Root/target/linux/atheros/patches-2.6.37/110-ar2313_ethernet.patch

1--- a/drivers/net/Kconfig
2+++ b/drivers/net/Kconfig
3@@ -251,6 +251,12 @@ config AX88796_93CX6
4     help
5       Select this if your platform comes with an external 93CX6 eeprom.
6 
7+config AR231X_ETHERNET
8+ tristate "AR231x Ethernet support"
9+ depends on ATHEROS_AR231X
10+ help
11+ Support for the AR231x/531x ethernet controller
12+
13 config MACE
14     tristate "MACE (Power Mac ethernet) support"
15     depends on PPC_PMAC && PPC32
16--- a/drivers/net/Makefile
17+++ b/drivers/net/Makefile
18@@ -224,6 +224,7 @@ obj-$(CONFIG_EQUALIZER) += eql.o
19 obj-$(CONFIG_KORINA) += korina.o
20 obj-$(CONFIG_MIPS_JAZZ_SONIC) += jazzsonic.o
21 obj-$(CONFIG_MIPS_AU1X00_ENET) += au1000_eth.o
22+obj-$(CONFIG_AR231X_ETHERNET) += ar231x.o
23 obj-$(CONFIG_MIPS_SIM_NET) += mipsnet.o
24 obj-$(CONFIG_SGI_IOC3_ETH) += ioc3-eth.o
25 obj-$(CONFIG_DECLANCE) += declance.o
26--- /dev/null
27+++ b/drivers/net/ar231x.c
28@@ -0,0 +1,1293 @@
29+/*
30+ * ar231x.c: Linux driver for the Atheros AR231x Ethernet device.
31+ *
32+ * Copyright (C) 2004 by Sameer Dekate <sdekate@arubanetworks.com>
33+ * Copyright (C) 2006 Imre Kaloz <kaloz@openwrt.org>
34+ * Copyright (C) 2006-2009 Felix Fietkau <nbd@openwrt.org>
35+ *
36+ * Thanks to Atheros for providing hardware and documentation
37+ * enabling me to write this driver.
38+ *
39+ * This program is free software; you can redistribute it and/or modify
40+ * it under the terms of the GNU General Public License as published by
41+ * the Free Software Foundation; either version 2 of the License, or
42+ * (at your option) any later version.
43+ *
44+ * Additional credits:
45+ * This code is taken from John Taylor's Sibyte driver and then
46+ * modified for the AR2313.
47+ */
48+
49+#include <linux/module.h>
50+#include <linux/version.h>
51+#include <linux/types.h>
52+#include <linux/errno.h>
53+#include <linux/ioport.h>
54+#include <linux/pci.h>
55+#include <linux/netdevice.h>
56+#include <linux/etherdevice.h>
57+#include <linux/skbuff.h>
58+#include <linux/init.h>
59+#include <linux/delay.h>
60+#include <linux/mm.h>
61+#include <linux/highmem.h>
62+#include <linux/sockios.h>
63+#include <linux/pkt_sched.h>
64+#include <linux/mii.h>
65+#include <linux/phy.h>
66+#include <linux/ethtool.h>
67+#include <linux/ctype.h>
68+#include <linux/platform_device.h>
69+
70+#include <net/sock.h>
71+#include <net/ip.h>
72+
73+#include <asm/system.h>
74+#include <asm/io.h>
75+#include <asm/irq.h>
76+#include <asm/byteorder.h>
77+#include <asm/uaccess.h>
78+#include <asm/bootinfo.h>
79+
80+#define AR2313_MTU 1692
81+#define AR2313_PRIOS 1
82+#define AR2313_QUEUES (2*AR2313_PRIOS)
83+#define AR2313_DESCR_ENTRIES 64
84+
85+
86+#ifndef min
87+#define min(a,b) (((a)<(b))?(a):(b))
88+#endif
89+
90+#ifndef SMP_CACHE_BYTES
91+#define SMP_CACHE_BYTES L1_CACHE_BYTES
92+#endif
93+
94+#define AR2313_MBOX_SET_BIT 0x8
95+
96+#include "ar231x.h"
97+
98+/*
99+ * New interrupt handler strategy:
100+ *
101+ * An old interrupt handler worked using the traditional method of
102+ * replacing an skbuff with a new one when a packet arrives. However
103+ * the rx rings do not need to contain a static number of buffer
104+ * descriptors, thus it makes sense to move the memory allocation out
105+ * of the main interrupt handler and do it in a bottom half handler
106+ * and only allocate new buffers when the number of buffers in the
107+ * ring is below a certain threshold. In order to avoid starving the
108+ * NIC under heavy load it is however necessary to force allocation
109+ * when hitting a minimum threshold. The strategy for alloction is as
110+ * follows:
111+ *
112+ * RX_LOW_BUF_THRES - allocate buffers in the bottom half
113+ * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
114+ * the buffers in the interrupt handler
115+ * RX_RING_THRES - maximum number of buffers in the rx ring
116+ *
117+ * One advantagous side effect of this allocation approach is that the
118+ * entire rx processing can be done without holding any spin lock
119+ * since the rx rings and registers are totally independent of the tx
120+ * ring and its registers. This of course includes the kmalloc's of
121+ * new skb's. Thus start_xmit can run in parallel with rx processing
122+ * and the memory allocation on SMP systems.
123+ *
124+ * Note that running the skb reallocation in a bottom half opens up
125+ * another can of races which needs to be handled properly. In
126+ * particular it can happen that the interrupt handler tries to run
127+ * the reallocation while the bottom half is either running on another
128+ * CPU or was interrupted on the same CPU. To get around this the
129+ * driver uses bitops to prevent the reallocation routines from being
130+ * reentered.
131+ *
132+ * TX handling can also be done without holding any spin lock, wheee
133+ * this is fun! since tx_csm is only written to by the interrupt
134+ * handler.
135+ */
136+
137+/*
138+ * Threshold values for RX buffer allocation - the low water marks for
139+ * when to start refilling the rings are set to 75% of the ring
140+ * sizes. It seems to make sense to refill the rings entirely from the
141+ * intrrupt handler once it gets below the panic threshold, that way
142+ * we don't risk that the refilling is moved to another CPU when the
143+ * one running the interrupt handler just got the slab code hot in its
144+ * cache.
145+ */
146+#define RX_RING_SIZE AR2313_DESCR_ENTRIES
147+#define RX_PANIC_THRES (RX_RING_SIZE/4)
148+#define RX_LOW_THRES ((3*RX_RING_SIZE)/4)
149+#define CRC_LEN 4
150+#define RX_OFFSET 2
151+
152+#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
153+#define VLAN_HDR 4
154+#else
155+#define VLAN_HDR 0
156+#endif
157+
158+#define AR2313_BUFSIZE (AR2313_MTU + VLAN_HDR + ETH_HLEN + CRC_LEN + RX_OFFSET)
159+
160+#ifdef MODULE
161+MODULE_LICENSE("GPL");
162+MODULE_AUTHOR("Sameer Dekate <sdekate@arubanetworks.com>, Imre Kaloz <kaloz@openwrt.org>, Felix Fietkau <nbd@openwrt.org>");
163+MODULE_DESCRIPTION("AR231x Ethernet driver");
164+#endif
165+
166+#define virt_to_phys(x) ((u32)(x) & 0x1fffffff)
167+
168+// prototypes
169+static void ar231x_halt(struct net_device *dev);
170+static void rx_tasklet_func(unsigned long data);
171+static void rx_tasklet_cleanup(struct net_device *dev);
172+static void ar231x_multicast_list(struct net_device *dev);
173+static void ar231x_tx_timeout(struct net_device *dev);
174+
175+static int ar231x_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum);
176+static int ar231x_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, u16 value);
177+static int ar231x_mdiobus_reset(struct mii_bus *bus);
178+static int ar231x_mdiobus_probe (struct net_device *dev);
179+static void ar231x_adjust_link(struct net_device *dev);
180+
181+#ifndef ERR
182+#define ERR(fmt, args...) printk("%s: " fmt, __func__, ##args)
183+#endif
184+
185+#ifdef CONFIG_NET_POLL_CONTROLLER
186+static void
187+ar231x_netpoll(struct net_device *dev)
188+{
189+ unsigned long flags;
190+
191+ local_irq_save(flags);
192+ ar231x_interrupt(dev->irq, dev);
193+ local_irq_restore(flags);
194+}
195+#endif
196+
197+static const struct net_device_ops ar231x_ops = {
198+ .ndo_open = ar231x_open,
199+ .ndo_stop = ar231x_close,
200+ .ndo_start_xmit = ar231x_start_xmit,
201+ .ndo_set_multicast_list = ar231x_multicast_list,
202+ .ndo_do_ioctl = ar231x_ioctl,
203+ .ndo_change_mtu = eth_change_mtu,
204+ .ndo_validate_addr = eth_validate_addr,
205+ .ndo_set_mac_address = eth_mac_addr,
206+ .ndo_tx_timeout = ar231x_tx_timeout,
207+#ifdef CONFIG_NET_POLL_CONTROLLER
208+ .ndo_poll_controller = ar231x_netpoll,
209+#endif
210+};
211+
212+int __init ar231x_probe(struct platform_device *pdev)
213+{
214+ struct net_device *dev;
215+ struct ar231x_private *sp;
216+ struct resource *res;
217+ unsigned long ar_eth_base;
218+ char buf[64];
219+
220+ dev = alloc_etherdev(sizeof(struct ar231x_private));
221+
222+ if (dev == NULL) {
223+ printk(KERN_ERR
224+ "ar231x: Unable to allocate net_device structure!\n");
225+ return -ENOMEM;
226+ }
227+
228+ platform_set_drvdata(pdev, dev);
229+
230+ sp = netdev_priv(dev);
231+ sp->dev = dev;
232+ sp->cfg = pdev->dev.platform_data;
233+
234+ sprintf(buf, "eth%d_membase", pdev->id);
235+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, buf);
236+ if (!res)
237+ return -ENODEV;
238+
239+ sp->link = 0;
240+ ar_eth_base = res->start;
241+
242+ sprintf(buf, "eth%d_irq", pdev->id);
243+ dev->irq = platform_get_irq_byname(pdev, buf);
244+
245+ spin_lock_init(&sp->lock);
246+
247+ dev->features |= NETIF_F_HIGHDMA;
248+ dev->netdev_ops = &ar231x_ops;
249+
250+ tasklet_init(&sp->rx_tasklet, rx_tasklet_func, (unsigned long) dev);
251+ tasklet_disable(&sp->rx_tasklet);
252+
253+ sp->eth_regs =
254+ ioremap_nocache(virt_to_phys(ar_eth_base), sizeof(*sp->eth_regs));
255+ if (!sp->eth_regs) {
256+ printk("Can't remap eth registers\n");
257+ return (-ENXIO);
258+ }
259+
260+ /*
261+ * When there's only one MAC, PHY regs are typically on ENET0,
262+ * even though the MAC might be on ENET1.
263+ * Needto remap PHY regs separately in this case
264+ */
265+ if (virt_to_phys(ar_eth_base) == virt_to_phys(sp->phy_regs))
266+ sp->phy_regs = sp->eth_regs;
267+ else {
268+ sp->phy_regs =
269+ ioremap_nocache(virt_to_phys(sp->cfg->phy_base),
270+ sizeof(*sp->phy_regs));
271+ if (!sp->phy_regs) {
272+ printk("Can't remap phy registers\n");
273+ return (-ENXIO);
274+ }
275+ }
276+
277+ sp->dma_regs =
278+ ioremap_nocache(virt_to_phys(ar_eth_base + 0x1000),
279+ sizeof(*sp->dma_regs));
280+ dev->base_addr = (unsigned int) sp->dma_regs;
281+ if (!sp->dma_regs) {
282+ printk("Can't remap DMA registers\n");
283+ return (-ENXIO);
284+ }
285+
286+ sp->int_regs = ioremap_nocache(virt_to_phys(sp->cfg->reset_base), 4);
287+ if (!sp->int_regs) {
288+ printk("Can't remap INTERRUPT registers\n");
289+ return (-ENXIO);
290+ }
291+
292+ strncpy(sp->name, "Atheros AR231x", sizeof(sp->name) - 1);
293+ sp->name[sizeof(sp->name) - 1] = '\0';
294+ memcpy(dev->dev_addr, sp->cfg->macaddr, 6);
295+
296+ if (ar231x_init(dev)) {
297+ /*
298+ * ar231x_init() calls ar231x_init_cleanup() on error.
299+ */
300+ kfree(dev);
301+ return -ENODEV;
302+ }
303+
304+ if (register_netdev(dev)) {
305+ printk("%s: register_netdev failed\n", __func__);
306+ return -1;
307+ }
308+
309+ printk("%s: %s: %02x:%02x:%02x:%02x:%02x:%02x, irq %d\n",
310+ dev->name, sp->name,
311+ dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
312+ dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], dev->irq);
313+
314+ sp->mii_bus = mdiobus_alloc();
315+ if (sp->mii_bus == NULL)
316+ return -1;
317+
318+ sp->mii_bus->priv = dev;
319+ sp->mii_bus->read = ar231x_mdiobus_read;
320+ sp->mii_bus->write = ar231x_mdiobus_write;
321+ sp->mii_bus->reset = ar231x_mdiobus_reset;
322+ sp->mii_bus->name = "ar231x_eth_mii";
323+ snprintf(sp->mii_bus->id, MII_BUS_ID_SIZE, "%d", pdev->id);
324+ sp->mii_bus->irq = kmalloc(sizeof(int), GFP_KERNEL);
325+ *sp->mii_bus->irq = PHY_POLL;
326+
327+ mdiobus_register(sp->mii_bus);
328+
329+ if (ar231x_mdiobus_probe(dev) != 0) {
330+ printk(KERN_ERR "%s: mdiobus_probe failed\n", dev->name);
331+ rx_tasklet_cleanup(dev);
332+ ar231x_init_cleanup(dev);
333+ unregister_netdev(dev);
334+ kfree(dev);
335+ return -ENODEV;
336+ }
337+
338+ /* start link poll timer */
339+ ar231x_setup_timer(dev);
340+
341+ return 0;
342+}
343+
344+
345+static void ar231x_multicast_list(struct net_device *dev)
346+{
347+ struct ar231x_private *sp = netdev_priv(dev);
348+ unsigned int filter;
349+
350+ filter = sp->eth_regs->mac_control;
351+
352+ if (dev->flags & IFF_PROMISC)
353+ filter |= MAC_CONTROL_PR;
354+ else
355+ filter &= ~MAC_CONTROL_PR;
356+ if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 0))
357+ filter |= MAC_CONTROL_PM;
358+ else
359+ filter &= ~MAC_CONTROL_PM;
360+
361+ sp->eth_regs->mac_control = filter;
362+}
363+
364+static void rx_tasklet_cleanup(struct net_device *dev)
365+{
366+ struct ar231x_private *sp = netdev_priv(dev);
367+
368+ /*
369+ * Tasklet may be scheduled. Need to get it removed from the list
370+ * since we're about to free the struct.
371+ */
372+
373+ sp->unloading = 1;
374+ tasklet_enable(&sp->rx_tasklet);
375+ tasklet_kill(&sp->rx_tasklet);
376+}
377+
378+static int __devexit ar231x_remove(struct platform_device *pdev)
379+{
380+ struct net_device *dev = platform_get_drvdata(pdev);
381+ struct ar231x_private *sp = netdev_priv(dev);
382+ rx_tasklet_cleanup(dev);
383+ ar231x_init_cleanup(dev);
384+ unregister_netdev(dev);
385+ mdiobus_unregister(sp->mii_bus);
386+ mdiobus_free(sp->mii_bus);
387+ kfree(dev);
388+ return 0;
389+}
390+
391+
392+/*
393+ * Restart the AR2313 ethernet controller.
394+ */
395+static int ar231x_restart(struct net_device *dev)
396+{
397+ /* disable interrupts */
398+ disable_irq(dev->irq);
399+
400+ /* stop mac */
401+ ar231x_halt(dev);
402+
403+ /* initialize */
404+ ar231x_init(dev);
405+
406+ /* enable interrupts */
407+ enable_irq(dev->irq);
408+
409+ return 0;
410+}
411+
412+static struct platform_driver ar231x_driver = {
413+ .driver.name = "ar231x-eth",
414+ .probe = ar231x_probe,
415+ .remove = __devexit_p(ar231x_remove),
416+};
417+
418+int __init ar231x_module_init(void)
419+{
420+ return platform_driver_register(&ar231x_driver);
421+}
422+
423+void __exit ar231x_module_cleanup(void)
424+{
425+ platform_driver_unregister(&ar231x_driver);
426+}
427+
428+module_init(ar231x_module_init);
429+module_exit(ar231x_module_cleanup);
430+
431+
432+static void ar231x_free_descriptors(struct net_device *dev)
433+{
434+ struct ar231x_private *sp = netdev_priv(dev);
435+ if (sp->rx_ring != NULL) {
436+ kfree((void *) KSEG0ADDR(sp->rx_ring));
437+ sp->rx_ring = NULL;
438+ sp->tx_ring = NULL;
439+ }
440+}
441+
442+
443+static int ar231x_allocate_descriptors(struct net_device *dev)
444+{
445+ struct ar231x_private *sp = netdev_priv(dev);
446+ int size;
447+ int j;
448+ ar231x_descr_t *space;
449+
450+ if (sp->rx_ring != NULL) {
451+ printk("%s: already done.\n", __FUNCTION__);
452+ return 0;
453+ }
454+
455+ size =
456+ (sizeof(ar231x_descr_t) * (AR2313_DESCR_ENTRIES * AR2313_QUEUES));
457+ space = kmalloc(size, GFP_KERNEL);
458+ if (space == NULL)
459+ return 1;
460+
461+ /* invalidate caches */
462+ dma_cache_inv((unsigned int) space, size);
463+
464+ /* now convert pointer to KSEG1 */
465+ space = (ar231x_descr_t *) KSEG1ADDR(space);
466+
467+ memset((void *) space, 0, size);
468+
469+ sp->rx_ring = space;
470+ space += AR2313_DESCR_ENTRIES;
471+
472+ sp->tx_ring = space;
473+ space += AR2313_DESCR_ENTRIES;
474+
475+ /* Initialize the transmit Descriptors */
476+ for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
477+ ar231x_descr_t *td = &sp->tx_ring[j];
478+ td->status = 0;
479+ td->devcs = DMA_TX1_CHAINED;
480+ td->addr = 0;
481+ td->descr =
482+ virt_to_phys(&sp->
483+ tx_ring[(j + 1) & (AR2313_DESCR_ENTRIES - 1)]);
484+ }
485+
486+ return 0;
487+}
488+
489+
490+/*
491+ * Generic cleanup handling data allocated during init. Used when the
492+ * module is unloaded or if an error occurs during initialization
493+ */
494+static void ar231x_init_cleanup(struct net_device *dev)
495+{
496+ struct ar231x_private *sp = netdev_priv(dev);
497+ struct sk_buff *skb;
498+ int j;
499+
500+ ar231x_free_descriptors(dev);
501+
502+ if (sp->eth_regs)
503+ iounmap((void *) sp->eth_regs);
504+ if (sp->dma_regs)
505+ iounmap((void *) sp->dma_regs);
506+
507+ if (sp->rx_skb) {
508+ for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
509+ skb = sp->rx_skb[j];
510+ if (skb) {
511+ sp->rx_skb[j] = NULL;
512+ dev_kfree_skb(skb);
513+ }
514+ }
515+ kfree(sp->rx_skb);
516+ sp->rx_skb = NULL;
517+ }
518+
519+ if (sp->tx_skb) {
520+ for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
521+ skb = sp->tx_skb[j];
522+ if (skb) {
523+ sp->tx_skb[j] = NULL;
524+ dev_kfree_skb(skb);
525+ }
526+ }
527+ kfree(sp->tx_skb);
528+ sp->tx_skb = NULL;
529+ }
530+}
531+
532+static int ar231x_setup_timer(struct net_device *dev)
533+{
534+ struct ar231x_private *sp = netdev_priv(dev);
535+
536+ init_timer(&sp->link_timer);
537+
538+ sp->link_timer.function = ar231x_link_timer_fn;
539+ sp->link_timer.data = (int) dev;
540+ sp->link_timer.expires = jiffies + HZ;
541+
542+ add_timer(&sp->link_timer);
543+ return 0;
544+
545+}
546+
547+static void ar231x_link_timer_fn(unsigned long data)
548+{
549+ struct net_device *dev = (struct net_device *) data;
550+ struct ar231x_private *sp = netdev_priv(dev);
551+
552+ // see if the link status changed
553+ // This was needed to make sure we set the PHY to the
554+ // autonegotiated value of half or full duplex.
555+ ar231x_check_link(dev);
556+
557+ // Loop faster when we don't have link.
558+ // This was needed to speed up the AP bootstrap time.
559+ if (sp->link == 0) {
560+ mod_timer(&sp->link_timer, jiffies + HZ / 2);
561+ } else {
562+ mod_timer(&sp->link_timer, jiffies + LINK_TIMER);
563+ }
564+}
565+
566+static void ar231x_check_link(struct net_device *dev)
567+{
568+ struct ar231x_private *sp = netdev_priv(dev);
569+ u16 phyData;
570+
571+ phyData = ar231x_mdiobus_read(sp->mii_bus, sp->phy, MII_BMSR);
572+ if (sp->phyData != phyData) {
573+ if (phyData & BMSR_LSTATUS) {
574+ /* link is present, ready link partner ability to deterine
575+ duplexity */
576+ int duplex = 0;
577+ u16 reg;
578+
579+ sp->link = 1;
580+ reg = ar231x_mdiobus_read(sp->mii_bus, sp->phy, MII_BMCR);
581+ if (reg & BMCR_ANENABLE) {
582+ /* auto neg enabled */
583+ reg = ar231x_mdiobus_read(sp->mii_bus, sp->phy, MII_LPA);
584+ duplex = (reg & (LPA_100FULL | LPA_10FULL)) ? 1 : 0;
585+ } else {
586+ /* no auto neg, just read duplex config */
587+ duplex = (reg & BMCR_FULLDPLX) ? 1 : 0;
588+ }
589+
590+ printk(KERN_INFO "%s: Configuring MAC for %s duplex\n",
591+ dev->name, (duplex) ? "full" : "half");
592+
593+ if (duplex) {
594+ /* full duplex */
595+ sp->eth_regs->mac_control =
596+ ((sp->eth_regs->
597+ mac_control | MAC_CONTROL_F) & ~MAC_CONTROL_DRO);
598+ } else {
599+ /* half duplex */
600+ sp->eth_regs->mac_control =
601+ ((sp->eth_regs->
602+ mac_control | MAC_CONTROL_DRO) & ~MAC_CONTROL_F);
603+ }
604+ } else {
605+ /* no link */
606+ sp->link = 0;
607+ }
608+ sp->phyData = phyData;
609+ }
610+}
611+
612+static int ar231x_reset_reg(struct net_device *dev)
613+{
614+ struct ar231x_private *sp = netdev_priv(dev);
615+ unsigned int ethsal, ethsah;
616+ unsigned int flags;
617+
618+ *sp->int_regs |= sp->cfg->reset_mac;
619+ mdelay(10);
620+ *sp->int_regs &= ~sp->cfg->reset_mac;
621+ mdelay(10);
622+ *sp->int_regs |= sp->cfg->reset_phy;
623+ mdelay(10);
624+ *sp->int_regs &= ~sp->cfg->reset_phy;
625+ mdelay(10);
626+
627+ sp->dma_regs->bus_mode = (DMA_BUS_MODE_SWR);
628+ mdelay(10);
629+ sp->dma_regs->bus_mode =
630+ ((32 << DMA_BUS_MODE_PBL_SHIFT) | DMA_BUS_MODE_BLE);
631+
632+ /* enable interrupts */
633+ sp->dma_regs->intr_ena = (DMA_STATUS_AIS |
634+ DMA_STATUS_NIS |
635+ DMA_STATUS_RI |
636+ DMA_STATUS_TI | DMA_STATUS_FBE);
637+ sp->dma_regs->xmt_base = virt_to_phys(sp->tx_ring);
638+ sp->dma_regs->rcv_base = virt_to_phys(sp->rx_ring);
639+ sp->dma_regs->control =
640+ (DMA_CONTROL_SR | DMA_CONTROL_ST | DMA_CONTROL_SF);
641+
642+ sp->eth_regs->flow_control = (FLOW_CONTROL_FCE);
643+ sp->eth_regs->vlan_tag = (0x8100);
644+
645+ /* Enable Ethernet Interface */
646+ flags = (MAC_CONTROL_TE | /* transmit enable */
647+ MAC_CONTROL_PM | /* pass mcast */
648+ MAC_CONTROL_F | /* full duplex */
649+ MAC_CONTROL_HBD); /* heart beat disabled */
650+
651+ if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
652+ flags |= MAC_CONTROL_PR;
653+ }
654+ sp->eth_regs->mac_control = flags;
655+
656+ /* Set all Ethernet station address registers to their initial values */
657+ ethsah = ((((u_int) (dev->dev_addr[5]) << 8) & (u_int) 0x0000FF00) |
658+ (((u_int) (dev->dev_addr[4]) << 0) & (u_int) 0x000000FF));
659+
660+ ethsal = ((((u_int) (dev->dev_addr[3]) << 24) & (u_int) 0xFF000000) |
661+ (((u_int) (dev->dev_addr[2]) << 16) & (u_int) 0x00FF0000) |
662+ (((u_int) (dev->dev_addr[1]) << 8) & (u_int) 0x0000FF00) |
663+ (((u_int) (dev->dev_addr[0]) << 0) & (u_int) 0x000000FF));
664+
665+ sp->eth_regs->mac_addr[0] = ethsah;
666+ sp->eth_regs->mac_addr[1] = ethsal;
667+
668+ mdelay(10);
669+
670+ return (0);
671+}
672+
673+
674+static int ar231x_init(struct net_device *dev)
675+{
676+ struct ar231x_private *sp = netdev_priv(dev);
677+ int ecode = 0;
678+
679+ /*
680+ * Allocate descriptors
681+ */
682+ if (ar231x_allocate_descriptors(dev)) {
683+ printk("%s: %s: ar231x_allocate_descriptors failed\n",
684+ dev->name, __FUNCTION__);
685+ ecode = -EAGAIN;
686+ goto init_error;
687+ }
688+
689+ /*
690+ * Get the memory for the skb rings.
691+ */
692+ if (sp->rx_skb == NULL) {
693+ sp->rx_skb =
694+ kmalloc(sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES,
695+ GFP_KERNEL);
696+ if (!(sp->rx_skb)) {
697+ printk("%s: %s: rx_skb kmalloc failed\n",
698+ dev->name, __FUNCTION__);
699+ ecode = -EAGAIN;
700+ goto init_error;
701+ }
702+ }
703+ memset(sp->rx_skb, 0, sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES);
704+
705+ if (sp->tx_skb == NULL) {
706+ sp->tx_skb =
707+ kmalloc(sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES,
708+ GFP_KERNEL);
709+ if (!(sp->tx_skb)) {
710+ printk("%s: %s: tx_skb kmalloc failed\n",
711+ dev->name, __FUNCTION__);
712+ ecode = -EAGAIN;
713+ goto init_error;
714+ }
715+ }
716+ memset(sp->tx_skb, 0, sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES);
717+
718+ /*
719+ * Set tx_csm before we start receiving interrupts, otherwise
720+ * the interrupt handler might think it is supposed to process
721+ * tx ints before we are up and running, which may cause a null
722+ * pointer access in the int handler.
723+ */
724+ sp->rx_skbprd = 0;
725+ sp->cur_rx = 0;
726+ sp->tx_prd = 0;
727+ sp->tx_csm = 0;
728+
729+ /*
730+ * Zero the stats before starting the interface
731+ */
732+ memset(&dev->stats, 0, sizeof(dev->stats));
733+
734+ /*
735+ * We load the ring here as there seem to be no way to tell the
736+ * firmware to wipe the ring without re-initializing it.
737+ */
738+ ar231x_load_rx_ring(dev, RX_RING_SIZE);
739+
740+ /*
741+ * Init hardware
742+ */
743+ ar231x_reset_reg(dev);
744+
745+ /*
746+ * Get the IRQ
747+ */
748+ ecode =
749+ request_irq(dev->irq, &ar231x_interrupt,
750+ IRQF_DISABLED | IRQF_SAMPLE_RANDOM,
751+ dev->name, dev);
752+ if (ecode) {
753+ printk(KERN_WARNING "%s: %s: Requested IRQ %d is busy\n",
754+ dev->name, __FUNCTION__, dev->irq);
755+ goto init_error;
756+ }
757+
758+
759+ tasklet_enable(&sp->rx_tasklet);
760+
761+ return 0;
762+
763+ init_error:
764+ ar231x_init_cleanup(dev);
765+ return ecode;
766+}
767+
768+/*
769+ * Load the rx ring.
770+ *
771+ * Loading rings is safe without holding the spin lock since this is
772+ * done only before the device is enabled, thus no interrupts are
773+ * generated and by the interrupt handler/tasklet handler.
774+ */
775+static void ar231x_load_rx_ring(struct net_device *dev, int nr_bufs)
776+{
777+
778+ struct ar231x_private *sp = netdev_priv(dev);
779+ short i, idx;
780+
781+ idx = sp->rx_skbprd;
782+
783+ for (i = 0; i < nr_bufs; i++) {
784+ struct sk_buff *skb;
785+ ar231x_descr_t *rd;
786+
787+ if (sp->rx_skb[idx])
788+ break;
789+
790+ skb = netdev_alloc_skb(dev, AR2313_BUFSIZE);
791+ if (!skb) {
792+ printk("\n\n\n\n %s: No memory in system\n\n\n\n",
793+ __FUNCTION__);
794+ break;
795+ }
796+
797+ /*
798+ * Make sure IP header starts on a fresh cache line.
799+ */
800+ skb->dev = dev;
801+ skb_reserve(skb, RX_OFFSET);
802+ sp->rx_skb[idx] = skb;
803+
804+ rd = (ar231x_descr_t *) & sp->rx_ring[idx];
805+
806+ /* initialize dma descriptor */
807+ rd->devcs = ((AR2313_BUFSIZE << DMA_RX1_BSIZE_SHIFT) |
808+ DMA_RX1_CHAINED);
809+ rd->addr = virt_to_phys(skb->data);
810+ rd->descr =
811+ virt_to_phys(&sp->
812+ rx_ring[(idx + 1) & (AR2313_DESCR_ENTRIES - 1)]);
813+ rd->status = DMA_RX_OWN;
814+
815+ idx = DSC_NEXT(idx);
816+ }
817+
818+ if (i)
819+ sp->rx_skbprd = idx;
820+
821+ return;
822+}
823+
824+#define AR2313_MAX_PKTS_PER_CALL 64
825+
826+static int ar231x_rx_int(struct net_device *dev)
827+{
828+ struct ar231x_private *sp = netdev_priv(dev);
829+ struct sk_buff *skb, *skb_new;
830+ ar231x_descr_t *rxdesc;
831+ unsigned int status;
832+ u32 idx;
833+ int pkts = 0;
834+ int rval;
835+
836+ idx = sp->cur_rx;
837+
838+ /* process at most the entire ring and then wait for another interrupt
839+ */
840+ while (1) {
841+
842+ rxdesc = &sp->rx_ring[idx];
843+ status = rxdesc->status;
844+ if (status & DMA_RX_OWN) {
845+ /* SiByte owns descriptor or descr not yet filled in */
846+ rval = 0;
847+ break;
848+ }
849+
850+ if (++pkts > AR2313_MAX_PKTS_PER_CALL) {
851+ rval = 1;
852+ break;
853+ }
854+
855+ if ((status & DMA_RX_ERROR) && !(status & DMA_RX_LONG)) {
856+ dev->stats.rx_errors++;
857+ dev->stats.rx_dropped++;
858+
859+ /* add statistics counters */
860+ if (status & DMA_RX_ERR_CRC)
861+ dev->stats.rx_crc_errors++;
862+ if (status & DMA_RX_ERR_COL)
863+ dev->stats.rx_over_errors++;
864+ if (status & DMA_RX_ERR_LENGTH)
865+ dev->stats.rx_length_errors++;
866+ if (status & DMA_RX_ERR_RUNT)
867+ dev->stats.rx_over_errors++;
868+ if (status & DMA_RX_ERR_DESC)
869+ dev->stats.rx_over_errors++;
870+
871+ } else {
872+ /* alloc new buffer. */
873+ skb_new = netdev_alloc_skb(dev, AR2313_BUFSIZE + RX_OFFSET);
874+ if (skb_new != NULL) {
875+
876+ skb = sp->rx_skb[idx];
877+ /* set skb */
878+ skb_put(skb,
879+ ((status >> DMA_RX_LEN_SHIFT) & 0x3fff) - CRC_LEN);
880+
881+ dev->stats.rx_bytes += skb->len;
882+ skb->protocol = eth_type_trans(skb, dev);
883+ /* pass the packet to upper layers */
884+ netif_rx(skb);
885+
886+ skb_new->dev = dev;
887+ /* 16 bit align */
888+ skb_reserve(skb_new, RX_OFFSET);
889+ /* reset descriptor's curr_addr */
890+ rxdesc->addr = virt_to_phys(skb_new->data);
891+
892+ dev->stats.rx_packets++;
893+ sp->rx_skb[idx] = skb_new;
894+ } else {
895+ dev->stats.rx_dropped++;
896+ }
897+ }
898+
899+ rxdesc->devcs = ((AR2313_BUFSIZE << DMA_RX1_BSIZE_SHIFT) |
900+ DMA_RX1_CHAINED);
901+ rxdesc->status = DMA_RX_OWN;
902+
903+ idx = DSC_NEXT(idx);
904+ }
905+
906+ sp->cur_rx = idx;
907+
908+ return rval;
909+}
910+
911+
912+static void ar231x_tx_int(struct net_device *dev)
913+{
914+ struct ar231x_private *sp = netdev_priv(dev);
915+ u32 idx;
916+ struct sk_buff *skb;
917+ ar231x_descr_t *txdesc;
918+ unsigned int status = 0;
919+
920+ idx = sp->tx_csm;
921+
922+ while (idx != sp->tx_prd) {
923+ txdesc = &sp->tx_ring[idx];
924+
925+ if ((status = txdesc->status) & DMA_TX_OWN) {
926+ /* ar231x dma still owns descr */
927+ break;
928+ }
929+ /* done with this descriptor */
930+ dma_unmap_single(NULL, txdesc->addr,
931+ txdesc->devcs & DMA_TX1_BSIZE_MASK,
932+ DMA_TO_DEVICE);
933+ txdesc->status = 0;
934+
935+ if (status & DMA_TX_ERROR) {
936+ dev->stats.tx_errors++;
937+ dev->stats.tx_dropped++;
938+ if (status & DMA_TX_ERR_UNDER)
939+ dev->stats.tx_fifo_errors++;
940+ if (status & DMA_TX_ERR_HB)
941+ dev->stats.tx_heartbeat_errors++;
942+ if (status & (DMA_TX_ERR_LOSS | DMA_TX_ERR_LINK))
943+ dev->stats.tx_carrier_errors++;
944+ if (status & (DMA_TX_ERR_LATE |
945+ DMA_TX_ERR_COL |
946+ DMA_TX_ERR_JABBER | DMA_TX_ERR_DEFER))
947+ dev->stats.tx_aborted_errors++;
948+ } else {
949+ /* transmit OK */
950+ dev->stats.tx_packets++;
951+ }
952+
953+ skb = sp->tx_skb[idx];
954+ sp->tx_skb[idx] = NULL;
955+ idx = DSC_NEXT(idx);
956+ dev->stats.tx_bytes += skb->len;
957+ dev_kfree_skb_irq(skb);
958+ }
959+
960+ sp->tx_csm = idx;
961+
962+ return;
963+}
964+
965+
966+static void rx_tasklet_func(unsigned long data)
967+{
968+ struct net_device *dev = (struct net_device *) data;
969+ struct ar231x_private *sp = netdev_priv(dev);
970+
971+ if (sp->unloading) {
972+ return;
973+ }
974+
975+ if (ar231x_rx_int(dev)) {
976+ tasklet_hi_schedule(&sp->rx_tasklet);
977+ } else {
978+ unsigned long flags;
979+ spin_lock_irqsave(&sp->lock, flags);
980+ sp->dma_regs->intr_ena |= DMA_STATUS_RI;
981+ spin_unlock_irqrestore(&sp->lock, flags);
982+ }
983+}
984+
985+static void rx_schedule(struct net_device *dev)
986+{
987+ struct ar231x_private *sp = netdev_priv(dev);
988+
989+ sp->dma_regs->intr_ena &= ~DMA_STATUS_RI;
990+
991+ tasklet_hi_schedule(&sp->rx_tasklet);
992+}
993+
994+static irqreturn_t ar231x_interrupt(int irq, void *dev_id)
995+{
996+ struct net_device *dev = (struct net_device *) dev_id;
997+ struct ar231x_private *sp = netdev_priv(dev);
998+ unsigned int status, enabled;
999+
1000+ /* clear interrupt */
1001+ /*
1002+ * Don't clear RI bit if currently disabled.
1003+ */
1004+ status = sp->dma_regs->status;
1005+ enabled = sp->dma_regs->intr_ena;
1006+ sp->dma_regs->status = status & enabled;
1007+
1008+ if (status & DMA_STATUS_NIS) {
1009+ /* normal status */
1010+ /*
1011+ * Don't schedule rx processing if interrupt
1012+ * is already disabled.
1013+ */
1014+ if (status & enabled & DMA_STATUS_RI) {
1015+ /* receive interrupt */
1016+ rx_schedule(dev);
1017+ }
1018+ if (status & DMA_STATUS_TI) {
1019+ /* transmit interrupt */
1020+ ar231x_tx_int(dev);
1021+ }
1022+ }
1023+
1024+ /* abnormal status */
1025+ if (status & (DMA_STATUS_FBE | DMA_STATUS_TPS)) {
1026+ ar231x_restart(dev);
1027+ }
1028+ return IRQ_HANDLED;
1029+}
1030+
1031+
1032+static int ar231x_open(struct net_device *dev)
1033+{
1034+ struct ar231x_private *sp = netdev_priv(dev);
1035+ unsigned int ethsal, ethsah;
1036+
1037+ /* reset the hardware, in case the MAC address changed */
1038+ ethsah = ((((u_int) (dev->dev_addr[5]) << 8) & (u_int) 0x0000FF00) |
1039+ (((u_int) (dev->dev_addr[4]) << 0) & (u_int) 0x000000FF));
1040+
1041+ ethsal = ((((u_int) (dev->dev_addr[3]) << 24) & (u_int) 0xFF000000) |
1042+ (((u_int) (dev->dev_addr[2]) << 16) & (u_int) 0x00FF0000) |
1043+ (((u_int) (dev->dev_addr[1]) << 8) & (u_int) 0x0000FF00) |
1044+ (((u_int) (dev->dev_addr[0]) << 0) & (u_int) 0x000000FF));
1045+
1046+ sp->eth_regs->mac_addr[0] = ethsah;
1047+ sp->eth_regs->mac_addr[1] = ethsal;
1048+
1049+ mdelay(10);
1050+
1051+ dev->mtu = 1500;
1052+ netif_start_queue(dev);
1053+
1054+ sp->eth_regs->mac_control |= MAC_CONTROL_RE;
1055+
1056+ return 0;
1057+}
1058+
1059+static void ar231x_tx_timeout(struct net_device *dev)
1060+{
1061+ struct ar231x_private *sp = netdev_priv(dev);
1062+ unsigned long flags;
1063+
1064+ spin_lock_irqsave(&sp->lock, flags);
1065+ ar231x_restart(dev);
1066+ spin_unlock_irqrestore(&sp->lock, flags);
1067+}
1068+
1069+static void ar231x_halt(struct net_device *dev)
1070+{
1071+ struct ar231x_private *sp = netdev_priv(dev);
1072+ int j;
1073+
1074+ tasklet_disable(&sp->rx_tasklet);
1075+
1076+ /* kill the MAC */
1077+ sp->eth_regs->mac_control &= ~(MAC_CONTROL_RE | /* disable Receives */
1078+ MAC_CONTROL_TE); /* disable Transmits */
1079+ /* stop dma */
1080+ sp->dma_regs->control = 0;
1081+ sp->dma_regs->bus_mode = DMA_BUS_MODE_SWR;
1082+
1083+ /* place phy and MAC in reset */
1084+ *sp->int_regs |= (sp->cfg->reset_mac | sp->cfg->reset_phy);
1085+
1086+ /* free buffers on tx ring */
1087+ for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
1088+ struct sk_buff *skb;
1089+ ar231x_descr_t *txdesc;
1090+
1091+ txdesc = &sp->tx_ring[j];
1092+ txdesc->descr = 0;
1093+
1094+ skb = sp->tx_skb[j];
1095+ if (skb) {
1096+ dev_kfree_skb(skb);
1097+ sp->tx_skb[j] = NULL;
1098+ }
1099+ }
1100+}
1101+
1102+/*
1103+ * close should do nothing. Here's why. It's called when
1104+ * 'ifconfig bond0 down' is run. If it calls free_irq then
1105+ * the irq is gone forever ! When bond0 is made 'up' again,
1106+ * the ar231x_open () does not call request_irq (). Worse,
1107+ * the call to ar231x_halt() generates a WDOG reset due to
1108+ * the write to 'sp->int_regs' and the box reboots.
1109+ * Commenting this out is good since it allows the
1110+ * system to resume when bond0 is made up again.
1111+ */
1112+static int ar231x_close(struct net_device *dev)
1113+{
1114+#if 0
1115+ /*
1116+ * Disable interrupts
1117+ */
1118+ disable_irq(dev->irq);
1119+
1120+ /*
1121+ * Without (or before) releasing irq and stopping hardware, this
1122+ * is an absolute non-sense, by the way. It will be reset instantly
1123+ * by the first irq.
1124+ */
1125+ netif_stop_queue(dev);
1126+
1127+ /* stop the MAC and DMA engines */
1128+ ar231x_halt(dev);
1129+
1130+ /* release the interrupt */
1131+ free_irq(dev->irq, dev);
1132+
1133+#endif
1134+ return 0;
1135+}
1136+
1137+static int ar231x_start_xmit(struct sk_buff *skb, struct net_device *dev)
1138+{
1139+ struct ar231x_private *sp = netdev_priv(dev);
1140+ ar231x_descr_t *td;
1141+ u32 idx;
1142+
1143+ idx = sp->tx_prd;
1144+ td = &sp->tx_ring[idx];
1145+
1146+ if (td->status & DMA_TX_OWN) {
1147+ /* free skbuf and lie to the caller that we sent it out */
1148+ dev->stats.tx_dropped++;
1149+ dev_kfree_skb(skb);
1150+
1151+ /* restart transmitter in case locked */
1152+ sp->dma_regs->xmt_poll = 0;
1153+ return 0;
1154+ }
1155+
1156+ /* Setup the transmit descriptor. */
1157+ td->devcs = ((skb->len << DMA_TX1_BSIZE_SHIFT) |
1158+ (DMA_TX1_LS | DMA_TX1_IC | DMA_TX1_CHAINED));
1159+ td->addr = dma_map_single(NULL, skb->data, skb->len, DMA_TO_DEVICE);
1160+ td->status = DMA_TX_OWN;
1161+
1162+ /* kick transmitter last */
1163+ sp->dma_regs->xmt_poll = 0;
1164+
1165+ sp->tx_skb[idx] = skb;
1166+ idx = DSC_NEXT(idx);
1167+ sp->tx_prd = idx;
1168+
1169+ return 0;
1170+}
1171+
1172+static int ar231x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1173+{
1174+ struct mii_ioctl_data *data = (struct mii_ioctl_data *) &ifr->ifr_data;
1175+ struct ar231x_private *sp = netdev_priv(dev);
1176+ int ret;
1177+
1178+ switch (cmd) {
1179+
1180+ case SIOCETHTOOL:
1181+ spin_lock_irq(&sp->lock);
1182+ ret = phy_ethtool_ioctl(sp->phy_dev, (void *) ifr->ifr_data);
1183+ spin_unlock_irq(&sp->lock);
1184+ return ret;
1185+
1186+ case SIOCSIFHWADDR:
1187+ if (copy_from_user
1188+ (dev->dev_addr, ifr->ifr_data, sizeof(dev->dev_addr)))
1189+ return -EFAULT;
1190+ return 0;
1191+
1192+ case SIOCGIFHWADDR:
1193+ if (copy_to_user
1194+ (ifr->ifr_data, dev->dev_addr, sizeof(dev->dev_addr)))
1195+ return -EFAULT;
1196+ return 0;
1197+
1198+ case SIOCGMIIPHY:
1199+ case SIOCGMIIREG:
1200+ case SIOCSMIIREG:
1201+ return phy_mii_ioctl(sp->phy_dev, data, cmd);
1202+
1203+ default:
1204+ break;
1205+ }
1206+
1207+ return -EOPNOTSUPP;
1208+}
1209+
1210+static void ar231x_adjust_link(struct net_device *dev)
1211+{
1212+ struct ar231x_private *sp = netdev_priv(dev);
1213+ unsigned int mc;
1214+
1215+ if (!sp->phy_dev->link)
1216+ return;
1217+
1218+ if (sp->phy_dev->duplex != sp->oldduplex) {
1219+ mc = readl(&sp->eth_regs->mac_control);
1220+ mc &= ~(MAC_CONTROL_F | MAC_CONTROL_DRO);
1221+ if (sp->phy_dev->duplex)
1222+ mc |= MAC_CONTROL_F;
1223+ else
1224+ mc |= MAC_CONTROL_DRO;
1225+ writel(mc, &sp->eth_regs->mac_control);
1226+ sp->oldduplex = sp->phy_dev->duplex;
1227+ }
1228+}
1229+
1230+#define MII_ADDR(phy, reg) \
1231+ ((reg << MII_ADDR_REG_SHIFT) | (phy << MII_ADDR_PHY_SHIFT))
1232+
1233+static int
1234+ar231x_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1235+{
1236+ struct net_device *const dev = bus->priv;
1237+ struct ar231x_private *sp = netdev_priv(dev);
1238+ volatile ETHERNET_STRUCT *ethernet = sp->phy_regs;
1239+
1240+ ethernet->mii_addr = MII_ADDR(phy_addr, regnum);
1241+ while (ethernet->mii_addr & MII_ADDR_BUSY);
1242+ return (ethernet->mii_data >> MII_DATA_SHIFT);
1243+}
1244+
1245+static int
1246+ar231x_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
1247+ u16 value)
1248+{
1249+ struct net_device *const dev = bus->priv;
1250+ struct ar231x_private *sp = netdev_priv(dev);
1251+ volatile ETHERNET_STRUCT *ethernet = sp->phy_regs;
1252+
1253+ while (ethernet->mii_addr & MII_ADDR_BUSY);
1254+ ethernet->mii_data = value << MII_DATA_SHIFT;
1255+ ethernet->mii_addr = MII_ADDR(phy_addr, regnum) | MII_ADDR_WRITE;
1256+
1257+ return 0;
1258+}
1259+
1260+static int ar231x_mdiobus_reset(struct mii_bus *bus)
1261+{
1262+ struct net_device *const dev = bus->priv;
1263+
1264+ ar231x_reset_reg(dev);
1265+
1266+ return 0;
1267+}
1268+
1269+static int ar231x_mdiobus_probe (struct net_device *dev)
1270+{
1271+ struct ar231x_private *const sp = netdev_priv(dev);
1272+ struct phy_device *phydev = NULL;
1273+ int phy_addr;
1274+
1275+ /* find the first (lowest address) PHY on the current MAC's MII bus */
1276+ for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
1277+ if (sp->mii_bus->phy_map[phy_addr]) {
1278+ phydev = sp->mii_bus->phy_map[phy_addr];
1279+ sp->phy = phy_addr;
1280+ break; /* break out with first one found */
1281+ }
1282+
1283+ if (!phydev) {
1284+ printk (KERN_ERR "ar231x: %s: no PHY found\n", dev->name);
1285+ return -1;
1286+ }
1287+
1288+ /* now we are supposed to have a proper phydev, to attach to... */
1289+ BUG_ON(!phydev);
1290+ BUG_ON(phydev->attached_dev);
1291+
1292+ phydev = phy_connect(dev, dev_name(&phydev->dev), &ar231x_adjust_link, 0,
1293+ PHY_INTERFACE_MODE_MII);
1294+
1295+ if (IS_ERR(phydev)) {
1296+ printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
1297+ return PTR_ERR(phydev);
1298+ }
1299+
1300+ /* mask with MAC supported features */
1301+ phydev->supported &= (SUPPORTED_10baseT_Half
1302+ | SUPPORTED_10baseT_Full
1303+ | SUPPORTED_100baseT_Half
1304+ | SUPPORTED_100baseT_Full
1305+ | SUPPORTED_Autoneg
1306+ /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
1307+ | SUPPORTED_MII
1308+ | SUPPORTED_TP);
1309+
1310+ phydev->advertising = phydev->supported;
1311+
1312+ sp->oldduplex = -1;
1313+ sp->phy_dev = phydev;
1314+
1315+ printk(KERN_INFO "%s: attached PHY driver [%s] "
1316+ "(mii_bus:phy_addr=%s)\n",
1317+ dev->name, phydev->drv->name, dev_name(&phydev->dev));
1318+
1319+ return 0;
1320+}
1321+
1322--- /dev/null
1323+++ b/drivers/net/ar231x.h
1324@@ -0,0 +1,302 @@
1325+/*
1326+ * ar231x.h: Linux driver for the Atheros AR231x Ethernet device.
1327+ *
1328+ * Copyright (C) 2004 by Sameer Dekate <sdekate@arubanetworks.com>
1329+ * Copyright (C) 2006 Imre Kaloz <kaloz@openwrt.org>
1330+ * Copyright (C) 2006-2009 Felix Fietkau <nbd@openwrt.org>
1331+ *
1332+ * Thanks to Atheros for providing hardware and documentation
1333+ * enabling me to write this driver.
1334+ *
1335+ * This program is free software; you can redistribute it and/or modify
1336+ * it under the terms of the GNU General Public License as published by
1337+ * the Free Software Foundation; either version 2 of the License, or
1338+ * (at your option) any later version.
1339+ */
1340+
1341+#ifndef _AR2313_H_
1342+#define _AR2313_H_
1343+
1344+#include <generated/autoconf.h>
1345+#include <linux/bitops.h>
1346+#include <asm/bootinfo.h>
1347+#include <ar231x_platform.h>
1348+
1349+/*
1350+ * probe link timer - 5 secs
1351+ */
1352+#define LINK_TIMER (5*HZ)
1353+
1354+#define IS_DMA_TX_INT(X) (((X) & (DMA_STATUS_TI)) != 0)
1355+#define IS_DMA_RX_INT(X) (((X) & (DMA_STATUS_RI)) != 0)
1356+#define IS_DRIVER_OWNED(X) (((X) & (DMA_TX_OWN)) == 0)
1357+
1358+#define AR2313_TX_TIMEOUT (HZ/4)
1359+
1360+/*
1361+ * Rings
1362+ */
1363+#define DSC_RING_ENTRIES_SIZE (AR2313_DESCR_ENTRIES * sizeof(struct desc))
1364+#define DSC_NEXT(idx) ((idx + 1) & (AR2313_DESCR_ENTRIES - 1))
1365+
1366+#define AR2313_MBGET 2
1367+#define AR2313_MBSET 3
1368+#define AR2313_PCI_RECONFIG 4
1369+#define AR2313_PCI_DUMP 5
1370+#define AR2313_TEST_PANIC 6
1371+#define AR2313_TEST_NULLPTR 7
1372+#define AR2313_READ_DATA 8
1373+#define AR2313_WRITE_DATA 9
1374+#define AR2313_GET_VERSION 10
1375+#define AR2313_TEST_HANG 11
1376+#define AR2313_SYNC 12
1377+
1378+#define DMA_RX_ERR_CRC BIT(1)
1379+#define DMA_RX_ERR_DRIB BIT(2)
1380+#define DMA_RX_ERR_MII BIT(3)
1381+#define DMA_RX_EV2 BIT(5)
1382+#define DMA_RX_ERR_COL BIT(6)
1383+#define DMA_RX_LONG BIT(7)
1384+#define DMA_RX_LS BIT(8) /* last descriptor */
1385+#define DMA_RX_FS BIT(9) /* first descriptor */
1386+#define DMA_RX_MF BIT(10) /* multicast frame */
1387+#define DMA_RX_ERR_RUNT BIT(11) /* runt frame */
1388+#define DMA_RX_ERR_LENGTH BIT(12) /* length error */
1389+#define DMA_RX_ERR_DESC BIT(14) /* descriptor error */
1390+#define DMA_RX_ERROR BIT(15) /* error summary */
1391+#define DMA_RX_LEN_MASK 0x3fff0000
1392+#define DMA_RX_LEN_SHIFT 16
1393+#define DMA_RX_FILT BIT(30)
1394+#define DMA_RX_OWN BIT(31) /* desc owned by DMA controller */
1395+
1396+#define DMA_RX1_BSIZE_MASK 0x000007ff
1397+#define DMA_RX1_BSIZE_SHIFT 0
1398+#define DMA_RX1_CHAINED BIT(24)
1399+#define DMA_RX1_RER BIT(25)
1400+
1401+#define DMA_TX_ERR_UNDER BIT(1) /* underflow error */
1402+#define DMA_TX_ERR_DEFER BIT(2) /* excessive deferral */
1403+#define DMA_TX_COL_MASK 0x78
1404+#define DMA_TX_COL_SHIFT 3
1405+#define DMA_TX_ERR_HB BIT(7) /* hearbeat failure */
1406+#define DMA_TX_ERR_COL BIT(8) /* excessive collisions */
1407+#define DMA_TX_ERR_LATE BIT(9) /* late collision */
1408+#define DMA_TX_ERR_LINK BIT(10) /* no carrier */
1409+#define DMA_TX_ERR_LOSS BIT(11) /* loss of carrier */
1410+#define DMA_TX_ERR_JABBER BIT(14) /* transmit jabber timeout */
1411+#define DMA_TX_ERROR BIT(15) /* frame aborted */
1412+#define DMA_TX_OWN BIT(31) /* descr owned by DMA controller */
1413+
1414+#define DMA_TX1_BSIZE_MASK 0x000007ff
1415+#define DMA_TX1_BSIZE_SHIFT 0
1416+#define DMA_TX1_CHAINED BIT(24) /* chained descriptors */
1417+#define DMA_TX1_TER BIT(25) /* transmit end of ring */
1418+#define DMA_TX1_FS BIT(29) /* first segment */
1419+#define DMA_TX1_LS BIT(30) /* last segment */
1420+#define DMA_TX1_IC BIT(31) /* interrupt on completion */
1421+
1422+#define RCVPKT_LENGTH(X) (X >> 16) /* Received pkt Length */
1423+
1424+#define MAC_CONTROL_RE BIT(2) /* receive enable */
1425+#define MAC_CONTROL_TE BIT(3) /* transmit enable */
1426+#define MAC_CONTROL_DC BIT(5) /* Deferral check */
1427+#define MAC_CONTROL_ASTP BIT(8) /* Auto pad strip */
1428+#define MAC_CONTROL_DRTY BIT(10) /* Disable retry */
1429+#define MAC_CONTROL_DBF BIT(11) /* Disable bcast frames */
1430+#define MAC_CONTROL_LCC BIT(12) /* late collision ctrl */
1431+#define MAC_CONTROL_HP BIT(13) /* Hash Perfect filtering */
1432+#define MAC_CONTROL_HASH BIT(14) /* Unicast hash filtering */
1433+#define MAC_CONTROL_HO BIT(15) /* Hash only filtering */
1434+#define MAC_CONTROL_PB BIT(16) /* Pass Bad frames */
1435+#define MAC_CONTROL_IF BIT(17) /* Inverse filtering */
1436+#define MAC_CONTROL_PR BIT(18) /* promiscuous mode (valid frames only) */
1437+#define MAC_CONTROL_PM BIT(19) /* pass multicast */
1438+#define MAC_CONTROL_F BIT(20) /* full-duplex */
1439+#define MAC_CONTROL_DRO BIT(23) /* Disable Receive Own */
1440+#define MAC_CONTROL_HBD BIT(28) /* heart-beat disabled (MUST BE SET) */
1441+#define MAC_CONTROL_BLE BIT(30) /* big endian mode */
1442+#define MAC_CONTROL_RA BIT(31) /* receive all (valid and invalid frames) */
1443+
1444+#define MII_ADDR_BUSY BIT(0)
1445+#define MII_ADDR_WRITE BIT(1)
1446+#define MII_ADDR_REG_SHIFT 6
1447+#define MII_ADDR_PHY_SHIFT 11
1448+#define MII_DATA_SHIFT 0
1449+
1450+#define FLOW_CONTROL_FCE BIT(1)
1451+
1452+#define DMA_BUS_MODE_SWR BIT(0) /* software reset */
1453+#define DMA_BUS_MODE_BLE BIT(7) /* big endian mode */
1454+#define DMA_BUS_MODE_PBL_SHIFT 8 /* programmable burst length 32 */
1455+#define DMA_BUS_MODE_DBO BIT(20) /* big-endian descriptors */
1456+
1457+#define DMA_STATUS_TI BIT(0) /* transmit interrupt */
1458+#define DMA_STATUS_TPS BIT(1) /* transmit process stopped */
1459+#define DMA_STATUS_TU BIT(2) /* transmit buffer unavailable */
1460+#define DMA_STATUS_TJT BIT(3) /* transmit buffer timeout */
1461+#define DMA_STATUS_UNF BIT(5) /* transmit underflow */
1462+#define DMA_STATUS_RI BIT(6) /* receive interrupt */
1463+#define DMA_STATUS_RU BIT(7) /* receive buffer unavailable */
1464+#define DMA_STATUS_RPS BIT(8) /* receive process stopped */
1465+#define DMA_STATUS_ETI BIT(10) /* early transmit interrupt */
1466+#define DMA_STATUS_FBE BIT(13) /* fatal bus interrupt */
1467+#define DMA_STATUS_ERI BIT(14) /* early receive interrupt */
1468+#define DMA_STATUS_AIS BIT(15) /* abnormal interrupt summary */
1469+#define DMA_STATUS_NIS BIT(16) /* normal interrupt summary */
1470+#define DMA_STATUS_RS_SHIFT 17 /* receive process state */
1471+#define DMA_STATUS_TS_SHIFT 20 /* transmit process state */
1472+#define DMA_STATUS_EB_SHIFT 23 /* error bits */
1473+
1474+#define DMA_CONTROL_SR BIT(1) /* start receive */
1475+#define DMA_CONTROL_ST BIT(13) /* start transmit */
1476+#define DMA_CONTROL_SF BIT(21) /* store and forward */
1477+
1478+
1479+typedef struct {
1480+ volatile unsigned int status; // OWN, Device control and status.
1481+ volatile unsigned int devcs; // pkt Control bits + Length
1482+ volatile unsigned int addr; // Current Address.
1483+ volatile unsigned int descr; // Next descriptor in chain.
1484+} ar231x_descr_t;
1485+
1486+
1487+
1488+//
1489+// New Combo structure for Both Eth0 AND eth1
1490+//
1491+typedef struct {
1492+ volatile unsigned int mac_control; /* 0x00 */
1493+ volatile unsigned int mac_addr[2]; /* 0x04 - 0x08 */
1494+ volatile unsigned int mcast_table[2]; /* 0x0c - 0x10 */
1495+ volatile unsigned int mii_addr; /* 0x14 */
1496+ volatile unsigned int mii_data; /* 0x18 */
1497+ volatile unsigned int flow_control; /* 0x1c */
1498+ volatile unsigned int vlan_tag; /* 0x20 */
1499+ volatile unsigned int pad[7]; /* 0x24 - 0x3c */
1500+ volatile unsigned int ucast_table[8]; /* 0x40-0x5c */
1501+
1502+} ETHERNET_STRUCT;
1503+
1504+/********************************************************************
1505+ * Interrupt controller
1506+ ********************************************************************/
1507+
1508+typedef struct {
1509+ volatile unsigned int wdog_control; /* 0x08 */
1510+ volatile unsigned int wdog_timer; /* 0x0c */
1511+ volatile unsigned int misc_status; /* 0x10 */
1512+ volatile unsigned int misc_mask; /* 0x14 */
1513+ volatile unsigned int global_status; /* 0x18 */
1514+ volatile unsigned int reserved; /* 0x1c */
1515+ volatile unsigned int reset_control; /* 0x20 */
1516+} INTERRUPT;
1517+
1518+/********************************************************************
1519+ * DMA controller
1520+ ********************************************************************/
1521+typedef struct {
1522+ volatile unsigned int bus_mode; /* 0x00 (CSR0) */
1523+ volatile unsigned int xmt_poll; /* 0x04 (CSR1) */
1524+ volatile unsigned int rcv_poll; /* 0x08 (CSR2) */
1525+ volatile unsigned int rcv_base; /* 0x0c (CSR3) */
1526+ volatile unsigned int xmt_base; /* 0x10 (CSR4) */
1527+ volatile unsigned int status; /* 0x14 (CSR5) */
1528+ volatile unsigned int control; /* 0x18 (CSR6) */
1529+ volatile unsigned int intr_ena; /* 0x1c (CSR7) */
1530+ volatile unsigned int rcv_missed; /* 0x20 (CSR8) */
1531+ volatile unsigned int reserved[11]; /* 0x24-0x4c (CSR9-19) */
1532+ volatile unsigned int cur_tx_buf_addr; /* 0x50 (CSR20) */
1533+ volatile unsigned int cur_rx_buf_addr; /* 0x50 (CSR21) */
1534+} DMA;
1535+
1536+/*
1537+ * Struct private for the Sibyte.
1538+ *
1539+ * Elements are grouped so variables used by the tx handling goes
1540+ * together, and will go into the same cache lines etc. in order to
1541+ * avoid cache line contention between the rx and tx handling on SMP.
1542+ *
1543+ * Frequently accessed variables are put at the beginning of the
1544+ * struct to help the compiler generate better/shorter code.
1545+ */
1546+struct ar231x_private {
1547+ struct net_device *dev;
1548+ int version;
1549+ u32 mb[2];
1550+
1551+ volatile ETHERNET_STRUCT *phy_regs;
1552+ volatile ETHERNET_STRUCT *eth_regs;
1553+ volatile DMA *dma_regs;
1554+ volatile u32 *int_regs;
1555+ struct ar231x_eth *cfg;
1556+
1557+ spinlock_t lock; /* Serialise access to device */
1558+
1559+ /*
1560+ * RX and TX descriptors, must be adjacent
1561+ */
1562+ ar231x_descr_t *rx_ring;
1563+ ar231x_descr_t *tx_ring;
1564+
1565+
1566+ struct sk_buff **rx_skb;
1567+ struct sk_buff **tx_skb;
1568+
1569+ /*
1570+ * RX elements
1571+ */
1572+ u32 rx_skbprd;
1573+ u32 cur_rx;
1574+
1575+ /*
1576+ * TX elements
1577+ */
1578+ u32 tx_prd;
1579+ u32 tx_csm;
1580+
1581+ /*
1582+ * Misc elements
1583+ */
1584+ char name[48];
1585+ struct {
1586+ u32 address;
1587+ u32 length;
1588+ char *mapping;
1589+ } desc;
1590+
1591+
1592+ struct timer_list link_timer;
1593+ unsigned short phy; /* merlot phy = 1, samsung phy = 0x1f */
1594+ unsigned short mac;
1595+ unsigned short link; /* 0 - link down, 1 - link up */
1596+ u16 phyData;
1597+
1598+ struct tasklet_struct rx_tasklet;
1599+ int unloading;
1600+
1601+ struct phy_device *phy_dev;
1602+ struct mii_bus *mii_bus;
1603+ int oldduplex;
1604+};
1605+
1606+
1607+/*
1608+ * Prototypes
1609+ */
1610+static int ar231x_init(struct net_device *dev);
1611+#ifdef TX_TIMEOUT
1612+static void ar231x_tx_timeout(struct net_device *dev);
1613+#endif
1614+static int ar231x_restart(struct net_device *dev);
1615+static void ar231x_load_rx_ring(struct net_device *dev, int bufs);
1616+static irqreturn_t ar231x_interrupt(int irq, void *dev_id);
1617+static int ar231x_open(struct net_device *dev);
1618+static int ar231x_start_xmit(struct sk_buff *skb, struct net_device *dev);
1619+static int ar231x_close(struct net_device *dev);
1620+static int ar231x_ioctl(struct net_device *dev, struct ifreq *ifr,
1621+ int cmd);
1622+static void ar231x_init_cleanup(struct net_device *dev);
1623+static int ar231x_setup_timer(struct net_device *dev);
1624+static void ar231x_link_timer_fn(unsigned long data);
1625+static void ar231x_check_link(struct net_device *dev);
1626+#endif /* _AR2313_H_ */
1627

Archive Download this file



interactive