| 1 | /* |
| 2 | * Copyright 2007-2009 Freescale Semiconductor, Inc. All Rights Reserved. |
| 3 | * Author: Kurt Mahan, kmahan@freescale.com |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation; either version 2 of the License, or |
| 8 | * (at your option) any later version. |
| 9 | */ |
| 10 | #include <linux/module.h> |
| 11 | #include <linux/kernel.h> |
| 12 | #include <linux/string.h> |
| 13 | #include <linux/ptrace.h> |
| 14 | #include <linux/errno.h> |
| 15 | #include <linux/ioport.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/interrupt.h> |
| 18 | #include <linux/pci.h> |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/phy.h> |
| 21 | #include <linux/delay.h> |
| 22 | #include <linux/netdevice.h> |
| 23 | #include <linux/etherdevice.h> |
| 24 | #include <linux/skbuff.h> |
| 25 | #include <linux/spinlock.h> |
| 26 | #include <linux/workqueue.h> |
| 27 | #include <linux/bitops.h> |
| 28 | |
| 29 | #include <asm/coldfire.h> |
| 30 | #include <asm/mcfsim.h> |
| 31 | |
| 32 | #include <asm/dma.h> |
| 33 | #include <asm/MCD_dma.h> |
| 34 | #include <asm/m5485sram.h> |
| 35 | #include <asm/virtconvert.h> |
| 36 | #include <asm/irq.h> |
| 37 | |
| 38 | #include "fec_m547x.h" |
| 39 | |
| 40 | #ifdef CONFIG_FEC_548x_ENABLE_FEC2 |
| 41 | #define FEC_MAX_PORTS 2 |
| 42 | #define FEC_2 |
| 43 | #else |
| 44 | #define FEC_MAX_PORTS 1 |
| 45 | #undef FEC_2 |
| 46 | #endif |
| 47 | |
| 48 | #define VERSION "0.20" |
| 49 | MODULE_DESCRIPTION("DMA Fast Ethernet Controller driver ver " VERSION); |
| 50 | |
| 51 | /* fec private */ |
| 52 | struct fec_priv { |
| 53 | struct net_device *netdev; /* owning net device */ |
| 54 | void *fecpriv_txbuf[FEC_TX_BUF_NUMBER]; /* tx buffer ptrs */ |
| 55 | MCD_bufDescFec *fecpriv_txdesc; /* tx descriptor ptrs */ |
| 56 | volatile unsigned int fecpriv_current_tx; /* current tx desc index */ |
| 57 | volatile unsigned int fecpriv_next_tx; /* next tx desc index */ |
| 58 | unsigned int fecpriv_current_rx; /* current rx desc index */ |
| 59 | MCD_bufDescFec *fecpriv_rxdesc; /* rx descriptor ptrs */ |
| 60 | struct sk_buff *askb_rx[FEC_RX_BUF_NUMBER]; /* rx SKB ptrs */ |
| 61 | unsigned int fecpriv_initiator_rx; /* rx dma initiator */ |
| 62 | unsigned int fecpriv_initiator_tx; /* tx dma initiator */ |
| 63 | int fecpriv_fec_rx_channel; /* rx dma channel */ |
| 64 | int fecpriv_fec_tx_channel; /* tx dma channel */ |
| 65 | int fecpriv_rx_requestor; /* rx dma requestor */ |
| 66 | int fecpriv_tx_requestor; /* tx dma requestor */ |
| 67 | void *fecpriv_interrupt_fec_rx_handler; /* dma rx handler */ |
| 68 | void *fecpriv_interrupt_fec_tx_handler; /* dma tx handler */ |
| 69 | unsigned char *fecpriv_mac_addr; /* private fec mac addr */ |
| 70 | struct net_device_stats fecpriv_stat; /* stats ptr */ |
| 71 | spinlock_t fecpriv_lock; |
| 72 | int fecpriv_rxflag; |
| 73 | struct tasklet_struct fecpriv_tasklet_reinit; |
| 74 | int index; /* fec hw number */ |
| 75 | struct phy_device *phydev; |
| 76 | struct mii_bus *mdio_bus; |
| 77 | int duplex; |
| 78 | int link; |
| 79 | int speed; |
| 80 | }; |
| 81 | |
| 82 | struct net_device *fec_dev[FEC_MAX_PORTS]; |
| 83 | |
| 84 | /* FEC functions */ |
| 85 | static int __init fec_init(void); |
| 86 | static struct net_device_stats *fec_get_stat(struct net_device *dev); |
| 87 | static int fec_open(struct net_device *dev); |
| 88 | static int fec_close(struct net_device *nd); |
| 89 | static int fec_tx(struct sk_buff *skb, struct net_device *dev); |
| 90 | static void fec_set_multicast_list(struct net_device *nd); |
| 91 | static int fec_set_mac_address(struct net_device *dev, void *p); |
| 92 | static void fec_tx_timeout(struct net_device *dev); |
| 93 | static void fec_interrupt_fec_tx_handler(struct net_device *dev); |
| 94 | static void fec_interrupt_fec_rx_handler(struct net_device *dev); |
| 95 | static irqreturn_t fec_interrupt_handler(int irq, void *dev_id); |
| 96 | static void fec_interrupt_fec_tx_handler_fec0(void); |
| 97 | static void fec_interrupt_fec_rx_handler_fec0(void); |
| 98 | static void fec_interrupt_fec_reinit(unsigned long data); |
| 99 | |
| 100 | /* default fec0 address */ |
| 101 | unsigned char fec_mac_addr_fec0[6] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x50 }; |
| 102 | |
| 103 | #ifdef FEC_2 |
| 104 | /* default fec1 address */ |
| 105 | unsigned char fec_mac_addr_fec1[6] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x51 }; |
| 106 | #endif |
| 107 | |
| 108 | extern unsigned char uboot_enet0[]; |
| 109 | extern unsigned char uboot_enet1[]; |
| 110 | |
| 111 | #ifndef MODULE |
| 112 | int fec_str_to_mac(char *str_mac, unsigned char* addr); |
| 113 | int __init fec_mac_setup0(char *s); |
| 114 | #endif |
| 115 | |
| 116 | |
| 117 | #ifdef FEC_2 |
| 118 | void fec_interrupt_fec_tx_handler_fec1(void); |
| 119 | void fec_interrupt_fec_rx_handler_fec1(void); |
| 120 | #endif |
| 121 | |
| 122 | #ifndef MODULE |
| 123 | int __init fec_mac_setup1(char *s); |
| 124 | #endif |
| 125 | |
| 126 | module_init(fec_init); |
| 127 | /* module_exit(fec_cleanup); */ |
| 128 | |
| 129 | __setup("mac0=", fec_mac_setup0); |
| 130 | |
| 131 | #ifdef FEC_2 |
| 132 | __setup("mac1=", fec_mac_setup1); |
| 133 | #endif |
| 134 | |
| 135 | #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18)) |
| 136 | #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \ |
| 137 | (VAL & 0xffff)) |
| 138 | /* ----------------------------------------------------------- */ |
| 139 | static int coldfire_fec_mdio_read(struct mii_bus *bus, |
| 140 | int phy_id, int reg) |
| 141 | { |
| 142 | int ret; |
| 143 | struct net_device *dev = bus->priv; |
| 144 | #ifdef CONFIG_FEC_548x_SHARED_PHY |
| 145 | unsigned long base_addr = (unsigned long)FEC_BASE_ADDR_FEC0; |
| 146 | #else |
| 147 | unsigned long base_addr = (unsigned long) dev->base_addr; |
| 148 | #endif |
| 149 | int tries = 100; |
| 150 | |
| 151 | /* Clear the MII interrupt bit */ |
| 152 | FEC_EIR(base_addr) = FEC_EIR_MII; |
| 153 | |
| 154 | /* Write to the MII management frame register */ |
| 155 | FEC_MMFR(base_addr) = mk_mii_read(reg) | (phy_id << 23); |
| 156 | |
| 157 | /* Wait for the reading */ |
| 158 | while (!(FEC_EIR(base_addr) & FEC_EIR_MII)) { |
| 159 | udelay(10); |
| 160 | |
| 161 | if (!tries) { |
| 162 | printk(KERN_ERR "%s timeout\n", __func__); |
| 163 | return -ETIMEDOUT; |
| 164 | } |
| 165 | tries--; |
| 166 | } |
| 167 | |
| 168 | /* Clear the MII interrupt bit */ |
| 169 | FEC_EIR(base_addr) = FEC_EIR_MII; |
| 170 | ret = FEC_MMFR(base_addr) & 0x0000FFFF; |
| 171 | return ret; |
| 172 | } |
| 173 | |
| 174 | static int coldfire_fec_mdio_write(struct mii_bus *bus, |
| 175 | int phy_id, int reg, u16 data) |
| 176 | { |
| 177 | int ret; |
| 178 | struct net_device *dev = bus->priv; |
| 179 | #ifdef CONFIG_FEC_548x_SHARED_PHY |
| 180 | unsigned long base_addr = (unsigned long)FEC_BASE_ADDR_FEC0; |
| 181 | #else |
| 182 | unsigned long base_addr = (unsigned long) dev->base_addr; |
| 183 | #endif |
| 184 | int tries = 100; |
| 185 | |
| 186 | printk(KERN_ERR "%s base_addr %x, phy_id %x, reg %x, data %x\n", |
| 187 | __func__, base_addr, phy_id, reg, data); |
| 188 | /* Clear the MII interrupt bit */ |
| 189 | FEC_EIR(base_addr) = FEC_EIR_MII; |
| 190 | |
| 191 | /* Write to the MII management frame register */ |
| 192 | FEC_MMFR(base_addr) = mk_mii_write(reg, data) | (phy_id << 23); |
| 193 | |
| 194 | /* Wait for the writing */ |
| 195 | while (!(FEC_EIR(base_addr) & FEC_EIR_MII)) { |
| 196 | udelay(10); |
| 197 | if (!tries) { |
| 198 | printk(KERN_ERR "%s timeout\n", __func__); |
| 199 | return -ETIMEDOUT; |
| 200 | } |
| 201 | tries--; |
| 202 | } |
| 203 | /* Clear the MII interrupt bit */ |
| 204 | FEC_EIR(base_addr) = FEC_EIR_MII; |
| 205 | ret = FEC_MMFR(base_addr) & 0x0000FFFF; |
| 206 | |
| 207 | return ret; |
| 208 | } |
| 209 | |
| 210 | static void fec_adjust_link(struct net_device *dev) |
| 211 | { |
| 212 | struct fec_priv *priv = netdev_priv(dev); |
| 213 | struct phy_device *phydev = priv->phydev; |
| 214 | int new_state = 0; |
| 215 | |
| 216 | if (phydev->link != PHY_DOWN) { |
| 217 | if (phydev->duplex != priv->duplex) { |
| 218 | new_state = 1; |
| 219 | priv->duplex = phydev->duplex; |
| 220 | } |
| 221 | |
| 222 | if (phydev->speed != priv->speed) { |
| 223 | new_state = 1; |
| 224 | priv->speed = phydev->speed; |
| 225 | } |
| 226 | |
| 227 | if (priv->link == PHY_DOWN) { |
| 228 | new_state = 1; |
| 229 | priv->link = phydev->link; |
| 230 | } |
| 231 | } else if (priv->link) { |
| 232 | new_state = 1; |
| 233 | priv->link = PHY_DOWN; |
| 234 | priv->speed = 0; |
| 235 | priv->duplex = -1; |
| 236 | } |
| 237 | |
| 238 | if (new_state) |
| 239 | phy_print_status(phydev); |
| 240 | } |
| 241 | |
| 242 | static int coldfire_fec_init_phy(struct net_device *dev) |
| 243 | { |
| 244 | struct fec_priv *priv = netdev_priv(dev); |
| 245 | struct phy_device *phydev = NULL; |
| 246 | int i; |
| 247 | int startnode; |
| 248 | |
| 249 | #ifdef CONFIG_FEC_548x_SHARED_PHY |
| 250 | if (priv->index == 0) |
| 251 | startnode = 0; |
| 252 | else if (priv->index == 1) { |
| 253 | struct fec_priv *priv0 = netdev_priv(fec_dev[0]); |
| 254 | startnode = priv0->phydev->addr + 1; |
| 255 | } else |
| 256 | startnode = 0; |
| 257 | #else |
| 258 | startnode = 0; |
| 259 | #endif |
| 260 | #ifdef FEC_DEBUG |
| 261 | printk(KERN_ERR "%s priv->index %x, startnode %x\n", |
| 262 | __func__, priv->index, startnode); |
| 263 | #endif |
| 264 | /* search for connect PHY device */ |
| 265 | for (i = startnode; i < PHY_MAX_ADDR; i++) { |
| 266 | struct phy_device *const tmp_phydev = |
| 267 | priv->mdio_bus->phy_map[i]; |
| 268 | |
| 269 | if (!tmp_phydev) { |
| 270 | #ifdef FEC_DEBUG |
| 271 | printk(KERN_INFO "%s no PHY here at" |
| 272 | "mii_bus->phy_map[%d]\n", |
| 273 | __func__, i); |
| 274 | #endif |
| 275 | continue; /* no PHY here... */ |
| 276 | } |
| 277 | phydev = tmp_phydev; |
| 278 | #ifdef FEC_DEBUG |
| 279 | printk(KERN_INFO "%s find PHY here at" |
| 280 | "mii_bus->phy_map[%d]\n", |
| 281 | __func__, i); |
| 282 | #endif |
| 283 | break; /* found it */ |
| 284 | } |
| 285 | |
| 286 | /* now we are supposed to have a proper phydev, to attach to... */ |
| 287 | if (!phydev) { |
| 288 | printk(KERN_INFO "%s: Don't found any phy device at all\n", |
| 289 | dev->name); |
| 290 | return -ENODEV; |
| 291 | } |
| 292 | |
| 293 | priv->link = 0; |
| 294 | priv->speed = 0; |
| 295 | priv->duplex = 0; |
| 296 | #ifdef FEC_DEBUG |
| 297 | printk(KERN_INFO "%s phydev_busid %s\n", __func__, dev_name(&phydev->dev)); |
| 298 | #endif |
| 299 | phydev = phy_connect(dev, dev_name(&phydev->dev), |
| 300 | &fec_adjust_link, 0, PHY_INTERFACE_MODE_MII); |
| 301 | if (IS_ERR(phydev)) { |
| 302 | printk(KERN_ERR " %s phy_connect failed\n", __func__); |
| 303 | return PTR_ERR(phydev); |
| 304 | } |
| 305 | |
| 306 | printk(KERN_INFO "attached phy %i to driver %s\n", |
| 307 | phydev->addr, phydev->drv->name); |
| 308 | priv->phydev = phydev; |
| 309 | return 0; |
| 310 | } |
| 311 | |
| 312 | static int fec_mdio_register(struct net_device *dev, |
| 313 | int slot) |
| 314 | { |
| 315 | int err = 0; |
| 316 | struct fec_priv *fp = netdev_priv(dev); |
| 317 | |
| 318 | fp->mdio_bus = mdiobus_alloc(); |
| 319 | if (!fp->mdio_bus) { |
| 320 | printk(KERN_ERR "ethernet mdiobus_alloc fail\n"); |
| 321 | return -ENOMEM; |
| 322 | } |
| 323 | |
| 324 | if (slot == 0) { |
| 325 | fp->mdio_bus->name = "Coldfire FEC MII 0 Bus"; |
| 326 | strcpy(fp->mdio_bus->id, "0"); |
| 327 | } else if (slot == 1) { |
| 328 | fp->mdio_bus->name = "Coldfire FEC MII 1 Bus"; |
| 329 | strcpy(fp->mdio_bus->id, "1"); |
| 330 | } else { |
| 331 | printk(KERN_ERR "Now coldfire can not" |
| 332 | "support more than 2 mii bus\n"); |
| 333 | } |
| 334 | |
| 335 | fp->mdio_bus->read = &coldfire_fec_mdio_read; |
| 336 | fp->mdio_bus->write = &coldfire_fec_mdio_write; |
| 337 | fp->mdio_bus->priv = dev; |
| 338 | err = mdiobus_register(fp->mdio_bus); |
| 339 | if (err) { |
| 340 | mdiobus_free(fp->mdio_bus); |
| 341 | printk(KERN_ERR "%s: ethernet mdiobus_register fail %d\n", |
| 342 | dev->name, err); |
| 343 | return -EIO; |
| 344 | } |
| 345 | |
| 346 | printk(KERN_INFO "mdiobus_register %s ok\n", |
| 347 | fp->mdio_bus->name); |
| 348 | return err; |
| 349 | } |
| 350 | |
| 351 | static const struct net_device_ops fec_netdev_ops = { |
| 352 | .ndo_open = fec_open, |
| 353 | .ndo_stop = fec_close, |
| 354 | .ndo_start_xmit = fec_tx, |
| 355 | .ndo_set_multicast_list = fec_set_multicast_list, |
| 356 | .ndo_tx_timeout = fec_tx_timeout, |
| 357 | .ndo_get_stats = fec_get_stat, |
| 358 | .ndo_validate_addr = eth_validate_addr, |
| 359 | .ndo_set_mac_address = fec_set_mac_address, |
| 360 | }; |
| 361 | |
| 362 | /* |
| 363 | * Initialize a FEC device |
| 364 | */ |
| 365 | int fec_enet_init(struct net_device *dev, int slot) |
| 366 | { |
| 367 | struct fec_priv *fp = netdev_priv(dev); |
| 368 | int i; |
| 369 | |
| 370 | fp->index = slot; |
| 371 | fp->netdev = dev; |
| 372 | fec_dev[slot] = dev; |
| 373 | |
| 374 | if (slot == 0) { |
| 375 | /* disable fec0 */ |
| 376 | FEC_ECR(FEC_BASE_ADDR_FEC0) = FEC_ECR_DISABLE; |
| 377 | |
| 378 | /* setup the interrupt handler */ |
| 379 | dev->irq = 64 + ISC_FEC0; |
| 380 | |
| 381 | if (request_irq(dev->irq, fec_interrupt_handler, |
| 382 | IRQF_DISABLED, "ColdFire FEC 0", dev)) { |
| 383 | dev->irq = 0; |
| 384 | printk(KERN_ERR "Cannot allocate FEC0 IRQ\n"); |
| 385 | } else { |
| 386 | /* interrupt priority and level */ |
| 387 | MCF_ICR(ISC_FEC0) = ILP_FEC0; |
| 388 | } |
| 389 | |
| 390 | /* fec base address */ |
| 391 | dev->base_addr = FEC_BASE_ADDR_FEC0; |
| 392 | |
| 393 | /* requestor numbers */ |
| 394 | fp->fecpriv_rx_requestor = DMA_FEC0_RX; |
| 395 | fp->fecpriv_tx_requestor = DMA_FEC0_TX; |
| 396 | |
| 397 | /* fec0 handlers */ |
| 398 | fp->fecpriv_interrupt_fec_rx_handler = |
| 399 | fec_interrupt_fec_rx_handler_fec0; |
| 400 | fp->fecpriv_interrupt_fec_tx_handler = |
| 401 | fec_interrupt_fec_tx_handler_fec0; |
| 402 | |
| 403 | /* tx descriptors */ |
| 404 | fp->fecpriv_txdesc = (void *)FEC_TX_DESC_FEC0; |
| 405 | |
| 406 | /* rx descriptors */ |
| 407 | fp->fecpriv_rxdesc = (void *)FEC_RX_DESC_FEC0; |
| 408 | |
| 409 | /* mac addr |
| 410 | if (uboot_enet0[0] || uboot_enet0[1] || uboot_enet0[2] || |
| 411 | uboot_enet0[3] || uboot_enet0[4] || uboot_enet0[5]) { |
| 412 | use uboot enet 0 addr |
| 413 | memcpy(fec_mac_addr_fec0, uboot_enet0, 6); |
| 414 | }*/ |
| 415 | fec_mac_addr_fec0[0] = |
| 416 | (FEC_PALR(FEC_BASE_ADDR_FEC0) >> 24) & 0xFF; |
| 417 | fec_mac_addr_fec0[1] = |
| 418 | (FEC_PALR(FEC_BASE_ADDR_FEC0) >> 16) & 0xFF; |
| 419 | fec_mac_addr_fec0[2] = |
| 420 | (FEC_PALR(FEC_BASE_ADDR_FEC0) >> 8) & 0xFF; |
| 421 | fec_mac_addr_fec0[3] = |
| 422 | (FEC_PALR(FEC_BASE_ADDR_FEC0)) & 0xFF; |
| 423 | fec_mac_addr_fec0[4] = |
| 424 | (FEC_PAUR(FEC_BASE_ADDR_FEC0) >> 24) & 0xFF; |
| 425 | fec_mac_addr_fec0[5] = |
| 426 | (FEC_PAUR(FEC_BASE_ADDR_FEC0) >> 16) & 0xFF; |
| 427 | |
| 428 | fp->fecpriv_mac_addr = fec_mac_addr_fec0; |
| 429 | } else { |
| 430 | /* disable fec1 */ |
| 431 | FEC_ECR(FEC_BASE_ADDR_FEC1) = FEC_ECR_DISABLE; |
| 432 | #ifdef FEC_2 |
| 433 | /* setup the interrupt handler */ |
| 434 | dev->irq = 64 + ISC_FEC1; |
| 435 | |
| 436 | if (request_irq(dev->irq, fec_interrupt_handler, |
| 437 | IRQF_DISABLED, "ColdFire FEC 1", dev)) { |
| 438 | dev->irq = 0; |
| 439 | printk(KERN_ERR "Cannot allocate FEC1 IRQ\n"); |
| 440 | } else { |
| 441 | /* interrupt priority and level */ |
| 442 | MCF_ICR(ISC_FEC1) = ILP_FEC1; |
| 443 | } |
| 444 | |
| 445 | /* fec base address */ |
| 446 | dev->base_addr = FEC_BASE_ADDR_FEC1; |
| 447 | |
| 448 | /* requestor numbers */ |
| 449 | fp->fecpriv_rx_requestor = DMA_FEC1_RX; |
| 450 | fp->fecpriv_tx_requestor = DMA_FEC1_TX; |
| 451 | |
| 452 | /* fec1 handlers */ |
| 453 | fp->fecpriv_interrupt_fec_rx_handler = |
| 454 | fec_interrupt_fec_rx_handler_fec1; |
| 455 | fp->fecpriv_interrupt_fec_tx_handler = |
| 456 | fec_interrupt_fec_tx_handler_fec1; |
| 457 | |
| 458 | /* tx descriptors */ |
| 459 | fp->fecpriv_txdesc = (void *)FEC_TX_DESC_FEC1; |
| 460 | |
| 461 | /* rx descriptors */ |
| 462 | fp->fecpriv_rxdesc = (void *)FEC_RX_DESC_FEC1; |
| 463 | |
| 464 | /* mac addr |
| 465 | if (uboot_enet1[0] || uboot_enet1[1] || uboot_enet1[2] || |
| 466 | uboot_enet1[3] || uboot_enet1[4] || uboot_enet1[5]) { |
| 467 | use uboot enet 1 addr |
| 468 | memcpy(fec_mac_addr_fec1, uboot_enet1, 6); |
| 469 | }*/ |
| 470 | fec_mac_addr_fec1[0] = |
| 471 | (FEC_PALR(FEC_BASE_ADDR_FEC1) >> 24) & 0xFF; |
| 472 | fec_mac_addr_fec1[1] = |
| 473 | (FEC_PALR(FEC_BASE_ADDR_FEC1) >> 16) & 0xFF; |
| 474 | fec_mac_addr_fec1[2] = |
| 475 | (FEC_PALR(FEC_BASE_ADDR_FEC1) >> 8) & 0xFF; |
| 476 | fec_mac_addr_fec1[3] = |
| 477 | (FEC_PALR(FEC_BASE_ADDR_FEC1)) & 0xFF; |
| 478 | fec_mac_addr_fec1[4] = |
| 479 | (FEC_PAUR(FEC_BASE_ADDR_FEC1) >> 24) & 0xFF; |
| 480 | fec_mac_addr_fec1[5] = |
| 481 | (FEC_PAUR(FEC_BASE_ADDR_FEC1) >> 16) & 0xFF; |
| 482 | |
| 483 | fp->fecpriv_mac_addr = fec_mac_addr_fec1; |
| 484 | #endif |
| 485 | } |
| 486 | |
| 487 | /* clear MIB */ |
| 488 | memset((void *) (dev->base_addr + 0x200), 0, FEC_MIB_LEN); |
| 489 | |
| 490 | /* clear the statistics structure */ |
| 491 | memset((void *) &(fp->fecpriv_stat), 0, |
| 492 | sizeof(struct net_device_stats)); |
| 493 | |
| 494 | /* grab the FEC initiators */ |
| 495 | dma_set_initiator(fp->fecpriv_tx_requestor); |
| 496 | fp->fecpriv_initiator_tx = dma_get_initiator(fp->fecpriv_tx_requestor); |
| 497 | dma_set_initiator(fp->fecpriv_rx_requestor); |
| 498 | fp->fecpriv_initiator_rx = dma_get_initiator(fp->fecpriv_rx_requestor); |
| 499 | |
| 500 | /* reset the DMA channels */ |
| 501 | fp->fecpriv_fec_rx_channel = -1; |
| 502 | fp->fecpriv_fec_tx_channel = -1; |
| 503 | |
| 504 | for (i = 0; i < FEC_RX_BUF_NUMBER; i++) |
| 505 | fp->askb_rx[i] = NULL; |
| 506 | |
| 507 | /* initialize the pointers to the socket buffers */ |
| 508 | for (i = 0; i < FEC_TX_BUF_NUMBER; i++) |
| 509 | fp->fecpriv_txbuf[i] = NULL; |
| 510 | |
| 511 | ether_setup(dev); |
| 512 | |
| 513 | dev->netdev_ops = &fec_netdev_ops; |
| 514 | dev->watchdog_timeo = FEC_TX_TIMEOUT * HZ; |
| 515 | |
| 516 | memcpy(dev->dev_addr, fp->fecpriv_mac_addr, ETH_ALEN); |
| 517 | |
| 518 | spin_lock_init(&fp->fecpriv_lock); |
| 519 | |
| 520 | /* Initialize FEC/I2C/IRQ Pin Assignment Register*/ |
| 521 | FEC_GPIO_PAR_FECI2CIRQ &= 0xF; |
| 522 | FEC_GPIO_PAR_FECI2CIRQ |= FEC_FECI2CIRQ; |
| 523 | |
| 524 | return 0; |
| 525 | } |
| 526 | |
| 527 | /* |
| 528 | * Module Initialization |
| 529 | */ |
| 530 | int __init fec_init(void) |
| 531 | { |
| 532 | struct net_device *dev; |
| 533 | int i; |
| 534 | int err; |
| 535 | struct fec_priv *fep; |
| 536 | DECLARE_MAC_BUF(mac); |
| 537 | |
| 538 | printk(KERN_INFO "FEC ENET (DMA) Version %s\n", VERSION); |
| 539 | |
| 540 | for (i = 0; i < FEC_MAX_PORTS; i++) { |
| 541 | dev = alloc_etherdev(sizeof(struct fec_priv)); |
| 542 | if (!dev) |
| 543 | return -ENOMEM; |
| 544 | err = fec_enet_init(dev, i); |
| 545 | if (err) { |
| 546 | free_netdev(dev); |
| 547 | continue; |
| 548 | } |
| 549 | |
| 550 | fep = netdev_priv(dev); |
| 551 | FEC_MSCR(dev->base_addr) = FEC_MII_SPEED; |
| 552 | #ifdef CONFIG_FEC_548x_SHARED_PHY |
| 553 | if (i == 0) |
| 554 | err = fec_mdio_register(dev, i); |
| 555 | else { |
| 556 | struct fec_priv *priv0 = netdev_priv(fec_dev[0]); |
| 557 | fep->mdio_bus = priv0->mdio_bus; |
| 558 | printk(KERN_INFO "FEC%d SHARED the %s ok\n", |
| 559 | i, fep->mdio_bus->name); |
| 560 | } |
| 561 | #else |
| 562 | err = fec_mdio_register(dev, i); |
| 563 | #endif |
| 564 | if (err) { |
| 565 | printk(KERN_ERR "%s: ethernet fec_mdio_register\n", |
| 566 | dev->name); |
| 567 | free_netdev(dev); |
| 568 | return -ENOMEM; |
| 569 | } |
| 570 | |
| 571 | if (register_netdev(dev) != 0) { |
| 572 | free_netdev(dev); |
| 573 | return -EIO; |
| 574 | } |
| 575 | |
| 576 | printk(KERN_INFO "%s: ethernet %s\n", |
| 577 | dev->name, print_mac(mac, dev->dev_addr)); |
| 578 | } |
| 579 | return 0; |
| 580 | } |
| 581 | |
| 582 | /* |
| 583 | * Stop a device |
| 584 | */ |
| 585 | void fec_stop(struct net_device *dev) |
| 586 | { |
| 587 | struct fec_priv *fp = netdev_priv(dev); |
| 588 | |
| 589 | dma_remove_initiator(fp->fecpriv_initiator_tx); |
| 590 | dma_remove_initiator(fp->fecpriv_initiator_rx); |
| 591 | |
| 592 | if (dev->irq) |
| 593 | free_irq(dev->irq, dev); |
| 594 | } |
| 595 | |
| 596 | /************************************************************************ |
| 597 | * NAME: fec_open |
| 598 | * |
| 599 | * DESCRIPTION: This function performs the initialization of |
| 600 | * of FEC and corresponding KS8721 transiver |
| 601 | * |
| 602 | * RETURNS: If no error occurs, this function returns zero. |
| 603 | *************************************************************************/ |
| 604 | int fec_open(struct net_device *dev) |
| 605 | { |
| 606 | struct fec_priv *fp = netdev_priv(dev); |
| 607 | unsigned long base_addr = (unsigned long) dev->base_addr; |
| 608 | int fduplex; |
| 609 | int i; |
| 610 | int channel; |
| 611 | int error_code = -EBUSY; |
| 612 | |
| 613 | fp->link = 0; |
| 614 | fp->duplex = 0; |
| 615 | fp->speed = 0; |
| 616 | coldfire_fec_init_phy(dev); |
| 617 | phy_start(fp->phydev); |
| 618 | |
| 619 | /* Receive the DMA channels */ |
| 620 | channel = dma_set_channel_fec(fp->fecpriv_rx_requestor); |
| 621 | |
| 622 | if (channel == -1) { |
| 623 | printk(KERN_ERR "Dma channel cannot be reserved\n"); |
| 624 | goto ERRORS; |
| 625 | } |
| 626 | |
| 627 | fp->fecpriv_fec_rx_channel = channel; |
| 628 | |
| 629 | dma_connect(channel, (int) fp->fecpriv_interrupt_fec_rx_handler); |
| 630 | |
| 631 | channel = dma_set_channel_fec(fp->fecpriv_tx_requestor); |
| 632 | |
| 633 | if (channel == -1) { |
| 634 | printk(KERN_ERR "Dma channel cannot be reserved\n"); |
| 635 | goto ERRORS; |
| 636 | } |
| 637 | |
| 638 | fp->fecpriv_fec_tx_channel = channel; |
| 639 | |
| 640 | dma_connect(channel, (int) fp->fecpriv_interrupt_fec_tx_handler); |
| 641 | |
| 642 | /* init tasklet for controller reinitialization */ |
| 643 | tasklet_init(&fp->fecpriv_tasklet_reinit, |
| 644 | fec_interrupt_fec_reinit, (unsigned long) dev); |
| 645 | |
| 646 | /* Reset FIFOs */ |
| 647 | FEC_FECFRST(base_addr) |= FEC_SW_RST | FEC_RST_CTL; |
| 648 | FEC_FECFRST(base_addr) &= ~FEC_SW_RST; |
| 649 | |
| 650 | /* Reset and disable FEC */ |
| 651 | FEC_ECR(base_addr) = FEC_ECR_RESET; |
| 652 | |
| 653 | udelay(10); |
| 654 | |
| 655 | /* Clear all events */ |
| 656 | FEC_EIR(base_addr) = FEC_EIR_CLEAR; |
| 657 | |
| 658 | /* Reset FIFO status */ |
| 659 | FEC_FECTFSR(base_addr) = FEC_FECTFSR_MSK; |
| 660 | FEC_FECRFSR(base_addr) = FEC_FECRFSR_MSK; |
| 661 | |
| 662 | /* Set the default address */ |
| 663 | FEC_PALR(base_addr) = (fp->fecpriv_mac_addr[0] << 24) | |
| 664 | (fp->fecpriv_mac_addr[1] << 16) | |
| 665 | (fp->fecpriv_mac_addr[2] << 8) | |
| 666 | fp->fecpriv_mac_addr[3]; |
| 667 | FEC_PAUR(base_addr) = (fp->fecpriv_mac_addr[4] << 24) | |
| 668 | (fp->fecpriv_mac_addr[5] << 16) | 0x8808; |
| 669 | |
| 670 | /* Reset the group address descriptor */ |
| 671 | FEC_GALR(base_addr) = 0x00000000; |
| 672 | FEC_GAUR(base_addr) = 0x00000000; |
| 673 | |
| 674 | /* Reset the individual address descriptor */ |
| 675 | FEC_IALR(base_addr) = 0x00000000; |
| 676 | FEC_IAUR(base_addr) = 0x00000000; |
| 677 | |
| 678 | /* Set the receive control register */ |
| 679 | FEC_RCR(base_addr) = FEC_RCR_MAX_FRM_SIZE | FEC_RCR_MII; |
| 680 | |
| 681 | /* Set the receive FIFO control register */ |
| 682 | /*FEC_FECRFCR(base_addr) = |
| 683 | * FEC_FECRFCR_FRM | FEC_FECRFCR_GR | FEC_FECRFCR_MSK;*/ |
| 684 | FEC_FECRFCR(base_addr) = FEC_FECRFCR_FRM | FEC_FECRFCR_GR |
| 685 | | (FEC_FECRFCR_MSK |
| 686 | /* disable all but ...*/ |
| 687 | & ~FEC_FECRFCR_FAE |
| 688 | /* enable frame accept error*/ |
| 689 | & ~FEC_FECRFCR_RXW |
| 690 | /* enable receive wait condition*/ |
| 691 | /*& ~FEC_FECRFCR_UF*/ |
| 692 | /* enable FIFO underflow*/ |
| 693 | ); |
| 694 | |
| 695 | /* Set the receive FIFO alarm register */ |
| 696 | FEC_FECRFAR(base_addr) = FEC_FECRFAR_ALARM; |
| 697 | |
| 698 | /* Set the transmit FIFO control register */ |
| 699 | /*FEC_FECTFCR(base_addr) = |
| 700 | FEC_FECTFCR_FRM | FEC_FECTFCR_GR | FEC_FECTFCR_MSK;*/ |
| 701 | FEC_FECTFCR(base_addr) = FEC_FECTFCR_FRM | FEC_FECTFCR_GR |
| 702 | | (FEC_FECTFCR_MSK |
| 703 | /* disable all but ... */ |
| 704 | & ~FEC_FECTFCR_FAE |
| 705 | /* enable frame accept error */ |
| 706 | /* & ~FEC_FECTFCR_TXW */ |
| 707 | /*enable transmit wait condition*/ |
| 708 | /*& ~FEC_FECTFCR_UF*/ |
| 709 | /*enable FIFO underflow*/ |
| 710 | & ~FEC_FECTFCR_OF); |
| 711 | /* enable FIFO overflow */ |
| 712 | |
| 713 | /* Set the transmit FIFO alarm register */ |
| 714 | FEC_FECTFAR(base_addr) = FEC_FECTFAR_ALARM; |
| 715 | |
| 716 | /* Set the Tx FIFO watermark */ |
| 717 | FEC_FECTFWR(base_addr) = FEC_FECTFWR_XWMRK; |
| 718 | |
| 719 | /* Enable the transmitter to append the CRC */ |
| 720 | FEC_CTCWR(base_addr) = FEC_CTCWR_TFCW_CRC; |
| 721 | |
| 722 | /* Enable the ethernet interrupts */ |
| 723 | /*FEC_EIMR(base_addr) = FEC_EIMR_MASK;*/ |
| 724 | FEC_EIMR(base_addr) = FEC_EIMR_DISABLE |
| 725 | | FEC_EIR_LC |
| 726 | | FEC_EIR_RL |
| 727 | | FEC_EIR_HBERR |
| 728 | | FEC_EIR_XFUN |
| 729 | | FEC_EIR_XFERR |
| 730 | | FEC_EIR_RFERR; |
| 731 | |
| 732 | #if 0 |
| 733 | error_code = init_transceiver(base_addr, &fduplex); |
| 734 | if (error_code != 0) { |
| 735 | printk(KERN_ERR "Initialization of the " |
| 736 | "transceiver is failed\n"); |
| 737 | goto ERRORS; |
| 738 | } |
| 739 | #else |
| 740 | fduplex = 1; |
| 741 | #endif |
| 742 | if (fduplex) |
| 743 | /* Enable the full duplex mode */ |
| 744 | FEC_TCR(base_addr) = FEC_TCR_FDEN | FEC_TCR_HBC; |
| 745 | else |
| 746 | /* Disable reception of frames while transmitting */ |
| 747 | FEC_RCR(base_addr) |= FEC_RCR_DRT; |
| 748 | |
| 749 | /* Enable MIB */ |
| 750 | FEC_MIBC(base_addr) = FEC_MIBC_ENABLE; |
| 751 | |
| 752 | /* Enable FEC */ |
| 753 | FEC_ECR(base_addr) |= FEC_ECR_ETHEREN; |
| 754 | FEC_MSCR(dev->base_addr) = FEC_MII_SPEED; |
| 755 | /* Initialize tx descriptors and start DMA for the transmission */ |
| 756 | for (i = 0; i < FEC_TX_BUF_NUMBER; i++) |
| 757 | fp->fecpriv_txdesc[i].statCtrl = MCD_FEC_INTERRUPT; |
| 758 | |
| 759 | fp->fecpriv_txdesc[i - 1].statCtrl |= MCD_FEC_WRAP; |
| 760 | |
| 761 | fp->fecpriv_current_tx = fp->fecpriv_next_tx = 0; |
| 762 | |
| 763 | MCD_startDma(fp->fecpriv_fec_tx_channel, (char *) fp->fecpriv_txdesc, 0, |
| 764 | (unsigned char *) &(FEC_FECTFDR(base_addr)), 0, |
| 765 | FEC_MAX_FRM_SIZE, 0, fp->fecpriv_initiator_tx, |
| 766 | FEC_TX_DMA_PRI, MCD_FECTX_DMA | MCD_INTERRUPT, |
| 767 | MCD_NO_CSUM | MCD_NO_BYTE_SWAP); |
| 768 | |
| 769 | /* Initialize rx descriptors and start DMA for the reception */ |
| 770 | for (i = 0; i < FEC_RX_BUF_NUMBER; i++) { |
| 771 | fp->askb_rx[i] = alloc_skb(FEC_MAXBUF_SIZE + 16, GFP_DMA); |
| 772 | if (!fp->askb_rx[i]) { |
| 773 | fp->fecpriv_rxdesc[i].dataPointer = 0; |
| 774 | fp->fecpriv_rxdesc[i].statCtrl = 0; |
| 775 | fp->fecpriv_rxdesc[i].length = 0; |
| 776 | } else { |
| 777 | skb_reserve(fp->askb_rx[i], 16); |
| 778 | fp->askb_rx[i]->dev = dev; |
| 779 | fp->fecpriv_rxdesc[i].dataPointer = |
| 780 | (unsigned int)virt_to_phys(fp->askb_rx[i]->tail); |
| 781 | fp->fecpriv_rxdesc[i].statCtrl = |
| 782 | MCD_FEC_BUF_READY | MCD_FEC_INTERRUPT; |
| 783 | fp->fecpriv_rxdesc[i].length = FEC_MAXBUF_SIZE; |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | fp->fecpriv_rxdesc[i - 1].statCtrl |= MCD_FEC_WRAP; |
| 788 | fp->fecpriv_current_rx = 0; |
| 789 | |
| 790 | MCD_startDma(fp->fecpriv_fec_rx_channel, (char *) fp->fecpriv_rxdesc, 0, |
| 791 | (unsigned char *) &(FEC_FECRFDR(base_addr)), 0, |
| 792 | FEC_MAX_FRM_SIZE, 0, fp->fecpriv_initiator_rx, |
| 793 | FEC_RX_DMA_PRI, MCD_FECRX_DMA | MCD_INTERRUPT, |
| 794 | MCD_NO_CSUM | MCD_NO_BYTE_SWAP); |
| 795 | |
| 796 | netif_start_queue(dev); |
| 797 | return 0; |
| 798 | |
| 799 | ERRORS: |
| 800 | |
| 801 | /* Remove the channels and return with the error code */ |
| 802 | if (fp->fecpriv_fec_rx_channel != -1) { |
| 803 | dma_disconnect(fp->fecpriv_fec_rx_channel); |
| 804 | dma_remove_channel_by_number(fp->fecpriv_fec_rx_channel); |
| 805 | fp->fecpriv_fec_rx_channel = -1; |
| 806 | } |
| 807 | |
| 808 | if (fp->fecpriv_fec_tx_channel != -1) { |
| 809 | dma_disconnect(fp->fecpriv_fec_tx_channel); |
| 810 | dma_remove_channel_by_number(fp->fecpriv_fec_tx_channel); |
| 811 | fp->fecpriv_fec_tx_channel = -1; |
| 812 | } |
| 813 | |
| 814 | return error_code; |
| 815 | } |
| 816 | |
| 817 | /************************************************************************ |
| 818 | * NAME: fec_close |
| 819 | * |
| 820 | * DESCRIPTION: This function performs the graceful stop of the |
| 821 | * transmission and disables FEC |
| 822 | * |
| 823 | * RETURNS: This function always returns zero. |
| 824 | *************************************************************************/ |
| 825 | int fec_close(struct net_device *dev) |
| 826 | { |
| 827 | struct fec_priv *fp = netdev_priv(dev); |
| 828 | unsigned long base_addr = (unsigned long) dev->base_addr; |
| 829 | unsigned long time; |
| 830 | int i; |
| 831 | |
| 832 | netif_stop_queue(dev); |
| 833 | phy_disconnect(fp->phydev); |
| 834 | phy_stop(fp->phydev); |
| 835 | /* Perform the graceful stop */ |
| 836 | FEC_TCR(base_addr) |= FEC_TCR_GTS; |
| 837 | |
| 838 | time = jiffies; |
| 839 | |
| 840 | /* Wait for the graceful stop */ |
| 841 | while (!(FEC_EIR(base_addr) & FEC_EIR_GRA) && jiffies - time < |
| 842 | (FEC_GR_TIMEOUT * HZ)) |
| 843 | schedule(); |
| 844 | |
| 845 | /* Disable FEC */ |
| 846 | FEC_ECR(base_addr) = FEC_ECR_DISABLE; |
| 847 | |
| 848 | /* Reset the DMA channels */ |
| 849 | spin_lock_irq(&fp->fecpriv_lock); |
| 850 | MCD_killDma(fp->fecpriv_fec_tx_channel); |
| 851 | spin_unlock_irq(&fp->fecpriv_lock); |
| 852 | dma_remove_channel_by_number(fp->fecpriv_fec_tx_channel); |
| 853 | dma_disconnect(fp->fecpriv_fec_tx_channel); |
| 854 | fp->fecpriv_fec_tx_channel = -1; |
| 855 | |
| 856 | for (i = 0; i < FEC_TX_BUF_NUMBER; i++) { |
| 857 | if (fp->fecpriv_txbuf[i]) { |
| 858 | kfree(fp->fecpriv_txbuf[i]); |
| 859 | fp->fecpriv_txbuf[i] = NULL; |
| 860 | } |
| 861 | } |
| 862 | |
| 863 | spin_lock_irq(&fp->fecpriv_lock); |
| 864 | MCD_killDma(fp->fecpriv_fec_rx_channel); |
| 865 | spin_unlock_irq(&fp->fecpriv_lock); |
| 866 | |
| 867 | dma_remove_channel_by_number(fp->fecpriv_fec_rx_channel); |
| 868 | dma_disconnect(fp->fecpriv_fec_rx_channel); |
| 869 | fp->fecpriv_fec_rx_channel = -1; |
| 870 | |
| 871 | for (i = 0; i < FEC_RX_BUF_NUMBER; i++) { |
| 872 | if (fp->askb_rx[i]) { |
| 873 | kfree_skb(fp->askb_rx[i]); |
| 874 | fp->askb_rx[i] = NULL; |
| 875 | } |
| 876 | } |
| 877 | |
| 878 | return 0; |
| 879 | } |
| 880 | |
| 881 | /************************************************************************ |
| 882 | * +NAME: fec_get_stat |
| 883 | * |
| 884 | * RETURNS: This function returns the statistical information. |
| 885 | *************************************************************************/ |
| 886 | struct net_device_stats *fec_get_stat(struct net_device *dev) |
| 887 | { |
| 888 | struct fec_priv *fp = netdev_priv(dev); |
| 889 | unsigned long base_addr = dev->base_addr; |
| 890 | |
| 891 | /* Receive the statistical information */ |
| 892 | fp->fecpriv_stat.rx_packets = FECSTAT_RMON_R_PACKETS(base_addr); |
| 893 | fp->fecpriv_stat.tx_packets = FECSTAT_RMON_T_PACKETS(base_addr); |
| 894 | fp->fecpriv_stat.rx_bytes = FECSTAT_RMON_R_OCTETS(base_addr); |
| 895 | fp->fecpriv_stat.tx_bytes = FECSTAT_RMON_T_OCTETS(base_addr); |
| 896 | |
| 897 | fp->fecpriv_stat.multicast = FECSTAT_RMON_R_MC_PKT(base_addr); |
| 898 | fp->fecpriv_stat.collisions = FECSTAT_RMON_T_COL(base_addr); |
| 899 | |
| 900 | fp->fecpriv_stat.rx_length_errors = |
| 901 | FECSTAT_RMON_R_UNDERSIZE(base_addr) + |
| 902 | FECSTAT_RMON_R_OVERSIZE(base_addr) + |
| 903 | FECSTAT_RMON_R_FRAG(base_addr) + |
| 904 | FECSTAT_RMON_R_JAB(base_addr); |
| 905 | fp->fecpriv_stat.rx_crc_errors = FECSTAT_IEEE_R_CRC(base_addr); |
| 906 | fp->fecpriv_stat.rx_frame_errors = FECSTAT_IEEE_R_ALIGN(base_addr); |
| 907 | fp->fecpriv_stat.rx_over_errors = FECSTAT_IEEE_R_MACERR(base_addr); |
| 908 | |
| 909 | fp->fecpriv_stat.tx_carrier_errors = FECSTAT_IEEE_T_CSERR(base_addr); |
| 910 | fp->fecpriv_stat.tx_fifo_errors = FECSTAT_IEEE_T_MACERR(base_addr); |
| 911 | fp->fecpriv_stat.tx_window_errors = FECSTAT_IEEE_T_LCOL(base_addr); |
| 912 | |
| 913 | /* I hope that one frame doesn't have more than one error */ |
| 914 | fp->fecpriv_stat.rx_errors = fp->fecpriv_stat.rx_length_errors + |
| 915 | fp->fecpriv_stat.rx_crc_errors + |
| 916 | fp->fecpriv_stat.rx_frame_errors + |
| 917 | fp->fecpriv_stat.rx_over_errors + |
| 918 | fp->fecpriv_stat.rx_dropped; |
| 919 | fp->fecpriv_stat.tx_errors = fp->fecpriv_stat.tx_carrier_errors + |
| 920 | fp->fecpriv_stat.tx_fifo_errors + |
| 921 | fp->fecpriv_stat.tx_window_errors + |
| 922 | fp->fecpriv_stat.tx_aborted_errors + |
| 923 | fp->fecpriv_stat.tx_heartbeat_errors + |
| 924 | fp->fecpriv_stat.tx_dropped; |
| 925 | |
| 926 | return &fp->fecpriv_stat; |
| 927 | } |
| 928 | |
| 929 | /************************************************************************ |
| 930 | * NAME: fec_set_multicast_list |
| 931 | * |
| 932 | * DESCRIPTION: This function sets the frame filtering parameters |
| 933 | *************************************************************************/ |
| 934 | void fec_set_multicast_list(struct net_device *dev) |
| 935 | { |
| 936 | struct dev_mc_list *dmi; |
| 937 | unsigned int crc, data; |
| 938 | int i, j, k; |
| 939 | unsigned long base_addr = (unsigned long) dev->base_addr; |
| 940 | |
| 941 | if (dev->flags & IFF_PROMISC || dev->flags & IFF_ALLMULTI) { |
| 942 | /* Allow all incoming frames */ |
| 943 | FEC_GALR(base_addr) = 0xFFFFFFFF; |
| 944 | FEC_GAUR(base_addr) = 0xFFFFFFFF; |
| 945 | return; |
| 946 | } |
| 947 | |
| 948 | /* Reset the group address register */ |
| 949 | FEC_GALR(base_addr) = 0x00000000; |
| 950 | FEC_GAUR(base_addr) = 0x00000000; |
| 951 | |
| 952 | /* Process all addresses */ |
| 953 | for (i = 0, dmi = dev->mc_list; i < dev->mc_count; |
| 954 | i++, dmi = dmi->next) { |
| 955 | /* Processing must be only for the group addresses */ |
| 956 | if (!(dmi->dmi_addr[0] & 1)) |
| 957 | continue; |
| 958 | |
| 959 | /* Calculate crc value for the current address */ |
| 960 | crc = 0xFFFFFFFF; |
| 961 | for (j = 0; j < dmi->dmi_addrlen; j++) { |
| 962 | for (k = 0, data = dmi->dmi_addr[j]; |
| 963 | k < 8; k++, data >>= 1) { |
| 964 | if ((crc ^ data) & 1) |
| 965 | crc = (crc >> 1) ^ FEC_CRCPOL; |
| 966 | else |
| 967 | crc >>= 1; |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | /* Add this value */ |
| 972 | crc >>= 26; |
| 973 | crc &= 0x3F; |
| 974 | if (crc > 31) |
| 975 | FEC_GAUR(base_addr) |= 0x1 << (crc - 32); |
| 976 | else |
| 977 | FEC_GALR(base_addr) |= 0x1 << crc; |
| 978 | } |
| 979 | } |
| 980 | |
| 981 | /************************************************************************ |
| 982 | * NAME: fec_set_mac_address |
| 983 | * |
| 984 | * DESCRIPTION: This function sets the MAC address |
| 985 | *************************************************************************/ |
| 986 | int fec_set_mac_address(struct net_device *dev, void *p) |
| 987 | { |
| 988 | struct fec_priv *fp = netdev_priv(dev); |
| 989 | unsigned long base_addr = (unsigned long) dev->base_addr; |
| 990 | struct sockaddr *addr = p; |
| 991 | |
| 992 | if (netif_running(dev)) |
| 993 | return -EBUSY; |
| 994 | |
| 995 | /* Copy a new address to the device structure */ |
| 996 | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| 997 | |
| 998 | /* Copy a new address to the private structure */ |
| 999 | memcpy(fp->fecpriv_mac_addr, addr->sa_data, 6); |
| 1000 | |
| 1001 | /* Set the address to the registers */ |
| 1002 | FEC_PALR(base_addr) = (fp->fecpriv_mac_addr[0] << 24) | |
| 1003 | (fp->fecpriv_mac_addr[1] << 16) | |
| 1004 | (fp->fecpriv_mac_addr[2] << 8) | |
| 1005 | fp->fecpriv_mac_addr[3]; |
| 1006 | FEC_PAUR(base_addr) = (fp->fecpriv_mac_addr[4] << 24) | |
| 1007 | (fp->fecpriv_mac_addr[5] << 16) | |
| 1008 | 0x8808; |
| 1009 | |
| 1010 | return 0; |
| 1011 | } |
| 1012 | |
| 1013 | /************************************************************************ |
| 1014 | * NAME: fec_tx |
| 1015 | * |
| 1016 | * DESCRIPTION: This function starts transmission of the frame using DMA |
| 1017 | * |
| 1018 | * RETURNS: This function always returns zero. |
| 1019 | *************************************************************************/ |
| 1020 | int fec_tx(struct sk_buff *skb, struct net_device *dev) |
| 1021 | { |
| 1022 | struct fec_priv *fp = netdev_priv(dev); |
| 1023 | void *data, *data_aligned; |
| 1024 | int offset; |
| 1025 | |
| 1026 | data = kmalloc(skb->len + 15, GFP_DMA | GFP_ATOMIC); |
| 1027 | |
| 1028 | if (!data) { |
| 1029 | fp->fecpriv_stat.tx_dropped++; |
| 1030 | dev_kfree_skb(skb); |
| 1031 | return 0; |
| 1032 | } |
| 1033 | |
| 1034 | offset = (((unsigned long)virt_to_phys(data) + 15) & 0xFFFFFFF0) - |
| 1035 | (unsigned long)virt_to_phys(data); |
| 1036 | data_aligned = (void *)((unsigned long)data + offset); |
| 1037 | memcpy(data_aligned, skb->data, skb->len); |
| 1038 | |
| 1039 | /* flush data cache before initializing |
| 1040 | * the descriptor and starting DMA */ |
| 1041 | |
| 1042 | spin_lock_irq(&fp->fecpriv_lock); |
| 1043 | |
| 1044 | /* Initialize the descriptor */ |
| 1045 | fp->fecpriv_txbuf[fp->fecpriv_next_tx] = data; |
| 1046 | fp->fecpriv_txdesc[fp->fecpriv_next_tx].dataPointer |
| 1047 | = (unsigned int) virt_to_phys(data_aligned); |
| 1048 | fp->fecpriv_txdesc[fp->fecpriv_next_tx].length = skb->len; |
| 1049 | fp->fecpriv_txdesc[fp->fecpriv_next_tx].statCtrl |
| 1050 | |= (MCD_FEC_END_FRAME | MCD_FEC_BUF_READY); |
| 1051 | fp->fecpriv_next_tx = (fp->fecpriv_next_tx + 1) & FEC_TX_INDEX_MASK; |
| 1052 | |
| 1053 | if (fp->fecpriv_txbuf[fp->fecpriv_current_tx] |
| 1054 | && fp->fecpriv_current_tx == fp->fecpriv_next_tx) |
| 1055 | netif_stop_queue(dev); |
| 1056 | |
| 1057 | spin_unlock_irq(&fp->fecpriv_lock); |
| 1058 | |
| 1059 | /* Tell the DMA to continue the transmission */ |
| 1060 | MCD_continDma(fp->fecpriv_fec_tx_channel); |
| 1061 | |
| 1062 | dev_kfree_skb(skb); |
| 1063 | |
| 1064 | dev->trans_start = jiffies; |
| 1065 | |
| 1066 | return 0; |
| 1067 | } |
| 1068 | |
| 1069 | /************************************************************************ |
| 1070 | * NAME: fec_tx_timeout |
| 1071 | * |
| 1072 | * DESCRIPTION: If the interrupt processing of received frames was lost |
| 1073 | * and DMA stopped the reception, this function clears |
| 1074 | * the transmission descriptors and starts DMA |
| 1075 | * |
| 1076 | *************************************************************************/ |
| 1077 | void fec_tx_timeout(struct net_device *dev) |
| 1078 | { |
| 1079 | int i; |
| 1080 | struct fec_priv *fp = netdev_priv(dev); |
| 1081 | unsigned long base_addr = (unsigned long) dev->base_addr; |
| 1082 | |
| 1083 | spin_lock_irq(&fp->fecpriv_lock); |
| 1084 | MCD_killDma(fp->fecpriv_fec_tx_channel); |
| 1085 | for (i = 0; i < FEC_TX_BUF_NUMBER; i++) { |
| 1086 | if (fp->fecpriv_txbuf[i]) { |
| 1087 | kfree(fp->fecpriv_txbuf[i]); |
| 1088 | fp->fecpriv_txbuf[i] = NULL; |
| 1089 | } |
| 1090 | fp->fecpriv_txdesc[i].statCtrl = MCD_FEC_INTERRUPT; |
| 1091 | } |
| 1092 | fp->fecpriv_txdesc[i - 1].statCtrl |= MCD_FEC_WRAP; |
| 1093 | |
| 1094 | fp->fecpriv_current_tx = fp->fecpriv_next_tx = 0; |
| 1095 | |
| 1096 | /* Reset FIFOs */ |
| 1097 | FEC_FECFRST(base_addr) |= FEC_SW_RST; |
| 1098 | FEC_FECFRST(base_addr) &= ~FEC_SW_RST; |
| 1099 | |
| 1100 | /* Reset and disable FEC */ |
| 1101 | /* FEC_ECR(base_addr) = FEC_ECR_RESET; */ |
| 1102 | |
| 1103 | /* Enable FEC */ |
| 1104 | FEC_ECR(base_addr) |= FEC_ECR_ETHEREN; |
| 1105 | |
| 1106 | MCD_startDma(fp->fecpriv_fec_tx_channel, (char *) fp->fecpriv_txdesc, 0, |
| 1107 | (unsigned char *) &(FEC_FECTFDR(base_addr)), 0, |
| 1108 | FEC_MAX_FRM_SIZE, 0, fp->fecpriv_initiator_tx, |
| 1109 | FEC_TX_DMA_PRI, MCD_FECTX_DMA | MCD_INTERRUPT, |
| 1110 | MCD_NO_CSUM | MCD_NO_BYTE_SWAP); |
| 1111 | |
| 1112 | spin_unlock_irq(&fp->fecpriv_lock); |
| 1113 | |
| 1114 | netif_wake_queue(dev); |
| 1115 | |
| 1116 | } |
| 1117 | |
| 1118 | /************************************************************************ |
| 1119 | * NAME: fec_interrupt_tx_handler |
| 1120 | * |
| 1121 | * DESCRIPTION: This function is called when the data |
| 1122 | * transmission from the buffer to the FEC is completed. |
| 1123 | * |
| 1124 | *************************************************************************/ |
| 1125 | void fec_interrupt_fec_tx_handler(struct net_device *dev) |
| 1126 | { |
| 1127 | struct fec_priv *fp = netdev_priv(dev); |
| 1128 | |
| 1129 | /* Release the socket buffer */ |
| 1130 | if (fp->fecpriv_txbuf[fp->fecpriv_current_tx]) { |
| 1131 | kfree(fp->fecpriv_txbuf[fp->fecpriv_current_tx]); |
| 1132 | fp->fecpriv_txbuf[fp->fecpriv_current_tx] = NULL; |
| 1133 | } |
| 1134 | fp->fecpriv_current_tx = |
| 1135 | (fp->fecpriv_current_tx + 1) & FEC_TX_INDEX_MASK; |
| 1136 | |
| 1137 | if (MCD_dmaStatus(fp->fecpriv_fec_tx_channel) == MCD_DONE) { |
| 1138 | for (; fp->fecpriv_current_tx != fp->fecpriv_next_tx; |
| 1139 | fp->fecpriv_current_tx = |
| 1140 | (fp->fecpriv_current_tx + 1) |
| 1141 | & FEC_TX_INDEX_MASK) { |
| 1142 | if (fp->fecpriv_txbuf[fp->fecpriv_current_tx]) { |
| 1143 | kfree(fp->fecpriv_txbuf[ |
| 1144 | fp->fecpriv_current_tx]); |
| 1145 | fp->fecpriv_txbuf[fp->fecpriv_current_tx] |
| 1146 | = NULL; |
| 1147 | } |
| 1148 | } |
| 1149 | } |
| 1150 | |
| 1151 | if (netif_queue_stopped(dev)) |
| 1152 | netif_wake_queue(dev); |
| 1153 | } |
| 1154 | |
| 1155 | /************************************************************************ |
| 1156 | * NAME: fec_interrupt_rx_handler |
| 1157 | * |
| 1158 | * DESCRIPTION: This function is called when the data |
| 1159 | * reception from the FEC to the reception buffer is completed. |
| 1160 | * |
| 1161 | *************************************************************************/ |
| 1162 | void fec_interrupt_fec_rx_handler(struct net_device *dev) |
| 1163 | { |
| 1164 | struct fec_priv *fp = netdev_priv(dev); |
| 1165 | struct sk_buff *skb; |
| 1166 | int i; |
| 1167 | |
| 1168 | fp->fecpriv_rxflag = 1; |
| 1169 | /* Some buffers can be missed */ |
| 1170 | if (!(fp->fecpriv_rxdesc[fp->fecpriv_current_rx].statCtrl |
| 1171 | & MCD_FEC_END_FRAME)) { |
| 1172 | /* Find a valid index */ |
| 1173 | for (i = 0; ((i < FEC_RX_BUF_NUMBER) && |
| 1174 | !(fp->fecpriv_rxdesc[ |
| 1175 | fp->fecpriv_current_rx].statCtrl |
| 1176 | & MCD_FEC_END_FRAME)); i++, |
| 1177 | (fp->fecpriv_current_rx = |
| 1178 | (fp->fecpriv_current_rx + 1) |
| 1179 | & FEC_RX_INDEX_MASK)) |
| 1180 | ; |
| 1181 | |
| 1182 | if (i == FEC_RX_BUF_NUMBER) { |
| 1183 | /* There are no data to process */ |
| 1184 | /* Tell the DMA to continue the reception */ |
| 1185 | MCD_continDma(fp->fecpriv_fec_rx_channel); |
| 1186 | |
| 1187 | fp->fecpriv_rxflag = 0; |
| 1188 | |
| 1189 | return; |
| 1190 | } |
| 1191 | } |
| 1192 | |
| 1193 | for (; fp->fecpriv_rxdesc[fp->fecpriv_current_rx].statCtrl |
| 1194 | & MCD_FEC_END_FRAME; |
| 1195 | fp->fecpriv_current_rx = (fp->fecpriv_current_rx + 1) |
| 1196 | & FEC_RX_INDEX_MASK) { |
| 1197 | if ((fp->fecpriv_rxdesc[fp->fecpriv_current_rx].length |
| 1198 | <= FEC_MAXBUF_SIZE) && |
| 1199 | (fp->fecpriv_rxdesc[fp->fecpriv_current_rx].length |
| 1200 | > 4)) { |
| 1201 | /* --tym-- */ |
| 1202 | skb = fp->askb_rx[fp->fecpriv_current_rx]; |
| 1203 | if (!skb) |
| 1204 | fp->fecpriv_stat.rx_dropped++; |
| 1205 | else { |
| 1206 | /* |
| 1207 | * flush data cache before initializing |
| 1208 | * the descriptor and starting DMA |
| 1209 | */ |
| 1210 | skb_put(skb, |
| 1211 | (fp->fecpriv_rxdesc[ |
| 1212 | fp->fecpriv_current_rx].length - 4)); |
| 1213 | skb->protocol = eth_type_trans(skb, dev); |
| 1214 | netif_rx(skb); |
| 1215 | } |
| 1216 | fp->fecpriv_rxdesc[fp->fecpriv_current_rx].statCtrl &= |
| 1217 | ~MCD_FEC_END_FRAME; |
| 1218 | /* allocate new skbuff */ |
| 1219 | fp->askb_rx[fp->fecpriv_current_rx] = |
| 1220 | alloc_skb(FEC_MAXBUF_SIZE + 16, |
| 1221 | /*GFP_ATOMIC |*/ GFP_DMA); |
| 1222 | if (!fp->askb_rx[fp->fecpriv_current_rx]) { |
| 1223 | fp->fecpriv_rxdesc[ |
| 1224 | fp->fecpriv_current_rx].dataPointer |
| 1225 | = 0; |
| 1226 | fp->fecpriv_rxdesc[ |
| 1227 | fp->fecpriv_current_rx].length = 0; |
| 1228 | fp->fecpriv_stat.rx_dropped++; |
| 1229 | } else { |
| 1230 | skb_reserve( |
| 1231 | fp->askb_rx[fp->fecpriv_current_rx], 16); |
| 1232 | fp->askb_rx[fp->fecpriv_current_rx]->dev = dev; |
| 1233 | |
| 1234 | /* |
| 1235 | * flush data cache before initializing |
| 1236 | * the descriptor and starting DMA |
| 1237 | */ |
| 1238 | |
| 1239 | fp->fecpriv_rxdesc[ |
| 1240 | fp->fecpriv_current_rx].dataPointer = |
| 1241 | (unsigned int) virt_to_phys( |
| 1242 | fp->askb_rx[ |
| 1243 | fp->fecpriv_current_rx]->tail); |
| 1244 | fp->fecpriv_rxdesc[ |
| 1245 | fp->fecpriv_current_rx].length = |
| 1246 | FEC_MAXBUF_SIZE; |
| 1247 | fp->fecpriv_rxdesc[ |
| 1248 | fp->fecpriv_current_rx].statCtrl |= |
| 1249 | MCD_FEC_BUF_READY; |
| 1250 | |
| 1251 | /* |
| 1252 | * flush data cache before initializing |
| 1253 | * the descriptor and starting DMA |
| 1254 | */ |
| 1255 | } |
| 1256 | } |
| 1257 | |
| 1258 | } |
| 1259 | |
| 1260 | /* Tell the DMA to continue the reception */ |
| 1261 | MCD_continDma(fp->fecpriv_fec_rx_channel); |
| 1262 | |
| 1263 | fp->fecpriv_rxflag = 0; |
| 1264 | } |
| 1265 | |
| 1266 | /************************************************************************ |
| 1267 | * NAME: fec_interrupt_handler |
| 1268 | * |
| 1269 | * DESCRIPTION: This function is called when some special errors occur |
| 1270 | * |
| 1271 | *************************************************************************/ |
| 1272 | irqreturn_t fec_interrupt_handler(int irq, void *dev_id) |
| 1273 | { |
| 1274 | |
| 1275 | struct net_device *dev = (struct net_device *)dev_id; |
| 1276 | struct fec_priv *fp = netdev_priv(dev); |
| 1277 | unsigned long base_addr = (unsigned long) dev->base_addr; |
| 1278 | unsigned long events; |
| 1279 | |
| 1280 | /* Read and clear the events */ |
| 1281 | events = FEC_EIR(base_addr) & FEC_EIMR(base_addr); |
| 1282 | |
| 1283 | if (events & FEC_EIR_HBERR) { |
| 1284 | fp->fecpriv_stat.tx_heartbeat_errors++; |
| 1285 | FEC_EIR(base_addr) = FEC_EIR_HBERR; |
| 1286 | } |
| 1287 | |
| 1288 | /* receive/transmit FIFO error */ |
| 1289 | if (((events & FEC_EIR_RFERR) != 0) |
| 1290 | || ((events & FEC_EIR_XFERR) != 0)) { |
| 1291 | /* kill DMA receive channel */ |
| 1292 | MCD_killDma(fp->fecpriv_fec_rx_channel); |
| 1293 | |
| 1294 | /* kill running transmission by DMA */ |
| 1295 | MCD_killDma(fp->fecpriv_fec_tx_channel); |
| 1296 | |
| 1297 | /* Reset FIFOs */ |
| 1298 | FEC_FECFRST(base_addr) |= FEC_SW_RST; |
| 1299 | FEC_FECFRST(base_addr) &= ~FEC_SW_RST; |
| 1300 | |
| 1301 | /* reset receive FIFO status register */ |
| 1302 | FEC_FECRFSR(base_addr) = FEC_FECRFSR_FAE | |
| 1303 | FEC_FECRFSR_RXW | |
| 1304 | FEC_FECRFSR_UF; |
| 1305 | |
| 1306 | /* reset transmit FIFO status register */ |
| 1307 | FEC_FECTFSR(base_addr) = FEC_FECTFSR_FAE | |
| 1308 | FEC_FECTFSR_TXW | |
| 1309 | FEC_FECTFSR_UF | |
| 1310 | FEC_FECTFSR_OF; |
| 1311 | |
| 1312 | /* reset RFERR and XFERR event */ |
| 1313 | FEC_EIR(base_addr) = FEC_EIR_RFERR | FEC_EIR_XFERR; |
| 1314 | |
| 1315 | /* stop queue */ |
| 1316 | netif_stop_queue(dev); |
| 1317 | |
| 1318 | /* execute reinitialization as tasklet */ |
| 1319 | tasklet_schedule(&fp->fecpriv_tasklet_reinit); |
| 1320 | |
| 1321 | fp->fecpriv_stat.rx_dropped++; |
| 1322 | } |
| 1323 | |
| 1324 | /* transmit FIFO underrun */ |
| 1325 | if ((events & FEC_EIR_XFUN) != 0) { |
| 1326 | /* reset XFUN event */ |
| 1327 | FEC_EIR(base_addr) = FEC_EIR_XFUN; |
| 1328 | fp->fecpriv_stat.tx_aborted_errors++; |
| 1329 | } |
| 1330 | |
| 1331 | /* late collision */ |
| 1332 | if ((events & FEC_EIR_LC) != 0) { |
| 1333 | /* reset LC event */ |
| 1334 | FEC_EIR(base_addr) = FEC_EIR_LC; |
| 1335 | fp->fecpriv_stat.tx_aborted_errors++; |
| 1336 | } |
| 1337 | |
| 1338 | /* collision retry limit */ |
| 1339 | if ((events & FEC_EIR_RL) != 0) { |
| 1340 | /* reset RL event */ |
| 1341 | FEC_EIR(base_addr) = FEC_EIR_RL; |
| 1342 | fp->fecpriv_stat.tx_aborted_errors++; |
| 1343 | } |
| 1344 | return 0; |
| 1345 | } |
| 1346 | |
| 1347 | /************************************************************************ |
| 1348 | * NAME: fec_interrupt_reinit |
| 1349 | * |
| 1350 | * DESCRIPTION: This function is called from interrupt handler |
| 1351 | * when controller must be reinitialized. |
| 1352 | * |
| 1353 | *************************************************************************/ |
| 1354 | void fec_interrupt_fec_reinit(unsigned long data) |
| 1355 | { |
| 1356 | int i; |
| 1357 | struct net_device *dev = (struct net_device *)data; |
| 1358 | struct fec_priv *fp = netdev_priv(dev); |
| 1359 | unsigned long base_addr = (unsigned long) dev->base_addr; |
| 1360 | |
| 1361 | /* Initialize reception descriptors and start DMA for the reception */ |
| 1362 | for (i = 0; i < FEC_RX_BUF_NUMBER; i++) { |
| 1363 | if (!fp->askb_rx[i]) { |
| 1364 | fp->askb_rx[i] = alloc_skb(FEC_MAXBUF_SIZE + 16, |
| 1365 | GFP_ATOMIC | GFP_DMA); |
| 1366 | if (!fp->askb_rx[i]) { |
| 1367 | fp->fecpriv_rxdesc[i].dataPointer = 0; |
| 1368 | fp->fecpriv_rxdesc[i].statCtrl = 0; |
| 1369 | fp->fecpriv_rxdesc[i].length = 0; |
| 1370 | continue; |
| 1371 | } |
| 1372 | fp->askb_rx[i]->dev = dev; |
| 1373 | skb_reserve(fp->askb_rx[i], 16); |
| 1374 | } |
| 1375 | fp->fecpriv_rxdesc[i].dataPointer = |
| 1376 | (unsigned int) virt_to_phys(fp->askb_rx[i]->tail); |
| 1377 | fp->fecpriv_rxdesc[i].statCtrl = |
| 1378 | MCD_FEC_BUF_READY | MCD_FEC_INTERRUPT; |
| 1379 | fp->fecpriv_rxdesc[i].length = FEC_MAXBUF_SIZE; |
| 1380 | } |
| 1381 | |
| 1382 | fp->fecpriv_rxdesc[i - 1].statCtrl |= MCD_FEC_WRAP; |
| 1383 | fp->fecpriv_current_rx = 0; |
| 1384 | |
| 1385 | /* restart frame transmission */ |
| 1386 | for (i = 0; i < FEC_TX_BUF_NUMBER; i++) { |
| 1387 | if (fp->fecpriv_txbuf[i]) { |
| 1388 | kfree(fp->fecpriv_txbuf[i]); |
| 1389 | fp->fecpriv_txbuf[i] = NULL; |
| 1390 | fp->fecpriv_stat.tx_dropped++; |
| 1391 | } |
| 1392 | fp->fecpriv_txdesc[i].statCtrl = MCD_FEC_INTERRUPT; |
| 1393 | } |
| 1394 | fp->fecpriv_txdesc[i - 1].statCtrl |= MCD_FEC_WRAP; |
| 1395 | fp->fecpriv_current_tx = fp->fecpriv_next_tx = 0; |
| 1396 | |
| 1397 | /* flush entire data cache before restarting the DMA */ |
| 1398 | |
| 1399 | /* restart DMA from beginning */ |
| 1400 | MCD_startDma(fp->fecpriv_fec_rx_channel, |
| 1401 | (char *) fp->fecpriv_rxdesc, 0, |
| 1402 | (unsigned char *) &(FEC_FECRFDR(base_addr)), 0, |
| 1403 | FEC_MAX_FRM_SIZE, 0, fp->fecpriv_initiator_rx, |
| 1404 | FEC_RX_DMA_PRI, MCD_FECRX_DMA | MCD_INTERRUPT, |
| 1405 | MCD_NO_CSUM | MCD_NO_BYTE_SWAP); |
| 1406 | |
| 1407 | MCD_startDma(fp->fecpriv_fec_tx_channel, (char *) fp->fecpriv_txdesc, 0, |
| 1408 | (unsigned char *) &(FEC_FECTFDR(base_addr)), 0, |
| 1409 | FEC_MAX_FRM_SIZE, 0, fp->fecpriv_initiator_tx, |
| 1410 | FEC_TX_DMA_PRI, MCD_FECTX_DMA | MCD_INTERRUPT, |
| 1411 | MCD_NO_CSUM | MCD_NO_BYTE_SWAP); |
| 1412 | |
| 1413 | /* Enable FEC */ |
| 1414 | FEC_ECR(base_addr) |= FEC_ECR_ETHEREN; |
| 1415 | |
| 1416 | netif_wake_queue(dev); |
| 1417 | } |
| 1418 | |
| 1419 | /************************************************************************ |
| 1420 | * NAME: fec_interrupt_tx_handler_fec0 |
| 1421 | * |
| 1422 | * DESCRIPTION: This is the DMA interrupt handler using for FEC0 |
| 1423 | * transmission. |
| 1424 | * |
| 1425 | *************************************************************************/ |
| 1426 | void fec_interrupt_fec_tx_handler_fec0(void) |
| 1427 | { |
| 1428 | fec_interrupt_fec_tx_handler(fec_dev[0]); |
| 1429 | } |
| 1430 | |
| 1431 | #ifdef FEC_2 |
| 1432 | /************************************************************************ |
| 1433 | * NAME: fec_interrupt_tx_handler_fec1 |
| 1434 | * |
| 1435 | * DESCRIPTION: This is the DMA interrupt handler using for the FEC1 |
| 1436 | * transmission. |
| 1437 | * |
| 1438 | *************************************************************************/ |
| 1439 | void fec_interrupt_fec_tx_handler_fec1(void) |
| 1440 | { |
| 1441 | fec_interrupt_fec_tx_handler(fec_dev[1]); |
| 1442 | } |
| 1443 | #endif |
| 1444 | |
| 1445 | /************************************************************************ |
| 1446 | * NAME: fec_interrupt_rx_handler_fec0 |
| 1447 | * |
| 1448 | * DESCRIPTION: This is the DMA interrupt handler using for the FEC0 |
| 1449 | * reception. |
| 1450 | * |
| 1451 | *************************************************************************/ |
| 1452 | void fec_interrupt_fec_rx_handler_fec0(void) |
| 1453 | { |
| 1454 | fec_interrupt_fec_rx_handler(fec_dev[0]); |
| 1455 | } |
| 1456 | |
| 1457 | #ifdef FEC_2 |
| 1458 | /************************************************************************ |
| 1459 | * NAME: fec_interrupt_rx_handler_fec1 |
| 1460 | * |
| 1461 | * DESCRIPTION: This is the DMA interrupt handler using for the FEC1 |
| 1462 | * reception. |
| 1463 | * |
| 1464 | *************************************************************************/ |
| 1465 | void fec_interrupt_fec_rx_handler_fec1(void) |
| 1466 | { |
| 1467 | fec_interrupt_fec_rx_handler(fec_dev[1]); |
| 1468 | } |
| 1469 | |
| 1470 | #endif |
| 1471 | |
| 1472 | #ifndef MODULE |
| 1473 | /************************************************************************ |
| 1474 | * NAME: fec_mac_setup0 |
| 1475 | * |
| 1476 | * DESCRIPTION: This function sets the MAC address of FEC0 from command line |
| 1477 | * |
| 1478 | *************************************************************************/ |
| 1479 | int __init fec_mac_setup0(char *s) |
| 1480 | { |
| 1481 | if (!s || !*s) |
| 1482 | return 1; |
| 1483 | |
| 1484 | if (fec_str_to_mac(s, fec_mac_addr_fec0)) |
| 1485 | printk(KERN_ERR "The MAC address of FEC0 " |
| 1486 | "cannot be set from command line"); |
| 1487 | return 1; |
| 1488 | } |
| 1489 | |
| 1490 | #ifdef FEC_2 |
| 1491 | |
| 1492 | /************************************************************************ |
| 1493 | * NAME: fec_mac_setup1 |
| 1494 | * |
| 1495 | * DESCRIPTION: This function sets the MAC address of FEC1 from command line |
| 1496 | * |
| 1497 | *************************************************************************/ |
| 1498 | int __init fec_mac_setup1(char *s) |
| 1499 | { |
| 1500 | if (!s || !*s) |
| 1501 | return 1; |
| 1502 | |
| 1503 | if (fec_str_to_mac(s, fec_mac_addr_fec1)) |
| 1504 | printk(KERN_ERR "The MAC address of FEC1 " |
| 1505 | "cannot be set from command line\n"); |
| 1506 | return 1; |
| 1507 | } |
| 1508 | #endif |
| 1509 | |
| 1510 | /************************************************************************ |
| 1511 | * NAME: fec_str_to_mac |
| 1512 | * |
| 1513 | * DESCRIPTION: This function interprets the character string into MAC addr |
| 1514 | * |
| 1515 | *************************************************************************/ |
| 1516 | int fec_str_to_mac(char *str_mac, unsigned char* addr) |
| 1517 | { |
| 1518 | unsigned long val; |
| 1519 | char c; |
| 1520 | unsigned long octet[6], *octetptr = octet; |
| 1521 | int i; |
| 1522 | |
| 1523 | again: |
| 1524 | val = 0; |
| 1525 | while ((c = *str_mac) != '\0') { |
| 1526 | if ((c >= '0') && (c <= '9')) { |
| 1527 | val = (val * 16) + (c - '0'); |
| 1528 | str_mac++; |
| 1529 | continue; |
| 1530 | } else if (((c >= 'a') && (c <= 'f')) |
| 1531 | || ((c >= 'A') && (c <= 'F'))) { |
| 1532 | val = (val << 4) + |
| 1533 | (c + 10 - |
| 1534 | (((c >= 'a') && (c <= 'f')) ? 'a' : 'A')); |
| 1535 | str_mac++; |
| 1536 | continue; |
| 1537 | } |
| 1538 | break; |
| 1539 | } |
| 1540 | if (*str_mac == ':') { |
| 1541 | *octetptr++ = val, str_mac++; |
| 1542 | if (octetptr >= octet + 6) |
| 1543 | return 1; |
| 1544 | goto again; |
| 1545 | } |
| 1546 | |
| 1547 | /* Check for trailing characters */ |
| 1548 | if (*str_mac && !(*str_mac == ' ')) |
| 1549 | return 1; |
| 1550 | |
| 1551 | *octetptr++ = val; |
| 1552 | |
| 1553 | if ((octetptr - octet) == 6) { |
| 1554 | for (i = 0; i <= 6; i++) |
| 1555 | addr[i] = octet[i]; |
| 1556 | } else |
| 1557 | return 1; |
| 1558 | |
| 1559 | return 0; |
| 1560 | } |
| 1561 | #endif |
| 1562 | |