| 1 | This patch adds support for bfs v230, modified for diff size reduction |
| 2 | |
| 3 | --- a/Documentation/sysctl/kernel.txt |
| 4 | +++ b/Documentation/sysctl/kernel.txt |
| 5 | @@ -27,6 +27,7 @@ show up in /proc/sys/kernel: |
| 6 | - domainname |
| 7 | - hostname |
| 8 | - hotplug |
| 9 | +- iso_cpu |
| 10 | - java-appletviewer [ binfmt_java, obsolete ] |
| 11 | - java-interpreter [ binfmt_java, obsolete ] |
| 12 | - kstack_depth_to_print [ X86 only ] |
| 13 | @@ -49,6 +50,7 @@ show up in /proc/sys/kernel: |
| 14 | - randomize_va_space |
| 15 | - real-root-dev ==> Documentation/initrd.txt |
| 16 | - reboot-cmd [ SPARC only ] |
| 17 | +- rr_interval |
| 18 | - rtsig-max |
| 19 | - rtsig-nr |
| 20 | - sem |
| 21 | @@ -171,6 +173,16 @@ Default value is "/sbin/hotplug". |
| 22 | |
| 23 | ============================================================== |
| 24 | |
| 25 | +iso_cpu: (BFS only) |
| 26 | + |
| 27 | +This sets the percentage cpu that the unprivileged SCHED_ISO tasks can |
| 28 | +run effectively at realtime priority, averaged over a rolling five |
| 29 | +seconds over the -whole- system, meaning all cpus. |
| 30 | + |
| 31 | +Set to 70 (percent) by default. |
| 32 | + |
| 33 | +============================================================== |
| 34 | + |
| 35 | l2cr: (PPC only) |
| 36 | |
| 37 | This flag controls the L2 cache of G3 processor boards. If |
| 38 | @@ -333,6 +345,19 @@ rebooting. ??? |
| 39 | |
| 40 | ============================================================== |
| 41 | |
| 42 | +rr_interval: (BFS only) |
| 43 | + |
| 44 | +This is the smallest duration that any cpu process scheduling unit |
| 45 | +will run for. Increasing this value can increase throughput of cpu |
| 46 | +bound tasks substantially but at the expense of increased latencies |
| 47 | +overall. This value is in milliseconds and the default value chosen |
| 48 | +depends on the number of cpus available at scheduler initialisation |
| 49 | +with a minimum of 6. |
| 50 | + |
| 51 | +Valid values are from 1-5000. |
| 52 | + |
| 53 | +============================================================== |
| 54 | + |
| 55 | rtsig-max & rtsig-nr: |
| 56 | |
| 57 | The file rtsig-max can be used to tune the maximum number |
| 58 | --- a/include/linux/init_task.h |
| 59 | +++ b/include/linux/init_task.h |
| 60 | @@ -116,9 +116,10 @@ extern struct cred init_cred; |
| 61 | .usage = ATOMIC_INIT(2), \ |
| 62 | .flags = PF_KTHREAD, \ |
| 63 | .lock_depth = -1, \ |
| 64 | - .prio = MAX_PRIO-20, \ |
| 65 | + .prio = NORMAL_PRIO, \ |
| 66 | .static_prio = MAX_PRIO-20, \ |
| 67 | - .normal_prio = MAX_PRIO-20, \ |
| 68 | + .normal_prio = NORMAL_PRIO, \ |
| 69 | + .deadline = 0, \ |
| 70 | .policy = SCHED_NORMAL, \ |
| 71 | .cpus_allowed = CPU_MASK_ALL, \ |
| 72 | .mm = NULL, \ |
| 73 | --- a/include/linux/sched.h |
| 74 | +++ b/include/linux/sched.h |
| 75 | @@ -36,9 +36,12 @@ |
| 76 | #define SCHED_FIFO 1 |
| 77 | #define SCHED_RR 2 |
| 78 | #define SCHED_BATCH 3 |
| 79 | -/* SCHED_ISO: reserved but not implemented yet */ |
| 80 | +#define SCHED_ISO 4 |
| 81 | #define SCHED_IDLE 5 |
| 82 | |
| 83 | +#define SCHED_MAX (SCHED_IDLE) |
| 84 | +#define SCHED_RANGE(policy) ((policy) <= SCHED_MAX) |
| 85 | + |
| 86 | #ifdef __KERNEL__ |
| 87 | |
| 88 | struct sched_param { |
| 89 | @@ -1090,10 +1093,13 @@ struct sched_entity { |
| 90 | struct load_weight load; /* for load-balancing */ |
| 91 | struct rb_node run_node; |
| 92 | struct list_head group_node; |
| 93 | +#ifdef CONFIG_SCHED_CFS |
| 94 | unsigned int on_rq; |
| 95 | |
| 96 | u64 exec_start; |
| 97 | +#endif |
| 98 | u64 sum_exec_runtime; |
| 99 | +#ifdef CONFIG_SCHED_CFS |
| 100 | u64 vruntime; |
| 101 | u64 prev_sum_exec_runtime; |
| 102 | |
| 103 | @@ -1145,6 +1151,7 @@ struct sched_entity { |
| 104 | /* rq "owned" by this entity/group: */ |
| 105 | struct cfs_rq *my_q; |
| 106 | #endif |
| 107 | +#endif |
| 108 | }; |
| 109 | |
| 110 | struct sched_rt_entity { |
| 111 | @@ -1172,17 +1179,19 @@ struct task_struct { |
| 112 | |
| 113 | int lock_depth; /* BKL lock depth */ |
| 114 | |
| 115 | -#ifdef CONFIG_SMP |
| 116 | -#ifdef __ARCH_WANT_UNLOCKED_CTXSW |
| 117 | int oncpu; |
| 118 | -#endif |
| 119 | -#endif |
| 120 | - |
| 121 | int prio, static_prio, normal_prio; |
| 122 | unsigned int rt_priority; |
| 123 | const struct sched_class *sched_class; |
| 124 | struct sched_entity se; |
| 125 | struct sched_rt_entity rt; |
| 126 | + unsigned long deadline; |
| 127 | +#ifdef CONFIG_SCHED_BFS |
| 128 | + int load_weight; /* for niceness load balancing purposes */ |
| 129 | + int first_time_slice; |
| 130 | + unsigned long long timestamp, last_ran; |
| 131 | + unsigned long utime_pc, stime_pc; |
| 132 | +#endif |
| 133 | |
| 134 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
| 135 | /* list of struct preempt_notifier: */ |
| 136 | @@ -1205,6 +1214,9 @@ struct task_struct { |
| 137 | |
| 138 | unsigned int policy; |
| 139 | cpumask_t cpus_allowed; |
| 140 | +#ifdef CONFIG_HOTPLUG_CPU |
| 141 | + cpumask_t unplugged_mask; |
| 142 | +#endif |
| 143 | |
| 144 | #ifdef CONFIG_PREEMPT_RCU |
| 145 | int rcu_read_lock_nesting; |
| 146 | @@ -1497,11 +1509,19 @@ struct task_struct { |
| 147 | * priority to a value higher than any user task. Note: |
| 148 | * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. |
| 149 | */ |
| 150 | - |
| 151 | +#define PRIO_RANGE (40) |
| 152 | #define MAX_USER_RT_PRIO 100 |
| 153 | #define MAX_RT_PRIO MAX_USER_RT_PRIO |
| 154 | - |
| 155 | +#ifdef CONFIG_SCHED_BFS |
| 156 | +#define MAX_PRIO (MAX_RT_PRIO + PRIO_RANGE) |
| 157 | +#define ISO_PRIO (MAX_RT_PRIO) |
| 158 | +#define NORMAL_PRIO (MAX_RT_PRIO + 1) |
| 159 | +#define IDLE_PRIO (MAX_RT_PRIO + 2) |
| 160 | +#define PRIO_LIMIT ((IDLE_PRIO) + 1) |
| 161 | +#else |
| 162 | #define MAX_PRIO (MAX_RT_PRIO + 40) |
| 163 | +#define NORMAL_PRIO (MAX_RT_PRIO - 20) |
| 164 | +#endif |
| 165 | #define DEFAULT_PRIO (MAX_RT_PRIO + 20) |
| 166 | |
| 167 | static inline int rt_prio(int prio) |
| 168 | @@ -1785,7 +1805,7 @@ task_sched_runtime(struct task_struct *t |
| 169 | extern unsigned long long thread_group_sched_runtime(struct task_struct *task); |
| 170 | |
| 171 | /* sched_exec is called by processes performing an exec */ |
| 172 | -#ifdef CONFIG_SMP |
| 173 | +#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_CFS) |
| 174 | extern void sched_exec(void); |
| 175 | #else |
| 176 | #define sched_exec() {} |
| 177 | --- a/init/Kconfig |
| 178 | +++ b/init/Kconfig |
| 179 | @@ -451,9 +451,22 @@ config LOG_BUF_SHIFT |
| 180 | config HAVE_UNSTABLE_SCHED_CLOCK |
| 181 | bool |
| 182 | |
| 183 | +choice |
| 184 | + prompt "Scheduler" |
| 185 | + default SCHED_CFS |
| 186 | + |
| 187 | + config SCHED_CFS |
| 188 | + bool "CFS" |
| 189 | + |
| 190 | + config SCHED_BFS |
| 191 | + bool "BFS" |
| 192 | + |
| 193 | +endchoice |
| 194 | + |
| 195 | config GROUP_SCHED |
| 196 | bool "Group CPU scheduler" |
| 197 | depends on EXPERIMENTAL |
| 198 | + depends on SCHED_CFS |
| 199 | default n |
| 200 | help |
| 201 | This feature lets CPU scheduler recognize task groups and control CPU |
| 202 | @@ -504,6 +517,7 @@ endchoice |
| 203 | |
| 204 | menuconfig CGROUPS |
| 205 | boolean "Control Group support" |
| 206 | + depends on SCHED_CFS |
| 207 | help |
| 208 | This option adds support for grouping sets of processes together, for |
| 209 | use with process control subsystems such as Cpusets, CFS, memory |
| 210 | --- a/kernel/Makefile |
| 211 | +++ b/kernel/Makefile |
| 212 | @@ -2,7 +2,7 @@ |
| 213 | # Makefile for the linux kernel. |
| 214 | # |
| 215 | |
| 216 | -obj-y = sched.o fork.o exec_domain.o panic.o printk.o \ |
| 217 | +obj-y = $(if $(CONFIG_SCHED_CFS),sched.o,sched_bfs.o) fork.o exec_domain.o panic.o printk.o \ |
| 218 | cpu.o exit.o itimer.o time.o softirq.o resource.o \ |
| 219 | sysctl.o capability.o ptrace.o timer.o user.o \ |
| 220 | signal.o sys.o kmod.o workqueue.o pid.o \ |
| 221 | @@ -108,6 +108,7 @@ ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER |
| 222 | # I turn this off for IA-64 only. Andreas Schwab says it's also needed on m68k |
| 223 | # to get a correct value for the wait-channel (WCHAN in ps). --davidm |
| 224 | CFLAGS_sched.o := $(PROFILING) -fno-omit-frame-pointer |
| 225 | +CFLAGS_sched_bfs.o := $(PROFILING) -fno-omit-frame-pointer |
| 226 | endif |
| 227 | |
| 228 | $(obj)/configs.o: $(obj)/config_data.h |
| 229 | --- a/kernel/kthread.c |
| 230 | +++ b/kernel/kthread.c |
| 231 | @@ -16,7 +16,11 @@ |
| 232 | #include <linux/mutex.h> |
| 233 | #include <trace/events/sched.h> |
| 234 | |
| 235 | +#ifdef CONFIG_SCHED_BFS |
| 236 | +#define KTHREAD_NICE_LEVEL (0) |
| 237 | +#else |
| 238 | #define KTHREAD_NICE_LEVEL (-5) |
| 239 | +#endif |
| 240 | |
| 241 | static DEFINE_SPINLOCK(kthread_create_lock); |
| 242 | static LIST_HEAD(kthread_create_list); |
| 243 | --- /dev/null |
| 244 | +++ b/kernel/sched_bfs.c |
| 245 | @@ -0,0 +1,6105 @@ |
| 246 | +/* |
| 247 | + * kernel/sched_bfs.c, was sched.c |
| 248 | + * |
| 249 | + * Kernel scheduler and related syscalls |
| 250 | + * |
| 251 | + * Copyright (C) 1991-2002 Linus Torvalds |
| 252 | + * |
| 253 | + * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and |
| 254 | + * make semaphores SMP safe |
| 255 | + * 1998-11-19 Implemented schedule_timeout() and related stuff |
| 256 | + * by Andrea Arcangeli |
| 257 | + * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: |
| 258 | + * hybrid priority-list and round-robin design with |
| 259 | + * an array-switch method of distributing timeslices |
| 260 | + * and per-CPU runqueues. Cleanups and useful suggestions |
| 261 | + * by Davide Libenzi, preemptible kernel bits by Robert Love. |
| 262 | + * 2003-09-03 Interactivity tuning by Con Kolivas. |
| 263 | + * 2004-04-02 Scheduler domains code by Nick Piggin |
| 264 | + * 2007-04-15 Work begun on replacing all interactivity tuning with a |
| 265 | + * fair scheduling design by Con Kolivas. |
| 266 | + * 2007-05-05 Load balancing (smp-nice) and other improvements |
| 267 | + * by Peter Williams |
| 268 | + * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith |
| 269 | + * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri |
| 270 | + * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, |
| 271 | + * Thomas Gleixner, Mike Kravetz |
| 272 | + * now Brainfuck deadline scheduling policy by Con Kolivas deletes |
| 273 | + * a whole lot of those previous things. |
| 274 | + */ |
| 275 | + |
| 276 | +#include <linux/mm.h> |
| 277 | +#include <linux/module.h> |
| 278 | +#include <linux/nmi.h> |
| 279 | +#include <linux/init.h> |
| 280 | +#include <asm/uaccess.h> |
| 281 | +#include <linux/highmem.h> |
| 282 | +#include <linux/smp_lock.h> |
| 283 | +#include <asm/mmu_context.h> |
| 284 | +#include <linux/interrupt.h> |
| 285 | +#include <linux/capability.h> |
| 286 | +#include <linux/completion.h> |
| 287 | +#include <linux/kernel_stat.h> |
| 288 | +#include <linux/debug_locks.h> |
| 289 | +#include <linux/perf_counter.h> |
| 290 | +#include <linux/security.h> |
| 291 | +#include <linux/notifier.h> |
| 292 | +#include <linux/profile.h> |
| 293 | +#include <linux/freezer.h> |
| 294 | +#include <linux/vmalloc.h> |
| 295 | +#include <linux/blkdev.h> |
| 296 | +#include <linux/delay.h> |
| 297 | +#include <linux/smp.h> |
| 298 | +#include <linux/threads.h> |
| 299 | +#include <linux/timer.h> |
| 300 | +#include <linux/rcupdate.h> |
| 301 | +#include <linux/cpu.h> |
| 302 | +#include <linux/cpuset.h> |
| 303 | +#include <linux/cpumask.h> |
| 304 | +#include <linux/percpu.h> |
| 305 | +#include <linux/kthread.h> |
| 306 | +#include <linux/proc_fs.h> |
| 307 | +#include <linux/seq_file.h> |
| 308 | +#include <linux/syscalls.h> |
| 309 | +#include <linux/times.h> |
| 310 | +#include <linux/tsacct_kern.h> |
| 311 | +#include <linux/kprobes.h> |
| 312 | +#include <linux/delayacct.h> |
| 313 | +#include <linux/reciprocal_div.h> |
| 314 | +#include <linux/log2.h> |
| 315 | +#include <linux/bootmem.h> |
| 316 | +#include <linux/ftrace.h> |
| 317 | + |
| 318 | +#include <asm/tlb.h> |
| 319 | +#include <asm/unistd.h> |
| 320 | + |
| 321 | +#define CREATE_TRACE_POINTS |
| 322 | +#include <trace/events/sched.h> |
| 323 | + |
| 324 | +#define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO) |
| 325 | +#define rt_task(p) rt_prio((p)->prio) |
| 326 | +#define rt_queue(rq) rt_prio((rq)->rq_prio) |
| 327 | +#define batch_task(p) (unlikely((p)->policy == SCHED_BATCH)) |
| 328 | +#define is_rt_policy(policy) ((policy) == SCHED_FIFO || \ |
| 329 | + (policy) == SCHED_RR) |
| 330 | +#define has_rt_policy(p) unlikely(is_rt_policy((p)->policy)) |
| 331 | +#define idleprio_task(p) unlikely((p)->policy == SCHED_IDLE) |
| 332 | +#define iso_task(p) unlikely((p)->policy == SCHED_ISO) |
| 333 | +#define iso_queue(rq) unlikely((rq)->rq_policy == SCHED_ISO) |
| 334 | +#define ISO_PERIOD ((5 * HZ * num_online_cpus()) + 1) |
| 335 | + |
| 336 | +/* |
| 337 | + * Convert user-nice values [ -20 ... 0 ... 19 ] |
| 338 | + * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], |
| 339 | + * and back. |
| 340 | + */ |
| 341 | +#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) |
| 342 | +#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) |
| 343 | +#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) |
| 344 | + |
| 345 | +/* |
| 346 | + * 'User priority' is the nice value converted to something we |
| 347 | + * can work with better when scaling various scheduler parameters, |
| 348 | + * it's a [ 0 ... 39 ] range. |
| 349 | + */ |
| 350 | +#define USER_PRIO(p) ((p)-MAX_RT_PRIO) |
| 351 | +#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) |
| 352 | +#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) |
| 353 | +#define SCHED_PRIO(p) ((p)+MAX_RT_PRIO) |
| 354 | + |
| 355 | +/* Some helpers for converting to/from various scales.*/ |
| 356 | +#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ)) |
| 357 | +#define MS_TO_NS(TIME) ((TIME) * 1000000) |
| 358 | +#define MS_TO_US(TIME) ((TIME) * 1000) |
| 359 | + |
| 360 | +#ifdef CONFIG_SMP |
| 361 | +/* |
| 362 | + * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) |
| 363 | + * Since cpu_power is a 'constant', we can use a reciprocal divide. |
| 364 | + */ |
| 365 | +static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) |
| 366 | +{ |
| 367 | + return reciprocal_divide(load, sg->reciprocal_cpu_power); |
| 368 | +} |
| 369 | + |
| 370 | +/* |
| 371 | + * Each time a sched group cpu_power is changed, |
| 372 | + * we must compute its reciprocal value |
| 373 | + */ |
| 374 | +static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) |
| 375 | +{ |
| 376 | + sg->__cpu_power += val; |
| 377 | + sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); |
| 378 | +} |
| 379 | +#endif |
| 380 | + |
| 381 | +/* |
| 382 | + * This is the time all tasks within the same priority round robin. |
| 383 | + * Value is in ms and set to a minimum of 6ms. Scales with number of cpus. |
| 384 | + * Tunable via /proc interface. |
| 385 | + */ |
| 386 | +int rr_interval __read_mostly = 6; |
| 387 | + |
| 388 | +/* |
| 389 | + * sched_iso_cpu - sysctl which determines the cpu percentage SCHED_ISO tasks |
| 390 | + * are allowed to run five seconds as real time tasks. This is the total over |
| 391 | + * all online cpus. |
| 392 | + */ |
| 393 | +int sched_iso_cpu __read_mostly = 70; |
| 394 | + |
| 395 | +int prio_ratios[PRIO_RANGE] __read_mostly; |
| 396 | + |
| 397 | +static inline unsigned long timeslice(void) |
| 398 | +{ |
| 399 | + return MS_TO_US(rr_interval); |
| 400 | +} |
| 401 | + |
| 402 | +struct global_rq { |
| 403 | + spinlock_t lock; |
| 404 | + unsigned long nr_running; |
| 405 | + unsigned long nr_uninterruptible; |
| 406 | + unsigned long long nr_switches; |
| 407 | + struct list_head queue[PRIO_LIMIT]; |
| 408 | + DECLARE_BITMAP(prio_bitmap, PRIO_LIMIT + 1); |
| 409 | + unsigned long iso_ticks; |
| 410 | + unsigned short iso_refractory; |
| 411 | +#ifdef CONFIG_SMP |
| 412 | + unsigned long qnr; /* queued not running */ |
| 413 | + cpumask_t cpu_idle_map; |
| 414 | +#endif |
| 415 | +}; |
| 416 | + |
| 417 | +static struct global_rq grq; |
| 418 | + |
| 419 | +/* |
| 420 | + * This is the main, per-CPU runqueue data structure. |
| 421 | + * All this is protected by the global_rq lock. |
| 422 | + */ |
| 423 | +struct rq { |
| 424 | +#ifdef CONFIG_SMP |
| 425 | +#ifdef CONFIG_NO_HZ |
| 426 | + unsigned char in_nohz_recently; |
| 427 | +#endif |
| 428 | +#endif |
| 429 | + |
| 430 | + struct task_struct *curr, *idle; |
| 431 | + struct mm_struct *prev_mm; |
| 432 | + struct list_head queue; /* Place to store currently running task */ |
| 433 | + |
| 434 | + /* Stored data about rq->curr to work outside grq lock */ |
| 435 | + unsigned long rq_deadline; |
| 436 | + unsigned int rq_policy; |
| 437 | + int rq_time_slice; |
| 438 | + int rq_prio; |
| 439 | + |
| 440 | + /* Accurate timekeeping data */ |
| 441 | + u64 timekeep_clock; |
| 442 | + unsigned long user_pc, nice_pc, irq_pc, softirq_pc, system_pc, |
| 443 | + iowait_pc, idle_pc; |
| 444 | + atomic_t nr_iowait; |
| 445 | + |
| 446 | + int cpu; /* cpu of this runqueue */ |
| 447 | + int online; |
| 448 | + |
| 449 | +#ifdef CONFIG_SMP |
| 450 | + struct root_domain *rd; |
| 451 | + struct sched_domain *sd; |
| 452 | + |
| 453 | + struct list_head migration_queue; |
| 454 | +#endif |
| 455 | + |
| 456 | + u64 clock; |
| 457 | +#ifdef CONFIG_SCHEDSTATS |
| 458 | + |
| 459 | + /* latency stats */ |
| 460 | + struct sched_info rq_sched_info; |
| 461 | + unsigned long long rq_cpu_time; |
| 462 | + /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ |
| 463 | + |
| 464 | + /* sys_sched_yield() stats */ |
| 465 | + unsigned int yld_count; |
| 466 | + |
| 467 | + /* schedule() stats */ |
| 468 | + unsigned int sched_switch; |
| 469 | + unsigned int sched_count; |
| 470 | + unsigned int sched_goidle; |
| 471 | + |
| 472 | + /* try_to_wake_up() stats */ |
| 473 | + unsigned int ttwu_count; |
| 474 | + unsigned int ttwu_local; |
| 475 | + |
| 476 | + /* BKL stats */ |
| 477 | + unsigned int bkl_count; |
| 478 | +#endif |
| 479 | +}; |
| 480 | + |
| 481 | +static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp; |
| 482 | +static DEFINE_MUTEX(sched_hotcpu_mutex); |
| 483 | + |
| 484 | +#ifdef CONFIG_SMP |
| 485 | + |
| 486 | +/* |
| 487 | + * We add the notion of a root-domain which will be used to define per-domain |
| 488 | + * variables. Each exclusive cpuset essentially defines an island domain by |
| 489 | + * fully partitioning the member cpus from any other cpuset. Whenever a new |
| 490 | + * exclusive cpuset is created, we also create and attach a new root-domain |
| 491 | + * object. |
| 492 | + * |
| 493 | + */ |
| 494 | +struct root_domain { |
| 495 | + atomic_t refcount; |
| 496 | + cpumask_var_t span; |
| 497 | + cpumask_var_t online; |
| 498 | + |
| 499 | + /* |
| 500 | + * The "RT overload" flag: it gets set if a CPU has more than |
| 501 | + * one runnable RT task. |
| 502 | + */ |
| 503 | + cpumask_var_t rto_mask; |
| 504 | + atomic_t rto_count; |
| 505 | +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
| 506 | + /* |
| 507 | + * Preferred wake up cpu nominated by sched_mc balance that will be |
| 508 | + * used when most cpus are idle in the system indicating overall very |
| 509 | + * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2) |
| 510 | + */ |
| 511 | + unsigned int sched_mc_preferred_wakeup_cpu; |
| 512 | +#endif |
| 513 | +}; |
| 514 | + |
| 515 | +/* |
| 516 | + * By default the system creates a single root-domain with all cpus as |
| 517 | + * members (mimicking the global state we have today). |
| 518 | + */ |
| 519 | +static struct root_domain def_root_domain; |
| 520 | + |
| 521 | +#endif |
| 522 | + |
| 523 | +static inline int cpu_of(struct rq *rq) |
| 524 | +{ |
| 525 | +#ifdef CONFIG_SMP |
| 526 | + return rq->cpu; |
| 527 | +#else |
| 528 | + return 0; |
| 529 | +#endif |
| 530 | +} |
| 531 | + |
| 532 | +/* |
| 533 | + * The domain tree (rq->sd) is protected by RCU's quiescent state transition. |
| 534 | + * See detach_destroy_domains: synchronize_sched for details. |
| 535 | + * |
| 536 | + * The domain tree of any CPU may only be accessed from within |
| 537 | + * preempt-disabled sections. |
| 538 | + */ |
| 539 | +#define for_each_domain(cpu, __sd) \ |
| 540 | + for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) |
| 541 | + |
| 542 | +#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) |
| 543 | +#define this_rq() (&__get_cpu_var(runqueues)) |
| 544 | +#define task_rq(p) cpu_rq(task_cpu(p)) |
| 545 | +#define cpu_curr(cpu) (cpu_rq(cpu)->curr) |
| 546 | + |
| 547 | +#include "sched_stats.h" |
| 548 | + |
| 549 | +#ifndef prepare_arch_switch |
| 550 | +# define prepare_arch_switch(next) do { } while (0) |
| 551 | +#endif |
| 552 | +#ifndef finish_arch_switch |
| 553 | +# define finish_arch_switch(prev) do { } while (0) |
| 554 | +#endif |
| 555 | + |
| 556 | +inline void update_rq_clock(struct rq *rq) |
| 557 | +{ |
| 558 | + rq->clock = sched_clock_cpu(cpu_of(rq)); |
| 559 | +} |
| 560 | + |
| 561 | +static inline int task_running(struct task_struct *p) |
| 562 | +{ |
| 563 | + return (!!p->oncpu); |
| 564 | +} |
| 565 | + |
| 566 | +static inline void grq_lock(void) |
| 567 | + __acquires(grq.lock) |
| 568 | +{ |
| 569 | + smp_mb(); |
| 570 | + spin_lock(&grq.lock); |
| 571 | +} |
| 572 | + |
| 573 | +static inline void grq_unlock(void) |
| 574 | + __releases(grq.lock) |
| 575 | +{ |
| 576 | + spin_unlock(&grq.lock); |
| 577 | +} |
| 578 | + |
| 579 | +static inline void grq_lock_irq(void) |
| 580 | + __acquires(grq.lock) |
| 581 | +{ |
| 582 | + smp_mb(); |
| 583 | + spin_lock_irq(&grq.lock); |
| 584 | +} |
| 585 | + |
| 586 | +static inline void time_lock_grq(struct rq *rq) |
| 587 | + __acquires(grq.lock) |
| 588 | +{ |
| 589 | + grq_lock(); |
| 590 | + update_rq_clock(rq); |
| 591 | +} |
| 592 | + |
| 593 | +static inline void grq_unlock_irq(void) |
| 594 | + __releases(grq.lock) |
| 595 | +{ |
| 596 | + spin_unlock_irq(&grq.lock); |
| 597 | +} |
| 598 | + |
| 599 | +static inline void grq_lock_irqsave(unsigned long *flags) |
| 600 | + __acquires(grq.lock) |
| 601 | +{ |
| 602 | + smp_mb(); |
| 603 | + spin_lock_irqsave(&grq.lock, *flags); |
| 604 | +} |
| 605 | + |
| 606 | +static inline void grq_unlock_irqrestore(unsigned long *flags) |
| 607 | + __releases(grq.lock) |
| 608 | +{ |
| 609 | + spin_unlock_irqrestore(&grq.lock, *flags); |
| 610 | +} |
| 611 | + |
| 612 | +static inline struct rq |
| 613 | +*task_grq_lock(struct task_struct *p, unsigned long *flags) |
| 614 | + __acquires(grq.lock) |
| 615 | +{ |
| 616 | + grq_lock_irqsave(flags); |
| 617 | + return task_rq(p); |
| 618 | +} |
| 619 | + |
| 620 | +static inline struct rq |
| 621 | +*time_task_grq_lock(struct task_struct *p, unsigned long *flags) |
| 622 | + __acquires(grq.lock) |
| 623 | +{ |
| 624 | + struct rq *rq = task_grq_lock(p, flags); |
| 625 | + update_rq_clock(rq); |
| 626 | + return rq; |
| 627 | +} |
| 628 | + |
| 629 | +static inline void task_grq_unlock(unsigned long *flags) |
| 630 | + __releases(grq.lock) |
| 631 | +{ |
| 632 | + grq_unlock_irqrestore(flags); |
| 633 | +} |
| 634 | + |
| 635 | +/** |
| 636 | + * runqueue_is_locked |
| 637 | + * |
| 638 | + * Returns true if the global runqueue is locked. |
| 639 | + * This interface allows printk to be called with the runqueue lock |
| 640 | + * held and know whether or not it is OK to wake up the klogd. |
| 641 | + */ |
| 642 | +int runqueue_is_locked(void) |
| 643 | +{ |
| 644 | + return spin_is_locked(&grq.lock); |
| 645 | +} |
| 646 | + |
| 647 | +void task_rq_unlock_wait(struct task_struct *p) |
| 648 | + __releases(grq.lock) |
| 649 | +{ |
| 650 | + smp_mb(); /* spin-unlock-wait is not a full memory barrier */ |
| 651 | + spin_unlock_wait(&grq.lock); |
| 652 | +} |
| 653 | + |
| 654 | +static inline void time_grq_lock(struct rq *rq, unsigned long *flags) |
| 655 | + __acquires(grq.lock) |
| 656 | +{ |
| 657 | + spin_lock_irqsave(&grq.lock, *flags); |
| 658 | + update_rq_clock(rq); |
| 659 | +} |
| 660 | + |
| 661 | +static inline struct rq *__task_grq_lock(struct task_struct *p) |
| 662 | + __acquires(grq.lock) |
| 663 | +{ |
| 664 | + grq_lock(); |
| 665 | + return task_rq(p); |
| 666 | +} |
| 667 | + |
| 668 | +static inline void __task_grq_unlock(void) |
| 669 | + __releases(grq.lock) |
| 670 | +{ |
| 671 | + grq_unlock(); |
| 672 | +} |
| 673 | + |
| 674 | +#ifndef __ARCH_WANT_UNLOCKED_CTXSW |
| 675 | +static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
| 676 | +{ |
| 677 | +} |
| 678 | + |
| 679 | +static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
| 680 | +{ |
| 681 | +#ifdef CONFIG_DEBUG_SPINLOCK |
| 682 | + /* this is a valid case when another task releases the spinlock */ |
| 683 | + grq.lock.owner = current; |
| 684 | +#endif |
| 685 | + /* |
| 686 | + * If we are tracking spinlock dependencies then we have to |
| 687 | + * fix up the runqueue lock - which gets 'carried over' from |
| 688 | + * prev into current: |
| 689 | + */ |
| 690 | + spin_acquire(&grq.lock.dep_map, 0, 0, _THIS_IP_); |
| 691 | + |
| 692 | + grq_unlock_irq(); |
| 693 | +} |
| 694 | + |
| 695 | +#else /* __ARCH_WANT_UNLOCKED_CTXSW */ |
| 696 | + |
| 697 | +static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
| 698 | +{ |
| 699 | +#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
| 700 | + grq_unlock_irq(); |
| 701 | +#else |
| 702 | + grq_unlock(); |
| 703 | +#endif |
| 704 | +} |
| 705 | + |
| 706 | +static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
| 707 | +{ |
| 708 | + smp_wmb(); |
| 709 | +#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
| 710 | + local_irq_enable(); |
| 711 | +#endif |
| 712 | +} |
| 713 | +#endif /* __ARCH_WANT_UNLOCKED_CTXSW */ |
| 714 | + |
| 715 | +/* |
| 716 | + * A task that is queued will be on the grq run list. |
| 717 | + * A task that is not running or queued will not be on the grq run list. |
| 718 | + * A task that is currently running will have ->oncpu set and be queued |
| 719 | + * temporarily in its own rq queue. |
| 720 | + * A task that is running and no longer queued will be seen only on |
| 721 | + * context switch exit. |
| 722 | + */ |
| 723 | + |
| 724 | +static inline int task_queued(struct task_struct *p) |
| 725 | +{ |
| 726 | + return (!list_empty(&p->rt.run_list)); |
| 727 | +} |
| 728 | + |
| 729 | +static inline int task_queued_only(struct task_struct *p) |
| 730 | +{ |
| 731 | + return (!list_empty(&p->rt.run_list) && !task_running(p)); |
| 732 | +} |
| 733 | + |
| 734 | +/* |
| 735 | + * Removing from the global runqueue. Enter with grq locked. |
| 736 | + */ |
| 737 | +static void dequeue_task(struct task_struct *p) |
| 738 | +{ |
| 739 | + list_del_init(&p->rt.run_list); |
| 740 | + if (list_empty(grq.queue + p->prio)) |
| 741 | + __clear_bit(p->prio, grq.prio_bitmap); |
| 742 | +} |
| 743 | + |
| 744 | +static inline void reset_first_time_slice(struct task_struct *p) |
| 745 | +{ |
| 746 | + if (unlikely(p->first_time_slice)) |
| 747 | + p->first_time_slice = 0; |
| 748 | +} |
| 749 | + |
| 750 | +static int idleprio_suitable(struct task_struct *p) |
| 751 | +{ |
| 752 | + return (!freezing(p) && !signal_pending(p) && |
| 753 | + !(task_contributes_to_load(p)) && !(p->flags & (PF_EXITING))); |
| 754 | +} |
| 755 | + |
| 756 | +static int isoprio_suitable(void) |
| 757 | +{ |
| 758 | + return !grq.iso_refractory; |
| 759 | +} |
| 760 | + |
| 761 | +/* |
| 762 | + * Adding to the global runqueue. Enter with grq locked. |
| 763 | + */ |
| 764 | +static void enqueue_task(struct task_struct *p) |
| 765 | +{ |
| 766 | + if (!rt_task(p)) { |
| 767 | + /* Check it hasn't gotten rt from PI */ |
| 768 | + if ((idleprio_task(p) && idleprio_suitable(p)) || |
| 769 | + (iso_task(p) && isoprio_suitable())) |
| 770 | + p->prio = p->normal_prio; |
| 771 | + else |
| 772 | + p->prio = NORMAL_PRIO; |
| 773 | + } |
| 774 | + __set_bit(p->prio, grq.prio_bitmap); |
| 775 | + list_add_tail(&p->rt.run_list, grq.queue + p->prio); |
| 776 | + sched_info_queued(p); |
| 777 | +} |
| 778 | + |
| 779 | +/* Only idle task does this as a real time task*/ |
| 780 | +static inline void enqueue_task_head(struct task_struct *p) |
| 781 | +{ |
| 782 | + __set_bit(p->prio, grq.prio_bitmap); |
| 783 | + list_add(&p->rt.run_list, grq.queue + p->prio); |
| 784 | + sched_info_queued(p); |
| 785 | +} |
| 786 | + |
| 787 | +static inline void requeue_task(struct task_struct *p) |
| 788 | +{ |
| 789 | + sched_info_queued(p); |
| 790 | +} |
| 791 | + |
| 792 | +static inline int pratio(struct task_struct *p) |
| 793 | +{ |
| 794 | + return prio_ratios[TASK_USER_PRIO(p)]; |
| 795 | +} |
| 796 | + |
| 797 | +/* |
| 798 | + * task_timeslice - all tasks of all priorities get the exact same timeslice |
| 799 | + * length. CPU distribution is handled by giving different deadlines to |
| 800 | + * tasks of different priorities. |
| 801 | + */ |
| 802 | +static inline int task_timeslice(struct task_struct *p) |
| 803 | +{ |
| 804 | + return (rr_interval * pratio(p) / 100); |
| 805 | +} |
| 806 | + |
| 807 | +#ifdef CONFIG_SMP |
| 808 | +static inline void inc_qnr(void) |
| 809 | +{ |
| 810 | + grq.qnr++; |
| 811 | +} |
| 812 | + |
| 813 | +static inline void dec_qnr(void) |
| 814 | +{ |
| 815 | + grq.qnr--; |
| 816 | +} |
| 817 | + |
| 818 | +static inline int queued_notrunning(void) |
| 819 | +{ |
| 820 | + return grq.qnr; |
| 821 | +} |
| 822 | +#else |
| 823 | +static inline void inc_qnr(void) |
| 824 | +{ |
| 825 | +} |
| 826 | + |
| 827 | +static inline void dec_qnr(void) |
| 828 | +{ |
| 829 | +} |
| 830 | + |
| 831 | +static inline int queued_notrunning(void) |
| 832 | +{ |
| 833 | + return grq.nr_running; |
| 834 | +} |
| 835 | +#endif |
| 836 | + |
| 837 | +/* |
| 838 | + * activate_idle_task - move idle task to the _front_ of runqueue. |
| 839 | + */ |
| 840 | +static inline void activate_idle_task(struct task_struct *p) |
| 841 | +{ |
| 842 | + enqueue_task_head(p); |
| 843 | + grq.nr_running++; |
| 844 | + inc_qnr(); |
| 845 | +} |
| 846 | + |
| 847 | +static inline int normal_prio(struct task_struct *p) |
| 848 | +{ |
| 849 | + if (has_rt_policy(p)) |
| 850 | + return MAX_RT_PRIO - 1 - p->rt_priority; |
| 851 | + if (idleprio_task(p)) |
| 852 | + return IDLE_PRIO; |
| 853 | + if (iso_task(p)) |
| 854 | + return ISO_PRIO; |
| 855 | + return NORMAL_PRIO; |
| 856 | +} |
| 857 | + |
| 858 | +/* |
| 859 | + * Calculate the current priority, i.e. the priority |
| 860 | + * taken into account by the scheduler. This value might |
| 861 | + * be boosted by RT tasks as it will be RT if the task got |
| 862 | + * RT-boosted. If not then it returns p->normal_prio. |
| 863 | + */ |
| 864 | +static int effective_prio(struct task_struct *p) |
| 865 | +{ |
| 866 | + p->normal_prio = normal_prio(p); |
| 867 | + /* |
| 868 | + * If we are RT tasks or we were boosted to RT priority, |
| 869 | + * keep the priority unchanged. Otherwise, update priority |
| 870 | + * to the normal priority: |
| 871 | + */ |
| 872 | + if (!rt_prio(p->prio)) |
| 873 | + return p->normal_prio; |
| 874 | + return p->prio; |
| 875 | +} |
| 876 | + |
| 877 | +/* |
| 878 | + * activate_task - move a task to the runqueue. Enter with grq locked. The rq |
| 879 | + * doesn't really matter but gives us the local clock. |
| 880 | + */ |
| 881 | +static void activate_task(struct task_struct *p, struct rq *rq) |
| 882 | +{ |
| 883 | + u64 now = rq->clock; |
| 884 | + |
| 885 | + /* |
| 886 | + * Sleep time is in units of nanosecs, so shift by 20 to get a |
| 887 | + * milliseconds-range estimation of the amount of time that the task |
| 888 | + * spent sleeping: |
| 889 | + */ |
| 890 | + if (unlikely(prof_on == SLEEP_PROFILING)) { |
| 891 | + if (p->state == TASK_UNINTERRUPTIBLE) |
| 892 | + profile_hits(SLEEP_PROFILING, (void *)get_wchan(p), |
| 893 | + (now - p->timestamp) >> 20); |
| 894 | + } |
| 895 | + |
| 896 | + p->prio = effective_prio(p); |
| 897 | + p->timestamp = now; |
| 898 | + if (task_contributes_to_load(p)) |
| 899 | + grq.nr_uninterruptible--; |
| 900 | + enqueue_task(p); |
| 901 | + grq.nr_running++; |
| 902 | + inc_qnr(); |
| 903 | +} |
| 904 | + |
| 905 | +/* |
| 906 | + * deactivate_task - If it's running, it's not on the grq and we can just |
| 907 | + * decrement the nr_running. |
| 908 | + */ |
| 909 | +static inline void deactivate_task(struct task_struct *p) |
| 910 | +{ |
| 911 | + if (task_contributes_to_load(p)) |
| 912 | + grq.nr_uninterruptible++; |
| 913 | + grq.nr_running--; |
| 914 | +} |
| 915 | + |
| 916 | +#ifdef CONFIG_SMP |
| 917 | +void set_task_cpu(struct task_struct *p, unsigned int cpu) |
| 918 | +{ |
| 919 | + trace_sched_migrate_task(p, cpu); |
| 920 | + /* |
| 921 | + * After ->cpu is set up to a new value, task_grq_lock(p, ...) can be |
| 922 | + * successfuly executed on another CPU. We must ensure that updates of |
| 923 | + * per-task data have been completed by this moment. |
| 924 | + */ |
| 925 | + smp_wmb(); |
| 926 | + task_thread_info(p)->cpu = cpu; |
| 927 | +} |
| 928 | +#endif |
| 929 | + |
| 930 | +/* |
| 931 | + * Move a task off the global queue and take it to a cpu for it will |
| 932 | + * become the running task. |
| 933 | + */ |
| 934 | +static inline void take_task(struct rq *rq, struct task_struct *p) |
| 935 | +{ |
| 936 | + set_task_cpu(p, rq->cpu); |
| 937 | + dequeue_task(p); |
| 938 | + list_add(&p->rt.run_list, &rq->queue); |
| 939 | + dec_qnr(); |
| 940 | +} |
| 941 | + |
| 942 | +/* |
| 943 | + * Returns a descheduling task to the grq runqueue unless it is being |
| 944 | + * deactivated. |
| 945 | + */ |
| 946 | +static inline void return_task(struct task_struct *p, int deactivate) |
| 947 | +{ |
| 948 | + list_del_init(&p->rt.run_list); |
| 949 | + if (deactivate) |
| 950 | + deactivate_task(p); |
| 951 | + else { |
| 952 | + inc_qnr(); |
| 953 | + enqueue_task(p); |
| 954 | + } |
| 955 | +} |
| 956 | + |
| 957 | +/* |
| 958 | + * resched_task - mark a task 'to be rescheduled now'. |
| 959 | + * |
| 960 | + * On UP this means the setting of the need_resched flag, on SMP it |
| 961 | + * might also involve a cross-CPU call to trigger the scheduler on |
| 962 | + * the target CPU. |
| 963 | + */ |
| 964 | +#ifdef CONFIG_SMP |
| 965 | + |
| 966 | +#ifndef tsk_is_polling |
| 967 | +#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) |
| 968 | +#endif |
| 969 | + |
| 970 | +static void resched_task(struct task_struct *p) |
| 971 | +{ |
| 972 | + int cpu; |
| 973 | + |
| 974 | + assert_spin_locked(&grq.lock); |
| 975 | + |
| 976 | + if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) |
| 977 | + return; |
| 978 | + |
| 979 | + set_tsk_thread_flag(p, TIF_NEED_RESCHED); |
| 980 | + |
| 981 | + cpu = task_cpu(p); |
| 982 | + if (cpu == smp_processor_id()) |
| 983 | + return; |
| 984 | + |
| 985 | + /* NEED_RESCHED must be visible before we test polling */ |
| 986 | + smp_mb(); |
| 987 | + if (!tsk_is_polling(p)) |
| 988 | + smp_send_reschedule(cpu); |
| 989 | +} |
| 990 | + |
| 991 | +#else |
| 992 | +static inline void resched_task(struct task_struct *p) |
| 993 | +{ |
| 994 | + assert_spin_locked(&grq.lock); |
| 995 | + set_tsk_need_resched(p); |
| 996 | +} |
| 997 | +#endif |
| 998 | + |
| 999 | +/** |
| 1000 | + * task_curr - is this task currently executing on a CPU? |
| 1001 | + * @p: the task in question. |
| 1002 | + */ |
| 1003 | +inline int task_curr(const struct task_struct *p) |
| 1004 | +{ |
| 1005 | + return cpu_curr(task_cpu(p)) == p; |
| 1006 | +} |
| 1007 | + |
| 1008 | +#ifdef CONFIG_SMP |
| 1009 | +struct migration_req { |
| 1010 | + struct list_head list; |
| 1011 | + |
| 1012 | + struct task_struct *task; |
| 1013 | + int dest_cpu; |
| 1014 | + |
| 1015 | + struct completion done; |
| 1016 | +}; |
| 1017 | + |
| 1018 | +/* |
| 1019 | + * wait_task_context_switch - wait for a thread to complete at least one |
| 1020 | + * context switch. |
| 1021 | + * |
| 1022 | + * @p must not be current. |
| 1023 | + */ |
| 1024 | +void wait_task_context_switch(struct task_struct *p) |
| 1025 | +{ |
| 1026 | + unsigned long nvcsw, nivcsw, flags; |
| 1027 | + int running; |
| 1028 | + struct rq *rq; |
| 1029 | + |
| 1030 | + nvcsw = p->nvcsw; |
| 1031 | + nivcsw = p->nivcsw; |
| 1032 | + for (;;) { |
| 1033 | + /* |
| 1034 | + * The runqueue is assigned before the actual context |
| 1035 | + * switch. We need to take the runqueue lock. |
| 1036 | + * |
| 1037 | + * We could check initially without the lock but it is |
| 1038 | + * very likely that we need to take the lock in every |
| 1039 | + * iteration. |
| 1040 | + */ |
| 1041 | + rq = task_grq_lock(p, &flags); |
| 1042 | + running = task_running(p); |
| 1043 | + task_grq_unlock(&flags); |
| 1044 | + |
| 1045 | + if (likely(!running)) |
| 1046 | + break; |
| 1047 | + /* |
| 1048 | + * The switch count is incremented before the actual |
| 1049 | + * context switch. We thus wait for two switches to be |
| 1050 | + * sure at least one completed. |
| 1051 | + */ |
| 1052 | + if ((p->nvcsw - nvcsw) > 1) |
| 1053 | + break; |
| 1054 | + if ((p->nivcsw - nivcsw) > 1) |
| 1055 | + break; |
| 1056 | + |
| 1057 | + cpu_relax(); |
| 1058 | + } |
| 1059 | +} |
| 1060 | + |
| 1061 | +/* |
| 1062 | + * wait_task_inactive - wait for a thread to unschedule. |
| 1063 | + * |
| 1064 | + * If @match_state is nonzero, it's the @p->state value just checked and |
| 1065 | + * not expected to change. If it changes, i.e. @p might have woken up, |
| 1066 | + * then return zero. When we succeed in waiting for @p to be off its CPU, |
| 1067 | + * we return a positive number (its total switch count). If a second call |
| 1068 | + * a short while later returns the same number, the caller can be sure that |
| 1069 | + * @p has remained unscheduled the whole time. |
| 1070 | + * |
| 1071 | + * The caller must ensure that the task *will* unschedule sometime soon, |
| 1072 | + * else this function might spin for a *long* time. This function can't |
| 1073 | + * be called with interrupts off, or it may introduce deadlock with |
| 1074 | + * smp_call_function() if an IPI is sent by the same process we are |
| 1075 | + * waiting to become inactive. |
| 1076 | + */ |
| 1077 | +unsigned long wait_task_inactive(struct task_struct *p, long match_state) |
| 1078 | +{ |
| 1079 | + unsigned long flags; |
| 1080 | + int running, on_rq; |
| 1081 | + unsigned long ncsw; |
| 1082 | + struct rq *rq; |
| 1083 | + |
| 1084 | + for (;;) { |
| 1085 | + /* |
| 1086 | + * We do the initial early heuristics without holding |
| 1087 | + * any task-queue locks at all. We'll only try to get |
| 1088 | + * the runqueue lock when things look like they will |
| 1089 | + * work out! |
| 1090 | + */ |
| 1091 | + rq = task_rq(p); |
| 1092 | + |
| 1093 | + /* |
| 1094 | + * If the task is actively running on another CPU |
| 1095 | + * still, just relax and busy-wait without holding |
| 1096 | + * any locks. |
| 1097 | + * |
| 1098 | + * NOTE! Since we don't hold any locks, it's not |
| 1099 | + * even sure that "rq" stays as the right runqueue! |
| 1100 | + * But we don't care, since this will |
| 1101 | + * return false if the runqueue has changed and p |
| 1102 | + * is actually now running somewhere else! |
| 1103 | + */ |
| 1104 | + while (task_running(p) && p == rq->curr) { |
| 1105 | + if (match_state && unlikely(p->state != match_state)) |
| 1106 | + return 0; |
| 1107 | + cpu_relax(); |
| 1108 | + } |
| 1109 | + |
| 1110 | + /* |
| 1111 | + * Ok, time to look more closely! We need the grq |
| 1112 | + * lock now, to be *sure*. If we're wrong, we'll |
| 1113 | + * just go back and repeat. |
| 1114 | + */ |
| 1115 | + rq = task_grq_lock(p, &flags); |
| 1116 | + trace_sched_wait_task(rq, p); |
| 1117 | + running = task_running(p); |
| 1118 | + on_rq = task_queued(p); |
| 1119 | + ncsw = 0; |
| 1120 | + if (!match_state || p->state == match_state) |
| 1121 | + ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ |
| 1122 | + task_grq_unlock(&flags); |
| 1123 | + |
| 1124 | + /* |
| 1125 | + * If it changed from the expected state, bail out now. |
| 1126 | + */ |
| 1127 | + if (unlikely(!ncsw)) |
| 1128 | + break; |
| 1129 | + |
| 1130 | + /* |
| 1131 | + * Was it really running after all now that we |
| 1132 | + * checked with the proper locks actually held? |
| 1133 | + * |
| 1134 | + * Oops. Go back and try again.. |
| 1135 | + */ |
| 1136 | + if (unlikely(running)) { |
| 1137 | + cpu_relax(); |
| 1138 | + continue; |
| 1139 | + } |
| 1140 | + |
| 1141 | + /* |
| 1142 | + * It's not enough that it's not actively running, |
| 1143 | + * it must be off the runqueue _entirely_, and not |
| 1144 | + * preempted! |
| 1145 | + * |
| 1146 | + * So if it was still runnable (but just not actively |
| 1147 | + * running right now), it's preempted, and we should |
| 1148 | + * yield - it could be a while. |
| 1149 | + */ |
| 1150 | + if (unlikely(on_rq)) { |
| 1151 | + schedule_timeout_uninterruptible(1); |
| 1152 | + continue; |
| 1153 | + } |
| 1154 | + |
| 1155 | + /* |
| 1156 | + * Ahh, all good. It wasn't running, and it wasn't |
| 1157 | + * runnable, which means that it will never become |
| 1158 | + * running in the future either. We're all done! |
| 1159 | + */ |
| 1160 | + break; |
| 1161 | + } |
| 1162 | + |
| 1163 | + return ncsw; |
| 1164 | +} |
| 1165 | + |
| 1166 | +/*** |
| 1167 | + * kick_process - kick a running thread to enter/exit the kernel |
| 1168 | + * @p: the to-be-kicked thread |
| 1169 | + * |
| 1170 | + * Cause a process which is running on another CPU to enter |
| 1171 | + * kernel-mode, without any delay. (to get signals handled.) |
| 1172 | + * |
| 1173 | + * NOTE: this function doesnt have to take the runqueue lock, |
| 1174 | + * because all it wants to ensure is that the remote task enters |
| 1175 | + * the kernel. If the IPI races and the task has been migrated |
| 1176 | + * to another CPU then no harm is done and the purpose has been |
| 1177 | + * achieved as well. |
| 1178 | + */ |
| 1179 | +void kick_process(struct task_struct *p) |
| 1180 | +{ |
| 1181 | + int cpu; |
| 1182 | + |
| 1183 | + preempt_disable(); |
| 1184 | + cpu = task_cpu(p); |
| 1185 | + if ((cpu != smp_processor_id()) && task_curr(p)) |
| 1186 | + smp_send_reschedule(cpu); |
| 1187 | + preempt_enable(); |
| 1188 | +} |
| 1189 | +EXPORT_SYMBOL_GPL(kick_process); |
| 1190 | +#endif |
| 1191 | + |
| 1192 | +#define rq_idle(rq) ((rq)->rq_prio == PRIO_LIMIT) |
| 1193 | + |
| 1194 | +/* |
| 1195 | + * RT tasks preempt purely on priority. SCHED_NORMAL tasks preempt on the |
| 1196 | + * basis of earlier deadlines. SCHED_BATCH and SCHED_IDLE don't preempt, |
| 1197 | + * they cooperatively multitask. |
| 1198 | + */ |
| 1199 | +static inline int task_preempts_curr(struct task_struct *p, struct rq *rq) |
| 1200 | +{ |
| 1201 | + int preempts = 0; |
| 1202 | + |
| 1203 | + if (p->prio < rq->rq_prio) |
| 1204 | + preempts = 1; |
| 1205 | + else if (p->policy == SCHED_NORMAL && (p->prio == rq->rq_prio && |
| 1206 | + time_before(p->deadline, rq->rq_deadline))) |
| 1207 | + preempts = 1; |
| 1208 | + return preempts; |
| 1209 | +} |
| 1210 | + |
| 1211 | +/* |
| 1212 | + * Wake up *any* suitable cpu to schedule this task. |
| 1213 | + */ |
| 1214 | +static void try_preempt(struct task_struct *p) |
| 1215 | +{ |
| 1216 | + struct rq *highest_prio_rq, *this_rq; |
| 1217 | + unsigned long latest_deadline, cpu; |
| 1218 | + int highest_prio; |
| 1219 | + cpumask_t tmp; |
| 1220 | + |
| 1221 | + /* Try the task's previous rq first and as a fallback */ |
| 1222 | + this_rq = task_rq(p); |
| 1223 | + |
| 1224 | + if (cpu_isset(this_rq->cpu, p->cpus_allowed)) { |
| 1225 | + highest_prio_rq = this_rq; |
| 1226 | + /* If this_rq is idle, use that. */ |
| 1227 | + if (rq_idle(this_rq)) |
| 1228 | + goto found_rq; |
| 1229 | + } else |
| 1230 | + highest_prio_rq = cpu_rq(any_online_cpu(p->cpus_allowed)); |
| 1231 | + latest_deadline = this_rq->rq_deadline; |
| 1232 | + highest_prio = this_rq->rq_prio; |
| 1233 | + |
| 1234 | + cpus_and(tmp, cpu_online_map, p->cpus_allowed); |
| 1235 | + |
| 1236 | + for_each_cpu_mask(cpu, tmp) { |
| 1237 | + struct rq *rq; |
| 1238 | + int rq_prio; |
| 1239 | + |
| 1240 | + rq = cpu_rq(cpu); |
| 1241 | + |
| 1242 | + if (rq_idle(rq)) { |
| 1243 | + /* found an idle rq, use that one */ |
| 1244 | + highest_prio_rq = rq; |
| 1245 | + goto found_rq; |
| 1246 | + } |
| 1247 | + |
| 1248 | + rq_prio = rq->rq_prio; |
| 1249 | + if (rq_prio > highest_prio || |
| 1250 | + (rq_prio == highest_prio && |
| 1251 | + time_after(rq->rq_deadline, latest_deadline))) { |
| 1252 | + highest_prio = rq_prio; |
| 1253 | + latest_deadline = rq->rq_deadline; |
| 1254 | + highest_prio_rq = rq; |
| 1255 | + } |
| 1256 | + } |
| 1257 | + |
| 1258 | + if (!task_preempts_curr(p, highest_prio_rq)) |
| 1259 | + return; |
| 1260 | +found_rq: |
| 1261 | + resched_task(highest_prio_rq->curr); |
| 1262 | + return; |
| 1263 | +} |
| 1264 | + |
| 1265 | +/** |
| 1266 | + * task_oncpu_function_call - call a function on the cpu on which a task runs |
| 1267 | + * @p: the task to evaluate |
| 1268 | + * @func: the function to be called |
| 1269 | + * @info: the function call argument |
| 1270 | + * |
| 1271 | + * Calls the function @func when the task is currently running. This might |
| 1272 | + * be on the current CPU, which just calls the function directly |
| 1273 | + */ |
| 1274 | +void task_oncpu_function_call(struct task_struct *p, |
| 1275 | + void (*func) (void *info), void *info) |
| 1276 | +{ |
| 1277 | + int cpu; |
| 1278 | + |
| 1279 | + preempt_disable(); |
| 1280 | + cpu = task_cpu(p); |
| 1281 | + if (task_curr(p)) |
| 1282 | + smp_call_function_single(cpu, func, info, 1); |
| 1283 | + preempt_enable(); |
| 1284 | +} |
| 1285 | + |
| 1286 | +#ifdef CONFIG_SMP |
| 1287 | +static int suitable_idle_cpus(struct task_struct *p) |
| 1288 | +{ |
| 1289 | + return (cpus_intersects(p->cpus_allowed, grq.cpu_idle_map)); |
| 1290 | +} |
| 1291 | +#else |
| 1292 | +static int suitable_idle_cpus(struct task_struct *p) |
| 1293 | +{ |
| 1294 | + return 0; |
| 1295 | +} |
| 1296 | +#endif |
| 1297 | + |
| 1298 | +/*** |
| 1299 | + * try_to_wake_up - wake up a thread |
| 1300 | + * @p: the to-be-woken-up thread |
| 1301 | + * @state: the mask of task states that can be woken |
| 1302 | + * @sync: do a synchronous wakeup? |
| 1303 | + * |
| 1304 | + * Put it on the run-queue if it's not already there. The "current" |
| 1305 | + * thread is always on the run-queue (except when the actual |
| 1306 | + * re-schedule is in progress), and as such you're allowed to do |
| 1307 | + * the simpler "current->state = TASK_RUNNING" to mark yourself |
| 1308 | + * runnable without the overhead of this. |
| 1309 | + * |
| 1310 | + * returns failure only if the task is already active. |
| 1311 | + */ |
| 1312 | +static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) |
| 1313 | +{ |
| 1314 | + unsigned long flags; |
| 1315 | + int success = 0; |
| 1316 | + long old_state; |
| 1317 | + struct rq *rq; |
| 1318 | + |
| 1319 | + rq = time_task_grq_lock(p, &flags); |
| 1320 | + old_state = p->state; |
| 1321 | + if (!(old_state & state)) |
| 1322 | + goto out_unlock; |
| 1323 | + |
| 1324 | + /* |
| 1325 | + * Note this catches tasks that are running and queued, but returns |
| 1326 | + * false during the context switch when they're running and no |
| 1327 | + * longer queued. |
| 1328 | + */ |
| 1329 | + if (task_queued(p)) |
| 1330 | + goto out_running; |
| 1331 | + |
| 1332 | + activate_task(p, rq); |
| 1333 | + /* |
| 1334 | + * Sync wakeups (i.e. those types of wakeups where the waker |
| 1335 | + * has indicated that it will leave the CPU in short order) |
| 1336 | + * don't trigger a preemption if there are no idle cpus, |
| 1337 | + * instead waiting for current to deschedule. |
| 1338 | + */ |
| 1339 | + if (!sync || (sync && suitable_idle_cpus(p))) |
| 1340 | + try_preempt(p); |
| 1341 | + success = 1; |
| 1342 | + |
| 1343 | +out_running: |
| 1344 | + trace_sched_wakeup(rq, p, success); |
| 1345 | + p->state = TASK_RUNNING; |
| 1346 | +out_unlock: |
| 1347 | + task_grq_unlock(&flags); |
| 1348 | + return success; |
| 1349 | +} |
| 1350 | + |
| 1351 | +/** |
| 1352 | + * wake_up_process - Wake up a specific process |
| 1353 | + * @p: The process to be woken up. |
| 1354 | + * |
| 1355 | + * Attempt to wake up the nominated process and move it to the set of runnable |
| 1356 | + * processes. Returns 1 if the process was woken up, 0 if it was already |
| 1357 | + * running. |
| 1358 | + * |
| 1359 | + * It may be assumed that this function implies a write memory barrier before |
| 1360 | + * changing the task state if and only if any tasks are woken up. |
| 1361 | + */ |
| 1362 | +int wake_up_process(struct task_struct *p) |
| 1363 | +{ |
| 1364 | + return try_to_wake_up(p, TASK_ALL, 0); |
| 1365 | +} |
| 1366 | +EXPORT_SYMBOL(wake_up_process); |
| 1367 | + |
| 1368 | +int wake_up_state(struct task_struct *p, unsigned int state) |
| 1369 | +{ |
| 1370 | + return try_to_wake_up(p, state, 0); |
| 1371 | +} |
| 1372 | + |
| 1373 | +/* |
| 1374 | + * Perform scheduler related setup for a newly forked process p. |
| 1375 | + * p is forked by current. |
| 1376 | + */ |
| 1377 | +void sched_fork(struct task_struct *p, int clone_flags) |
| 1378 | +{ |
| 1379 | + int cpu = get_cpu(); |
| 1380 | + struct rq *rq; |
| 1381 | + |
| 1382 | +#ifdef CONFIG_PREEMPT_NOTIFIERS |
| 1383 | + INIT_HLIST_HEAD(&p->preempt_notifiers); |
| 1384 | +#endif |
| 1385 | + /* |
| 1386 | + * We mark the process as running here, but have not actually |
| 1387 | + * inserted it onto the runqueue yet. This guarantees that |
| 1388 | + * nobody will actually run it, and a signal or other external |
| 1389 | + * event cannot wake it up and insert it on the runqueue either. |
| 1390 | + */ |
| 1391 | + p->state = TASK_RUNNING; |
| 1392 | + set_task_cpu(p, cpu); |
| 1393 | + |
| 1394 | + /* Should be reset in fork.c but done here for ease of bfs patching */ |
| 1395 | + p->se.sum_exec_runtime = p->stime_pc = p->utime_pc = 0; |
| 1396 | + |
| 1397 | + /* |
| 1398 | + * Make sure we do not leak PI boosting priority to the child: |
| 1399 | + */ |
| 1400 | + p->prio = current->normal_prio; |
| 1401 | + |
| 1402 | + INIT_LIST_HEAD(&p->rt.run_list); |
| 1403 | +#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
| 1404 | + if (unlikely(sched_info_on())) |
| 1405 | + memset(&p->sched_info, 0, sizeof(p->sched_info)); |
| 1406 | +#endif |
| 1407 | + |
| 1408 | + p->oncpu = 0; |
| 1409 | + |
| 1410 | +#ifdef CONFIG_PREEMPT |
| 1411 | + /* Want to start with kernel preemption disabled. */ |
| 1412 | + task_thread_info(p)->preempt_count = 1; |
| 1413 | +#endif |
| 1414 | + if (unlikely(p->policy == SCHED_FIFO)) |
| 1415 | + goto out; |
| 1416 | + /* |
| 1417 | + * Share the timeslice between parent and child, thus the |
| 1418 | + * total amount of pending timeslices in the system doesn't change, |
| 1419 | + * resulting in more scheduling fairness. If it's negative, it won't |
| 1420 | + * matter since that's the same as being 0. current's time_slice is |
| 1421 | + * actually in rq_time_slice when it's running. |
| 1422 | + */ |
| 1423 | + local_irq_disable(); |
| 1424 | + rq = task_rq(current); |
| 1425 | + if (likely(rq->rq_time_slice > 0)) { |
| 1426 | + rq->rq_time_slice /= 2; |
| 1427 | + /* |
| 1428 | + * The remainder of the first timeslice might be recovered by |
| 1429 | + * the parent if the child exits early enough. |
| 1430 | + */ |
| 1431 | + p->first_time_slice = 1; |
| 1432 | + } |
| 1433 | + p->rt.time_slice = rq->rq_time_slice; |
| 1434 | + local_irq_enable(); |
| 1435 | +out: |
| 1436 | + put_cpu(); |
| 1437 | +} |
| 1438 | + |
| 1439 | +/* |
| 1440 | + * wake_up_new_task - wake up a newly created task for the first time. |
| 1441 | + * |
| 1442 | + * This function will do some initial scheduler statistics housekeeping |
| 1443 | + * that must be done for every newly created context, then puts the task |
| 1444 | + * on the runqueue and wakes it. |
| 1445 | + */ |
| 1446 | +void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) |
| 1447 | +{ |
| 1448 | + struct task_struct *parent; |
| 1449 | + unsigned long flags; |
| 1450 | + struct rq *rq; |
| 1451 | + |
| 1452 | + rq = time_task_grq_lock(p, &flags); ; |
| 1453 | + parent = p->parent; |
| 1454 | + BUG_ON(p->state != TASK_RUNNING); |
| 1455 | + set_task_cpu(p, task_cpu(parent)); |
| 1456 | + |
| 1457 | + activate_task(p, rq); |
| 1458 | + trace_sched_wakeup_new(rq, p, 1); |
| 1459 | + if (!(clone_flags & CLONE_VM) && rq->curr == parent && |
| 1460 | + !suitable_idle_cpus(p)) { |
| 1461 | + /* |
| 1462 | + * The VM isn't cloned, so we're in a good position to |
| 1463 | + * do child-runs-first in anticipation of an exec. This |
| 1464 | + * usually avoids a lot of COW overhead. |
| 1465 | + */ |
| 1466 | + resched_task(parent); |
| 1467 | + } else |
| 1468 | + try_preempt(p); |
| 1469 | + task_grq_unlock(&flags); |
| 1470 | +} |
| 1471 | + |
| 1472 | +/* |
| 1473 | + * Potentially available exiting-child timeslices are |
| 1474 | + * retrieved here - this way the parent does not get |
| 1475 | + * penalized for creating too many threads. |
| 1476 | + * |
| 1477 | + * (this cannot be used to 'generate' timeslices |
| 1478 | + * artificially, because any timeslice recovered here |
| 1479 | + * was given away by the parent in the first place.) |
| 1480 | + */ |
| 1481 | +void sched_exit(struct task_struct *p) |
| 1482 | +{ |
| 1483 | + struct task_struct *parent; |
| 1484 | + unsigned long flags; |
| 1485 | + struct rq *rq; |
| 1486 | + |
| 1487 | + if (p->first_time_slice) { |
| 1488 | + parent = p->parent; |
| 1489 | + rq = task_grq_lock(parent, &flags); |
| 1490 | + parent->rt.time_slice += p->rt.time_slice; |
| 1491 | + if (unlikely(parent->rt.time_slice > timeslice())) |
| 1492 | + parent->rt.time_slice = timeslice(); |
| 1493 | + task_grq_unlock(&flags); |
| 1494 | + } |
| 1495 | +} |
| 1496 | + |
| 1497 | +#ifdef CONFIG_PREEMPT_NOTIFIERS |
| 1498 | + |
| 1499 | +/** |
| 1500 | + * preempt_notifier_register - tell me when current is being preempted & rescheduled |
| 1501 | + * @notifier: notifier struct to register |
| 1502 | + */ |
| 1503 | +void preempt_notifier_register(struct preempt_notifier *notifier) |
| 1504 | +{ |
| 1505 | + hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); |
| 1506 | +} |
| 1507 | +EXPORT_SYMBOL_GPL(preempt_notifier_register); |
| 1508 | + |
| 1509 | +/** |
| 1510 | + * preempt_notifier_unregister - no longer interested in preemption notifications |
| 1511 | + * @notifier: notifier struct to unregister |
| 1512 | + * |
| 1513 | + * This is safe to call from within a preemption notifier. |
| 1514 | + */ |
| 1515 | +void preempt_notifier_unregister(struct preempt_notifier *notifier) |
| 1516 | +{ |
| 1517 | + hlist_del(¬ifier->link); |
| 1518 | +} |
| 1519 | +EXPORT_SYMBOL_GPL(preempt_notifier_unregister); |
| 1520 | + |
| 1521 | +static void fire_sched_in_preempt_notifiers(struct task_struct *curr) |
| 1522 | +{ |
| 1523 | + struct preempt_notifier *notifier; |
| 1524 | + struct hlist_node *node; |
| 1525 | + |
| 1526 | + hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) |
| 1527 | + notifier->ops->sched_in(notifier, raw_smp_processor_id()); |
| 1528 | +} |
| 1529 | + |
| 1530 | +static void |
| 1531 | +fire_sched_out_preempt_notifiers(struct task_struct *curr, |
| 1532 | + struct task_struct *next) |
| 1533 | +{ |
| 1534 | + struct preempt_notifier *notifier; |
| 1535 | + struct hlist_node *node; |
| 1536 | + |
| 1537 | + hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) |
| 1538 | + notifier->ops->sched_out(notifier, next); |
| 1539 | +} |
| 1540 | + |
| 1541 | +#else /* !CONFIG_PREEMPT_NOTIFIERS */ |
| 1542 | + |
| 1543 | +static void fire_sched_in_preempt_notifiers(struct task_struct *curr) |
| 1544 | +{ |
| 1545 | +} |
| 1546 | + |
| 1547 | +static void |
| 1548 | +fire_sched_out_preempt_notifiers(struct task_struct *curr, |
| 1549 | + struct task_struct *next) |
| 1550 | +{ |
| 1551 | +} |
| 1552 | + |
| 1553 | +#endif /* CONFIG_PREEMPT_NOTIFIERS */ |
| 1554 | + |
| 1555 | +/** |
| 1556 | + * prepare_task_switch - prepare to switch tasks |
| 1557 | + * @rq: the runqueue preparing to switch |
| 1558 | + * @next: the task we are going to switch to. |
| 1559 | + * |
| 1560 | + * This is called with the rq lock held and interrupts off. It must |
| 1561 | + * be paired with a subsequent finish_task_switch after the context |
| 1562 | + * switch. |
| 1563 | + * |
| 1564 | + * prepare_task_switch sets up locking and calls architecture specific |
| 1565 | + * hooks. |
| 1566 | + */ |
| 1567 | +static inline void |
| 1568 | +prepare_task_switch(struct rq *rq, struct task_struct *prev, |
| 1569 | + struct task_struct *next) |
| 1570 | +{ |
| 1571 | + fire_sched_out_preempt_notifiers(prev, next); |
| 1572 | + prepare_lock_switch(rq, next); |
| 1573 | + prepare_arch_switch(next); |
| 1574 | +} |
| 1575 | + |
| 1576 | +/** |
| 1577 | + * finish_task_switch - clean up after a task-switch |
| 1578 | + * @rq: runqueue associated with task-switch |
| 1579 | + * @prev: the thread we just switched away from. |
| 1580 | + * |
| 1581 | + * finish_task_switch must be called after the context switch, paired |
| 1582 | + * with a prepare_task_switch call before the context switch. |
| 1583 | + * finish_task_switch will reconcile locking set up by prepare_task_switch, |
| 1584 | + * and do any other architecture-specific cleanup actions. |
| 1585 | + * |
| 1586 | + * Note that we may have delayed dropping an mm in context_switch(). If |
| 1587 | + * so, we finish that here outside of the runqueue lock. (Doing it |
| 1588 | + * with the lock held can cause deadlocks; see schedule() for |
| 1589 | + * details.) |
| 1590 | + */ |
| 1591 | +static inline void finish_task_switch(struct rq *rq, struct task_struct *prev) |
| 1592 | + __releases(grq.lock) |
| 1593 | +{ |
| 1594 | + struct mm_struct *mm = rq->prev_mm; |
| 1595 | + long prev_state; |
| 1596 | + |
| 1597 | + rq->prev_mm = NULL; |
| 1598 | + |
| 1599 | + /* |
| 1600 | + * A task struct has one reference for the use as "current". |
| 1601 | + * If a task dies, then it sets TASK_DEAD in tsk->state and calls |
| 1602 | + * schedule one last time. The schedule call will never return, and |
| 1603 | + * the scheduled task must drop that reference. |
| 1604 | + * The test for TASK_DEAD must occur while the runqueue locks are |
| 1605 | + * still held, otherwise prev could be scheduled on another cpu, die |
| 1606 | + * there before we look at prev->state, and then the reference would |
| 1607 | + * be dropped twice. |
| 1608 | + * Manfred Spraul <manfred@colorfullife.com> |
| 1609 | + */ |
| 1610 | + prev_state = prev->state; |
| 1611 | + finish_arch_switch(prev); |
| 1612 | + perf_counter_task_sched_in(current, cpu_of(rq)); |
| 1613 | + finish_lock_switch(rq, prev); |
| 1614 | + |
| 1615 | + fire_sched_in_preempt_notifiers(current); |
| 1616 | + if (mm) |
| 1617 | + mmdrop(mm); |
| 1618 | + if (unlikely(prev_state == TASK_DEAD)) { |
| 1619 | + /* |
| 1620 | + * Remove function-return probe instances associated with this |
| 1621 | + * task and put them back on the free list. |
| 1622 | + */ |
| 1623 | + kprobe_flush_task(prev); |
| 1624 | + put_task_struct(prev); |
| 1625 | + } |
| 1626 | +} |
| 1627 | + |
| 1628 | +/** |
| 1629 | + * schedule_tail - first thing a freshly forked thread must call. |
| 1630 | + * @prev: the thread we just switched away from. |
| 1631 | + */ |
| 1632 | +asmlinkage void schedule_tail(struct task_struct *prev) |
| 1633 | + __releases(grq.lock) |
| 1634 | +{ |
| 1635 | + struct rq *rq = this_rq(); |
| 1636 | + |
| 1637 | + finish_task_switch(rq, prev); |
| 1638 | +#ifdef __ARCH_WANT_UNLOCKED_CTXSW |
| 1639 | + /* In this case, finish_task_switch does not reenable preemption */ |
| 1640 | + preempt_enable(); |
| 1641 | +#endif |
| 1642 | + if (current->set_child_tid) |
| 1643 | + put_user(current->pid, current->set_child_tid); |
| 1644 | +} |
| 1645 | + |
| 1646 | +/* |
| 1647 | + * context_switch - switch to the new MM and the new |
| 1648 | + * thread's register state. |
| 1649 | + */ |
| 1650 | +static inline void |
| 1651 | +context_switch(struct rq *rq, struct task_struct *prev, |
| 1652 | + struct task_struct *next) |
| 1653 | +{ |
| 1654 | + struct mm_struct *mm, *oldmm; |
| 1655 | + |
| 1656 | + prepare_task_switch(rq, prev, next); |
| 1657 | + trace_sched_switch(rq, prev, next); |
| 1658 | + mm = next->mm; |
| 1659 | + oldmm = prev->active_mm; |
| 1660 | + /* |
| 1661 | + * For paravirt, this is coupled with an exit in switch_to to |
| 1662 | + * combine the page table reload and the switch backend into |
| 1663 | + * one hypercall. |
| 1664 | + */ |
| 1665 | + arch_start_context_switch(prev); |
| 1666 | + |
| 1667 | + if (unlikely(!mm)) { |
| 1668 | + next->active_mm = oldmm; |
| 1669 | + atomic_inc(&oldmm->mm_count); |
| 1670 | + enter_lazy_tlb(oldmm, next); |
| 1671 | + } else |
| 1672 | + switch_mm(oldmm, mm, next); |
| 1673 | + |
| 1674 | + if (unlikely(!prev->mm)) { |
| 1675 | + prev->active_mm = NULL; |
| 1676 | + rq->prev_mm = oldmm; |
| 1677 | + } |
| 1678 | + /* |
| 1679 | + * Since the runqueue lock will be released by the next |
| 1680 | + * task (which is an invalid locking op but in the case |
| 1681 | + * of the scheduler it's an obvious special-case), so we |
| 1682 | + * do an early lockdep release here: |
| 1683 | + */ |
| 1684 | +#ifndef __ARCH_WANT_UNLOCKED_CTXSW |
| 1685 | + spin_release(&grq.lock.dep_map, 1, _THIS_IP_); |
| 1686 | +#endif |
| 1687 | + |
| 1688 | + /* Here we just switch the register state and the stack. */ |
| 1689 | + switch_to(prev, next, prev); |
| 1690 | + |
| 1691 | + barrier(); |
| 1692 | + /* |
| 1693 | + * this_rq must be evaluated again because prev may have moved |
| 1694 | + * CPUs since it called schedule(), thus the 'rq' on its stack |
| 1695 | + * frame will be invalid. |
| 1696 | + */ |
| 1697 | + finish_task_switch(this_rq(), prev); |
| 1698 | +} |
| 1699 | + |
| 1700 | +/* |
| 1701 | + * nr_running, nr_uninterruptible and nr_context_switches: |
| 1702 | + * |
| 1703 | + * externally visible scheduler statistics: current number of runnable |
| 1704 | + * threads, current number of uninterruptible-sleeping threads, total |
| 1705 | + * number of context switches performed since bootup. All are measured |
| 1706 | + * without grabbing the grq lock but the occasional inaccurate result |
| 1707 | + * doesn't matter so long as it's positive. |
| 1708 | + */ |
| 1709 | +unsigned long nr_running(void) |
| 1710 | +{ |
| 1711 | + long nr = grq.nr_running; |
| 1712 | + |
| 1713 | + if (unlikely(nr < 0)) |
| 1714 | + nr = 0; |
| 1715 | + return (unsigned long)nr; |
| 1716 | +} |
| 1717 | + |
| 1718 | +unsigned long nr_uninterruptible(void) |
| 1719 | +{ |
| 1720 | + unsigned long nu = grq.nr_uninterruptible; |
| 1721 | + |
| 1722 | + if (unlikely(nu < 0)) |
| 1723 | + nu = 0; |
| 1724 | + return nu; |
| 1725 | +} |
| 1726 | + |
| 1727 | +unsigned long long nr_context_switches(void) |
| 1728 | +{ |
| 1729 | + long long ns = grq.nr_switches; |
| 1730 | + |
| 1731 | + /* This is of course impossible */ |
| 1732 | + if (unlikely(ns < 0)) |
| 1733 | + ns = 1; |
| 1734 | + return (long long)ns; |
| 1735 | +} |
| 1736 | + |
| 1737 | +unsigned long nr_iowait(void) |
| 1738 | +{ |
| 1739 | + unsigned long i, sum = 0; |
| 1740 | + |
| 1741 | + for_each_possible_cpu(i) |
| 1742 | + sum += atomic_read(&cpu_rq(i)->nr_iowait); |
| 1743 | + |
| 1744 | + return sum; |
| 1745 | +} |
| 1746 | + |
| 1747 | +unsigned long nr_active(void) |
| 1748 | +{ |
| 1749 | + return nr_running() + nr_uninterruptible(); |
| 1750 | +} |
| 1751 | + |
| 1752 | +/* Variables and functions for calc_load */ |
| 1753 | +static unsigned long calc_load_update; |
| 1754 | +unsigned long avenrun[3]; |
| 1755 | +EXPORT_SYMBOL(avenrun); |
| 1756 | + |
| 1757 | +/** |
| 1758 | + * get_avenrun - get the load average array |
| 1759 | + * @loads: pointer to dest load array |
| 1760 | + * @offset: offset to add |
| 1761 | + * @shift: shift count to shift the result left |
| 1762 | + * |
| 1763 | + * These values are estimates at best, so no need for locking. |
| 1764 | + */ |
| 1765 | +void get_avenrun(unsigned long *loads, unsigned long offset, int shift) |
| 1766 | +{ |
| 1767 | + loads[0] = (avenrun[0] + offset) << shift; |
| 1768 | + loads[1] = (avenrun[1] + offset) << shift; |
| 1769 | + loads[2] = (avenrun[2] + offset) << shift; |
| 1770 | +} |
| 1771 | + |
| 1772 | +static unsigned long |
| 1773 | +calc_load(unsigned long load, unsigned long exp, unsigned long active) |
| 1774 | +{ |
| 1775 | + load *= exp; |
| 1776 | + load += active * (FIXED_1 - exp); |
| 1777 | + return load >> FSHIFT; |
| 1778 | +} |
| 1779 | + |
| 1780 | +/* |
| 1781 | + * calc_load - update the avenrun load estimates every LOAD_FREQ seconds. |
| 1782 | + */ |
| 1783 | +void calc_global_load(void) |
| 1784 | +{ |
| 1785 | + long active; |
| 1786 | + |
| 1787 | + if (time_before(jiffies, calc_load_update)) |
| 1788 | + return; |
| 1789 | + active = nr_active() * FIXED_1; |
| 1790 | + |
| 1791 | + avenrun[0] = calc_load(avenrun[0], EXP_1, active); |
| 1792 | + avenrun[1] = calc_load(avenrun[1], EXP_5, active); |
| 1793 | + avenrun[2] = calc_load(avenrun[2], EXP_15, active); |
| 1794 | + |
| 1795 | + calc_load_update = jiffies + LOAD_FREQ; |
| 1796 | +} |
| 1797 | + |
| 1798 | +DEFINE_PER_CPU(struct kernel_stat, kstat); |
| 1799 | + |
| 1800 | +EXPORT_PER_CPU_SYMBOL(kstat); |
| 1801 | + |
| 1802 | +/* |
| 1803 | + * On each tick, see what percentage of that tick was attributed to each |
| 1804 | + * component and add the percentage to the _pc values. Once a _pc value has |
| 1805 | + * accumulated one tick's worth, account for that. This means the total |
| 1806 | + * percentage of load components will always be 100 per tick. |
| 1807 | + */ |
| 1808 | +static void pc_idle_time(struct rq *rq, unsigned long pc) |
| 1809 | +{ |
| 1810 | + struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
| 1811 | + cputime64_t tmp = cputime_to_cputime64(jiffies_to_cputime(1)); |
| 1812 | + |
| 1813 | + if (atomic_read(&rq->nr_iowait) > 0) { |
| 1814 | + rq->iowait_pc += pc; |
| 1815 | + if (rq->iowait_pc >= 100) { |
| 1816 | + rq->iowait_pc %= 100; |
| 1817 | + cpustat->iowait = cputime64_add(cpustat->iowait, tmp); |
| 1818 | + } |
| 1819 | + } else { |
| 1820 | + rq->idle_pc += pc; |
| 1821 | + if (rq->idle_pc >= 100) { |
| 1822 | + rq->idle_pc %= 100; |
| 1823 | + cpustat->idle = cputime64_add(cpustat->idle, tmp); |
| 1824 | + } |
| 1825 | + } |
| 1826 | +} |
| 1827 | + |
| 1828 | +static void |
| 1829 | +pc_system_time(struct rq *rq, struct task_struct *p, int hardirq_offset, |
| 1830 | + unsigned long pc, unsigned long ns) |
| 1831 | +{ |
| 1832 | + struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
| 1833 | + cputime_t one_jiffy = jiffies_to_cputime(1); |
| 1834 | + cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy); |
| 1835 | + cputime64_t tmp = cputime_to_cputime64(one_jiffy); |
| 1836 | + |
| 1837 | + p->stime_pc += pc; |
| 1838 | + if (p->stime_pc >= 100) { |
| 1839 | + p->stime_pc -= 100; |
| 1840 | + p->stime = cputime_add(p->stime, one_jiffy); |
| 1841 | + p->stimescaled = cputime_add(p->stimescaled, one_jiffy_scaled); |
| 1842 | + account_group_system_time(p, one_jiffy); |
| 1843 | + acct_update_integrals(p); |
| 1844 | + } |
| 1845 | + p->se.sum_exec_runtime += ns; |
| 1846 | + |
| 1847 | + if (hardirq_count() - hardirq_offset) |
| 1848 | + rq->irq_pc += pc; |
| 1849 | + else if (softirq_count()) { |
| 1850 | + rq->softirq_pc += pc; |
| 1851 | + if (rq->softirq_pc >= 100) { |
| 1852 | + rq->softirq_pc %= 100; |
| 1853 | + cpustat->softirq = cputime64_add(cpustat->softirq, tmp); |
| 1854 | + } |
| 1855 | + } else { |
| 1856 | + rq->system_pc += pc; |
| 1857 | + if (rq->system_pc >= 100) { |
| 1858 | + rq->system_pc %= 100; |
| 1859 | + cpustat->system = cputime64_add(cpustat->system, tmp); |
| 1860 | + } |
| 1861 | + } |
| 1862 | +} |
| 1863 | + |
| 1864 | +static void pc_user_time(struct rq *rq, struct task_struct *p, |
| 1865 | + unsigned long pc, unsigned long ns) |
| 1866 | +{ |
| 1867 | + struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
| 1868 | + cputime_t one_jiffy = jiffies_to_cputime(1); |
| 1869 | + cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy); |
| 1870 | + cputime64_t tmp = cputime_to_cputime64(one_jiffy); |
| 1871 | + |
| 1872 | + p->utime_pc += pc; |
| 1873 | + if (p->utime_pc >= 100) { |
| 1874 | + p->utime_pc -= 100; |
| 1875 | + p->utime = cputime_add(p->utime, one_jiffy); |
| 1876 | + p->utimescaled = cputime_add(p->utimescaled, one_jiffy_scaled); |
| 1877 | + account_group_user_time(p, one_jiffy); |
| 1878 | + acct_update_integrals(p); |
| 1879 | + } |
| 1880 | + p->se.sum_exec_runtime += ns; |
| 1881 | + |
| 1882 | + if (TASK_NICE(p) > 0 || idleprio_task(p)) { |
| 1883 | + rq->nice_pc += pc; |
| 1884 | + if (rq->nice_pc >= 100) { |
| 1885 | + rq->nice_pc %= 100; |
| 1886 | + cpustat->nice = cputime64_add(cpustat->nice, tmp); |
| 1887 | + } |
| 1888 | + } else { |
| 1889 | + rq->user_pc += pc; |
| 1890 | + if (rq->user_pc >= 100) { |
| 1891 | + rq->user_pc %= 100; |
| 1892 | + cpustat->user = cputime64_add(cpustat->user, tmp); |
| 1893 | + } |
| 1894 | + } |
| 1895 | +} |
| 1896 | + |
| 1897 | +/* Convert nanoseconds to percentage of one tick. */ |
| 1898 | +#define NS_TO_PC(NS) (NS * 100 / JIFFIES_TO_NS(1)) |
| 1899 | + |
| 1900 | +/* |
| 1901 | + * This is called on clock ticks and on context switches. |
| 1902 | + * Bank in p->se.sum_exec_runtime the ns elapsed since the last tick or switch. |
| 1903 | + * CPU scheduler quota accounting is also performed here in microseconds. |
| 1904 | + * The value returned from sched_clock() occasionally gives bogus values so |
| 1905 | + * some sanity checking is required. Time is supposed to be banked all the |
| 1906 | + * time so default to half a tick to make up for when sched_clock reverts |
| 1907 | + * to just returning jiffies, and for hardware that can't do tsc. |
| 1908 | + */ |
| 1909 | +static void |
| 1910 | +update_cpu_clock(struct rq *rq, struct task_struct *p, int tick) |
| 1911 | +{ |
| 1912 | + long time_diff = rq->clock - p->last_ran; |
| 1913 | + long account_ns = rq->clock - rq->timekeep_clock; |
| 1914 | + struct task_struct *idle = rq->idle; |
| 1915 | + unsigned long account_pc; |
| 1916 | + |
| 1917 | + /* |
| 1918 | + * There should be less than or equal to one jiffy worth, and not |
| 1919 | + * negative/overflow. time_diff is only used for internal scheduler |
| 1920 | + * time_slice accounting. |
| 1921 | + */ |
| 1922 | + if (time_diff <= 0) |
| 1923 | + time_diff = JIFFIES_TO_NS(1) / 2; |
| 1924 | + else if (time_diff > JIFFIES_TO_NS(1)) |
| 1925 | + time_diff = JIFFIES_TO_NS(1); |
| 1926 | + |
| 1927 | + if (unlikely(account_ns < 0)) |
| 1928 | + account_ns = 0; |
| 1929 | + |
| 1930 | + account_pc = NS_TO_PC(account_ns); |
| 1931 | + |
| 1932 | + if (tick) { |
| 1933 | + int user_tick = user_mode(get_irq_regs()); |
| 1934 | + |
| 1935 | + /* Accurate tick timekeeping */ |
| 1936 | + if (user_tick) |
| 1937 | + pc_user_time(rq, p, account_pc, account_ns); |
| 1938 | + else if (p != idle || (irq_count() != HARDIRQ_OFFSET)) |
| 1939 | + pc_system_time(rq, p, HARDIRQ_OFFSET, |
| 1940 | + account_pc, account_ns); |
| 1941 | + else |
| 1942 | + pc_idle_time(rq, account_pc); |
| 1943 | + } else { |
| 1944 | + /* Accurate subtick timekeeping */ |
| 1945 | + if (p == idle) |
| 1946 | + pc_idle_time(rq, account_pc); |
| 1947 | + else |
| 1948 | + pc_user_time(rq, p, account_pc, account_ns); |
| 1949 | + } |
| 1950 | + |
| 1951 | + /* time_slice accounting is done in usecs to avoid overflow on 32bit */ |
| 1952 | + if (rq->rq_policy != SCHED_FIFO && p != idle) |
| 1953 | + rq->rq_time_slice -= time_diff / 1000; |
| 1954 | + p->last_ran = rq->timekeep_clock = rq->clock; |
| 1955 | +} |
| 1956 | + |
| 1957 | +/* |
| 1958 | + * Return any ns on the sched_clock that have not yet been accounted in |
| 1959 | + * @p in case that task is currently running. |
| 1960 | + * |
| 1961 | + * Called with task_grq_lock() held on @rq. |
| 1962 | + */ |
| 1963 | +static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) |
| 1964 | +{ |
| 1965 | + u64 ns = 0; |
| 1966 | + |
| 1967 | + if (p == rq->curr) { |
| 1968 | + update_rq_clock(rq); |
| 1969 | + ns = rq->clock - p->last_ran; |
| 1970 | + if ((s64)ns < 0) |
| 1971 | + ns = 0; |
| 1972 | + } |
| 1973 | + |
| 1974 | + return ns; |
| 1975 | +} |
| 1976 | + |
| 1977 | +unsigned long long task_delta_exec(struct task_struct *p) |
| 1978 | +{ |
| 1979 | + unsigned long flags; |
| 1980 | + struct rq *rq; |
| 1981 | + u64 ns = 0; |
| 1982 | + |
| 1983 | + rq = task_grq_lock(p, &flags); |
| 1984 | + ns = do_task_delta_exec(p, rq); |
| 1985 | + task_grq_unlock(&flags); |
| 1986 | + |
| 1987 | + return ns; |
| 1988 | +} |
| 1989 | + |
| 1990 | +/* |
| 1991 | + * Return accounted runtime for the task. |
| 1992 | + * In case the task is currently running, return the runtime plus current's |
| 1993 | + * pending runtime that have not been accounted yet. |
| 1994 | + */ |
| 1995 | +unsigned long long task_sched_runtime(struct task_struct *p) |
| 1996 | +{ |
| 1997 | + unsigned long flags; |
| 1998 | + struct rq *rq; |
| 1999 | + u64 ns = 0; |
| 2000 | + |
| 2001 | + rq = task_grq_lock(p, &flags); |
| 2002 | + ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); |
| 2003 | + task_grq_unlock(&flags); |
| 2004 | + |
| 2005 | + return ns; |
| 2006 | +} |
| 2007 | + |
| 2008 | +/* |
| 2009 | + * Return sum_exec_runtime for the thread group. |
| 2010 | + * In case the task is currently running, return the sum plus current's |
| 2011 | + * pending runtime that have not been accounted yet. |
| 2012 | + * |
| 2013 | + * Note that the thread group might have other running tasks as well, |
| 2014 | + * so the return value not includes other pending runtime that other |
| 2015 | + * running tasks might have. |
| 2016 | + */ |
| 2017 | +unsigned long long thread_group_sched_runtime(struct task_struct *p) |
| 2018 | +{ |
| 2019 | + struct task_cputime totals; |
| 2020 | + unsigned long flags; |
| 2021 | + struct rq *rq; |
| 2022 | + u64 ns; |
| 2023 | + |
| 2024 | + rq = task_grq_lock(p, &flags); |
| 2025 | + thread_group_cputime(p, &totals); |
| 2026 | + ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq); |
| 2027 | + task_grq_unlock(&flags); |
| 2028 | + |
| 2029 | + return ns; |
| 2030 | +} |
| 2031 | + |
| 2032 | +/* Compatibility crap for removal */ |
| 2033 | +void account_user_time(struct task_struct *p, cputime_t cputime, |
| 2034 | + cputime_t cputime_scaled) |
| 2035 | +{ |
| 2036 | +} |
| 2037 | + |
| 2038 | +void account_idle_time(cputime_t cputime) |
| 2039 | +{ |
| 2040 | +} |
| 2041 | + |
| 2042 | +/* |
| 2043 | + * Account guest cpu time to a process. |
| 2044 | + * @p: the process that the cpu time gets accounted to |
| 2045 | + * @cputime: the cpu time spent in virtual machine since the last update |
| 2046 | + * @cputime_scaled: cputime scaled by cpu frequency |
| 2047 | + */ |
| 2048 | +static void account_guest_time(struct task_struct *p, cputime_t cputime, |
| 2049 | + cputime_t cputime_scaled) |
| 2050 | +{ |
| 2051 | + cputime64_t tmp; |
| 2052 | + struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
| 2053 | + |
| 2054 | + tmp = cputime_to_cputime64(cputime); |
| 2055 | + |
| 2056 | + /* Add guest time to process. */ |
| 2057 | + p->utime = cputime_add(p->utime, cputime); |
| 2058 | + p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); |
| 2059 | + account_group_user_time(p, cputime); |
| 2060 | + p->gtime = cputime_add(p->gtime, cputime); |
| 2061 | + |
| 2062 | + /* Add guest time to cpustat. */ |
| 2063 | + cpustat->user = cputime64_add(cpustat->user, tmp); |
| 2064 | + cpustat->guest = cputime64_add(cpustat->guest, tmp); |
| 2065 | +} |
| 2066 | + |
| 2067 | +/* |
| 2068 | + * Account system cpu time to a process. |
| 2069 | + * @p: the process that the cpu time gets accounted to |
| 2070 | + * @hardirq_offset: the offset to subtract from hardirq_count() |
| 2071 | + * @cputime: the cpu time spent in kernel space since the last update |
| 2072 | + * @cputime_scaled: cputime scaled by cpu frequency |
| 2073 | + * This is for guest only now. |
| 2074 | + */ |
| 2075 | +void account_system_time(struct task_struct *p, int hardirq_offset, |
| 2076 | + cputime_t cputime, cputime_t cputime_scaled) |
| 2077 | +{ |
| 2078 | + |
| 2079 | + if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) |
| 2080 | + account_guest_time(p, cputime, cputime_scaled); |
| 2081 | +} |
| 2082 | + |
| 2083 | +/* |
| 2084 | + * Account for involuntary wait time. |
| 2085 | + * @steal: the cpu time spent in involuntary wait |
| 2086 | + */ |
| 2087 | +void account_steal_time(cputime_t cputime) |
| 2088 | +{ |
| 2089 | + struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
| 2090 | + cputime64_t cputime64 = cputime_to_cputime64(cputime); |
| 2091 | + |
| 2092 | + cpustat->steal = cputime64_add(cpustat->steal, cputime64); |
| 2093 | +} |
| 2094 | + |
| 2095 | +/* |
| 2096 | + * Account for idle time. |
| 2097 | + * @cputime: the cpu time spent in idle wait |
| 2098 | + */ |
| 2099 | +static void account_idle_times(cputime_t cputime) |
| 2100 | +{ |
| 2101 | + struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
| 2102 | + cputime64_t cputime64 = cputime_to_cputime64(cputime); |
| 2103 | + struct rq *rq = this_rq(); |
| 2104 | + |
| 2105 | + if (atomic_read(&rq->nr_iowait) > 0) |
| 2106 | + cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); |
| 2107 | + else |
| 2108 | + cpustat->idle = cputime64_add(cpustat->idle, cputime64); |
| 2109 | +} |
| 2110 | + |
| 2111 | +#ifndef CONFIG_VIRT_CPU_ACCOUNTING |
| 2112 | + |
| 2113 | +void account_process_tick(struct task_struct *p, int user_tick) |
| 2114 | +{ |
| 2115 | +} |
| 2116 | + |
| 2117 | +/* |
| 2118 | + * Account multiple ticks of steal time. |
| 2119 | + * @p: the process from which the cpu time has been stolen |
| 2120 | + * @ticks: number of stolen ticks |
| 2121 | + */ |
| 2122 | +void account_steal_ticks(unsigned long ticks) |
| 2123 | +{ |
| 2124 | + account_steal_time(jiffies_to_cputime(ticks)); |
| 2125 | +} |
| 2126 | + |
| 2127 | +/* |
| 2128 | + * Account multiple ticks of idle time. |
| 2129 | + * @ticks: number of stolen ticks |
| 2130 | + */ |
| 2131 | +void account_idle_ticks(unsigned long ticks) |
| 2132 | +{ |
| 2133 | + account_idle_times(jiffies_to_cputime(ticks)); |
| 2134 | +} |
| 2135 | +#endif |
| 2136 | + |
| 2137 | +/* |
| 2138 | + * Functions to test for when SCHED_ISO tasks have used their allocated |
| 2139 | + * quota as real time scheduling and convert them back to SCHED_NORMAL. |
| 2140 | + * Where possible, the data is tested lockless, to avoid grabbing grq_lock |
| 2141 | + * because the occasional inaccurate result won't matter. However the |
| 2142 | + * data is only ever modified under lock. |
| 2143 | + */ |
| 2144 | +static void set_iso_refractory(void) |
| 2145 | +{ |
| 2146 | + grq_lock(); |
| 2147 | + grq.iso_refractory = 1; |
| 2148 | + grq_unlock(); |
| 2149 | +} |
| 2150 | + |
| 2151 | +static void clear_iso_refractory(void) |
| 2152 | +{ |
| 2153 | + grq_lock(); |
| 2154 | + grq.iso_refractory = 0; |
| 2155 | + grq_unlock(); |
| 2156 | +} |
| 2157 | + |
| 2158 | +/* |
| 2159 | + * Test if SCHED_ISO tasks have run longer than their alloted period as RT |
| 2160 | + * tasks and set the refractory flag if necessary. There is 10% hysteresis |
| 2161 | + * for unsetting the flag. |
| 2162 | + */ |
| 2163 | +static unsigned int test_ret_isorefractory(struct rq *rq) |
| 2164 | +{ |
| 2165 | + if (likely(!grq.iso_refractory)) { |
| 2166 | + if (grq.iso_ticks / ISO_PERIOD > sched_iso_cpu) |
| 2167 | + set_iso_refractory(); |
| 2168 | + } else { |
| 2169 | + if (grq.iso_ticks / ISO_PERIOD < (sched_iso_cpu * 90 / 100)) |
| 2170 | + clear_iso_refractory(); |
| 2171 | + } |
| 2172 | + return grq.iso_refractory; |
| 2173 | +} |
| 2174 | + |
| 2175 | +static void iso_tick(void) |
| 2176 | +{ |
| 2177 | + grq_lock(); |
| 2178 | + grq.iso_ticks += 100; |
| 2179 | + grq_unlock(); |
| 2180 | +} |
| 2181 | + |
| 2182 | +/* No SCHED_ISO task was running so decrease rq->iso_ticks */ |
| 2183 | +static inline void no_iso_tick(void) |
| 2184 | +{ |
| 2185 | + if (grq.iso_ticks) { |
| 2186 | + grq_lock(); |
| 2187 | + grq.iso_ticks = grq.iso_ticks * (ISO_PERIOD - 1) / ISO_PERIOD; |
| 2188 | + grq_unlock(); |
| 2189 | + } |
| 2190 | +} |
| 2191 | + |
| 2192 | +static int rq_running_iso(struct rq *rq) |
| 2193 | +{ |
| 2194 | + return rq->rq_prio == ISO_PRIO; |
| 2195 | +} |
| 2196 | + |
| 2197 | +/* This manages tasks that have run out of timeslice during a scheduler_tick */ |
| 2198 | +static void task_running_tick(struct rq *rq) |
| 2199 | +{ |
| 2200 | + struct task_struct *p; |
| 2201 | + |
| 2202 | + /* |
| 2203 | + * If a SCHED_ISO task is running we increment the iso_ticks. In |
| 2204 | + * order to prevent SCHED_ISO tasks from causing starvation in the |
| 2205 | + * presence of true RT tasks we account those as iso_ticks as well. |
| 2206 | + */ |
| 2207 | + if ((rt_queue(rq) || (iso_queue(rq) && !grq.iso_refractory))) { |
| 2208 | + if (grq.iso_ticks <= (ISO_PERIOD * 100) - 100) |
| 2209 | + iso_tick(); |
| 2210 | + } else |
| 2211 | + no_iso_tick(); |
| 2212 | + |
| 2213 | + if (iso_queue(rq)) { |
| 2214 | + if (unlikely(test_ret_isorefractory(rq))) { |
| 2215 | + if (rq_running_iso(rq)) { |
| 2216 | + /* |
| 2217 | + * SCHED_ISO task is running as RT and limit |
| 2218 | + * has been hit. Force it to reschedule as |
| 2219 | + * SCHED_NORMAL by zeroing its time_slice |
| 2220 | + */ |
| 2221 | + rq->rq_time_slice = 0; |
| 2222 | + } |
| 2223 | + } |
| 2224 | + } |
| 2225 | + |
| 2226 | + /* SCHED_FIFO tasks never run out of timeslice. */ |
| 2227 | + if (rq_idle(rq) || rq->rq_time_slice > 0 || rq->rq_policy == SCHED_FIFO) |
| 2228 | + return; |
| 2229 | + |
| 2230 | + /* p->rt.time_slice <= 0. We only modify task_struct under grq lock */ |
| 2231 | + grq_lock(); |
| 2232 | + p = rq->curr; |
| 2233 | + if (likely(task_running(p))) { |
| 2234 | + requeue_task(p); |
| 2235 | + set_tsk_need_resched(p); |
| 2236 | + } |
| 2237 | + grq_unlock(); |
| 2238 | +} |
| 2239 | + |
| 2240 | +void wake_up_idle_cpu(int cpu); |
| 2241 | + |
| 2242 | +/* |
| 2243 | + * This function gets called by the timer code, with HZ frequency. |
| 2244 | + * We call it with interrupts disabled. The data modified is all |
| 2245 | + * local to struct rq so we don't need to grab grq lock. |
| 2246 | + */ |
| 2247 | +void scheduler_tick(void) |
| 2248 | +{ |
| 2249 | + int cpu = smp_processor_id(); |
| 2250 | + struct rq *rq = cpu_rq(cpu); |
| 2251 | + |
| 2252 | + sched_clock_tick(); |
| 2253 | + update_rq_clock(rq); |
| 2254 | + update_cpu_clock(rq, rq->curr, 1); |
| 2255 | + if (!rq_idle(rq)) |
| 2256 | + task_running_tick(rq); |
| 2257 | + else { |
| 2258 | + no_iso_tick(); |
| 2259 | + if (unlikely(queued_notrunning())) |
| 2260 | + set_tsk_need_resched(rq->idle); |
| 2261 | + } |
| 2262 | +} |
| 2263 | + |
| 2264 | +notrace unsigned long get_parent_ip(unsigned long addr) |
| 2265 | +{ |
| 2266 | + if (in_lock_functions(addr)) { |
| 2267 | + addr = CALLER_ADDR2; |
| 2268 | + if (in_lock_functions(addr)) |
| 2269 | + addr = CALLER_ADDR3; |
| 2270 | + } |
| 2271 | + return addr; |
| 2272 | +} |
| 2273 | + |
| 2274 | +#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ |
| 2275 | + defined(CONFIG_PREEMPT_TRACER)) |
| 2276 | +void __kprobes add_preempt_count(int val) |
| 2277 | +{ |
| 2278 | +#ifdef CONFIG_DEBUG_PREEMPT |
| 2279 | + /* |
| 2280 | + * Underflow? |
| 2281 | + */ |
| 2282 | + if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) |
| 2283 | + return; |
| 2284 | +#endif |
| 2285 | + preempt_count() += val; |
| 2286 | +#ifdef CONFIG_DEBUG_PREEMPT |
| 2287 | + /* |
| 2288 | + * Spinlock count overflowing soon? |
| 2289 | + */ |
| 2290 | + DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= |
| 2291 | + PREEMPT_MASK - 10); |
| 2292 | +#endif |
| 2293 | + if (preempt_count() == val) |
| 2294 | + trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); |
| 2295 | +} |
| 2296 | +EXPORT_SYMBOL(add_preempt_count); |
| 2297 | + |
| 2298 | +void __kprobes sub_preempt_count(int val) |
| 2299 | +{ |
| 2300 | +#ifdef CONFIG_DEBUG_PREEMPT |
| 2301 | + /* |
| 2302 | + * Underflow? |
| 2303 | + */ |
| 2304 | + if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) |
| 2305 | + return; |
| 2306 | + /* |
| 2307 | + * Is the spinlock portion underflowing? |
| 2308 | + */ |
| 2309 | + if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && |
| 2310 | + !(preempt_count() & PREEMPT_MASK))) |
| 2311 | + return; |
| 2312 | +#endif |
| 2313 | + |
| 2314 | + if (preempt_count() == val) |
| 2315 | + trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); |
| 2316 | + preempt_count() -= val; |
| 2317 | +} |
| 2318 | +EXPORT_SYMBOL(sub_preempt_count); |
| 2319 | +#endif |
| 2320 | + |
| 2321 | +/* |
| 2322 | + * Deadline is "now" in jiffies + (offset by priority). Setting the deadline |
| 2323 | + * is the key to everything. It distributes cpu fairly amongst tasks of the |
| 2324 | + * same nice value, it proportions cpu according to nice level, it means the |
| 2325 | + * task that last woke up the longest ago has the earliest deadline, thus |
| 2326 | + * ensuring that interactive tasks get low latency on wake up. |
| 2327 | + */ |
| 2328 | +static inline int prio_deadline_diff(struct task_struct *p) |
| 2329 | +{ |
| 2330 | + return (pratio(p) * rr_interval * HZ / 1000 / 100) ? : 1; |
| 2331 | +} |
| 2332 | + |
| 2333 | +static inline int longest_deadline(void) |
| 2334 | +{ |
| 2335 | + return (prio_ratios[39] * rr_interval * HZ / 1000 / 100); |
| 2336 | +} |
| 2337 | + |
| 2338 | +/* |
| 2339 | + * SCHED_IDLE tasks still have a deadline set, but offset by to nice +19. |
| 2340 | + * This allows nice levels to work between IDLEPRIO tasks and gives a |
| 2341 | + * deadline longer than nice +19 for when they're scheduled as SCHED_NORMAL |
| 2342 | + * tasks. |
| 2343 | + */ |
| 2344 | +static inline void time_slice_expired(struct task_struct *p) |
| 2345 | +{ |
| 2346 | + reset_first_time_slice(p); |
| 2347 | + p->rt.time_slice = timeslice(); |
| 2348 | + p->deadline = jiffies + prio_deadline_diff(p); |
| 2349 | + if (idleprio_task(p)) |
| 2350 | + p->deadline += longest_deadline(); |
| 2351 | +} |
| 2352 | + |
| 2353 | +static inline void check_deadline(struct task_struct *p) |
| 2354 | +{ |
| 2355 | + if (p->rt.time_slice <= 0) |
| 2356 | + time_slice_expired(p); |
| 2357 | +} |
| 2358 | + |
| 2359 | +/* |
| 2360 | + * O(n) lookup of all tasks in the global runqueue. The real brainfuck |
| 2361 | + * of lock contention and O(n). It's not really O(n) as only the queued, |
| 2362 | + * but not running tasks are scanned, and is O(n) queued in the worst case |
| 2363 | + * scenario only because the right task can be found before scanning all of |
| 2364 | + * them. |
| 2365 | + * Tasks are selected in this order: |
| 2366 | + * Real time tasks are selected purely by their static priority and in the |
| 2367 | + * order they were queued, so the lowest value idx, and the first queued task |
| 2368 | + * of that priority value is chosen. |
| 2369 | + * If no real time tasks are found, the SCHED_ISO priority is checked, and |
| 2370 | + * all SCHED_ISO tasks have the same priority value, so they're selected by |
| 2371 | + * the earliest deadline value. |
| 2372 | + * If no SCHED_ISO tasks are found, SCHED_NORMAL tasks are selected by the |
| 2373 | + * earliest deadline. |
| 2374 | + * Finally if no SCHED_NORMAL tasks are found, SCHED_IDLEPRIO tasks are |
| 2375 | + * selected by the earliest deadline. |
| 2376 | + */ |
| 2377 | +static inline struct |
| 2378 | +task_struct *earliest_deadline_task(struct rq *rq, struct task_struct *idle) |
| 2379 | +{ |
| 2380 | + unsigned long dl, earliest_deadline = 0; /* Initialise to silence compiler */ |
| 2381 | + struct task_struct *p, *edt; |
| 2382 | + unsigned int cpu = rq->cpu; |
| 2383 | + struct list_head *queue; |
| 2384 | + int idx = 0; |
| 2385 | + |
| 2386 | + edt = idle; |
| 2387 | +retry: |
| 2388 | + idx = find_next_bit(grq.prio_bitmap, PRIO_LIMIT, idx); |
| 2389 | + if (idx >= PRIO_LIMIT) |
| 2390 | + goto out; |
| 2391 | + queue = &grq.queue[idx]; |
| 2392 | + list_for_each_entry(p, queue, rt.run_list) { |
| 2393 | + /* Make sure cpu affinity is ok */ |
| 2394 | + if (!cpu_isset(cpu, p->cpus_allowed)) |
| 2395 | + continue; |
| 2396 | + if (idx < MAX_RT_PRIO) { |
| 2397 | + /* We found an rt task */ |
| 2398 | + edt = p; |
| 2399 | + goto out_take; |
| 2400 | + } |
| 2401 | + |
| 2402 | + /* |
| 2403 | + * No rt task, select the earliest deadline task now. |
| 2404 | + * On the 1st run the 2nd condition is never used, so |
| 2405 | + * there is no need to initialise earliest_deadline |
| 2406 | + * before. Normalise all old deadlines to now. |
| 2407 | + */ |
| 2408 | + if (time_before(p->deadline, jiffies)) |
| 2409 | + dl = jiffies; |
| 2410 | + else |
| 2411 | + dl = p->deadline; |
| 2412 | + |
| 2413 | + if (edt == idle || |
| 2414 | + time_before(dl, earliest_deadline)) { |
| 2415 | + earliest_deadline = dl; |
| 2416 | + edt = p; |
| 2417 | + } |
| 2418 | + } |
| 2419 | + if (edt == idle) { |
| 2420 | + if (++idx < PRIO_LIMIT) |
| 2421 | + goto retry; |
| 2422 | + goto out; |
| 2423 | + } |
| 2424 | +out_take: |
| 2425 | + take_task(rq, edt); |
| 2426 | +out: |
| 2427 | + return edt; |
| 2428 | +} |
| 2429 | + |
| 2430 | +#ifdef CONFIG_SMP |
| 2431 | +static inline void set_cpuidle_map(unsigned long cpu) |
| 2432 | +{ |
| 2433 | + cpu_set(cpu, grq.cpu_idle_map); |
| 2434 | +} |
| 2435 | + |
| 2436 | +static inline void clear_cpuidle_map(unsigned long cpu) |
| 2437 | +{ |
| 2438 | + cpu_clear(cpu, grq.cpu_idle_map); |
| 2439 | +} |
| 2440 | + |
| 2441 | +#else /* CONFIG_SMP */ |
| 2442 | +static inline void set_cpuidle_map(unsigned long cpu) |
| 2443 | +{ |
| 2444 | +} |
| 2445 | + |
| 2446 | +static inline void clear_cpuidle_map(unsigned long cpu) |
| 2447 | +{ |
| 2448 | +} |
| 2449 | +#endif /* !CONFIG_SMP */ |
| 2450 | + |
| 2451 | +/* |
| 2452 | + * Print scheduling while atomic bug: |
| 2453 | + */ |
| 2454 | +static noinline void __schedule_bug(struct task_struct *prev) |
| 2455 | +{ |
| 2456 | + struct pt_regs *regs = get_irq_regs(); |
| 2457 | + |
| 2458 | + printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", |
| 2459 | + prev->comm, prev->pid, preempt_count()); |
| 2460 | + |
| 2461 | + debug_show_held_locks(prev); |
| 2462 | + print_modules(); |
| 2463 | + if (irqs_disabled()) |
| 2464 | + print_irqtrace_events(prev); |
| 2465 | + |
| 2466 | + if (regs) |
| 2467 | + show_regs(regs); |
| 2468 | + else |
| 2469 | + dump_stack(); |
| 2470 | +} |
| 2471 | + |
| 2472 | +/* |
| 2473 | + * Various schedule()-time debugging checks and statistics: |
| 2474 | + */ |
| 2475 | +static inline void schedule_debug(struct task_struct *prev) |
| 2476 | +{ |
| 2477 | + /* |
| 2478 | + * Test if we are atomic. Since do_exit() needs to call into |
| 2479 | + * schedule() atomically, we ignore that path for now. |
| 2480 | + * Otherwise, whine if we are scheduling when we should not be. |
| 2481 | + */ |
| 2482 | + if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) |
| 2483 | + __schedule_bug(prev); |
| 2484 | + |
| 2485 | + profile_hit(SCHED_PROFILING, __builtin_return_address(0)); |
| 2486 | + |
| 2487 | + schedstat_inc(this_rq(), sched_count); |
| 2488 | +#ifdef CONFIG_SCHEDSTATS |
| 2489 | + if (unlikely(prev->lock_depth >= 0)) { |
| 2490 | + schedstat_inc(this_rq(), bkl_count); |
| 2491 | + schedstat_inc(prev, sched_info.bkl_count); |
| 2492 | + } |
| 2493 | +#endif |
| 2494 | +} |
| 2495 | + |
| 2496 | +/* |
| 2497 | + * schedule() is the main scheduler function. |
| 2498 | + */ |
| 2499 | +asmlinkage void __sched __schedule(void) |
| 2500 | +{ |
| 2501 | + struct task_struct *prev, *next, *idle; |
| 2502 | + int deactivate = 0, cpu; |
| 2503 | + long *switch_count; |
| 2504 | + struct rq *rq; |
| 2505 | + u64 now; |
| 2506 | + |
| 2507 | + cpu = smp_processor_id(); |
| 2508 | + rq = this_rq(); |
| 2509 | + rcu_qsctr_inc(cpu); |
| 2510 | + prev = rq->curr; |
| 2511 | + switch_count = &prev->nivcsw; |
| 2512 | + |
| 2513 | + release_kernel_lock(prev); |
| 2514 | +need_resched_nonpreemptible: |
| 2515 | + |
| 2516 | + schedule_debug(prev); |
| 2517 | + idle = rq->idle; |
| 2518 | + /* |
| 2519 | + * The idle thread is not allowed to schedule! |
| 2520 | + * Remove this check after it has been exercised a bit. |
| 2521 | + */ |
| 2522 | + if (unlikely(prev == idle) && prev->state != TASK_RUNNING) { |
| 2523 | + printk(KERN_ERR "bad: scheduling from the idle thread!\n"); |
| 2524 | + dump_stack(); |
| 2525 | + } |
| 2526 | + |
| 2527 | + grq_lock_irq(); |
| 2528 | + update_rq_clock(rq); |
| 2529 | + now = rq->clock; |
| 2530 | + update_cpu_clock(rq, prev, 0); |
| 2531 | + |
| 2532 | + clear_tsk_need_resched(prev); |
| 2533 | + |
| 2534 | + if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
| 2535 | + if (unlikely(signal_pending_state(prev->state, prev))) |
| 2536 | + prev->state = TASK_RUNNING; |
| 2537 | + else |
| 2538 | + deactivate = 1; |
| 2539 | + switch_count = &prev->nvcsw; |
| 2540 | + } |
| 2541 | + |
| 2542 | + if (prev != idle) { |
| 2543 | + /* Update all the information stored on struct rq */ |
| 2544 | + prev->rt.time_slice = rq->rq_time_slice; |
| 2545 | + prev->deadline = rq->rq_deadline; |
| 2546 | + check_deadline(prev); |
| 2547 | + return_task(prev, deactivate); |
| 2548 | + } |
| 2549 | + |
| 2550 | + if (likely(queued_notrunning())) { |
| 2551 | + next = earliest_deadline_task(rq, idle); |
| 2552 | + } else { |
| 2553 | + next = idle; |
| 2554 | + schedstat_inc(rq, sched_goidle); |
| 2555 | + } |
| 2556 | + |
| 2557 | + if (next == rq->idle) |
| 2558 | + set_cpuidle_map(cpu); |
| 2559 | + else |
| 2560 | + clear_cpuidle_map(cpu); |
| 2561 | + |
| 2562 | + prefetch(next); |
| 2563 | + prefetch_stack(next); |
| 2564 | + |
| 2565 | + prev->timestamp = prev->last_ran = now; |
| 2566 | + |
| 2567 | + if (likely(prev != next)) { |
| 2568 | + rq->rq_time_slice = next->rt.time_slice; |
| 2569 | + rq->rq_deadline = next->deadline; |
| 2570 | + rq->rq_prio = next->prio; |
| 2571 | + |
| 2572 | + sched_info_switch(prev, next); |
| 2573 | + grq.nr_switches++; |
| 2574 | + next->oncpu = 1; |
| 2575 | + prev->oncpu = 0; |
| 2576 | + rq->curr = next; |
| 2577 | + ++*switch_count; |
| 2578 | + |
| 2579 | + context_switch(rq, prev, next); /* unlocks the rq */ |
| 2580 | + /* |
| 2581 | + * the context switch might have flipped the stack from under |
| 2582 | + * us, hence refresh the local variables. |
| 2583 | + */ |
| 2584 | + cpu = smp_processor_id(); |
| 2585 | + rq = cpu_rq(cpu); |
| 2586 | + } else |
| 2587 | + grq_unlock_irq(); |
| 2588 | + |
| 2589 | + if (unlikely(reacquire_kernel_lock(current) < 0)) |
| 2590 | + goto need_resched_nonpreemptible; |
| 2591 | +} |
| 2592 | + |
| 2593 | +asmlinkage void __sched schedule(void) |
| 2594 | +{ |
| 2595 | +need_resched: |
| 2596 | + preempt_disable(); |
| 2597 | + __schedule(); |
| 2598 | + preempt_enable_no_resched(); |
| 2599 | + if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) |
| 2600 | + goto need_resched; |
| 2601 | +} |
| 2602 | +EXPORT_SYMBOL(schedule); |
| 2603 | + |
| 2604 | +#ifdef CONFIG_SMP |
| 2605 | +int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner) |
| 2606 | +{ |
| 2607 | + return 0; |
| 2608 | +} |
| 2609 | +#endif |
| 2610 | + |
| 2611 | +#ifdef CONFIG_PREEMPT |
| 2612 | +/* |
| 2613 | + * this is the entry point to schedule() from in-kernel preemption |
| 2614 | + * off of preempt_enable. Kernel preemptions off return from interrupt |
| 2615 | + * occur there and call schedule directly. |
| 2616 | + */ |
| 2617 | +asmlinkage void __sched preempt_schedule(void) |
| 2618 | +{ |
| 2619 | + struct thread_info *ti = current_thread_info(); |
| 2620 | + |
| 2621 | + /* |
| 2622 | + * If there is a non-zero preempt_count or interrupts are disabled, |
| 2623 | + * we do not want to preempt the current task. Just return.. |
| 2624 | + */ |
| 2625 | + if (likely(ti->preempt_count || irqs_disabled())) |
| 2626 | + return; |
| 2627 | + |
| 2628 | + do { |
| 2629 | + add_preempt_count(PREEMPT_ACTIVE); |
| 2630 | + schedule(); |
| 2631 | + sub_preempt_count(PREEMPT_ACTIVE); |
| 2632 | + |
| 2633 | + /* |
| 2634 | + * Check again in case we missed a preemption opportunity |
| 2635 | + * between schedule and now. |
| 2636 | + */ |
| 2637 | + barrier(); |
| 2638 | + } while (need_resched()); |
| 2639 | +} |
| 2640 | +EXPORT_SYMBOL(preempt_schedule); |
| 2641 | + |
| 2642 | +/* |
| 2643 | + * this is the entry point to schedule() from kernel preemption |
| 2644 | + * off of irq context. |
| 2645 | + * Note, that this is called and return with irqs disabled. This will |
| 2646 | + * protect us against recursive calling from irq. |
| 2647 | + */ |
| 2648 | +asmlinkage void __sched preempt_schedule_irq(void) |
| 2649 | +{ |
| 2650 | + struct thread_info *ti = current_thread_info(); |
| 2651 | + |
| 2652 | + /* Catch callers which need to be fixed */ |
| 2653 | + BUG_ON(ti->preempt_count || !irqs_disabled()); |
| 2654 | + |
| 2655 | + do { |
| 2656 | + add_preempt_count(PREEMPT_ACTIVE); |
| 2657 | + local_irq_enable(); |
| 2658 | + schedule(); |
| 2659 | + local_irq_disable(); |
| 2660 | + sub_preempt_count(PREEMPT_ACTIVE); |
| 2661 | + |
| 2662 | + /* |
| 2663 | + * Check again in case we missed a preemption opportunity |
| 2664 | + * between schedule and now. |
| 2665 | + */ |
| 2666 | + barrier(); |
| 2667 | + } while (need_resched()); |
| 2668 | +} |
| 2669 | + |
| 2670 | +#endif /* CONFIG_PREEMPT */ |
| 2671 | + |
| 2672 | +int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, |
| 2673 | + void *key) |
| 2674 | +{ |
| 2675 | + return try_to_wake_up(curr->private, mode, sync); |
| 2676 | +} |
| 2677 | +EXPORT_SYMBOL(default_wake_function); |
| 2678 | + |
| 2679 | +/* |
| 2680 | + * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just |
| 2681 | + * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve |
| 2682 | + * number) then we wake all the non-exclusive tasks and one exclusive task. |
| 2683 | + * |
| 2684 | + * There are circumstances in which we can try to wake a task which has already |
| 2685 | + * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns |
| 2686 | + * zero in this (rare) case, and we handle it by continuing to scan the queue. |
| 2687 | + */ |
| 2688 | +void __wake_up_common(wait_queue_head_t *q, unsigned int mode, |
| 2689 | + int nr_exclusive, int sync, void *key) |
| 2690 | +{ |
| 2691 | + struct list_head *tmp, *next; |
| 2692 | + |
| 2693 | + list_for_each_safe(tmp, next, &q->task_list) { |
| 2694 | + wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list); |
| 2695 | + unsigned flags = curr->flags; |
| 2696 | + |
| 2697 | + if (curr->func(curr, mode, sync, key) && |
| 2698 | + (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
| 2699 | + break; |
| 2700 | + } |
| 2701 | +} |
| 2702 | + |
| 2703 | +/** |
| 2704 | + * __wake_up - wake up threads blocked on a waitqueue. |
| 2705 | + * @q: the waitqueue |
| 2706 | + * @mode: which threads |
| 2707 | + * @nr_exclusive: how many wake-one or wake-many threads to wake up |
| 2708 | + * @key: is directly passed to the wakeup function |
| 2709 | + * |
| 2710 | + * It may be assumed that this function implies a write memory barrier before |
| 2711 | + * changing the task state if and only if any tasks are woken up. |
| 2712 | + */ |
| 2713 | +void __wake_up(wait_queue_head_t *q, unsigned int mode, |
| 2714 | + int nr_exclusive, void *key) |
| 2715 | +{ |
| 2716 | + unsigned long flags; |
| 2717 | + |
| 2718 | + spin_lock_irqsave(&q->lock, flags); |
| 2719 | + __wake_up_common(q, mode, nr_exclusive, 0, key); |
| 2720 | + spin_unlock_irqrestore(&q->lock, flags); |
| 2721 | +} |
| 2722 | +EXPORT_SYMBOL(__wake_up); |
| 2723 | + |
| 2724 | +/* |
| 2725 | + * Same as __wake_up but called with the spinlock in wait_queue_head_t held. |
| 2726 | + */ |
| 2727 | +void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) |
| 2728 | +{ |
| 2729 | + __wake_up_common(q, mode, 1, 0, NULL); |
| 2730 | +} |
| 2731 | + |
| 2732 | +void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) |
| 2733 | +{ |
| 2734 | + __wake_up_common(q, mode, 1, 0, key); |
| 2735 | +} |
| 2736 | + |
| 2737 | +/** |
| 2738 | + * __wake_up_sync_key - wake up threads blocked on a waitqueue. |
| 2739 | + * @q: the waitqueue |
| 2740 | + * @mode: which threads |
| 2741 | + * @nr_exclusive: how many wake-one or wake-many threads to wake up |
| 2742 | + * @key: opaque value to be passed to wakeup targets |
| 2743 | + * |
| 2744 | + * The sync wakeup differs that the waker knows that it will schedule |
| 2745 | + * away soon, so while the target thread will be woken up, it will not |
| 2746 | + * be migrated to another CPU - ie. the two threads are 'synchronized' |
| 2747 | + * with each other. This can prevent needless bouncing between CPUs. |
| 2748 | + * |
| 2749 | + * On UP it can prevent extra preemption. |
| 2750 | + * |
| 2751 | + * It may be assumed that this function implies a write memory barrier before |
| 2752 | + * changing the task state if and only if any tasks are woken up. |
| 2753 | + */ |
| 2754 | +void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, |
| 2755 | + int nr_exclusive, void *key) |
| 2756 | +{ |
| 2757 | + unsigned long flags; |
| 2758 | + int sync = 1; |
| 2759 | + |
| 2760 | + if (unlikely(!q)) |
| 2761 | + return; |
| 2762 | + |
| 2763 | + if (unlikely(!nr_exclusive)) |
| 2764 | + sync = 0; |
| 2765 | + |
| 2766 | + spin_lock_irqsave(&q->lock, flags); |
| 2767 | + __wake_up_common(q, mode, nr_exclusive, sync, key); |
| 2768 | + spin_unlock_irqrestore(&q->lock, flags); |
| 2769 | +} |
| 2770 | +EXPORT_SYMBOL_GPL(__wake_up_sync_key); |
| 2771 | + |
| 2772 | +/** |
| 2773 | + * __wake_up_sync - wake up threads blocked on a waitqueue. |
| 2774 | + * @q: the waitqueue |
| 2775 | + * @mode: which threads |
| 2776 | + * @nr_exclusive: how many wake-one or wake-many threads to wake up |
| 2777 | + * |
| 2778 | + * The sync wakeup differs that the waker knows that it will schedule |
| 2779 | + * away soon, so while the target thread will be woken up, it will not |
| 2780 | + * be migrated to another CPU - ie. the two threads are 'synchronized' |
| 2781 | + * with each other. This can prevent needless bouncing between CPUs. |
| 2782 | + * |
| 2783 | + * On UP it can prevent extra preemption. |
| 2784 | + */ |
| 2785 | +void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) |
| 2786 | +{ |
| 2787 | + unsigned long flags; |
| 2788 | + int sync = 1; |
| 2789 | + |
| 2790 | + if (unlikely(!q)) |
| 2791 | + return; |
| 2792 | + |
| 2793 | + if (unlikely(!nr_exclusive)) |
| 2794 | + sync = 0; |
| 2795 | + |
| 2796 | + spin_lock_irqsave(&q->lock, flags); |
| 2797 | + __wake_up_common(q, mode, nr_exclusive, sync, NULL); |
| 2798 | + spin_unlock_irqrestore(&q->lock, flags); |
| 2799 | +} |
| 2800 | +EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ |
| 2801 | + |
| 2802 | +/** |
| 2803 | + * complete: - signals a single thread waiting on this completion |
| 2804 | + * @x: holds the state of this particular completion |
| 2805 | + * |
| 2806 | + * This will wake up a single thread waiting on this completion. Threads will be |
| 2807 | + * awakened in the same order in which they were queued. |
| 2808 | + * |
| 2809 | + * See also complete_all(), wait_for_completion() and related routines. |
| 2810 | + * |
| 2811 | + * It may be assumed that this function implies a write memory barrier before |
| 2812 | + * changing the task state if and only if any tasks are woken up. |
| 2813 | + */ |
| 2814 | +void complete(struct completion *x) |
| 2815 | +{ |
| 2816 | + unsigned long flags; |
| 2817 | + |
| 2818 | + spin_lock_irqsave(&x->wait.lock, flags); |
| 2819 | + x->done++; |
| 2820 | + __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); |
| 2821 | + spin_unlock_irqrestore(&x->wait.lock, flags); |
| 2822 | +} |
| 2823 | +EXPORT_SYMBOL(complete); |
| 2824 | + |
| 2825 | +/** |
| 2826 | + * complete_all: - signals all threads waiting on this completion |
| 2827 | + * @x: holds the state of this particular completion |
| 2828 | + * |
| 2829 | + * This will wake up all threads waiting on this particular completion event. |
| 2830 | + * |
| 2831 | + * It may be assumed that this function implies a write memory barrier before |
| 2832 | + * changing the task state if and only if any tasks are woken up. |
| 2833 | + */ |
| 2834 | +void complete_all(struct completion *x) |
| 2835 | +{ |
| 2836 | + unsigned long flags; |
| 2837 | + |
| 2838 | + spin_lock_irqsave(&x->wait.lock, flags); |
| 2839 | + x->done += UINT_MAX/2; |
| 2840 | + __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); |
| 2841 | + spin_unlock_irqrestore(&x->wait.lock, flags); |
| 2842 | +} |
| 2843 | +EXPORT_SYMBOL(complete_all); |
| 2844 | + |
| 2845 | +static inline long __sched |
| 2846 | +do_wait_for_common(struct completion *x, long timeout, int state) |
| 2847 | +{ |
| 2848 | + if (!x->done) { |
| 2849 | + DECLARE_WAITQUEUE(wait, current); |
| 2850 | + |
| 2851 | + wait.flags |= WQ_FLAG_EXCLUSIVE; |
| 2852 | + __add_wait_queue_tail(&x->wait, &wait); |
| 2853 | + do { |
| 2854 | + if (signal_pending_state(state, current)) { |
| 2855 | + timeout = -ERESTARTSYS; |
| 2856 | + break; |
| 2857 | + } |
| 2858 | + __set_current_state(state); |
| 2859 | + spin_unlock_irq(&x->wait.lock); |
| 2860 | + timeout = schedule_timeout(timeout); |
| 2861 | + spin_lock_irq(&x->wait.lock); |
| 2862 | + } while (!x->done && timeout); |
| 2863 | + __remove_wait_queue(&x->wait, &wait); |
| 2864 | + if (!x->done) |
| 2865 | + return timeout; |
| 2866 | + } |
| 2867 | + x->done--; |
| 2868 | + return timeout ?: 1; |
| 2869 | +} |
| 2870 | + |
| 2871 | +static long __sched |
| 2872 | +wait_for_common(struct completion *x, long timeout, int state) |
| 2873 | +{ |
| 2874 | + might_sleep(); |
| 2875 | + |
| 2876 | + spin_lock_irq(&x->wait.lock); |
| 2877 | + timeout = do_wait_for_common(x, timeout, state); |
| 2878 | + spin_unlock_irq(&x->wait.lock); |
| 2879 | + return timeout; |
| 2880 | +} |
| 2881 | + |
| 2882 | +/** |
| 2883 | + * wait_for_completion: - waits for completion of a task |
| 2884 | + * @x: holds the state of this particular completion |
| 2885 | + * |
| 2886 | + * This waits to be signaled for completion of a specific task. It is NOT |
| 2887 | + * interruptible and there is no timeout. |
| 2888 | + * |
| 2889 | + * See also similar routines (i.e. wait_for_completion_timeout()) with timeout |
| 2890 | + * and interrupt capability. Also see complete(). |
| 2891 | + */ |
| 2892 | +void __sched wait_for_completion(struct completion *x) |
| 2893 | +{ |
| 2894 | + wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); |
| 2895 | +} |
| 2896 | +EXPORT_SYMBOL(wait_for_completion); |
| 2897 | + |
| 2898 | +/** |
| 2899 | + * wait_for_completion_timeout: - waits for completion of a task (w/timeout) |
| 2900 | + * @x: holds the state of this particular completion |
| 2901 | + * @timeout: timeout value in jiffies |
| 2902 | + * |
| 2903 | + * This waits for either a completion of a specific task to be signaled or for a |
| 2904 | + * specified timeout to expire. The timeout is in jiffies. It is not |
| 2905 | + * interruptible. |
| 2906 | + */ |
| 2907 | +unsigned long __sched |
| 2908 | +wait_for_completion_timeout(struct completion *x, unsigned long timeout) |
| 2909 | +{ |
| 2910 | + return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); |
| 2911 | +} |
| 2912 | +EXPORT_SYMBOL(wait_for_completion_timeout); |
| 2913 | + |
| 2914 | +/** |
| 2915 | + * wait_for_completion_interruptible: - waits for completion of a task (w/intr) |
| 2916 | + * @x: holds the state of this particular completion |
| 2917 | + * |
| 2918 | + * This waits for completion of a specific task to be signaled. It is |
| 2919 | + * interruptible. |
| 2920 | + */ |
| 2921 | +int __sched wait_for_completion_interruptible(struct completion *x) |
| 2922 | +{ |
| 2923 | + long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); |
| 2924 | + if (t == -ERESTARTSYS) |
| 2925 | + return t; |
| 2926 | + return 0; |
| 2927 | +} |
| 2928 | +EXPORT_SYMBOL(wait_for_completion_interruptible); |
| 2929 | + |
| 2930 | +/** |
| 2931 | + * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) |
| 2932 | + * @x: holds the state of this particular completion |
| 2933 | + * @timeout: timeout value in jiffies |
| 2934 | + * |
| 2935 | + * This waits for either a completion of a specific task to be signaled or for a |
| 2936 | + * specified timeout to expire. It is interruptible. The timeout is in jiffies. |
| 2937 | + */ |
| 2938 | +unsigned long __sched |
| 2939 | +wait_for_completion_interruptible_timeout(struct completion *x, |
| 2940 | + unsigned long timeout) |
| 2941 | +{ |
| 2942 | + return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); |
| 2943 | +} |
| 2944 | +EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); |
| 2945 | + |
| 2946 | +/** |
| 2947 | + * wait_for_completion_killable: - waits for completion of a task (killable) |
| 2948 | + * @x: holds the state of this particular completion |
| 2949 | + * |
| 2950 | + * This waits to be signaled for completion of a specific task. It can be |
| 2951 | + * interrupted by a kill signal. |
| 2952 | + */ |
| 2953 | +int __sched wait_for_completion_killable(struct completion *x) |
| 2954 | +{ |
| 2955 | + long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); |
| 2956 | + if (t == -ERESTARTSYS) |
| 2957 | + return t; |
| 2958 | + return 0; |
| 2959 | +} |
| 2960 | +EXPORT_SYMBOL(wait_for_completion_killable); |
| 2961 | + |
| 2962 | +/** |
| 2963 | + * try_wait_for_completion - try to decrement a completion without blocking |
| 2964 | + * @x: completion structure |
| 2965 | + * |
| 2966 | + * Returns: 0 if a decrement cannot be done without blocking |
| 2967 | + * 1 if a decrement succeeded. |
| 2968 | + * |
| 2969 | + * If a completion is being used as a counting completion, |
| 2970 | + * attempt to decrement the counter without blocking. This |
| 2971 | + * enables us to avoid waiting if the resource the completion |
| 2972 | + * is protecting is not available. |
| 2973 | + */ |
| 2974 | +bool try_wait_for_completion(struct completion *x) |
| 2975 | +{ |
| 2976 | + int ret = 1; |
| 2977 | + |
| 2978 | + spin_lock_irq(&x->wait.lock); |
| 2979 | + if (!x->done) |
| 2980 | + ret = 0; |
| 2981 | + else |
| 2982 | + x->done--; |
| 2983 | + spin_unlock_irq(&x->wait.lock); |
| 2984 | + return ret; |
| 2985 | +} |
| 2986 | +EXPORT_SYMBOL(try_wait_for_completion); |
| 2987 | + |
| 2988 | +/** |
| 2989 | + * completion_done - Test to see if a completion has any waiters |
| 2990 | + * @x: completion structure |
| 2991 | + * |
| 2992 | + * Returns: 0 if there are waiters (wait_for_completion() in progress) |
| 2993 | + * 1 if there are no waiters. |
| 2994 | + * |
| 2995 | + */ |
| 2996 | +bool completion_done(struct completion *x) |
| 2997 | +{ |
| 2998 | + int ret = 1; |
| 2999 | + |
| 3000 | + spin_lock_irq(&x->wait.lock); |
| 3001 | + if (!x->done) |
| 3002 | + ret = 0; |
| 3003 | + spin_unlock_irq(&x->wait.lock); |
| 3004 | + return ret; |
| 3005 | +} |
| 3006 | +EXPORT_SYMBOL(completion_done); |
| 3007 | + |
| 3008 | +static long __sched |
| 3009 | +sleep_on_common(wait_queue_head_t *q, int state, long timeout) |
| 3010 | +{ |
| 3011 | + unsigned long flags; |
| 3012 | + wait_queue_t wait; |
| 3013 | + |
| 3014 | + init_waitqueue_entry(&wait, current); |
| 3015 | + |
| 3016 | + __set_current_state(state); |
| 3017 | + |
| 3018 | + spin_lock_irqsave(&q->lock, flags); |
| 3019 | + __add_wait_queue(q, &wait); |
| 3020 | + spin_unlock(&q->lock); |
| 3021 | + timeout = schedule_timeout(timeout); |
| 3022 | + spin_lock_irq(&q->lock); |
| 3023 | + __remove_wait_queue(q, &wait); |
| 3024 | + spin_unlock_irqrestore(&q->lock, flags); |
| 3025 | + |
| 3026 | + return timeout; |
| 3027 | +} |
| 3028 | + |
| 3029 | +void __sched interruptible_sleep_on(wait_queue_head_t *q) |
| 3030 | +{ |
| 3031 | + sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
| 3032 | +} |
| 3033 | +EXPORT_SYMBOL(interruptible_sleep_on); |
| 3034 | + |
| 3035 | +long __sched |
| 3036 | +interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) |
| 3037 | +{ |
| 3038 | + return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); |
| 3039 | +} |
| 3040 | +EXPORT_SYMBOL(interruptible_sleep_on_timeout); |
| 3041 | + |
| 3042 | +void __sched sleep_on(wait_queue_head_t *q) |
| 3043 | +{ |
| 3044 | + sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
| 3045 | +} |
| 3046 | +EXPORT_SYMBOL(sleep_on); |
| 3047 | + |
| 3048 | +long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) |
| 3049 | +{ |
| 3050 | + return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); |
| 3051 | +} |
| 3052 | +EXPORT_SYMBOL(sleep_on_timeout); |
| 3053 | + |
| 3054 | +#ifdef CONFIG_RT_MUTEXES |
| 3055 | + |
| 3056 | +/* |
| 3057 | + * rt_mutex_setprio - set the current priority of a task |
| 3058 | + * @p: task |
| 3059 | + * @prio: prio value (kernel-internal form) |
| 3060 | + * |
| 3061 | + * This function changes the 'effective' priority of a task. It does |
| 3062 | + * not touch ->normal_prio like __setscheduler(). |
| 3063 | + * |
| 3064 | + * Used by the rt_mutex code to implement priority inheritance logic. |
| 3065 | + */ |
| 3066 | +void rt_mutex_setprio(struct task_struct *p, int prio) |
| 3067 | +{ |
| 3068 | + unsigned long flags; |
| 3069 | + int queued, oldprio; |
| 3070 | + struct rq *rq; |
| 3071 | + |
| 3072 | + BUG_ON(prio < 0 || prio > MAX_PRIO); |
| 3073 | + |
| 3074 | + rq = time_task_grq_lock(p, &flags); |
| 3075 | + |
| 3076 | + oldprio = p->prio; |
| 3077 | + queued = task_queued_only(p); |
| 3078 | + if (queued) |
| 3079 | + dequeue_task(p); |
| 3080 | + p->prio = prio; |
| 3081 | + if (task_running(p) && prio > oldprio) |
| 3082 | + resched_task(p); |
| 3083 | + if (queued) { |
| 3084 | + enqueue_task(p); |
| 3085 | + try_preempt(p); |
| 3086 | + } |
| 3087 | + |
| 3088 | + task_grq_unlock(&flags); |
| 3089 | +} |
| 3090 | + |
| 3091 | +#endif |
| 3092 | + |
| 3093 | +/* |
| 3094 | + * Adjust the deadline for when the priority is to change, before it's |
| 3095 | + * changed. |
| 3096 | + */ |
| 3097 | +static void adjust_deadline(struct task_struct *p, int new_prio) |
| 3098 | +{ |
| 3099 | + p->deadline += (prio_ratios[USER_PRIO(new_prio)] - pratio(p)) * |
| 3100 | + rr_interval * HZ / 1000 / 100; |
| 3101 | +} |
| 3102 | + |
| 3103 | +void set_user_nice(struct task_struct *p, long nice) |
| 3104 | +{ |
| 3105 | + int queued, new_static; |
| 3106 | + unsigned long flags; |
| 3107 | + struct rq *rq; |
| 3108 | + |
| 3109 | + if (TASK_NICE(p) == nice || nice < -20 || nice > 19) |
| 3110 | + return; |
| 3111 | + new_static = NICE_TO_PRIO(nice); |
| 3112 | + /* |
| 3113 | + * We have to be careful, if called from sys_setpriority(), |
| 3114 | + * the task might be in the middle of scheduling on another CPU. |
| 3115 | + */ |
| 3116 | + rq = time_task_grq_lock(p, &flags); |
| 3117 | + /* |
| 3118 | + * The RT priorities are set via sched_setscheduler(), but we still |
| 3119 | + * allow the 'normal' nice value to be set - but as expected |
| 3120 | + * it wont have any effect on scheduling until the task is |
| 3121 | + * not SCHED_NORMAL/SCHED_BATCH: |
| 3122 | + */ |
| 3123 | + if (has_rt_policy(p)) { |
| 3124 | + p->static_prio = new_static; |
| 3125 | + goto out_unlock; |
| 3126 | + } |
| 3127 | + queued = task_queued_only(p); |
| 3128 | + /* |
| 3129 | + * If p is actually running, we don't need to do anything when |
| 3130 | + * changing the priority because the grq is unaffected. |
| 3131 | + */ |
| 3132 | + if (queued) |
| 3133 | + dequeue_task(p); |
| 3134 | + |
| 3135 | + adjust_deadline(p, new_static); |
| 3136 | + p->static_prio = new_static; |
| 3137 | + p->prio = effective_prio(p); |
| 3138 | + |
| 3139 | + if (queued) { |
| 3140 | + enqueue_task(p); |
| 3141 | + try_preempt(p); |
| 3142 | + } |
| 3143 | + |
| 3144 | + /* Just resched the task, schedule() will know what to do. */ |
| 3145 | + if (task_running(p)) |
| 3146 | + resched_task(p); |
| 3147 | +out_unlock: |
| 3148 | + task_grq_unlock(&flags); |
| 3149 | +} |
| 3150 | +EXPORT_SYMBOL(set_user_nice); |
| 3151 | + |
| 3152 | +/* |
| 3153 | + * can_nice - check if a task can reduce its nice value |
| 3154 | + * @p: task |
| 3155 | + * @nice: nice value |
| 3156 | + */ |
| 3157 | +int can_nice(const struct task_struct *p, const int nice) |
| 3158 | +{ |
| 3159 | + /* convert nice value [19,-20] to rlimit style value [1,40] */ |
| 3160 | + int nice_rlim = 20 - nice; |
| 3161 | + |
| 3162 | + return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || |
| 3163 | + capable(CAP_SYS_NICE)); |
| 3164 | +} |
| 3165 | + |
| 3166 | +#ifdef __ARCH_WANT_SYS_NICE |
| 3167 | + |
| 3168 | +/* |
| 3169 | + * sys_nice - change the priority of the current process. |
| 3170 | + * @increment: priority increment |
| 3171 | + * |
| 3172 | + * sys_setpriority is a more generic, but much slower function that |
| 3173 | + * does similar things. |
| 3174 | + */ |
| 3175 | +SYSCALL_DEFINE1(nice, int, increment) |
| 3176 | +{ |
| 3177 | + long nice, retval; |
| 3178 | + |
| 3179 | + /* |
| 3180 | + * Setpriority might change our priority at the same moment. |
| 3181 | + * We don't have to worry. Conceptually one call occurs first |
| 3182 | + * and we have a single winner. |
| 3183 | + */ |
| 3184 | + if (increment < -40) |
| 3185 | + increment = -40; |
| 3186 | + if (increment > 40) |
| 3187 | + increment = 40; |
| 3188 | + |
| 3189 | + nice = TASK_NICE(current) + increment; |
| 3190 | + if (nice < -20) |
| 3191 | + nice = -20; |
| 3192 | + if (nice > 19) |
| 3193 | + nice = 19; |
| 3194 | + |
| 3195 | + if (increment < 0 && !can_nice(current, nice)) |
| 3196 | + return -EPERM; |
| 3197 | + |
| 3198 | + retval = security_task_setnice(current, nice); |
| 3199 | + if (retval) |
| 3200 | + return retval; |
| 3201 | + |
| 3202 | + set_user_nice(current, nice); |
| 3203 | + return 0; |
| 3204 | +} |
| 3205 | + |
| 3206 | +#endif |
| 3207 | + |
| 3208 | +/** |
| 3209 | + * task_prio - return the priority value of a given task. |
| 3210 | + * @p: the task in question. |
| 3211 | + * |
| 3212 | + * This is the priority value as seen by users in /proc. |
| 3213 | + * RT tasks are offset by -100. Normal tasks are centered |
| 3214 | + * around 1, value goes from 0 (SCHED_ISO) up to 82 (nice +19 |
| 3215 | + * SCHED_IDLE). |
| 3216 | + */ |
| 3217 | +int task_prio(const struct task_struct *p) |
| 3218 | +{ |
| 3219 | + int delta, prio = p->prio - MAX_RT_PRIO; |
| 3220 | + |
| 3221 | + /* rt tasks and iso tasks */ |
| 3222 | + if (prio <= 0) |
| 3223 | + goto out; |
| 3224 | + |
| 3225 | + delta = (p->deadline - jiffies) * 40 / longest_deadline(); |
| 3226 | + if (delta > 0 && delta <= 80) |
| 3227 | + prio += delta; |
| 3228 | +out: |
| 3229 | + return prio; |
| 3230 | +} |
| 3231 | + |
| 3232 | +/** |
| 3233 | + * task_nice - return the nice value of a given task. |
| 3234 | + * @p: the task in question. |
| 3235 | + */ |
| 3236 | +int task_nice(const struct task_struct *p) |
| 3237 | +{ |
| 3238 | + return TASK_NICE(p); |
| 3239 | +} |
| 3240 | +EXPORT_SYMBOL_GPL(task_nice); |
| 3241 | + |
| 3242 | +/** |
| 3243 | + * idle_cpu - is a given cpu idle currently? |
| 3244 | + * @cpu: the processor in question. |
| 3245 | + */ |
| 3246 | +int idle_cpu(int cpu) |
| 3247 | +{ |
| 3248 | + return cpu_curr(cpu) == cpu_rq(cpu)->idle; |
| 3249 | +} |
| 3250 | + |
| 3251 | +/** |
| 3252 | + * idle_task - return the idle task for a given cpu. |
| 3253 | + * @cpu: the processor in question. |
| 3254 | + */ |
| 3255 | +struct task_struct *idle_task(int cpu) |
| 3256 | +{ |
| 3257 | + return cpu_rq(cpu)->idle; |
| 3258 | +} |
| 3259 | + |
| 3260 | +/** |
| 3261 | + * find_process_by_pid - find a process with a matching PID value. |
| 3262 | + * @pid: the pid in question. |
| 3263 | + */ |
| 3264 | +static inline struct task_struct *find_process_by_pid(pid_t pid) |
| 3265 | +{ |
| 3266 | + return pid ? find_task_by_vpid(pid) : current; |
| 3267 | +} |
| 3268 | + |
| 3269 | +/* Actually do priority change: must hold grq lock. */ |
| 3270 | +static void __setscheduler(struct task_struct *p, int policy, int prio) |
| 3271 | +{ |
| 3272 | + BUG_ON(task_queued_only(p)); |
| 3273 | + |
| 3274 | + p->policy = policy; |
| 3275 | + p->rt_priority = prio; |
| 3276 | + p->normal_prio = normal_prio(p); |
| 3277 | + /* we are holding p->pi_lock already */ |
| 3278 | + p->prio = rt_mutex_getprio(p); |
| 3279 | + /* |
| 3280 | + * Reschedule if running. schedule() will know if it can continue |
| 3281 | + * running or not. |
| 3282 | + */ |
| 3283 | + if (task_running(p)) |
| 3284 | + resched_task(p); |
| 3285 | +} |
| 3286 | + |
| 3287 | +/* |
| 3288 | + * check the target process has a UID that matches the current process's |
| 3289 | + */ |
| 3290 | +static bool check_same_owner(struct task_struct *p) |
| 3291 | +{ |
| 3292 | + const struct cred *cred = current_cred(), *pcred; |
| 3293 | + bool match; |
| 3294 | + |
| 3295 | + rcu_read_lock(); |
| 3296 | + pcred = __task_cred(p); |
| 3297 | + match = (cred->euid == pcred->euid || |
| 3298 | + cred->euid == pcred->uid); |
| 3299 | + rcu_read_unlock(); |
| 3300 | + return match; |
| 3301 | +} |
| 3302 | + |
| 3303 | +static int __sched_setscheduler(struct task_struct *p, int policy, |
| 3304 | + struct sched_param *param, bool user) |
| 3305 | +{ |
| 3306 | + struct sched_param zero_param = { .sched_priority = 0 }; |
| 3307 | + int queued, retval, oldprio, oldpolicy = -1; |
| 3308 | + unsigned long flags, rlim_rtprio = 0; |
| 3309 | + struct rq *rq; |
| 3310 | + |
| 3311 | + /* may grab non-irq protected spin_locks */ |
| 3312 | + BUG_ON(in_interrupt()); |
| 3313 | + |
| 3314 | + if (is_rt_policy(policy) && !capable(CAP_SYS_NICE)) { |
| 3315 | + unsigned long lflags; |
| 3316 | + |
| 3317 | + if (!lock_task_sighand(p, &lflags)) |
| 3318 | + return -ESRCH; |
| 3319 | + rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; |
| 3320 | + unlock_task_sighand(p, &lflags); |
| 3321 | + if (rlim_rtprio) |
| 3322 | + goto recheck; |
| 3323 | + /* |
| 3324 | + * If the caller requested an RT policy without having the |
| 3325 | + * necessary rights, we downgrade the policy to SCHED_ISO. |
| 3326 | + * We also set the parameter to zero to pass the checks. |
| 3327 | + */ |
| 3328 | + policy = SCHED_ISO; |
| 3329 | + param = &zero_param; |
| 3330 | + } |
| 3331 | +recheck: |
| 3332 | + /* double check policy once rq lock held */ |
| 3333 | + if (policy < 0) |
| 3334 | + policy = oldpolicy = p->policy; |
| 3335 | + else if (!SCHED_RANGE(policy)) |
| 3336 | + return -EINVAL; |
| 3337 | + /* |
| 3338 | + * Valid priorities for SCHED_FIFO and SCHED_RR are |
| 3339 | + * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and |
| 3340 | + * SCHED_BATCH is 0. |
| 3341 | + */ |
| 3342 | + if (param->sched_priority < 0 || |
| 3343 | + (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || |
| 3344 | + (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) |
| 3345 | + return -EINVAL; |
| 3346 | + if (is_rt_policy(policy) != (param->sched_priority != 0)) |
| 3347 | + return -EINVAL; |
| 3348 | + |
| 3349 | + /* |
| 3350 | + * Allow unprivileged RT tasks to decrease priority: |
| 3351 | + */ |
| 3352 | + if (user && !capable(CAP_SYS_NICE)) { |
| 3353 | + if (is_rt_policy(policy)) { |
| 3354 | + /* can't set/change the rt policy */ |
| 3355 | + if (policy != p->policy && !rlim_rtprio) |
| 3356 | + return -EPERM; |
| 3357 | + |
| 3358 | + /* can't increase priority */ |
| 3359 | + if (param->sched_priority > p->rt_priority && |
| 3360 | + param->sched_priority > rlim_rtprio) |
| 3361 | + return -EPERM; |
| 3362 | + } else { |
| 3363 | + switch (p->policy) { |
| 3364 | + /* |
| 3365 | + * Can only downgrade policies but not back to |
| 3366 | + * SCHED_NORMAL |
| 3367 | + */ |
| 3368 | + case SCHED_ISO: |
| 3369 | + if (policy == SCHED_ISO) |
| 3370 | + goto out; |
| 3371 | + if (policy == SCHED_NORMAL) |
| 3372 | + return -EPERM; |
| 3373 | + break; |
| 3374 | + case SCHED_BATCH: |
| 3375 | + if (policy == SCHED_BATCH) |
| 3376 | + goto out; |
| 3377 | + if (policy != SCHED_IDLE) |
| 3378 | + return -EPERM; |
| 3379 | + break; |
| 3380 | + case SCHED_IDLE: |
| 3381 | + if (policy == SCHED_IDLE) |
| 3382 | + goto out; |
| 3383 | + return -EPERM; |
| 3384 | + default: |
| 3385 | + break; |
| 3386 | + } |
| 3387 | + } |
| 3388 | + |
| 3389 | + /* can't change other user's priorities */ |
| 3390 | + if (!check_same_owner(p)) |
| 3391 | + return -EPERM; |
| 3392 | + } |
| 3393 | + |
| 3394 | + retval = security_task_setscheduler(p, policy, param); |
| 3395 | + if (retval) |
| 3396 | + return retval; |
| 3397 | + /* |
| 3398 | + * make sure no PI-waiters arrive (or leave) while we are |
| 3399 | + * changing the priority of the task: |
| 3400 | + */ |
| 3401 | + spin_lock_irqsave(&p->pi_lock, flags); |
| 3402 | + /* |
| 3403 | + * To be able to change p->policy safely, the apropriate |
| 3404 | + * runqueue lock must be held. |
| 3405 | + */ |
| 3406 | + rq = __task_grq_lock(p); |
| 3407 | + /* recheck policy now with rq lock held */ |
| 3408 | + if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { |
| 3409 | + __task_grq_unlock(); |
| 3410 | + spin_unlock_irqrestore(&p->pi_lock, flags); |
| 3411 | + policy = oldpolicy = -1; |
| 3412 | + goto recheck; |
| 3413 | + } |
| 3414 | + update_rq_clock(rq); |
| 3415 | + queued = task_queued_only(p); |
| 3416 | + if (queued) |
| 3417 | + dequeue_task(p); |
| 3418 | + oldprio = p->prio; |
| 3419 | + __setscheduler(p, policy, param->sched_priority); |
| 3420 | + if (queued) { |
| 3421 | + enqueue_task(p); |
| 3422 | + try_preempt(p); |
| 3423 | + } |
| 3424 | + __task_grq_unlock(); |
| 3425 | + spin_unlock_irqrestore(&p->pi_lock, flags); |
| 3426 | + |
| 3427 | + rt_mutex_adjust_pi(p); |
| 3428 | +out: |
| 3429 | + return 0; |
| 3430 | +} |
| 3431 | + |
| 3432 | +/** |
| 3433 | + * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. |
| 3434 | + * @p: the task in question. |
| 3435 | + * @policy: new policy. |
| 3436 | + * @param: structure containing the new RT priority. |
| 3437 | + * |
| 3438 | + * NOTE that the task may be already dead. |
| 3439 | + */ |
| 3440 | +int sched_setscheduler(struct task_struct *p, int policy, |
| 3441 | + struct sched_param *param) |
| 3442 | +{ |
| 3443 | + return __sched_setscheduler(p, policy, param, true); |
| 3444 | +} |
| 3445 | + |
| 3446 | +EXPORT_SYMBOL_GPL(sched_setscheduler); |
| 3447 | + |
| 3448 | +/** |
| 3449 | + * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. |
| 3450 | + * @p: the task in question. |
| 3451 | + * @policy: new policy. |
| 3452 | + * @param: structure containing the new RT priority. |
| 3453 | + * |
| 3454 | + * Just like sched_setscheduler, only don't bother checking if the |
| 3455 | + * current context has permission. For example, this is needed in |
| 3456 | + * stop_machine(): we create temporary high priority worker threads, |
| 3457 | + * but our caller might not have that capability. |
| 3458 | + */ |
| 3459 | +int sched_setscheduler_nocheck(struct task_struct *p, int policy, |
| 3460 | + struct sched_param *param) |
| 3461 | +{ |
| 3462 | + return __sched_setscheduler(p, policy, param, false); |
| 3463 | +} |
| 3464 | + |
| 3465 | +static int |
| 3466 | +do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) |
| 3467 | +{ |
| 3468 | + struct sched_param lparam; |
| 3469 | + struct task_struct *p; |
| 3470 | + int retval; |
| 3471 | + |
| 3472 | + if (!param || pid < 0) |
| 3473 | + return -EINVAL; |
| 3474 | + if (copy_from_user(&lparam, param, sizeof(struct sched_param))) |
| 3475 | + return -EFAULT; |
| 3476 | + |
| 3477 | + rcu_read_lock(); |
| 3478 | + retval = -ESRCH; |
| 3479 | + p = find_process_by_pid(pid); |
| 3480 | + if (p != NULL) |
| 3481 | + retval = sched_setscheduler(p, policy, &lparam); |
| 3482 | + rcu_read_unlock(); |
| 3483 | + |
| 3484 | + return retval; |
| 3485 | +} |
| 3486 | + |
| 3487 | +/** |
| 3488 | + * sys_sched_setscheduler - set/change the scheduler policy and RT priority |
| 3489 | + * @pid: the pid in question. |
| 3490 | + * @policy: new policy. |
| 3491 | + * @param: structure containing the new RT priority. |
| 3492 | + */ |
| 3493 | +asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, |
| 3494 | + struct sched_param __user *param) |
| 3495 | +{ |
| 3496 | + /* negative values for policy are not valid */ |
| 3497 | + if (policy < 0) |
| 3498 | + return -EINVAL; |
| 3499 | + |
| 3500 | + return do_sched_setscheduler(pid, policy, param); |
| 3501 | +} |
| 3502 | + |
| 3503 | +/** |
| 3504 | + * sys_sched_setparam - set/change the RT priority of a thread |
| 3505 | + * @pid: the pid in question. |
| 3506 | + * @param: structure containing the new RT priority. |
| 3507 | + */ |
| 3508 | +SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) |
| 3509 | +{ |
| 3510 | + return do_sched_setscheduler(pid, -1, param); |
| 3511 | +} |
| 3512 | + |
| 3513 | +/** |
| 3514 | + * sys_sched_getscheduler - get the policy (scheduling class) of a thread |
| 3515 | + * @pid: the pid in question. |
| 3516 | + */ |
| 3517 | +SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) |
| 3518 | +{ |
| 3519 | + struct task_struct *p; |
| 3520 | + int retval = -EINVAL; |
| 3521 | + |
| 3522 | + if (pid < 0) |
| 3523 | + goto out_nounlock; |
| 3524 | + |
| 3525 | + retval = -ESRCH; |
| 3526 | + read_lock(&tasklist_lock); |
| 3527 | + p = find_process_by_pid(pid); |
| 3528 | + if (p) { |
| 3529 | + retval = security_task_getscheduler(p); |
| 3530 | + if (!retval) |
| 3531 | + retval = p->policy; |
| 3532 | + } |
| 3533 | + read_unlock(&tasklist_lock); |
| 3534 | + |
| 3535 | +out_nounlock: |
| 3536 | + return retval; |
| 3537 | +} |
| 3538 | + |
| 3539 | +/** |
| 3540 | + * sys_sched_getscheduler - get the RT priority of a thread |
| 3541 | + * @pid: the pid in question. |
| 3542 | + * @param: structure containing the RT priority. |
| 3543 | + */ |
| 3544 | +SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) |
| 3545 | +{ |
| 3546 | + struct sched_param lp; |
| 3547 | + struct task_struct *p; |
| 3548 | + int retval = -EINVAL; |
| 3549 | + |
| 3550 | + if (!param || pid < 0) |
| 3551 | + goto out_nounlock; |
| 3552 | + |
| 3553 | + read_lock(&tasklist_lock); |
| 3554 | + p = find_process_by_pid(pid); |
| 3555 | + retval = -ESRCH; |
| 3556 | + if (!p) |
| 3557 | + goto out_unlock; |
| 3558 | + |
| 3559 | + retval = security_task_getscheduler(p); |
| 3560 | + if (retval) |
| 3561 | + goto out_unlock; |
| 3562 | + |
| 3563 | + lp.sched_priority = p->rt_priority; |
| 3564 | + read_unlock(&tasklist_lock); |
| 3565 | + |
| 3566 | + /* |
| 3567 | + * This one might sleep, we cannot do it with a spinlock held ... |
| 3568 | + */ |
| 3569 | + retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; |
| 3570 | + |
| 3571 | +out_nounlock: |
| 3572 | + return retval; |
| 3573 | + |
| 3574 | +out_unlock: |
| 3575 | + read_unlock(&tasklist_lock); |
| 3576 | + return retval; |
| 3577 | +} |
| 3578 | + |
| 3579 | +long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) |
| 3580 | +{ |
| 3581 | + cpumask_var_t cpus_allowed, new_mask; |
| 3582 | + struct task_struct *p; |
| 3583 | + int retval; |
| 3584 | + |
| 3585 | + get_online_cpus(); |
| 3586 | + read_lock(&tasklist_lock); |
| 3587 | + |
| 3588 | + p = find_process_by_pid(pid); |
| 3589 | + if (!p) { |
| 3590 | + read_unlock(&tasklist_lock); |
| 3591 | + put_online_cpus(); |
| 3592 | + return -ESRCH; |
| 3593 | + } |
| 3594 | + |
| 3595 | + /* |
| 3596 | + * It is not safe to call set_cpus_allowed with the |
| 3597 | + * tasklist_lock held. We will bump the task_struct's |
| 3598 | + * usage count and then drop tasklist_lock. |
| 3599 | + */ |
| 3600 | + get_task_struct(p); |
| 3601 | + read_unlock(&tasklist_lock); |
| 3602 | + |
| 3603 | + if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { |
| 3604 | + retval = -ENOMEM; |
| 3605 | + goto out_put_task; |
| 3606 | + } |
| 3607 | + if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { |
| 3608 | + retval = -ENOMEM; |
| 3609 | + goto out_free_cpus_allowed; |
| 3610 | + } |
| 3611 | + retval = -EPERM; |
| 3612 | + if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) |
| 3613 | + goto out_unlock; |
| 3614 | + |
| 3615 | + retval = security_task_setscheduler(p, 0, NULL); |
| 3616 | + if (retval) |
| 3617 | + goto out_unlock; |
| 3618 | + |
| 3619 | + cpuset_cpus_allowed(p, cpus_allowed); |
| 3620 | + cpumask_and(new_mask, in_mask, cpus_allowed); |
| 3621 | +again: |
| 3622 | + retval = set_cpus_allowed_ptr(p, new_mask); |
| 3623 | + |
| 3624 | + if (!retval) { |
| 3625 | + cpuset_cpus_allowed(p, cpus_allowed); |
| 3626 | + if (!cpumask_subset(new_mask, cpus_allowed)) { |
| 3627 | + /* |
| 3628 | + * We must have raced with a concurrent cpuset |
| 3629 | + * update. Just reset the cpus_allowed to the |
| 3630 | + * cpuset's cpus_allowed |
| 3631 | + */ |
| 3632 | + cpumask_copy(new_mask, cpus_allowed); |
| 3633 | + goto again; |
| 3634 | + } |
| 3635 | + } |
| 3636 | +out_unlock: |
| 3637 | + free_cpumask_var(new_mask); |
| 3638 | +out_free_cpus_allowed: |
| 3639 | + free_cpumask_var(cpus_allowed); |
| 3640 | +out_put_task: |
| 3641 | + put_task_struct(p); |
| 3642 | + put_online_cpus(); |
| 3643 | + return retval; |
| 3644 | +} |
| 3645 | + |
| 3646 | +static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, |
| 3647 | + cpumask_t *new_mask) |
| 3648 | +{ |
| 3649 | + if (len < sizeof(cpumask_t)) { |
| 3650 | + memset(new_mask, 0, sizeof(cpumask_t)); |
| 3651 | + } else if (len > sizeof(cpumask_t)) { |
| 3652 | + len = sizeof(cpumask_t); |
| 3653 | + } |
| 3654 | + return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; |
| 3655 | +} |
| 3656 | + |
| 3657 | + |
| 3658 | +/** |
| 3659 | + * sys_sched_setaffinity - set the cpu affinity of a process |
| 3660 | + * @pid: pid of the process |
| 3661 | + * @len: length in bytes of the bitmask pointed to by user_mask_ptr |
| 3662 | + * @user_mask_ptr: user-space pointer to the new cpu mask |
| 3663 | + */ |
| 3664 | +SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, |
| 3665 | + unsigned long __user *, user_mask_ptr) |
| 3666 | +{ |
| 3667 | + cpumask_var_t new_mask; |
| 3668 | + int retval; |
| 3669 | + |
| 3670 | + if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) |
| 3671 | + return -ENOMEM; |
| 3672 | + |
| 3673 | + retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); |
| 3674 | + if (retval == 0) |
| 3675 | + retval = sched_setaffinity(pid, new_mask); |
| 3676 | + free_cpumask_var(new_mask); |
| 3677 | + return retval; |
| 3678 | +} |
| 3679 | + |
| 3680 | +long sched_getaffinity(pid_t pid, cpumask_t *mask) |
| 3681 | +{ |
| 3682 | + struct task_struct *p; |
| 3683 | + int retval; |
| 3684 | + |
| 3685 | + mutex_lock(&sched_hotcpu_mutex); |
| 3686 | + read_lock(&tasklist_lock); |
| 3687 | + |
| 3688 | + retval = -ESRCH; |
| 3689 | + p = find_process_by_pid(pid); |
| 3690 | + if (!p) |
| 3691 | + goto out_unlock; |
| 3692 | + |
| 3693 | + retval = security_task_getscheduler(p); |
| 3694 | + if (retval) |
| 3695 | + goto out_unlock; |
| 3696 | + |
| 3697 | + cpus_and(*mask, p->cpus_allowed, cpu_online_map); |
| 3698 | + |
| 3699 | +out_unlock: |
| 3700 | + read_unlock(&tasklist_lock); |
| 3701 | + mutex_unlock(&sched_hotcpu_mutex); |
| 3702 | + if (retval) |
| 3703 | + return retval; |
| 3704 | + |
| 3705 | + return 0; |
| 3706 | +} |
| 3707 | + |
| 3708 | +/** |
| 3709 | + * sys_sched_getaffinity - get the cpu affinity of a process |
| 3710 | + * @pid: pid of the process |
| 3711 | + * @len: length in bytes of the bitmask pointed to by user_mask_ptr |
| 3712 | + * @user_mask_ptr: user-space pointer to hold the current cpu mask |
| 3713 | + */ |
| 3714 | +SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, |
| 3715 | + unsigned long __user *, user_mask_ptr) |
| 3716 | +{ |
| 3717 | + int ret; |
| 3718 | + cpumask_var_t mask; |
| 3719 | + |
| 3720 | + if (len < cpumask_size()) |
| 3721 | + return -EINVAL; |
| 3722 | + |
| 3723 | + if (!alloc_cpumask_var(&mask, GFP_KERNEL)) |
| 3724 | + return -ENOMEM; |
| 3725 | + |
| 3726 | + ret = sched_getaffinity(pid, mask); |
| 3727 | + if (ret == 0) { |
| 3728 | + if (copy_to_user(user_mask_ptr, mask, cpumask_size())) |
| 3729 | + ret = -EFAULT; |
| 3730 | + else |
| 3731 | + ret = cpumask_size(); |
| 3732 | + } |
| 3733 | + free_cpumask_var(mask); |
| 3734 | + |
| 3735 | + return ret; |
| 3736 | +} |
| 3737 | + |
| 3738 | +/** |
| 3739 | + * sys_sched_yield - yield the current processor to other threads. |
| 3740 | + * |
| 3741 | + * This function yields the current CPU to other tasks. It does this by |
| 3742 | + * refilling the timeslice, resetting the deadline and scheduling away. |
| 3743 | + */ |
| 3744 | +SYSCALL_DEFINE0(sched_yield) |
| 3745 | +{ |
| 3746 | + struct task_struct *p; |
| 3747 | + |
| 3748 | + grq_lock_irq(); |
| 3749 | + p = current; |
| 3750 | + schedstat_inc(this_rq(), yld_count); |
| 3751 | + update_rq_clock(task_rq(p)); |
| 3752 | + time_slice_expired(p); |
| 3753 | + requeue_task(p); |
| 3754 | + |
| 3755 | + /* |
| 3756 | + * Since we are going to call schedule() anyway, there's |
| 3757 | + * no need to preempt or enable interrupts: |
| 3758 | + */ |
| 3759 | + __release(grq.lock); |
| 3760 | + spin_release(&grq.lock.dep_map, 1, _THIS_IP_); |
| 3761 | + _raw_spin_unlock(&grq.lock); |
| 3762 | + preempt_enable_no_resched(); |
| 3763 | + |
| 3764 | + schedule(); |
| 3765 | + |
| 3766 | + return 0; |
| 3767 | +} |
| 3768 | + |
| 3769 | +static inline int should_resched(void) |
| 3770 | +{ |
| 3771 | + return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); |
| 3772 | +} |
| 3773 | + |
| 3774 | +static void __cond_resched(void) |
| 3775 | +{ |
| 3776 | +#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP |
| 3777 | + __might_sleep(__FILE__, __LINE__); |
| 3778 | +#endif |
| 3779 | + /* |
| 3780 | + * The BKS might be reacquired before we have dropped |
| 3781 | + * PREEMPT_ACTIVE, which could trigger a second |
| 3782 | + * cond_resched() call. |
| 3783 | + */ |
| 3784 | + do { |
| 3785 | + add_preempt_count(PREEMPT_ACTIVE); |
| 3786 | + schedule(); |
| 3787 | + sub_preempt_count(PREEMPT_ACTIVE); |
| 3788 | + } while (need_resched()); |
| 3789 | +} |
| 3790 | + |
| 3791 | +int __sched _cond_resched(void) |
| 3792 | +{ |
| 3793 | + if (should_resched()) { |
| 3794 | + __cond_resched(); |
| 3795 | + return 1; |
| 3796 | + } |
| 3797 | + return 0; |
| 3798 | +} |
| 3799 | +EXPORT_SYMBOL(_cond_resched); |
| 3800 | + |
| 3801 | +/* |
| 3802 | + * cond_resched_lock() - if a reschedule is pending, drop the given lock, |
| 3803 | + * call schedule, and on return reacquire the lock. |
| 3804 | + * |
| 3805 | + * This works OK both with and without CONFIG_PREEMPT. We do strange low-level |
| 3806 | + * operations here to prevent schedule() from being called twice (once via |
| 3807 | + * spin_unlock(), once by hand). |
| 3808 | + */ |
| 3809 | +int cond_resched_lock(spinlock_t *lock) |
| 3810 | +{ |
| 3811 | + int resched = should_resched(); |
| 3812 | + int ret = 0; |
| 3813 | + |
| 3814 | + if (spin_needbreak(lock) || resched) { |
| 3815 | + spin_unlock(lock); |
| 3816 | + if (resched) |
| 3817 | + __cond_resched(); |
| 3818 | + else |
| 3819 | + cpu_relax(); |
| 3820 | + ret = 1; |
| 3821 | + spin_lock(lock); |
| 3822 | + } |
| 3823 | + return ret; |
| 3824 | +} |
| 3825 | +EXPORT_SYMBOL(cond_resched_lock); |
| 3826 | + |
| 3827 | +int __sched cond_resched_softirq(void) |
| 3828 | +{ |
| 3829 | + BUG_ON(!in_softirq()); |
| 3830 | + |
| 3831 | + if (should_resched()) { |
| 3832 | + local_bh_enable(); |
| 3833 | + __cond_resched(); |
| 3834 | + local_bh_disable(); |
| 3835 | + return 1; |
| 3836 | + } |
| 3837 | + return 0; |
| 3838 | +} |
| 3839 | +EXPORT_SYMBOL(cond_resched_softirq); |
| 3840 | + |
| 3841 | +/** |
| 3842 | + * yield - yield the current processor to other threads. |
| 3843 | + * |
| 3844 | + * This is a shortcut for kernel-space yielding - it marks the |
| 3845 | + * thread runnable and calls sys_sched_yield(). |
| 3846 | + */ |
| 3847 | +void __sched yield(void) |
| 3848 | +{ |
| 3849 | + set_current_state(TASK_RUNNING); |
| 3850 | + sys_sched_yield(); |
| 3851 | +} |
| 3852 | +EXPORT_SYMBOL(yield); |
| 3853 | + |
| 3854 | +/* |
| 3855 | + * This task is about to go to sleep on IO. Increment rq->nr_iowait so |
| 3856 | + * that process accounting knows that this is a task in IO wait state. |
| 3857 | + * |
| 3858 | + * But don't do that if it is a deliberate, throttling IO wait (this task |
| 3859 | + * has set its backing_dev_info: the queue against which it should throttle) |
| 3860 | + */ |
| 3861 | +void __sched io_schedule(void) |
| 3862 | +{ |
| 3863 | + struct rq *rq = &__raw_get_cpu_var(runqueues); |
| 3864 | + |
| 3865 | + delayacct_blkio_start(); |
| 3866 | + atomic_inc(&rq->nr_iowait); |
| 3867 | + schedule(); |
| 3868 | + atomic_dec(&rq->nr_iowait); |
| 3869 | + delayacct_blkio_end(); |
| 3870 | +} |
| 3871 | +EXPORT_SYMBOL(io_schedule); |
| 3872 | + |
| 3873 | +long __sched io_schedule_timeout(long timeout) |
| 3874 | +{ |
| 3875 | + struct rq *rq = &__raw_get_cpu_var(runqueues); |
| 3876 | + long ret; |
| 3877 | + |
| 3878 | + delayacct_blkio_start(); |
| 3879 | + atomic_inc(&rq->nr_iowait); |
| 3880 | + ret = schedule_timeout(timeout); |
| 3881 | + atomic_dec(&rq->nr_iowait); |
| 3882 | + delayacct_blkio_end(); |
| 3883 | + return ret; |
| 3884 | +} |
| 3885 | + |
| 3886 | +/** |
| 3887 | + * sys_sched_get_priority_max - return maximum RT priority. |
| 3888 | + * @policy: scheduling class. |
| 3889 | + * |
| 3890 | + * this syscall returns the maximum rt_priority that can be used |
| 3891 | + * by a given scheduling class. |
| 3892 | + */ |
| 3893 | +SYSCALL_DEFINE1(sched_get_priority_max, int, policy) |
| 3894 | +{ |
| 3895 | + int ret = -EINVAL; |
| 3896 | + |
| 3897 | + switch (policy) { |
| 3898 | + case SCHED_FIFO: |
| 3899 | + case SCHED_RR: |
| 3900 | + ret = MAX_USER_RT_PRIO-1; |
| 3901 | + break; |
| 3902 | + case SCHED_NORMAL: |
| 3903 | + case SCHED_BATCH: |
| 3904 | + case SCHED_ISO: |
| 3905 | + case SCHED_IDLE: |
| 3906 | + ret = 0; |
| 3907 | + break; |
| 3908 | + } |
| 3909 | + return ret; |
| 3910 | +} |
| 3911 | + |
| 3912 | +/** |
| 3913 | + * sys_sched_get_priority_min - return minimum RT priority. |
| 3914 | + * @policy: scheduling class. |
| 3915 | + * |
| 3916 | + * this syscall returns the minimum rt_priority that can be used |
| 3917 | + * by a given scheduling class. |
| 3918 | + */ |
| 3919 | +SYSCALL_DEFINE1(sched_get_priority_min, int, policy) |
| 3920 | +{ |
| 3921 | + int ret = -EINVAL; |
| 3922 | + |
| 3923 | + switch (policy) { |
| 3924 | + case SCHED_FIFO: |
| 3925 | + case SCHED_RR: |
| 3926 | + ret = 1; |
| 3927 | + break; |
| 3928 | + case SCHED_NORMAL: |
| 3929 | + case SCHED_BATCH: |
| 3930 | + case SCHED_ISO: |
| 3931 | + case SCHED_IDLE: |
| 3932 | + ret = 0; |
| 3933 | + break; |
| 3934 | + } |
| 3935 | + return ret; |
| 3936 | +} |
| 3937 | + |
| 3938 | +/** |
| 3939 | + * sys_sched_rr_get_interval - return the default timeslice of a process. |
| 3940 | + * @pid: pid of the process. |
| 3941 | + * @interval: userspace pointer to the timeslice value. |
| 3942 | + * |
| 3943 | + * this syscall writes the default timeslice value of a given process |
| 3944 | + * into the user-space timespec buffer. A value of '0' means infinity. |
| 3945 | + */ |
| 3946 | +SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, |
| 3947 | + struct timespec __user *, interval) |
| 3948 | +{ |
| 3949 | + struct task_struct *p; |
| 3950 | + int retval = -EINVAL; |
| 3951 | + struct timespec t; |
| 3952 | + |
| 3953 | + if (pid < 0) |
| 3954 | + goto out_nounlock; |
| 3955 | + |
| 3956 | + retval = -ESRCH; |
| 3957 | + read_lock(&tasklist_lock); |
| 3958 | + p = find_process_by_pid(pid); |
| 3959 | + if (!p) |
| 3960 | + goto out_unlock; |
| 3961 | + |
| 3962 | + retval = security_task_getscheduler(p); |
| 3963 | + if (retval) |
| 3964 | + goto out_unlock; |
| 3965 | + |
| 3966 | + t = ns_to_timespec(p->policy == SCHED_FIFO ? 0 : |
| 3967 | + MS_TO_NS(task_timeslice(p))); |
| 3968 | + read_unlock(&tasklist_lock); |
| 3969 | + retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
| 3970 | +out_nounlock: |
| 3971 | + return retval; |
| 3972 | +out_unlock: |
| 3973 | + read_unlock(&tasklist_lock); |
| 3974 | + return retval; |
| 3975 | +} |
| 3976 | + |
| 3977 | +static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; |
| 3978 | + |
| 3979 | +void sched_show_task(struct task_struct *p) |
| 3980 | +{ |
| 3981 | + unsigned long free = 0; |
| 3982 | + unsigned state; |
| 3983 | + |
| 3984 | + state = p->state ? __ffs(p->state) + 1 : 0; |
| 3985 | + printk(KERN_INFO "%-13.13s %c", p->comm, |
| 3986 | + state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); |
| 3987 | +#if BITS_PER_LONG == 32 |
| 3988 | + if (state == TASK_RUNNING) |
| 3989 | + printk(KERN_CONT " running "); |
| 3990 | + else |
| 3991 | + printk(KERN_CONT " %08lx ", thread_saved_pc(p)); |
| 3992 | +#else |
| 3993 | + if (state == TASK_RUNNING) |
| 3994 | + printk(KERN_CONT " running task "); |
| 3995 | + else |
| 3996 | + printk(KERN_CONT " %016lx ", thread_saved_pc(p)); |
| 3997 | +#endif |
| 3998 | +#ifdef CONFIG_DEBUG_STACK_USAGE |
| 3999 | + free = stack_not_used(p); |
| 4000 | +#endif |
| 4001 | + printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, |
| 4002 | + task_pid_nr(p), task_pid_nr(p->real_parent), |
| 4003 | + (unsigned long)task_thread_info(p)->flags); |
| 4004 | + |
| 4005 | + show_stack(p, NULL); |
| 4006 | +} |
| 4007 | + |
| 4008 | +void show_state_filter(unsigned long state_filter) |
| 4009 | +{ |
| 4010 | + struct task_struct *g, *p; |
| 4011 | + |
| 4012 | +#if BITS_PER_LONG == 32 |
| 4013 | + printk(KERN_INFO |
| 4014 | + " task PC stack pid father\n"); |
| 4015 | +#else |
| 4016 | + printk(KERN_INFO |
| 4017 | + " task PC stack pid father\n"); |
| 4018 | +#endif |
| 4019 | + read_lock(&tasklist_lock); |
| 4020 | + do_each_thread(g, p) { |
| 4021 | + /* |
| 4022 | + * reset the NMI-timeout, listing all files on a slow |
| 4023 | + * console might take alot of time: |
| 4024 | + */ |
| 4025 | + touch_nmi_watchdog(); |
| 4026 | + if (!state_filter || (p->state & state_filter)) |
| 4027 | + sched_show_task(p); |
| 4028 | + } while_each_thread(g, p); |
| 4029 | + |
| 4030 | + touch_all_softlockup_watchdogs(); |
| 4031 | + |
| 4032 | + read_unlock(&tasklist_lock); |
| 4033 | + /* |
| 4034 | + * Only show locks if all tasks are dumped: |
| 4035 | + */ |
| 4036 | + if (state_filter == -1) |
| 4037 | + debug_show_all_locks(); |
| 4038 | +} |
| 4039 | + |
| 4040 | +/** |
| 4041 | + * init_idle - set up an idle thread for a given CPU |
| 4042 | + * @idle: task in question |
| 4043 | + * @cpu: cpu the idle task belongs to |
| 4044 | + * |
| 4045 | + * NOTE: this function does not set the idle thread's NEED_RESCHED |
| 4046 | + * flag, to make booting more robust. |
| 4047 | + */ |
| 4048 | +void __cpuinit init_idle(struct task_struct *idle, int cpu) |
| 4049 | +{ |
| 4050 | + struct rq *rq = cpu_rq(cpu); |
| 4051 | + unsigned long flags; |
| 4052 | + |
| 4053 | + time_grq_lock(rq, &flags); |
| 4054 | + idle->timestamp = idle->last_ran = rq->clock; |
| 4055 | + idle->state = TASK_RUNNING; |
| 4056 | + /* Setting prio to illegal value shouldn't matter when never queued */ |
| 4057 | + idle->prio = rq->rq_prio = PRIO_LIMIT; |
| 4058 | + rq->rq_deadline = idle->deadline; |
| 4059 | + rq->rq_policy = idle->policy; |
| 4060 | + rq->rq_time_slice = idle->rt.time_slice; |
| 4061 | + idle->cpus_allowed = cpumask_of_cpu(cpu); |
| 4062 | + set_task_cpu(idle, cpu); |
| 4063 | + rq->curr = rq->idle = idle; |
| 4064 | + idle->oncpu = 1; |
| 4065 | + set_cpuidle_map(cpu); |
| 4066 | +#ifdef CONFIG_HOTPLUG_CPU |
| 4067 | + idle->unplugged_mask = CPU_MASK_NONE; |
| 4068 | +#endif |
| 4069 | + grq_unlock_irqrestore(&flags); |
| 4070 | + |
| 4071 | + /* Set the preempt count _outside_ the spinlocks! */ |
| 4072 | +#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL) |
| 4073 | + task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); |
| 4074 | +#else |
| 4075 | + task_thread_info(idle)->preempt_count = 0; |
| 4076 | +#endif |
| 4077 | + ftrace_graph_init_task(idle); |
| 4078 | +} |
| 4079 | + |
| 4080 | +/* |
| 4081 | + * In a system that switches off the HZ timer nohz_cpu_mask |
| 4082 | + * indicates which cpus entered this state. This is used |
| 4083 | + * in the rcu update to wait only for active cpus. For system |
| 4084 | + * which do not switch off the HZ timer nohz_cpu_mask should |
| 4085 | + * always be CPU_BITS_NONE. |
| 4086 | + */ |
| 4087 | +cpumask_var_t nohz_cpu_mask; |
| 4088 | + |
| 4089 | +#ifdef CONFIG_SMP |
| 4090 | +#ifdef CONFIG_NO_HZ |
| 4091 | +static struct { |
| 4092 | + atomic_t load_balancer; |
| 4093 | + cpumask_var_t cpu_mask; |
| 4094 | + cpumask_var_t ilb_grp_nohz_mask; |
| 4095 | +} nohz ____cacheline_aligned = { |
| 4096 | + .load_balancer = ATOMIC_INIT(-1), |
| 4097 | +}; |
| 4098 | + |
| 4099 | +int get_nohz_load_balancer(void) |
| 4100 | +{ |
| 4101 | + return atomic_read(&nohz.load_balancer); |
| 4102 | +} |
| 4103 | + |
| 4104 | +/* |
| 4105 | + * This routine will try to nominate the ilb (idle load balancing) |
| 4106 | + * owner among the cpus whose ticks are stopped. ilb owner will do the idle |
| 4107 | + * load balancing on behalf of all those cpus. If all the cpus in the system |
| 4108 | + * go into this tickless mode, then there will be no ilb owner (as there is |
| 4109 | + * no need for one) and all the cpus will sleep till the next wakeup event |
| 4110 | + * arrives... |
| 4111 | + * |
| 4112 | + * For the ilb owner, tick is not stopped. And this tick will be used |
| 4113 | + * for idle load balancing. ilb owner will still be part of |
| 4114 | + * nohz.cpu_mask.. |
| 4115 | + * |
| 4116 | + * While stopping the tick, this cpu will become the ilb owner if there |
| 4117 | + * is no other owner. And will be the owner till that cpu becomes busy |
| 4118 | + * or if all cpus in the system stop their ticks at which point |
| 4119 | + * there is no need for ilb owner. |
| 4120 | + * |
| 4121 | + * When the ilb owner becomes busy, it nominates another owner, during the |
| 4122 | + * next busy scheduler_tick() |
| 4123 | + */ |
| 4124 | +int select_nohz_load_balancer(int stop_tick) |
| 4125 | +{ |
| 4126 | + int cpu = smp_processor_id(); |
| 4127 | + |
| 4128 | + if (stop_tick) { |
| 4129 | + cpu_rq(cpu)->in_nohz_recently = 1; |
| 4130 | + |
| 4131 | + if (!cpu_active(cpu)) { |
| 4132 | + if (atomic_read(&nohz.load_balancer) != cpu) |
| 4133 | + return 0; |
| 4134 | + |
| 4135 | + /* |
| 4136 | + * If we are going offline and still the leader, |
| 4137 | + * give up! |
| 4138 | + */ |
| 4139 | + if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) |
| 4140 | + BUG(); |
| 4141 | + |
| 4142 | + return 0; |
| 4143 | + } |
| 4144 | + |
| 4145 | + cpumask_set_cpu(cpu, nohz.cpu_mask); |
| 4146 | + |
| 4147 | + /* time for ilb owner also to sleep */ |
| 4148 | + if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { |
| 4149 | + if (atomic_read(&nohz.load_balancer) == cpu) |
| 4150 | + atomic_set(&nohz.load_balancer, -1); |
| 4151 | + return 0; |
| 4152 | + } |
| 4153 | + |
| 4154 | + if (atomic_read(&nohz.load_balancer) == -1) { |
| 4155 | + /* make me the ilb owner */ |
| 4156 | + if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) |
| 4157 | + return 1; |
| 4158 | + } else if (atomic_read(&nohz.load_balancer) == cpu) |
| 4159 | + return 1; |
| 4160 | + } else { |
| 4161 | + if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) |
| 4162 | + return 0; |
| 4163 | + |
| 4164 | + cpumask_clear_cpu(cpu, nohz.cpu_mask); |
| 4165 | + |
| 4166 | + if (atomic_read(&nohz.load_balancer) == cpu) |
| 4167 | + if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) |
| 4168 | + BUG(); |
| 4169 | + } |
| 4170 | + return 0; |
| 4171 | +} |
| 4172 | + |
| 4173 | +/* |
| 4174 | + * When add_timer_on() enqueues a timer into the timer wheel of an |
| 4175 | + * idle CPU then this timer might expire before the next timer event |
| 4176 | + * which is scheduled to wake up that CPU. In case of a completely |
| 4177 | + * idle system the next event might even be infinite time into the |
| 4178 | + * future. wake_up_idle_cpu() ensures that the CPU is woken up and |
| 4179 | + * leaves the inner idle loop so the newly added timer is taken into |
| 4180 | + * account when the CPU goes back to idle and evaluates the timer |
| 4181 | + * wheel for the next timer event. |
| 4182 | + */ |
| 4183 | +void wake_up_idle_cpu(int cpu) |
| 4184 | +{ |
| 4185 | + struct task_struct *idle; |
| 4186 | + struct rq *rq; |
| 4187 | + |
| 4188 | + if (cpu == smp_processor_id()) |
| 4189 | + return; |
| 4190 | + |
| 4191 | + rq = cpu_rq(cpu); |
| 4192 | + idle = rq->idle; |
| 4193 | + |
| 4194 | + /* |
| 4195 | + * This is safe, as this function is called with the timer |
| 4196 | + * wheel base lock of (cpu) held. When the CPU is on the way |
| 4197 | + * to idle and has not yet set rq->curr to idle then it will |
| 4198 | + * be serialized on the timer wheel base lock and take the new |
| 4199 | + * timer into account automatically. |
| 4200 | + */ |
| 4201 | + if (unlikely(rq->curr != idle)) |
| 4202 | + return; |
| 4203 | + |
| 4204 | + /* |
| 4205 | + * We can set TIF_RESCHED on the idle task of the other CPU |
| 4206 | + * lockless. The worst case is that the other CPU runs the |
| 4207 | + * idle task through an additional NOOP schedule() |
| 4208 | + */ |
| 4209 | + set_tsk_need_resched(idle); |
| 4210 | + |
| 4211 | + /* NEED_RESCHED must be visible before we test polling */ |
| 4212 | + smp_mb(); |
| 4213 | + if (!tsk_is_polling(idle)) |
| 4214 | + smp_send_reschedule(cpu); |
| 4215 | +} |
| 4216 | + |
| 4217 | +#endif /* CONFIG_NO_HZ */ |
| 4218 | + |
| 4219 | +/* |
| 4220 | + * Change a given task's CPU affinity. Migrate the thread to a |
| 4221 | + * proper CPU and schedule it away if the CPU it's executing on |
| 4222 | + * is removed from the allowed bitmask. |
| 4223 | + * |
| 4224 | + * NOTE: the caller must have a valid reference to the task, the |
| 4225 | + * task must not exit() & deallocate itself prematurely. The |
| 4226 | + * call is not atomic; no spinlocks may be held. |
| 4227 | + */ |
| 4228 | +int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) |
| 4229 | +{ |
| 4230 | + unsigned long flags; |
| 4231 | + int running = 0; |
| 4232 | + int queued = 0; |
| 4233 | + struct rq *rq; |
| 4234 | + int ret = 0; |
| 4235 | + |
| 4236 | + rq = task_grq_lock(p, &flags); |
| 4237 | + if (!cpumask_intersects(new_mask, cpu_online_mask)) { |
| 4238 | + ret = -EINVAL; |
| 4239 | + goto out; |
| 4240 | + } |
| 4241 | + |
| 4242 | + if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && |
| 4243 | + !cpumask_equal(&p->cpus_allowed, new_mask))) { |
| 4244 | + ret = -EINVAL; |
| 4245 | + goto out; |
| 4246 | + } |
| 4247 | + |
| 4248 | + queued = task_queued_only(p); |
| 4249 | + |
| 4250 | + cpumask_copy(&p->cpus_allowed, new_mask); |
| 4251 | + p->rt.nr_cpus_allowed = cpumask_weight(new_mask); |
| 4252 | + |
| 4253 | + /* Can the task run on the task's current CPU? If so, we're done */ |
| 4254 | + if (cpumask_test_cpu(task_cpu(p), new_mask)) |
| 4255 | + goto out; |
| 4256 | + |
| 4257 | + /* Reschedule the task, schedule() will know if it can keep running */ |
| 4258 | + if (task_running(p)) |
| 4259 | + running = 1; |
| 4260 | + else |
| 4261 | + set_task_cpu(p, cpumask_any_and(cpu_online_mask, new_mask)); |
| 4262 | + |
| 4263 | +out: |
| 4264 | + if (queued) |
| 4265 | + try_preempt(p); |
| 4266 | + task_grq_unlock(&flags); |
| 4267 | + |
| 4268 | + /* This might be a flaky way of changing cpus! */ |
| 4269 | + if (running) |
| 4270 | + schedule(); |
| 4271 | + return ret; |
| 4272 | +} |
| 4273 | +EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); |
| 4274 | + |
| 4275 | +#ifdef CONFIG_HOTPLUG_CPU |
| 4276 | +/* Schedules idle task to be the next runnable task on current CPU. |
| 4277 | + * It does so by boosting its priority to highest possible. |
| 4278 | + * Used by CPU offline code. |
| 4279 | + */ |
| 4280 | +void sched_idle_next(void) |
| 4281 | +{ |
| 4282 | + int this_cpu = smp_processor_id(); |
| 4283 | + struct rq *rq = cpu_rq(this_cpu); |
| 4284 | + struct task_struct *idle = rq->idle; |
| 4285 | + unsigned long flags; |
| 4286 | + |
| 4287 | + /* cpu has to be offline */ |
| 4288 | + BUG_ON(cpu_online(this_cpu)); |
| 4289 | + |
| 4290 | + /* |
| 4291 | + * Strictly not necessary since rest of the CPUs are stopped by now |
| 4292 | + * and interrupts disabled on the current cpu. |
| 4293 | + */ |
| 4294 | + time_grq_lock(rq, &flags); |
| 4295 | + |
| 4296 | + __setscheduler(idle, SCHED_FIFO, MAX_RT_PRIO - 1); |
| 4297 | + |
| 4298 | + activate_idle_task(idle); |
| 4299 | + set_tsk_need_resched(rq->curr); |
| 4300 | + |
| 4301 | + grq_unlock_irqrestore(&flags); |
| 4302 | +} |
| 4303 | + |
| 4304 | +/* |
| 4305 | + * Ensures that the idle task is using init_mm right before its cpu goes |
| 4306 | + * offline. |
| 4307 | + */ |
| 4308 | +void idle_task_exit(void) |
| 4309 | +{ |
| 4310 | + struct mm_struct *mm = current->active_mm; |
| 4311 | + |
| 4312 | + BUG_ON(cpu_online(smp_processor_id())); |
| 4313 | + |
| 4314 | + if (mm != &init_mm) |
| 4315 | + switch_mm(mm, &init_mm, current); |
| 4316 | + mmdrop(mm); |
| 4317 | +} |
| 4318 | + |
| 4319 | +#endif /* CONFIG_HOTPLUG_CPU */ |
| 4320 | + |
| 4321 | +#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) |
| 4322 | + |
| 4323 | +static struct ctl_table sd_ctl_dir[] = { |
| 4324 | + { |
| 4325 | + .procname = "sched_domain", |
| 4326 | + .mode = 0555, |
| 4327 | + }, |
| 4328 | + {0, }, |
| 4329 | +}; |
| 4330 | + |
| 4331 | +static struct ctl_table sd_ctl_root[] = { |
| 4332 | + { |
| 4333 | + .ctl_name = CTL_KERN, |
| 4334 | + .procname = "kernel", |
| 4335 | + .mode = 0555, |
| 4336 | + .child = sd_ctl_dir, |
| 4337 | + }, |
| 4338 | + {0, }, |
| 4339 | +}; |
| 4340 | + |
| 4341 | +static struct ctl_table *sd_alloc_ctl_entry(int n) |
| 4342 | +{ |
| 4343 | + struct ctl_table *entry = |
| 4344 | + kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); |
| 4345 | + |
| 4346 | + return entry; |
| 4347 | +} |
| 4348 | + |
| 4349 | +static void sd_free_ctl_entry(struct ctl_table **tablep) |
| 4350 | +{ |
| 4351 | + struct ctl_table *entry; |
| 4352 | + |
| 4353 | + /* |
| 4354 | + * In the intermediate directories, both the child directory and |
| 4355 | + * procname are dynamically allocated and could fail but the mode |
| 4356 | + * will always be set. In the lowest directory the names are |
| 4357 | + * static strings and all have proc handlers. |
| 4358 | + */ |
| 4359 | + for (entry = *tablep; entry->mode; entry++) { |
| 4360 | + if (entry->child) |
| 4361 | + sd_free_ctl_entry(&entry->child); |
| 4362 | + if (entry->proc_handler == NULL) |
| 4363 | + kfree(entry->procname); |
| 4364 | + } |
| 4365 | + |
| 4366 | + kfree(*tablep); |
| 4367 | + *tablep = NULL; |
| 4368 | +} |
| 4369 | + |
| 4370 | +static void |
| 4371 | +set_table_entry(struct ctl_table *entry, |
| 4372 | + const char *procname, void *data, int maxlen, |
| 4373 | + mode_t mode, proc_handler *proc_handler) |
| 4374 | +{ |
| 4375 | + entry->procname = procname; |
| 4376 | + entry->data = data; |
| 4377 | + entry->maxlen = maxlen; |
| 4378 | + entry->mode = mode; |
| 4379 | + entry->proc_handler = proc_handler; |
| 4380 | +} |
| 4381 | + |
| 4382 | +static struct ctl_table * |
| 4383 | +sd_alloc_ctl_domain_table(struct sched_domain *sd) |
| 4384 | +{ |
| 4385 | + struct ctl_table *table = sd_alloc_ctl_entry(13); |
| 4386 | + |
| 4387 | + if (table == NULL) |
| 4388 | + return NULL; |
| 4389 | + |
| 4390 | + set_table_entry(&table[0], "min_interval", &sd->min_interval, |
| 4391 | + sizeof(long), 0644, proc_doulongvec_minmax); |
| 4392 | + set_table_entry(&table[1], "max_interval", &sd->max_interval, |
| 4393 | + sizeof(long), 0644, proc_doulongvec_minmax); |
| 4394 | + set_table_entry(&table[2], "busy_idx", &sd->busy_idx, |
| 4395 | + sizeof(int), 0644, proc_dointvec_minmax); |
| 4396 | + set_table_entry(&table[3], "idle_idx", &sd->idle_idx, |
| 4397 | + sizeof(int), 0644, proc_dointvec_minmax); |
| 4398 | + set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, |
| 4399 | + sizeof(int), 0644, proc_dointvec_minmax); |
| 4400 | + set_table_entry(&table[5], "wake_idx", &sd->wake_idx, |
| 4401 | + sizeof(int), 0644, proc_dointvec_minmax); |
| 4402 | + set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, |
| 4403 | + sizeof(int), 0644, proc_dointvec_minmax); |
| 4404 | + set_table_entry(&table[7], "busy_factor", &sd->busy_factor, |
| 4405 | + sizeof(int), 0644, proc_dointvec_minmax); |
| 4406 | + set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, |
| 4407 | + sizeof(int), 0644, proc_dointvec_minmax); |
| 4408 | + set_table_entry(&table[9], "cache_nice_tries", |
| 4409 | + &sd->cache_nice_tries, |
| 4410 | + sizeof(int), 0644, proc_dointvec_minmax); |
| 4411 | + set_table_entry(&table[10], "flags", &sd->flags, |
| 4412 | + sizeof(int), 0644, proc_dointvec_minmax); |
| 4413 | + set_table_entry(&table[11], "name", sd->name, |
| 4414 | + CORENAME_MAX_SIZE, 0444, proc_dostring); |
| 4415 | + /* &table[12] is terminator */ |
| 4416 | + |
| 4417 | + return table; |
| 4418 | +} |
| 4419 | + |
| 4420 | +static ctl_table *sd_alloc_ctl_cpu_table(int cpu) |
| 4421 | +{ |
| 4422 | + struct ctl_table *entry, *table; |
| 4423 | + struct sched_domain *sd; |
| 4424 | + int domain_num = 0, i; |
| 4425 | + char buf[32]; |
| 4426 | + |
| 4427 | + for_each_domain(cpu, sd) |
| 4428 | + domain_num++; |
| 4429 | + entry = table = sd_alloc_ctl_entry(domain_num + 1); |
| 4430 | + if (table == NULL) |
| 4431 | + return NULL; |
| 4432 | + |
| 4433 | + i = 0; |
| 4434 | + for_each_domain(cpu, sd) { |
| 4435 | + snprintf(buf, 32, "domain%d", i); |
| 4436 | + entry->procname = kstrdup(buf, GFP_KERNEL); |
| 4437 | + entry->mode = 0555; |
| 4438 | + entry->child = sd_alloc_ctl_domain_table(sd); |
| 4439 | + entry++; |
| 4440 | + i++; |
| 4441 | + } |
| 4442 | + return table; |
| 4443 | +} |
| 4444 | + |
| 4445 | +static struct ctl_table_header *sd_sysctl_header; |
| 4446 | +static void register_sched_domain_sysctl(void) |
| 4447 | +{ |
| 4448 | + int i, cpu_num = num_online_cpus(); |
| 4449 | + struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); |
| 4450 | + char buf[32]; |
| 4451 | + |
| 4452 | + WARN_ON(sd_ctl_dir[0].child); |
| 4453 | + sd_ctl_dir[0].child = entry; |
| 4454 | + |
| 4455 | + if (entry == NULL) |
| 4456 | + return; |
| 4457 | + |
| 4458 | + for_each_online_cpu(i) { |
| 4459 | + snprintf(buf, 32, "cpu%d", i); |
| 4460 | + entry->procname = kstrdup(buf, GFP_KERNEL); |
| 4461 | + entry->mode = 0555; |
| 4462 | + entry->child = sd_alloc_ctl_cpu_table(i); |
| 4463 | + entry++; |
| 4464 | + } |
| 4465 | + |
| 4466 | + WARN_ON(sd_sysctl_header); |
| 4467 | + sd_sysctl_header = register_sysctl_table(sd_ctl_root); |
| 4468 | +} |
| 4469 | + |
| 4470 | +/* may be called multiple times per register */ |
| 4471 | +static void unregister_sched_domain_sysctl(void) |
| 4472 | +{ |
| 4473 | + if (sd_sysctl_header) |
| 4474 | + unregister_sysctl_table(sd_sysctl_header); |
| 4475 | + sd_sysctl_header = NULL; |
| 4476 | + if (sd_ctl_dir[0].child) |
| 4477 | + sd_free_ctl_entry(&sd_ctl_dir[0].child); |
| 4478 | +} |
| 4479 | +#else |
| 4480 | +static void register_sched_domain_sysctl(void) |
| 4481 | +{ |
| 4482 | +} |
| 4483 | +static void unregister_sched_domain_sysctl(void) |
| 4484 | +{ |
| 4485 | +} |
| 4486 | +#endif |
| 4487 | + |
| 4488 | +static void set_rq_online(struct rq *rq) |
| 4489 | +{ |
| 4490 | + if (!rq->online) { |
| 4491 | + cpumask_set_cpu(rq->cpu, rq->rd->online); |
| 4492 | + rq->online = 1; |
| 4493 | + } |
| 4494 | +} |
| 4495 | + |
| 4496 | +static void set_rq_offline(struct rq *rq) |
| 4497 | +{ |
| 4498 | + if (rq->online) { |
| 4499 | + cpumask_clear_cpu(rq->cpu, rq->rd->online); |
| 4500 | + rq->online = 0; |
| 4501 | + } |
| 4502 | +} |
| 4503 | + |
| 4504 | +#ifdef CONFIG_HOTPLUG_CPU |
| 4505 | +/* |
| 4506 | + * This cpu is going down, so walk over the tasklist and find tasks that can |
| 4507 | + * only run on this cpu and remove their affinity. Store their value in |
| 4508 | + * unplugged_mask so it can be restored once their correct cpu is online. No |
| 4509 | + * need to do anything special since they'll just move on next reschedule if |
| 4510 | + * they're running. |
| 4511 | + */ |
| 4512 | +static void remove_cpu(unsigned long cpu) |
| 4513 | +{ |
| 4514 | + struct task_struct *p, *t; |
| 4515 | + |
| 4516 | + read_lock(&tasklist_lock); |
| 4517 | + |
| 4518 | + do_each_thread(t, p) { |
| 4519 | + cpumask_t cpus_remaining; |
| 4520 | + |
| 4521 | + cpus_and(cpus_remaining, p->cpus_allowed, cpu_online_map); |
| 4522 | + cpu_clear(cpu, cpus_remaining); |
| 4523 | + if (cpus_empty(cpus_remaining)) { |
| 4524 | + p->unplugged_mask = p->cpus_allowed; |
| 4525 | + p->cpus_allowed = cpu_possible_map; |
| 4526 | + } |
| 4527 | + } while_each_thread(t, p); |
| 4528 | + |
| 4529 | + read_unlock(&tasklist_lock); |
| 4530 | +} |
| 4531 | + |
| 4532 | +/* |
| 4533 | + * This cpu is coming up so add it to the cpus_allowed. |
| 4534 | + */ |
| 4535 | +static void add_cpu(unsigned long cpu) |
| 4536 | +{ |
| 4537 | + struct task_struct *p, *t; |
| 4538 | + |
| 4539 | + read_lock(&tasklist_lock); |
| 4540 | + |
| 4541 | + do_each_thread(t, p) { |
| 4542 | + /* Have we taken all the cpus from the unplugged_mask back */ |
| 4543 | + if (cpus_empty(p->unplugged_mask)) |
| 4544 | + continue; |
| 4545 | + |
| 4546 | + /* Was this cpu in the unplugged_mask mask */ |
| 4547 | + if (cpu_isset(cpu, p->unplugged_mask)) { |
| 4548 | + cpu_set(cpu, p->cpus_allowed); |
| 4549 | + if (cpus_subset(p->unplugged_mask, p->cpus_allowed)) { |
| 4550 | + /* |
| 4551 | + * Have we set more than the unplugged_mask? |
| 4552 | + * If so, that means we have remnants set from |
| 4553 | + * the unplug/plug cycle and need to remove |
| 4554 | + * them. Then clear the unplugged_mask as we've |
| 4555 | + * set all the cpus back. |
| 4556 | + */ |
| 4557 | + p->cpus_allowed = p->unplugged_mask; |
| 4558 | + cpus_clear(p->unplugged_mask); |
| 4559 | + } |
| 4560 | + } |
| 4561 | + } while_each_thread(t, p); |
| 4562 | + |
| 4563 | + read_unlock(&tasklist_lock); |
| 4564 | +} |
| 4565 | +#else |
| 4566 | +static void add_cpu(unsigned long cpu) |
| 4567 | +{ |
| 4568 | +} |
| 4569 | +#endif |
| 4570 | + |
| 4571 | +/* |
| 4572 | + * migration_call - callback that gets triggered when a CPU is added. |
| 4573 | + */ |
| 4574 | +static int __cpuinit |
| 4575 | +migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) |
| 4576 | +{ |
| 4577 | + int cpu = (long)hcpu; |
| 4578 | + unsigned long flags; |
| 4579 | + struct rq *rq; |
| 4580 | + |
| 4581 | + switch (action) { |
| 4582 | + |
| 4583 | + case CPU_UP_PREPARE: |
| 4584 | + case CPU_UP_PREPARE_FROZEN: |
| 4585 | + break; |
| 4586 | + |
| 4587 | + case CPU_ONLINE: |
| 4588 | + case CPU_ONLINE_FROZEN: |
| 4589 | + /* Update our root-domain */ |
| 4590 | + rq = cpu_rq(cpu); |
| 4591 | + grq_lock_irqsave(&flags); |
| 4592 | + if (rq->rd) { |
| 4593 | + BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
| 4594 | + |
| 4595 | + set_rq_online(rq); |
| 4596 | + } |
| 4597 | + add_cpu(cpu); |
| 4598 | + grq_unlock_irqrestore(&flags); |
| 4599 | + break; |
| 4600 | + |
| 4601 | +#ifdef CONFIG_HOTPLUG_CPU |
| 4602 | + case CPU_UP_CANCELED: |
| 4603 | + case CPU_UP_CANCELED_FROZEN: |
| 4604 | + break; |
| 4605 | + |
| 4606 | + case CPU_DEAD: |
| 4607 | + case CPU_DEAD_FROZEN: |
| 4608 | + cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ |
| 4609 | + rq = cpu_rq(cpu); |
| 4610 | + /* Idle task back to normal (off runqueue, low prio) */ |
| 4611 | + grq_lock_irq(); |
| 4612 | + remove_cpu(cpu); |
| 4613 | + deactivate_task(rq->idle); |
| 4614 | + rq->idle->static_prio = MAX_PRIO; |
| 4615 | + __setscheduler(rq->idle, SCHED_NORMAL, 0); |
| 4616 | + rq->idle->prio = PRIO_LIMIT; |
| 4617 | + update_rq_clock(rq); |
| 4618 | + grq_unlock_irq(); |
| 4619 | + cpuset_unlock(); |
| 4620 | + break; |
| 4621 | + |
| 4622 | + case CPU_DYING: |
| 4623 | + case CPU_DYING_FROZEN: |
| 4624 | + rq = cpu_rq(cpu); |
| 4625 | + grq_lock_irqsave(&flags); |
| 4626 | + if (rq->rd) { |
| 4627 | + BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
| 4628 | + set_rq_offline(rq); |
| 4629 | + } |
| 4630 | + grq_unlock_irqrestore(&flags); |
| 4631 | + break; |
| 4632 | +#endif |
| 4633 | + } |
| 4634 | + return NOTIFY_OK; |
| 4635 | +} |
| 4636 | + |
| 4637 | +/* |
| 4638 | + * Register at high priority so that task migration (migrate_all_tasks) |
| 4639 | + * happens before everything else. This has to be lower priority than |
| 4640 | + * the notifier in the perf_counter subsystem, though. |
| 4641 | + */ |
| 4642 | +static struct notifier_block __cpuinitdata migration_notifier = { |
| 4643 | + .notifier_call = migration_call, |
| 4644 | + .priority = 10 |
| 4645 | +}; |
| 4646 | + |
| 4647 | +int __init migration_init(void) |
| 4648 | +{ |
| 4649 | + void *cpu = (void *)(long)smp_processor_id(); |
| 4650 | + int err; |
| 4651 | + |
| 4652 | + /* Start one for the boot CPU: */ |
| 4653 | + err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); |
| 4654 | + BUG_ON(err == NOTIFY_BAD); |
| 4655 | + migration_call(&migration_notifier, CPU_ONLINE, cpu); |
| 4656 | + register_cpu_notifier(&migration_notifier); |
| 4657 | + |
| 4658 | + return 0; |
| 4659 | +} |
| 4660 | +early_initcall(migration_init); |
| 4661 | +#endif |
| 4662 | + |
| 4663 | +/* |
| 4664 | + * sched_domains_mutex serializes calls to arch_init_sched_domains, |
| 4665 | + * detach_destroy_domains and partition_sched_domains. |
| 4666 | + */ |
| 4667 | +static DEFINE_MUTEX(sched_domains_mutex); |
| 4668 | + |
| 4669 | +#ifdef CONFIG_SMP |
| 4670 | + |
| 4671 | +#ifdef CONFIG_SCHED_DEBUG |
| 4672 | + |
| 4673 | +static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, |
| 4674 | + struct cpumask *groupmask) |
| 4675 | +{ |
| 4676 | + struct sched_group *group = sd->groups; |
| 4677 | + char str[256]; |
| 4678 | + |
| 4679 | + cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); |
| 4680 | + cpumask_clear(groupmask); |
| 4681 | + |
| 4682 | + printk(KERN_DEBUG "%*s domain %d: ", level, "", level); |
| 4683 | + |
| 4684 | + if (!(sd->flags & SD_LOAD_BALANCE)) { |
| 4685 | + printk("does not load-balance\n"); |
| 4686 | + if (sd->parent) |
| 4687 | + printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" |
| 4688 | + " has parent"); |
| 4689 | + return -1; |
| 4690 | + } |
| 4691 | + |
| 4692 | + printk(KERN_CONT "span %s level %s\n", str, sd->name); |
| 4693 | + |
| 4694 | + if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
| 4695 | + printk(KERN_ERR "ERROR: domain->span does not contain " |
| 4696 | + "CPU%d\n", cpu); |
| 4697 | + } |
| 4698 | + if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { |
| 4699 | + printk(KERN_ERR "ERROR: domain->groups does not contain" |
| 4700 | + " CPU%d\n", cpu); |
| 4701 | + } |
| 4702 | + |
| 4703 | + printk(KERN_DEBUG "%*s groups:", level + 1, ""); |
| 4704 | + do { |
| 4705 | + if (!group) { |
| 4706 | + printk("\n"); |
| 4707 | + printk(KERN_ERR "ERROR: group is NULL\n"); |
| 4708 | + break; |
| 4709 | + } |
| 4710 | + |
| 4711 | + if (!group->__cpu_power) { |
| 4712 | + printk(KERN_CONT "\n"); |
| 4713 | + printk(KERN_ERR "ERROR: domain->cpu_power not " |
| 4714 | + "set\n"); |
| 4715 | + break; |
| 4716 | + } |
| 4717 | + |
| 4718 | + if (!cpumask_weight(sched_group_cpus(group))) { |
| 4719 | + printk(KERN_CONT "\n"); |
| 4720 | + printk(KERN_ERR "ERROR: empty group\n"); |
| 4721 | + break; |
| 4722 | + } |
| 4723 | + |
| 4724 | + if (cpumask_intersects(groupmask, sched_group_cpus(group))) { |
| 4725 | + printk(KERN_CONT "\n"); |
| 4726 | + printk(KERN_ERR "ERROR: repeated CPUs\n"); |
| 4727 | + break; |
| 4728 | + } |
| 4729 | + |
| 4730 | + cpumask_or(groupmask, groupmask, sched_group_cpus(group)); |
| 4731 | + |
| 4732 | + cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); |
| 4733 | + |
| 4734 | + printk(KERN_CONT " %s", str); |
| 4735 | + if (group->__cpu_power != SCHED_LOAD_SCALE) { |
| 4736 | + printk(KERN_CONT " (__cpu_power = %d)", |
| 4737 | + group->__cpu_power); |
| 4738 | + } |
| 4739 | + |
| 4740 | + group = group->next; |
| 4741 | + } while (group != sd->groups); |
| 4742 | + printk(KERN_CONT "\n"); |
| 4743 | + |
| 4744 | + if (!cpumask_equal(sched_domain_span(sd), groupmask)) |
| 4745 | + printk(KERN_ERR "ERROR: groups don't span domain->span\n"); |
| 4746 | + |
| 4747 | + if (sd->parent && |
| 4748 | + !cpumask_subset(groupmask, sched_domain_span(sd->parent))) |
| 4749 | + printk(KERN_ERR "ERROR: parent span is not a superset " |
| 4750 | + "of domain->span\n"); |
| 4751 | + return 0; |
| 4752 | +} |
| 4753 | + |
| 4754 | +static void sched_domain_debug(struct sched_domain *sd, int cpu) |
| 4755 | +{ |
| 4756 | + cpumask_var_t groupmask; |
| 4757 | + int level = 0; |
| 4758 | + |
| 4759 | + if (!sd) { |
| 4760 | + printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); |
| 4761 | + return; |
| 4762 | + } |
| 4763 | + |
| 4764 | + printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); |
| 4765 | + |
| 4766 | + if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) { |
| 4767 | + printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); |
| 4768 | + return; |
| 4769 | + } |
| 4770 | + |
| 4771 | + for (;;) { |
| 4772 | + if (sched_domain_debug_one(sd, cpu, level, groupmask)) |
| 4773 | + break; |
| 4774 | + level++; |
| 4775 | + sd = sd->parent; |
| 4776 | + if (!sd) |
| 4777 | + break; |
| 4778 | + } |
| 4779 | + free_cpumask_var(groupmask); |
| 4780 | +} |
| 4781 | +#else /* !CONFIG_SCHED_DEBUG */ |
| 4782 | +# define sched_domain_debug(sd, cpu) do { } while (0) |
| 4783 | +#endif /* CONFIG_SCHED_DEBUG */ |
| 4784 | + |
| 4785 | +static int sd_degenerate(struct sched_domain *sd) |
| 4786 | +{ |
| 4787 | + if (cpumask_weight(sched_domain_span(sd)) == 1) |
| 4788 | + return 1; |
| 4789 | + |
| 4790 | + /* Following flags need at least 2 groups */ |
| 4791 | + if (sd->flags & (SD_LOAD_BALANCE | |
| 4792 | + SD_BALANCE_NEWIDLE | |
| 4793 | + SD_BALANCE_FORK | |
| 4794 | + SD_BALANCE_EXEC | |
| 4795 | + SD_SHARE_CPUPOWER | |
| 4796 | + SD_SHARE_PKG_RESOURCES)) { |
| 4797 | + if (sd->groups != sd->groups->next) |
| 4798 | + return 0; |
| 4799 | + } |
| 4800 | + |
| 4801 | + /* Following flags don't use groups */ |
| 4802 | + if (sd->flags & (SD_WAKE_IDLE | |
| 4803 | + SD_WAKE_AFFINE | |
| 4804 | + SD_WAKE_BALANCE)) |
| 4805 | + return 0; |
| 4806 | + |
| 4807 | + return 1; |
| 4808 | +} |
| 4809 | + |
| 4810 | +static int |
| 4811 | +sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) |
| 4812 | +{ |
| 4813 | + unsigned long cflags = sd->flags, pflags = parent->flags; |
| 4814 | + |
| 4815 | + if (sd_degenerate(parent)) |
| 4816 | + return 1; |
| 4817 | + |
| 4818 | + if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) |
| 4819 | + return 0; |
| 4820 | + |
| 4821 | + /* Does parent contain flags not in child? */ |
| 4822 | + /* WAKE_BALANCE is a subset of WAKE_AFFINE */ |
| 4823 | + if (cflags & SD_WAKE_AFFINE) |
| 4824 | + pflags &= ~SD_WAKE_BALANCE; |
| 4825 | + /* Flags needing groups don't count if only 1 group in parent */ |
| 4826 | + if (parent->groups == parent->groups->next) { |
| 4827 | + pflags &= ~(SD_LOAD_BALANCE | |
| 4828 | + SD_BALANCE_NEWIDLE | |
| 4829 | + SD_BALANCE_FORK | |
| 4830 | + SD_BALANCE_EXEC | |
| 4831 | + SD_SHARE_CPUPOWER | |
| 4832 | + SD_SHARE_PKG_RESOURCES); |
| 4833 | + if (nr_node_ids == 1) |
| 4834 | + pflags &= ~SD_SERIALIZE; |
| 4835 | + } |
| 4836 | + if (~cflags & pflags) |
| 4837 | + return 0; |
| 4838 | + |
| 4839 | + return 1; |
| 4840 | +} |
| 4841 | + |
| 4842 | +static void free_rootdomain(struct root_domain *rd) |
| 4843 | +{ |
| 4844 | + free_cpumask_var(rd->rto_mask); |
| 4845 | + free_cpumask_var(rd->online); |
| 4846 | + free_cpumask_var(rd->span); |
| 4847 | + kfree(rd); |
| 4848 | +} |
| 4849 | + |
| 4850 | +static void rq_attach_root(struct rq *rq, struct root_domain *rd) |
| 4851 | +{ |
| 4852 | + struct root_domain *old_rd = NULL; |
| 4853 | + unsigned long flags; |
| 4854 | + |
| 4855 | + grq_lock_irqsave(&flags); |
| 4856 | + |
| 4857 | + if (rq->rd) { |
| 4858 | + old_rd = rq->rd; |
| 4859 | + |
| 4860 | + if (cpumask_test_cpu(rq->cpu, old_rd->online)) |
| 4861 | + set_rq_offline(rq); |
| 4862 | + |
| 4863 | + cpumask_clear_cpu(rq->cpu, old_rd->span); |
| 4864 | + |
| 4865 | + /* |
| 4866 | + * If we dont want to free the old_rt yet then |
| 4867 | + * set old_rd to NULL to skip the freeing later |
| 4868 | + * in this function: |
| 4869 | + */ |
| 4870 | + if (!atomic_dec_and_test(&old_rd->refcount)) |
| 4871 | + old_rd = NULL; |
| 4872 | + } |
| 4873 | + |
| 4874 | + atomic_inc(&rd->refcount); |
| 4875 | + rq->rd = rd; |
| 4876 | + |
| 4877 | + cpumask_set_cpu(rq->cpu, rd->span); |
| 4878 | + if (cpumask_test_cpu(rq->cpu, cpu_online_mask)) |
| 4879 | + set_rq_online(rq); |
| 4880 | + |
| 4881 | + grq_unlock_irqrestore(&flags); |
| 4882 | + |
| 4883 | + if (old_rd) |
| 4884 | + free_rootdomain(old_rd); |
| 4885 | +} |
| 4886 | + |
| 4887 | +static int init_rootdomain(struct root_domain *rd, bool bootmem) |
| 4888 | +{ |
| 4889 | + gfp_t gfp = GFP_KERNEL; |
| 4890 | + |
| 4891 | + memset(rd, 0, sizeof(*rd)); |
| 4892 | + |
| 4893 | + if (bootmem) |
| 4894 | + gfp = GFP_NOWAIT; |
| 4895 | + |
| 4896 | + if (!alloc_cpumask_var(&rd->span, gfp)) |
| 4897 | + goto out; |
| 4898 | + if (!alloc_cpumask_var(&rd->online, gfp)) |
| 4899 | + goto free_span; |
| 4900 | + if (!alloc_cpumask_var(&rd->rto_mask, gfp)) |
| 4901 | + goto free_online; |
| 4902 | + |
| 4903 | + return 0; |
| 4904 | + |
| 4905 | +free_online: |
| 4906 | + free_cpumask_var(rd->online); |
| 4907 | +free_span: |
| 4908 | + free_cpumask_var(rd->span); |
| 4909 | +out: |
| 4910 | + return -ENOMEM; |
| 4911 | +} |
| 4912 | + |
| 4913 | +static void init_defrootdomain(void) |
| 4914 | +{ |
| 4915 | + init_rootdomain(&def_root_domain, true); |
| 4916 | + |
| 4917 | + atomic_set(&def_root_domain.refcount, 1); |
| 4918 | +} |
| 4919 | + |
| 4920 | +static struct root_domain *alloc_rootdomain(void) |
| 4921 | +{ |
| 4922 | + struct root_domain *rd; |
| 4923 | + |
| 4924 | + rd = kmalloc(sizeof(*rd), GFP_KERNEL); |
| 4925 | + if (!rd) |
| 4926 | + return NULL; |
| 4927 | + |
| 4928 | + if (init_rootdomain(rd, false) != 0) { |
| 4929 | + kfree(rd); |
| 4930 | + return NULL; |
| 4931 | + } |
| 4932 | + |
| 4933 | + return rd; |
| 4934 | +} |
| 4935 | + |
| 4936 | +/* |
| 4937 | + * Attach the domain 'sd' to 'cpu' as its base domain. Callers must |
| 4938 | + * hold the hotplug lock. |
| 4939 | + */ |
| 4940 | +static void |
| 4941 | +cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) |
| 4942 | +{ |
| 4943 | + struct rq *rq = cpu_rq(cpu); |
| 4944 | + struct sched_domain *tmp; |
| 4945 | + |
| 4946 | + /* Remove the sched domains which do not contribute to scheduling. */ |
| 4947 | + for (tmp = sd; tmp; ) { |
| 4948 | + struct sched_domain *parent = tmp->parent; |
| 4949 | + if (!parent) |
| 4950 | + break; |
| 4951 | + |
| 4952 | + if (sd_parent_degenerate(tmp, parent)) { |
| 4953 | + tmp->parent = parent->parent; |
| 4954 | + if (parent->parent) |
| 4955 | + parent->parent->child = tmp; |
| 4956 | + } else |
| 4957 | + tmp = tmp->parent; |
| 4958 | + } |
| 4959 | + |
| 4960 | + if (sd && sd_degenerate(sd)) { |
| 4961 | + sd = sd->parent; |
| 4962 | + if (sd) |
| 4963 | + sd->child = NULL; |
| 4964 | + } |
| 4965 | + |
| 4966 | + sched_domain_debug(sd, cpu); |
| 4967 | + |
| 4968 | + rq_attach_root(rq, rd); |
| 4969 | + rcu_assign_pointer(rq->sd, sd); |
| 4970 | +} |
| 4971 | + |
| 4972 | +/* cpus with isolated domains */ |
| 4973 | +static cpumask_var_t cpu_isolated_map; |
| 4974 | + |
| 4975 | +/* Setup the mask of cpus configured for isolated domains */ |
| 4976 | +static int __init isolated_cpu_setup(char *str) |
| 4977 | +{ |
| 4978 | + cpulist_parse(str, cpu_isolated_map); |
| 4979 | + return 1; |
| 4980 | +} |
| 4981 | + |
| 4982 | +__setup("isolcpus=", isolated_cpu_setup); |
| 4983 | + |
| 4984 | +/* |
| 4985 | + * init_sched_build_groups takes the cpumask we wish to span, and a pointer |
| 4986 | + * to a function which identifies what group(along with sched group) a CPU |
| 4987 | + * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids |
| 4988 | + * (due to the fact that we keep track of groups covered with a struct cpumask). |
| 4989 | + * |
| 4990 | + * init_sched_build_groups will build a circular linked list of the groups |
| 4991 | + * covered by the given span, and will set each group's ->cpumask correctly, |
| 4992 | + * and ->cpu_power to 0. |
| 4993 | + */ |
| 4994 | +static void |
| 4995 | +init_sched_build_groups(const struct cpumask *span, |
| 4996 | + const struct cpumask *cpu_map, |
| 4997 | + int (*group_fn)(int cpu, const struct cpumask *cpu_map, |
| 4998 | + struct sched_group **sg, |
| 4999 | + struct cpumask *tmpmask), |
| 5000 | + struct cpumask *covered, struct cpumask *tmpmask) |
| 5001 | +{ |
| 5002 | + struct sched_group *first = NULL, *last = NULL; |
| 5003 | + int i; |
| 5004 | + |
| 5005 | + cpumask_clear(covered); |
| 5006 | + |
| 5007 | + for_each_cpu(i, span) { |
| 5008 | + struct sched_group *sg; |
| 5009 | + int group = group_fn(i, cpu_map, &sg, tmpmask); |
| 5010 | + int j; |
| 5011 | + |
| 5012 | + if (cpumask_test_cpu(i, covered)) |
| 5013 | + continue; |
| 5014 | + |
| 5015 | + cpumask_clear(sched_group_cpus(sg)); |
| 5016 | + sg->__cpu_power = 0; |
| 5017 | + |
| 5018 | + for_each_cpu(j, span) { |
| 5019 | + if (group_fn(j, cpu_map, NULL, tmpmask) != group) |
| 5020 | + continue; |
| 5021 | + |
| 5022 | + cpumask_set_cpu(j, covered); |
| 5023 | + cpumask_set_cpu(j, sched_group_cpus(sg)); |
| 5024 | + } |
| 5025 | + if (!first) |
| 5026 | + first = sg; |
| 5027 | + if (last) |
| 5028 | + last->next = sg; |
| 5029 | + last = sg; |
| 5030 | + } |
| 5031 | + last->next = first; |
| 5032 | +} |
| 5033 | + |
| 5034 | +#define SD_NODES_PER_DOMAIN 16 |
| 5035 | + |
| 5036 | +#ifdef CONFIG_NUMA |
| 5037 | + |
| 5038 | +/** |
| 5039 | + * find_next_best_node - find the next node to include in a sched_domain |
| 5040 | + * @node: node whose sched_domain we're building |
| 5041 | + * @used_nodes: nodes already in the sched_domain |
| 5042 | + * |
| 5043 | + * Find the next node to include in a given scheduling domain. Simply |
| 5044 | + * finds the closest node not already in the @used_nodes map. |
| 5045 | + * |
| 5046 | + * Should use nodemask_t. |
| 5047 | + */ |
| 5048 | +static int find_next_best_node(int node, nodemask_t *used_nodes) |
| 5049 | +{ |
| 5050 | + int i, n, val, min_val, best_node = 0; |
| 5051 | + |
| 5052 | + min_val = INT_MAX; |
| 5053 | + |
| 5054 | + for (i = 0; i < nr_node_ids; i++) { |
| 5055 | + /* Start at @node */ |
| 5056 | + n = (node + i) % nr_node_ids; |
| 5057 | + |
| 5058 | + if (!nr_cpus_node(n)) |
| 5059 | + continue; |
| 5060 | + |
| 5061 | + /* Skip already used nodes */ |
| 5062 | + if (node_isset(n, *used_nodes)) |
| 5063 | + continue; |
| 5064 | + |
| 5065 | + /* Simple min distance search */ |
| 5066 | + val = node_distance(node, n); |
| 5067 | + |
| 5068 | + if (val < min_val) { |
| 5069 | + min_val = val; |
| 5070 | + best_node = n; |
| 5071 | + } |
| 5072 | + } |
| 5073 | + |
| 5074 | + node_set(best_node, *used_nodes); |
| 5075 | + return best_node; |
| 5076 | +} |
| 5077 | + |
| 5078 | +/** |
| 5079 | + * sched_domain_node_span - get a cpumask for a node's sched_domain |
| 5080 | + * @node: node whose cpumask we're constructing |
| 5081 | + * @span: resulting cpumask |
| 5082 | + * |
| 5083 | + * Given a node, construct a good cpumask for its sched_domain to span. It |
| 5084 | + * should be one that prevents unnecessary balancing, but also spreads tasks |
| 5085 | + * out optimally. |
| 5086 | + */ |
| 5087 | +static void sched_domain_node_span(int node, struct cpumask *span) |
| 5088 | +{ |
| 5089 | + nodemask_t used_nodes; |
| 5090 | + int i; |
| 5091 | + |
| 5092 | + cpumask_clear(span); |
| 5093 | + nodes_clear(used_nodes); |
| 5094 | + |
| 5095 | + cpumask_or(span, span, cpumask_of_node(node)); |
| 5096 | + node_set(node, used_nodes); |
| 5097 | + |
| 5098 | + for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { |
| 5099 | + int next_node = find_next_best_node(node, &used_nodes); |
| 5100 | + |
| 5101 | + cpumask_or(span, span, cpumask_of_node(next_node)); |
| 5102 | + } |
| 5103 | +} |
| 5104 | +#endif /* CONFIG_NUMA */ |
| 5105 | + |
| 5106 | +int sched_smt_power_savings = 0, sched_mc_power_savings = 0; |
| 5107 | + |
| 5108 | +/* |
| 5109 | + * The cpus mask in sched_group and sched_domain hangs off the end. |
| 5110 | + * |
| 5111 | + * ( See the the comments in include/linux/sched.h:struct sched_group |
| 5112 | + * and struct sched_domain. ) |
| 5113 | + */ |
| 5114 | +struct static_sched_group { |
| 5115 | + struct sched_group sg; |
| 5116 | + DECLARE_BITMAP(cpus, CONFIG_NR_CPUS); |
| 5117 | +}; |
| 5118 | + |
| 5119 | +struct static_sched_domain { |
| 5120 | + struct sched_domain sd; |
| 5121 | + DECLARE_BITMAP(span, CONFIG_NR_CPUS); |
| 5122 | +}; |
| 5123 | + |
| 5124 | +/* |
| 5125 | + * SMT sched-domains: |
| 5126 | + */ |
| 5127 | +#ifdef CONFIG_SCHED_SMT |
| 5128 | +static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); |
| 5129 | +static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus); |
| 5130 | + |
| 5131 | +static int |
| 5132 | +cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, |
| 5133 | + struct sched_group **sg, struct cpumask *unused) |
| 5134 | +{ |
| 5135 | + if (sg) |
| 5136 | + *sg = &per_cpu(sched_group_cpus, cpu).sg; |
| 5137 | + return cpu; |
| 5138 | +} |
| 5139 | +#endif /* CONFIG_SCHED_SMT */ |
| 5140 | + |
| 5141 | +/* |
| 5142 | + * multi-core sched-domains: |
| 5143 | + */ |
| 5144 | +#ifdef CONFIG_SCHED_MC |
| 5145 | +static DEFINE_PER_CPU(struct static_sched_domain, core_domains); |
| 5146 | +static DEFINE_PER_CPU(struct static_sched_group, sched_group_core); |
| 5147 | +#endif /* CONFIG_SCHED_MC */ |
| 5148 | + |
| 5149 | +#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) |
| 5150 | +static int |
| 5151 | +cpu_to_core_group(int cpu, const struct cpumask *cpu_map, |
| 5152 | + struct sched_group **sg, struct cpumask *mask) |
| 5153 | +{ |
| 5154 | + int group; |
| 5155 | + |
| 5156 | + cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); |
| 5157 | + group = cpumask_first(mask); |
| 5158 | + if (sg) |
| 5159 | + *sg = &per_cpu(sched_group_core, group).sg; |
| 5160 | + return group; |
| 5161 | +} |
| 5162 | +#elif defined(CONFIG_SCHED_MC) |
| 5163 | +static int |
| 5164 | +cpu_to_core_group(int cpu, const struct cpumask *cpu_map, |
| 5165 | + struct sched_group **sg, struct cpumask *unused) |
| 5166 | +{ |
| 5167 | + if (sg) |
| 5168 | + *sg = &per_cpu(sched_group_core, cpu).sg; |
| 5169 | + return cpu; |
| 5170 | +} |
| 5171 | +#endif |
| 5172 | + |
| 5173 | +static DEFINE_PER_CPU(struct static_sched_domain, phys_domains); |
| 5174 | +static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys); |
| 5175 | + |
| 5176 | +static int |
| 5177 | +cpu_to_phys_group(int cpu, const struct cpumask *cpu_map, |
| 5178 | + struct sched_group **sg, struct cpumask *mask) |
| 5179 | +{ |
| 5180 | + int group; |
| 5181 | +#ifdef CONFIG_SCHED_MC |
| 5182 | + cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map); |
| 5183 | + group = cpumask_first(mask); |
| 5184 | +#elif defined(CONFIG_SCHED_SMT) |
| 5185 | + cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); |
| 5186 | + group = cpumask_first(mask); |
| 5187 | +#else |
| 5188 | + group = cpu; |
| 5189 | +#endif |
| 5190 | + if (sg) |
| 5191 | + *sg = &per_cpu(sched_group_phys, group).sg; |
| 5192 | + return group; |
| 5193 | +} |
| 5194 | + |
| 5195 | +/** |
| 5196 | + * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. |
| 5197 | + * @group: The group whose first cpu is to be returned. |
| 5198 | + */ |
| 5199 | +static inline unsigned int group_first_cpu(struct sched_group *group) |
| 5200 | +{ |
| 5201 | + return cpumask_first(sched_group_cpus(group)); |
| 5202 | +} |
| 5203 | + |
| 5204 | +#ifdef CONFIG_NUMA |
| 5205 | +/* |
| 5206 | + * The init_sched_build_groups can't handle what we want to do with node |
| 5207 | + * groups, so roll our own. Now each node has its own list of groups which |
| 5208 | + * gets dynamically allocated. |
| 5209 | + */ |
| 5210 | +static DEFINE_PER_CPU(struct static_sched_domain, node_domains); |
| 5211 | +static struct sched_group ***sched_group_nodes_bycpu; |
| 5212 | + |
| 5213 | +static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains); |
| 5214 | +static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes); |
| 5215 | + |
| 5216 | +static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map, |
| 5217 | + struct sched_group **sg, |
| 5218 | + struct cpumask *nodemask) |
| 5219 | +{ |
| 5220 | + int group; |
| 5221 | + |
| 5222 | + cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map); |
| 5223 | + group = cpumask_first(nodemask); |
| 5224 | + |
| 5225 | + if (sg) |
| 5226 | + *sg = &per_cpu(sched_group_allnodes, group).sg; |
| 5227 | + return group; |
| 5228 | +} |
| 5229 | + |
| 5230 | +static void init_numa_sched_groups_power(struct sched_group *group_head) |
| 5231 | +{ |
| 5232 | + struct sched_group *sg = group_head; |
| 5233 | + int j; |
| 5234 | + |
| 5235 | + if (!sg) |
| 5236 | + return; |
| 5237 | + do { |
| 5238 | + for_each_cpu(j, sched_group_cpus(sg)) { |
| 5239 | + struct sched_domain *sd; |
| 5240 | + |
| 5241 | + sd = &per_cpu(phys_domains, j).sd; |
| 5242 | + if (j != group_first_cpu(sd->groups)) { |
| 5243 | + /* |
| 5244 | + * Only add "power" once for each |
| 5245 | + * physical package. |
| 5246 | + */ |
| 5247 | + continue; |
| 5248 | + } |
| 5249 | + |
| 5250 | + sg_inc_cpu_power(sg, sd->groups->__cpu_power); |
| 5251 | + } |
| 5252 | + sg = sg->next; |
| 5253 | + } while (sg != group_head); |
| 5254 | +} |
| 5255 | +#endif /* CONFIG_NUMA */ |
| 5256 | + |
| 5257 | +#ifdef CONFIG_NUMA |
| 5258 | +/* Free memory allocated for various sched_group structures */ |
| 5259 | +static void free_sched_groups(const struct cpumask *cpu_map, |
| 5260 | + struct cpumask *nodemask) |
| 5261 | +{ |
| 5262 | + int cpu, i; |
| 5263 | + |
| 5264 | + for_each_cpu(cpu, cpu_map) { |
| 5265 | + struct sched_group **sched_group_nodes |
| 5266 | + = sched_group_nodes_bycpu[cpu]; |
| 5267 | + |
| 5268 | + if (!sched_group_nodes) |
| 5269 | + continue; |
| 5270 | + |
| 5271 | + for (i = 0; i < nr_node_ids; i++) { |
| 5272 | + struct sched_group *oldsg, *sg = sched_group_nodes[i]; |
| 5273 | + |
| 5274 | + cpumask_and(nodemask, cpumask_of_node(i), cpu_map); |
| 5275 | + if (cpumask_empty(nodemask)) |
| 5276 | + continue; |
| 5277 | + |
| 5278 | + if (sg == NULL) |
| 5279 | + continue; |
| 5280 | + sg = sg->next; |
| 5281 | +next_sg: |
| 5282 | + oldsg = sg; |
| 5283 | + sg = sg->next; |
| 5284 | + kfree(oldsg); |
| 5285 | + if (oldsg != sched_group_nodes[i]) |
| 5286 | + goto next_sg; |
| 5287 | + } |
| 5288 | + kfree(sched_group_nodes); |
| 5289 | + sched_group_nodes_bycpu[cpu] = NULL; |
| 5290 | + } |
| 5291 | +} |
| 5292 | +#else /* !CONFIG_NUMA */ |
| 5293 | +static void free_sched_groups(const struct cpumask *cpu_map, |
| 5294 | + struct cpumask *nodemask) |
| 5295 | +{ |
| 5296 | +} |
| 5297 | +#endif /* CONFIG_NUMA */ |
| 5298 | + |
| 5299 | +/* |
| 5300 | + * Initialize sched groups cpu_power. |
| 5301 | + * |
| 5302 | + * cpu_power indicates the capacity of sched group, which is used while |
| 5303 | + * distributing the load between different sched groups in a sched domain. |
| 5304 | + * Typically cpu_power for all the groups in a sched domain will be same unless |
| 5305 | + * there are asymmetries in the topology. If there are asymmetries, group |
| 5306 | + * having more cpu_power will pickup more load compared to the group having |
| 5307 | + * less cpu_power. |
| 5308 | + * |
| 5309 | + * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents |
| 5310 | + * the maximum number of tasks a group can handle in the presence of other idle |
| 5311 | + * or lightly loaded groups in the same sched domain. |
| 5312 | + */ |
| 5313 | +static void init_sched_groups_power(int cpu, struct sched_domain *sd) |
| 5314 | +{ |
| 5315 | + struct sched_domain *child; |
| 5316 | + struct sched_group *group; |
| 5317 | + |
| 5318 | + WARN_ON(!sd || !sd->groups); |
| 5319 | + |
| 5320 | + if (cpu != group_first_cpu(sd->groups)) |
| 5321 | + return; |
| 5322 | + |
| 5323 | + child = sd->child; |
| 5324 | + |
| 5325 | + sd->groups->__cpu_power = 0; |
| 5326 | + |
| 5327 | + /* |
| 5328 | + * For perf policy, if the groups in child domain share resources |
| 5329 | + * (for example cores sharing some portions of the cache hierarchy |
| 5330 | + * or SMT), then set this domain groups cpu_power such that each group |
| 5331 | + * can handle only one task, when there are other idle groups in the |
| 5332 | + * same sched domain. |
| 5333 | + */ |
| 5334 | + if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && |
| 5335 | + (child->flags & |
| 5336 | + (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { |
| 5337 | + sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); |
| 5338 | + return; |
| 5339 | + } |
| 5340 | + |
| 5341 | + /* |
| 5342 | + * add cpu_power of each child group to this groups cpu_power |
| 5343 | + */ |
| 5344 | + group = child->groups; |
| 5345 | + do { |
| 5346 | + sg_inc_cpu_power(sd->groups, group->__cpu_power); |
| 5347 | + group = group->next; |
| 5348 | + } while (group != child->groups); |
| 5349 | +} |
| 5350 | + |
| 5351 | +/* |
| 5352 | + * Initializers for schedule domains |
| 5353 | + * Non-inlined to reduce accumulated stack pressure in build_sched_domains() |
| 5354 | + */ |
| 5355 | + |
| 5356 | +#ifdef CONFIG_SCHED_DEBUG |
| 5357 | +# define SD_INIT_NAME(sd, type) sd->name = #type |
| 5358 | +#else |
| 5359 | +# define SD_INIT_NAME(sd, type) do { } while (0) |
| 5360 | +#endif |
| 5361 | + |
| 5362 | +#define SD_INIT(sd, type) sd_init_##type(sd) |
| 5363 | + |
| 5364 | +#define SD_INIT_FUNC(type) \ |
| 5365 | +static noinline void sd_init_##type(struct sched_domain *sd) \ |
| 5366 | +{ \ |
| 5367 | + memset(sd, 0, sizeof(*sd)); \ |
| 5368 | + *sd = SD_##type##_INIT; \ |
| 5369 | + sd->level = SD_LV_##type; \ |
| 5370 | + SD_INIT_NAME(sd, type); \ |
| 5371 | +} |
| 5372 | + |
| 5373 | +SD_INIT_FUNC(CPU) |
| 5374 | +#ifdef CONFIG_NUMA |
| 5375 | + SD_INIT_FUNC(ALLNODES) |
| 5376 | + SD_INIT_FUNC(NODE) |
| 5377 | +#endif |
| 5378 | +#ifdef CONFIG_SCHED_SMT |
| 5379 | + SD_INIT_FUNC(SIBLING) |
| 5380 | +#endif |
| 5381 | +#ifdef CONFIG_SCHED_MC |
| 5382 | + SD_INIT_FUNC(MC) |
| 5383 | +#endif |
| 5384 | + |
| 5385 | +static int default_relax_domain_level = -1; |
| 5386 | + |
| 5387 | +static int __init setup_relax_domain_level(char *str) |
| 5388 | +{ |
| 5389 | + unsigned long val; |
| 5390 | + |
| 5391 | + val = simple_strtoul(str, NULL, 0); |
| 5392 | + if (val < SD_LV_MAX) |
| 5393 | + default_relax_domain_level = val; |
| 5394 | + |
| 5395 | + return 1; |
| 5396 | +} |
| 5397 | +__setup("relax_domain_level=", setup_relax_domain_level); |
| 5398 | + |
| 5399 | +static void set_domain_attribute(struct sched_domain *sd, |
| 5400 | + struct sched_domain_attr *attr) |
| 5401 | +{ |
| 5402 | + int request; |
| 5403 | + |
| 5404 | + if (!attr || attr->relax_domain_level < 0) { |
| 5405 | + if (default_relax_domain_level < 0) |
| 5406 | + return; |
| 5407 | + else |
| 5408 | + request = default_relax_domain_level; |
| 5409 | + } else |
| 5410 | + request = attr->relax_domain_level; |
| 5411 | + if (request < sd->level) { |
| 5412 | + /* turn off idle balance on this domain */ |
| 5413 | + sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); |
| 5414 | + } else { |
| 5415 | + /* turn on idle balance on this domain */ |
| 5416 | + sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); |
| 5417 | + } |
| 5418 | +} |
| 5419 | + |
| 5420 | +/* |
| 5421 | + * Build sched domains for a given set of cpus and attach the sched domains |
| 5422 | + * to the individual cpus |
| 5423 | + */ |
| 5424 | +static int __build_sched_domains(const struct cpumask *cpu_map, |
| 5425 | + struct sched_domain_attr *attr) |
| 5426 | +{ |
| 5427 | + int i, err = -ENOMEM; |
| 5428 | + struct root_domain *rd; |
| 5429 | + cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered, |
| 5430 | + tmpmask; |
| 5431 | +#ifdef CONFIG_NUMA |
| 5432 | + cpumask_var_t domainspan, covered, notcovered; |
| 5433 | + struct sched_group **sched_group_nodes = NULL; |
| 5434 | + int sd_allnodes = 0; |
| 5435 | + |
| 5436 | + if (!alloc_cpumask_var(&domainspan, GFP_KERNEL)) |
| 5437 | + goto out; |
| 5438 | + if (!alloc_cpumask_var(&covered, GFP_KERNEL)) |
| 5439 | + goto free_domainspan; |
| 5440 | + if (!alloc_cpumask_var(¬covered, GFP_KERNEL)) |
| 5441 | + goto free_covered; |
| 5442 | +#endif |
| 5443 | + |
| 5444 | + if (!alloc_cpumask_var(&nodemask, GFP_KERNEL)) |
| 5445 | + goto free_notcovered; |
| 5446 | + if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL)) |
| 5447 | + goto free_nodemask; |
| 5448 | + if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL)) |
| 5449 | + goto free_this_sibling_map; |
| 5450 | + if (!alloc_cpumask_var(&send_covered, GFP_KERNEL)) |
| 5451 | + goto free_this_core_map; |
| 5452 | + if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) |
| 5453 | + goto free_send_covered; |
| 5454 | + |
| 5455 | +#ifdef CONFIG_NUMA |
| 5456 | + /* |
| 5457 | + * Allocate the per-node list of sched groups |
| 5458 | + */ |
| 5459 | + sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *), |
| 5460 | + GFP_KERNEL); |
| 5461 | + if (!sched_group_nodes) { |
| 5462 | + printk(KERN_WARNING "Can not alloc sched group node list\n"); |
| 5463 | + goto free_tmpmask; |
| 5464 | + } |
| 5465 | +#endif |
| 5466 | + |
| 5467 | + rd = alloc_rootdomain(); |
| 5468 | + if (!rd) { |
| 5469 | + printk(KERN_WARNING "Cannot alloc root domain\n"); |
| 5470 | + goto free_sched_groups; |
| 5471 | + } |
| 5472 | + |
| 5473 | +#ifdef CONFIG_NUMA |
| 5474 | + sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes; |
| 5475 | +#endif |
| 5476 | + |
| 5477 | + /* |
| 5478 | + * Set up domains for cpus specified by the cpu_map. |
| 5479 | + */ |
| 5480 | + for_each_cpu(i, cpu_map) { |
| 5481 | + struct sched_domain *sd = NULL, *p; |
| 5482 | + |
| 5483 | + cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map); |
| 5484 | + |
| 5485 | +#ifdef CONFIG_NUMA |
| 5486 | + if (cpumask_weight(cpu_map) > |
| 5487 | + SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) { |
| 5488 | + sd = &per_cpu(allnodes_domains, i).sd; |
| 5489 | + SD_INIT(sd, ALLNODES); |
| 5490 | + set_domain_attribute(sd, attr); |
| 5491 | + cpumask_copy(sched_domain_span(sd), cpu_map); |
| 5492 | + cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); |
| 5493 | + p = sd; |
| 5494 | + sd_allnodes = 1; |
| 5495 | + } else |
| 5496 | + p = NULL; |
| 5497 | + |
| 5498 | + sd = &per_cpu(node_domains, i).sd; |
| 5499 | + SD_INIT(sd, NODE); |
| 5500 | + set_domain_attribute(sd, attr); |
| 5501 | + sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); |
| 5502 | + sd->parent = p; |
| 5503 | + if (p) |
| 5504 | + p->child = sd; |
| 5505 | + cpumask_and(sched_domain_span(sd), |
| 5506 | + sched_domain_span(sd), cpu_map); |
| 5507 | +#endif |
| 5508 | + |
| 5509 | + p = sd; |
| 5510 | + sd = &per_cpu(phys_domains, i).sd; |
| 5511 | + SD_INIT(sd, CPU); |
| 5512 | + set_domain_attribute(sd, attr); |
| 5513 | + cpumask_copy(sched_domain_span(sd), nodemask); |
| 5514 | + sd->parent = p; |
| 5515 | + if (p) |
| 5516 | + p->child = sd; |
| 5517 | + cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask); |
| 5518 | + |
| 5519 | +#ifdef CONFIG_SCHED_MC |
| 5520 | + p = sd; |
| 5521 | + sd = &per_cpu(core_domains, i).sd; |
| 5522 | + SD_INIT(sd, MC); |
| 5523 | + set_domain_attribute(sd, attr); |
| 5524 | + cpumask_and(sched_domain_span(sd), cpu_map, |
| 5525 | + cpu_coregroup_mask(i)); |
| 5526 | + sd->parent = p; |
| 5527 | + p->child = sd; |
| 5528 | + cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); |
| 5529 | +#endif |
| 5530 | + |
| 5531 | +#ifdef CONFIG_SCHED_SMT |
| 5532 | + p = sd; |
| 5533 | + sd = &per_cpu(cpu_domains, i).sd; |
| 5534 | + SD_INIT(sd, SIBLING); |
| 5535 | + set_domain_attribute(sd, attr); |
| 5536 | + cpumask_and(sched_domain_span(sd), |
| 5537 | + topology_thread_cpumask(i), cpu_map); |
| 5538 | + sd->parent = p; |
| 5539 | + p->child = sd; |
| 5540 | + cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); |
| 5541 | +#endif |
| 5542 | + } |
| 5543 | + |
| 5544 | +#ifdef CONFIG_SCHED_SMT |
| 5545 | + /* Set up CPU (sibling) groups */ |
| 5546 | + for_each_cpu(i, cpu_map) { |
| 5547 | + cpumask_and(this_sibling_map, |
| 5548 | + topology_thread_cpumask(i), cpu_map); |
| 5549 | + if (i != cpumask_first(this_sibling_map)) |
| 5550 | + continue; |
| 5551 | + |
| 5552 | + init_sched_build_groups(this_sibling_map, cpu_map, |
| 5553 | + &cpu_to_cpu_group, |
| 5554 | + send_covered, tmpmask); |
| 5555 | + } |
| 5556 | +#endif |
| 5557 | + |
| 5558 | +#ifdef CONFIG_SCHED_MC |
| 5559 | + /* Set up multi-core groups */ |
| 5560 | + for_each_cpu(i, cpu_map) { |
| 5561 | + cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map); |
| 5562 | + if (i != cpumask_first(this_core_map)) |
| 5563 | + continue; |
| 5564 | + |
| 5565 | + init_sched_build_groups(this_core_map, cpu_map, |
| 5566 | + &cpu_to_core_group, |
| 5567 | + send_covered, tmpmask); |
| 5568 | + } |
| 5569 | +#endif |
| 5570 | + |
| 5571 | + /* Set up physical groups */ |
| 5572 | + for (i = 0; i < nr_node_ids; i++) { |
| 5573 | + cpumask_and(nodemask, cpumask_of_node(i), cpu_map); |
| 5574 | + if (cpumask_empty(nodemask)) |
| 5575 | + continue; |
| 5576 | + |
| 5577 | + init_sched_build_groups(nodemask, cpu_map, |
| 5578 | + &cpu_to_phys_group, |
| 5579 | + send_covered, tmpmask); |
| 5580 | + } |
| 5581 | + |
| 5582 | +#ifdef CONFIG_NUMA |
| 5583 | + /* Set up node groups */ |
| 5584 | + if (sd_allnodes) { |
| 5585 | + init_sched_build_groups(cpu_map, cpu_map, |
| 5586 | + &cpu_to_allnodes_group, |
| 5587 | + send_covered, tmpmask); |
| 5588 | + } |
| 5589 | + |
| 5590 | + for (i = 0; i < nr_node_ids; i++) { |
| 5591 | + /* Set up node groups */ |
| 5592 | + struct sched_group *sg, *prev; |
| 5593 | + int j; |
| 5594 | + |
| 5595 | + cpumask_clear(covered); |
| 5596 | + cpumask_and(nodemask, cpumask_of_node(i), cpu_map); |
| 5597 | + if (cpumask_empty(nodemask)) { |
| 5598 | + sched_group_nodes[i] = NULL; |
| 5599 | + continue; |
| 5600 | + } |
| 5601 | + |
| 5602 | + sched_domain_node_span(i, domainspan); |
| 5603 | + cpumask_and(domainspan, domainspan, cpu_map); |
| 5604 | + |
| 5605 | + sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), |
| 5606 | + GFP_KERNEL, i); |
| 5607 | + if (!sg) { |
| 5608 | + printk(KERN_WARNING "Can not alloc domain group for " |
| 5609 | + "node %d\n", i); |
| 5610 | + goto error; |
| 5611 | + } |
| 5612 | + sched_group_nodes[i] = sg; |
| 5613 | + for_each_cpu(j, nodemask) { |
| 5614 | + struct sched_domain *sd; |
| 5615 | + |
| 5616 | + sd = &per_cpu(node_domains, j).sd; |
| 5617 | + sd->groups = sg; |
| 5618 | + } |
| 5619 | + sg->__cpu_power = 0; |
| 5620 | + cpumask_copy(sched_group_cpus(sg), nodemask); |
| 5621 | + sg->next = sg; |
| 5622 | + cpumask_or(covered, covered, nodemask); |
| 5623 | + prev = sg; |
| 5624 | + |
| 5625 | + for (j = 0; j < nr_node_ids; j++) { |
| 5626 | + int n = (i + j) % nr_node_ids; |
| 5627 | + |
| 5628 | + cpumask_complement(notcovered, covered); |
| 5629 | + cpumask_and(tmpmask, notcovered, cpu_map); |
| 5630 | + cpumask_and(tmpmask, tmpmask, domainspan); |
| 5631 | + if (cpumask_empty(tmpmask)) |
| 5632 | + break; |
| 5633 | + |
| 5634 | + cpumask_and(tmpmask, tmpmask, cpumask_of_node(n)); |
| 5635 | + if (cpumask_empty(tmpmask)) |
| 5636 | + continue; |
| 5637 | + |
| 5638 | + sg = kmalloc_node(sizeof(struct sched_group) + |
| 5639 | + cpumask_size(), |
| 5640 | + GFP_KERNEL, i); |
| 5641 | + if (!sg) { |
| 5642 | + printk(KERN_WARNING |
| 5643 | + "Can not alloc domain group for node %d\n", j); |
| 5644 | + goto error; |
| 5645 | + } |
| 5646 | + sg->__cpu_power = 0; |
| 5647 | + cpumask_copy(sched_group_cpus(sg), tmpmask); |
| 5648 | + sg->next = prev->next; |
| 5649 | + cpumask_or(covered, covered, tmpmask); |
| 5650 | + prev->next = sg; |
| 5651 | + prev = sg; |
| 5652 | + } |
| 5653 | + } |
| 5654 | +#endif |
| 5655 | + |
| 5656 | + /* Calculate CPU power for physical packages and nodes */ |
| 5657 | +#ifdef CONFIG_SCHED_SMT |
| 5658 | + for_each_cpu(i, cpu_map) { |
| 5659 | + struct sched_domain *sd = &per_cpu(cpu_domains, i).sd; |
| 5660 | + |
| 5661 | + init_sched_groups_power(i, sd); |
| 5662 | + } |
| 5663 | +#endif |
| 5664 | +#ifdef CONFIG_SCHED_MC |
| 5665 | + for_each_cpu(i, cpu_map) { |
| 5666 | + struct sched_domain *sd = &per_cpu(core_domains, i).sd; |
| 5667 | + |
| 5668 | + init_sched_groups_power(i, sd); |
| 5669 | + } |
| 5670 | +#endif |
| 5671 | + |
| 5672 | + for_each_cpu(i, cpu_map) { |
| 5673 | + struct sched_domain *sd = &per_cpu(phys_domains, i).sd; |
| 5674 | + |
| 5675 | + init_sched_groups_power(i, sd); |
| 5676 | + } |
| 5677 | + |
| 5678 | +#ifdef CONFIG_NUMA |
| 5679 | + for (i = 0; i < nr_node_ids; i++) |
| 5680 | + init_numa_sched_groups_power(sched_group_nodes[i]); |
| 5681 | + |
| 5682 | + if (sd_allnodes) { |
| 5683 | + struct sched_group *sg; |
| 5684 | + |
| 5685 | + cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, |
| 5686 | + tmpmask); |
| 5687 | + init_numa_sched_groups_power(sg); |
| 5688 | + } |
| 5689 | +#endif |
| 5690 | + |
| 5691 | + /* Attach the domains */ |
| 5692 | + for_each_cpu(i, cpu_map) { |
| 5693 | + struct sched_domain *sd; |
| 5694 | +#ifdef CONFIG_SCHED_SMT |
| 5695 | + sd = &per_cpu(cpu_domains, i).sd; |
| 5696 | +#elif defined(CONFIG_SCHED_MC) |
| 5697 | + sd = &per_cpu(core_domains, i).sd; |
| 5698 | +#else |
| 5699 | + sd = &per_cpu(phys_domains, i).sd; |
| 5700 | +#endif |
| 5701 | + cpu_attach_domain(sd, rd, i); |
| 5702 | + } |
| 5703 | + |
| 5704 | + err = 0; |
| 5705 | + |
| 5706 | +free_tmpmask: |
| 5707 | + free_cpumask_var(tmpmask); |
| 5708 | +free_send_covered: |
| 5709 | + free_cpumask_var(send_covered); |
| 5710 | +free_this_core_map: |
| 5711 | + free_cpumask_var(this_core_map); |
| 5712 | +free_this_sibling_map: |
| 5713 | + free_cpumask_var(this_sibling_map); |
| 5714 | +free_nodemask: |
| 5715 | + free_cpumask_var(nodemask); |
| 5716 | +free_notcovered: |
| 5717 | +#ifdef CONFIG_NUMA |
| 5718 | + free_cpumask_var(notcovered); |
| 5719 | +free_covered: |
| 5720 | + free_cpumask_var(covered); |
| 5721 | +free_domainspan: |
| 5722 | + free_cpumask_var(domainspan); |
| 5723 | +out: |
| 5724 | +#endif |
| 5725 | + return err; |
| 5726 | + |
| 5727 | +free_sched_groups: |
| 5728 | +#ifdef CONFIG_NUMA |
| 5729 | + kfree(sched_group_nodes); |
| 5730 | +#endif |
| 5731 | + goto free_tmpmask; |
| 5732 | + |
| 5733 | +#ifdef CONFIG_NUMA |
| 5734 | +error: |
| 5735 | + free_sched_groups(cpu_map, tmpmask); |
| 5736 | + free_rootdomain(rd); |
| 5737 | + goto free_tmpmask; |
| 5738 | +#endif |
| 5739 | +} |
| 5740 | + |
| 5741 | +static int build_sched_domains(const struct cpumask *cpu_map) |
| 5742 | +{ |
| 5743 | + return __build_sched_domains(cpu_map, NULL); |
| 5744 | +} |
| 5745 | + |
| 5746 | +static struct cpumask *doms_cur; /* current sched domains */ |
| 5747 | +static int ndoms_cur; /* number of sched domains in 'doms_cur' */ |
| 5748 | +static struct sched_domain_attr *dattr_cur; |
| 5749 | + /* attribues of custom domains in 'doms_cur' */ |
| 5750 | + |
| 5751 | +/* |
| 5752 | + * Special case: If a kmalloc of a doms_cur partition (array of |
| 5753 | + * cpumask) fails, then fallback to a single sched domain, |
| 5754 | + * as determined by the single cpumask fallback_doms. |
| 5755 | + */ |
| 5756 | +static cpumask_var_t fallback_doms; |
| 5757 | + |
| 5758 | +/* |
| 5759 | + * arch_update_cpu_topology lets virtualized architectures update the |
| 5760 | + * cpu core maps. It is supposed to return 1 if the topology changed |
| 5761 | + * or 0 if it stayed the same. |
| 5762 | + */ |
| 5763 | +int __attribute__((weak)) arch_update_cpu_topology(void) |
| 5764 | +{ |
| 5765 | + return 0; |
| 5766 | +} |
| 5767 | + |
| 5768 | +/* |
| 5769 | + * Set up scheduler domains and groups. Callers must hold the hotplug lock. |
| 5770 | + * For now this just excludes isolated cpus, but could be used to |
| 5771 | + * exclude other special cases in the future. |
| 5772 | + */ |
| 5773 | +static int arch_init_sched_domains(const struct cpumask *cpu_map) |
| 5774 | +{ |
| 5775 | + int err; |
| 5776 | + |
| 5777 | + arch_update_cpu_topology(); |
| 5778 | + ndoms_cur = 1; |
| 5779 | + doms_cur = kmalloc(cpumask_size(), GFP_KERNEL); |
| 5780 | + if (!doms_cur) |
| 5781 | + doms_cur = fallback_doms; |
| 5782 | + cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map); |
| 5783 | + dattr_cur = NULL; |
| 5784 | + err = build_sched_domains(doms_cur); |
| 5785 | + register_sched_domain_sysctl(); |
| 5786 | + |
| 5787 | + return err; |
| 5788 | +} |
| 5789 | + |
| 5790 | +static void arch_destroy_sched_domains(const struct cpumask *cpu_map, |
| 5791 | + struct cpumask *tmpmask) |
| 5792 | +{ |
| 5793 | + free_sched_groups(cpu_map, tmpmask); |
| 5794 | +} |
| 5795 | + |
| 5796 | +/* |
| 5797 | + * Detach sched domains from a group of cpus specified in cpu_map |
| 5798 | + * These cpus will now be attached to the NULL domain |
| 5799 | + */ |
| 5800 | +static void detach_destroy_domains(const struct cpumask *cpu_map) |
| 5801 | +{ |
| 5802 | + /* Save because hotplug lock held. */ |
| 5803 | + static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS); |
| 5804 | + int i; |
| 5805 | + |
| 5806 | + for_each_cpu(i, cpu_map) |
| 5807 | + cpu_attach_domain(NULL, &def_root_domain, i); |
| 5808 | + synchronize_sched(); |
| 5809 | + arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask)); |
| 5810 | +} |
| 5811 | + |
| 5812 | +/* handle null as "default" */ |
| 5813 | +static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, |
| 5814 | + struct sched_domain_attr *new, int idx_new) |
| 5815 | +{ |
| 5816 | + struct sched_domain_attr tmp; |
| 5817 | + |
| 5818 | + /* fast path */ |
| 5819 | + if (!new && !cur) |
| 5820 | + return 1; |
| 5821 | + |
| 5822 | + tmp = SD_ATTR_INIT; |
| 5823 | + return !memcmp(cur ? (cur + idx_cur) : &tmp, |
| 5824 | + new ? (new + idx_new) : &tmp, |
| 5825 | + sizeof(struct sched_domain_attr)); |
| 5826 | +} |
| 5827 | + |
| 5828 | +/* |
| 5829 | + * Partition sched domains as specified by the 'ndoms_new' |
| 5830 | + * cpumasks in the array doms_new[] of cpumasks. This compares |
| 5831 | + * doms_new[] to the current sched domain partitioning, doms_cur[]. |
| 5832 | + * It destroys each deleted domain and builds each new domain. |
| 5833 | + * |
| 5834 | + * 'doms_new' is an array of cpumask's of length 'ndoms_new'. |
| 5835 | + * The masks don't intersect (don't overlap.) We should setup one |
| 5836 | + * sched domain for each mask. CPUs not in any of the cpumasks will |
| 5837 | + * not be load balanced. If the same cpumask appears both in the |
| 5838 | + * current 'doms_cur' domains and in the new 'doms_new', we can leave |
| 5839 | + * it as it is. |
| 5840 | + * |
| 5841 | + * The passed in 'doms_new' should be kmalloc'd. This routine takes |
| 5842 | + * ownership of it and will kfree it when done with it. If the caller |
| 5843 | + * failed the kmalloc call, then it can pass in doms_new == NULL && |
| 5844 | + * ndoms_new == 1, and partition_sched_domains() will fallback to |
| 5845 | + * the single partition 'fallback_doms', it also forces the domains |
| 5846 | + * to be rebuilt. |
| 5847 | + * |
| 5848 | + * If doms_new == NULL it will be replaced with cpu_online_mask. |
| 5849 | + * ndoms_new == 0 is a special case for destroying existing domains, |
| 5850 | + * and it will not create the default domain. |
| 5851 | + * |
| 5852 | + * Call with hotplug lock held |
| 5853 | + */ |
| 5854 | +/* FIXME: Change to struct cpumask *doms_new[] */ |
| 5855 | +void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, |
| 5856 | + struct sched_domain_attr *dattr_new) |
| 5857 | +{ |
| 5858 | + int i, j, n; |
| 5859 | + int new_topology; |
| 5860 | + |
| 5861 | + mutex_lock(&sched_domains_mutex); |
| 5862 | + |
| 5863 | + /* always unregister in case we don't destroy any domains */ |
| 5864 | + unregister_sched_domain_sysctl(); |
| 5865 | + |
| 5866 | + /* Let architecture update cpu core mappings. */ |
| 5867 | + new_topology = arch_update_cpu_topology(); |
| 5868 | + |
| 5869 | + n = doms_new ? ndoms_new : 0; |
| 5870 | + |
| 5871 | + /* Destroy deleted domains */ |
| 5872 | + for (i = 0; i < ndoms_cur; i++) { |
| 5873 | + for (j = 0; j < n && !new_topology; j++) { |
| 5874 | + if (cpumask_equal(&doms_cur[i], &doms_new[j]) |
| 5875 | + && dattrs_equal(dattr_cur, i, dattr_new, j)) |
| 5876 | + goto match1; |
| 5877 | + } |
| 5878 | + /* no match - a current sched domain not in new doms_new[] */ |
| 5879 | + detach_destroy_domains(doms_cur + i); |
| 5880 | +match1: |
| 5881 | + ; |
| 5882 | + } |
| 5883 | + |
| 5884 | + if (doms_new == NULL) { |
| 5885 | + ndoms_cur = 0; |
| 5886 | + doms_new = fallback_doms; |
| 5887 | + cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map); |
| 5888 | + WARN_ON_ONCE(dattr_new); |
| 5889 | + } |
| 5890 | + |
| 5891 | + /* Build new domains */ |
| 5892 | + for (i = 0; i < ndoms_new; i++) { |
| 5893 | + for (j = 0; j < ndoms_cur && !new_topology; j++) { |
| 5894 | + if (cpumask_equal(&doms_new[i], &doms_cur[j]) |
| 5895 | + && dattrs_equal(dattr_new, i, dattr_cur, j)) |
| 5896 | + goto match2; |
| 5897 | + } |
| 5898 | + /* no match - add a new doms_new */ |
| 5899 | + __build_sched_domains(doms_new + i, |
| 5900 | + dattr_new ? dattr_new + i : NULL); |
| 5901 | +match2: |
| 5902 | + ; |
| 5903 | + } |
| 5904 | + |
| 5905 | + /* Remember the new sched domains */ |
| 5906 | + if (doms_cur != fallback_doms) |
| 5907 | + kfree(doms_cur); |
| 5908 | + kfree(dattr_cur); /* kfree(NULL) is safe */ |
| 5909 | + doms_cur = doms_new; |
| 5910 | + dattr_cur = dattr_new; |
| 5911 | + ndoms_cur = ndoms_new; |
| 5912 | + |
| 5913 | + register_sched_domain_sysctl(); |
| 5914 | + |
| 5915 | + mutex_unlock(&sched_domains_mutex); |
| 5916 | +} |
| 5917 | + |
| 5918 | +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
| 5919 | +static void arch_reinit_sched_domains(void) |
| 5920 | +{ |
| 5921 | + get_online_cpus(); |
| 5922 | + |
| 5923 | + /* Destroy domains first to force the rebuild */ |
| 5924 | + partition_sched_domains(0, NULL, NULL); |
| 5925 | + |
| 5926 | + rebuild_sched_domains(); |
| 5927 | + put_online_cpus(); |
| 5928 | +} |
| 5929 | + |
| 5930 | +static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) |
| 5931 | +{ |
| 5932 | + unsigned int level = 0; |
| 5933 | + |
| 5934 | + if (sscanf(buf, "%u", &level) != 1) |
| 5935 | + return -EINVAL; |
| 5936 | + |
| 5937 | + /* |
| 5938 | + * level is always be positive so don't check for |
| 5939 | + * level < POWERSAVINGS_BALANCE_NONE which is 0 |
| 5940 | + * What happens on 0 or 1 byte write, |
| 5941 | + * need to check for count as well? |
| 5942 | + */ |
| 5943 | + |
| 5944 | + if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) |
| 5945 | + return -EINVAL; |
| 5946 | + |
| 5947 | + if (smt) |
| 5948 | + sched_smt_power_savings = level; |
| 5949 | + else |
| 5950 | + sched_mc_power_savings = level; |
| 5951 | + |
| 5952 | + arch_reinit_sched_domains(); |
| 5953 | + |
| 5954 | + return count; |
| 5955 | +} |
| 5956 | + |
| 5957 | +#ifdef CONFIG_SCHED_MC |
| 5958 | +static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, |
| 5959 | + char *page) |
| 5960 | +{ |
| 5961 | + return sprintf(page, "%u\n", sched_mc_power_savings); |
| 5962 | +} |
| 5963 | +static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, |
| 5964 | + const char *buf, size_t count) |
| 5965 | +{ |
| 5966 | + return sched_power_savings_store(buf, count, 0); |
| 5967 | +} |
| 5968 | +static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, |
| 5969 | + sched_mc_power_savings_show, |
| 5970 | + sched_mc_power_savings_store); |
| 5971 | +#endif |
| 5972 | + |
| 5973 | +#ifdef CONFIG_SCHED_SMT |
| 5974 | +static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, |
| 5975 | + char *page) |
| 5976 | +{ |
| 5977 | + return sprintf(page, "%u\n", sched_smt_power_savings); |
| 5978 | +} |
| 5979 | +static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, |
| 5980 | + const char *buf, size_t count) |
| 5981 | +{ |
| 5982 | + return sched_power_savings_store(buf, count, 1); |
| 5983 | +} |
| 5984 | +static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, |
| 5985 | + sched_smt_power_savings_show, |
| 5986 | + sched_smt_power_savings_store); |
| 5987 | +#endif |
| 5988 | + |
| 5989 | +int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) |
| 5990 | +{ |
| 5991 | + int err = 0; |
| 5992 | + |
| 5993 | +#ifdef CONFIG_SCHED_SMT |
| 5994 | + if (smt_capable()) |
| 5995 | + err = sysfs_create_file(&cls->kset.kobj, |
| 5996 | + &attr_sched_smt_power_savings.attr); |
| 5997 | +#endif |
| 5998 | +#ifdef CONFIG_SCHED_MC |
| 5999 | + if (!err && mc_capable()) |
| 6000 | + err = sysfs_create_file(&cls->kset.kobj, |
| 6001 | + &attr_sched_mc_power_savings.attr); |
| 6002 | +#endif |
| 6003 | + return err; |
| 6004 | +} |
| 6005 | +#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
| 6006 | + |
| 6007 | +#ifndef CONFIG_CPUSETS |
| 6008 | +/* |
| 6009 | + * Add online and remove offline CPUs from the scheduler domains. |
| 6010 | + * When cpusets are enabled they take over this function. |
| 6011 | + */ |
| 6012 | +static int update_sched_domains(struct notifier_block *nfb, |
| 6013 | + unsigned long action, void *hcpu) |
| 6014 | +{ |
| 6015 | + switch (action) { |
| 6016 | + case CPU_ONLINE: |
| 6017 | + case CPU_ONLINE_FROZEN: |
| 6018 | + case CPU_DEAD: |
| 6019 | + case CPU_DEAD_FROZEN: |
| 6020 | + partition_sched_domains(1, NULL, NULL); |
| 6021 | + return NOTIFY_OK; |
| 6022 | + |
| 6023 | + default: |
| 6024 | + return NOTIFY_DONE; |
| 6025 | + } |
| 6026 | +} |
| 6027 | +#endif |
| 6028 | + |
| 6029 | +static int update_runtime(struct notifier_block *nfb, |
| 6030 | + unsigned long action, void *hcpu) |
| 6031 | +{ |
| 6032 | + switch (action) { |
| 6033 | + case CPU_DOWN_PREPARE: |
| 6034 | + case CPU_DOWN_PREPARE_FROZEN: |
| 6035 | + return NOTIFY_OK; |
| 6036 | + |
| 6037 | + case CPU_DOWN_FAILED: |
| 6038 | + case CPU_DOWN_FAILED_FROZEN: |
| 6039 | + case CPU_ONLINE: |
| 6040 | + case CPU_ONLINE_FROZEN: |
| 6041 | + return NOTIFY_OK; |
| 6042 | + |
| 6043 | + default: |
| 6044 | + return NOTIFY_DONE; |
| 6045 | + } |
| 6046 | +} |
| 6047 | + |
| 6048 | +void __init sched_init_smp(void) |
| 6049 | +{ |
| 6050 | + cpumask_var_t non_isolated_cpus; |
| 6051 | + |
| 6052 | + alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); |
| 6053 | + |
| 6054 | +#if defined(CONFIG_NUMA) |
| 6055 | + sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), |
| 6056 | + GFP_KERNEL); |
| 6057 | + BUG_ON(sched_group_nodes_bycpu == NULL); |
| 6058 | +#endif |
| 6059 | + get_online_cpus(); |
| 6060 | + mutex_lock(&sched_domains_mutex); |
| 6061 | + arch_init_sched_domains(cpu_online_mask); |
| 6062 | + cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); |
| 6063 | + if (cpumask_empty(non_isolated_cpus)) |
| 6064 | + cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); |
| 6065 | + mutex_unlock(&sched_domains_mutex); |
| 6066 | + put_online_cpus(); |
| 6067 | + |
| 6068 | +#ifndef CONFIG_CPUSETS |
| 6069 | + /* XXX: Theoretical race here - CPU may be hotplugged now */ |
| 6070 | + hotcpu_notifier(update_sched_domains, 0); |
| 6071 | +#endif |
| 6072 | + |
| 6073 | + /* RT runtime code needs to handle some hotplug events */ |
| 6074 | + hotcpu_notifier(update_runtime, 0); |
| 6075 | + |
| 6076 | + /* Move init over to a non-isolated CPU */ |
| 6077 | + if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) |
| 6078 | + BUG(); |
| 6079 | + free_cpumask_var(non_isolated_cpus); |
| 6080 | + |
| 6081 | + alloc_cpumask_var(&fallback_doms, GFP_KERNEL); |
| 6082 | + |
| 6083 | + /* |
| 6084 | + * Assume that every added cpu gives us slightly less overall latency |
| 6085 | + * allowing us to increase the base rr_interval, but in a non linear |
| 6086 | + * fashion. |
| 6087 | + */ |
| 6088 | + rr_interval *= 1 + ilog2(num_online_cpus()); |
| 6089 | +} |
| 6090 | +#else |
| 6091 | +void __init sched_init_smp(void) |
| 6092 | +{ |
| 6093 | +} |
| 6094 | +#endif /* CONFIG_SMP */ |
| 6095 | + |
| 6096 | +unsigned int sysctl_timer_migration = 1; |
| 6097 | + |
| 6098 | +int in_sched_functions(unsigned long addr) |
| 6099 | +{ |
| 6100 | + return in_lock_functions(addr) || |
| 6101 | + (addr >= (unsigned long)__sched_text_start |
| 6102 | + && addr < (unsigned long)__sched_text_end); |
| 6103 | +} |
| 6104 | + |
| 6105 | +void __init sched_init(void) |
| 6106 | +{ |
| 6107 | + int i; |
| 6108 | + int highest_cpu = 0; |
| 6109 | + |
| 6110 | + prio_ratios[0] = 100; |
| 6111 | + for (i = 1 ; i < PRIO_RANGE ; i++) |
| 6112 | + prio_ratios[i] = prio_ratios[i - 1] * 11 / 10; |
| 6113 | + |
| 6114 | +#ifdef CONFIG_SMP |
| 6115 | + init_defrootdomain(); |
| 6116 | + cpus_clear(grq.cpu_idle_map); |
| 6117 | +#endif |
| 6118 | + spin_lock_init(&grq.lock); |
| 6119 | + for_each_possible_cpu(i) { |
| 6120 | + struct rq *rq; |
| 6121 | + |
| 6122 | + rq = cpu_rq(i); |
| 6123 | + INIT_LIST_HEAD(&rq->queue); |
| 6124 | + rq->rq_deadline = 0; |
| 6125 | + rq->rq_prio = 0; |
| 6126 | + rq->cpu = i; |
| 6127 | + rq->user_pc = rq->nice_pc = rq->softirq_pc = rq->system_pc = |
| 6128 | + rq->iowait_pc = rq->idle_pc = 0; |
| 6129 | +#ifdef CONFIG_SMP |
| 6130 | + rq->sd = NULL; |
| 6131 | + rq->rd = NULL; |
| 6132 | + rq->online = 0; |
| 6133 | + INIT_LIST_HEAD(&rq->migration_queue); |
| 6134 | + rq_attach_root(rq, &def_root_domain); |
| 6135 | +#endif |
| 6136 | + atomic_set(&rq->nr_iowait, 0); |
| 6137 | + highest_cpu = i; |
| 6138 | + } |
| 6139 | + grq.iso_ticks = grq.nr_running = grq.nr_uninterruptible = 0; |
| 6140 | + for (i = 0; i < PRIO_LIMIT; i++) |
| 6141 | + INIT_LIST_HEAD(grq.queue + i); |
| 6142 | + bitmap_zero(grq.prio_bitmap, PRIO_LIMIT); |
| 6143 | + /* delimiter for bitsearch */ |
| 6144 | + __set_bit(PRIO_LIMIT, grq.prio_bitmap); |
| 6145 | + |
| 6146 | +#ifdef CONFIG_SMP |
| 6147 | + nr_cpu_ids = highest_cpu + 1; |
| 6148 | +#endif |
| 6149 | + |
| 6150 | +#ifdef CONFIG_PREEMPT_NOTIFIERS |
| 6151 | + INIT_HLIST_HEAD(&init_task.preempt_notifiers); |
| 6152 | +#endif |
| 6153 | + |
| 6154 | +#ifdef CONFIG_RT_MUTEXES |
| 6155 | + plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); |
| 6156 | +#endif |
| 6157 | + |
| 6158 | + /* |
| 6159 | + * The boot idle thread does lazy MMU switching as well: |
| 6160 | + */ |
| 6161 | + atomic_inc(&init_mm.mm_count); |
| 6162 | + enter_lazy_tlb(&init_mm, current); |
| 6163 | + |
| 6164 | + /* |
| 6165 | + * Make us the idle thread. Technically, schedule() should not be |
| 6166 | + * called from this thread, however somewhere below it might be, |
| 6167 | + * but because we are the idle thread, we just pick up running again |
| 6168 | + * when this runqueue becomes "idle". |
| 6169 | + */ |
| 6170 | + init_idle(current, smp_processor_id()); |
| 6171 | + |
| 6172 | + /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ |
| 6173 | + alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); |
| 6174 | +#ifdef CONFIG_SMP |
| 6175 | +#ifdef CONFIG_NO_HZ |
| 6176 | + alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); |
| 6177 | + alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); |
| 6178 | +#endif |
| 6179 | + alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); |
| 6180 | +#endif /* SMP */ |
| 6181 | + perf_counter_init(); |
| 6182 | +} |
| 6183 | + |
| 6184 | +#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP |
| 6185 | +void __might_sleep(char *file, int line) |
| 6186 | +{ |
| 6187 | +#ifdef in_atomic |
| 6188 | + static unsigned long prev_jiffy; /* ratelimiting */ |
| 6189 | + |
| 6190 | + if ((in_atomic() || irqs_disabled()) && |
| 6191 | + system_state == SYSTEM_RUNNING && !oops_in_progress) { |
| 6192 | + if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) |
| 6193 | + return; |
| 6194 | + prev_jiffy = jiffies; |
| 6195 | + printk(KERN_ERR "BUG: sleeping function called from invalid" |
| 6196 | + " context at %s:%d\n", file, line); |
| 6197 | + printk("in_atomic():%d, irqs_disabled():%d\n", |
| 6198 | + in_atomic(), irqs_disabled()); |
| 6199 | + debug_show_held_locks(current); |
| 6200 | + if (irqs_disabled()) |
| 6201 | + print_irqtrace_events(current); |
| 6202 | + dump_stack(); |
| 6203 | + } |
| 6204 | +#endif |
| 6205 | +} |
| 6206 | +EXPORT_SYMBOL(__might_sleep); |
| 6207 | +#endif |
| 6208 | + |
| 6209 | +#ifdef CONFIG_MAGIC_SYSRQ |
| 6210 | +void normalize_rt_tasks(void) |
| 6211 | +{ |
| 6212 | + struct task_struct *g, *p; |
| 6213 | + unsigned long flags; |
| 6214 | + struct rq *rq; |
| 6215 | + int queued; |
| 6216 | + |
| 6217 | + read_lock_irq(&tasklist_lock); |
| 6218 | + |
| 6219 | + do_each_thread(g, p) { |
| 6220 | + if (!rt_task(p) && !iso_task(p)) |
| 6221 | + continue; |
| 6222 | + |
| 6223 | + spin_lock_irqsave(&p->pi_lock, flags); |
| 6224 | + rq = __task_grq_lock(p); |
| 6225 | + update_rq_clock(rq); |
| 6226 | + |
| 6227 | + queued = task_queued_only(p); |
| 6228 | + if (queued) |
| 6229 | + dequeue_task(p); |
| 6230 | + __setscheduler(p, SCHED_NORMAL, 0); |
| 6231 | + if (task_running(p)) |
| 6232 | + resched_task(p); |
| 6233 | + if (queued) { |
| 6234 | + enqueue_task(p); |
| 6235 | + try_preempt(p); |
| 6236 | + } |
| 6237 | + |
| 6238 | + __task_grq_unlock(); |
| 6239 | + spin_unlock_irqrestore(&p->pi_lock, flags); |
| 6240 | + } while_each_thread(g, p); |
| 6241 | + |
| 6242 | + read_unlock_irq(&tasklist_lock); |
| 6243 | +} |
| 6244 | +#endif /* CONFIG_MAGIC_SYSRQ */ |
| 6245 | + |
| 6246 | +#ifdef CONFIG_IA64 |
| 6247 | +/* |
| 6248 | + * These functions are only useful for the IA64 MCA handling. |
| 6249 | + * |
| 6250 | + * They can only be called when the whole system has been |
| 6251 | + * stopped - every CPU needs to be quiescent, and no scheduling |
| 6252 | + * activity can take place. Using them for anything else would |
| 6253 | + * be a serious bug, and as a result, they aren't even visible |
| 6254 | + * under any other configuration. |
| 6255 | + */ |
| 6256 | + |
| 6257 | +/** |
| 6258 | + * curr_task - return the current task for a given cpu. |
| 6259 | + * @cpu: the processor in question. |
| 6260 | + * |
| 6261 | + * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! |
| 6262 | + */ |
| 6263 | +struct task_struct *curr_task(int cpu) |
| 6264 | +{ |
| 6265 | + return cpu_curr(cpu); |
| 6266 | +} |
| 6267 | + |
| 6268 | +/** |
| 6269 | + * set_curr_task - set the current task for a given cpu. |
| 6270 | + * @cpu: the processor in question. |
| 6271 | + * @p: the task pointer to set. |
| 6272 | + * |
| 6273 | + * Description: This function must only be used when non-maskable interrupts |
| 6274 | + * are serviced on a separate stack. It allows the architecture to switch the |
| 6275 | + * notion of the current task on a cpu in a non-blocking manner. This function |
| 6276 | + * must be called with all CPU's synchronized, and interrupts disabled, the |
| 6277 | + * and caller must save the original value of the current task (see |
| 6278 | + * curr_task() above) and restore that value before reenabling interrupts and |
| 6279 | + * re-starting the system. |
| 6280 | + * |
| 6281 | + * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! |
| 6282 | + */ |
| 6283 | +void set_curr_task(int cpu, struct task_struct *p) |
| 6284 | +{ |
| 6285 | + cpu_curr(cpu) = p; |
| 6286 | +} |
| 6287 | + |
| 6288 | +#endif |
| 6289 | + |
| 6290 | +/* |
| 6291 | + * Use precise platform statistics if available: |
| 6292 | + */ |
| 6293 | +#ifdef CONFIG_VIRT_CPU_ACCOUNTING |
| 6294 | +cputime_t task_utime(struct task_struct *p) |
| 6295 | +{ |
| 6296 | + return p->utime; |
| 6297 | +} |
| 6298 | + |
| 6299 | +cputime_t task_stime(struct task_struct *p) |
| 6300 | +{ |
| 6301 | + return p->stime; |
| 6302 | +} |
| 6303 | +#else |
| 6304 | +cputime_t task_utime(struct task_struct *p) |
| 6305 | +{ |
| 6306 | + clock_t utime = cputime_to_clock_t(p->utime), |
| 6307 | + total = utime + cputime_to_clock_t(p->stime); |
| 6308 | + u64 temp; |
| 6309 | + |
| 6310 | + temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); |
| 6311 | + |
| 6312 | + if (total) { |
| 6313 | + temp *= utime; |
| 6314 | + do_div(temp, total); |
| 6315 | + } |
| 6316 | + utime = (clock_t)temp; |
| 6317 | + |
| 6318 | + p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); |
| 6319 | + return p->prev_utime; |
| 6320 | +} |
| 6321 | + |
| 6322 | +cputime_t task_stime(struct task_struct *p) |
| 6323 | +{ |
| 6324 | + clock_t stime; |
| 6325 | + |
| 6326 | + stime = nsec_to_clock_t(p->se.sum_exec_runtime) - |
| 6327 | + cputime_to_clock_t(task_utime(p)); |
| 6328 | + |
| 6329 | + if (stime >= 0) |
| 6330 | + p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); |
| 6331 | + |
| 6332 | + return p->prev_stime; |
| 6333 | +} |
| 6334 | +#endif |
| 6335 | + |
| 6336 | +inline cputime_t task_gtime(struct task_struct *p) |
| 6337 | +{ |
| 6338 | + return p->gtime; |
| 6339 | +} |
| 6340 | + |
| 6341 | +void __cpuinit init_idle_bootup_task(struct task_struct *idle) |
| 6342 | +{} |
| 6343 | + |
| 6344 | +#ifdef CONFIG_SCHED_DEBUG |
| 6345 | +void proc_sched_show_task(struct task_struct *p, struct seq_file *m) |
| 6346 | +{} |
| 6347 | + |
| 6348 | +void proc_sched_set_task(struct task_struct *p) |
| 6349 | +{} |
| 6350 | +#endif |
| 6351 | --- a/kernel/sysctl.c |
| 6352 | +++ b/kernel/sysctl.c |
| 6353 | @@ -86,6 +86,8 @@ extern int percpu_pagelist_fraction; |
| 6354 | extern int compat_log; |
| 6355 | extern int latencytop_enabled; |
| 6356 | extern int sysctl_nr_open_min, sysctl_nr_open_max; |
| 6357 | +extern int rr_interval; |
| 6358 | +extern int sched_iso_cpu; |
| 6359 | #ifndef CONFIG_MMU |
| 6360 | extern int sysctl_nr_trim_pages; |
| 6361 | #endif |
| 6362 | @@ -103,7 +105,8 @@ static int zero; |
| 6363 | static int __maybe_unused one = 1; |
| 6364 | static int __maybe_unused two = 2; |
| 6365 | static unsigned long one_ul = 1; |
| 6366 | -static int one_hundred = 100; |
| 6367 | +static int __read_mostly one_hundred = 100; |
| 6368 | +static int __maybe_unused __read_mostly five_thousand = 5000; |
| 6369 | |
| 6370 | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ |
| 6371 | static unsigned long dirty_bytes_min = 2 * PAGE_SIZE; |
| 6372 | @@ -238,7 +241,7 @@ static struct ctl_table root_table[] = { |
| 6373 | { .ctl_name = 0 } |
| 6374 | }; |
| 6375 | |
| 6376 | -#ifdef CONFIG_SCHED_DEBUG |
| 6377 | +#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SCHED_CFS) |
| 6378 | static int min_sched_granularity_ns = 100000; /* 100 usecs */ |
| 6379 | static int max_sched_granularity_ns = NSEC_PER_SEC; /* 1 second */ |
| 6380 | static int min_wakeup_granularity_ns; /* 0 usecs */ |
| 6381 | @@ -246,7 +249,7 @@ static int max_wakeup_granularity_ns = N |
| 6382 | #endif |
| 6383 | |
| 6384 | static struct ctl_table kern_table[] = { |
| 6385 | -#ifdef CONFIG_SCHED_DEBUG |
| 6386 | +#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SCHED_CFS) |
| 6387 | { |
| 6388 | .ctl_name = CTL_UNNUMBERED, |
| 6389 | .procname = "sched_min_granularity_ns", |
| 6390 | @@ -342,6 +345,7 @@ static struct ctl_table kern_table[] = { |
| 6391 | .extra2 = &one, |
| 6392 | }, |
| 6393 | #endif |
| 6394 | +#ifdef CONFIG_SCHED_CFS |
| 6395 | { |
| 6396 | .ctl_name = CTL_UNNUMBERED, |
| 6397 | .procname = "sched_rt_period_us", |
| 6398 | @@ -366,6 +370,7 @@ static struct ctl_table kern_table[] = { |
| 6399 | .mode = 0644, |
| 6400 | .proc_handler = &proc_dointvec, |
| 6401 | }, |
| 6402 | +#endif |
| 6403 | #ifdef CONFIG_PROVE_LOCKING |
| 6404 | { |
| 6405 | .ctl_name = CTL_UNNUMBERED, |
| 6406 | @@ -798,6 +803,30 @@ static struct ctl_table kern_table[] = { |
| 6407 | .proc_handler = &proc_dointvec, |
| 6408 | }, |
| 6409 | #endif |
| 6410 | +#ifdef CONFIG_SCHED_BFS |
| 6411 | + { |
| 6412 | + .ctl_name = CTL_UNNUMBERED, |
| 6413 | + .procname = "rr_interval", |
| 6414 | + .data = &rr_interval, |
| 6415 | + .maxlen = sizeof (int), |
| 6416 | + .mode = 0644, |
| 6417 | + .proc_handler = &proc_dointvec_minmax, |
| 6418 | + .strategy = &sysctl_intvec, |
| 6419 | + .extra1 = &one, |
| 6420 | + .extra2 = &five_thousand, |
| 6421 | + }, |
| 6422 | + { |
| 6423 | + .ctl_name = CTL_UNNUMBERED, |
| 6424 | + .procname = "iso_cpu", |
| 6425 | + .data = &sched_iso_cpu, |
| 6426 | + .maxlen = sizeof (int), |
| 6427 | + .mode = 0644, |
| 6428 | + .proc_handler = &proc_dointvec_minmax, |
| 6429 | + .strategy = &sysctl_intvec, |
| 6430 | + .extra1 = &zero, |
| 6431 | + .extra2 = &one_hundred, |
| 6432 | + }, |
| 6433 | +#endif |
| 6434 | #if defined(CONFIG_S390) && defined(CONFIG_SMP) |
| 6435 | { |
| 6436 | .ctl_name = KERN_SPIN_RETRY, |
| 6437 | --- a/kernel/workqueue.c |
| 6438 | +++ b/kernel/workqueue.c |
| 6439 | @@ -317,7 +317,9 @@ static int worker_thread(void *__cwq) |
| 6440 | if (cwq->wq->freezeable) |
| 6441 | set_freezable(); |
| 6442 | |
| 6443 | +#ifdef CONFIG_SCHED_CFS |
| 6444 | set_user_nice(current, -5); |
| 6445 | +#endif |
| 6446 | |
| 6447 | for (;;) { |
| 6448 | prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); |
| 6449 | |