigned chhltd:1;
17314+ /* AHB Error */
17315+ unsigned ahberr:1;
17316+ /* STALL Response Received */
17317+ unsigned stall:1;
17318+ /* NAK Response Received */
17319+ unsigned nak:1;
17320+ /* ACK Response Received */
17321+ unsigned ack:1;
17322+ /* NYET Response Received */
17323+ unsigned nyet:1;
17324+ /* Transaction Err */
17325+ unsigned xacterr:1;
17326+ /* Babble Error */
17327+ unsigned bblerr:1;
17328+ /* Frame Overrun */
17329+ unsigned frmovrun:1;
17330+ /* Data Toggle Error */
17331+ unsigned datatglerr:1;
17332+ /* Reserved */
17333+ unsigned reserved:21;
17334+#endif
17335+ } b;
17336+};
17337+
17338+/**
17339+ * This union represents the bit fields in the Host Channel Transfer Size
17340+ * Register. Read the register into the d32 member then set/clear the
17341+ * bits using the bit elements. Write the d32 member to the
17342+ * hcchar register.
17343+ */
17344+union hctsiz_data {
17345+ /* raw register data */
17346+ uint32_t d32;
17347+
17348+ /* register bits */
17349+ struct {
17350+#define DWC_HCTSIZ_SETUP 3
17351+#define DWC_HCTSIZ_MDATA 3
17352+#define DWC_HCTSIZ_DATA2 1
17353+#define DWC_HCTSIZ_DATA1 2
17354+#define DWC_HCTSIZ_DATA0 0
17355+
17356+#ifdef __BIG_ENDIAN_BITFIELD
17357+ unsigned dopng:1;
17358+ unsigned pid:2;
17359+ unsigned pktcnt:10;
17360+ unsigned xfersize:19;
17361+#else
17362+
17363+ /* Total transfer size in bytes */
17364+ unsigned xfersize:19;
17365+
17366+ /* Data packets to transfer */
17367+ unsigned pktcnt:10;
17368+
17369+ /*
17370+ * Packet ID for next data packet
17371+ * 0: DATA0
17372+ * 1: DATA2
17373+ * 2: DATA1
17374+ * 3: MDATA (non-Control), SETUP (Control)
17375+ */
17376+ unsigned pid:2;
17377+
17378+ /* Do PING protocol when 1 */
17379+ unsigned dopng:1;
17380+#endif
17381+ } b;
17382+};
17383+
17384+/**
17385+ * This union represents the bit fields in the Host Channel Interrupt Mask
17386+ * Register. Read the register into the d32 member then set/clear the
17387+ * bits using the bit elements. Write the d32 member to the
17388+ * hcintmsk register.
17389+ */
17390+union hcintmsk_data {
17391+ /** raw register data */
17392+ uint32_t d32;
17393+
17394+ /** register bits */
17395+ struct {
17396+#ifdef __BIG_ENDIAN_BITFIELD
17397+ unsigned reserved:21;
17398+ unsigned datatglerr:1;
17399+ unsigned frmovrun:1;
17400+ unsigned bblerr:1;
17401+ unsigned xacterr:1;
17402+ unsigned nyet:1;
17403+ unsigned ack:1;
17404+ unsigned nak:1;
17405+ unsigned stall:1;
17406+ unsigned ahberr:1;
17407+ unsigned chhltd:1;
17408+ unsigned xfercompl:1;
17409+#else
17410+ unsigned xfercompl:1;
17411+ unsigned chhltd:1;
17412+ unsigned ahberr:1;
17413+ unsigned stall:1;
17414+ unsigned nak:1;
17415+ unsigned ack:1;
17416+ unsigned nyet:1;
17417+ unsigned xacterr:1;
17418+ unsigned bblerr:1;
17419+ unsigned frmovrun:1;
17420+ unsigned datatglerr:1;
17421+ unsigned reserved:21;
17422+#endif
17423+ } b;
17424+};
17425+
17426+/** OTG Host Interface Structure.
17427+ *
17428+ * The OTG Host Interface Structure structure contains information
17429+ * needed to manage the DWC_otg controller acting in host mode. It
17430+ * represents the programming view of the host-specific aspects of the
17431+ * controller.
17432+ */
17433+struct dwc_otg_host_if {
17434+ /* Host Global Registers starting at offset 400h.*/
17435+ struct dwc_otg_host_global_regs *host_global_regs;
17436+#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400
17437+
17438+ /* Host Port 0 Control and Status Register */
17439+ uint32_t *hprt0;
17440+#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440
17441+
17442+ /* Host Channel Specific Registers at offsets 500h-5FCh. */
17443+ struct dwc_otg_hc_regs *hc_regs[MAX_EPS_CHANNELS];
17444+#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500
17445+#define DWC_OTG_CHAN_REGS_OFFSET 0x20
17446+
17447+ /* Host configuration information */
17448+ /* Number of Host Channels (range: 1-16) */
17449+ uint8_t num_host_channels;
17450+ /* Periodic EPs supported (0: no, 1: yes) */
17451+ uint8_t perio_eps_supported;
17452+ /* Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */
17453+ uint16_t perio_tx_fifo_size;
17454+
17455+};
17456+
17457+/**
17458+ * This union represents the bit fields in the Power and Clock Gating Control
17459+ * Register. Read the register into the d32 member then set/clear the
17460+ * bits using the bit elements.
17461+ */
17462+union pcgcctl_data {
17463+ /* raw register data */
17464+ uint32_t d32;
17465+
17466+ /* register bits */
17467+ struct {
17468+#ifdef __BIG_ENDIAN_BITFIELD
17469+ unsigned reserved:27;
17470+ unsigned physuspended:1;
17471+ unsigned rstpdwnmodule:1;
17472+ unsigned pwrclmp:1;
17473+ unsigned gatehclk:1;
17474+ unsigned stoppclk:1;
17475+#else
17476+
17477+ /* Stop Pclk */
17478+ unsigned stoppclk:1;
17479+ /* Gate Hclk */
17480+ unsigned gatehclk:1;
17481+ /* Power Clamp */
17482+ unsigned pwrclmp:1;
17483+ /* Reset Power Down Modules */
17484+ unsigned rstpdwnmodule:1;
17485+ /* PHY Suspended */
17486+ unsigned physuspended:1;
17487+
17488+ unsigned reserved:27;
17489+#endif
17490+ } b;
17491+};
17492+
17493+#endif
17494--
174951.6.0.6
17496
17497

Archive Download this file



interactive