Root/package/uboot-lantiq/files/board/infineon/easy50712/danube.c

1/*
2 * (C) Copyright 2003
3 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4 *
5 * (C) Copyright 2010
6 * Thomas Langer, Ralph Hempel
7 *
8 * See file CREDITS for list of people who contributed to this
9 * project.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; either version 2 of
14 * the License, or (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
24 * MA 02111-1307 USA
25 */
26
27#include <common.h>
28#include <command.h>
29#include <netdev.h>
30#include <miiphy.h>
31#include <asm/addrspace.h>
32#include <asm/danube.h>
33#include <asm/reboot.h>
34#include <asm/io.h>
35#if defined(CONFIG_CMD_HTTPD)
36#include <httpd.h>
37#endif
38
39extern ulong ifx_get_ddr_hz(void);
40extern ulong ifx_get_cpuclk(void);
41
42/* definitions for external PHYs / Switches */
43/* Split values into phy address and register address */
44#define PHYADDR(_reg) ((_reg >> 5) & 0xff), (_reg & 0x1f)
45
46/* IDs and registers of known external switches */
47#define ID_SAMURAI_0 0x1020
48#define ID_SAMURAI_1 0x0007
49#define SAMURAI_ID_REG0 0xA0
50#define SAMURAI_ID_REG1 0xA1
51
52#define ID_TANTOS 0x2599
53
54void _machine_restart(void)
55{
56    *DANUBE_RCU_RST_REQ |=1<<30;
57}
58
59#ifdef CONFIG_SYS_RAMBOOT
60phys_size_t initdram(int board_type)
61{
62    return get_ram_size((long *)CONFIG_SYS_SDRAM_BASE, CONFIG_SYS_MAX_RAM);
63}
64#elif defined(CONFIG_USE_DDR_RAM)
65phys_size_t initdram(int board_type)
66{
67    return (CONFIG_SYS_MAX_RAM);
68}
69#else
70
71static ulong max_sdram_size(void) /* per Chip Select */
72{
73    /* The only supported SDRAM data width is 16bit.
74     */
75#define CFG_DW 4
76
77    /* The only supported number of SDRAM banks is 4.
78     */
79#define CFG_NB 4
80
81    ulong cfgpb0 = *DANUBE_SDRAM_MC_CFGPB0;
82    int cols = cfgpb0 & 0xF;
83    int rows = (cfgpb0 & 0xF0) >> 4;
84    ulong size = (1 << (rows + cols)) * CFG_DW * CFG_NB;
85
86    return size;
87}
88
89/*
90 * Check memory range for valid RAM. A simple memory test determines
91 * the actually available RAM size between addresses `base' and
92 * `base + maxsize'.
93 */
94
95static long int dram_size(long int *base, long int maxsize)
96{
97    volatile long int *addr;
98    ulong cnt, val;
99    ulong save[32]; /* to make test non-destructive */
100    unsigned char i = 0;
101
102    for (cnt = (maxsize / sizeof (long)) >> 1; cnt > 0; cnt >>= 1) {
103        addr = base + cnt; /* pointer arith! */
104
105        save[i++] = *addr;
106        *addr = ~cnt;
107    }
108
109    /* write 0 to base address */
110    addr = base;
111    save[i] = *addr;
112    *addr = 0;
113
114    /* check at base address */
115    if ((val = *addr) != 0) {
116        *addr = save[i];
117        return (0);
118    }
119
120    for (cnt = 1; cnt < maxsize / sizeof (long); cnt <<= 1) {
121        addr = base + cnt; /* pointer arith! */
122
123        val = *addr;
124        *addr = save[--i];
125
126        if (val != (~cnt)) {
127            return (cnt * sizeof (long));
128        }
129    }
130    return (maxsize);
131}
132
133phys_size_t initdram(int board_type)
134{
135    int rows, cols, best_val = *DANUBE_SDRAM_MC_CFGPB0;
136    ulong size, max_size = 0;
137    ulong our_address;
138
139    /* load t9 into our_address */
140    asm volatile ("move %0, $25" : "=r" (our_address) :);
141
142    /* Can't probe for RAM size unless we are running from Flash.
143     * find out whether running from DRAM or Flash.
144     */
145    if (CPHYSADDR(our_address) < CPHYSADDR(PHYS_FLASH_1))
146    {
147        return max_sdram_size();
148    }
149
150    for (cols = 0x8; cols <= 0xC; cols++)
151    {
152        for (rows = 0xB; rows <= 0xD; rows++)
153        {
154            *DANUBE_SDRAM_MC_CFGPB0 = (0x14 << 8) |
155                                      (rows << 4) | cols;
156            size = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
157                                      max_sdram_size());
158
159            if (size > max_size)
160            {
161                best_val = *DANUBE_SDRAM_MC_CFGPB0;
162                max_size = size;
163            }
164        }
165    }
166
167    *DANUBE_SDRAM_MC_CFGPB0 = best_val;
168    return max_size;
169}
170#endif
171
172int checkboard (void)
173{
174    unsigned long chipid = *DANUBE_MPS_CHIPID;
175    int part_num;
176
177    puts ("Board: ");
178
179    part_num = DANUBE_MPS_CHIPID_PARTNUM_GET(chipid);
180    switch (part_num)
181    {
182    case 0x129:
183    case 0x12B:
184    case 0x12D:
185        puts("Danube/Twinpass/Vinax-VE ");
186        break;
187    default:
188        printf ("unknown, chip part number 0x%03X ", part_num);
189        break;
190    }
191    printf ("V1.%ld, ", DANUBE_MPS_CHIPID_VERSION_GET(chipid));
192
193    printf("DDR Speed %ld MHz, ", ifx_get_ddr_hz()/1000000);
194    printf("CPU Speed %ld MHz\n", ifx_get_cpuclk()/1000000);
195
196    return 0;
197}
198
199#ifdef CONFIG_SKIP_LOWLEVEL_INIT
200int board_early_init_f(void)
201{
202#ifdef CONFIG_EBU_ADDSEL0
203    (*DANUBE_EBU_ADDSEL0) = CONFIG_EBU_ADDSEL0;
204#endif
205#ifdef CONFIG_EBU_ADDSEL1
206    (*DANUBE_EBU_ADDSEL1) = CONFIG_EBU_ADDSEL1;
207#endif
208#ifdef CONFIG_EBU_ADDSEL2
209    (*DANUBE_EBU_ADDSEL2) = CONFIG_EBU_ADDSEL2;
210#endif
211#ifdef CONFIG_EBU_ADDSEL3
212    (*DANUBE_EBU_ADDSEL3) = CONFIG_EBU_ADDSEL3;
213#endif
214#ifdef CONFIG_EBU_BUSCON0
215    (*DANUBE_EBU_BUSCON0) = CONFIG_EBU_BUSCON0;
216#endif
217#ifdef CONFIG_EBU_BUSCON1
218    (*DANUBE_EBU_BUSCON1) = CONFIG_EBU_BUSCON1;
219#endif
220#ifdef CONFIG_EBU_BUSCON2
221    (*DANUBE_EBU_BUSCON2) = CONFIG_EBU_BUSCON2;
222#endif
223#ifdef CONFIG_EBU_BUSCON3
224    (*DANUBE_EBU_BUSCON3) = CONFIG_EBU_BUSCON3;
225#endif
226
227    return 0;
228}
229#endif /* CONFIG_SKIP_LOWLEVEL_INIT */
230
231#ifdef CONFIG_EXTRA_SWITCH
232static int external_switch_init(void)
233{
234    unsigned short chipid0=0xdead, chipid1=0xbeef;
235    static char * const name = "lq_cpe_eth";
236
237#ifdef CONFIG_SWITCH_PORT0
238    *DANUBE_GPIO_P0_ALTSEL0 &= ~(1<<CONFIG_SWITCH_PIN);
239    *DANUBE_GPIO_P0_ALTSEL1 &= ~(1<<CONFIG_SWITCH_PIN);
240    *DANUBE_GPIO_P0_OD |= (1<<CONFIG_SWITCH_PIN);
241    *DANUBE_GPIO_P0_DIR |= (1<<CONFIG_SWITCH_PIN);
242    *DANUBE_GPIO_P0_OUT |= (1<<CONFIG_SWITCH_PIN);
243#elif defined(CONFIG_SWITCH_PORT1)
244    *DANUBE_GPIO_P1_ALTSEL0 &= ~(1<<CONFIG_SWITCH_PIN);
245    *DANUBE_GPIO_P1_ALTSEL1 &= ~(1<<CONFIG_SWITCH_PIN);
246    *DANUBE_GPIO_P1_OD |= (1<<CONFIG_SWITCH_PIN);
247    *DANUBE_GPIO_P1_DIR |= (1<<CONFIG_SWITCH_PIN);
248    *DANUBE_GPIO_P1_OUT |= (1<<CONFIG_SWITCH_PIN);
249#endif
250#ifdef CLK_OUT2_25MHZ
251    *DANUBE_GPIO_P0_DIR=0x0000ae78;
252    *DANUBE_GPIO_P0_ALTSEL0=0x00008078;
253    //joelin for Mii-1 *DANUBE_GPIO_P0_ALTSEL1=0x80000080;
254    *DANUBE_GPIO_P0_ALTSEL1=0x80000000; //joelin for Mii-1
255    *DANUBE_CGU_IFCCR=0x00400010;
256    *DANUBE_GPIO_P0_OD=0x0000ae78;
257#endif
258
259    /* earlier no valid response is available, at least on Twinpass & Tantos @ 111MHz, M4530 platform */
260    udelay(100000);
261
262    debug("\nsearching for Samurai switch ... ");
263    if ( (miiphy_read(name, PHYADDR(SAMURAI_ID_REG0), &chipid0)==0) &&
264         (miiphy_read(name, PHYADDR(SAMURAI_ID_REG1), &chipid1)==0) ) {
265        if (((chipid0 & 0xFFF0) == ID_SAMURAI_0) &&
266            ((chipid1 & 0x000F) == ID_SAMURAI_1)) {
267            debug("found");
268
269            /* enable "Crossover Auto Detect" + defaults */
270            /* P0 */
271            miiphy_write(name, PHYADDR(0x01), 0x840F);
272            /* P1 */
273            miiphy_write(name, PHYADDR(0x03), 0x840F);
274            /* P2 */
275            miiphy_write(name, PHYADDR(0x05), 0x840F);
276            /* P3 */
277            miiphy_write(name, PHYADDR(0x07), 0x840F);
278            /* P4 */
279            miiphy_write(name, PHYADDR(0x08), 0x840F);
280            /* P5 */
281            miiphy_write(name, PHYADDR(0x09), 0x840F);
282            /* System Control 4: CPU on port 1 and other */
283            miiphy_write(name, PHYADDR(0x12), 0x3602);
284            #ifdef CLK_OUT2_25MHZ
285            /* Bandwidth Control Enable Register: enable */
286            miiphy_write(name, PHYADDR(0x33), 0x4000);
287            #endif
288        }
289    }
290
291    debug("\nsearching for TANTOS switch ... ");
292    if (miiphy_read(name, PHYADDR(0x101), &chipid0) == 0) {
293        if (chipid0 == ID_TANTOS) {
294            debug("found");
295
296            /* P5 Basic Control: Force Link Up */
297            miiphy_write(name, PHYADDR(0xA1), 0x0004);
298            /* P6 Basic Control: Force Link Up */
299            miiphy_write(name, PHYADDR(0xC1), 0x0004);
300            /* RGMII/MII Port Control (P4/5/6) */
301            miiphy_write(name, PHYADDR(0xF5), 0x0773);
302
303            /* Software workaround. */
304            /* PHY reset from P0 to P4. */
305
306            /* set data for indirect write */
307            miiphy_write(name, PHYADDR(0x121), 0x8000);
308
309            /* P0 */
310            miiphy_write(name, PHYADDR(0x120), 0x0400);
311            udelay(1000);
312            /* P1 */
313            miiphy_write(name, PHYADDR(0x120), 0x0420);
314            udelay(1000);
315            /* P2 */
316            miiphy_write(name, PHYADDR(0x120), 0x0440);
317            udelay(1000);
318            /* P3 */
319            miiphy_write(name, PHYADDR(0x120), 0x0460);
320            udelay(1000);
321            /* P4 */
322            miiphy_write(name, PHYADDR(0x120), 0x0480);
323            udelay(1000);
324        }
325    }
326    debug("\n");
327
328    return 0;
329}
330#endif /* CONFIG_EXTRA_SWITCH */
331
332int board_gpio_init(void)
333{
334#ifdef CONFIG_BUTTON_PORT0
335    *DANUBE_GPIO_P0_ALTSEL0 &= ~(1<<CONFIG_BUTTON_PIN);
336    *DANUBE_GPIO_P0_ALTSEL1 &= ~(1<<CONFIG_BUTTON_PIN);
337    *DANUBE_GPIO_P0_DIR &= ~(1<<CONFIG_BUTTON_PIN);
338    if(!!(*DANUBE_GPIO_P0_IN & (1<<CONFIG_BUTTON_PIN)) == CONFIG_BUTTON_LEVEL)
339    {
340        printf("button is pressed\n");
341        setenv("bootdelay", "0");
342        setenv("bootcmd", "httpd");
343    }
344#elif defined(CONFIG_BUTTON_PORT1)
345    *DANUBE_GPIO_P1_ALTSEL0 &= ~(1<<CONFIG_BUTTON_PIN);
346    *DANUBE_GPIO_P1_ALTSEL1 &= ~(1<<CONFIG_BUTTON_PIN);
347    *DANUBE_GPIO_P1_DIR &= ~(1<<CONFIG_BUTTON_PIN);
348    if(!!(*DANUBE_GPIO_P1_IN & (1<<CONFIG_BUTTON_PIN)) == CONFIG_BUTTON_LEVEL)
349    {
350        printf("button is pressed\n");
351        setenv("bootdelay", "0");
352        setenv("bootcmd", "httpd");
353    }
354#endif
355}
356
357int board_eth_init(bd_t *bis)
358{
359
360    board_gpio_init();
361
362#if defined(CONFIG_IFX_ETOP)
363
364    *DANUBE_PMU_PWDCR &= 0xFFFFEFDF;
365    *DANUBE_PMU_PWDCR &=~(1<<DANUBE_PMU_DMA_SHIFT);/*enable DMA from PMU*/
366
367    if (lq_eth_initialize(bis)<0)
368        return -1;
369
370    *DANUBE_RCU_RST_REQ |=1;
371    udelay(200000);
372    *DANUBE_RCU_RST_REQ &=(unsigned long)~1;
373    udelay(1000);
374
375#ifdef CONFIG_EXTRA_SWITCH
376    if (external_switch_init()<0)
377        return -1;
378#endif /* CONFIG_EXTRA_SWITCH */
379#endif /* CONFIG_IFX_ETOP */
380
381    return 0;
382}
383
384#if defined(CONFIG_CMD_HTTPD)
385int do_http_upgrade(const unsigned char *data, const ulong size)
386{
387    char buf[128];
388
389    if(getenv ("ram_addr") == NULL)
390        return -1;
391    if(getenv ("kernel_addr") == NULL)
392        return -1;
393    /* check the image */
394    if(run_command("imi ${ram_addr}", 0) < 0) {
395        return -1;
396    }
397    /* write the image to the flash */
398    puts("http ugrade ...\n");
399    sprintf(buf, "era ${kernel_addr} +0x%x; cp.b ${ram_addr} ${kernel_addr} 0x%x", size, size);
400    return run_command(buf, 0);
401}
402
403int do_http_progress(const int state)
404{
405    /* toggle LED's here */
406    switch(state) {
407        case HTTP_PROGRESS_START:
408        puts("http start\n");
409        break;
410        case HTTP_PROGRESS_TIMEOUT:
411        puts(".");
412        break;
413        case HTTP_PROGRESS_UPLOAD_READY:
414        puts("http upload ready\n");
415        break;
416        case HTTP_PROGRESS_UGRADE_READY:
417        puts("http ugrade ready\n");
418        break;
419        case HTTP_PROGRESS_UGRADE_FAILED:
420        puts("http ugrade failed\n");
421        break;
422    }
423    return 0;
424}
425
426unsigned long do_http_tmp_address(void)
427{
428    char *s = getenv ("ram_addr");
429    if (s) {
430        ulong tmp = simple_strtoul (s, NULL, 16);
431        return tmp;
432    }
433    return 0 /*0x80a00000*/;
434}
435
436#endif
437

Archive Download this file



interactive