Root/target/linux/s3c24xx/patches-2.6.30/070-s3c24xx-time.patch

1--- /dev/null
2+++ b/arch/arm/plat-s3c24xx/time.c
3@@ -0,0 +1,480 @@
4+/* linux/arch/arm/plat-s3c24xx/time.c
5+ *
6+ * Copyright (C) 2003-2005 Simtec Electronics
7+ * Ben Dooks, <ben@simtec.co.uk>
8+ *
9+ * dyn_tick support by Andrzej Zaborowski based on omap_dyn_tick_timer.
10+ *
11+ * This program is free software; you can redistribute it and/or modify
12+ * it under the terms of the GNU General Public License as published by
13+ * the Free Software Foundation; either version 2 of the License, or
14+ * (at your option) any later version.
15+ *
16+ * This program is distributed in the hope that it will be useful,
17+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
18+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19+ * GNU General Public License for more details.
20+ *
21+ * You should have received a copy of the GNU General Public License
22+ * along with this program; if not, write to the Free Software
23+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24+ */
25+
26+#include <linux/kernel.h>
27+#include <linux/sched.h>
28+#include <linux/init.h>
29+#include <linux/interrupt.h>
30+#include <linux/irq.h>
31+#include <linux/err.h>
32+#include <linux/clk.h>
33+
34+#include <asm/system.h>
35+#include <asm/leds.h>
36+#include <asm/mach-types.h>
37+
38+#include <asm/io.h>
39+#include <asm/irq.h>
40+#include <mach/map.h>
41+#include <asm/plat-s3c/regs-timer.h>
42+#include <mach/regs-irq.h>
43+#include <asm/mach/time.h>
44+
45+#include <asm/plat-s3c24xx/clock.h>
46+#include <asm/plat-s3c24xx/cpu.h>
47+
48+static unsigned long timer_startval;
49+static unsigned long timer_usec_ticks;
50+static struct work_struct resume_work;
51+
52+unsigned long pclk;
53+struct clk *clk;
54+
55+#define TIMER_USEC_SHIFT 16
56+
57+/* we use the shifted arithmetic to work out the ratio of timer ticks
58+ * to usecs, as often the peripheral clock is not a nice even multiple
59+ * of 1MHz.
60+ *
61+ * shift of 14 and 15 are too low for the 12MHz, 16 seems to be ok
62+ * for the current HZ value of 200 without producing overflows.
63+ *
64+ * Original patch by Dimitry Andric, updated by Ben Dooks
65+*/
66+
67+
68+/* timer_mask_usec_ticks
69+ *
70+ * given a clock and divisor, make the value to pass into timer_ticks_to_usec
71+ * to scale the ticks into usecs
72+*/
73+
74+static inline unsigned long
75+timer_mask_usec_ticks(unsigned long scaler, unsigned long pclk)
76+{
77+ unsigned long den = pclk / 1000;
78+
79+ return ((1000 << TIMER_USEC_SHIFT) * scaler + (den >> 1)) / den;
80+}
81+
82+/* timer_ticks_to_usec
83+ *
84+ * convert timer ticks to usec.
85+*/
86+
87+static inline unsigned long timer_ticks_to_usec(unsigned long ticks)
88+{
89+ unsigned long res;
90+
91+ res = ticks * timer_usec_ticks;
92+ res += 1 << (TIMER_USEC_SHIFT - 4); /* round up slightly */
93+
94+ return res >> TIMER_USEC_SHIFT;
95+}
96+
97+/***
98+ * Returns microsecond since last clock interrupt. Note that interrupts
99+ * will have been disabled by do_gettimeoffset()
100+ * IRQs are disabled before entering here from do_gettimeofday()
101+ */
102+
103+#define SRCPND_TIMER4 (1<<(IRQ_TIMER4 - IRQ_EINT0))
104+
105+unsigned long s3c2410_gettimeoffset (void)
106+{
107+ unsigned long tdone;
108+ unsigned long irqpend;
109+ unsigned long tval;
110+
111+ /* work out how many ticks have gone since last timer interrupt */
112+
113+ tval = __raw_readl(S3C2410_TCNTO(4));
114+ tdone = timer_startval - tval;
115+
116+ /* check to see if there is an interrupt pending */
117+
118+ irqpend = __raw_readl(S3C2410_SRCPND);
119+ if (irqpend & SRCPND_TIMER4) {
120+ /* re-read the timer, and try and fix up for the missed
121+ * interrupt. Note, the interrupt may go off before the
122+ * timer has re-loaded from wrapping.
123+ */
124+
125+ tval = __raw_readl(S3C2410_TCNTO(4));
126+ tdone = timer_startval - tval;
127+
128+ if (tval != 0)
129+ tdone += timer_startval;
130+ }
131+
132+ return timer_ticks_to_usec(tdone);
133+}
134+
135+
136+/*
137+ * IRQ handler for the timer
138+ */
139+static irqreturn_t
140+s3c2410_timer_interrupt(int irq, void *dev_id)
141+{
142+ timer_tick();
143+ return IRQ_HANDLED;
144+}
145+
146+static struct irqaction s3c2410_timer_irq = {
147+ .name = "S3C2410 Timer Tick",
148+ .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
149+ .handler = s3c2410_timer_interrupt,
150+};
151+
152+#define use_tclk1_12() ( \
153+ machine_is_bast() || \
154+ machine_is_vr1000() || \
155+ machine_is_anubis() || \
156+ machine_is_osiris() )
157+
158+/*
159+ * Set up timer interrupt, and return the current time in seconds.
160+ *
161+ * Currently we only use timer4, as it is the only timer which has no
162+ * other function that can be exploited externally
163+ */
164+static void s3c2410_timer_setup (void)
165+{
166+ unsigned long tcon;
167+ unsigned long tcnt;
168+ unsigned long tcfg1;
169+ unsigned long tcfg0;
170+
171+ tcnt = 0xffff; /* default value for tcnt */
172+
173+ /* read the current timer configuration bits */
174+
175+ tcon = __raw_readl(S3C2410_TCON);
176+ tcfg1 = __raw_readl(S3C2410_TCFG1);
177+ tcfg0 = __raw_readl(S3C2410_TCFG0);
178+
179+ /* configure the system for whichever machine is in use */
180+
181+ if (use_tclk1_12()) {
182+ /* timer is at 12MHz, scaler is 1 */
183+ timer_usec_ticks = timer_mask_usec_ticks(1, 12000000);
184+ tcnt = 12000000 / HZ;
185+
186+ tcfg1 &= ~S3C2410_TCFG1_MUX4_MASK;
187+ tcfg1 |= S3C2410_TCFG1_MUX4_TCLK1;
188+ } else {
189+ /* since values around 50 to
190+ * 70MHz are not values we can directly generate the timer
191+ * value from, we need to pre-scale and divide before using it.
192+ *
193+ * for instance, using 50.7MHz and dividing by 6 gives 8.45MHz
194+ * (8.45 ticks per usec)
195+ */
196+
197+ /* configure clock tick */
198+ timer_usec_ticks = timer_mask_usec_ticks(6, pclk);
199+ printk("timer_usec_ticks = %lu\n", timer_usec_ticks);
200+
201+ tcfg1 &= ~S3C2410_TCFG1_MUX4_MASK;
202+ tcfg1 |= S3C2410_TCFG1_MUX4_DIV2;
203+
204+ tcfg0 &= ~S3C2410_TCFG_PRESCALER1_MASK;
205+ tcfg0 |= ((6 - 1) / 2) << S3C2410_TCFG_PRESCALER1_SHIFT;
206+
207+ tcnt = (pclk / 6) / HZ;
208+ }
209+
210+ /* timers reload after counting zero, so reduce the count by 1 */
211+
212+ tcnt--;
213+
214+ printk("timer tcon=%08lx, tcnt %04lx, tcfg %08lx,%08lx, usec %08lx\n",
215+ tcon, tcnt, tcfg0, tcfg1, timer_usec_ticks);
216+
217+ /* check to see if timer is within 16bit range... */
218+ if (tcnt > 0xffff) {
219+ panic("setup_timer: HZ is too small, cannot configure timer!");
220+ return;
221+ }
222+
223+ __raw_writel(tcfg1, S3C2410_TCFG1);
224+ __raw_writel(tcfg0, S3C2410_TCFG0);
225+
226+ timer_startval = tcnt;
227+ __raw_writel(tcnt, S3C2410_TCNTB(4));
228+
229+ /* ensure timer is stopped... */
230+
231+ tcon &= ~(7<<20);
232+ tcon |= S3C2410_TCON_T4RELOAD;
233+ tcon |= S3C2410_TCON_T4MANUALUPD;
234+
235+ __raw_writel(tcon, S3C2410_TCON);
236+ __raw_writel(tcnt, S3C2410_TCNTB(4));
237+ __raw_writel(tcnt, S3C2410_TCMPB(4));
238+
239+ /* start the timer running */
240+ tcon |= S3C2410_TCON_T4START;
241+ tcon &= ~S3C2410_TCON_T4MANUALUPD;
242+ __raw_writel(tcon, S3C2410_TCON);
243+
244+ __raw_writel(__raw_readl(S3C2410_INTMSK) & (~(1UL << 14)),
245+ S3C2410_INTMSK);
246+
247+}
248+
249+struct sys_timer s3c24xx_timer;
250+static void timer_resume_work(struct work_struct *work)
251+{
252+ clk_enable(clk);
253+
254+#ifdef CONFIG_NO_IDLE_HZ
255+ if (s3c24xx_timer.dyn_tick->state & DYN_TICK_ENABLED)
256+ s3c24xx_timer.dyn_tick->enable();
257+ else
258+#endif
259+ s3c2410_timer_setup();
260+}
261+
262+static void __init s3c2410_timer_init (void)
263+{
264+ if (!use_tclk1_12()) {
265+ /* for the h1940 (and others), we use the pclk from the core
266+ * to generate the timer values.
267+ */
268+
269+ /* this is used as default if no other timer can be found */
270+ clk = clk_get(NULL, "timers");
271+ if (IS_ERR(clk))
272+ panic("failed to get clock for system timer");
273+
274+ clk_enable(clk);
275+
276+ pclk = clk_get_rate(clk);
277+ printk("pclk = %lu\n", pclk);
278+ }
279+
280+ INIT_WORK(&resume_work, timer_resume_work);
281+ s3c2410_timer_setup();
282+ setup_irq(IRQ_TIMER4, &s3c2410_timer_irq);
283+}
284+
285+static void s3c2410_timer_resume_work(struct work_struct *work)
286+{
287+ s3c2410_timer_setup();
288+}
289+
290+static void s3c2410_timer_resume(void)
291+{
292+ static DECLARE_WORK(work, s3c2410_timer_resume_work);
293+ int res;
294+
295+ res = schedule_work(&work);
296+ if (!res)
297+ printk(KERN_ERR
298+ "s3c2410_timer_resume_work already queued ???\n");
299+}
300+
301+#ifdef CONFIG_NO_IDLE_HZ
302+/*
303+ * We'll set a constant prescaler so we don't have to bother setting it
304+ * when reprogramming and so that we avoid costly divisions.
305+ *
306+ * (2 * HZ) << INPUT_FREQ_SHIFT is the desired frequency after prescaler.
307+ * At HZ == 200, HZ * 1024 should work for PCLKs of up to ~53.5 MHz.
308+ */
309+#define INPUT_FREQ_SHIFT 9
310+
311+static int ticks_last;
312+static int ticks_left;
313+static uint32_t tcnto_last;
314+
315+static inline int s3c24xx_timer_read(void)
316+{
317+ uint32_t tcnto = __raw_readl(S3C2410_TCNTO(4));
318+
319+ /*
320+ * WARNING: sometimes we get called before TCNTB has been
321+ * loaded into the counter and TCNTO then returns its previous
322+ * value and kill us, so don't do anything before counter is
323+ * reloaded.
324+ */
325+ if (unlikely(tcnto == tcnto_last))
326+ return ticks_last;
327+
328+ tcnto_last = -1;
329+ return tcnto <<
330+ ((__raw_readl(S3C2410_TCFG1) >> S3C2410_TCFG1_MUX4_SHIFT) & 3);
331+}
332+
333+static inline void s3c24xx_timer_program(int ticks)
334+{
335+ uint32_t tcon = __raw_readl(S3C2410_TCON) & ~(7 << 20);
336+ uint32_t tcfg1 = __raw_readl(S3C2410_TCFG1) & ~S3C2410_TCFG1_MUX4_MASK;
337+
338+ /* Just make sure the timer is stopped. */
339+ __raw_writel(tcon, S3C2410_TCON);
340+
341+ /* TODO: add likely()ies / unlikely()ies */
342+ if (ticks >> 18) {
343+ ticks_last = min(ticks, 0xffff << 3);
344+ ticks_left = ticks - ticks_last;
345+ __raw_writel(tcfg1 | S3C2410_TCFG1_MUX4_DIV16, S3C2410_TCFG1);
346+ __raw_writel(ticks_last >> 3, S3C2410_TCNTB(4));
347+ } else if (ticks >> 17) {
348+ ticks_last = ticks;
349+ ticks_left = 0;
350+ __raw_writel(tcfg1 | S3C2410_TCFG1_MUX4_DIV8, S3C2410_TCFG1);
351+ __raw_writel(ticks_last >> 2, S3C2410_TCNTB(4));
352+ } else if (ticks >> 16) {
353+ ticks_last = ticks;
354+ ticks_left = 0;
355+ __raw_writel(tcfg1 | S3C2410_TCFG1_MUX4_DIV4, S3C2410_TCFG1);
356+ __raw_writel(ticks_last >> 1, S3C2410_TCNTB(4));
357+ } else {
358+ ticks_last = ticks;
359+ ticks_left = 0;
360+ __raw_writel(tcfg1 | S3C2410_TCFG1_MUX4_DIV2, S3C2410_TCFG1);
361+ __raw_writel(ticks_last >> 0, S3C2410_TCNTB(4));
362+ }
363+
364+ tcnto_last = __raw_readl(S3C2410_TCNTO(4));
365+ __raw_writel(tcon | S3C2410_TCON_T4MANUALUPD,
366+ S3C2410_TCON);
367+ __raw_writel(tcon | S3C2410_TCON_T4START,
368+ S3C2410_TCON);
369+}
370+
371+/*
372+ * If we have already waited all the time we were supposed to wait,
373+ * kick the timer, setting the longest allowed timeout value just
374+ * for time-keeping.
375+ */
376+static inline void s3c24xx_timer_program_idle(void)
377+{
378+ s3c24xx_timer_program(0xffff << 3);
379+}
380+
381+static inline void s3c24xx_timer_update(int restart)
382+{
383+ int ticks_cur = s3c24xx_timer_read();
384+ int jiffies_elapsed = (ticks_last - ticks_cur) >> INPUT_FREQ_SHIFT;
385+ int subjiffy = ticks_last - (jiffies_elapsed << INPUT_FREQ_SHIFT);
386+
387+ if (restart) {
388+ if (ticks_left >= (1 << INPUT_FREQ_SHIFT))
389+ s3c24xx_timer_program(ticks_left);
390+ else
391+ s3c24xx_timer_program_idle();
392+ ticks_last += subjiffy;
393+ } else
394+ ticks_last = subjiffy;
395+
396+ while (jiffies_elapsed --)
397+ timer_tick();
398+}
399+
400+/* Called when the timer expires. */
401+static irqreturn_t s3c24xx_timer_handler(int irq, void *dev_id)
402+{
403+ tcnto_last = -1;
404+ s3c24xx_timer_update(1);
405+
406+ return IRQ_HANDLED;
407+}
408+
409+/* Called to update jiffies with time elapsed. */
410+static irqreturn_t s3c24xx_timer_handler_dyn_tick(int irq, void *dev_id)
411+{
412+ s3c24xx_timer_update(0);
413+
414+ return IRQ_HANDLED;
415+}
416+
417+/*
418+ * Programs the next timer interrupt needed. Called when dynamic tick is
419+ * enabled, and to reprogram the ticks to skip from pm_idle. The CPU goes
420+ * to sleep directly after this.
421+ */
422+static void s3c24xx_timer_reprogram_dyn_tick(unsigned long next_jiffies)
423+{
424+ int subjiffy_left = ticks_last - s3c24xx_timer_read();
425+
426+ s3c24xx_timer_program(max((int) next_jiffies, 1) << INPUT_FREQ_SHIFT);
427+ ticks_last += subjiffy_left;
428+}
429+
430+static unsigned long s3c24xx_timer_offset_dyn_tick(void)
431+{
432+ /* TODO */
433+ return 0;
434+}
435+
436+static int s3c24xx_timer_enable_dyn_tick(void)
437+{
438+ /* Set our constant prescaler. */
439+ uint32_t tcfg0 = __raw_readl(S3C2410_TCFG0);
440+ int prescaler =
441+ max(min(256, (int) pclk / (HZ << (INPUT_FREQ_SHIFT + 1))), 1);
442+
443+ tcfg0 &= ~S3C2410_TCFG_PRESCALER1_MASK;
444+ tcfg0 |= (prescaler - 1) << S3C2410_TCFG_PRESCALER1_SHIFT;
445+ __raw_writel(tcfg0, S3C2410_TCFG0);
446+
447+ /* Override handlers. */
448+ s3c2410_timer_irq.handler = s3c24xx_timer_handler;
449+ s3c24xx_timer.offset = s3c24xx_timer_offset_dyn_tick;
450+
451+ printk(KERN_INFO "dyn_tick enabled on s3c24xx timer 4, "
452+ "%li Hz pclk with prescaler %i\n", pclk, prescaler);
453+
454+ s3c24xx_timer_program_idle();
455+
456+ return 0;
457+}
458+
459+static int s3c24xx_timer_disable_dyn_tick(void)
460+{
461+ s3c2410_timer_irq.handler = s3c2410_timer_interrupt;
462+ s3c24xx_timer.offset = s3c2410_gettimeoffset;
463+ s3c2410_timer_setup();
464+
465+ return 0;
466+}
467+
468+static struct dyn_tick_timer s3c24xx_dyn_tick_timer = {
469+ .enable = s3c24xx_timer_enable_dyn_tick,
470+ .disable = s3c24xx_timer_disable_dyn_tick,
471+ .reprogram = s3c24xx_timer_reprogram_dyn_tick,
472+ .handler = s3c24xx_timer_handler_dyn_tick,
473+};
474+#endif /* CONFIG_NO_IDLE_HZ */
475+
476+struct sys_timer s3c24xx_timer = {
477+ .init = s3c2410_timer_init,
478+ .offset = s3c2410_gettimeoffset,
479+ .resume = s3c2410_timer_resume,
480+#ifdef CONFIG_NO_IDLE_HZ
481+ .dyn_tick = &s3c24xx_dyn_tick_timer,
482+#endif
483+};
484

Archive Download this file



interactive