| 1 | /* |
| 2 | * |
| 3 | * ETRAX 100LX USB Host Controller Driver |
| 4 | * |
| 5 | * Copyright (C) 2005 - 2008 Axis Communications AB |
| 6 | * |
| 7 | * Author: Konrad Eriksson <konrad.eriksson@axis.se> |
| 8 | * |
| 9 | */ |
| 10 | |
| 11 | #include <linux/module.h> |
| 12 | #include <linux/kernel.h> |
| 13 | #include <linux/init.h> |
| 14 | #include <linux/moduleparam.h> |
| 15 | #include <linux/spinlock.h> |
| 16 | #include <linux/usb.h> |
| 17 | #include <linux/platform_device.h> |
| 18 | |
| 19 | #include <asm/io.h> |
| 20 | #include <asm/irq.h> |
| 21 | #include <asm/arch/dma.h> |
| 22 | #include <asm/arch/io_interface_mux.h> |
| 23 | |
| 24 | #include "../core/hcd.h" |
| 25 | #include "../core/hub.h" |
| 26 | #include "hc-crisv10.h" |
| 27 | #include "hc-cris-dbg.h" |
| 28 | |
| 29 | |
| 30 | /***************************************************************************/ |
| 31 | /***************************************************************************/ |
| 32 | /* Host Controller settings */ |
| 33 | /***************************************************************************/ |
| 34 | /***************************************************************************/ |
| 35 | |
| 36 | #define VERSION "1.00-openwrt_diff-v1" |
| 37 | #define COPYRIGHT "(c) 2005, 2006 Axis Communications AB" |
| 38 | #define DESCRIPTION "ETRAX 100LX USB Host Controller" |
| 39 | |
| 40 | #define ETRAX_USB_HC_IRQ USB_HC_IRQ_NBR |
| 41 | #define ETRAX_USB_RX_IRQ USB_DMA_RX_IRQ_NBR |
| 42 | #define ETRAX_USB_TX_IRQ USB_DMA_TX_IRQ_NBR |
| 43 | |
| 44 | /* Number of physical ports in Etrax 100LX */ |
| 45 | #define USB_ROOT_HUB_PORTS 2 |
| 46 | |
| 47 | const char hc_name[] = "hc-crisv10"; |
| 48 | const char product_desc[] = DESCRIPTION; |
| 49 | |
| 50 | /* The number of epids is, among other things, used for pre-allocating |
| 51 | ctrl, bulk and isoc EP descriptors (one for each epid). |
| 52 | Assumed to be > 1 when initiating the DMA lists. */ |
| 53 | #define NBR_OF_EPIDS 32 |
| 54 | |
| 55 | /* Support interrupt traffic intervals up to 128 ms. */ |
| 56 | #define MAX_INTR_INTERVAL 128 |
| 57 | |
| 58 | /* If periodic traffic (intr or isoc) is to be used, then one entry in the EP |
| 59 | table must be "invalid". By this we mean that we shouldn't care about epid |
| 60 | attentions for this epid, or at least handle them differently from epid |
| 61 | attentions for "valid" epids. This define determines which one to use |
| 62 | (don't change it). */ |
| 63 | #define INVALID_EPID 31 |
| 64 | /* A special epid for the bulk dummys. */ |
| 65 | #define DUMMY_EPID 30 |
| 66 | |
| 67 | /* Module settings */ |
| 68 | |
| 69 | MODULE_DESCRIPTION(DESCRIPTION); |
| 70 | MODULE_LICENSE("GPL"); |
| 71 | MODULE_AUTHOR("Konrad Eriksson <konrad.eriksson@axis.se>"); |
| 72 | |
| 73 | |
| 74 | /* Module parameters */ |
| 75 | |
| 76 | /* 0 = No ports enabled |
| 77 | 1 = Only port 1 enabled (on board ethernet on devboard) |
| 78 | 2 = Only port 2 enabled (external connector on devboard) |
| 79 | 3 = Both ports enabled |
| 80 | */ |
| 81 | static unsigned int ports = 3; |
| 82 | module_param(ports, uint, S_IRUGO); |
| 83 | MODULE_PARM_DESC(ports, "Bitmask indicating USB ports to use"); |
| 84 | |
| 85 | |
| 86 | /***************************************************************************/ |
| 87 | /***************************************************************************/ |
| 88 | /* Shared global variables for this module */ |
| 89 | /***************************************************************************/ |
| 90 | /***************************************************************************/ |
| 91 | |
| 92 | /* EP descriptor lists for non period transfers. Must be 32-bit aligned. */ |
| 93 | static volatile struct USB_EP_Desc TxBulkEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4))); |
| 94 | |
| 95 | static volatile struct USB_EP_Desc TxCtrlEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4))); |
| 96 | |
| 97 | /* EP descriptor lists for period transfers. Must be 32-bit aligned. */ |
| 98 | static volatile struct USB_EP_Desc TxIntrEPList[MAX_INTR_INTERVAL] __attribute__ ((aligned (4))); |
| 99 | static volatile struct USB_SB_Desc TxIntrSB_zout __attribute__ ((aligned (4))); |
| 100 | |
| 101 | static volatile struct USB_EP_Desc TxIsocEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4))); |
| 102 | static volatile struct USB_SB_Desc TxIsocSB_zout __attribute__ ((aligned (4))); |
| 103 | |
| 104 | static volatile struct USB_SB_Desc TxIsocSBList[NBR_OF_EPIDS] __attribute__ ((aligned (4))); |
| 105 | |
| 106 | /* After each enabled bulk EP IN we put two disabled EP descriptors with the eol flag set, |
| 107 | causing the DMA to stop the DMA channel. The first of these two has the intr flag set, which |
| 108 | gives us a dma8_sub0_descr interrupt. When we receive this, we advance the DMA one step in the |
| 109 | EP list and then restart the bulk channel, thus forcing a switch between bulk EP descriptors |
| 110 | in each frame. */ |
| 111 | static volatile struct USB_EP_Desc TxBulkDummyEPList[NBR_OF_EPIDS][2] __attribute__ ((aligned (4))); |
| 112 | |
| 113 | /* List of URB pointers, where each points to the active URB for a epid. |
| 114 | For Bulk, Ctrl and Intr this means which URB that currently is added to |
| 115 | DMA lists (Isoc URBs are all directly added to DMA lists). As soon as |
| 116 | URB has completed is the queue examined and the first URB in queue is |
| 117 | removed and moved to the activeUrbList while its state change to STARTED and |
| 118 | its transfer(s) gets added to DMA list (exception Isoc where URBs enter |
| 119 | state STARTED directly and added transfers added to DMA lists). */ |
| 120 | static struct urb *activeUrbList[NBR_OF_EPIDS]; |
| 121 | |
| 122 | /* Additional software state info for each epid */ |
| 123 | static struct etrax_epid epid_state[NBR_OF_EPIDS]; |
| 124 | |
| 125 | /* Timer handles for bulk traffic timer used to avoid DMA bug where DMA stops |
| 126 | even if there is new data waiting to be processed */ |
| 127 | static struct timer_list bulk_start_timer = TIMER_INITIALIZER(NULL, 0, 0); |
| 128 | static struct timer_list bulk_eot_timer = TIMER_INITIALIZER(NULL, 0, 0); |
| 129 | |
| 130 | /* We want the start timer to expire before the eot timer, because the former |
| 131 | might start traffic, thus making it unnecessary for the latter to time |
| 132 | out. */ |
| 133 | #define BULK_START_TIMER_INTERVAL (HZ/50) /* 20 ms */ |
| 134 | #define BULK_EOT_TIMER_INTERVAL (HZ/16) /* 60 ms */ |
| 135 | |
| 136 | /* Delay before a URB completion happen when it's scheduled to be delayed */ |
| 137 | #define LATER_TIMER_DELAY (HZ/50) /* 20 ms */ |
| 138 | |
| 139 | /* Simplifying macros for checking software state info of a epid */ |
| 140 | /* ----------------------------------------------------------------------- */ |
| 141 | #define epid_inuse(epid) epid_state[epid].inuse |
| 142 | #define epid_out_traffic(epid) epid_state[epid].out_traffic |
| 143 | #define epid_isoc(epid) (epid_state[epid].type == PIPE_ISOCHRONOUS ? 1 : 0) |
| 144 | #define epid_intr(epid) (epid_state[epid].type == PIPE_INTERRUPT ? 1 : 0) |
| 145 | |
| 146 | |
| 147 | /***************************************************************************/ |
| 148 | /***************************************************************************/ |
| 149 | /* DEBUG FUNCTIONS */ |
| 150 | /***************************************************************************/ |
| 151 | /***************************************************************************/ |
| 152 | /* Note that these functions are always available in their "__" variants, |
| 153 | for use in error situations. The "__" missing variants are controlled by |
| 154 | the USB_DEBUG_DESC/USB_DEBUG_URB macros. */ |
| 155 | static void __dump_urb(struct urb* purb) |
| 156 | { |
| 157 | struct crisv10_urb_priv *urb_priv = purb->hcpriv; |
| 158 | int urb_num = -1; |
| 159 | if(urb_priv) { |
| 160 | urb_num = urb_priv->urb_num; |
| 161 | } |
| 162 | printk("\nURB:0x%x[%d]\n", (unsigned int)purb, urb_num); |
| 163 | printk("dev :0x%08lx\n", (unsigned long)purb->dev); |
| 164 | printk("pipe :0x%08x\n", purb->pipe); |
| 165 | printk("status :%d\n", purb->status); |
| 166 | printk("transfer_flags :0x%08x\n", purb->transfer_flags); |
| 167 | printk("transfer_buffer :0x%08lx\n", (unsigned long)purb->transfer_buffer); |
| 168 | printk("transfer_buffer_length:%d\n", purb->transfer_buffer_length); |
| 169 | printk("actual_length :%d\n", purb->actual_length); |
| 170 | printk("setup_packet :0x%08lx\n", (unsigned long)purb->setup_packet); |
| 171 | printk("start_frame :%d\n", purb->start_frame); |
| 172 | printk("number_of_packets :%d\n", purb->number_of_packets); |
| 173 | printk("interval :%d\n", purb->interval); |
| 174 | printk("error_count :%d\n", purb->error_count); |
| 175 | printk("context :0x%08lx\n", (unsigned long)purb->context); |
| 176 | printk("complete :0x%08lx\n\n", (unsigned long)purb->complete); |
| 177 | } |
| 178 | |
| 179 | static void __dump_in_desc(volatile struct USB_IN_Desc *in) |
| 180 | { |
| 181 | printk("\nUSB_IN_Desc at 0x%08lx\n", (unsigned long)in); |
| 182 | printk(" sw_len : 0x%04x (%d)\n", in->sw_len, in->sw_len); |
| 183 | printk(" command : 0x%04x\n", in->command); |
| 184 | printk(" next : 0x%08lx\n", in->next); |
| 185 | printk(" buf : 0x%08lx\n", in->buf); |
| 186 | printk(" hw_len : 0x%04x (%d)\n", in->hw_len, in->hw_len); |
| 187 | printk(" status : 0x%04x\n\n", in->status); |
| 188 | } |
| 189 | |
| 190 | static void __dump_sb_desc(volatile struct USB_SB_Desc *sb) |
| 191 | { |
| 192 | char tt = (sb->command & 0x30) >> 4; |
| 193 | char *tt_string; |
| 194 | |
| 195 | switch (tt) { |
| 196 | case 0: |
| 197 | tt_string = "zout"; |
| 198 | break; |
| 199 | case 1: |
| 200 | tt_string = "in"; |
| 201 | break; |
| 202 | case 2: |
| 203 | tt_string = "out"; |
| 204 | break; |
| 205 | case 3: |
| 206 | tt_string = "setup"; |
| 207 | break; |
| 208 | default: |
| 209 | tt_string = "unknown (weird)"; |
| 210 | } |
| 211 | |
| 212 | printk(" USB_SB_Desc at 0x%08lx ", (unsigned long)sb); |
| 213 | printk(" command:0x%04x (", sb->command); |
| 214 | printk("rem:%d ", (sb->command & 0x3f00) >> 8); |
| 215 | printk("full:%d ", (sb->command & 0x40) >> 6); |
| 216 | printk("tt:%d(%s) ", tt, tt_string); |
| 217 | printk("intr:%d ", (sb->command & 0x8) >> 3); |
| 218 | printk("eot:%d ", (sb->command & 0x2) >> 1); |
| 219 | printk("eol:%d)", sb->command & 0x1); |
| 220 | printk(" sw_len:0x%04x(%d)", sb->sw_len, sb->sw_len); |
| 221 | printk(" next:0x%08lx", sb->next); |
| 222 | printk(" buf:0x%08lx\n", sb->buf); |
| 223 | } |
| 224 | |
| 225 | |
| 226 | static void __dump_ep_desc(volatile struct USB_EP_Desc *ep) |
| 227 | { |
| 228 | printk("USB_EP_Desc at 0x%08lx ", (unsigned long)ep); |
| 229 | printk(" command:0x%04x (", ep->command); |
| 230 | printk("ep_id:%d ", (ep->command & 0x1f00) >> 8); |
| 231 | printk("enable:%d ", (ep->command & 0x10) >> 4); |
| 232 | printk("intr:%d ", (ep->command & 0x8) >> 3); |
| 233 | printk("eof:%d ", (ep->command & 0x2) >> 1); |
| 234 | printk("eol:%d)", ep->command & 0x1); |
| 235 | printk(" hw_len:0x%04x(%d)", ep->hw_len, ep->hw_len); |
| 236 | printk(" next:0x%08lx", ep->next); |
| 237 | printk(" sub:0x%08lx\n", ep->sub); |
| 238 | } |
| 239 | |
| 240 | static inline void __dump_ep_list(int pipe_type) |
| 241 | { |
| 242 | volatile struct USB_EP_Desc *ep; |
| 243 | volatile struct USB_EP_Desc *first_ep; |
| 244 | volatile struct USB_SB_Desc *sb; |
| 245 | |
| 246 | switch (pipe_type) |
| 247 | { |
| 248 | case PIPE_BULK: |
| 249 | first_ep = &TxBulkEPList[0]; |
| 250 | break; |
| 251 | case PIPE_CONTROL: |
| 252 | first_ep = &TxCtrlEPList[0]; |
| 253 | break; |
| 254 | case PIPE_INTERRUPT: |
| 255 | first_ep = &TxIntrEPList[0]; |
| 256 | break; |
| 257 | case PIPE_ISOCHRONOUS: |
| 258 | first_ep = &TxIsocEPList[0]; |
| 259 | break; |
| 260 | default: |
| 261 | return; |
| 262 | } |
| 263 | ep = first_ep; |
| 264 | |
| 265 | printk("\n\nDumping EP list...\n\n"); |
| 266 | |
| 267 | do { |
| 268 | __dump_ep_desc(ep); |
| 269 | /* Cannot phys_to_virt on 0 as it turns into 80000000, which is != 0. */ |
| 270 | sb = ep->sub ? phys_to_virt(ep->sub) : 0; |
| 271 | while (sb) { |
| 272 | __dump_sb_desc(sb); |
| 273 | sb = sb->next ? phys_to_virt(sb->next) : 0; |
| 274 | } |
| 275 | ep = (volatile struct USB_EP_Desc *)(phys_to_virt(ep->next)); |
| 276 | |
| 277 | } while (ep != first_ep); |
| 278 | } |
| 279 | |
| 280 | static inline void __dump_ept_data(int epid) |
| 281 | { |
| 282 | unsigned long flags; |
| 283 | __u32 r_usb_ept_data; |
| 284 | |
| 285 | if (epid < 0 || epid > 31) { |
| 286 | printk("Cannot dump ept data for invalid epid %d\n", epid); |
| 287 | return; |
| 288 | } |
| 289 | |
| 290 | local_irq_save(flags); |
| 291 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| 292 | nop(); |
| 293 | r_usb_ept_data = *R_USB_EPT_DATA; |
| 294 | local_irq_restore(flags); |
| 295 | |
| 296 | printk(" R_USB_EPT_DATA = 0x%x for epid %d :\n", r_usb_ept_data, epid); |
| 297 | if (r_usb_ept_data == 0) { |
| 298 | /* No need for more detailed printing. */ |
| 299 | return; |
| 300 | } |
| 301 | printk(" valid : %d\n", (r_usb_ept_data & 0x80000000) >> 31); |
| 302 | printk(" hold : %d\n", (r_usb_ept_data & 0x40000000) >> 30); |
| 303 | printk(" error_count_in : %d\n", (r_usb_ept_data & 0x30000000) >> 28); |
| 304 | printk(" t_in : %d\n", (r_usb_ept_data & 0x08000000) >> 27); |
| 305 | printk(" low_speed : %d\n", (r_usb_ept_data & 0x04000000) >> 26); |
| 306 | printk(" port : %d\n", (r_usb_ept_data & 0x03000000) >> 24); |
| 307 | printk(" error_code : %d\n", (r_usb_ept_data & 0x00c00000) >> 22); |
| 308 | printk(" t_out : %d\n", (r_usb_ept_data & 0x00200000) >> 21); |
| 309 | printk(" error_count_out : %d\n", (r_usb_ept_data & 0x00180000) >> 19); |
| 310 | printk(" max_len : %d\n", (r_usb_ept_data & 0x0003f800) >> 11); |
| 311 | printk(" ep : %d\n", (r_usb_ept_data & 0x00000780) >> 7); |
| 312 | printk(" dev : %d\n", (r_usb_ept_data & 0x0000003f)); |
| 313 | } |
| 314 | |
| 315 | static inline void __dump_ept_data_iso(int epid) |
| 316 | { |
| 317 | unsigned long flags; |
| 318 | __u32 ept_data; |
| 319 | |
| 320 | if (epid < 0 || epid > 31) { |
| 321 | printk("Cannot dump ept data for invalid epid %d\n", epid); |
| 322 | return; |
| 323 | } |
| 324 | |
| 325 | local_irq_save(flags); |
| 326 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| 327 | nop(); |
| 328 | ept_data = *R_USB_EPT_DATA_ISO; |
| 329 | local_irq_restore(flags); |
| 330 | |
| 331 | printk(" R_USB_EPT_DATA = 0x%x for epid %d :\n", ept_data, epid); |
| 332 | if (ept_data == 0) { |
| 333 | /* No need for more detailed printing. */ |
| 334 | return; |
| 335 | } |
| 336 | printk(" valid : %d\n", IO_EXTRACT(R_USB_EPT_DATA_ISO, valid, |
| 337 | ept_data)); |
| 338 | printk(" port : %d\n", IO_EXTRACT(R_USB_EPT_DATA_ISO, port, |
| 339 | ept_data)); |
| 340 | printk(" error_code : %d\n", IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, |
| 341 | ept_data)); |
| 342 | printk(" max_len : %d\n", IO_EXTRACT(R_USB_EPT_DATA_ISO, max_len, |
| 343 | ept_data)); |
| 344 | printk(" ep : %d\n", IO_EXTRACT(R_USB_EPT_DATA_ISO, ep, |
| 345 | ept_data)); |
| 346 | printk(" dev : %d\n", IO_EXTRACT(R_USB_EPT_DATA_ISO, dev, |
| 347 | ept_data)); |
| 348 | } |
| 349 | |
| 350 | static inline void __dump_ept_data_list(void) |
| 351 | { |
| 352 | int i; |
| 353 | |
| 354 | printk("Dumping the whole R_USB_EPT_DATA list\n"); |
| 355 | |
| 356 | for (i = 0; i < 32; i++) { |
| 357 | __dump_ept_data(i); |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | static void debug_epid(int epid) { |
| 362 | int i; |
| 363 | |
| 364 | if(epid_isoc(epid)) { |
| 365 | __dump_ept_data_iso(epid); |
| 366 | } else { |
| 367 | __dump_ept_data(epid); |
| 368 | } |
| 369 | |
| 370 | printk("Bulk:\n"); |
| 371 | for(i = 0; i < 32; i++) { |
| 372 | if(IO_EXTRACT(USB_EP_command, epid, TxBulkEPList[i].command) == |
| 373 | epid) { |
| 374 | printk("%d: ", i); __dump_ep_desc(&(TxBulkEPList[i])); |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | printk("Ctrl:\n"); |
| 379 | for(i = 0; i < 32; i++) { |
| 380 | if(IO_EXTRACT(USB_EP_command, epid, TxCtrlEPList[i].command) == |
| 381 | epid) { |
| 382 | printk("%d: ", i); __dump_ep_desc(&(TxCtrlEPList[i])); |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | printk("Intr:\n"); |
| 387 | for(i = 0; i < MAX_INTR_INTERVAL; i++) { |
| 388 | if(IO_EXTRACT(USB_EP_command, epid, TxIntrEPList[i].command) == |
| 389 | epid) { |
| 390 | printk("%d: ", i); __dump_ep_desc(&(TxIntrEPList[i])); |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | printk("Isoc:\n"); |
| 395 | for(i = 0; i < 32; i++) { |
| 396 | if(IO_EXTRACT(USB_EP_command, epid, TxIsocEPList[i].command) == |
| 397 | epid) { |
| 398 | printk("%d: ", i); __dump_ep_desc(&(TxIsocEPList[i])); |
| 399 | } |
| 400 | } |
| 401 | |
| 402 | __dump_ept_data_list(); |
| 403 | __dump_ep_list(PIPE_INTERRUPT); |
| 404 | printk("\n\n"); |
| 405 | } |
| 406 | |
| 407 | |
| 408 | |
| 409 | char* hcd_status_to_str(__u8 bUsbStatus) { |
| 410 | static char hcd_status_str[128]; |
| 411 | hcd_status_str[0] = '\0'; |
| 412 | if(bUsbStatus & IO_STATE(R_USB_STATUS, ourun, yes)) { |
| 413 | strcat(hcd_status_str, "ourun "); |
| 414 | } |
| 415 | if(bUsbStatus & IO_STATE(R_USB_STATUS, perror, yes)) { |
| 416 | strcat(hcd_status_str, "perror "); |
| 417 | } |
| 418 | if(bUsbStatus & IO_STATE(R_USB_STATUS, device_mode, yes)) { |
| 419 | strcat(hcd_status_str, "device_mode "); |
| 420 | } |
| 421 | if(bUsbStatus & IO_STATE(R_USB_STATUS, host_mode, yes)) { |
| 422 | strcat(hcd_status_str, "host_mode "); |
| 423 | } |
| 424 | if(bUsbStatus & IO_STATE(R_USB_STATUS, started, yes)) { |
| 425 | strcat(hcd_status_str, "started "); |
| 426 | } |
| 427 | if(bUsbStatus & IO_STATE(R_USB_STATUS, running, yes)) { |
| 428 | strcat(hcd_status_str, "running "); |
| 429 | } |
| 430 | return hcd_status_str; |
| 431 | } |
| 432 | |
| 433 | |
| 434 | char* sblist_to_str(struct USB_SB_Desc* sb_desc) { |
| 435 | static char sblist_to_str_buff[128]; |
| 436 | char tmp[32], tmp2[32]; |
| 437 | sblist_to_str_buff[0] = '\0'; |
| 438 | while(sb_desc != NULL) { |
| 439 | switch(IO_EXTRACT(USB_SB_command, tt, sb_desc->command)) { |
| 440 | case 0: sprintf(tmp, "zout"); break; |
| 441 | case 1: sprintf(tmp, "in"); break; |
| 442 | case 2: sprintf(tmp, "out"); break; |
| 443 | case 3: sprintf(tmp, "setup"); break; |
| 444 | } |
| 445 | sprintf(tmp2, "(%s %d)", tmp, sb_desc->sw_len); |
| 446 | strcat(sblist_to_str_buff, tmp2); |
| 447 | if(sb_desc->next != 0) { |
| 448 | sb_desc = phys_to_virt(sb_desc->next); |
| 449 | } else { |
| 450 | sb_desc = NULL; |
| 451 | } |
| 452 | } |
| 453 | return sblist_to_str_buff; |
| 454 | } |
| 455 | |
| 456 | char* port_status_to_str(__u16 wPortStatus) { |
| 457 | static char port_status_str[128]; |
| 458 | port_status_str[0] = '\0'; |
| 459 | if(wPortStatus & IO_STATE(R_USB_RH_PORT_STATUS_1, connected, yes)) { |
| 460 | strcat(port_status_str, "connected "); |
| 461 | } |
| 462 | if(wPortStatus & IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes)) { |
| 463 | strcat(port_status_str, "enabled "); |
| 464 | } |
| 465 | if(wPortStatus & IO_STATE(R_USB_RH_PORT_STATUS_1, suspended, yes)) { |
| 466 | strcat(port_status_str, "suspended "); |
| 467 | } |
| 468 | if(wPortStatus & IO_STATE(R_USB_RH_PORT_STATUS_1, reset, yes)) { |
| 469 | strcat(port_status_str, "reset "); |
| 470 | } |
| 471 | if(wPortStatus & IO_STATE(R_USB_RH_PORT_STATUS_1, speed, full)) { |
| 472 | strcat(port_status_str, "full-speed "); |
| 473 | } else { |
| 474 | strcat(port_status_str, "low-speed "); |
| 475 | } |
| 476 | return port_status_str; |
| 477 | } |
| 478 | |
| 479 | |
| 480 | char* endpoint_to_str(struct usb_endpoint_descriptor *ed) { |
| 481 | static char endpoint_to_str_buff[128]; |
| 482 | char tmp[32]; |
| 483 | int epnum = ed->bEndpointAddress & 0x0F; |
| 484 | int dir = ed->bEndpointAddress & 0x80; |
| 485 | int type = ed->bmAttributes & 0x03; |
| 486 | endpoint_to_str_buff[0] = '\0'; |
| 487 | sprintf(endpoint_to_str_buff, "ep:%d ", epnum); |
| 488 | switch(type) { |
| 489 | case 0: |
| 490 | sprintf(tmp, " ctrl"); |
| 491 | break; |
| 492 | case 1: |
| 493 | sprintf(tmp, " isoc"); |
| 494 | break; |
| 495 | case 2: |
| 496 | sprintf(tmp, " bulk"); |
| 497 | break; |
| 498 | case 3: |
| 499 | sprintf(tmp, " intr"); |
| 500 | break; |
| 501 | } |
| 502 | strcat(endpoint_to_str_buff, tmp); |
| 503 | if(dir) { |
| 504 | sprintf(tmp, " in"); |
| 505 | } else { |
| 506 | sprintf(tmp, " out"); |
| 507 | } |
| 508 | strcat(endpoint_to_str_buff, tmp); |
| 509 | |
| 510 | return endpoint_to_str_buff; |
| 511 | } |
| 512 | |
| 513 | /* Debug helper functions for Transfer Controller */ |
| 514 | char* pipe_to_str(unsigned int pipe) { |
| 515 | static char pipe_to_str_buff[128]; |
| 516 | char tmp[64]; |
| 517 | sprintf(pipe_to_str_buff, "dir:%s", str_dir(pipe)); |
| 518 | sprintf(tmp, " type:%s", str_type(pipe)); |
| 519 | strcat(pipe_to_str_buff, tmp); |
| 520 | |
| 521 | sprintf(tmp, " dev:%d", usb_pipedevice(pipe)); |
| 522 | strcat(pipe_to_str_buff, tmp); |
| 523 | sprintf(tmp, " ep:%d", usb_pipeendpoint(pipe)); |
| 524 | strcat(pipe_to_str_buff, tmp); |
| 525 | return pipe_to_str_buff; |
| 526 | } |
| 527 | |
| 528 | |
| 529 | #define USB_DEBUG_DESC 1 |
| 530 | |
| 531 | #ifdef USB_DEBUG_DESC |
| 532 | #define dump_in_desc(x) __dump_in_desc(x) |
| 533 | #define dump_sb_desc(...) __dump_sb_desc(...) |
| 534 | #define dump_ep_desc(x) __dump_ep_desc(x) |
| 535 | #define dump_ept_data(x) __dump_ept_data(x) |
| 536 | #else |
| 537 | #define dump_in_desc(...) do {} while (0) |
| 538 | #define dump_sb_desc(...) do {} while (0) |
| 539 | #define dump_ep_desc(...) do {} while (0) |
| 540 | #endif |
| 541 | |
| 542 | |
| 543 | /* Uncomment this to enable massive function call trace |
| 544 | #define USB_DEBUG_TRACE */ |
| 545 | |
| 546 | #ifdef USB_DEBUG_TRACE |
| 547 | #define DBFENTER (printk(": Entering: %s\n", __FUNCTION__)) |
| 548 | #define DBFEXIT (printk(": Exiting: %s\n", __FUNCTION__)) |
| 549 | #else |
| 550 | #define DBFENTER do {} while (0) |
| 551 | #define DBFEXIT do {} while (0) |
| 552 | #endif |
| 553 | |
| 554 | #define CHECK_ALIGN(x) if (((__u32)(x)) & 0x00000003) \ |
| 555 | {panic("Alignment check (DWORD) failed at %s:%s:%d\n", __FILE__, __FUNCTION__, __LINE__);} |
| 556 | |
| 557 | /* Most helpful debugging aid */ |
| 558 | #define ASSERT(expr) ((void) ((expr) ? 0 : (err("assert failed at: %s %d",__FUNCTION__, __LINE__)))) |
| 559 | |
| 560 | |
| 561 | /***************************************************************************/ |
| 562 | /***************************************************************************/ |
| 563 | /* Forward declarations */ |
| 564 | /***************************************************************************/ |
| 565 | /***************************************************************************/ |
| 566 | void crisv10_hcd_epid_attn_irq(struct crisv10_irq_reg *reg); |
| 567 | void crisv10_hcd_port_status_irq(struct crisv10_irq_reg *reg); |
| 568 | void crisv10_hcd_ctl_status_irq(struct crisv10_irq_reg *reg); |
| 569 | void crisv10_hcd_isoc_eof_irq(struct crisv10_irq_reg *reg); |
| 570 | |
| 571 | void rh_port_status_change(__u16[]); |
| 572 | int rh_clear_port_feature(__u8, __u16); |
| 573 | int rh_set_port_feature(__u8, __u16); |
| 574 | static void rh_disable_port(unsigned int port); |
| 575 | |
| 576 | static void check_finished_bulk_tx_epids(struct usb_hcd *hcd, |
| 577 | int timer); |
| 578 | |
| 579 | static int tc_setup_epid(struct usb_host_endpoint *ep, struct urb *urb, |
| 580 | int mem_flags); |
| 581 | static void tc_free_epid(struct usb_host_endpoint *ep); |
| 582 | static int tc_allocate_epid(void); |
| 583 | static void tc_finish_urb(struct usb_hcd *hcd, struct urb *urb, int status); |
| 584 | static void tc_finish_urb_later(struct usb_hcd *hcd, struct urb *urb, |
| 585 | int status); |
| 586 | |
| 587 | static int urb_priv_create(struct usb_hcd *hcd, struct urb *urb, int epid, |
| 588 | int mem_flags); |
| 589 | static void urb_priv_free(struct usb_hcd *hcd, struct urb *urb); |
| 590 | |
| 591 | static int crisv10_usb_check_bandwidth(struct usb_device *dev,struct urb *urb); |
| 592 | static void crisv10_usb_claim_bandwidth( |
| 593 | struct usb_device *dev, struct urb *urb, int bustime, int isoc); |
| 594 | static void crisv10_usb_release_bandwidth( |
| 595 | struct usb_hcd *hcd, int isoc, int bandwidth); |
| 596 | |
| 597 | static inline struct urb *urb_list_first(int epid); |
| 598 | static inline void urb_list_add(struct urb *urb, int epid, |
| 599 | int mem_flags); |
| 600 | static inline urb_entry_t *urb_list_entry(struct urb *urb, int epid); |
| 601 | static inline void urb_list_del(struct urb *urb, int epid); |
| 602 | static inline void urb_list_move_last(struct urb *urb, int epid); |
| 603 | static inline struct urb *urb_list_next(struct urb *urb, int epid); |
| 604 | |
| 605 | int create_sb_for_urb(struct urb *urb, int mem_flags); |
| 606 | int init_intr_urb(struct urb *urb, int mem_flags); |
| 607 | |
| 608 | static inline void etrax_epid_set(__u8 index, __u32 data); |
| 609 | static inline void etrax_epid_clear_error(__u8 index); |
| 610 | static inline void etrax_epid_set_toggle(__u8 index, __u8 dirout, |
| 611 | __u8 toggle); |
| 612 | static inline __u8 etrax_epid_get_toggle(__u8 index, __u8 dirout); |
| 613 | static inline __u32 etrax_epid_get(__u8 index); |
| 614 | |
| 615 | /* We're accessing the same register position in Etrax so |
| 616 | when we do full access the internal difference doesn't matter */ |
| 617 | #define etrax_epid_iso_set(index, data) etrax_epid_set(index, data) |
| 618 | #define etrax_epid_iso_get(index) etrax_epid_get(index) |
| 619 | |
| 620 | |
| 621 | static void tc_dma_process_isoc_urb(struct urb *urb); |
| 622 | static void tc_dma_process_queue(int epid); |
| 623 | static void tc_dma_unlink_intr_urb(struct urb *urb); |
| 624 | static irqreturn_t tc_dma_tx_interrupt(int irq, void *vhc); |
| 625 | static irqreturn_t tc_dma_rx_interrupt(int irq, void *vhc); |
| 626 | |
| 627 | static void tc_bulk_start_timer_func(unsigned long dummy); |
| 628 | static void tc_bulk_eot_timer_func(unsigned long dummy); |
| 629 | |
| 630 | |
| 631 | /*************************************************************/ |
| 632 | /*************************************************************/ |
| 633 | /* Host Controler Driver block */ |
| 634 | /*************************************************************/ |
| 635 | /*************************************************************/ |
| 636 | |
| 637 | /* HCD operations */ |
| 638 | static irqreturn_t crisv10_hcd_top_irq(int irq, void*); |
| 639 | static int crisv10_hcd_reset(struct usb_hcd *); |
| 640 | static int crisv10_hcd_start(struct usb_hcd *); |
| 641 | static void crisv10_hcd_stop(struct usb_hcd *); |
| 642 | #ifdef CONFIG_PM |
| 643 | static int crisv10_hcd_suspend(struct device *, u32, u32); |
| 644 | static int crisv10_hcd_resume(struct device *, u32); |
| 645 | #endif /* CONFIG_PM */ |
| 646 | static int crisv10_hcd_get_frame(struct usb_hcd *); |
| 647 | |
| 648 | static int tc_urb_enqueue(struct usb_hcd *, struct urb *, gfp_t mem_flags); |
| 649 | static int tc_urb_dequeue(struct usb_hcd *, struct urb *, int); |
| 650 | static void tc_endpoint_disable(struct usb_hcd *, struct usb_host_endpoint *ep); |
| 651 | |
| 652 | static int rh_status_data_request(struct usb_hcd *, char *); |
| 653 | static int rh_control_request(struct usb_hcd *, u16, u16, u16, char*, u16); |
| 654 | |
| 655 | #ifdef CONFIG_PM |
| 656 | static int crisv10_hcd_hub_suspend(struct usb_hcd *); |
| 657 | static int crisv10_hcd_hub_resume(struct usb_hcd *); |
| 658 | #endif /* CONFIG_PM */ |
| 659 | #ifdef CONFIG_USB_OTG |
| 660 | static int crisv10_hcd_start_port_reset(struct usb_hcd *, unsigned); |
| 661 | #endif /* CONFIG_USB_OTG */ |
| 662 | |
| 663 | /* host controller driver interface */ |
| 664 | static const struct hc_driver crisv10_hc_driver = |
| 665 | { |
| 666 | .description = hc_name, |
| 667 | .product_desc = product_desc, |
| 668 | .hcd_priv_size = sizeof(struct crisv10_hcd), |
| 669 | |
| 670 | /* Attaching IRQ handler manualy in probe() */ |
| 671 | /* .irq = crisv10_hcd_irq, */ |
| 672 | |
| 673 | .flags = HCD_USB11, |
| 674 | |
| 675 | /* called to init HCD and root hub */ |
| 676 | .reset = crisv10_hcd_reset, |
| 677 | .start = crisv10_hcd_start, |
| 678 | |
| 679 | /* cleanly make HCD stop writing memory and doing I/O */ |
| 680 | .stop = crisv10_hcd_stop, |
| 681 | |
| 682 | /* return current frame number */ |
| 683 | .get_frame_number = crisv10_hcd_get_frame, |
| 684 | |
| 685 | |
| 686 | /* Manage i/o requests via the Transfer Controller */ |
| 687 | .urb_enqueue = tc_urb_enqueue, |
| 688 | .urb_dequeue = tc_urb_dequeue, |
| 689 | |
| 690 | /* hw synch, freeing endpoint resources that urb_dequeue can't */ |
| 691 | .endpoint_disable = tc_endpoint_disable, |
| 692 | |
| 693 | |
| 694 | /* Root Hub support */ |
| 695 | .hub_status_data = rh_status_data_request, |
| 696 | .hub_control = rh_control_request, |
| 697 | #ifdef CONFIG_PM |
| 698 | .hub_suspend = rh_suspend_request, |
| 699 | .hub_resume = rh_resume_request, |
| 700 | #endif /* CONFIG_PM */ |
| 701 | #ifdef CONFIG_USB_OTG |
| 702 | .start_port_reset = crisv10_hcd_start_port_reset, |
| 703 | #endif /* CONFIG_USB_OTG */ |
| 704 | }; |
| 705 | |
| 706 | |
| 707 | /* |
| 708 | * conversion between pointers to a hcd and the corresponding |
| 709 | * crisv10_hcd |
| 710 | */ |
| 711 | |
| 712 | static inline struct crisv10_hcd *hcd_to_crisv10_hcd(struct usb_hcd *hcd) |
| 713 | { |
| 714 | return (struct crisv10_hcd *) hcd->hcd_priv; |
| 715 | } |
| 716 | |
| 717 | static inline struct usb_hcd *crisv10_hcd_to_hcd(struct crisv10_hcd *hcd) |
| 718 | { |
| 719 | return container_of((void *) hcd, struct usb_hcd, hcd_priv); |
| 720 | } |
| 721 | |
| 722 | /* check if specified port is in use */ |
| 723 | static inline int port_in_use(unsigned int port) |
| 724 | { |
| 725 | return ports & (1 << port); |
| 726 | } |
| 727 | |
| 728 | /* number of ports in use */ |
| 729 | static inline unsigned int num_ports(void) |
| 730 | { |
| 731 | unsigned int i, num = 0; |
| 732 | for (i = 0; i < USB_ROOT_HUB_PORTS; i++) |
| 733 | if (port_in_use(i)) |
| 734 | num++; |
| 735 | return num; |
| 736 | } |
| 737 | |
| 738 | /* map hub port number to the port number used internally by the HC */ |
| 739 | static inline unsigned int map_port(unsigned int port) |
| 740 | { |
| 741 | unsigned int i, num = 0; |
| 742 | for (i = 0; i < USB_ROOT_HUB_PORTS; i++) |
| 743 | if (port_in_use(i)) |
| 744 | if (++num == port) |
| 745 | return i; |
| 746 | return -1; |
| 747 | } |
| 748 | |
| 749 | /* size of descriptors in slab cache */ |
| 750 | #ifndef MAX |
| 751 | #define MAX(x, y) ((x) > (y) ? (x) : (y)) |
| 752 | #endif |
| 753 | |
| 754 | |
| 755 | /******************************************************************/ |
| 756 | /* Hardware Interrupt functions */ |
| 757 | /******************************************************************/ |
| 758 | |
| 759 | /* Fast interrupt handler for HC */ |
| 760 | static irqreturn_t crisv10_hcd_top_irq(int irq, void *vcd) |
| 761 | { |
| 762 | struct usb_hcd *hcd = vcd; |
| 763 | struct crisv10_irq_reg reg; |
| 764 | __u32 irq_mask; |
| 765 | unsigned long flags; |
| 766 | |
| 767 | DBFENTER; |
| 768 | |
| 769 | ASSERT(hcd != NULL); |
| 770 | reg.hcd = hcd; |
| 771 | |
| 772 | /* Turn of other interrupts while handling these sensitive cases */ |
| 773 | local_irq_save(flags); |
| 774 | |
| 775 | /* Read out which interrupts that are flaged */ |
| 776 | irq_mask = *R_USB_IRQ_MASK_READ; |
| 777 | reg.r_usb_irq_mask_read = irq_mask; |
| 778 | |
| 779 | /* Reading R_USB_STATUS clears the ctl_status interrupt. Note that |
| 780 | R_USB_STATUS must be read before R_USB_EPID_ATTN since reading the latter |
| 781 | clears the ourun and perror fields of R_USB_STATUS. */ |
| 782 | reg.r_usb_status = *R_USB_STATUS; |
| 783 | |
| 784 | /* Reading R_USB_EPID_ATTN clears the iso_eof, bulk_eot and epid_attn |
| 785 | interrupts. */ |
| 786 | reg.r_usb_epid_attn = *R_USB_EPID_ATTN; |
| 787 | |
| 788 | /* Reading R_USB_RH_PORT_STATUS_1 and R_USB_RH_PORT_STATUS_2 clears the |
| 789 | port_status interrupt. */ |
| 790 | reg.r_usb_rh_port_status_1 = *R_USB_RH_PORT_STATUS_1; |
| 791 | reg.r_usb_rh_port_status_2 = *R_USB_RH_PORT_STATUS_2; |
| 792 | |
| 793 | /* Reading R_USB_FM_NUMBER clears the sof interrupt. */ |
| 794 | /* Note: the lower 11 bits contain the actual frame number, sent with each |
| 795 | sof. */ |
| 796 | reg.r_usb_fm_number = *R_USB_FM_NUMBER; |
| 797 | |
| 798 | /* Interrupts are handled in order of priority. */ |
| 799 | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, port_status)) { |
| 800 | crisv10_hcd_port_status_irq(®); |
| 801 | } |
| 802 | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, epid_attn)) { |
| 803 | crisv10_hcd_epid_attn_irq(®); |
| 804 | } |
| 805 | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, ctl_status)) { |
| 806 | crisv10_hcd_ctl_status_irq(®); |
| 807 | } |
| 808 | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, iso_eof)) { |
| 809 | crisv10_hcd_isoc_eof_irq(®); |
| 810 | } |
| 811 | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, bulk_eot)) { |
| 812 | /* Update/restart the bulk start timer since obviously the channel is |
| 813 | running. */ |
| 814 | mod_timer(&bulk_start_timer, jiffies + BULK_START_TIMER_INTERVAL); |
| 815 | /* Update/restart the bulk eot timer since we just received an bulk eot |
| 816 | interrupt. */ |
| 817 | mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL); |
| 818 | |
| 819 | /* Check for finished bulk transfers on epids */ |
| 820 | check_finished_bulk_tx_epids(hcd, 0); |
| 821 | } |
| 822 | local_irq_restore(flags); |
| 823 | |
| 824 | DBFEXIT; |
| 825 | return IRQ_HANDLED; |
| 826 | } |
| 827 | |
| 828 | |
| 829 | void crisv10_hcd_epid_attn_irq(struct crisv10_irq_reg *reg) { |
| 830 | struct usb_hcd *hcd = reg->hcd; |
| 831 | struct crisv10_urb_priv *urb_priv; |
| 832 | int epid; |
| 833 | DBFENTER; |
| 834 | |
| 835 | for (epid = 0; epid < NBR_OF_EPIDS; epid++) { |
| 836 | if (test_bit(epid, (void *)®->r_usb_epid_attn)) { |
| 837 | struct urb *urb; |
| 838 | __u32 ept_data; |
| 839 | int error_code; |
| 840 | |
| 841 | if (epid == DUMMY_EPID || epid == INVALID_EPID) { |
| 842 | /* We definitely don't care about these ones. Besides, they are |
| 843 | always disabled, so any possible disabling caused by the |
| 844 | epid attention interrupt is irrelevant. */ |
| 845 | continue; |
| 846 | } |
| 847 | |
| 848 | if(!epid_inuse(epid)) { |
| 849 | irq_err("Epid attention on epid:%d that isn't in use\n", epid); |
| 850 | printk("R_USB_STATUS: 0x%x\n", reg->r_usb_status); |
| 851 | debug_epid(epid); |
| 852 | continue; |
| 853 | } |
| 854 | |
| 855 | /* Note that although there are separate R_USB_EPT_DATA and |
| 856 | R_USB_EPT_DATA_ISO registers, they are located at the same address and |
| 857 | are of the same size. In other words, this read should be ok for isoc |
| 858 | also. */ |
| 859 | ept_data = etrax_epid_get(epid); |
| 860 | error_code = IO_EXTRACT(R_USB_EPT_DATA, error_code, ept_data); |
| 861 | |
| 862 | /* Get the active URB for this epid. We blatantly assume |
| 863 | that only this URB could have caused the epid attention. */ |
| 864 | urb = activeUrbList[epid]; |
| 865 | if (urb == NULL) { |
| 866 | irq_err("Attention on epid:%d error:%d with no active URB.\n", |
| 867 | epid, error_code); |
| 868 | printk("R_USB_STATUS: 0x%x\n", reg->r_usb_status); |
| 869 | debug_epid(epid); |
| 870 | continue; |
| 871 | } |
| 872 | |
| 873 | urb_priv = (struct crisv10_urb_priv *)urb->hcpriv; |
| 874 | ASSERT(urb_priv); |
| 875 | |
| 876 | /* Using IO_STATE_VALUE on R_USB_EPT_DATA should be ok for isoc also. */ |
| 877 | if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) { |
| 878 | |
| 879 | /* Isoc traffic doesn't have error_count_in/error_count_out. */ |
| 880 | if ((usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) && |
| 881 | (IO_EXTRACT(R_USB_EPT_DATA, error_count_in, ept_data) == 3 || |
| 882 | IO_EXTRACT(R_USB_EPT_DATA, error_count_out, ept_data) == 3)) { |
| 883 | /* Check if URB allready is marked for late-finish, we can get |
| 884 | several 3rd error for Intr traffic when a device is unplugged */ |
| 885 | if(urb_priv->later_data == NULL) { |
| 886 | /* 3rd error. */ |
| 887 | irq_warn("3rd error for epid:%d (%s %s) URB:0x%x[%d]\n", epid, |
| 888 | str_dir(urb->pipe), str_type(urb->pipe), |
| 889 | (unsigned int)urb, urb_priv->urb_num); |
| 890 | |
| 891 | tc_finish_urb_later(hcd, urb, -EPROTO); |
| 892 | } |
| 893 | |
| 894 | } else if (reg->r_usb_status & IO_MASK(R_USB_STATUS, perror)) { |
| 895 | irq_warn("Perror for epid:%d\n", epid); |
| 896 | printk("FM_NUMBER: %d\n", reg->r_usb_fm_number & 0x7ff); |
| 897 | printk("R_USB_STATUS: 0x%x\n", reg->r_usb_status); |
| 898 | __dump_urb(urb); |
| 899 | debug_epid(epid); |
| 900 | |
| 901 | if (!(ept_data & IO_MASK(R_USB_EPT_DATA, valid))) { |
| 902 | /* invalid ep_id */ |
| 903 | panic("Perror because of invalid epid." |
| 904 | " Deconfigured too early?"); |
| 905 | } else { |
| 906 | /* past eof1, near eof, zout transfer, setup transfer */ |
| 907 | /* Dump the urb and the relevant EP descriptor. */ |
| 908 | panic("Something wrong with DMA descriptor contents." |
| 909 | " Too much traffic inserted?"); |
| 910 | } |
| 911 | } else if (reg->r_usb_status & IO_MASK(R_USB_STATUS, ourun)) { |
| 912 | /* buffer ourun */ |
| 913 | printk("FM_NUMBER: %d\n", reg->r_usb_fm_number & 0x7ff); |
| 914 | printk("R_USB_STATUS: 0x%x\n", reg->r_usb_status); |
| 915 | __dump_urb(urb); |
| 916 | debug_epid(epid); |
| 917 | |
| 918 | panic("Buffer overrun/underrun for epid:%d. DMA too busy?", epid); |
| 919 | } else { |
| 920 | irq_warn("Attention on epid:%d (%s %s) with no error code\n", epid, |
| 921 | str_dir(urb->pipe), str_type(urb->pipe)); |
| 922 | printk("R_USB_STATUS: 0x%x\n", reg->r_usb_status); |
| 923 | __dump_urb(urb); |
| 924 | debug_epid(epid); |
| 925 | } |
| 926 | |
| 927 | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, |
| 928 | stall)) { |
| 929 | /* Not really a protocol error, just says that the endpoint gave |
| 930 | a stall response. Note that error_code cannot be stall for isoc. */ |
| 931 | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| 932 | panic("Isoc traffic cannot stall"); |
| 933 | } |
| 934 | |
| 935 | tc_dbg("Stall for epid:%d (%s %s) URB:0x%x\n", epid, |
| 936 | str_dir(urb->pipe), str_type(urb->pipe), (unsigned int)urb); |
| 937 | tc_finish_urb(hcd, urb, -EPIPE); |
| 938 | |
| 939 | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, |
| 940 | bus_error)) { |
| 941 | /* Two devices responded to a transaction request. Must be resolved |
| 942 | by software. FIXME: Reset ports? */ |
| 943 | panic("Bus error for epid %d." |
| 944 | " Two devices responded to transaction request\n", |
| 945 | epid); |
| 946 | |
| 947 | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, |
| 948 | buffer_error)) { |
| 949 | /* DMA overrun or underrun. */ |
| 950 | irq_warn("Buffer overrun/underrun for epid:%d (%s %s)\n", epid, |
| 951 | str_dir(urb->pipe), str_type(urb->pipe)); |
| 952 | |
| 953 | /* It seems that error_code = buffer_error in |
| 954 | R_USB_EPT_DATA/R_USB_EPT_DATA_ISO and ourun = yes in R_USB_STATUS |
| 955 | are the same error. */ |
| 956 | tc_finish_urb(hcd, urb, -EPROTO); |
| 957 | } else { |
| 958 | irq_warn("Unknown attention on epid:%d (%s %s)\n", epid, |
| 959 | str_dir(urb->pipe), str_type(urb->pipe)); |
| 960 | dump_ept_data(epid); |
| 961 | } |
| 962 | } |
| 963 | } |
| 964 | DBFEXIT; |
| 965 | } |
| 966 | |
| 967 | void crisv10_hcd_port_status_irq(struct crisv10_irq_reg *reg) |
| 968 | { |
| 969 | __u16 port_reg[USB_ROOT_HUB_PORTS]; |
| 970 | DBFENTER; |
| 971 | port_reg[0] = reg->r_usb_rh_port_status_1; |
| 972 | port_reg[1] = reg->r_usb_rh_port_status_2; |
| 973 | rh_port_status_change(port_reg); |
| 974 | DBFEXIT; |
| 975 | } |
| 976 | |
| 977 | void crisv10_hcd_isoc_eof_irq(struct crisv10_irq_reg *reg) |
| 978 | { |
| 979 | int epid; |
| 980 | struct urb *urb; |
| 981 | struct crisv10_urb_priv *urb_priv; |
| 982 | |
| 983 | DBFENTER; |
| 984 | |
| 985 | for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { |
| 986 | |
| 987 | /* Only check epids that are in use, is valid and has SB list */ |
| 988 | if (!epid_inuse(epid) || epid == INVALID_EPID || |
| 989 | TxIsocEPList[epid].sub == 0 || epid == DUMMY_EPID) { |
| 990 | /* Nothing here to see. */ |
| 991 | continue; |
| 992 | } |
| 993 | ASSERT(epid_isoc(epid)); |
| 994 | |
| 995 | /* Get the active URB for this epid (if any). */ |
| 996 | urb = activeUrbList[epid]; |
| 997 | if (urb == 0) { |
| 998 | isoc_warn("Ignoring NULL urb for epid:%d\n", epid); |
| 999 | continue; |
| 1000 | } |
| 1001 | if(!epid_out_traffic(epid)) { |
| 1002 | /* Sanity check. */ |
| 1003 | ASSERT(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS); |
| 1004 | |
| 1005 | urb_priv = (struct crisv10_urb_priv *)urb->hcpriv; |
| 1006 | ASSERT(urb_priv); |
| 1007 | |
| 1008 | if (urb_priv->urb_state == NOT_STARTED) { |
| 1009 | /* If ASAP is not set and urb->start_frame is the current frame, |
| 1010 | start the transfer. */ |
| 1011 | if (!(urb->transfer_flags & URB_ISO_ASAP) && |
| 1012 | (urb->start_frame == (*R_USB_FM_NUMBER & 0x7ff))) { |
| 1013 | /* EP should not be enabled if we're waiting for start_frame */ |
| 1014 | ASSERT((TxIsocEPList[epid].command & |
| 1015 | IO_STATE(USB_EP_command, enable, yes)) == 0); |
| 1016 | |
| 1017 | isoc_warn("Enabling isoc IN EP descr for epid %d\n", epid); |
| 1018 | TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); |
| 1019 | |
| 1020 | /* This urb is now active. */ |
| 1021 | urb_priv->urb_state = STARTED; |
| 1022 | continue; |
| 1023 | } |
| 1024 | } |
| 1025 | } |
| 1026 | } |
| 1027 | |
| 1028 | DBFEXIT; |
| 1029 | } |
| 1030 | |
| 1031 | void crisv10_hcd_ctl_status_irq(struct crisv10_irq_reg *reg) |
| 1032 | { |
| 1033 | struct crisv10_hcd* crisv10_hcd = hcd_to_crisv10_hcd(reg->hcd); |
| 1034 | |
| 1035 | DBFENTER; |
| 1036 | ASSERT(crisv10_hcd); |
| 1037 | |
| 1038 | /* irq_dbg("ctr_status_irq, controller status: %s\n", |
| 1039 | hcd_status_to_str(reg->r_usb_status));*/ |
| 1040 | |
| 1041 | /* FIXME: What should we do if we get ourun or perror? Dump the EP and SB |
| 1042 | list for the corresponding epid? */ |
| 1043 | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, ourun)) { |
| 1044 | panic("USB controller got ourun."); |
| 1045 | } |
| 1046 | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, perror)) { |
| 1047 | |
| 1048 | /* Before, etrax_usb_do_intr_recover was called on this epid if it was |
| 1049 | an interrupt pipe. I don't see how re-enabling all EP descriptors |
| 1050 | will help if there was a programming error. */ |
| 1051 | panic("USB controller got perror."); |
| 1052 | } |
| 1053 | |
| 1054 | /* Keep track of USB Controller, if it's running or not */ |
| 1055 | if(reg->r_usb_status & IO_STATE(R_USB_STATUS, running, yes)) { |
| 1056 | crisv10_hcd->running = 1; |
| 1057 | } else { |
| 1058 | crisv10_hcd->running = 0; |
| 1059 | } |
| 1060 | |
| 1061 | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, device_mode)) { |
| 1062 | /* We should never operate in device mode. */ |
| 1063 | panic("USB controller in device mode."); |
| 1064 | } |
| 1065 | |
| 1066 | /* Set the flag to avoid getting "Unlink after no-IRQ? Controller is probably |
| 1067 | using the wrong IRQ" from hcd_unlink_urb() in drivers/usb/core/hcd.c */ |
| 1068 | set_bit(HCD_FLAG_SAW_IRQ, ®->hcd->flags); |
| 1069 | |
| 1070 | DBFEXIT; |
| 1071 | } |
| 1072 | |
| 1073 | |
| 1074 | /******************************************************************/ |
| 1075 | /* Host Controller interface functions */ |
| 1076 | /******************************************************************/ |
| 1077 | |
| 1078 | static inline void crisv10_ready_wait(void) { |
| 1079 | volatile int timeout = 10000; |
| 1080 | /* Check the busy bit of USB controller in Etrax */ |
| 1081 | while((*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)) && |
| 1082 | (timeout-- > 0)); |
| 1083 | } |
| 1084 | |
| 1085 | /* reset host controller */ |
| 1086 | static int crisv10_hcd_reset(struct usb_hcd *hcd) |
| 1087 | { |
| 1088 | DBFENTER; |
| 1089 | hcd_dbg(hcd, "reset\n"); |
| 1090 | |
| 1091 | |
| 1092 | /* Reset the USB interface. */ |
| 1093 | /* |
| 1094 | *R_USB_COMMAND = |
| 1095 | IO_STATE(R_USB_COMMAND, port_sel, nop) | |
| 1096 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| 1097 | IO_STATE(R_USB_COMMAND, ctrl_cmd, reset); |
| 1098 | nop(); |
| 1099 | */ |
| 1100 | DBFEXIT; |
| 1101 | return 0; |
| 1102 | } |
| 1103 | |
| 1104 | /* start host controller */ |
| 1105 | static int crisv10_hcd_start(struct usb_hcd *hcd) |
| 1106 | { |
| 1107 | DBFENTER; |
| 1108 | hcd_dbg(hcd, "start\n"); |
| 1109 | |
| 1110 | crisv10_ready_wait(); |
| 1111 | |
| 1112 | /* Start processing of USB traffic. */ |
| 1113 | *R_USB_COMMAND = |
| 1114 | IO_STATE(R_USB_COMMAND, port_sel, nop) | |
| 1115 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| 1116 | IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run); |
| 1117 | |
| 1118 | nop(); |
| 1119 | |
| 1120 | hcd->state = HC_STATE_RUNNING; |
| 1121 | |
| 1122 | DBFEXIT; |
| 1123 | return 0; |
| 1124 | } |
| 1125 | |
| 1126 | /* stop host controller */ |
| 1127 | static void crisv10_hcd_stop(struct usb_hcd *hcd) |
| 1128 | { |
| 1129 | DBFENTER; |
| 1130 | hcd_dbg(hcd, "stop\n"); |
| 1131 | crisv10_hcd_reset(hcd); |
| 1132 | DBFEXIT; |
| 1133 | } |
| 1134 | |
| 1135 | /* return the current frame number */ |
| 1136 | static int crisv10_hcd_get_frame(struct usb_hcd *hcd) |
| 1137 | { |
| 1138 | DBFENTER; |
| 1139 | DBFEXIT; |
| 1140 | return (*R_USB_FM_NUMBER & 0x7ff); |
| 1141 | } |
| 1142 | |
| 1143 | #ifdef CONFIG_USB_OTG |
| 1144 | |
| 1145 | static int crisv10_hcd_start_port_reset(struct usb_hcd *hcd, unsigned port) |
| 1146 | { |
| 1147 | return 0; /* no-op for now */ |
| 1148 | } |
| 1149 | |
| 1150 | #endif /* CONFIG_USB_OTG */ |
| 1151 | |
| 1152 | |
| 1153 | /******************************************************************/ |
| 1154 | /* Root Hub functions */ |
| 1155 | /******************************************************************/ |
| 1156 | |
| 1157 | /* root hub status */ |
| 1158 | static const struct usb_hub_status rh_hub_status = |
| 1159 | { |
| 1160 | .wHubStatus = 0, |
| 1161 | .wHubChange = 0, |
| 1162 | }; |
| 1163 | |
| 1164 | /* root hub descriptor */ |
| 1165 | static const u8 rh_hub_descr[] = |
| 1166 | { |
| 1167 | 0x09, /* bDescLength */ |
| 1168 | 0x29, /* bDescriptorType */ |
| 1169 | USB_ROOT_HUB_PORTS, /* bNbrPorts */ |
| 1170 | 0x00, /* wHubCharacteristics */ |
| 1171 | 0x00, |
| 1172 | 0x01, /* bPwrOn2pwrGood */ |
| 1173 | 0x00, /* bHubContrCurrent */ |
| 1174 | 0x00, /* DeviceRemovable */ |
| 1175 | 0xff /* PortPwrCtrlMask */ |
| 1176 | }; |
| 1177 | |
| 1178 | /* Actual holder of root hub status*/ |
| 1179 | struct crisv10_rh rh; |
| 1180 | |
| 1181 | /* Initialize root hub data structures (called from dvdrv_hcd_probe()) */ |
| 1182 | int rh_init(void) { |
| 1183 | int i; |
| 1184 | /* Reset port status flags */ |
| 1185 | for (i = 0; i < USB_ROOT_HUB_PORTS; i++) { |
| 1186 | rh.wPortChange[i] = 0; |
| 1187 | rh.wPortStatusPrev[i] = 0; |
| 1188 | } |
| 1189 | return 0; |
| 1190 | } |
| 1191 | |
| 1192 | #define RH_FEAT_MASK ((1<<USB_PORT_FEAT_CONNECTION)|\ |
| 1193 | (1<<USB_PORT_FEAT_ENABLE)|\ |
| 1194 | (1<<USB_PORT_FEAT_SUSPEND)|\ |
| 1195 | (1<<USB_PORT_FEAT_RESET)) |
| 1196 | |
| 1197 | /* Handle port status change interrupt (called from bottom part interrupt) */ |
| 1198 | void rh_port_status_change(__u16 port_reg[]) { |
| 1199 | int i; |
| 1200 | __u16 wChange; |
| 1201 | |
| 1202 | for(i = 0; i < USB_ROOT_HUB_PORTS; i++) { |
| 1203 | /* Xor out changes since last read, masked for important flags */ |
| 1204 | wChange = (port_reg[i] & RH_FEAT_MASK) ^ rh.wPortStatusPrev[i]; |
| 1205 | /* Or changes together with (if any) saved changes */ |
| 1206 | rh.wPortChange[i] |= wChange; |
| 1207 | /* Save new status */ |
| 1208 | rh.wPortStatusPrev[i] = port_reg[i]; |
| 1209 | |
| 1210 | if(wChange) { |
| 1211 | rh_dbg("Interrupt port_status change port%d: %s Current-status:%s\n", i+1, |
| 1212 | port_status_to_str(wChange), |
| 1213 | port_status_to_str(port_reg[i])); |
| 1214 | } |
| 1215 | } |
| 1216 | } |
| 1217 | |
| 1218 | /* Construct port status change bitmap for the root hub */ |
| 1219 | static int rh_status_data_request(struct usb_hcd *hcd, char *buf) |
| 1220 | { |
| 1221 | struct crisv10_hcd* crisv10_hcd = hcd_to_crisv10_hcd(hcd); |
| 1222 | unsigned int i; |
| 1223 | |
| 1224 | DBFENTER; |
| 1225 | /* |
| 1226 | * corresponds to hub status change EP (USB 2.0 spec section 11.13.4) |
| 1227 | * return bitmap indicating ports with status change |
| 1228 | */ |
| 1229 | *buf = 0; |
| 1230 | spin_lock(&crisv10_hcd->lock); |
| 1231 | for (i = 1; i <= crisv10_hcd->num_ports; i++) { |
| 1232 | if (rh.wPortChange[map_port(i)]) { |
| 1233 | *buf |= (1 << i); |
| 1234 | rh_dbg("rh_status_data_request, change on port %d: %s Current Status: %s\n", i, |
| 1235 | port_status_to_str(rh.wPortChange[map_port(i)]), |
| 1236 | port_status_to_str(rh.wPortStatusPrev[map_port(i)])); |
| 1237 | } |
| 1238 | } |
| 1239 | spin_unlock(&crisv10_hcd->lock); |
| 1240 | DBFEXIT; |
| 1241 | return *buf == 0 ? 0 : 1; |
| 1242 | } |
| 1243 | |
| 1244 | /* Handle a control request for the root hub (called from hcd_driver) */ |
| 1245 | static int rh_control_request(struct usb_hcd *hcd, |
| 1246 | u16 typeReq, |
| 1247 | u16 wValue, |
| 1248 | u16 wIndex, |
| 1249 | char *buf, |
| 1250 | u16 wLength) { |
| 1251 | |
| 1252 | struct crisv10_hcd *crisv10_hcd = hcd_to_crisv10_hcd(hcd); |
| 1253 | int retval = 0; |
| 1254 | int len; |
| 1255 | DBFENTER; |
| 1256 | |
| 1257 | switch (typeReq) { |
| 1258 | case GetHubDescriptor: |
| 1259 | rh_dbg("GetHubDescriptor\n"); |
| 1260 | len = min_t(unsigned int, sizeof rh_hub_descr, wLength); |
| 1261 | memcpy(buf, rh_hub_descr, len); |
| 1262 | buf[2] = crisv10_hcd->num_ports; |
| 1263 | break; |
| 1264 | case GetHubStatus: |
| 1265 | rh_dbg("GetHubStatus\n"); |
| 1266 | len = min_t(unsigned int, sizeof rh_hub_status, wLength); |
| 1267 | memcpy(buf, &rh_hub_status, len); |
| 1268 | break; |
| 1269 | case GetPortStatus: |
| 1270 | if (!wIndex || wIndex > crisv10_hcd->num_ports) |
| 1271 | goto error; |
| 1272 | rh_dbg("GetportStatus, port:%d change:%s status:%s\n", wIndex, |
| 1273 | port_status_to_str(rh.wPortChange[map_port(wIndex)]), |
| 1274 | port_status_to_str(rh.wPortStatusPrev[map_port(wIndex)])); |
| 1275 | *(u16 *) buf = cpu_to_le16(rh.wPortStatusPrev[map_port(wIndex)]); |
| 1276 | *(u16 *) (buf + 2) = cpu_to_le16(rh.wPortChange[map_port(wIndex)]); |
| 1277 | break; |
| 1278 | case SetHubFeature: |
| 1279 | rh_dbg("SetHubFeature\n"); |
| 1280 | case ClearHubFeature: |
| 1281 | rh_dbg("ClearHubFeature\n"); |
| 1282 | switch (wValue) { |
| 1283 | case C_HUB_OVER_CURRENT: |
| 1284 | case C_HUB_LOCAL_POWER: |
| 1285 | rh_warn("Not implemented hub request:%d \n", typeReq); |
| 1286 | /* not implemented */ |
| 1287 | break; |
| 1288 | default: |
| 1289 | goto error; |
| 1290 | } |
| 1291 | break; |
| 1292 | case SetPortFeature: |
| 1293 | if (!wIndex || wIndex > crisv10_hcd->num_ports) |
| 1294 | goto error; |
| 1295 | if(rh_set_port_feature(map_port(wIndex), wValue)) |
| 1296 | goto error; |
| 1297 | break; |
| 1298 | case ClearPortFeature: |
| 1299 | if (!wIndex || wIndex > crisv10_hcd->num_ports) |
| 1300 | goto error; |
| 1301 | if(rh_clear_port_feature(map_port(wIndex), wValue)) |
| 1302 | goto error; |
| 1303 | break; |
| 1304 | default: |
| 1305 | rh_warn("Unknown hub request: %d\n", typeReq); |
| 1306 | error: |
| 1307 | retval = -EPIPE; |
| 1308 | } |
| 1309 | DBFEXIT; |
| 1310 | return retval; |
| 1311 | } |
| 1312 | |
| 1313 | int rh_set_port_feature(__u8 bPort, __u16 wFeature) { |
| 1314 | __u8 bUsbCommand = 0; |
| 1315 | __u8 reset_cnt; |
| 1316 | switch(wFeature) { |
| 1317 | case USB_PORT_FEAT_RESET: |
| 1318 | rh_dbg("SetPortFeature: reset\n"); |
| 1319 | |
| 1320 | if (rh.wPortStatusPrev[bPort] & |
| 1321 | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes)) |
| 1322 | { |
| 1323 | __u8 restart_controller = 0; |
| 1324 | |
| 1325 | if ( (rh.wPortStatusPrev[0] & |
| 1326 | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes)) && |
| 1327 | (rh.wPortStatusPrev[1] & |
| 1328 | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, yes)) ) |
| 1329 | { |
| 1330 | /* Both ports is enabled. The USB controller will not change state. */ |
| 1331 | restart_controller = 0; |
| 1332 | } |
| 1333 | else |
| 1334 | { |
| 1335 | /* Only ports is enabled. The USB controller will change state and |
| 1336 | must be restarted. */ |
| 1337 | restart_controller = 1; |
| 1338 | } |
| 1339 | /* |
| 1340 | In ETRAX 100LX it's not possible to reset an enabled root hub port. |
| 1341 | The workaround is to disable and enable the port before resetting it. |
| 1342 | Disabling the port can, if both ports are disabled at once, cause the |
| 1343 | USB controller to change state to HOST_MODE state. |
| 1344 | The USB controller state transition causes a lot of unwanted |
| 1345 | interrupts that must be avoided. |
| 1346 | Disabling the USB controller status and port status interrupts before |
| 1347 | disabling/resetting the port stops these interrupts. |
| 1348 | |
| 1349 | These actions are performed: |
| 1350 | 1. Disable USB controller status and port status interrupts. |
| 1351 | 2. Disable the port |
| 1352 | 3. Wait for the port to be disabled. |
| 1353 | 4. Enable the port. |
| 1354 | 5. Wait for the port to be enabled. |
| 1355 | 6. Reset the port. |
| 1356 | 7. Wait for for the reset to end. |
| 1357 | 8. Wait for the USB controller entering started state. |
| 1358 | 9. Order the USB controller to running state. |
| 1359 | 10. Wait for the USB controller reaching running state. |
| 1360 | 11. Clear all interrupts generated during the disable/enable/reset |
| 1361 | procedure. |
| 1362 | 12. Enable the USB controller status and port status interrupts. |
| 1363 | */ |
| 1364 | |
| 1365 | /* 1. Disable USB controller status and USB port status interrupts. */ |
| 1366 | *R_USB_IRQ_MASK_CLR = IO_STATE(R_USB_IRQ_MASK_CLR, ctl_status, clr); |
| 1367 | __asm__ __volatile__ (" nop"); |
| 1368 | *R_USB_IRQ_MASK_CLR = IO_STATE(R_USB_IRQ_MASK_CLR, port_status, clr); |
| 1369 | __asm__ __volatile__ (" nop"); |
| 1370 | |
| 1371 | { |
| 1372 | |
| 1373 | /* Since an root hub port reset shall be 50 ms and the ETRAX 100LX |
| 1374 | root hub port reset is 10 ms we must perform 5 port resets to |
| 1375 | achieve a proper root hub port reset. */ |
| 1376 | for (reset_cnt = 0; reset_cnt < 5; reset_cnt ++) |
| 1377 | { |
| 1378 | rh_dbg("Disable Port %d\n", bPort + 1); |
| 1379 | |
| 1380 | /* 2. Disable the port*/ |
| 1381 | if (bPort == 0) |
| 1382 | { |
| 1383 | *R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, yes); |
| 1384 | } |
| 1385 | else |
| 1386 | { |
| 1387 | *R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, yes); |
| 1388 | } |
| 1389 | |
| 1390 | /* 3. Wait for the port to be disabled. */ |
| 1391 | while ( (bPort == 0) ? |
| 1392 | *R_USB_RH_PORT_STATUS_1 & |
| 1393 | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes) : |
| 1394 | *R_USB_RH_PORT_STATUS_2 & |
| 1395 | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, yes) ) {} |
| 1396 | |
| 1397 | rh_dbg("Port %d is disabled. Enable it!\n", bPort + 1); |
| 1398 | |
| 1399 | /* 4. Enable the port. */ |
| 1400 | if (bPort == 0) |
| 1401 | { |
| 1402 | *R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, no); |
| 1403 | } |
| 1404 | else |
| 1405 | { |
| 1406 | *R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, no); |
| 1407 | } |
| 1408 | |
| 1409 | /* 5. Wait for the port to be enabled again. */ |
| 1410 | while (!( (bPort == 0) ? |
| 1411 | *R_USB_RH_PORT_STATUS_1 & |
| 1412 | IO_STATE(R_USB_RH_PORT_STATUS_1, connected, yes) : |
| 1413 | *R_USB_RH_PORT_STATUS_2 & |
| 1414 | IO_STATE(R_USB_RH_PORT_STATUS_2, connected, yes) ) ) {} |
| 1415 | |
| 1416 | rh_dbg("Port %d is enabled.\n", bPort + 1); |
| 1417 | |
| 1418 | /* 6. Reset the port */ |
| 1419 | crisv10_ready_wait(); |
| 1420 | *R_USB_COMMAND = |
| 1421 | ( (bPort == 0) ? |
| 1422 | IO_STATE(R_USB_COMMAND, port_sel, port1): |
| 1423 | IO_STATE(R_USB_COMMAND, port_sel, port2) ) | |
| 1424 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| 1425 | IO_STATE(R_USB_COMMAND, busy, no) | |
| 1426 | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); |
| 1427 | rh_dbg("Port %d is resetting.\n", bPort + 1); |
| 1428 | |
| 1429 | /* 7. The USB specification says that we should wait for at least |
| 1430 | 10ms for device recover */ |
| 1431 | udelay(10500); /* 10,5ms blocking wait */ |
| 1432 | |
| 1433 | crisv10_ready_wait(); |
| 1434 | } |
| 1435 | } |
| 1436 | |
| 1437 | |
| 1438 | /* Check if the USB controller needs to be restarted. */ |
| 1439 | if (restart_controller) |
| 1440 | { |
| 1441 | /* 8. Wait for the USB controller entering started state. */ |
| 1442 | while (!(*R_USB_STATUS & IO_STATE(R_USB_STATUS, started, yes))) {} |
| 1443 | |
| 1444 | /* 9. Order the USB controller to running state. */ |
| 1445 | crisv10_ready_wait(); |
| 1446 | *R_USB_COMMAND = |
| 1447 | IO_STATE(R_USB_COMMAND, port_sel, nop) | |
| 1448 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| 1449 | IO_STATE(R_USB_COMMAND, busy, no) | |
| 1450 | IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run); |
| 1451 | |
| 1452 | /* 10. Wait for the USB controller reaching running state. */ |
| 1453 | while (!(*R_USB_STATUS & IO_STATE(R_USB_STATUS, running, yes))) {} |
| 1454 | } |
| 1455 | |
| 1456 | /* 11. Clear any controller or port satus interrupts before enabling |
| 1457 | the interrupts. */ |
| 1458 | { |
| 1459 | u16 dummy; |
| 1460 | |
| 1461 | /* Clear the port status interrupt of the reset port. */ |
| 1462 | if (bPort == 0) |
| 1463 | { |
| 1464 | rh_dbg("Clearing port 1 interrupts\n"); |
| 1465 | dummy = *R_USB_RH_PORT_STATUS_1; |
| 1466 | } |
| 1467 | else |
| 1468 | { |
| 1469 | rh_dbg("Clearing port 2 interrupts\n"); |
| 1470 | dummy = *R_USB_RH_PORT_STATUS_2; |
| 1471 | } |
| 1472 | |
| 1473 | if (restart_controller) |
| 1474 | { |
| 1475 | /* The USB controller is restarted. Clear all interupts. */ |
| 1476 | rh_dbg("Clearing all interrupts\n"); |
| 1477 | dummy = *R_USB_STATUS; |
| 1478 | dummy = *R_USB_RH_PORT_STATUS_1; |
| 1479 | dummy = *R_USB_RH_PORT_STATUS_2; |
| 1480 | } |
| 1481 | } |
| 1482 | |
| 1483 | /* 12. Enable USB controller status and USB port status interrupts. */ |
| 1484 | *R_USB_IRQ_MASK_SET = IO_STATE(R_USB_IRQ_MASK_SET, ctl_status, set); |
| 1485 | __asm__ __volatile__ (" nop"); |
| 1486 | *R_USB_IRQ_MASK_SET = IO_STATE(R_USB_IRQ_MASK_SET, port_status, set); |
| 1487 | __asm__ __volatile__ (" nop"); |
| 1488 | |
| 1489 | } |
| 1490 | else |
| 1491 | { |
| 1492 | |
| 1493 | bUsbCommand |= IO_STATE(R_USB_COMMAND, port_cmd, reset); |
| 1494 | /* Select which port via the port_sel field */ |
| 1495 | bUsbCommand |= IO_FIELD(R_USB_COMMAND, port_sel, bPort+1); |
| 1496 | |
| 1497 | /* Make sure the controller isn't busy. */ |
| 1498 | crisv10_ready_wait(); |
| 1499 | /* Send out the actual command to the USB controller */ |
| 1500 | *R_USB_COMMAND = bUsbCommand; |
| 1501 | |
| 1502 | /* Wait a while for controller to first become started after port reset */ |
| 1503 | udelay(12000); /* 12ms blocking wait */ |
| 1504 | |
| 1505 | /* Make sure the controller isn't busy. */ |
| 1506 | crisv10_ready_wait(); |
| 1507 | |
| 1508 | /* If all enabled ports were disabled the host controller goes down into |
| 1509 | started mode, so we need to bring it back into the running state. |
| 1510 | (This is safe even if it's already in the running state.) */ |
| 1511 | *R_USB_COMMAND = |
| 1512 | IO_STATE(R_USB_COMMAND, port_sel, nop) | |
| 1513 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| 1514 | IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run); |
| 1515 | } |
| 1516 | |
| 1517 | break; |
| 1518 | case USB_PORT_FEAT_SUSPEND: |
| 1519 | rh_dbg("SetPortFeature: suspend\n"); |
| 1520 | bUsbCommand |= IO_STATE(R_USB_COMMAND, port_cmd, suspend); |
| 1521 | goto set; |
| 1522 | break; |
| 1523 | case USB_PORT_FEAT_POWER: |
| 1524 | rh_dbg("SetPortFeature: power\n"); |
| 1525 | break; |
| 1526 | case USB_PORT_FEAT_C_CONNECTION: |
| 1527 | rh_dbg("SetPortFeature: c_connection\n"); |
| 1528 | break; |
| 1529 | case USB_PORT_FEAT_C_RESET: |
| 1530 | rh_dbg("SetPortFeature: c_reset\n"); |
| 1531 | break; |
| 1532 | case USB_PORT_FEAT_C_OVER_CURRENT: |
| 1533 | rh_dbg("SetPortFeature: c_over_current\n"); |
| 1534 | break; |
| 1535 | |
| 1536 | set: |
| 1537 | /* Select which port via the port_sel field */ |
| 1538 | bUsbCommand |= IO_FIELD(R_USB_COMMAND, port_sel, bPort+1); |
| 1539 | |
| 1540 | /* Make sure the controller isn't busy. */ |
| 1541 | crisv10_ready_wait(); |
| 1542 | /* Send out the actual command to the USB controller */ |
| 1543 | *R_USB_COMMAND = bUsbCommand; |
| 1544 | break; |
| 1545 | default: |
| 1546 | rh_dbg("SetPortFeature: unknown feature\n"); |
| 1547 | return -1; |
| 1548 | } |
| 1549 | return 0; |
| 1550 | } |
| 1551 | |
| 1552 | int rh_clear_port_feature(__u8 bPort, __u16 wFeature) { |
| 1553 | switch(wFeature) { |
| 1554 | case USB_PORT_FEAT_ENABLE: |
| 1555 | rh_dbg("ClearPortFeature: enable\n"); |
| 1556 | rh_disable_port(bPort); |
| 1557 | break; |
| 1558 | case USB_PORT_FEAT_SUSPEND: |
| 1559 | rh_dbg("ClearPortFeature: suspend\n"); |
| 1560 | break; |
| 1561 | case USB_PORT_FEAT_POWER: |
| 1562 | rh_dbg("ClearPortFeature: power\n"); |
| 1563 | break; |
| 1564 | |
| 1565 | case USB_PORT_FEAT_C_ENABLE: |
| 1566 | rh_dbg("ClearPortFeature: c_enable\n"); |
| 1567 | goto clear; |
| 1568 | case USB_PORT_FEAT_C_SUSPEND: |
| 1569 | rh_dbg("ClearPortFeature: c_suspend\n"); |
| 1570 | goto clear; |
| 1571 | case USB_PORT_FEAT_C_CONNECTION: |
| 1572 | rh_dbg("ClearPortFeature: c_connection\n"); |
| 1573 | goto clear; |
| 1574 | case USB_PORT_FEAT_C_OVER_CURRENT: |
| 1575 | rh_dbg("ClearPortFeature: c_over_current\n"); |
| 1576 | goto clear; |
| 1577 | case USB_PORT_FEAT_C_RESET: |
| 1578 | rh_dbg("ClearPortFeature: c_reset\n"); |
| 1579 | goto clear; |
| 1580 | clear: |
| 1581 | rh.wPortChange[bPort] &= ~(1 << (wFeature - 16)); |
| 1582 | break; |
| 1583 | default: |
| 1584 | rh_dbg("ClearPortFeature: unknown feature\n"); |
| 1585 | return -1; |
| 1586 | } |
| 1587 | return 0; |
| 1588 | } |
| 1589 | |
| 1590 | |
| 1591 | #ifdef CONFIG_PM |
| 1592 | /* Handle a suspend request for the root hub (called from hcd_driver) */ |
| 1593 | static int rh_suspend_request(struct usb_hcd *hcd) |
| 1594 | { |
| 1595 | return 0; /* no-op for now */ |
| 1596 | } |
| 1597 | |
| 1598 | /* Handle a resume request for the root hub (called from hcd_driver) */ |
| 1599 | static int rh_resume_request(struct usb_hcd *hcd) |
| 1600 | { |
| 1601 | return 0; /* no-op for now */ |
| 1602 | } |
| 1603 | #endif /* CONFIG_PM */ |
| 1604 | |
| 1605 | |
| 1606 | |
| 1607 | /* Wrapper function for workaround port disable registers in USB controller */ |
| 1608 | static void rh_disable_port(unsigned int port) { |
| 1609 | volatile int timeout = 10000; |
| 1610 | volatile char* usb_portx_disable; |
| 1611 | switch(port) { |
| 1612 | case 0: |
| 1613 | usb_portx_disable = R_USB_PORT1_DISABLE; |
| 1614 | break; |
| 1615 | case 1: |
| 1616 | usb_portx_disable = R_USB_PORT2_DISABLE; |
| 1617 | break; |
| 1618 | default: |
| 1619 | /* Invalid port index */ |
| 1620 | return; |
| 1621 | } |
| 1622 | /* Set disable flag in special register */ |
| 1623 | *usb_portx_disable = IO_STATE(R_USB_PORT1_DISABLE, disable, yes); |
| 1624 | /* Wait until not enabled anymore */ |
| 1625 | while((rh.wPortStatusPrev[port] & |
| 1626 | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes)) && |
| 1627 | (timeout-- > 0)); |
| 1628 | |
| 1629 | /* clear disable flag in special register */ |
| 1630 | *usb_portx_disable = IO_STATE(R_USB_PORT1_DISABLE, disable, no); |
| 1631 | rh_info("Physical port %d disabled\n", port+1); |
| 1632 | } |
| 1633 | |
| 1634 | |
| 1635 | /******************************************************************/ |
| 1636 | /* Transfer Controller (TC) functions */ |
| 1637 | /******************************************************************/ |
| 1638 | |
| 1639 | /* FIXME: Should RX_BUF_SIZE be a config option, or maybe we should adjust it |
| 1640 | dynamically? |
| 1641 | To adjust it dynamically we would have to get an interrupt when we reach |
| 1642 | the end of the rx descriptor list, or when we get close to the end, and |
| 1643 | then allocate more descriptors. */ |
| 1644 | #define NBR_OF_RX_DESC 512 |
| 1645 | #define RX_DESC_BUF_SIZE 1024 |
| 1646 | #define RX_BUF_SIZE (NBR_OF_RX_DESC * RX_DESC_BUF_SIZE) |
| 1647 | |
| 1648 | |
| 1649 | /* Local variables for Transfer Controller */ |
| 1650 | /* --------------------------------------- */ |
| 1651 | |
| 1652 | /* This is a circular (double-linked) list of the active urbs for each epid. |
| 1653 | The head is never removed, and new urbs are linked onto the list as |
| 1654 | urb_entry_t elements. Don't reference urb_list directly; use the wrapper |
| 1655 | functions instead (which includes spin_locks) */ |
| 1656 | static struct list_head urb_list[NBR_OF_EPIDS]; |
| 1657 | |
| 1658 | /* Read about the need and usage of this lock in submit_ctrl_urb. */ |
| 1659 | /* Lock for URB lists for each EPID */ |
| 1660 | static spinlock_t urb_list_lock; |
| 1661 | |
| 1662 | /* Lock for EPID array register (R_USB_EPT_x) in Etrax */ |
| 1663 | static spinlock_t etrax_epid_lock; |
| 1664 | |
| 1665 | /* Lock for dma8 sub0 handling */ |
| 1666 | static spinlock_t etrax_dma8_sub0_lock; |
| 1667 | |
| 1668 | /* DMA IN cache bug. Align the DMA IN buffers to 32 bytes, i.e. a cache line. |
| 1669 | Since RX_DESC_BUF_SIZE is 1024 is a multiple of 32, all rx buffers will be |
| 1670 | cache aligned. */ |
| 1671 | static volatile unsigned char RxBuf[RX_BUF_SIZE] __attribute__ ((aligned (32))); |
| 1672 | static volatile struct USB_IN_Desc RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned (4))); |
| 1673 | |
| 1674 | /* Pointers into RxDescList. */ |
| 1675 | static volatile struct USB_IN_Desc *myNextRxDesc; |
| 1676 | static volatile struct USB_IN_Desc *myLastRxDesc; |
| 1677 | |
| 1678 | /* A zout transfer makes a memory access at the address of its buf pointer, |
| 1679 | which means that setting this buf pointer to 0 will cause an access to the |
| 1680 | flash. In addition to this, setting sw_len to 0 results in a 16/32 bytes |
| 1681 | (depending on DMA burst size) transfer. |
| 1682 | Instead, we set it to 1, and point it to this buffer. */ |
| 1683 | static int zout_buffer[4] __attribute__ ((aligned (4))); |
| 1684 | |
| 1685 | /* Cache for allocating new EP and SB descriptors. */ |
| 1686 | static struct kmem_cache *usb_desc_cache; |
| 1687 | |
| 1688 | /* Cache for the data allocated in the isoc descr top half. */ |
| 1689 | static struct kmem_cache *isoc_compl_cache; |
| 1690 | |
| 1691 | /* Cache for the data allocated when delayed finishing of URBs */ |
| 1692 | static struct kmem_cache *later_data_cache; |
| 1693 | |
| 1694 | |
| 1695 | /* Counter to keep track of how many Isoc EP we have sat up. Used to enable |
| 1696 | and disable iso_eof interrupt. We only need these interrupts when we have |
| 1697 | Isoc data endpoints (consumes CPU cycles). |
| 1698 | FIXME: This could be more fine granular, so this interrupt is only enabled |
| 1699 | when we have a In Isoc URB not URB_ISO_ASAP flaged queued. */ |
| 1700 | static int isoc_epid_counter; |
| 1701 | |
| 1702 | /* Protecting wrapper functions for R_USB_EPT_x */ |
| 1703 | /* -------------------------------------------- */ |
| 1704 | static inline void etrax_epid_set(__u8 index, __u32 data) { |
| 1705 | unsigned long flags; |
| 1706 | spin_lock_irqsave(&etrax_epid_lock, flags); |
| 1707 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, index); |
| 1708 | nop(); |
| 1709 | *R_USB_EPT_DATA = data; |
| 1710 | spin_unlock_irqrestore(&etrax_epid_lock, flags); |
| 1711 | } |
| 1712 | |
| 1713 | static inline void etrax_epid_clear_error(__u8 index) { |
| 1714 | unsigned long flags; |
| 1715 | spin_lock_irqsave(&etrax_epid_lock, flags); |
| 1716 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, index); |
| 1717 | nop(); |
| 1718 | *R_USB_EPT_DATA &= |
| 1719 | ~(IO_MASK(R_USB_EPT_DATA, error_count_in) | |
| 1720 | IO_MASK(R_USB_EPT_DATA, error_count_out) | |
| 1721 | IO_MASK(R_USB_EPT_DATA, error_code)); |
| 1722 | spin_unlock_irqrestore(&etrax_epid_lock, flags); |
| 1723 | } |
| 1724 | |
| 1725 | static inline void etrax_epid_set_toggle(__u8 index, __u8 dirout, |
| 1726 | __u8 toggle) { |
| 1727 | unsigned long flags; |
| 1728 | spin_lock_irqsave(&etrax_epid_lock, flags); |
| 1729 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, index); |
| 1730 | nop(); |
| 1731 | if(dirout) { |
| 1732 | *R_USB_EPT_DATA &= ~IO_MASK(R_USB_EPT_DATA, t_out); |
| 1733 | *R_USB_EPT_DATA |= IO_FIELD(R_USB_EPT_DATA, t_out, toggle); |
| 1734 | } else { |
| 1735 | *R_USB_EPT_DATA &= ~IO_MASK(R_USB_EPT_DATA, t_in); |
| 1736 | *R_USB_EPT_DATA |= IO_FIELD(R_USB_EPT_DATA, t_in, toggle); |
| 1737 | } |
| 1738 | spin_unlock_irqrestore(&etrax_epid_lock, flags); |
| 1739 | } |
| 1740 | |
| 1741 | static inline __u8 etrax_epid_get_toggle(__u8 index, __u8 dirout) { |
| 1742 | unsigned long flags; |
| 1743 | __u8 toggle; |
| 1744 | spin_lock_irqsave(&etrax_epid_lock, flags); |
| 1745 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, index); |
| 1746 | nop(); |
| 1747 | if (dirout) { |
| 1748 | toggle = IO_EXTRACT(R_USB_EPT_DATA, t_out, *R_USB_EPT_DATA); |
| 1749 | } else { |
| 1750 | toggle = IO_EXTRACT(R_USB_EPT_DATA, t_in, *R_USB_EPT_DATA); |
| 1751 | } |
| 1752 | spin_unlock_irqrestore(&etrax_epid_lock, flags); |
| 1753 | return toggle; |
| 1754 | } |
| 1755 | |
| 1756 | |
| 1757 | static inline __u32 etrax_epid_get(__u8 index) { |
| 1758 | unsigned long flags; |
| 1759 | __u32 data; |
| 1760 | spin_lock_irqsave(&etrax_epid_lock, flags); |
| 1761 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, index); |
| 1762 | nop(); |
| 1763 | data = *R_USB_EPT_DATA; |
| 1764 | spin_unlock_irqrestore(&etrax_epid_lock, flags); |
| 1765 | return data; |
| 1766 | } |
| 1767 | |
| 1768 | |
| 1769 | |
| 1770 | |
| 1771 | /* Main functions for Transfer Controller */ |
| 1772 | /* -------------------------------------- */ |
| 1773 | |
| 1774 | /* Init structs, memories and lists used by Transfer Controller */ |
| 1775 | int tc_init(struct usb_hcd *hcd) { |
| 1776 | int i; |
| 1777 | /* Clear software state info for all epids */ |
| 1778 | memset(epid_state, 0, sizeof(struct etrax_epid) * NBR_OF_EPIDS); |
| 1779 | |
| 1780 | /* Set Invalid and Dummy as being in use and disabled */ |
| 1781 | epid_state[INVALID_EPID].inuse = 1; |
| 1782 | epid_state[DUMMY_EPID].inuse = 1; |
| 1783 | epid_state[INVALID_EPID].disabled = 1; |
| 1784 | epid_state[DUMMY_EPID].disabled = 1; |
| 1785 | |
| 1786 | /* Clear counter for how many Isoc epids we have sat up */ |
| 1787 | isoc_epid_counter = 0; |
| 1788 | |
| 1789 | /* Initialize the urb list by initiating a head for each list. |
| 1790 | Also reset list hodling active URB for each epid */ |
| 1791 | for (i = 0; i < NBR_OF_EPIDS; i++) { |
| 1792 | INIT_LIST_HEAD(&urb_list[i]); |
| 1793 | activeUrbList[i] = NULL; |
| 1794 | } |
| 1795 | |
| 1796 | /* Init lock for URB lists */ |
| 1797 | spin_lock_init(&urb_list_lock); |
| 1798 | /* Init lock for Etrax R_USB_EPT register */ |
| 1799 | spin_lock_init(&etrax_epid_lock); |
| 1800 | /* Init lock for Etrax dma8 sub0 handling */ |
| 1801 | spin_lock_init(&etrax_dma8_sub0_lock); |
| 1802 | |
| 1803 | /* We use kmem_cache_* to make sure that all DMA desc. are dword aligned */ |
| 1804 | |
| 1805 | /* Note that we specify sizeof(struct USB_EP_Desc) as the size, but also |
| 1806 | allocate SB descriptors from this cache. This is ok since |
| 1807 | sizeof(struct USB_EP_Desc) == sizeof(struct USB_SB_Desc). */ |
| 1808 | usb_desc_cache = kmem_cache_create("usb_desc_cache", |
| 1809 | sizeof(struct USB_EP_Desc), 0, |
| 1810 | SLAB_HWCACHE_ALIGN, 0); |
| 1811 | if(usb_desc_cache == NULL) { |
| 1812 | return -ENOMEM; |
| 1813 | } |
| 1814 | |
| 1815 | /* Create slab cache for speedy allocation of memory for isoc bottom-half |
| 1816 | interrupt handling */ |
| 1817 | isoc_compl_cache = |
| 1818 | kmem_cache_create("isoc_compl_cache", |
| 1819 | sizeof(struct crisv10_isoc_complete_data), |
| 1820 | 0, SLAB_HWCACHE_ALIGN, 0); |
| 1821 | if(isoc_compl_cache == NULL) { |
| 1822 | return -ENOMEM; |
| 1823 | } |
| 1824 | |
| 1825 | /* Create slab cache for speedy allocation of memory for later URB finish |
| 1826 | struct */ |
| 1827 | later_data_cache = |
| 1828 | kmem_cache_create("later_data_cache", |
| 1829 | sizeof(struct urb_later_data), |
| 1830 | 0, SLAB_HWCACHE_ALIGN, 0); |
| 1831 | if(later_data_cache == NULL) { |
| 1832 | return -ENOMEM; |
| 1833 | } |
| 1834 | |
| 1835 | |
| 1836 | /* Initiate the bulk start timer. */ |
| 1837 | init_timer(&bulk_start_timer); |
| 1838 | bulk_start_timer.expires = jiffies + BULK_START_TIMER_INTERVAL; |
| 1839 | bulk_start_timer.function = tc_bulk_start_timer_func; |
| 1840 | add_timer(&bulk_start_timer); |
| 1841 | |
| 1842 | |
| 1843 | /* Initiate the bulk eot timer. */ |
| 1844 | init_timer(&bulk_eot_timer); |
| 1845 | bulk_eot_timer.expires = jiffies + BULK_EOT_TIMER_INTERVAL; |
| 1846 | bulk_eot_timer.function = tc_bulk_eot_timer_func; |
| 1847 | bulk_eot_timer.data = (unsigned long)hcd; |
| 1848 | add_timer(&bulk_eot_timer); |
| 1849 | |
| 1850 | return 0; |
| 1851 | } |
| 1852 | |
| 1853 | /* Uninitialize all resources used by Transfer Controller */ |
| 1854 | void tc_destroy(void) { |
| 1855 | |
| 1856 | /* Destroy all slab cache */ |
| 1857 | kmem_cache_destroy(usb_desc_cache); |
| 1858 | kmem_cache_destroy(isoc_compl_cache); |
| 1859 | kmem_cache_destroy(later_data_cache); |
| 1860 | |
| 1861 | /* Remove timers */ |
| 1862 | del_timer(&bulk_start_timer); |
| 1863 | del_timer(&bulk_eot_timer); |
| 1864 | } |
| 1865 | |
| 1866 | static void restart_dma8_sub0(void) { |
| 1867 | unsigned long flags; |
| 1868 | spin_lock_irqsave(&etrax_dma8_sub0_lock, flags); |
| 1869 | /* Verify that the dma is not running */ |
| 1870 | if ((*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd)) == 0) { |
| 1871 | struct USB_EP_Desc *ep = (struct USB_EP_Desc *)phys_to_virt(*R_DMA_CH8_SUB0_EP); |
| 1872 | while (DUMMY_EPID == IO_EXTRACT(USB_EP_command, epid, ep->command)) { |
| 1873 | ep = (struct USB_EP_Desc *)phys_to_virt(ep->next); |
| 1874 | } |
| 1875 | /* Advance the DMA to the next EP descriptor that is not a DUMMY_EPID. */ |
| 1876 | *R_DMA_CH8_SUB0_EP = virt_to_phys(ep); |
| 1877 | /* Restart the DMA */ |
| 1878 | *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); |
| 1879 | } |
| 1880 | spin_unlock_irqrestore(&etrax_dma8_sub0_lock, flags); |
| 1881 | } |
| 1882 | |
| 1883 | /* queue an URB with the transfer controller (called from hcd_driver) */ |
| 1884 | static int tc_urb_enqueue(struct usb_hcd *hcd, |
| 1885 | struct urb *urb, |
| 1886 | gfp_t mem_flags) { |
| 1887 | int epid; |
| 1888 | int retval; |
| 1889 | int bustime = 0; |
| 1890 | int maxpacket; |
| 1891 | unsigned long flags; |
| 1892 | struct crisv10_urb_priv *urb_priv; |
| 1893 | struct crisv10_hcd* crisv10_hcd = hcd_to_crisv10_hcd(hcd); |
| 1894 | DBFENTER; |
| 1895 | |
| 1896 | if(!(crisv10_hcd->running)) { |
| 1897 | /* The USB Controller is not running, probably because no device is |
| 1898 | attached. No idea to enqueue URBs then */ |
| 1899 | tc_warn("Rejected enqueueing of URB:0x%x because no dev attached\n", |
| 1900 | (unsigned int)urb); |
| 1901 | return -ENOENT; |
| 1902 | } |
| 1903 | |
| 1904 | maxpacket = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); |
| 1905 | /* Special case check for In Isoc transfers. Specification states that each |
| 1906 | In Isoc transfer consists of one packet and therefore it should fit into |
| 1907 | the transfer-buffer of an URB. |
| 1908 | We do the check here to be sure (an invalid scenario can be produced with |
| 1909 | parameters to the usbtest suite) */ |
| 1910 | if(usb_pipeisoc(urb->pipe) && usb_pipein(urb->pipe) && |
| 1911 | (urb->transfer_buffer_length < maxpacket)) { |
| 1912 | tc_err("Submit In Isoc URB with buffer length:%d to pipe with maxpacketlen: %d\n", urb->transfer_buffer_length, maxpacket); |
| 1913 | return -EMSGSIZE; |
| 1914 | } |
| 1915 | |
| 1916 | /* Check if there is a epid for URBs destination, if not this function |
| 1917 | set up one. */ |
| 1918 | epid = tc_setup_epid(urb->ep, urb, mem_flags); |
| 1919 | if (epid < 0) { |
| 1920 | tc_err("Failed setup epid:%d for URB:0x%x\n", epid, (unsigned int)urb); |
| 1921 | DBFEXIT; |
| 1922 | return -ENOMEM; |
| 1923 | } |
| 1924 | |
| 1925 | if(urb == activeUrbList[epid]) { |
| 1926 | tc_err("Resubmition of allready active URB:0x%x\n", (unsigned int)urb); |
| 1927 | return -ENXIO; |
| 1928 | } |
| 1929 | |
| 1930 | if(urb_list_entry(urb, epid)) { |
| 1931 | tc_err("Resubmition of allready queued URB:0x%x\n", (unsigned int)urb); |
| 1932 | return -ENXIO; |
| 1933 | } |
| 1934 | |
| 1935 | /* If we actively have flaged endpoint as disabled then refuse submition */ |
| 1936 | if(epid_state[epid].disabled) { |
| 1937 | return -ENOENT; |
| 1938 | } |
| 1939 | |
| 1940 | /* Allocate and init HC-private data for URB */ |
| 1941 | if(urb_priv_create(hcd, urb, epid, mem_flags) != 0) { |
| 1942 | DBFEXIT; |
| 1943 | return -ENOMEM; |
| 1944 | } |
| 1945 | urb_priv = urb->hcpriv; |
| 1946 | |
| 1947 | /* Check if there is enough bandwidth for periodic transfer */ |
| 1948 | if(usb_pipeint(urb->pipe) || usb_pipeisoc(urb->pipe)) { |
| 1949 | /* only check (and later claim) if not already claimed */ |
| 1950 | if (urb_priv->bandwidth == 0) { |
| 1951 | bustime = crisv10_usb_check_bandwidth(urb->dev, urb); |
| 1952 | if (bustime < 0) { |
| 1953 | tc_err("Not enough periodic bandwidth\n"); |
| 1954 | urb_priv_free(hcd, urb); |
| 1955 | DBFEXIT; |
| 1956 | return -ENOSPC; |
| 1957 | } |
| 1958 | } |
| 1959 | } |
| 1960 | |
| 1961 | tc_dbg("Enqueue URB:0x%x[%d] epid:%d (%s) bufflen:%d\n", |
| 1962 | (unsigned int)urb, urb_priv->urb_num, epid, |
| 1963 | pipe_to_str(urb->pipe), urb->transfer_buffer_length); |
| 1964 | |
| 1965 | /* Create and link SBs required for this URB */ |
| 1966 | retval = create_sb_for_urb(urb, mem_flags); |
| 1967 | if(retval != 0) { |
| 1968 | tc_err("Failed to create SBs for URB:0x%x[%d]\n", (unsigned int)urb, |
| 1969 | urb_priv->urb_num); |
| 1970 | urb_priv_free(hcd, urb); |
| 1971 | DBFEXIT; |
| 1972 | return retval; |
| 1973 | } |
| 1974 | |
| 1975 | /* Init intr EP pool if this URB is a INTR transfer. This pool is later |
| 1976 | used when inserting EPs in the TxIntrEPList. We do the alloc here |
| 1977 | so we can't run out of memory later */ |
| 1978 | if(usb_pipeint(urb->pipe)) { |
| 1979 | retval = init_intr_urb(urb, mem_flags); |
| 1980 | if(retval != 0) { |
| 1981 | tc_warn("Failed to init Intr URB\n"); |
| 1982 | urb_priv_free(hcd, urb); |
| 1983 | DBFEXIT; |
| 1984 | return retval; |
| 1985 | } |
| 1986 | } |
| 1987 | |
| 1988 | /* Disable other access when inserting USB */ |
| 1989 | local_irq_save(flags); |
| 1990 | |
| 1991 | /* Claim bandwidth, if needed */ |
| 1992 | if(bustime) { |
| 1993 | crisv10_usb_claim_bandwidth(urb->dev, |
| 1994 | urb, |
| 1995 | bustime, |
| 1996 | (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)); |
| 1997 | } |
| 1998 | |
| 1999 | /* Add URB to EP queue */ |
| 2000 | urb_list_add(urb, epid, mem_flags); |
| 2001 | |
| 2002 | if(usb_pipeisoc(urb->pipe)) { |
| 2003 | /* Special processing of Isoc URBs. */ |
| 2004 | tc_dma_process_isoc_urb(urb); |
| 2005 | } else { |
| 2006 | /* Process EP queue for rest of the URB types (Bulk, Ctrl, Intr) */ |
| 2007 | tc_dma_process_queue(epid); |
| 2008 | } |
| 2009 | |
| 2010 | local_irq_restore(flags); |
| 2011 | |
| 2012 | DBFEXIT; |
| 2013 | return 0; |
| 2014 | } |
| 2015 | |
| 2016 | /* remove an URB from the transfer controller queues (called from hcd_driver)*/ |
| 2017 | static int tc_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { |
| 2018 | struct crisv10_urb_priv *urb_priv; |
| 2019 | unsigned long flags; |
| 2020 | int epid; |
| 2021 | |
| 2022 | DBFENTER; |
| 2023 | /* Disable interrupts here since a descriptor interrupt for the isoc epid |
| 2024 | will modify the sb list. This could possibly be done more granular, but |
| 2025 | urb_dequeue should not be used frequently anyway. |
| 2026 | */ |
| 2027 | local_irq_save(flags); |
| 2028 | |
| 2029 | urb->status = status; |
| 2030 | urb_priv = urb->hcpriv; |
| 2031 | |
| 2032 | if (!urb_priv) { |
| 2033 | /* This happens if a device driver calls unlink on an urb that |
| 2034 | was never submitted (lazy driver) or if the urb was completed |
| 2035 | while dequeue was being called. */ |
| 2036 | tc_warn("Dequeing of not enqueued URB:0x%x\n", (unsigned int)urb); |
| 2037 | local_irq_restore(flags); |
| 2038 | return 0; |
| 2039 | } |
| 2040 | epid = urb_priv->epid; |
| 2041 | |
| 2042 | tc_warn("Dequeing %s URB:0x%x[%d] (%s %s epid:%d) status:%d %s\n", |
| 2043 | (urb == activeUrbList[epid]) ? "active" : "queued", |
| 2044 | (unsigned int)urb, urb_priv->urb_num, str_dir(urb->pipe), |
| 2045 | str_type(urb->pipe), epid, urb->status, |
| 2046 | (urb_priv->later_data) ? "later-sched" : ""); |
| 2047 | |
| 2048 | /* For Bulk, Ctrl and Intr are only one URB active at a time. So any URB |
| 2049 | that isn't active can be dequeued by just removing it from the queue */ |
| 2050 | if(usb_pipebulk(urb->pipe) || usb_pipecontrol(urb->pipe) || |
| 2051 | usb_pipeint(urb->pipe)) { |
| 2052 | |
| 2053 | /* Check if URB haven't gone further than the queue */ |
| 2054 | if(urb != activeUrbList[epid]) { |
| 2055 | ASSERT(urb_priv->later_data == NULL); |
| 2056 | tc_warn("Dequeing URB:0x%x[%d] (%s %s epid:%d) from queue" |
| 2057 | " (not active)\n", (unsigned int)urb, urb_priv->urb_num, |
| 2058 | str_dir(urb->pipe), str_type(urb->pipe), epid); |
| 2059 | |
| 2060 | /* Finish the URB with error status from USB core */ |
| 2061 | tc_finish_urb(hcd, urb, urb->status); |
| 2062 | local_irq_restore(flags); |
| 2063 | return 0; |
| 2064 | } |
| 2065 | } |
| 2066 | |
| 2067 | /* Set URB status to Unlink for handling when interrupt comes. */ |
| 2068 | urb_priv->urb_state = UNLINK; |
| 2069 | |
| 2070 | /* Differentiate dequeing of Bulk and Ctrl from Isoc and Intr */ |
| 2071 | switch(usb_pipetype(urb->pipe)) { |
| 2072 | case PIPE_BULK: |
| 2073 | /* Check if EP still is enabled */ |
| 2074 | if (TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| 2075 | /* The EP was enabled, disable it. */ |
| 2076 | TxBulkEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); |
| 2077 | } |
| 2078 | /* Kicking dummy list out of the party. */ |
| 2079 | TxBulkEPList[epid].next = virt_to_phys(&TxBulkEPList[(epid + 1) % NBR_OF_EPIDS]); |
| 2080 | break; |
| 2081 | case PIPE_CONTROL: |
| 2082 | /* Check if EP still is enabled */ |
| 2083 | if (TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| 2084 | /* The EP was enabled, disable it. */ |
| 2085 | TxCtrlEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); |
| 2086 | } |
| 2087 | break; |
| 2088 | case PIPE_ISOCHRONOUS: |
| 2089 | /* Disabling, busy-wait and unlinking of Isoc SBs will be done in |
| 2090 | finish_isoc_urb(). Because there might the case when URB is dequeued |
| 2091 | but there are other valid URBs waiting */ |
| 2092 | |
| 2093 | /* Check if In Isoc EP still is enabled */ |
| 2094 | if (TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| 2095 | /* The EP was enabled, disable it. */ |
| 2096 | TxIsocEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); |
| 2097 | } |
| 2098 | break; |
| 2099 | case PIPE_INTERRUPT: |
| 2100 | /* Special care is taken for interrupt URBs. EPs are unlinked in |
| 2101 | tc_finish_urb */ |
| 2102 | break; |
| 2103 | default: |
| 2104 | break; |
| 2105 | } |
| 2106 | |
| 2107 | /* Asynchronous unlink, finish the URB later from scheduled or other |
| 2108 | event (data finished, error) */ |
| 2109 | tc_finish_urb_later(hcd, urb, urb->status); |
| 2110 | |
| 2111 | local_irq_restore(flags); |
| 2112 | DBFEXIT; |
| 2113 | return 0; |
| 2114 | } |
| 2115 | |
| 2116 | |
| 2117 | static void tc_sync_finish_epid(struct usb_hcd *hcd, int epid) { |
| 2118 | volatile int timeout = 10000; |
| 2119 | struct urb* urb; |
| 2120 | struct crisv10_urb_priv* urb_priv; |
| 2121 | unsigned long flags; |
| 2122 | |
| 2123 | volatile struct USB_EP_Desc *first_ep; /* First EP in the list. */ |
| 2124 | volatile struct USB_EP_Desc *curr_ep; /* Current EP, the iterator. */ |
| 2125 | volatile struct USB_EP_Desc *next_ep; /* The EP after current. */ |
| 2126 | |
| 2127 | int type = epid_state[epid].type; |
| 2128 | |
| 2129 | /* Setting this flag will cause enqueue() to return -ENOENT for new |
| 2130 | submitions on this endpoint and finish_urb() wont process queue further */ |
| 2131 | epid_state[epid].disabled = 1; |
| 2132 | |
| 2133 | switch(type) { |
| 2134 | case PIPE_BULK: |
| 2135 | /* Check if EP still is enabled */ |
| 2136 | if (TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| 2137 | /* The EP was enabled, disable it. */ |
| 2138 | TxBulkEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); |
| 2139 | tc_warn("sync_finish: Disabling EP for epid:%d\n", epid); |
| 2140 | |
| 2141 | /* Do busy-wait until DMA not using this EP descriptor anymore */ |
| 2142 | while((*R_DMA_CH8_SUB0_EP == |
| 2143 | virt_to_phys(&TxBulkEPList[epid])) && |
| 2144 | (timeout-- > 0)); |
| 2145 | |
| 2146 | } |
| 2147 | break; |
| 2148 | |
| 2149 | case PIPE_CONTROL: |
| 2150 | /* Check if EP still is enabled */ |
| 2151 | if (TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| 2152 | /* The EP was enabled, disable it. */ |
| 2153 | TxCtrlEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); |
| 2154 | tc_warn("sync_finish: Disabling EP for epid:%d\n", epid); |
| 2155 | |
| 2156 | /* Do busy-wait until DMA not using this EP descriptor anymore */ |
| 2157 | while((*R_DMA_CH8_SUB1_EP == |
| 2158 | virt_to_phys(&TxCtrlEPList[epid])) && |
| 2159 | (timeout-- > 0)); |
| 2160 | } |
| 2161 | break; |
| 2162 | |
| 2163 | case PIPE_INTERRUPT: |
| 2164 | local_irq_save(flags); |
| 2165 | /* Disable all Intr EPs belonging to epid */ |
| 2166 | first_ep = &TxIntrEPList[0]; |
| 2167 | curr_ep = first_ep; |
| 2168 | do { |
| 2169 | next_ep = (struct USB_EP_Desc *)phys_to_virt(curr_ep->next); |
| 2170 | if (IO_EXTRACT(USB_EP_command, epid, next_ep->command) == epid) { |
| 2171 | /* Disable EP */ |
| 2172 | next_ep->command &= ~IO_MASK(USB_EP_command, enable); |
| 2173 | } |
| 2174 | curr_ep = phys_to_virt(curr_ep->next); |
| 2175 | } while (curr_ep != first_ep); |
| 2176 | |
| 2177 | local_irq_restore(flags); |
| 2178 | break; |
| 2179 | |
| 2180 | case PIPE_ISOCHRONOUS: |
| 2181 | /* Check if EP still is enabled */ |
| 2182 | if (TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| 2183 | tc_warn("sync_finish: Disabling Isoc EP for epid:%d\n", epid); |
| 2184 | /* The EP was enabled, disable it. */ |
| 2185 | TxIsocEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); |
| 2186 | |
| 2187 | while((*R_DMA_CH8_SUB3_EP == virt_to_phys(&TxIsocEPList[epid])) && |
| 2188 | (timeout-- > 0)); |
| 2189 | } |
| 2190 | break; |
| 2191 | } |
| 2192 | |
| 2193 | local_irq_save(flags); |
| 2194 | |
| 2195 | /* Finish if there is active URB for this endpoint */ |
| 2196 | if(activeUrbList[epid] != NULL) { |
| 2197 | urb = activeUrbList[epid]; |
| 2198 | urb_priv = urb->hcpriv; |
| 2199 | ASSERT(urb_priv); |
| 2200 | tc_warn("Sync finish %s URB:0x%x[%d] (%s %s epid:%d) status:%d %s\n", |
| 2201 | (urb == activeUrbList[epid]) ? "active" : "queued", |
| 2202 | (unsigned int)urb, urb_priv->urb_num, str_dir(urb->pipe), |
| 2203 | str_type(urb->pipe), epid, urb->status, |
| 2204 | (urb_priv->later_data) ? "later-sched" : ""); |
| 2205 | |
| 2206 | tc_finish_urb(hcd, activeUrbList[epid], -ENOENT); |
| 2207 | ASSERT(activeUrbList[epid] == NULL); |
| 2208 | } |
| 2209 | |
| 2210 | /* Finish any queued URBs for this endpoint. There won't be any resubmitions |
| 2211 | because epid_disabled causes enqueue() to fail for this endpoint */ |
| 2212 | while((urb = urb_list_first(epid)) != NULL) { |
| 2213 | urb_priv = urb->hcpriv; |
| 2214 | ASSERT(urb_priv); |
| 2215 | |
| 2216 | tc_warn("Sync finish %s URB:0x%x[%d] (%s %s epid:%d) status:%d %s\n", |
| 2217 | (urb == activeUrbList[epid]) ? "active" : "queued", |
| 2218 | (unsigned int)urb, urb_priv->urb_num, str_dir(urb->pipe), |
| 2219 | str_type(urb->pipe), epid, urb->status, |
| 2220 | (urb_priv->later_data) ? "later-sched" : ""); |
| 2221 | |
| 2222 | tc_finish_urb(hcd, urb, -ENOENT); |
| 2223 | } |
| 2224 | epid_state[epid].disabled = 0; |
| 2225 | local_irq_restore(flags); |
| 2226 | } |
| 2227 | |
| 2228 | /* free resources associated with an endpoint (called from hcd_driver) */ |
| 2229 | static void tc_endpoint_disable(struct usb_hcd *hcd, |
| 2230 | struct usb_host_endpoint *ep) { |
| 2231 | DBFENTER; |
| 2232 | /* Only free epid if it has been allocated. We get two endpoint_disable |
| 2233 | requests for ctrl endpoints so ignore the second one */ |
| 2234 | if(ep->hcpriv != NULL) { |
| 2235 | struct crisv10_ep_priv *ep_priv = ep->hcpriv; |
| 2236 | int epid = ep_priv->epid; |
| 2237 | tc_warn("endpoint_disable ep:0x%x ep-priv:0x%x (%s) (epid:%d freed)\n", |
| 2238 | (unsigned int)ep, (unsigned int)ep->hcpriv, |
| 2239 | endpoint_to_str(&(ep->desc)), epid); |
| 2240 | |
| 2241 | tc_sync_finish_epid(hcd, epid); |
| 2242 | |
| 2243 | ASSERT(activeUrbList[epid] == NULL); |
| 2244 | ASSERT(list_empty(&urb_list[epid])); |
| 2245 | |
| 2246 | tc_free_epid(ep); |
| 2247 | } else { |
| 2248 | tc_dbg("endpoint_disable ep:0x%x ep-priv:0x%x (%s)\n", (unsigned int)ep, |
| 2249 | (unsigned int)ep->hcpriv, endpoint_to_str(&(ep->desc))); |
| 2250 | } |
| 2251 | DBFEXIT; |
| 2252 | } |
| 2253 | |
| 2254 | static void tc_finish_urb_later_proc(struct work_struct* work) { |
| 2255 | unsigned long flags; |
| 2256 | struct urb_later_data* uld; |
| 2257 | |
| 2258 | local_irq_save(flags); |
| 2259 | uld = container_of(work, struct urb_later_data, dws.work); |
| 2260 | if(uld->urb == NULL) { |
| 2261 | late_dbg("Later finish of URB = NULL (allready finished)\n"); |
| 2262 | } else { |
| 2263 | struct crisv10_urb_priv* urb_priv = uld->urb->hcpriv; |
| 2264 | ASSERT(urb_priv); |
| 2265 | if(urb_priv->urb_num == uld->urb_num) { |
| 2266 | late_dbg("Later finish of URB:0x%x[%d]\n", (unsigned int)(uld->urb), |
| 2267 | urb_priv->urb_num); |
| 2268 | if(uld->status != uld->urb->status) { |
| 2269 | errno_dbg("Later-finish URB with status:%d, later-status:%d\n", |
| 2270 | uld->urb->status, uld->status); |
| 2271 | } |
| 2272 | if(uld != urb_priv->later_data) { |
| 2273 | panic("Scheduled uld not same as URBs uld\n"); |
| 2274 | } |
| 2275 | tc_finish_urb(uld->hcd, uld->urb, uld->status); |
| 2276 | } else { |
| 2277 | late_warn("Ignoring later finish of URB:0x%x[%d]" |
| 2278 | ", urb_num doesn't match current URB:0x%x[%d]", |
| 2279 | (unsigned int)(uld->urb), uld->urb_num, |
| 2280 | (unsigned int)(uld->urb), urb_priv->urb_num); |
| 2281 | } |
| 2282 | } |
| 2283 | local_irq_restore(flags); |
| 2284 | kmem_cache_free(later_data_cache, uld); |
| 2285 | } |
| 2286 | |
| 2287 | static void tc_finish_urb_later(struct usb_hcd *hcd, struct urb *urb, |
| 2288 | int status) { |
| 2289 | struct crisv10_urb_priv *urb_priv = urb->hcpriv; |
| 2290 | struct urb_later_data* uld; |
| 2291 | |
| 2292 | ASSERT(urb_priv); |
| 2293 | |
| 2294 | if(urb_priv->later_data != NULL) { |
| 2295 | /* Later-finish allready scheduled for this URB, just update status to |
| 2296 | return when finishing later */ |
| 2297 | errno_dbg("Later-finish schedule change URB status:%d with new" |
| 2298 | " status:%d\n", urb_priv->later_data->status, status); |
| 2299 | |
| 2300 | urb_priv->later_data->status = status; |
| 2301 | return; |
| 2302 | } |
| 2303 | |
| 2304 | uld = kmem_cache_alloc(later_data_cache, GFP_ATOMIC); |
| 2305 | ASSERT(uld); |
| 2306 | |
| 2307 | uld->hcd = hcd; |
| 2308 | uld->urb = urb; |
| 2309 | uld->urb_num = urb_priv->urb_num; |
| 2310 | uld->status = status; |
| 2311 | |
| 2312 | INIT_DELAYED_WORK(&uld->dws, tc_finish_urb_later_proc); |
| 2313 | urb_priv->later_data = uld; |
| 2314 | |
| 2315 | /* Schedule the finishing of the URB to happen later */ |
| 2316 | schedule_delayed_work(&uld->dws, LATER_TIMER_DELAY); |
| 2317 | } |
| 2318 | |
| 2319 | static void tc_finish_isoc_urb(struct usb_hcd *hcd, struct urb *urb, |
| 2320 | int status); |
| 2321 | |
| 2322 | static void tc_finish_urb(struct usb_hcd *hcd, struct urb *urb, int status) { |
| 2323 | struct crisv10_hcd* crisv10_hcd = hcd_to_crisv10_hcd(hcd); |
| 2324 | struct crisv10_urb_priv *urb_priv = urb->hcpriv; |
| 2325 | int epid; |
| 2326 | char toggle; |
| 2327 | int urb_num; |
| 2328 | |
| 2329 | DBFENTER; |
| 2330 | ASSERT(urb_priv != NULL); |
| 2331 | epid = urb_priv->epid; |
| 2332 | urb_num = urb_priv->urb_num; |
| 2333 | |
| 2334 | if(urb != activeUrbList[epid]) { |
| 2335 | if(urb_list_entry(urb, epid)) { |
| 2336 | /* Remove this URB from the list. Only happens when URB are finished |
| 2337 | before having been processed (dequeing) */ |
| 2338 | urb_list_del(urb, epid); |
| 2339 | } else { |
| 2340 | tc_warn("Finishing of URB:0x%x[%d] neither active or in queue for" |
| 2341 | " epid:%d\n", (unsigned int)urb, urb_num, epid); |
| 2342 | } |
| 2343 | } |
| 2344 | |
| 2345 | /* Cancel any pending later-finish of this URB */ |
| 2346 | if(urb_priv->later_data) { |
| 2347 | urb_priv->later_data->urb = NULL; |
| 2348 | } |
| 2349 | |
| 2350 | /* For an IN pipe, we always set the actual length, regardless of whether |
| 2351 | there was an error or not (which means the device driver can use the data |
| 2352 | if it wants to). */ |
| 2353 | if(usb_pipein(urb->pipe)) { |
| 2354 | urb->actual_length = urb_priv->rx_offset; |
| 2355 | } else { |
| 2356 | /* Set actual_length for OUT urbs also; the USB mass storage driver seems |
| 2357 | to want that. */ |
| 2358 | if (status == 0 && urb->status == -EINPROGRESS) { |
| 2359 | urb->actual_length = urb->transfer_buffer_length; |
| 2360 | } else { |
| 2361 | /* We wouldn't know of any partial writes if there was an error. */ |
| 2362 | urb->actual_length = 0; |
| 2363 | } |
| 2364 | } |
| 2365 | |
| 2366 | |
| 2367 | /* URB status mangling */ |
| 2368 | if(urb->status == -EINPROGRESS) { |
| 2369 | /* The USB core hasn't changed the status, let's set our finish status */ |
| 2370 | urb->status = status; |
| 2371 | |
| 2372 | if ((status == 0) && (urb->transfer_flags & URB_SHORT_NOT_OK) && |
| 2373 | usb_pipein(urb->pipe) && |
| 2374 | (urb->actual_length != urb->transfer_buffer_length)) { |
| 2375 | /* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's |
| 2376 | max length) is to be treated as an error. */ |
| 2377 | errno_dbg("Finishing URB:0x%x[%d] with SHORT_NOT_OK flag and short" |
| 2378 | " data:%d\n", (unsigned int)urb, urb_num, |
| 2379 | urb->actual_length); |
| 2380 | urb->status = -EREMOTEIO; |
| 2381 | } |
| 2382 | |
| 2383 | if(urb_priv->urb_state == UNLINK) { |
| 2384 | /* URB has been requested to be unlinked asynchronously */ |
| 2385 | urb->status = -ECONNRESET; |
| 2386 | errno_dbg("Fixing unlink status of URB:0x%x[%d] to:%d\n", |
| 2387 | (unsigned int)urb, urb_num, urb->status); |
| 2388 | } |
| 2389 | } else { |
| 2390 | /* The USB Core wants to signal some error via the URB, pass it through */ |
| 2391 | } |
| 2392 | |
| 2393 | /* use completely different finish function for Isoc URBs */ |
| 2394 | if(usb_pipeisoc(urb->pipe)) { |
| 2395 | tc_finish_isoc_urb(hcd, urb, status); |
| 2396 | return; |
| 2397 | } |
| 2398 | |
| 2399 | /* Do special unlinking of EPs for Intr traffic */ |
| 2400 | if(usb_pipeint(urb->pipe)) { |
| 2401 | tc_dma_unlink_intr_urb(urb); |
| 2402 | } |
| 2403 | |
| 2404 | /* Release allocated bandwidth for periodic transfers */ |
| 2405 | if(usb_pipeint(urb->pipe) || usb_pipeisoc(urb->pipe)) |
| 2406 | crisv10_usb_release_bandwidth(hcd, |
| 2407 | usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS, |
| 2408 | urb_priv->bandwidth); |
| 2409 | |
| 2410 | /* This URB is active on EP */ |
| 2411 | if(urb == activeUrbList[epid]) { |
| 2412 | /* We need to fiddle with the toggle bits because the hardware doesn't do |
| 2413 | it for us. */ |
| 2414 | toggle = etrax_epid_get_toggle(epid, usb_pipeout(urb->pipe)); |
| 2415 | usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), |
| 2416 | usb_pipeout(urb->pipe), toggle); |
| 2417 | |
| 2418 | /* Checks for Ctrl and Bulk EPs */ |
| 2419 | switch(usb_pipetype(urb->pipe)) { |
| 2420 | case PIPE_BULK: |
| 2421 | /* Check so Bulk EP realy is disabled before finishing active URB */ |
| 2422 | ASSERT((TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) == |
| 2423 | IO_STATE(USB_EP_command, enable, no)); |
| 2424 | /* Disable sub-pointer for EP to avoid next tx_interrupt() to |
| 2425 | process Bulk EP. */ |
| 2426 | TxBulkEPList[epid].sub = 0; |
| 2427 | /* No need to wait for the DMA before changing the next pointer. |
| 2428 | The modulo NBR_OF_EPIDS isn't actually necessary, since we will never use |
| 2429 | the last one (INVALID_EPID) for actual traffic. */ |
| 2430 | TxBulkEPList[epid].next = |
| 2431 | virt_to_phys(&TxBulkEPList[(epid + 1) % NBR_OF_EPIDS]); |
| 2432 | break; |
| 2433 | case PIPE_CONTROL: |
| 2434 | /* Check so Ctrl EP realy is disabled before finishing active URB */ |
| 2435 | ASSERT((TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable)) == |
| 2436 | IO_STATE(USB_EP_command, enable, no)); |
| 2437 | /* Disable sub-pointer for EP to avoid next tx_interrupt() to |
| 2438 | process Ctrl EP. */ |
| 2439 | TxCtrlEPList[epid].sub = 0; |
| 2440 | break; |
| 2441 | } |
| 2442 | } |
| 2443 | |
| 2444 | /* Free HC-private URB data*/ |
| 2445 | urb_priv_free(hcd, urb); |
| 2446 | |
| 2447 | if(urb->status) { |
| 2448 | errno_dbg("finish_urb (URB:0x%x[%d] %s %s) (data:%d) status:%d\n", |
| 2449 | (unsigned int)urb, urb_num, str_dir(urb->pipe), |
| 2450 | str_type(urb->pipe), urb->actual_length, urb->status); |
| 2451 | } else { |
| 2452 | tc_dbg("finish_urb (URB:0x%x[%d] %s %s) (data:%d) status:%d\n", |
| 2453 | (unsigned int)urb, urb_num, str_dir(urb->pipe), |
| 2454 | str_type(urb->pipe), urb->actual_length, urb->status); |
| 2455 | } |
| 2456 | |
| 2457 | /* If we just finished an active URB, clear active pointer. */ |
| 2458 | if (urb == activeUrbList[epid]) { |
| 2459 | /* Make URB not active on EP anymore */ |
| 2460 | activeUrbList[epid] = NULL; |
| 2461 | |
| 2462 | if(urb->status == 0) { |
| 2463 | /* URB finished sucessfully, process queue to see if there are any more |
| 2464 | URBs waiting before we call completion function.*/ |
| 2465 | if(crisv10_hcd->running) { |
| 2466 | /* Only process queue if USB controller is running */ |
| 2467 | tc_dma_process_queue(epid); |
| 2468 | } else { |
| 2469 | tc_warn("No processing of queue for epid:%d, USB Controller not" |
| 2470 | " running\n", epid); |
| 2471 | } |
| 2472 | } |
| 2473 | } |
| 2474 | |
| 2475 | /* Hand the URB from HCD to its USB device driver, using its completion |
| 2476 | functions */ |
| 2477 | usb_hcd_giveback_urb (hcd, urb, status); |
| 2478 | |
| 2479 | /* Check the queue once more if the URB returned with error, because we |
| 2480 | didn't do it before the completion function because the specification |
| 2481 | states that the queue should not restart until all it's unlinked |
| 2482 | URBs have been fully retired, with the completion functions run */ |
| 2483 | if(crisv10_hcd->running) { |
| 2484 | /* Only process queue if USB controller is running */ |
| 2485 | tc_dma_process_queue(epid); |
| 2486 | } else { |
| 2487 | tc_warn("No processing of queue for epid:%d, USB Controller not running\n", |
| 2488 | epid); |
| 2489 | } |
| 2490 | |
| 2491 | DBFEXIT; |
| 2492 | } |
| 2493 | |
| 2494 | static void tc_finish_isoc_urb(struct usb_hcd *hcd, struct urb *urb, |
| 2495 | int status) { |
| 2496 | struct crisv10_urb_priv *urb_priv = urb->hcpriv; |
| 2497 | int epid, i; |
| 2498 | volatile int timeout = 10000; |
| 2499 | int bandwidth = 0; |
| 2500 | |
| 2501 | ASSERT(urb_priv); |
| 2502 | epid = urb_priv->epid; |
| 2503 | |
| 2504 | ASSERT(usb_pipeisoc(urb->pipe)); |
| 2505 | |
| 2506 | /* Set that all isoc packets have status and length set before |
| 2507 | completing the urb. */ |
| 2508 | for (i = urb_priv->isoc_packet_counter; i < urb->number_of_packets; i++){ |
| 2509 | urb->iso_frame_desc[i].actual_length = 0; |
| 2510 | urb->iso_frame_desc[i].status = -EPROTO; |
| 2511 | } |
| 2512 | |
| 2513 | /* Check if the URB is currently active (done or error) */ |
| 2514 | if(urb == activeUrbList[epid]) { |
| 2515 | /* Check if there are another In Isoc URB queued for this epid */ |
| 2516 | if (!list_empty(&urb_list[epid])&& !epid_state[epid].disabled) { |
| 2517 | /* Move it from queue to active and mark it started so Isoc transfers |
| 2518 | won't be interrupted. |
| 2519 | All Isoc URBs data transfers are already added to DMA lists so we |
| 2520 | don't have to insert anything in DMA lists here. */ |
| 2521 | activeUrbList[epid] = urb_list_first(epid); |
| 2522 | ((struct crisv10_urb_priv *)(activeUrbList[epid]->hcpriv))->urb_state = |
| 2523 | STARTED; |
| 2524 | urb_list_del(activeUrbList[epid], epid); |
| 2525 | |
| 2526 | if(urb->status) { |
| 2527 | errno_dbg("finish_isoc_urb (URB:0x%x[%d] %s %s) (%d of %d packets)" |
| 2528 | " status:%d, new waiting URB:0x%x[%d]\n", |
| 2529 | (unsigned int)urb, urb_priv->urb_num, str_dir(urb->pipe), |
| 2530 | str_type(urb->pipe), urb_priv->isoc_packet_counter, |
| 2531 | urb->number_of_packets, urb->status, |
| 2532 | (unsigned int)activeUrbList[epid], |
| 2533 | ((struct crisv10_urb_priv *)(activeUrbList[epid]->hcpriv))->urb_num); |
| 2534 | } |
| 2535 | |
| 2536 | } else { /* No other URB queued for this epid */ |
| 2537 | if(urb->status) { |
| 2538 | errno_dbg("finish_isoc_urb (URB:0x%x[%d] %s %s) (%d of %d packets)" |
| 2539 | " status:%d, no new URB waiting\n", |
| 2540 | (unsigned int)urb, urb_priv->urb_num, str_dir(urb->pipe), |
| 2541 | str_type(urb->pipe), urb_priv->isoc_packet_counter, |
| 2542 | urb->number_of_packets, urb->status); |
| 2543 | } |
| 2544 | |
| 2545 | /* Check if EP is still enabled, then shut it down. */ |
| 2546 | if (TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| 2547 | isoc_dbg("Isoc EP enabled for epid:%d, disabling it\n", epid); |
| 2548 | |
| 2549 | /* Should only occur for In Isoc EPs where SB isn't consumed. */ |
| 2550 | ASSERT(usb_pipein(urb->pipe)); |
| 2551 | |
| 2552 | /* Disable it and wait for it to stop */ |
| 2553 | TxIsocEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); |
| 2554 | |
| 2555 | /* Ah, the luxury of busy-wait. */ |
| 2556 | while((*R_DMA_CH8_SUB3_EP == virt_to_phys(&TxIsocEPList[epid])) && |
| 2557 | (timeout-- > 0)); |
| 2558 | } |
| 2559 | |
| 2560 | /* Unlink SB to say that epid is finished. */ |
| 2561 | TxIsocEPList[epid].sub = 0; |
| 2562 | TxIsocEPList[epid].hw_len = 0; |
| 2563 | |
| 2564 | /* No URB active for EP anymore */ |
| 2565 | activeUrbList[epid] = NULL; |
| 2566 | } |
| 2567 | } else { /* Finishing of not active URB (queued up with SBs thought) */ |
| 2568 | isoc_warn("finish_isoc_urb (URB:0x%x %s) (%d of %d packets) status:%d," |
| 2569 | " SB queued but not active\n", |
| 2570 | (unsigned int)urb, str_dir(urb->pipe), |
| 2571 | urb_priv->isoc_packet_counter, urb->number_of_packets, |
| 2572 | urb->status); |
| 2573 | if(usb_pipeout(urb->pipe)) { |
| 2574 | /* Finishing of not yet active Out Isoc URB needs unlinking of SBs. */ |
| 2575 | struct USB_SB_Desc *iter_sb, *prev_sb, *next_sb; |
| 2576 | |
| 2577 | iter_sb = TxIsocEPList[epid].sub ? |
| 2578 | phys_to_virt(TxIsocEPList[epid].sub) : 0; |
| 2579 | prev_sb = 0; |
| 2580 | |
| 2581 | /* SB that is linked before this URBs first SB */ |
| 2582 | while (iter_sb && (iter_sb != urb_priv->first_sb)) { |
| 2583 | prev_sb = iter_sb; |
| 2584 | iter_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0; |
| 2585 | } |
| 2586 | |
| 2587 | if (iter_sb == 0) { |
| 2588 | /* Unlink of the URB currently being transmitted. */ |
| 2589 | prev_sb = 0; |
| 2590 | iter_sb = TxIsocEPList[epid].sub ? phys_to_virt(TxIsocEPList[epid].sub) : 0; |
| 2591 | } |
| 2592 | |
| 2593 | while (iter_sb && (iter_sb != urb_priv->last_sb)) { |
| 2594 | iter_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0; |
| 2595 | } |
| 2596 | |
| 2597 | if (iter_sb) { |
| 2598 | next_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0; |
| 2599 | } else { |
| 2600 | /* This should only happen if the DMA has completed |
| 2601 | processing the SB list for this EP while interrupts |
| 2602 | are disabled. */ |
| 2603 | isoc_dbg("Isoc urb not found, already sent?\n"); |
| 2604 | next_sb = 0; |
| 2605 | } |
| 2606 | if (prev_sb) { |
| 2607 | prev_sb->next = next_sb ? virt_to_phys(next_sb) : 0; |
| 2608 | } else { |
| 2609 | TxIsocEPList[epid].sub = next_sb ? virt_to_phys(next_sb) : 0; |
| 2610 | } |
| 2611 | } |
| 2612 | } |
| 2613 | |
| 2614 | /* Free HC-private URB data*/ |
| 2615 | bandwidth = urb_priv->bandwidth; |
| 2616 | urb_priv_free(hcd, urb); |
| 2617 | |
| 2618 | crisv10_usb_release_bandwidth(hcd, usb_pipeisoc(urb->pipe), bandwidth); |
| 2619 | |
| 2620 | /* Hand the URB from HCD to its USB device driver, using its completion |
| 2621 | functions */ |
| 2622 | usb_hcd_giveback_urb (hcd, urb, status); |
| 2623 | } |
| 2624 | |
| 2625 | static __u32 urb_num = 0; |
| 2626 | |
| 2627 | /* allocate and initialize URB private data */ |
| 2628 | static int urb_priv_create(struct usb_hcd *hcd, struct urb *urb, int epid, |
| 2629 | int mem_flags) { |
| 2630 | struct crisv10_urb_priv *urb_priv; |
| 2631 | |
| 2632 | urb_priv = kmalloc(sizeof *urb_priv, mem_flags); |
| 2633 | if (!urb_priv) |
| 2634 | return -ENOMEM; |
| 2635 | memset(urb_priv, 0, sizeof *urb_priv); |
| 2636 | |
| 2637 | urb_priv->epid = epid; |
| 2638 | urb_priv->urb_state = NOT_STARTED; |
| 2639 | |
| 2640 | urb->hcpriv = urb_priv; |
| 2641 | /* Assign URB a sequence number, and increment counter */ |
| 2642 | urb_priv->urb_num = urb_num; |
| 2643 | urb_num++; |
| 2644 | urb_priv->bandwidth = 0; |
| 2645 | return 0; |
| 2646 | } |
| 2647 | |
| 2648 | /* free URB private data */ |
| 2649 | static void urb_priv_free(struct usb_hcd *hcd, struct urb *urb) { |
| 2650 | int i; |
| 2651 | struct crisv10_urb_priv *urb_priv = urb->hcpriv; |
| 2652 | ASSERT(urb_priv != 0); |
| 2653 | |
| 2654 | /* Check it has any SBs linked that needs to be freed*/ |
| 2655 | if(urb_priv->first_sb != NULL) { |
| 2656 | struct USB_SB_Desc *next_sb, *first_sb, *last_sb; |
| 2657 | int i = 0; |
| 2658 | first_sb = urb_priv->first_sb; |
| 2659 | last_sb = urb_priv->last_sb; |
| 2660 | ASSERT(last_sb); |
| 2661 | while(first_sb != last_sb) { |
| 2662 | next_sb = (struct USB_SB_Desc *)phys_to_virt(first_sb->next); |
| 2663 | kmem_cache_free(usb_desc_cache, first_sb); |
| 2664 | first_sb = next_sb; |
| 2665 | i++; |
| 2666 | } |
| 2667 | kmem_cache_free(usb_desc_cache, last_sb); |
| 2668 | i++; |
| 2669 | } |
| 2670 | |
| 2671 | /* Check if it has any EPs in its Intr pool that also needs to be freed */ |
| 2672 | if(urb_priv->intr_ep_pool_length > 0) { |
| 2673 | for(i = 0; i < urb_priv->intr_ep_pool_length; i++) { |
| 2674 | kfree(urb_priv->intr_ep_pool[i]); |
| 2675 | } |
| 2676 | /* |
| 2677 | tc_dbg("Freed %d EPs from URB:0x%x EP pool\n", |
| 2678 | urb_priv->intr_ep_pool_length, (unsigned int)urb); |
| 2679 | */ |
| 2680 | } |
| 2681 | |
| 2682 | kfree(urb_priv); |
| 2683 | urb->hcpriv = NULL; |
| 2684 | } |
| 2685 | |
| 2686 | static int ep_priv_create(struct usb_host_endpoint *ep, int mem_flags) { |
| 2687 | struct crisv10_ep_priv *ep_priv; |
| 2688 | |
| 2689 | ep_priv = kmalloc(sizeof *ep_priv, mem_flags); |
| 2690 | if (!ep_priv) |
| 2691 | return -ENOMEM; |
| 2692 | memset(ep_priv, 0, sizeof *ep_priv); |
| 2693 | |
| 2694 | ep->hcpriv = ep_priv; |
| 2695 | return 0; |
| 2696 | } |
| 2697 | |
| 2698 | static void ep_priv_free(struct usb_host_endpoint *ep) { |
| 2699 | struct crisv10_ep_priv *ep_priv = ep->hcpriv; |
| 2700 | ASSERT(ep_priv); |
| 2701 | kfree(ep_priv); |
| 2702 | ep->hcpriv = NULL; |
| 2703 | } |
| 2704 | |
| 2705 | /* |
| 2706 | * usb_check_bandwidth(): |
| 2707 | * |
| 2708 | * old_alloc is from host_controller->bandwidth_allocated in microseconds; |
| 2709 | * bustime is from calc_bus_time(), but converted to microseconds. |
| 2710 | * |
| 2711 | * returns <bustime in us> if successful, |
| 2712 | * or -ENOSPC if bandwidth request fails. |
| 2713 | * |
| 2714 | * FIXME: |
| 2715 | * This initial implementation does not use Endpoint.bInterval |
| 2716 | * in managing bandwidth allocation. |
| 2717 | * It probably needs to be expanded to use Endpoint.bInterval. |
| 2718 | * This can be done as a later enhancement (correction). |
| 2719 | * |
| 2720 | * This will also probably require some kind of |
| 2721 | * frame allocation tracking...meaning, for example, |
| 2722 | * that if multiple drivers request interrupts every 10 USB frames, |
| 2723 | * they don't all have to be allocated at |
| 2724 | * frame numbers N, N+10, N+20, etc. Some of them could be at |
| 2725 | * N+11, N+21, N+31, etc., and others at |
| 2726 | * N+12, N+22, N+32, etc. |
| 2727 | * |
| 2728 | * Similarly for isochronous transfers... |
| 2729 | * |
| 2730 | * Individual HCDs can schedule more directly ... this logic |
| 2731 | * is not correct for high speed transfers. |
| 2732 | */ |
| 2733 | static int crisv10_usb_check_bandwidth( |
| 2734 | struct usb_device *dev, |
| 2735 | struct urb *urb) |
| 2736 | { |
| 2737 | unsigned int pipe = urb->pipe; |
| 2738 | long bustime; |
| 2739 | int is_in = usb_pipein (pipe); |
| 2740 | int is_iso = usb_pipeisoc (pipe); |
| 2741 | int old_alloc = dev->bus->bandwidth_allocated; |
| 2742 | int new_alloc; |
| 2743 | |
| 2744 | bustime = NS_TO_US (usb_calc_bus_time (dev->speed, is_in, is_iso, |
| 2745 | usb_maxpacket (dev, pipe, !is_in))); |
| 2746 | if (is_iso) |
| 2747 | bustime /= urb->number_of_packets; |
| 2748 | |
| 2749 | new_alloc = old_alloc + (int) bustime; |
| 2750 | if (new_alloc > FRAME_TIME_MAX_USECS_ALLOC) { |
| 2751 | dev_dbg (&dev->dev, "usb_check_bandwidth FAILED: %d + %ld = %d usec\n", |
| 2752 | old_alloc, bustime, new_alloc); |
| 2753 | bustime = -ENOSPC; /* report error */ |
| 2754 | } |
| 2755 | |
| 2756 | return bustime; |
| 2757 | } |
| 2758 | |
| 2759 | /** |
| 2760 | * usb_claim_bandwidth - records bandwidth for a periodic transfer |
| 2761 | * @dev: source/target of request |
| 2762 | * @urb: request (urb->dev == dev) |
| 2763 | * @bustime: bandwidth consumed, in (average) microseconds per frame |
| 2764 | * @isoc: true iff the request is isochronous |
| 2765 | * |
| 2766 | * HCDs are expected not to overcommit periodic bandwidth, and to record such |
| 2767 | * reservations whenever endpoints are added to the periodic schedule. |
| 2768 | * |
| 2769 | * FIXME averaging per-frame is suboptimal. Better to sum over the HCD's |
| 2770 | * entire periodic schedule ... 32 frames for OHCI, 1024 for UHCI, settable |
| 2771 | * for EHCI (256/512/1024 frames, default 1024) and have the bus expose how |
| 2772 | * large its periodic schedule is. |
| 2773 | */ |
| 2774 | static void crisv10_usb_claim_bandwidth( |
| 2775 | struct usb_device *dev, |
| 2776 | struct urb *urb, int bustime, int isoc) |
| 2777 | { |
| 2778 | dev->bus->bandwidth_allocated += bustime; |
| 2779 | if (isoc) |
| 2780 | dev->bus->bandwidth_isoc_reqs++; |
| 2781 | else |
| 2782 | dev->bus->bandwidth_int_reqs++; |
| 2783 | struct crisv10_urb_priv *urb_priv; |
| 2784 | urb_priv = urb->hcpriv; |
| 2785 | urb_priv->bandwidth = bustime; |
| 2786 | } |
| 2787 | |
| 2788 | /** |
| 2789 | * usb_release_bandwidth - reverses effect of usb_claim_bandwidth() |
| 2790 | * @hcd: host controller |
| 2791 | * @isoc: true iff the request is isochronous |
| 2792 | * @bandwidth: bandwidth returned |
| 2793 | * |
| 2794 | * This records that previously allocated bandwidth has been released. |
| 2795 | * Bandwidth is released when endpoints are removed from the host controller's |
| 2796 | * periodic schedule. |
| 2797 | */ |
| 2798 | static void crisv10_usb_release_bandwidth( |
| 2799 | struct usb_hcd *hcd, |
| 2800 | int isoc, |
| 2801 | int bandwidth) |
| 2802 | { |
| 2803 | hcd_to_bus(hcd)->bandwidth_allocated -= bandwidth; |
| 2804 | if (isoc) |
| 2805 | hcd_to_bus(hcd)->bandwidth_isoc_reqs--; |
| 2806 | else |
| 2807 | hcd_to_bus(hcd)->bandwidth_int_reqs--; |
| 2808 | } |
| 2809 | |
| 2810 | |
| 2811 | /* EPID handling functions, managing EP-list in Etrax through wrappers */ |
| 2812 | /* ------------------------------------------------------------------- */ |
| 2813 | |
| 2814 | /* Sets up a new EPID for an endpoint or returns existing if found */ |
| 2815 | static int tc_setup_epid(struct usb_host_endpoint *ep, struct urb *urb, |
| 2816 | int mem_flags) { |
| 2817 | int epid; |
| 2818 | char devnum, endpoint, out_traffic, slow; |
| 2819 | int maxlen; |
| 2820 | __u32 epid_data; |
| 2821 | struct crisv10_ep_priv *ep_priv = ep->hcpriv; |
| 2822 | |
| 2823 | DBFENTER; |
| 2824 | |
| 2825 | /* Check if a valid epid already is setup for this endpoint */ |
| 2826 | if(ep_priv != NULL) { |
| 2827 | return ep_priv->epid; |
| 2828 | } |
| 2829 | |
| 2830 | /* We must find and initiate a new epid for this urb. */ |
| 2831 | epid = tc_allocate_epid(); |
| 2832 | |
| 2833 | if (epid == -1) { |
| 2834 | /* Failed to allocate a new epid. */ |
| 2835 | DBFEXIT; |
| 2836 | return epid; |
| 2837 | } |
| 2838 | |
| 2839 | /* We now have a new epid to use. Claim it. */ |
| 2840 | epid_state[epid].inuse = 1; |
| 2841 | |
| 2842 | /* Init private data for new endpoint */ |
| 2843 | if(ep_priv_create(ep, mem_flags) != 0) { |
| 2844 | return -ENOMEM; |
| 2845 | } |
| 2846 | ep_priv = ep->hcpriv; |
| 2847 | ep_priv->epid = epid; |
| 2848 | |
| 2849 | devnum = usb_pipedevice(urb->pipe); |
| 2850 | endpoint = usb_pipeendpoint(urb->pipe); |
| 2851 | slow = (urb->dev->speed == USB_SPEED_LOW); |
| 2852 | maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); |
| 2853 | |
| 2854 | if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { |
| 2855 | /* We want both IN and OUT control traffic to be put on the same |
| 2856 | EP/SB list. */ |
| 2857 | out_traffic = 1; |
| 2858 | } else { |
| 2859 | out_traffic = usb_pipeout(urb->pipe); |
| 2860 | } |
| 2861 | |
| 2862 | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| 2863 | epid_data = IO_STATE(R_USB_EPT_DATA_ISO, valid, yes) | |
| 2864 | /* FIXME: Change any to the actual port? */ |
| 2865 | IO_STATE(R_USB_EPT_DATA_ISO, port, any) | |
| 2866 | IO_FIELD(R_USB_EPT_DATA_ISO, max_len, maxlen) | |
| 2867 | IO_FIELD(R_USB_EPT_DATA_ISO, ep, endpoint) | |
| 2868 | IO_FIELD(R_USB_EPT_DATA_ISO, dev, devnum); |
| 2869 | etrax_epid_iso_set(epid, epid_data); |
| 2870 | } else { |
| 2871 | epid_data = IO_STATE(R_USB_EPT_DATA, valid, yes) | |
| 2872 | IO_FIELD(R_USB_EPT_DATA, low_speed, slow) | |
| 2873 | /* FIXME: Change any to the actual port? */ |
| 2874 | IO_STATE(R_USB_EPT_DATA, port, any) | |
| 2875 | IO_FIELD(R_USB_EPT_DATA, max_len, maxlen) | |
| 2876 | IO_FIELD(R_USB_EPT_DATA, ep, endpoint) | |
| 2877 | IO_FIELD(R_USB_EPT_DATA, dev, devnum); |
| 2878 | etrax_epid_set(epid, epid_data); |
| 2879 | } |
| 2880 | |
| 2881 | epid_state[epid].out_traffic = out_traffic; |
| 2882 | epid_state[epid].type = usb_pipetype(urb->pipe); |
| 2883 | |
| 2884 | tc_warn("Setting up ep:0x%x epid:%d (addr:%d endp:%d max_len:%d %s %s %s)\n", |
| 2885 | (unsigned int)ep, epid, devnum, endpoint, maxlen, |
| 2886 | str_type(urb->pipe), out_traffic ? "out" : "in", |
| 2887 | slow ? "low" : "full"); |
| 2888 | |
| 2889 | /* Enable Isoc eof interrupt if we set up the first Isoc epid */ |
| 2890 | if(usb_pipeisoc(urb->pipe)) { |
| 2891 | isoc_epid_counter++; |
| 2892 | if(isoc_epid_counter == 1) { |
| 2893 | isoc_warn("Enabled Isoc eof interrupt\n"); |
| 2894 | *R_USB_IRQ_MASK_SET = IO_STATE(R_USB_IRQ_MASK_SET, iso_eof, set); |
| 2895 | } |
| 2896 | } |
| 2897 | |
| 2898 | DBFEXIT; |
| 2899 | return epid; |
| 2900 | } |
| 2901 | |
| 2902 | static void tc_free_epid(struct usb_host_endpoint *ep) { |
| 2903 | unsigned long flags; |
| 2904 | struct crisv10_ep_priv *ep_priv = ep->hcpriv; |
| 2905 | int epid; |
| 2906 | volatile int timeout = 10000; |
| 2907 | |
| 2908 | DBFENTER; |
| 2909 | |
| 2910 | if (ep_priv == NULL) { |
| 2911 | tc_warn("Trying to free unused epid on ep:0x%x\n", (unsigned int)ep); |
| 2912 | DBFEXIT; |
| 2913 | return; |
| 2914 | } |
| 2915 | |
| 2916 | epid = ep_priv->epid; |
| 2917 | |
| 2918 | /* Disable Isoc eof interrupt if we free the last Isoc epid */ |
| 2919 | if(epid_isoc(epid)) { |
| 2920 | ASSERT(isoc_epid_counter > 0); |
| 2921 | isoc_epid_counter--; |
| 2922 | if(isoc_epid_counter == 0) { |
| 2923 | *R_USB_IRQ_MASK_CLR = IO_STATE(R_USB_IRQ_MASK_CLR, iso_eof, clr); |
| 2924 | isoc_warn("Disabled Isoc eof interrupt\n"); |
| 2925 | } |
| 2926 | } |
| 2927 | |
| 2928 | /* Take lock manualy instead of in epid_x_x wrappers, |
| 2929 | because we need to be polling here */ |
| 2930 | spin_lock_irqsave(&etrax_epid_lock, flags); |
| 2931 | |
| 2932 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| 2933 | nop(); |
| 2934 | while((*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold)) && |
| 2935 | (timeout-- > 0)); |
| 2936 | /* This will, among other things, set the valid field to 0. */ |
| 2937 | *R_USB_EPT_DATA = 0; |
| 2938 | spin_unlock_irqrestore(&etrax_epid_lock, flags); |
| 2939 | |
| 2940 | /* Free resource in software state info list */ |
| 2941 | epid_state[epid].inuse = 0; |
| 2942 | |
| 2943 | /* Free private endpoint data */ |
| 2944 | ep_priv_free(ep); |
| 2945 | |
| 2946 | DBFEXIT; |
| 2947 | } |
| 2948 | |
| 2949 | static int tc_allocate_epid(void) { |
| 2950 | int i; |
| 2951 | DBFENTER; |
| 2952 | for (i = 0; i < NBR_OF_EPIDS; i++) { |
| 2953 | if (!epid_inuse(i)) { |
| 2954 | DBFEXIT; |
| 2955 | return i; |
| 2956 | } |
| 2957 | } |
| 2958 | |
| 2959 | tc_warn("Found no free epids\n"); |
| 2960 | DBFEXIT; |
| 2961 | return -1; |
| 2962 | } |
| 2963 | |
| 2964 | |
| 2965 | /* Wrappers around the list functions (include/linux/list.h). */ |
| 2966 | /* ---------------------------------------------------------- */ |
| 2967 | static inline int __urb_list_empty(int epid) { |
| 2968 | int retval; |
| 2969 | retval = list_empty(&urb_list[epid]); |
| 2970 | return retval; |
| 2971 | } |
| 2972 | |
| 2973 | /* Returns first urb for this epid, or NULL if list is empty. */ |
| 2974 | static inline struct urb *urb_list_first(int epid) { |
| 2975 | unsigned long flags; |
| 2976 | struct urb *first_urb = 0; |
| 2977 | spin_lock_irqsave(&urb_list_lock, flags); |
| 2978 | if (!__urb_list_empty(epid)) { |
| 2979 | /* Get the first urb (i.e. head->next). */ |
| 2980 | urb_entry_t *urb_entry = list_entry((&urb_list[epid])->next, urb_entry_t, list); |
| 2981 | first_urb = urb_entry->urb; |
| 2982 | } |
| 2983 | spin_unlock_irqrestore(&urb_list_lock, flags); |
| 2984 | return first_urb; |
| 2985 | } |
| 2986 | |
| 2987 | /* Adds an urb_entry last in the list for this epid. */ |
| 2988 | static inline void urb_list_add(struct urb *urb, int epid, int mem_flags) { |
| 2989 | unsigned long flags; |
| 2990 | urb_entry_t *urb_entry = (urb_entry_t *)kmalloc(sizeof(urb_entry_t), mem_flags); |
| 2991 | ASSERT(urb_entry); |
| 2992 | |
| 2993 | urb_entry->urb = urb; |
| 2994 | spin_lock_irqsave(&urb_list_lock, flags); |
| 2995 | list_add_tail(&urb_entry->list, &urb_list[epid]); |
| 2996 | spin_unlock_irqrestore(&urb_list_lock, flags); |
| 2997 | } |
| 2998 | |
| 2999 | /* Search through the list for an element that contains this urb. (The list |
| 3000 | is expected to be short and the one we are about to delete will often be |
| 3001 | the first in the list.) |
| 3002 | Should be protected by spin_locks in calling function */ |
| 3003 | static inline urb_entry_t *__urb_list_entry(struct urb *urb, int epid) { |
| 3004 | struct list_head *entry; |
| 3005 | struct list_head *tmp; |
| 3006 | urb_entry_t *urb_entry; |
| 3007 | |
| 3008 | list_for_each_safe(entry, tmp, &urb_list[epid]) { |
| 3009 | urb_entry = list_entry(entry, urb_entry_t, list); |
| 3010 | ASSERT(urb_entry); |
| 3011 | ASSERT(urb_entry->urb); |
| 3012 | |
| 3013 | if (urb_entry->urb == urb) { |
| 3014 | return urb_entry; |
| 3015 | } |
| 3016 | } |
| 3017 | return 0; |
| 3018 | } |
| 3019 | |
| 3020 | /* Same function as above but for global use. Protects list by spinlock */ |
| 3021 | static inline urb_entry_t *urb_list_entry(struct urb *urb, int epid) { |
| 3022 | unsigned long flags; |
| 3023 | urb_entry_t *urb_entry; |
| 3024 | spin_lock_irqsave(&urb_list_lock, flags); |
| 3025 | urb_entry = __urb_list_entry(urb, epid); |
| 3026 | spin_unlock_irqrestore(&urb_list_lock, flags); |
| 3027 | return (urb_entry); |
| 3028 | } |
| 3029 | |
| 3030 | /* Delete an urb from the list. */ |
| 3031 | static inline void urb_list_del(struct urb *urb, int epid) { |
| 3032 | unsigned long flags; |
| 3033 | urb_entry_t *urb_entry; |
| 3034 | |
| 3035 | /* Delete entry and free. */ |
| 3036 | spin_lock_irqsave(&urb_list_lock, flags); |
| 3037 | urb_entry = __urb_list_entry(urb, epid); |
| 3038 | ASSERT(urb_entry); |
| 3039 | |
| 3040 | list_del(&urb_entry->list); |
| 3041 | spin_unlock_irqrestore(&urb_list_lock, flags); |
| 3042 | kfree(urb_entry); |
| 3043 | } |
| 3044 | |
| 3045 | /* Move an urb to the end of the list. */ |
| 3046 | static inline void urb_list_move_last(struct urb *urb, int epid) { |
| 3047 | unsigned long flags; |
| 3048 | urb_entry_t *urb_entry; |
| 3049 | |
| 3050 | spin_lock_irqsave(&urb_list_lock, flags); |
| 3051 | urb_entry = __urb_list_entry(urb, epid); |
| 3052 | ASSERT(urb_entry); |
| 3053 | |
| 3054 | list_del(&urb_entry->list); |
| 3055 | list_add_tail(&urb_entry->list, &urb_list[epid]); |
| 3056 | spin_unlock_irqrestore(&urb_list_lock, flags); |
| 3057 | } |
| 3058 | |
| 3059 | /* Get the next urb in the list. */ |
| 3060 | static inline struct urb *urb_list_next(struct urb *urb, int epid) { |
| 3061 | unsigned long flags; |
| 3062 | urb_entry_t *urb_entry; |
| 3063 | |
| 3064 | spin_lock_irqsave(&urb_list_lock, flags); |
| 3065 | urb_entry = __urb_list_entry(urb, epid); |
| 3066 | ASSERT(urb_entry); |
| 3067 | |
| 3068 | if (urb_entry->list.next != &urb_list[epid]) { |
| 3069 | struct list_head *elem = urb_entry->list.next; |
| 3070 | urb_entry = list_entry(elem, urb_entry_t, list); |
| 3071 | spin_unlock_irqrestore(&urb_list_lock, flags); |
| 3072 | return urb_entry->urb; |
| 3073 | } else { |
| 3074 | spin_unlock_irqrestore(&urb_list_lock, flags); |
| 3075 | return NULL; |
| 3076 | } |
| 3077 | } |
| 3078 | |
| 3079 | struct USB_EP_Desc* create_ep(int epid, struct USB_SB_Desc* sb_desc, |
| 3080 | int mem_flags) { |
| 3081 | struct USB_EP_Desc *ep_desc; |
| 3082 | ep_desc = (struct USB_EP_Desc *) kmem_cache_alloc(usb_desc_cache, mem_flags); |
| 3083 | if(ep_desc == NULL) |
| 3084 | return NULL; |
| 3085 | memset(ep_desc, 0, sizeof(struct USB_EP_Desc)); |
| 3086 | |
| 3087 | ep_desc->hw_len = 0; |
| 3088 | ep_desc->command = (IO_FIELD(USB_EP_command, epid, epid) | |
| 3089 | IO_STATE(USB_EP_command, enable, yes)); |
| 3090 | if(sb_desc == NULL) { |
| 3091 | ep_desc->sub = 0; |
| 3092 | } else { |
| 3093 | ep_desc->sub = virt_to_phys(sb_desc); |
| 3094 | } |
| 3095 | return ep_desc; |
| 3096 | } |
| 3097 | |
| 3098 | #define TT_ZOUT 0 |
| 3099 | #define TT_IN 1 |
| 3100 | #define TT_OUT 2 |
| 3101 | #define TT_SETUP 3 |
| 3102 | |
| 3103 | #define CMD_EOL IO_STATE(USB_SB_command, eol, yes) |
| 3104 | #define CMD_INTR IO_STATE(USB_SB_command, intr, yes) |
| 3105 | #define CMD_FULL IO_STATE(USB_SB_command, full, yes) |
| 3106 | |
| 3107 | /* Allocation and setup of a generic SB. Used to create SETUP, OUT and ZOUT |
| 3108 | SBs. Also used by create_sb_in() to avoid same allocation procedure at two |
| 3109 | places */ |
| 3110 | struct USB_SB_Desc* create_sb(struct USB_SB_Desc* sb_prev, int tt, void* data, |
| 3111 | int datalen, int mem_flags) { |
| 3112 | struct USB_SB_Desc *sb_desc; |
| 3113 | sb_desc = (struct USB_SB_Desc*)kmem_cache_alloc(usb_desc_cache, mem_flags); |
| 3114 | if(sb_desc == NULL) |
| 3115 | return NULL; |
| 3116 | memset(sb_desc, 0, sizeof(struct USB_SB_Desc)); |
| 3117 | |
| 3118 | sb_desc->command = IO_FIELD(USB_SB_command, tt, tt) | |
| 3119 | IO_STATE(USB_SB_command, eot, yes); |
| 3120 | |
| 3121 | sb_desc->sw_len = datalen; |
| 3122 | if(data != NULL) { |
| 3123 | sb_desc->buf = virt_to_phys(data); |
| 3124 | } else { |
| 3125 | sb_desc->buf = 0; |
| 3126 | } |
| 3127 | if(sb_prev != NULL) { |
| 3128 | sb_prev->next = virt_to_phys(sb_desc); |
| 3129 | } |
| 3130 | return sb_desc; |
| 3131 | } |
| 3132 | |
| 3133 | /* Creates a copy of an existing SB by allocation space for it and copy |
| 3134 | settings */ |
| 3135 | struct USB_SB_Desc* create_sb_copy(struct USB_SB_Desc* sb_orig, int mem_flags) { |
| 3136 | struct USB_SB_Desc *sb_desc; |
| 3137 | sb_desc = (struct USB_SB_Desc*)kmem_cache_alloc(usb_desc_cache, mem_flags); |
| 3138 | if(sb_desc == NULL) |
| 3139 | return NULL; |
| 3140 | |
| 3141 | memcpy(sb_desc, sb_orig, sizeof(struct USB_SB_Desc)); |
| 3142 | return sb_desc; |
| 3143 | } |
| 3144 | |
| 3145 | /* A specific create_sb function for creation of in SBs. This is due to |
| 3146 | that datalen in In SBs shows how many packets we are expecting. It also |
| 3147 | sets up the rem field to show if how many bytes we expect in last packet |
| 3148 | if it's not a full one */ |
| 3149 | struct USB_SB_Desc* create_sb_in(struct USB_SB_Desc* sb_prev, int datalen, |
| 3150 | int maxlen, int mem_flags) { |
| 3151 | struct USB_SB_Desc *sb_desc; |
| 3152 | sb_desc = create_sb(sb_prev, TT_IN, NULL, |
| 3153 | datalen ? (datalen - 1) / maxlen + 1 : 0, mem_flags); |
| 3154 | if(sb_desc == NULL) |
| 3155 | return NULL; |
| 3156 | sb_desc->command |= IO_FIELD(USB_SB_command, rem, datalen % maxlen); |
| 3157 | return sb_desc; |
| 3158 | } |
| 3159 | |
| 3160 | void set_sb_cmds(struct USB_SB_Desc *sb_desc, __u16 flags) { |
| 3161 | sb_desc->command |= flags; |
| 3162 | } |
| 3163 | |
| 3164 | int create_sb_for_urb(struct urb *urb, int mem_flags) { |
| 3165 | int is_out = !usb_pipein(urb->pipe); |
| 3166 | int type = usb_pipetype(urb->pipe); |
| 3167 | int maxlen = usb_maxpacket(urb->dev, urb->pipe, is_out); |
| 3168 | int buf_len = urb->transfer_buffer_length; |
| 3169 | void *buf = buf_len > 0 ? urb->transfer_buffer : NULL; |
| 3170 | struct USB_SB_Desc *sb_desc = NULL; |
| 3171 | |
| 3172 | struct crisv10_urb_priv *urb_priv = (struct crisv10_urb_priv *)urb->hcpriv; |
| 3173 | ASSERT(urb_priv != NULL); |
| 3174 | |
| 3175 | switch(type) { |
| 3176 | case PIPE_CONTROL: |
| 3177 | /* Setup stage */ |
| 3178 | sb_desc = create_sb(NULL, TT_SETUP, urb->setup_packet, 8, mem_flags); |
| 3179 | if(sb_desc == NULL) |
| 3180 | return -ENOMEM; |
| 3181 | set_sb_cmds(sb_desc, CMD_FULL); |
| 3182 | |
| 3183 | /* Attach first SB to URB */ |
| 3184 | urb_priv->first_sb = sb_desc; |
| 3185 | |
| 3186 | if (is_out) { /* Out Control URB */ |
| 3187 | /* If this Control OUT transfer has an optional data stage we add |
| 3188 | an OUT token before the mandatory IN (status) token */ |
| 3189 | if ((buf_len > 0) && buf) { |
| 3190 | sb_desc = create_sb(sb_desc, TT_OUT, buf, buf_len, mem_flags); |
| 3191 | if(sb_desc == NULL) |
| 3192 | return -ENOMEM; |
| 3193 | set_sb_cmds(sb_desc, CMD_FULL); |
| 3194 | } |
| 3195 | |
| 3196 | /* Status stage */ |
| 3197 | /* The data length has to be exactly 1. This is due to a requirement |
| 3198 | of the USB specification that a host must be prepared to receive |
| 3199 | data in the status phase */ |
| 3200 | sb_desc = create_sb(sb_desc, TT_IN, NULL, 1, mem_flags); |
| 3201 | if(sb_desc == NULL) |
| 3202 | return -ENOMEM; |
| 3203 | } else { /* In control URB */ |
| 3204 | /* Data stage */ |
| 3205 | sb_desc = create_sb_in(sb_desc, buf_len, maxlen, mem_flags); |
| 3206 | if(sb_desc == NULL) |
| 3207 | return -ENOMEM; |
| 3208 | |
| 3209 | /* Status stage */ |
| 3210 | /* Read comment at zout_buffer declaration for an explanation to this. */ |
| 3211 | sb_desc = create_sb(sb_desc, TT_ZOUT, &zout_buffer[0], 1, mem_flags); |
| 3212 | if(sb_desc == NULL) |
| 3213 | return -ENOMEM; |
| 3214 | /* Set descriptor interrupt flag for in URBs so we can finish URB after |
| 3215 | zout-packet has been sent */ |
| 3216 | set_sb_cmds(sb_desc, CMD_INTR | CMD_FULL); |
| 3217 | } |
| 3218 | /* Set end-of-list flag in last SB */ |
| 3219 | set_sb_cmds(sb_desc, CMD_EOL); |
| 3220 | /* Attach last SB to URB */ |
| 3221 | urb_priv->last_sb = sb_desc; |
| 3222 | break; |
| 3223 | |
| 3224 | case PIPE_BULK: |
| 3225 | if (is_out) { /* Out Bulk URB */ |
| 3226 | sb_desc = create_sb(NULL, TT_OUT, buf, buf_len, mem_flags); |
| 3227 | if(sb_desc == NULL) |
| 3228 | return -ENOMEM; |
| 3229 | /* The full field is set to yes, even if we don't actually check that |
| 3230 | this is a full-length transfer (i.e., that transfer_buffer_length % |
| 3231 | maxlen = 0). |
| 3232 | Setting full prevents the USB controller from sending an empty packet |
| 3233 | in that case. However, if URB_ZERO_PACKET was set we want that. */ |
| 3234 | if (!(urb->transfer_flags & URB_ZERO_PACKET)) { |
| 3235 | set_sb_cmds(sb_desc, CMD_FULL); |
| 3236 | } |
| 3237 | } else { /* In Bulk URB */ |
| 3238 | sb_desc = create_sb_in(NULL, buf_len, maxlen, mem_flags); |
| 3239 | if(sb_desc == NULL) |
| 3240 | return -ENOMEM; |
| 3241 | } |
| 3242 | /* Set end-of-list flag for last SB */ |
| 3243 | set_sb_cmds(sb_desc, CMD_EOL); |
| 3244 | |
| 3245 | /* Attach SB to URB */ |
| 3246 | urb_priv->first_sb = sb_desc; |
| 3247 | urb_priv->last_sb = sb_desc; |
| 3248 | break; |
| 3249 | |
| 3250 | case PIPE_INTERRUPT: |
| 3251 | if(is_out) { /* Out Intr URB */ |
| 3252 | sb_desc = create_sb(NULL, TT_OUT, buf, buf_len, mem_flags); |
| 3253 | if(sb_desc == NULL) |
| 3254 | return -ENOMEM; |
| 3255 | |
| 3256 | /* The full field is set to yes, even if we don't actually check that |
| 3257 | this is a full-length transfer (i.e., that transfer_buffer_length % |
| 3258 | maxlen = 0). |
| 3259 | Setting full prevents the USB controller from sending an empty packet |
| 3260 | in that case. However, if URB_ZERO_PACKET was set we want that. */ |
| 3261 | if (!(urb->transfer_flags & URB_ZERO_PACKET)) { |
| 3262 | set_sb_cmds(sb_desc, CMD_FULL); |
| 3263 | } |
| 3264 | /* Only generate TX interrupt if it's a Out URB*/ |
| 3265 | set_sb_cmds(sb_desc, CMD_INTR); |
| 3266 | |
| 3267 | } else { /* In Intr URB */ |
| 3268 | sb_desc = create_sb_in(NULL, buf_len, maxlen, mem_flags); |
| 3269 | if(sb_desc == NULL) |
| 3270 | return -ENOMEM; |
| 3271 | } |
| 3272 | /* Set end-of-list flag for last SB */ |
| 3273 | set_sb_cmds(sb_desc, CMD_EOL); |
| 3274 | |
| 3275 | /* Attach SB to URB */ |
| 3276 | urb_priv->first_sb = sb_desc; |
| 3277 | urb_priv->last_sb = sb_desc; |
| 3278 | |
| 3279 | break; |
| 3280 | case PIPE_ISOCHRONOUS: |
| 3281 | if(is_out) { /* Out Isoc URB */ |
| 3282 | int i; |
| 3283 | if(urb->number_of_packets == 0) { |
| 3284 | tc_err("Can't create SBs for Isoc URB with zero packets\n"); |
| 3285 | return -EPIPE; |
| 3286 | } |
| 3287 | /* Create one SB descriptor for each packet and link them together. */ |
| 3288 | for(i = 0; i < urb->number_of_packets; i++) { |
| 3289 | if (urb->iso_frame_desc[i].length > 0) { |
| 3290 | |
| 3291 | sb_desc = create_sb(sb_desc, TT_OUT, urb->transfer_buffer + |
| 3292 | urb->iso_frame_desc[i].offset, |
| 3293 | urb->iso_frame_desc[i].length, mem_flags); |
| 3294 | if(sb_desc == NULL) |
| 3295 | return -ENOMEM; |
| 3296 | |
| 3297 | /* Check if it's a full length packet */ |
| 3298 | if (urb->iso_frame_desc[i].length == |
| 3299 | usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))) { |
| 3300 | set_sb_cmds(sb_desc, CMD_FULL); |
| 3301 | } |
| 3302 | |
| 3303 | } else { /* zero length packet */ |
| 3304 | sb_desc = create_sb(sb_desc, TT_ZOUT, &zout_buffer[0], 1, mem_flags); |
| 3305 | if(sb_desc == NULL) |
| 3306 | return -ENOMEM; |
| 3307 | set_sb_cmds(sb_desc, CMD_FULL); |
| 3308 | } |
| 3309 | /* Attach first SB descriptor to URB */ |
| 3310 | if (i == 0) { |
| 3311 | urb_priv->first_sb = sb_desc; |
| 3312 | } |
| 3313 | } |
| 3314 | /* Set interrupt and end-of-list flags in last SB */ |
| 3315 | set_sb_cmds(sb_desc, CMD_INTR | CMD_EOL); |
| 3316 | /* Attach last SB descriptor to URB */ |
| 3317 | urb_priv->last_sb = sb_desc; |
| 3318 | tc_dbg("Created %d out SBs for Isoc URB:0x%x\n", |
| 3319 | urb->number_of_packets, (unsigned int)urb); |
| 3320 | } else { /* In Isoc URB */ |
| 3321 | /* Actual number of packets is not relevant for periodic in traffic as |
| 3322 | long as it is more than zero. Set to 1 always. */ |
| 3323 | sb_desc = create_sb(sb_desc, TT_IN, NULL, 1, mem_flags); |
| 3324 | if(sb_desc == NULL) |
| 3325 | return -ENOMEM; |
| 3326 | /* Set end-of-list flags for SB */ |
| 3327 | set_sb_cmds(sb_desc, CMD_EOL); |
| 3328 | |
| 3329 | /* Attach SB to URB */ |
| 3330 | urb_priv->first_sb = sb_desc; |
| 3331 | urb_priv->last_sb = sb_desc; |
| 3332 | } |
| 3333 | break; |
| 3334 | default: |
| 3335 | tc_err("Unknown pipe-type\n"); |
| 3336 | return -EPIPE; |
| 3337 | break; |
| 3338 | } |
| 3339 | return 0; |
| 3340 | } |
| 3341 | |
| 3342 | int init_intr_urb(struct urb *urb, int mem_flags) { |
| 3343 | struct crisv10_urb_priv *urb_priv = (struct crisv10_urb_priv *)urb->hcpriv; |
| 3344 | struct USB_EP_Desc* ep_desc; |
| 3345 | int interval; |
| 3346 | int i; |
| 3347 | int ep_count; |
| 3348 | |
| 3349 | ASSERT(urb_priv != NULL); |
| 3350 | ASSERT(usb_pipeint(urb->pipe)); |
| 3351 | /* We can't support interval longer than amount of eof descriptors in |
| 3352 | TxIntrEPList */ |
| 3353 | if(urb->interval > MAX_INTR_INTERVAL) { |
| 3354 | tc_err("Interrupt interval %dms too big (max: %dms)\n", urb->interval, |
| 3355 | MAX_INTR_INTERVAL); |
| 3356 | return -EINVAL; |
| 3357 | } |
| 3358 | |
| 3359 | /* We assume that the SB descriptors already have been setup */ |
| 3360 | ASSERT(urb_priv->first_sb != NULL); |
| 3361 | |
| 3362 | /* Round of the interval to 2^n, it is obvious that this code favours |
| 3363 | smaller numbers, but that is actually a good thing */ |
| 3364 | /* FIXME: The "rounding error" for larger intervals will be quite |
| 3365 | large. For in traffic this shouldn't be a problem since it will only |
| 3366 | mean that we "poll" more often. */ |
| 3367 | interval = urb->interval; |
| 3368 | for (i = 0; interval; i++) { |
| 3369 | interval = interval >> 1; |
| 3370 | } |
| 3371 | urb_priv->interval = 1 << (i - 1); |
| 3372 | |
| 3373 | /* We can only have max interval for Out Interrupt due to that we can only |
| 3374 | handle one linked in EP for a certain epid in the Intr descr array at the |
| 3375 | time. The USB Controller in the Etrax 100LX continues to process Intr EPs |
| 3376 | so we have no way of knowing which one that caused the actual transfer if |
| 3377 | we have several linked in. */ |
| 3378 | if(usb_pipeout(urb->pipe)) { |
| 3379 | urb_priv->interval = MAX_INTR_INTERVAL; |
| 3380 | } |
| 3381 | |
| 3382 | /* Calculate amount of EPs needed */ |
| 3383 | ep_count = MAX_INTR_INTERVAL / urb_priv->interval; |
| 3384 | |
| 3385 | for(i = 0; i < ep_count; i++) { |
| 3386 | ep_desc = create_ep(urb_priv->epid, urb_priv->first_sb, mem_flags); |
| 3387 | if(ep_desc == NULL) { |
| 3388 | /* Free any descriptors that we may have allocated before failure */ |
| 3389 | while(i > 0) { |
| 3390 | i--; |
| 3391 | kfree(urb_priv->intr_ep_pool[i]); |
| 3392 | } |
| 3393 | return -ENOMEM; |
| 3394 | } |
| 3395 | urb_priv->intr_ep_pool[i] = ep_desc; |
| 3396 | } |
| 3397 | urb_priv->intr_ep_pool_length = ep_count; |
| 3398 | return 0; |
| 3399 | } |
| 3400 | |
| 3401 | /* DMA RX/TX functions */ |
| 3402 | /* ----------------------- */ |
| 3403 | |
| 3404 | static void tc_dma_init_rx_list(void) { |
| 3405 | int i; |
| 3406 | |
| 3407 | /* Setup descriptor list except last one */ |
| 3408 | for (i = 0; i < (NBR_OF_RX_DESC - 1); i++) { |
| 3409 | RxDescList[i].sw_len = RX_DESC_BUF_SIZE; |
| 3410 | RxDescList[i].command = 0; |
| 3411 | RxDescList[i].next = virt_to_phys(&RxDescList[i + 1]); |
| 3412 | RxDescList[i].buf = virt_to_phys(RxBuf + (i * RX_DESC_BUF_SIZE)); |
| 3413 | RxDescList[i].hw_len = 0; |
| 3414 | RxDescList[i].status = 0; |
| 3415 | |
| 3416 | /* DMA IN cache bug. (struct etrax_dma_descr has the same layout as |
| 3417 | USB_IN_Desc for the relevant fields.) */ |
| 3418 | prepare_rx_descriptor((struct etrax_dma_descr*)&RxDescList[i]); |
| 3419 | |
| 3420 | } |
| 3421 | /* Special handling of last descriptor */ |
| 3422 | RxDescList[i].sw_len = RX_DESC_BUF_SIZE; |
| 3423 | RxDescList[i].command = IO_STATE(USB_IN_command, eol, yes); |
| 3424 | RxDescList[i].next = virt_to_phys(&RxDescList[0]); |
| 3425 | RxDescList[i].buf = virt_to_phys(RxBuf + (i * RX_DESC_BUF_SIZE)); |
| 3426 | RxDescList[i].hw_len = 0; |
| 3427 | RxDescList[i].status = 0; |
| 3428 | |
| 3429 | /* Setup list pointers that show progress in list */ |
| 3430 | myNextRxDesc = &RxDescList[0]; |
| 3431 | myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1]; |
| 3432 | |
| 3433 | flush_etrax_cache(); |
| 3434 | /* Point DMA to first descriptor in list and start it */ |
| 3435 | *R_DMA_CH9_FIRST = virt_to_phys(myNextRxDesc); |
| 3436 | *R_DMA_CH9_CMD = IO_STATE(R_DMA_CH9_CMD, cmd, start); |
| 3437 | } |
| 3438 | |
| 3439 | |
| 3440 | static void tc_dma_init_tx_bulk_list(void) { |
| 3441 | int i; |
| 3442 | volatile struct USB_EP_Desc *epDescr; |
| 3443 | |
| 3444 | for (i = 0; i < (NBR_OF_EPIDS - 1); i++) { |
| 3445 | epDescr = &(TxBulkEPList[i]); |
| 3446 | CHECK_ALIGN(epDescr); |
| 3447 | epDescr->hw_len = 0; |
| 3448 | epDescr->command = IO_FIELD(USB_EP_command, epid, i); |
| 3449 | epDescr->sub = 0; |
| 3450 | epDescr->next = virt_to_phys(&TxBulkEPList[i + 1]); |
| 3451 | |
| 3452 | /* Initiate two EPs, disabled and with the eol flag set. No need for any |
| 3453 | preserved epid. */ |
| 3454 | |
| 3455 | /* The first one has the intr flag set so we get an interrupt when the DMA |
| 3456 | channel is about to become disabled. */ |
| 3457 | CHECK_ALIGN(&TxBulkDummyEPList[i][0]); |
| 3458 | TxBulkDummyEPList[i][0].hw_len = 0; |
| 3459 | TxBulkDummyEPList[i][0].command = (IO_FIELD(USB_EP_command, epid, DUMMY_EPID) | |
| 3460 | IO_STATE(USB_EP_command, eol, yes) | |
| 3461 | IO_STATE(USB_EP_command, intr, yes)); |
| 3462 | TxBulkDummyEPList[i][0].sub = 0; |
| 3463 | TxBulkDummyEPList[i][0].next = virt_to_phys(&TxBulkDummyEPList[i][1]); |
| 3464 | |
| 3465 | /* The second one. */ |
| 3466 | CHECK_ALIGN(&TxBulkDummyEPList[i][1]); |
| 3467 | TxBulkDummyEPList[i][1].hw_len = 0; |
| 3468 | TxBulkDummyEPList[i][1].command = (IO_FIELD(USB_EP_command, epid, DUMMY_EPID) | |
| 3469 | IO_STATE(USB_EP_command, eol, yes)); |
| 3470 | TxBulkDummyEPList[i][1].sub = 0; |
| 3471 | /* The last dummy's next pointer is the same as the current EP's next pointer. */ |
| 3472 | TxBulkDummyEPList[i][1].next = virt_to_phys(&TxBulkEPList[i + 1]); |
| 3473 | } |
| 3474 | |
| 3475 | /* Special handling of last descr in list, make list circular */ |
| 3476 | epDescr = &TxBulkEPList[i]; |
| 3477 | CHECK_ALIGN(epDescr); |
| 3478 | epDescr->hw_len = 0; |
| 3479 | epDescr->command = IO_STATE(USB_EP_command, eol, yes) | |
| 3480 | IO_FIELD(USB_EP_command, epid, i); |
| 3481 | epDescr->sub = 0; |
| 3482 | epDescr->next = virt_to_phys(&TxBulkEPList[0]); |
| 3483 | |
| 3484 | /* Init DMA sub-channel pointers to last item in each list */ |
| 3485 | *R_DMA_CH8_SUB0_EP = virt_to_phys(&TxBulkEPList[i]); |
| 3486 | /* No point in starting the bulk channel yet. |
| 3487 | *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); */ |
| 3488 | } |
| 3489 | |
| 3490 | static void tc_dma_init_tx_ctrl_list(void) { |
| 3491 | int i; |
| 3492 | volatile struct USB_EP_Desc *epDescr; |
| 3493 | |
| 3494 | for (i = 0; i < (NBR_OF_EPIDS - 1); i++) { |
| 3495 | epDescr = &(TxCtrlEPList[i]); |
| 3496 | CHECK_ALIGN(epDescr); |
| 3497 | epDescr->hw_len = 0; |
| 3498 | epDescr->command = IO_FIELD(USB_EP_command, epid, i); |
| 3499 | epDescr->sub = 0; |
| 3500 | epDescr->next = virt_to_phys(&TxCtrlEPList[i + 1]); |
| 3501 | } |
| 3502 | /* Special handling of last descr in list, make list circular */ |
| 3503 | epDescr = &TxCtrlEPList[i]; |
| 3504 | CHECK_ALIGN(epDescr); |
| 3505 | epDescr->hw_len = 0; |
| 3506 | epDescr->command = IO_STATE(USB_EP_command, eol, yes) | |
| 3507 | IO_FIELD(USB_EP_command, epid, i); |
| 3508 | epDescr->sub = 0; |
| 3509 | epDescr->next = virt_to_phys(&TxCtrlEPList[0]); |
| 3510 | |
| 3511 | /* Init DMA sub-channel pointers to last item in each list */ |
| 3512 | *R_DMA_CH8_SUB1_EP = virt_to_phys(&TxCtrlEPList[i]); |
| 3513 | /* No point in starting the ctrl channel yet. |
| 3514 | *R_DMA_CH8_SUB1_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); */ |
| 3515 | } |
| 3516 | |
| 3517 | |
| 3518 | static void tc_dma_init_tx_intr_list(void) { |
| 3519 | int i; |
| 3520 | |
| 3521 | TxIntrSB_zout.sw_len = 1; |
| 3522 | TxIntrSB_zout.next = 0; |
| 3523 | TxIntrSB_zout.buf = virt_to_phys(&zout_buffer[0]); |
| 3524 | TxIntrSB_zout.command = (IO_FIELD(USB_SB_command, rem, 0) | |
| 3525 | IO_STATE(USB_SB_command, tt, zout) | |
| 3526 | IO_STATE(USB_SB_command, full, yes) | |
| 3527 | IO_STATE(USB_SB_command, eot, yes) | |
| 3528 | IO_STATE(USB_SB_command, eol, yes)); |
| 3529 | |
| 3530 | for (i = 0; i < (MAX_INTR_INTERVAL - 1); i++) { |
| 3531 | CHECK_ALIGN(&TxIntrEPList[i]); |
| 3532 | TxIntrEPList[i].hw_len = 0; |
| 3533 | TxIntrEPList[i].command = |
| 3534 | (IO_STATE(USB_EP_command, eof, yes) | |
| 3535 | IO_STATE(USB_EP_command, enable, yes) | |
| 3536 | IO_FIELD(USB_EP_command, epid, INVALID_EPID)); |
| 3537 | TxIntrEPList[i].sub = virt_to_phys(&TxIntrSB_zout); |
| 3538 | TxIntrEPList[i].next = virt_to_phys(&TxIntrEPList[i + 1]); |
| 3539 | } |
| 3540 | |
| 3541 | /* Special handling of last descr in list, make list circular */ |
| 3542 | CHECK_ALIGN(&TxIntrEPList[i]); |
| 3543 | TxIntrEPList[i].hw_len = 0; |
| 3544 | TxIntrEPList[i].command = |
| 3545 | (IO_STATE(USB_EP_command, eof, yes) | |
| 3546 | IO_STATE(USB_EP_command, eol, yes) | |
| 3547 | IO_STATE(USB_EP_command, enable, yes) | |
| 3548 | IO_FIELD(USB_EP_command, epid, INVALID_EPID)); |
| 3549 | TxIntrEPList[i].sub = virt_to_phys(&TxIntrSB_zout); |
| 3550 | TxIntrEPList[i].next = virt_to_phys(&TxIntrEPList[0]); |
| 3551 | |
| 3552 | intr_dbg("Initiated Intr EP descriptor list\n"); |
| 3553 | |
| 3554 | |
| 3555 | /* Connect DMA 8 sub-channel 2 to first in list */ |
| 3556 | *R_DMA_CH8_SUB2_EP = virt_to_phys(&TxIntrEPList[0]); |
| 3557 | } |
| 3558 | |
| 3559 | static void tc_dma_init_tx_isoc_list(void) { |
| 3560 | int i; |
| 3561 | |
| 3562 | DBFENTER; |
| 3563 | |
| 3564 | /* Read comment at zout_buffer declaration for an explanation to this. */ |
| 3565 | TxIsocSB_zout.sw_len = 1; |
| 3566 | TxIsocSB_zout.next = 0; |
| 3567 | TxIsocSB_zout.buf = virt_to_phys(&zout_buffer[0]); |
| 3568 | TxIsocSB_zout.command = (IO_FIELD(USB_SB_command, rem, 0) | |
| 3569 | IO_STATE(USB_SB_command, tt, zout) | |
| 3570 | IO_STATE(USB_SB_command, full, yes) | |
| 3571 | IO_STATE(USB_SB_command, eot, yes) | |
| 3572 | IO_STATE(USB_SB_command, eol, yes)); |
| 3573 | |
| 3574 | /* The last isochronous EP descriptor is a dummy. */ |
| 3575 | for (i = 0; i < (NBR_OF_EPIDS - 1); i++) { |
| 3576 | CHECK_ALIGN(&TxIsocEPList[i]); |
| 3577 | TxIsocEPList[i].hw_len = 0; |
| 3578 | TxIsocEPList[i].command = IO_FIELD(USB_EP_command, epid, i); |
| 3579 | TxIsocEPList[i].sub = 0; |
| 3580 | TxIsocEPList[i].next = virt_to_phys(&TxIsocEPList[i + 1]); |
| 3581 | } |
| 3582 | |
| 3583 | CHECK_ALIGN(&TxIsocEPList[i]); |
| 3584 | TxIsocEPList[i].hw_len = 0; |
| 3585 | |
| 3586 | /* Must enable the last EP descr to get eof interrupt. */ |
| 3587 | TxIsocEPList[i].command = (IO_STATE(USB_EP_command, enable, yes) | |
| 3588 | IO_STATE(USB_EP_command, eof, yes) | |
| 3589 | IO_STATE(USB_EP_command, eol, yes) | |
| 3590 | IO_FIELD(USB_EP_command, epid, INVALID_EPID)); |
| 3591 | TxIsocEPList[i].sub = virt_to_phys(&TxIsocSB_zout); |
| 3592 | TxIsocEPList[i].next = virt_to_phys(&TxIsocEPList[0]); |
| 3593 | |
| 3594 | *R_DMA_CH8_SUB3_EP = virt_to_phys(&TxIsocEPList[0]); |
| 3595 | *R_DMA_CH8_SUB3_CMD = IO_STATE(R_DMA_CH8_SUB3_CMD, cmd, start); |
| 3596 | } |
| 3597 | |
| 3598 | static int tc_dma_init(struct usb_hcd *hcd) { |
| 3599 | tc_dma_init_rx_list(); |
| 3600 | tc_dma_init_tx_bulk_list(); |
| 3601 | tc_dma_init_tx_ctrl_list(); |
| 3602 | tc_dma_init_tx_intr_list(); |
| 3603 | tc_dma_init_tx_isoc_list(); |
| 3604 | |
| 3605 | if (cris_request_dma(USB_TX_DMA_NBR, |
| 3606 | "ETRAX 100LX built-in USB (Tx)", |
| 3607 | DMA_VERBOSE_ON_ERROR, |
| 3608 | dma_usb)) { |
| 3609 | err("Could not allocate DMA ch 8 for USB"); |
| 3610 | return -EBUSY; |
| 3611 | } |
| 3612 | |
| 3613 | if (cris_request_dma(USB_RX_DMA_NBR, |
| 3614 | "ETRAX 100LX built-in USB (Rx)", |
| 3615 | DMA_VERBOSE_ON_ERROR, |
| 3616 | dma_usb)) { |
| 3617 | err("Could not allocate DMA ch 9 for USB"); |
| 3618 | return -EBUSY; |
| 3619 | } |
| 3620 | |
| 3621 | *R_IRQ_MASK2_SET = |
| 3622 | /* Note that these interrupts are not used. */ |
| 3623 | IO_STATE(R_IRQ_MASK2_SET, dma8_sub0_descr, set) | |
| 3624 | /* Sub channel 1 (ctrl) descr. interrupts are used. */ |
| 3625 | IO_STATE(R_IRQ_MASK2_SET, dma8_sub1_descr, set) | |
| 3626 | IO_STATE(R_IRQ_MASK2_SET, dma8_sub2_descr, set) | |
| 3627 | /* Sub channel 3 (isoc) descr. interrupts are used. */ |
| 3628 | IO_STATE(R_IRQ_MASK2_SET, dma8_sub3_descr, set); |
| 3629 | |
| 3630 | /* Note that the dma9_descr interrupt is not used. */ |
| 3631 | *R_IRQ_MASK2_SET = |
| 3632 | IO_STATE(R_IRQ_MASK2_SET, dma9_eop, set) | |
| 3633 | IO_STATE(R_IRQ_MASK2_SET, dma9_descr, set); |
| 3634 | |
| 3635 | if (request_irq(ETRAX_USB_RX_IRQ, tc_dma_rx_interrupt, 0, |
| 3636 | "ETRAX 100LX built-in USB (Rx)", hcd)) { |
| 3637 | err("Could not allocate IRQ %d for USB", ETRAX_USB_RX_IRQ); |
| 3638 | return -EBUSY; |
| 3639 | } |
| 3640 | |
| 3641 | if (request_irq(ETRAX_USB_TX_IRQ, tc_dma_tx_interrupt, 0, |
| 3642 | "ETRAX 100LX built-in USB (Tx)", hcd)) { |
| 3643 | err("Could not allocate IRQ %d for USB", ETRAX_USB_TX_IRQ); |
| 3644 | return -EBUSY; |
| 3645 | } |
| 3646 | |
| 3647 | return 0; |
| 3648 | } |
| 3649 | |
| 3650 | static void tc_dma_destroy(void) { |
| 3651 | free_irq(ETRAX_USB_RX_IRQ, NULL); |
| 3652 | free_irq(ETRAX_USB_TX_IRQ, NULL); |
| 3653 | |
| 3654 | cris_free_dma(USB_TX_DMA_NBR, "ETRAX 100LX built-in USB (Tx)"); |
| 3655 | cris_free_dma(USB_RX_DMA_NBR, "ETRAX 100LX built-in USB (Rx)"); |
| 3656 | |
| 3657 | } |
| 3658 | |
| 3659 | static void tc_dma_link_intr_urb(struct urb *urb); |
| 3660 | |
| 3661 | /* Handle processing of Bulk, Ctrl and Intr queues */ |
| 3662 | static void tc_dma_process_queue(int epid) { |
| 3663 | struct urb *urb; |
| 3664 | struct crisv10_urb_priv *urb_priv; |
| 3665 | unsigned long flags; |
| 3666 | char toggle; |
| 3667 | |
| 3668 | if(epid_state[epid].disabled) { |
| 3669 | /* Don't process any URBs on a disabled endpoint */ |
| 3670 | return; |
| 3671 | } |
| 3672 | |
| 3673 | /* Do not disturb us while fiddling with EPs and epids */ |
| 3674 | local_irq_save(flags); |
| 3675 | |
| 3676 | /* For bulk, Ctrl and Intr can we only have one URB active at a time for |
| 3677 | a specific EP. */ |
| 3678 | if(activeUrbList[epid] != NULL) { |
| 3679 | /* An URB is already active on EP, skip checking queue */ |
| 3680 | local_irq_restore(flags); |
| 3681 | return; |
| 3682 | } |
| 3683 | |
| 3684 | urb = urb_list_first(epid); |
| 3685 | if(urb == NULL) { |
| 3686 | /* No URB waiting in EP queue. Nothing do to */ |
| 3687 | local_irq_restore(flags); |
| 3688 | return; |
| 3689 | } |
| 3690 | |
| 3691 | urb_priv = urb->hcpriv; |
| 3692 | ASSERT(urb_priv != NULL); |
| 3693 | ASSERT(urb_priv->urb_state == NOT_STARTED); |
| 3694 | ASSERT(!usb_pipeisoc(urb->pipe)); |
| 3695 | |
| 3696 | /* Remove this URB from the queue and move it to active */ |
| 3697 | activeUrbList[epid] = urb; |
| 3698 | urb_list_del(urb, epid); |
| 3699 | |
| 3700 | urb_priv->urb_state = STARTED; |
| 3701 | |
| 3702 | /* Reset error counters (regardless of which direction this traffic is). */ |
| 3703 | etrax_epid_clear_error(epid); |
| 3704 | |
| 3705 | /* Special handling of Intr EP lists */ |
| 3706 | if(usb_pipeint(urb->pipe)) { |
| 3707 | tc_dma_link_intr_urb(urb); |
| 3708 | local_irq_restore(flags); |
| 3709 | return; |
| 3710 | } |
| 3711 | |
| 3712 | /* Software must preset the toggle bits for Bulk and Ctrl */ |
| 3713 | if(usb_pipecontrol(urb->pipe)) { |
| 3714 | /* Toggle bits are initialized only during setup transaction in a |
| 3715 | CTRL transfer */ |
| 3716 | etrax_epid_set_toggle(epid, 0, 0); |
| 3717 | etrax_epid_set_toggle(epid, 1, 0); |
| 3718 | } else { |
| 3719 | toggle = usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), |
| 3720 | usb_pipeout(urb->pipe)); |
| 3721 | etrax_epid_set_toggle(epid, usb_pipeout(urb->pipe), toggle); |
| 3722 | } |
| 3723 | |
| 3724 | tc_dbg("Added SBs from (URB:0x%x %s %s) to epid %d: %s\n", |
| 3725 | (unsigned int)urb, str_dir(urb->pipe), str_type(urb->pipe), epid, |
| 3726 | sblist_to_str(urb_priv->first_sb)); |
| 3727 | |
| 3728 | /* We start the DMA sub channel without checking if it's running or not, |
| 3729 | because: |
| 3730 | 1) If it's already running, issuing the start command is a nop. |
| 3731 | 2) We avoid a test-and-set race condition. */ |
| 3732 | switch(usb_pipetype(urb->pipe)) { |
| 3733 | case PIPE_BULK: |
| 3734 | /* Assert that the EP descriptor is disabled. */ |
| 3735 | ASSERT(!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable))); |
| 3736 | |
| 3737 | /* Set up and enable the EP descriptor. */ |
| 3738 | TxBulkEPList[epid].sub = virt_to_phys(urb_priv->first_sb); |
| 3739 | TxBulkEPList[epid].hw_len = 0; |
| 3740 | TxBulkEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); |
| 3741 | |
| 3742 | /* Check if the dummy list is already with us (if several urbs were queued). */ |
| 3743 | if (usb_pipein(urb->pipe) && (TxBulkEPList[epid].next != virt_to_phys(&TxBulkDummyEPList[epid][0]))) { |
| 3744 | tc_dbg("Inviting dummy list to the party for urb 0x%lx, epid %d", |
| 3745 | (unsigned long)urb, epid); |
| 3746 | |
| 3747 | /* We don't need to check if the DMA is at this EP or not before changing the |
| 3748 | next pointer, since we will do it in one 32-bit write (EP descriptors are |
| 3749 | 32-bit aligned). */ |
| 3750 | TxBulkEPList[epid].next = virt_to_phys(&TxBulkDummyEPList[epid][0]); |
| 3751 | } |
| 3752 | |
| 3753 | restart_dma8_sub0(); |
| 3754 | |
| 3755 | /* Update/restart the bulk start timer since we just started the channel.*/ |
| 3756 | mod_timer(&bulk_start_timer, jiffies + BULK_START_TIMER_INTERVAL); |
| 3757 | /* Update/restart the bulk eot timer since we just inserted traffic. */ |
| 3758 | mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL); |
| 3759 | break; |
| 3760 | case PIPE_CONTROL: |
| 3761 | /* Assert that the EP descriptor is disabled. */ |
| 3762 | ASSERT(!(TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable))); |
| 3763 | |
| 3764 | /* Set up and enable the EP descriptor. */ |
| 3765 | TxCtrlEPList[epid].sub = virt_to_phys(urb_priv->first_sb); |
| 3766 | TxCtrlEPList[epid].hw_len = 0; |
| 3767 | TxCtrlEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); |
| 3768 | |
| 3769 | *R_DMA_CH8_SUB1_CMD = IO_STATE(R_DMA_CH8_SUB1_CMD, cmd, start); |
| 3770 | break; |
| 3771 | } |
| 3772 | local_irq_restore(flags); |
| 3773 | } |
| 3774 | |
| 3775 | static void tc_dma_link_intr_urb(struct urb *urb) { |
| 3776 | struct crisv10_urb_priv *urb_priv = urb->hcpriv; |
| 3777 | volatile struct USB_EP_Desc *tmp_ep; |
| 3778 | struct USB_EP_Desc *ep_desc; |
| 3779 | int i = 0, epid; |
| 3780 | int pool_idx = 0; |
| 3781 | |
| 3782 | ASSERT(urb_priv != NULL); |
| 3783 | epid = urb_priv->epid; |
| 3784 | ASSERT(urb_priv->interval > 0); |
| 3785 | ASSERT(urb_priv->intr_ep_pool_length > 0); |
| 3786 | |
| 3787 | tmp_ep = &TxIntrEPList[0]; |
| 3788 | |
| 3789 | /* Only insert one EP descriptor in list for Out Intr URBs. |
| 3790 | We can only handle Out Intr with interval of 128ms because |
| 3791 | it's not possible to insert several Out Intr EPs because they |
| 3792 | are not consumed by the DMA. */ |
| 3793 | if(usb_pipeout(urb->pipe)) { |
| 3794 | ep_desc = urb_priv->intr_ep_pool[0]; |
| 3795 | ASSERT(ep_desc); |
| 3796 | ep_desc->next = tmp_ep->next; |
| 3797 | tmp_ep->next = virt_to_phys(ep_desc); |
| 3798 | i++; |
| 3799 | } else { |
| 3800 | /* Loop through Intr EP descriptor list and insert EP for URB at |
| 3801 | specified interval */ |
| 3802 | do { |
| 3803 | /* Each EP descriptor with eof flag sat signals a new frame */ |
| 3804 | if (tmp_ep->command & IO_MASK(USB_EP_command, eof)) { |
| 3805 | /* Insert a EP from URBs EP pool at correct interval */ |
| 3806 | if ((i % urb_priv->interval) == 0) { |
| 3807 | ep_desc = urb_priv->intr_ep_pool[pool_idx]; |
| 3808 | ASSERT(ep_desc); |
| 3809 | ep_desc->next = tmp_ep->next; |
| 3810 | tmp_ep->next = virt_to_phys(ep_desc); |
| 3811 | pool_idx++; |
| 3812 | ASSERT(pool_idx <= urb_priv->intr_ep_pool_length); |
| 3813 | } |
| 3814 | i++; |
| 3815 | } |
| 3816 | tmp_ep = (struct USB_EP_Desc *)phys_to_virt(tmp_ep->next); |
| 3817 | } while(tmp_ep != &TxIntrEPList[0]); |
| 3818 | } |
| 3819 | |
| 3820 | intr_dbg("Added SBs to intr epid %d: %s interval:%d (%d EP)\n", epid, |
| 3821 | sblist_to_str(urb_priv->first_sb), urb_priv->interval, pool_idx); |
| 3822 | |
| 3823 | /* We start the DMA sub channel without checking if it's running or not, |
| 3824 | because: |
| 3825 | 1) If it's already running, issuing the start command is a nop. |
| 3826 | 2) We avoid a test-and-set race condition. */ |
| 3827 | *R_DMA_CH8_SUB2_CMD = IO_STATE(R_DMA_CH8_SUB2_CMD, cmd, start); |
| 3828 | } |
| 3829 | |
| 3830 | static void tc_dma_process_isoc_urb(struct urb *urb) { |
| 3831 | unsigned long flags; |
| 3832 | struct crisv10_urb_priv *urb_priv = urb->hcpriv; |
| 3833 | int epid; |
| 3834 | |
| 3835 | /* Do not disturb us while fiddling with EPs and epids */ |
| 3836 | local_irq_save(flags); |
| 3837 | |
| 3838 | ASSERT(urb_priv); |
| 3839 | ASSERT(urb_priv->first_sb); |
| 3840 | epid = urb_priv->epid; |
| 3841 | |
| 3842 | if(activeUrbList[epid] == NULL) { |
| 3843 | /* EP is idle, so make this URB active */ |
| 3844 | activeUrbList[epid] = urb; |
| 3845 | urb_list_del(urb, epid); |
| 3846 | ASSERT(TxIsocEPList[epid].sub == 0); |
| 3847 | ASSERT(!(TxIsocEPList[epid].command & |
| 3848 | IO_STATE(USB_EP_command, enable, yes))); |
| 3849 | |
| 3850 | /* Differentiate between In and Out Isoc. Because In SBs are not consumed*/ |
| 3851 | if(usb_pipein(urb->pipe)) { |
| 3852 | /* Each EP for In Isoc will have only one SB descriptor, setup when |
| 3853 | submitting the first active urb. We do it here by copying from URBs |
| 3854 | pre-allocated SB. */ |
| 3855 | memcpy((void *)&(TxIsocSBList[epid]), urb_priv->first_sb, |
| 3856 | sizeof(TxIsocSBList[epid])); |
| 3857 | TxIsocEPList[epid].hw_len = 0; |
| 3858 | TxIsocEPList[epid].sub = virt_to_phys(&(TxIsocSBList[epid])); |
| 3859 | } else { |
| 3860 | /* For Out Isoc we attach the pre-allocated list of SBs for the URB */ |
| 3861 | TxIsocEPList[epid].hw_len = 0; |
| 3862 | TxIsocEPList[epid].sub = virt_to_phys(urb_priv->first_sb); |
| 3863 | |
| 3864 | isoc_dbg("Attached first URB:0x%x[%d] to epid:%d first_sb:0x%x" |
| 3865 | " last_sb::0x%x\n", |
| 3866 | (unsigned int)urb, urb_priv->urb_num, epid, |
| 3867 | (unsigned int)(urb_priv->first_sb), |
| 3868 | (unsigned int)(urb_priv->last_sb)); |
| 3869 | } |
| 3870 | |
| 3871 | if (urb->transfer_flags & URB_ISO_ASAP) { |
| 3872 | /* The isoc transfer should be started as soon as possible. The |
| 3873 | start_frame field is a return value if URB_ISO_ASAP was set. Comparing |
| 3874 | R_USB_FM_NUMBER with a USB Chief trace shows that the first isoc IN |
| 3875 | token is sent 2 frames later. I'm not sure how this affects usage of |
| 3876 | the start_frame field by the device driver, or how it affects things |
| 3877 | when USB_ISO_ASAP is not set, so therefore there's no compensation for |
| 3878 | the 2 frame "lag" here. */ |
| 3879 | urb->start_frame = (*R_USB_FM_NUMBER & 0x7ff); |
| 3880 | TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); |
| 3881 | urb_priv->urb_state = STARTED; |
| 3882 | isoc_dbg("URB_ISO_ASAP set, urb->start_frame set to %d\n", |
| 3883 | urb->start_frame); |
| 3884 | } else { |
| 3885 | /* Not started yet. */ |
| 3886 | urb_priv->urb_state = NOT_STARTED; |
| 3887 | isoc_warn("urb_priv->urb_state set to NOT_STARTED for URB:0x%x\n", |
| 3888 | (unsigned int)urb); |
| 3889 | } |
| 3890 | |
| 3891 | } else { |
| 3892 | /* An URB is already active on the EP. Leave URB in queue and let |
| 3893 | finish_isoc_urb process it after current active URB */ |
| 3894 | ASSERT(TxIsocEPList[epid].sub != 0); |
| 3895 | |
| 3896 | if(usb_pipein(urb->pipe)) { |
| 3897 | /* Because there already is a active In URB on this epid we do nothing |
| 3898 | and the finish_isoc_urb() function will handle switching to next URB*/ |
| 3899 | |
| 3900 | } else { /* For Out Isoc, insert new URBs traffic last in SB-list. */ |
| 3901 | struct USB_SB_Desc *temp_sb_desc; |
| 3902 | |
| 3903 | /* Set state STARTED to all Out Isoc URBs added to SB list because we |
| 3904 | don't know how many of them that are finished before descr interrupt*/ |
| 3905 | urb_priv->urb_state = STARTED; |
| 3906 | |
| 3907 | /* Find end of current SB list by looking for SB with eol flag sat */ |
| 3908 | temp_sb_desc = phys_to_virt(TxIsocEPList[epid].sub); |
| 3909 | while ((temp_sb_desc->command & IO_MASK(USB_SB_command, eol)) != |
| 3910 | IO_STATE(USB_SB_command, eol, yes)) { |
| 3911 | ASSERT(temp_sb_desc->next); |
| 3912 | temp_sb_desc = phys_to_virt(temp_sb_desc->next); |
| 3913 | } |
| 3914 | |
| 3915 | isoc_dbg("Appended URB:0x%x[%d] (first:0x%x last:0x%x) to epid:%d" |
| 3916 | " sub:0x%x eol:0x%x\n", |
| 3917 | (unsigned int)urb, urb_priv->urb_num, |
| 3918 | (unsigned int)(urb_priv->first_sb), |
| 3919 | (unsigned int)(urb_priv->last_sb), epid, |
| 3920 | (unsigned int)phys_to_virt(TxIsocEPList[epid].sub), |
| 3921 | (unsigned int)temp_sb_desc); |
| 3922 | |
| 3923 | /* Next pointer must be set before eol is removed. */ |
| 3924 | temp_sb_desc->next = virt_to_phys(urb_priv->first_sb); |
| 3925 | /* Clear the previous end of list flag since there is a new in the |
| 3926 | added SB descriptor list. */ |
| 3927 | temp_sb_desc->command &= ~IO_MASK(USB_SB_command, eol); |
| 3928 | |
| 3929 | if (!(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))) { |
| 3930 | __u32 epid_data; |
| 3931 | /* 8.8.5 in Designer's Reference says we should check for and correct |
| 3932 | any errors in the EP here. That should not be necessary if |
| 3933 | epid_attn is handled correctly, so we assume all is ok. */ |
| 3934 | epid_data = etrax_epid_iso_get(epid); |
| 3935 | if (IO_EXTRACT(R_USB_EPT_DATA, error_code, epid_data) != |
| 3936 | IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) { |
| 3937 | isoc_err("Disabled Isoc EP with error:%d on epid:%d when appending" |
| 3938 | " URB:0x%x[%d]\n", |
| 3939 | IO_EXTRACT(R_USB_EPT_DATA, error_code, epid_data), epid, |
| 3940 | (unsigned int)urb, urb_priv->urb_num); |
| 3941 | } |
| 3942 | |
| 3943 | /* The SB list was exhausted. */ |
| 3944 | if (virt_to_phys(urb_priv->last_sb) != TxIsocEPList[epid].sub) { |
| 3945 | /* The new sublist did not get processed before the EP was |
| 3946 | disabled. Setup the EP again. */ |
| 3947 | |
| 3948 | if(virt_to_phys(temp_sb_desc) == TxIsocEPList[epid].sub) { |
| 3949 | isoc_dbg("EP for epid:%d stoped at SB:0x%x before newly inserted" |
| 3950 | ", restarting from this URBs SB:0x%x\n", |
| 3951 | epid, (unsigned int)temp_sb_desc, |
| 3952 | (unsigned int)(urb_priv->first_sb)); |
| 3953 | TxIsocEPList[epid].hw_len = 0; |
| 3954 | TxIsocEPList[epid].sub = virt_to_phys(urb_priv->first_sb); |
| 3955 | urb->start_frame = (*R_USB_FM_NUMBER & 0x7ff); |
| 3956 | /* Enable the EP again so data gets processed this time */ |
| 3957 | TxIsocEPList[epid].command |= |
| 3958 | IO_STATE(USB_EP_command, enable, yes); |
| 3959 | |
| 3960 | } else { |
| 3961 | /* The EP has been disabled but not at end this URB (god knows |
| 3962 | where). This should generate an epid_attn so we should not be |
| 3963 | here */ |
| 3964 | isoc_warn("EP was disabled on sb:0x%x before SB list for" |
| 3965 | " URB:0x%x[%d] got processed\n", |
| 3966 | (unsigned int)phys_to_virt(TxIsocEPList[epid].sub), |
| 3967 | (unsigned int)urb, urb_priv->urb_num); |
| 3968 | } |
| 3969 | } else { |
| 3970 | /* This might happend if we are slow on this function and isn't |
| 3971 | an error. */ |
| 3972 | isoc_dbg("EP was disabled and finished with SBs from appended" |
| 3973 | " URB:0x%x[%d]\n", (unsigned int)urb, urb_priv->urb_num); |
| 3974 | } |
| 3975 | } |
| 3976 | } |
| 3977 | } |
| 3978 | |
| 3979 | /* Start the DMA sub channel */ |
| 3980 | *R_DMA_CH8_SUB3_CMD = IO_STATE(R_DMA_CH8_SUB3_CMD, cmd, start); |
| 3981 | |
| 3982 | local_irq_restore(flags); |
| 3983 | } |
| 3984 | |
| 3985 | static void tc_dma_unlink_intr_urb(struct urb *urb) { |
| 3986 | struct crisv10_urb_priv *urb_priv = urb->hcpriv; |
| 3987 | volatile struct USB_EP_Desc *first_ep; /* First EP in the list. */ |
| 3988 | volatile struct USB_EP_Desc *curr_ep; /* Current EP, the iterator. */ |
| 3989 | volatile struct USB_EP_Desc *next_ep; /* The EP after current. */ |
| 3990 | volatile struct USB_EP_Desc *unlink_ep; /* The one we should remove from |
| 3991 | the list. */ |
| 3992 | int count = 0; |
| 3993 | volatile int timeout = 10000; |
| 3994 | int epid; |
| 3995 | |
| 3996 | /* Read 8.8.4 in Designer's Reference, "Removing an EP Descriptor from the |
| 3997 | List". */ |
| 3998 | ASSERT(urb_priv); |
| 3999 | ASSERT(urb_priv->intr_ep_pool_length > 0); |
| 4000 | epid = urb_priv->epid; |
| 4001 | |
| 4002 | /* First disable all Intr EPs belonging to epid for this URB */ |
| 4003 | first_ep = &TxIntrEPList[0]; |
| 4004 | curr_ep = first_ep; |
| 4005 | do { |
| 4006 | next_ep = (struct USB_EP_Desc *)phys_to_virt(curr_ep->next); |
| 4007 | if (IO_EXTRACT(USB_EP_command, epid, next_ep->command) == epid) { |
| 4008 | /* Disable EP */ |
| 4009 | next_ep->command &= ~IO_MASK(USB_EP_command, enable); |
| 4010 | } |
| 4011 | curr_ep = phys_to_virt(curr_ep->next); |
| 4012 | } while (curr_ep != first_ep); |
| 4013 | |
| 4014 | |
| 4015 | /* Now unlink all EPs belonging to this epid from Descr list */ |
| 4016 | first_ep = &TxIntrEPList[0]; |
| 4017 | curr_ep = first_ep; |
| 4018 | do { |
| 4019 | next_ep = (struct USB_EP_Desc *)phys_to_virt(curr_ep->next); |
| 4020 | if (IO_EXTRACT(USB_EP_command, epid, next_ep->command) == epid) { |
| 4021 | /* This is the one we should unlink. */ |
| 4022 | unlink_ep = next_ep; |
| 4023 | |
| 4024 | /* Actually unlink the EP from the DMA list. */ |
| 4025 | curr_ep->next = unlink_ep->next; |
| 4026 | |
| 4027 | /* Wait until the DMA is no longer at this descriptor. */ |
| 4028 | while((*R_DMA_CH8_SUB2_EP == virt_to_phys(unlink_ep)) && |
| 4029 | (timeout-- > 0)); |
| 4030 | |
| 4031 | count++; |
| 4032 | } |
| 4033 | curr_ep = phys_to_virt(curr_ep->next); |
| 4034 | } while (curr_ep != first_ep); |
| 4035 | |
| 4036 | if(count != urb_priv->intr_ep_pool_length) { |
| 4037 | intr_warn("Unlinked %d of %d Intr EPs for URB:0x%x[%d]\n", count, |
| 4038 | urb_priv->intr_ep_pool_length, (unsigned int)urb, |
| 4039 | urb_priv->urb_num); |
| 4040 | } else { |
| 4041 | intr_dbg("Unlinked %d of %d interrupt EPs for URB:0x%x\n", count, |
| 4042 | urb_priv->intr_ep_pool_length, (unsigned int)urb); |
| 4043 | } |
| 4044 | } |
| 4045 | |
| 4046 | static void check_finished_bulk_tx_epids(struct usb_hcd *hcd, |
| 4047 | int timer) { |
| 4048 | unsigned long flags; |
| 4049 | int epid; |
| 4050 | struct urb *urb; |
| 4051 | struct crisv10_urb_priv * urb_priv; |
| 4052 | __u32 epid_data; |
| 4053 | |
| 4054 | /* Protect TxEPList */ |
| 4055 | local_irq_save(flags); |
| 4056 | |
| 4057 | for (epid = 0; epid < NBR_OF_EPIDS; epid++) { |
| 4058 | /* A finished EP descriptor is disabled and has a valid sub pointer */ |
| 4059 | if (!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) && |
| 4060 | (TxBulkEPList[epid].sub != 0)) { |
| 4061 | |
| 4062 | /* Get the active URB for this epid */ |
| 4063 | urb = activeUrbList[epid]; |
| 4064 | /* Sanity checks */ |
| 4065 | ASSERT(urb); |
| 4066 | urb_priv = (struct crisv10_urb_priv *)urb->hcpriv; |
| 4067 | ASSERT(urb_priv); |
| 4068 | |
| 4069 | /* Only handle finished out Bulk EPs here, |
| 4070 | and let RX interrupt take care of the rest */ |
| 4071 | if(!epid_out_traffic(epid)) { |
| 4072 | continue; |
| 4073 | } |
| 4074 | |
| 4075 | if(timer) { |
| 4076 | tc_warn("Found finished %s Bulk epid:%d URB:0x%x[%d] from timeout\n", |
| 4077 | epid_out_traffic(epid) ? "Out" : "In", epid, (unsigned int)urb, |
| 4078 | urb_priv->urb_num); |
| 4079 | } else { |
| 4080 | tc_dbg("Found finished %s Bulk epid:%d URB:0x%x[%d] from interrupt\n", |
| 4081 | epid_out_traffic(epid) ? "Out" : "In", epid, (unsigned int)urb, |
| 4082 | urb_priv->urb_num); |
| 4083 | } |
| 4084 | |
| 4085 | if(urb_priv->urb_state == UNLINK) { |
| 4086 | /* This Bulk URB is requested to be unlinked, that means that the EP |
| 4087 | has been disabled and we might not have sent all data */ |
| 4088 | tc_finish_urb(hcd, urb, urb->status); |
| 4089 | continue; |
| 4090 | } |
| 4091 | |
| 4092 | ASSERT(urb_priv->urb_state == STARTED); |
| 4093 | if (phys_to_virt(TxBulkEPList[epid].sub) != urb_priv->last_sb) { |
| 4094 | tc_err("Endpoint got disabled before reaching last sb\n"); |
| 4095 | } |
| 4096 | |
| 4097 | epid_data = etrax_epid_get(epid); |
| 4098 | if (IO_EXTRACT(R_USB_EPT_DATA, error_code, epid_data) == |
| 4099 | IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) { |
| 4100 | /* This means that the endpoint has no error, is disabled |
| 4101 | and had inserted traffic, i.e. transfer successfully completed. */ |
| 4102 | tc_finish_urb(hcd, urb, 0); |
| 4103 | } else { |
| 4104 | /* Shouldn't happen. We expect errors to be caught by epid |
| 4105 | attention. */ |
| 4106 | tc_err("Found disabled bulk EP desc (epid:%d error:%d)\n", |
| 4107 | epid, IO_EXTRACT(R_USB_EPT_DATA, error_code, epid_data)); |
| 4108 | } |
| 4109 | } else { |
| 4110 | tc_dbg("Ignoring In Bulk epid:%d, let RX interrupt handle it\n", epid); |
| 4111 | } |
| 4112 | } |
| 4113 | |
| 4114 | local_irq_restore(flags); |
| 4115 | } |
| 4116 | |
| 4117 | static void check_finished_ctrl_tx_epids(struct usb_hcd *hcd) { |
| 4118 | unsigned long flags; |
| 4119 | int epid; |
| 4120 | struct urb *urb; |
| 4121 | struct crisv10_urb_priv * urb_priv; |
| 4122 | __u32 epid_data; |
| 4123 | |
| 4124 | /* Protect TxEPList */ |
| 4125 | local_irq_save(flags); |
| 4126 | |
| 4127 | for (epid = 0; epid < NBR_OF_EPIDS; epid++) { |
| 4128 | if(epid == DUMMY_EPID) |
| 4129 | continue; |
| 4130 | |
| 4131 | /* A finished EP descriptor is disabled and has a valid sub pointer */ |
| 4132 | if (!(TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable)) && |
| 4133 | (TxCtrlEPList[epid].sub != 0)) { |
| 4134 | |
| 4135 | /* Get the active URB for this epid */ |
| 4136 | urb = activeUrbList[epid]; |
| 4137 | |
| 4138 | if(urb == NULL) { |
| 4139 | tc_warn("Found finished Ctrl epid:%d with no active URB\n", epid); |
| 4140 | continue; |
| 4141 | } |
| 4142 | |
| 4143 | /* Sanity checks */ |
| 4144 | ASSERT(usb_pipein(urb->pipe)); |
| 4145 | urb_priv = (struct crisv10_urb_priv *)urb->hcpriv; |
| 4146 | ASSERT(urb_priv); |
| 4147 | if (phys_to_virt(TxCtrlEPList[epid].sub) != urb_priv->last_sb) { |
| 4148 | tc_err("Endpoint got disabled before reaching last sb\n"); |
| 4149 | } |
| 4150 | |
| 4151 | epid_data = etrax_epid_get(epid); |
| 4152 | if (IO_EXTRACT(R_USB_EPT_DATA, error_code, epid_data) == |
| 4153 | IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) { |
| 4154 | /* This means that the endpoint has no error, is disabled |
| 4155 | and had inserted traffic, i.e. transfer successfully completed. */ |
| 4156 | |
| 4157 | /* Check if RX-interrupt for In Ctrl has been processed before |
| 4158 | finishing the URB */ |
| 4159 | if(urb_priv->ctrl_rx_done) { |
| 4160 | tc_dbg("Finishing In Ctrl URB:0x%x[%d] in tx_interrupt\n", |
| 4161 | (unsigned int)urb, urb_priv->urb_num); |
| 4162 | tc_finish_urb(hcd, urb, 0); |
| 4163 | } else { |
| 4164 | /* If we get zout descriptor interrupt before RX was done for a |
| 4165 | In Ctrl transfer, then we flag that and it will be finished |
| 4166 | in the RX-Interrupt */ |
| 4167 | urb_priv->ctrl_zout_done = 1; |
| 4168 | tc_dbg("Got zout descr interrupt before RX interrupt\n"); |
| 4169 | } |
| 4170 | } else { |
| 4171 | /* Shouldn't happen. We expect errors to be caught by epid |
| 4172 | attention. */ |
| 4173 | tc_err("Found disabled Ctrl EP desc (epid:%d URB:0x%x[%d]) error_code:%d\n", epid, (unsigned int)urb, urb_priv->urb_num, IO_EXTRACT(R_USB_EPT_DATA, error_code, epid_data)); |
| 4174 | __dump_ep_desc(&(TxCtrlEPList[epid])); |
| 4175 | __dump_ept_data(epid); |
| 4176 | } |
| 4177 | } |
| 4178 | } |
| 4179 | local_irq_restore(flags); |
| 4180 | } |
| 4181 | |
| 4182 | /* This function goes through all epids that are setup for Out Isoc transfers |
| 4183 | and marks (isoc_out_done) all queued URBs that the DMA has finished |
| 4184 | transfer for. |
| 4185 | No URB completetion is done here to make interrupt routine return quickly. |
| 4186 | URBs are completed later with help of complete_isoc_bottom_half() that |
| 4187 | becomes schedules when this functions is finished. */ |
| 4188 | static void check_finished_isoc_tx_epids(void) { |
| 4189 | unsigned long flags; |
| 4190 | int epid; |
| 4191 | struct urb *urb; |
| 4192 | struct crisv10_urb_priv * urb_priv; |
| 4193 | struct USB_SB_Desc* sb_desc; |
| 4194 | int epid_done; |
| 4195 | |
| 4196 | /* Protect TxIsocEPList */ |
| 4197 | local_irq_save(flags); |
| 4198 | |
| 4199 | for (epid = 0; epid < NBR_OF_EPIDS; epid++) { |
| 4200 | if (TxIsocEPList[epid].sub == 0 || epid == INVALID_EPID || |
| 4201 | !epid_out_traffic(epid)) { |
| 4202 | /* Nothing here to see. */ |
| 4203 | continue; |
| 4204 | } |
| 4205 | ASSERT(epid_inuse(epid)); |
| 4206 | ASSERT(epid_isoc(epid)); |
| 4207 | |
| 4208 | sb_desc = phys_to_virt(TxIsocEPList[epid].sub); |
| 4209 | /* Find the last descriptor of the currently active URB for this ep. |
| 4210 | This is the first descriptor in the sub list marked for a descriptor |
| 4211 | interrupt. */ |
| 4212 | while (sb_desc && !IO_EXTRACT(USB_SB_command, intr, sb_desc->command)) { |
| 4213 | sb_desc = sb_desc->next ? phys_to_virt(sb_desc->next) : 0; |
| 4214 | } |
| 4215 | ASSERT(sb_desc); |
| 4216 | |
| 4217 | isoc_dbg("Descr IRQ checking epid:%d sub:0x%x intr:0x%x\n", |
| 4218 | epid, (unsigned int)phys_to_virt(TxIsocEPList[epid].sub), |
| 4219 | (unsigned int)sb_desc); |
| 4220 | |
| 4221 | urb = activeUrbList[epid]; |
| 4222 | if(urb == NULL) { |
| 4223 | isoc_err("Isoc Descr irq on epid:%d with no active URB\n", epid); |
| 4224 | continue; |
| 4225 | } |
| 4226 | |
| 4227 | epid_done = 0; |
| 4228 | while(urb && !epid_done) { |
| 4229 | /* Sanity check. */ |
| 4230 | ASSERT(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS); |
| 4231 | ASSERT(usb_pipeout(urb->pipe)); |
| 4232 | |
| 4233 | urb_priv = (struct crisv10_urb_priv *)urb->hcpriv; |
| 4234 | ASSERT(urb_priv); |
| 4235 | ASSERT(urb_priv->urb_state == STARTED || |
| 4236 | urb_priv->urb_state == UNLINK); |
| 4237 | |
| 4238 | if (sb_desc != urb_priv->last_sb) { |
| 4239 | /* This urb has been sent. */ |
| 4240 | urb_priv->isoc_out_done = 1; |
| 4241 | |
| 4242 | } else { /* Found URB that has last_sb as the interrupt reason */ |
| 4243 | |
| 4244 | /* Check if EP has been disabled, meaning that all transfers are done*/ |
| 4245 | if(!(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))) { |
| 4246 | ASSERT((sb_desc->command & IO_MASK(USB_SB_command, eol)) == |
| 4247 | IO_STATE(USB_SB_command, eol, yes)); |
| 4248 | ASSERT(sb_desc->next == 0); |
| 4249 | urb_priv->isoc_out_done = 1; |
| 4250 | } else { |
| 4251 | isoc_dbg("Skipping URB:0x%x[%d] because EP not disabled yet\n", |
| 4252 | (unsigned int)urb, urb_priv->urb_num); |
| 4253 | } |
| 4254 | /* Stop looking any further in queue */ |
| 4255 | epid_done = 1; |
| 4256 | } |
| 4257 | |
| 4258 | if (!epid_done) { |
| 4259 | if(urb == activeUrbList[epid]) { |
| 4260 | urb = urb_list_first(epid); |
| 4261 | } else { |
| 4262 | urb = urb_list_next(urb, epid); |
| 4263 | } |
| 4264 | } |
| 4265 | } /* END: while(urb && !epid_done) */ |
| 4266 | } |
| 4267 | |
| 4268 | local_irq_restore(flags); |
| 4269 | } |
| 4270 | |
| 4271 | |
| 4272 | /* This is where the Out Isoc URBs are realy completed. This function is |
| 4273 | scheduled from tc_dma_tx_interrupt() when one or more Out Isoc transfers |
| 4274 | are done. This functions completes all URBs earlier marked with |
| 4275 | isoc_out_done by fast interrupt routine check_finished_isoc_tx_epids() */ |
| 4276 | |
| 4277 | static void complete_isoc_bottom_half(struct work_struct* work) { |
| 4278 | struct crisv10_isoc_complete_data *comp_data; |
| 4279 | struct usb_iso_packet_descriptor *packet; |
| 4280 | struct crisv10_urb_priv * urb_priv; |
| 4281 | unsigned long flags; |
| 4282 | struct urb* urb; |
| 4283 | int epid_done; |
| 4284 | int epid; |
| 4285 | int i; |
| 4286 | |
| 4287 | comp_data = container_of(work, struct crisv10_isoc_complete_data, usb_bh); |
| 4288 | |
| 4289 | local_irq_save(flags); |
| 4290 | |
| 4291 | for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { |
| 4292 | if(!epid_inuse(epid) || !epid_isoc(epid) || !epid_out_traffic(epid) || epid == DUMMY_EPID) { |
| 4293 | /* Only check valid Out Isoc epids */ |
| 4294 | continue; |
| 4295 | } |
| 4296 | |
| 4297 | isoc_dbg("Isoc bottom-half checking epid:%d, sub:0x%x\n", epid, |
| 4298 | (unsigned int)phys_to_virt(TxIsocEPList[epid].sub)); |
| 4299 | |
| 4300 | /* The descriptor interrupt handler has marked all transmitted Out Isoc |
| 4301 | URBs with isoc_out_done. Now we traverse all epids and for all that |
| 4302 | have out Isoc traffic we traverse its URB list and complete the |
| 4303 | transmitted URBs. */ |
| 4304 | epid_done = 0; |
| 4305 | while (!epid_done) { |
| 4306 | |
| 4307 | /* Get the active urb (if any) */ |
| 4308 | urb = activeUrbList[epid]; |
| 4309 | if (urb == 0) { |
| 4310 | isoc_dbg("No active URB on epid:%d anymore\n", epid); |
| 4311 | epid_done = 1; |
| 4312 | continue; |
| 4313 | } |
| 4314 | |
| 4315 | /* Sanity check. */ |
| 4316 | ASSERT(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS); |
| 4317 | ASSERT(usb_pipeout(urb->pipe)); |
| 4318 | |
| 4319 | urb_priv = (struct crisv10_urb_priv *)urb->hcpriv; |
| 4320 | ASSERT(urb_priv); |
| 4321 | |
| 4322 | if (!(urb_priv->isoc_out_done)) { |
| 4323 | /* We have reached URB that isn't flaged done yet, stop traversing. */ |
| 4324 | isoc_dbg("Stoped traversing Out Isoc URBs on epid:%d" |
| 4325 | " before not yet flaged URB:0x%x[%d]\n", |
| 4326 | epid, (unsigned int)urb, urb_priv->urb_num); |
| 4327 | epid_done = 1; |
| 4328 | continue; |
| 4329 | } |
| 4330 | |
| 4331 | /* This urb has been sent. */ |
| 4332 | isoc_dbg("Found URB:0x%x[%d] that is flaged isoc_out_done\n", |
| 4333 | (unsigned int)urb, urb_priv->urb_num); |
| 4334 | |
| 4335 | /* Set ok on transfered packets for this URB and finish it */ |
| 4336 | for (i = 0; i < urb->number_of_packets; i++) { |
| 4337 | packet = &urb->iso_frame_desc[i]; |
| 4338 | packet->status = 0; |
| 4339 | packet->actual_length = packet->length; |
| 4340 | } |
| 4341 | urb_priv->isoc_packet_counter = urb->number_of_packets; |
| 4342 | tc_finish_urb(comp_data->hcd, urb, 0); |
| 4343 | |
| 4344 | } /* END: while(!epid_done) */ |
| 4345 | } /* END: for(epid...) */ |
| 4346 | |
| 4347 | local_irq_restore(flags); |
| 4348 | kmem_cache_free(isoc_compl_cache, comp_data); |
| 4349 | } |
| 4350 | |
| 4351 | |
| 4352 | static void check_finished_intr_tx_epids(struct usb_hcd *hcd) { |
| 4353 | unsigned long flags; |
| 4354 | int epid; |
| 4355 | struct urb *urb; |
| 4356 | struct crisv10_urb_priv * urb_priv; |
| 4357 | volatile struct USB_EP_Desc *curr_ep; /* Current EP, the iterator. */ |
| 4358 | volatile struct USB_EP_Desc *next_ep; /* The EP after current. */ |
| 4359 | |
| 4360 | /* Protect TxintrEPList */ |
| 4361 | local_irq_save(flags); |
| 4362 | |
| 4363 | for (epid = 0; epid < NBR_OF_EPIDS; epid++) { |
| 4364 | if(!epid_inuse(epid) || !epid_intr(epid) || !epid_out_traffic(epid)) { |
| 4365 | /* Nothing to see on this epid. Only check valid Out Intr epids */ |
| 4366 | continue; |
| 4367 | } |
| 4368 | |
| 4369 | urb = activeUrbList[epid]; |
| 4370 | if(urb == 0) { |
| 4371 | intr_warn("Found Out Intr epid:%d with no active URB\n", epid); |
| 4372 | continue; |
| 4373 | } |
| 4374 | |
| 4375 | /* Sanity check. */ |
| 4376 | ASSERT(usb_pipetype(urb->pipe) == PIPE_INTERRUPT); |
| 4377 | ASSERT(usb_pipeout(urb->pipe)); |
| 4378 | |
| 4379 | urb_priv = (struct crisv10_urb_priv *)urb->hcpriv; |
| 4380 | ASSERT(urb_priv); |
| 4381 | |
| 4382 | /* Go through EPs between first and second sof-EP. It's here Out Intr EPs |
| 4383 | are inserted.*/ |
| 4384 | curr_ep = &TxIntrEPList[0]; |
| 4385 | do { |
| 4386 | next_ep = (struct USB_EP_Desc *)phys_to_virt(curr_ep->next); |
| 4387 | if(next_ep == urb_priv->intr_ep_pool[0]) { |
| 4388 | /* We found the Out Intr EP for this epid */ |
| 4389 | |
| 4390 | /* Disable it so it doesn't get processed again */ |
| 4391 | next_ep->command &= ~IO_MASK(USB_EP_command, enable); |
| 4392 | |
| 4393 | /* Finish the active Out Intr URB with status OK */ |
| 4394 | tc_finish_urb(hcd, urb, 0); |
| 4395 | } |
| 4396 | curr_ep = phys_to_virt(curr_ep->next); |
| 4397 | } while (curr_ep != &TxIntrEPList[1]); |
| 4398 | |
| 4399 | } |
| 4400 | local_irq_restore(flags); |
| 4401 | } |
| 4402 | |
| 4403 | /* Interrupt handler for DMA8/IRQ24 with subchannels (called from hardware intr) */ |
| 4404 | static irqreturn_t tc_dma_tx_interrupt(int irq, void *vhc) { |
| 4405 | struct usb_hcd *hcd = (struct usb_hcd*)vhc; |
| 4406 | ASSERT(hcd); |
| 4407 | |
| 4408 | if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub0_descr)) { |
| 4409 | /* Clear this interrupt */ |
| 4410 | *R_DMA_CH8_SUB0_CLR_INTR = IO_STATE(R_DMA_CH8_SUB0_CLR_INTR, clr_descr, do); |
| 4411 | restart_dma8_sub0(); |
| 4412 | } |
| 4413 | |
| 4414 | if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub1_descr)) { |
| 4415 | /* Clear this interrupt */ |
| 4416 | *R_DMA_CH8_SUB1_CLR_INTR = IO_STATE(R_DMA_CH8_SUB1_CLR_INTR, clr_descr, do); |
| 4417 | check_finished_ctrl_tx_epids(hcd); |
| 4418 | } |
| 4419 | |
| 4420 | if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub2_descr)) { |
| 4421 | /* Clear this interrupt */ |
| 4422 | *R_DMA_CH8_SUB2_CLR_INTR = IO_STATE(R_DMA_CH8_SUB2_CLR_INTR, clr_descr, do); |
| 4423 | check_finished_intr_tx_epids(hcd); |
| 4424 | } |
| 4425 | |
| 4426 | if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub3_descr)) { |
| 4427 | struct crisv10_isoc_complete_data* comp_data; |
| 4428 | |
| 4429 | /* Flag done Out Isoc for later completion */ |
| 4430 | check_finished_isoc_tx_epids(); |
| 4431 | |
| 4432 | /* Clear this interrupt */ |
| 4433 | *R_DMA_CH8_SUB3_CLR_INTR = IO_STATE(R_DMA_CH8_SUB3_CLR_INTR, clr_descr, do); |
| 4434 | /* Schedule bottom half of Out Isoc completion function. This function |
| 4435 | finishes the URBs marked with isoc_out_done */ |
| 4436 | comp_data = (struct crisv10_isoc_complete_data*) |
| 4437 | kmem_cache_alloc(isoc_compl_cache, GFP_ATOMIC); |
| 4438 | ASSERT(comp_data != NULL); |
| 4439 | comp_data ->hcd = hcd; |
| 4440 | |
| 4441 | INIT_WORK(&comp_data->usb_bh, complete_isoc_bottom_half); |
| 4442 | schedule_work(&comp_data->usb_bh); |
| 4443 | } |
| 4444 | |
| 4445 | return IRQ_HANDLED; |
| 4446 | } |
| 4447 | |
| 4448 | /* Interrupt handler for DMA9/IRQ25 (called from hardware intr) */ |
| 4449 | static irqreturn_t tc_dma_rx_interrupt(int irq, void *vhc) { |
| 4450 | unsigned long flags; |
| 4451 | struct urb *urb; |
| 4452 | struct usb_hcd *hcd = (struct usb_hcd*)vhc; |
| 4453 | struct crisv10_urb_priv *urb_priv; |
| 4454 | int epid = 0; |
| 4455 | int real_error; |
| 4456 | |
| 4457 | ASSERT(hcd); |
| 4458 | |
| 4459 | /* Clear this interrupt. */ |
| 4460 | *R_DMA_CH9_CLR_INTR = IO_STATE(R_DMA_CH9_CLR_INTR, clr_eop, do); |
| 4461 | |
| 4462 | /* Custom clear interrupt for this interrupt */ |
| 4463 | /* The reason we cli here is that we call the driver's callback functions. */ |
| 4464 | local_irq_save(flags); |
| 4465 | |
| 4466 | /* Note that this while loop assumes that all packets span only |
| 4467 | one rx descriptor. */ |
| 4468 | while(myNextRxDesc->status & IO_MASK(USB_IN_status, eop)) { |
| 4469 | epid = IO_EXTRACT(USB_IN_status, epid, myNextRxDesc->status); |
| 4470 | /* Get the active URB for this epid */ |
| 4471 | urb = activeUrbList[epid]; |
| 4472 | |
| 4473 | ASSERT(epid_inuse(epid)); |
| 4474 | if (!urb) { |
| 4475 | dma_err("No urb for epid %d in rx interrupt\n", epid); |
| 4476 | goto skip_out; |
| 4477 | } |
| 4478 | |
| 4479 | /* Check if any errors on epid */ |
| 4480 | real_error = 0; |
| 4481 | if (myNextRxDesc->status & IO_MASK(USB_IN_status, error)) { |
| 4482 | __u32 r_usb_ept_data; |
| 4483 | |
| 4484 | if (usb_pipeisoc(urb->pipe)) { |
| 4485 | r_usb_ept_data = etrax_epid_iso_get(epid); |
| 4486 | if((r_usb_ept_data & IO_MASK(R_USB_EPT_DATA_ISO, valid)) && |
| 4487 | (IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data) == 0) && |
| 4488 | (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata))) { |
| 4489 | /* Not an error, just a failure to receive an expected iso |
| 4490 | in packet in this frame. This is not documented |
| 4491 | in the designers reference. Continue processing. |
| 4492 | */ |
| 4493 | } else real_error = 1; |
| 4494 | } else real_error = 1; |
| 4495 | } |
| 4496 | |
| 4497 | if(real_error) { |
| 4498 | dma_err("Error in RX descr on epid:%d for URB 0x%x", |
| 4499 | epid, (unsigned int)urb); |
| 4500 | dump_ept_data(epid); |
| 4501 | dump_in_desc(myNextRxDesc); |
| 4502 | goto skip_out; |
| 4503 | } |
| 4504 | |
| 4505 | urb_priv = (struct crisv10_urb_priv *)urb->hcpriv; |
| 4506 | ASSERT(urb_priv); |
| 4507 | ASSERT(urb_priv->urb_state == STARTED || |
| 4508 | urb_priv->urb_state == UNLINK); |
| 4509 | |
| 4510 | if ((usb_pipetype(urb->pipe) == PIPE_BULK) || |
| 4511 | (usb_pipetype(urb->pipe) == PIPE_CONTROL) || |
| 4512 | (usb_pipetype(urb->pipe) == PIPE_INTERRUPT)) { |
| 4513 | |
| 4514 | /* We get nodata for empty data transactions, and the rx descriptor's |
| 4515 | hw_len field is not valid in that case. No data to copy in other |
| 4516 | words. */ |
| 4517 | if (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata)) { |
| 4518 | /* No data to copy */ |
| 4519 | } else { |
| 4520 | /* |
| 4521 | dma_dbg("Processing RX for URB:0x%x epid:%d (data:%d ofs:%d)\n", |
| 4522 | (unsigned int)urb, epid, myNextRxDesc->hw_len, |
| 4523 | urb_priv->rx_offset); |
| 4524 | */ |
| 4525 | /* Only copy data if URB isn't flaged to be unlinked*/ |
| 4526 | if(urb_priv->urb_state != UNLINK) { |
| 4527 | /* Make sure the data fits in the buffer. */ |
| 4528 | if(urb_priv->rx_offset + myNextRxDesc->hw_len |
| 4529 | <= urb->transfer_buffer_length) { |
| 4530 | |
| 4531 | /* Copy the data to URBs buffer */ |
| 4532 | memcpy(urb->transfer_buffer + urb_priv->rx_offset, |
| 4533 | phys_to_virt(myNextRxDesc->buf), myNextRxDesc->hw_len); |
| 4534 | urb_priv->rx_offset += myNextRxDesc->hw_len; |
| 4535 | } else { |
| 4536 | /* Signal overflow when returning URB */ |
| 4537 | urb->status = -EOVERFLOW; |
| 4538 | tc_finish_urb_later(hcd, urb, urb->status); |
| 4539 | } |
| 4540 | } |
| 4541 | } |
| 4542 | |
| 4543 | /* Check if it was the last packet in the transfer */ |
| 4544 | if (myNextRxDesc->status & IO_MASK(USB_IN_status, eot)) { |
| 4545 | /* Special handling for In Ctrl URBs. */ |
| 4546 | if(usb_pipecontrol(urb->pipe) && usb_pipein(urb->pipe) && |
| 4547 | !(urb_priv->ctrl_zout_done)) { |
| 4548 | /* Flag that RX part of Ctrl transfer is done. Because zout descr |
| 4549 | interrupt hasn't happend yet will the URB be finished in the |
| 4550 | TX-Interrupt. */ |
| 4551 | urb_priv->ctrl_rx_done = 1; |
| 4552 | tc_dbg("Not finishing In Ctrl URB:0x%x from rx_interrupt, waiting" |
| 4553 | " for zout\n", (unsigned int)urb); |
| 4554 | } else { |
| 4555 | tc_finish_urb(hcd, urb, 0); |
| 4556 | } |
| 4557 | } |
| 4558 | } else { /* ISOC RX */ |
| 4559 | /* |
| 4560 | isoc_dbg("Processing RX for epid:%d (URB:0x%x) ISOC pipe\n", |
| 4561 | epid, (unsigned int)urb); |
| 4562 | */ |
| 4563 | |
| 4564 | struct usb_iso_packet_descriptor *packet; |
| 4565 | |
| 4566 | if (urb_priv->urb_state == UNLINK) { |
| 4567 | isoc_warn("Ignoring Isoc Rx data for urb being unlinked.\n"); |
| 4568 | goto skip_out; |
| 4569 | } else if (urb_priv->urb_state == NOT_STARTED) { |
| 4570 | isoc_err("What? Got Rx data for Isoc urb that isn't started?\n"); |
| 4571 | goto skip_out; |
| 4572 | } |
| 4573 | |
| 4574 | packet = &urb->iso_frame_desc[urb_priv->isoc_packet_counter]; |
| 4575 | ASSERT(packet); |
| 4576 | packet->status = 0; |
| 4577 | |
| 4578 | if (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata)) { |
| 4579 | /* We get nodata for empty data transactions, and the rx descriptor's |
| 4580 | hw_len field is not valid in that case. We copy 0 bytes however to |
| 4581 | stay in synch. */ |
| 4582 | packet->actual_length = 0; |
| 4583 | } else { |
| 4584 | packet->actual_length = myNextRxDesc->hw_len; |
| 4585 | /* Make sure the data fits in the buffer. */ |
| 4586 | ASSERT(packet->actual_length <= packet->length); |
| 4587 | memcpy(urb->transfer_buffer + packet->offset, |
| 4588 | phys_to_virt(myNextRxDesc->buf), packet->actual_length); |
| 4589 | if(packet->actual_length > 0) |
| 4590 | isoc_dbg("Copied %d bytes, packet %d for URB:0x%x[%d]\n", |
| 4591 | packet->actual_length, urb_priv->isoc_packet_counter, |
| 4592 | (unsigned int)urb, urb_priv->urb_num); |
| 4593 | } |
| 4594 | |
| 4595 | /* Increment the packet counter. */ |
| 4596 | urb_priv->isoc_packet_counter++; |
| 4597 | |
| 4598 | /* Note that we don't care about the eot field in the rx descriptor's |
| 4599 | status. It will always be set for isoc traffic. */ |
| 4600 | if (urb->number_of_packets == urb_priv->isoc_packet_counter) { |
| 4601 | /* Complete the urb with status OK. */ |
| 4602 | tc_finish_urb(hcd, urb, 0); |
| 4603 | } |
| 4604 | } |
| 4605 | |
| 4606 | skip_out: |
| 4607 | myNextRxDesc->status = 0; |
| 4608 | myNextRxDesc->command |= IO_MASK(USB_IN_command, eol); |
| 4609 | myLastRxDesc->command &= ~IO_MASK(USB_IN_command, eol); |
| 4610 | myLastRxDesc = myNextRxDesc; |
| 4611 | myNextRxDesc = phys_to_virt(myNextRxDesc->next); |
| 4612 | flush_etrax_cache(); |
| 4613 | *R_DMA_CH9_CMD = IO_STATE(R_DMA_CH9_CMD, cmd, restart); |
| 4614 | } |
| 4615 | |
| 4616 | local_irq_restore(flags); |
| 4617 | |
| 4618 | return IRQ_HANDLED; |
| 4619 | } |
| 4620 | |
| 4621 | static void tc_bulk_start_timer_func(unsigned long dummy) { |
| 4622 | /* We might enable an EP descriptor behind the current DMA position when |
| 4623 | it's about to decide that there are no more bulk traffic and it should |
| 4624 | stop the bulk channel. |
| 4625 | Therefore we periodically check if the bulk channel is stopped and there |
| 4626 | is an enabled bulk EP descriptor, in which case we start the bulk |
| 4627 | channel. */ |
| 4628 | |
| 4629 | if (!(*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd))) { |
| 4630 | int epid; |
| 4631 | |
| 4632 | timer_dbg("bulk_start_timer: Bulk DMA channel not running.\n"); |
| 4633 | |
| 4634 | for (epid = 0; epid < NBR_OF_EPIDS; epid++) { |
| 4635 | if (TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| 4636 | timer_warn("Found enabled EP for epid %d, starting bulk channel.\n", |
| 4637 | epid); |
| 4638 | restart_dma8_sub0(); |
| 4639 | |
| 4640 | /* Restart the bulk eot timer since we just started the bulk channel.*/ |
| 4641 | mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL); |
| 4642 | |
| 4643 | /* No need to search any further. */ |
| 4644 | break; |
| 4645 | } |
| 4646 | } |
| 4647 | } else { |
| 4648 | timer_dbg("bulk_start_timer: Bulk DMA channel running.\n"); |
| 4649 | } |
| 4650 | } |
| 4651 | |
| 4652 | static void tc_bulk_eot_timer_func(unsigned long dummy) { |
| 4653 | struct usb_hcd *hcd = (struct usb_hcd*)dummy; |
| 4654 | ASSERT(hcd); |
| 4655 | /* Because of a race condition in the top half, we might miss a bulk eot. |
| 4656 | This timer "simulates" a bulk eot if we don't get one for a while, |
| 4657 | hopefully correcting the situation. */ |
| 4658 | timer_dbg("bulk_eot_timer timed out.\n"); |
| 4659 | check_finished_bulk_tx_epids(hcd, 1); |
| 4660 | } |
| 4661 | |
| 4662 | |
| 4663 | /*************************************************************/ |
| 4664 | /*************************************************************/ |
| 4665 | /* Device driver block */ |
| 4666 | /*************************************************************/ |
| 4667 | /*************************************************************/ |
| 4668 | |
| 4669 | /* Forward declarations for device driver functions */ |
| 4670 | static int devdrv_hcd_probe(struct device *); |
| 4671 | static int devdrv_hcd_remove(struct device *); |
| 4672 | #ifdef CONFIG_PM |
| 4673 | static int devdrv_hcd_suspend(struct device *, u32, u32); |
| 4674 | static int devdrv_hcd_resume(struct device *, u32); |
| 4675 | #endif /* CONFIG_PM */ |
| 4676 | |
| 4677 | /* the device */ |
| 4678 | static struct platform_device *devdrv_hc_platform_device; |
| 4679 | |
| 4680 | /* device driver interface */ |
| 4681 | static struct device_driver devdrv_hc_device_driver = { |
| 4682 | .name = (char *) hc_name, |
| 4683 | .bus = &platform_bus_type, |
| 4684 | |
| 4685 | .probe = devdrv_hcd_probe, |
| 4686 | .remove = devdrv_hcd_remove, |
| 4687 | |
| 4688 | #ifdef CONFIG_PM |
| 4689 | .suspend = devdrv_hcd_suspend, |
| 4690 | .resume = devdrv_hcd_resume, |
| 4691 | #endif /* CONFIG_PM */ |
| 4692 | }; |
| 4693 | |
| 4694 | /* initialize the host controller and driver */ |
| 4695 | static int __init_or_module devdrv_hcd_probe(struct device *dev) |
| 4696 | { |
| 4697 | struct usb_hcd *hcd; |
| 4698 | struct crisv10_hcd *crisv10_hcd; |
| 4699 | int retval; |
| 4700 | |
| 4701 | /* Check DMA burst length */ |
| 4702 | if(IO_EXTRACT(R_BUS_CONFIG, dma_burst, *R_BUS_CONFIG) != |
| 4703 | IO_STATE(R_BUS_CONFIG, dma_burst, burst32)) { |
| 4704 | devdrv_err("Invalid DMA burst length in Etrax 100LX," |
| 4705 | " needs to be 32\n"); |
| 4706 | return -EPERM; |
| 4707 | } |
| 4708 | |
| 4709 | hcd = usb_create_hcd(&crisv10_hc_driver, dev, dev_name(dev)); |
| 4710 | if (!hcd) |
| 4711 | return -ENOMEM; |
| 4712 | |
| 4713 | crisv10_hcd = hcd_to_crisv10_hcd(hcd); |
| 4714 | spin_lock_init(&crisv10_hcd->lock); |
| 4715 | crisv10_hcd->num_ports = num_ports(); |
| 4716 | crisv10_hcd->running = 0; |
| 4717 | |
| 4718 | dev_set_drvdata(dev, crisv10_hcd); |
| 4719 | |
| 4720 | devdrv_dbg("ETRAX USB IRQs HC:%d RX:%d TX:%d\n", ETRAX_USB_HC_IRQ, |
| 4721 | ETRAX_USB_RX_IRQ, ETRAX_USB_TX_IRQ); |
| 4722 | |
| 4723 | /* Print out chip version read from registers */ |
| 4724 | int rev_maj = *R_USB_REVISION & IO_MASK(R_USB_REVISION, major); |
| 4725 | int rev_min = *R_USB_REVISION & IO_MASK(R_USB_REVISION, minor); |
| 4726 | if(rev_min == 0) { |
| 4727 | devdrv_info("Etrax 100LX USB Revision %d v1,2\n", rev_maj); |
| 4728 | } else { |
| 4729 | devdrv_info("Etrax 100LX USB Revision %d v%d\n", rev_maj, rev_min); |
| 4730 | } |
| 4731 | |
| 4732 | devdrv_info("Bulk timer interval, start:%d eot:%d\n", |
| 4733 | BULK_START_TIMER_INTERVAL, |
| 4734 | BULK_EOT_TIMER_INTERVAL); |
| 4735 | |
| 4736 | |
| 4737 | /* Init root hub data structures */ |
| 4738 | if(rh_init()) { |
| 4739 | devdrv_err("Failed init data for Root Hub\n"); |
| 4740 | retval = -ENOMEM; |
| 4741 | } |
| 4742 | |
| 4743 | if(port_in_use(0)) { |
| 4744 | if (cris_request_io_interface(if_usb_1, "ETRAX100LX USB-HCD")) { |
| 4745 | printk(KERN_CRIT "usb-host: request IO interface usb1 failed"); |
| 4746 | retval = -EBUSY; |
| 4747 | goto out; |
| 4748 | } |
| 4749 | devdrv_info("Claimed interface for USB physical port 1\n"); |
| 4750 | } |
| 4751 | if(port_in_use(1)) { |
| 4752 | if (cris_request_io_interface(if_usb_2, "ETRAX100LX USB-HCD")) { |
| 4753 | /* Free first interface if second failed to be claimed */ |
| 4754 | if(port_in_use(0)) { |
| 4755 | cris_free_io_interface(if_usb_1); |
| 4756 | } |
| 4757 | printk(KERN_CRIT "usb-host: request IO interface usb2 failed"); |
| 4758 | retval = -EBUSY; |
| 4759 | goto out; |
| 4760 | } |
| 4761 | devdrv_info("Claimed interface for USB physical port 2\n"); |
| 4762 | } |
| 4763 | |
| 4764 | /* Init transfer controller structs and locks */ |
| 4765 | if((retval = tc_init(hcd)) != 0) { |
| 4766 | goto out; |
| 4767 | } |
| 4768 | |
| 4769 | /* Attach interrupt functions for DMA and init DMA controller */ |
| 4770 | if((retval = tc_dma_init(hcd)) != 0) { |
| 4771 | goto out; |
| 4772 | } |
| 4773 | |
| 4774 | /* Attach the top IRQ handler for USB controller interrupts */ |
| 4775 | if (request_irq(ETRAX_USB_HC_IRQ, crisv10_hcd_top_irq, 0, |
| 4776 | "ETRAX 100LX built-in USB (HC)", hcd)) { |
| 4777 | err("Could not allocate IRQ %d for USB", ETRAX_USB_HC_IRQ); |
| 4778 | retval = -EBUSY; |
| 4779 | goto out; |
| 4780 | } |
| 4781 | |
| 4782 | /* iso_eof is only enabled when isoc traffic is running. */ |
| 4783 | *R_USB_IRQ_MASK_SET = |
| 4784 | /* IO_STATE(R_USB_IRQ_MASK_SET, iso_eof, set) | */ |
| 4785 | IO_STATE(R_USB_IRQ_MASK_SET, bulk_eot, set) | |
| 4786 | IO_STATE(R_USB_IRQ_MASK_SET, epid_attn, set) | |
| 4787 | IO_STATE(R_USB_IRQ_MASK_SET, port_status, set) | |
| 4788 | IO_STATE(R_USB_IRQ_MASK_SET, ctl_status, set); |
| 4789 | |
| 4790 | |
| 4791 | crisv10_ready_wait(); |
| 4792 | /* Reset the USB interface. */ |
| 4793 | *R_USB_COMMAND = |
| 4794 | IO_STATE(R_USB_COMMAND, port_sel, nop) | |
| 4795 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| 4796 | IO_STATE(R_USB_COMMAND, ctrl_cmd, reset); |
| 4797 | |
| 4798 | /* Designer's Reference, p. 8 - 10 says we should Initate R_USB_FM_PSTART to |
| 4799 | 0x2A30 (10800), to guarantee that control traffic gets 10% of the |
| 4800 | bandwidth, and periodic transfer may allocate the rest (90%). |
| 4801 | This doesn't work though. |
| 4802 | The value 11960 is chosen to be just after the SOF token, with a couple |
| 4803 | of bit times extra for possible bit stuffing. */ |
| 4804 | *R_USB_FM_PSTART = IO_FIELD(R_USB_FM_PSTART, value, 11960); |
| 4805 | |
| 4806 | crisv10_ready_wait(); |
| 4807 | /* Configure the USB interface as a host controller. */ |
| 4808 | *R_USB_COMMAND = |
| 4809 | IO_STATE(R_USB_COMMAND, port_sel, nop) | |
| 4810 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| 4811 | IO_STATE(R_USB_COMMAND, ctrl_cmd, host_config); |
| 4812 | |
| 4813 | |
| 4814 | /* Check so controller not busy before enabling ports */ |
| 4815 | crisv10_ready_wait(); |
| 4816 | |
| 4817 | /* Enable selected USB ports */ |
| 4818 | if(port_in_use(0)) { |
| 4819 | *R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, no); |
| 4820 | } else { |
| 4821 | *R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, yes); |
| 4822 | } |
| 4823 | if(port_in_use(1)) { |
| 4824 | *R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, no); |
| 4825 | } else { |
| 4826 | *R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, yes); |
| 4827 | } |
| 4828 | |
| 4829 | crisv10_ready_wait(); |
| 4830 | /* Start processing of USB traffic. */ |
| 4831 | *R_USB_COMMAND = |
| 4832 | IO_STATE(R_USB_COMMAND, port_sel, nop) | |
| 4833 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| 4834 | IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run); |
| 4835 | |
| 4836 | /* Do not continue probing initialization before USB interface is done */ |
| 4837 | crisv10_ready_wait(); |
| 4838 | |
| 4839 | /* Register our Host Controller to USB Core |
| 4840 | * Finish the remaining parts of generic HCD initialization: allocate the |
| 4841 | * buffers of consistent memory, register the bus |
| 4842 | * and call the driver's reset() and start() routines. */ |
| 4843 | retval = usb_add_hcd(hcd, ETRAX_USB_HC_IRQ, IRQF_DISABLED); |
| 4844 | if (retval != 0) { |
| 4845 | devdrv_err("Failed registering HCD driver\n"); |
| 4846 | goto out; |
| 4847 | } |
| 4848 | |
| 4849 | return 0; |
| 4850 | |
| 4851 | out: |
| 4852 | devdrv_hcd_remove(dev); |
| 4853 | return retval; |
| 4854 | } |
| 4855 | |
| 4856 | |
| 4857 | /* cleanup after the host controller and driver */ |
| 4858 | static int __init_or_module devdrv_hcd_remove(struct device *dev) |
| 4859 | { |
| 4860 | struct crisv10_hcd *crisv10_hcd = dev_get_drvdata(dev); |
| 4861 | struct usb_hcd *hcd; |
| 4862 | |
| 4863 | if (!crisv10_hcd) |
| 4864 | return 0; |
| 4865 | hcd = crisv10_hcd_to_hcd(crisv10_hcd); |
| 4866 | |
| 4867 | |
| 4868 | /* Stop USB Controller in Etrax 100LX */ |
| 4869 | crisv10_hcd_reset(hcd); |
| 4870 | |
| 4871 | usb_remove_hcd(hcd); |
| 4872 | devdrv_dbg("Removed HCD from USB Core\n"); |
| 4873 | |
| 4874 | /* Free USB Controller IRQ */ |
| 4875 | free_irq(ETRAX_USB_HC_IRQ, NULL); |
| 4876 | |
| 4877 | /* Free resources */ |
| 4878 | tc_dma_destroy(); |
| 4879 | tc_destroy(); |
| 4880 | |
| 4881 | |
| 4882 | if(port_in_use(0)) { |
| 4883 | cris_free_io_interface(if_usb_1); |
| 4884 | } |
| 4885 | if(port_in_use(1)) { |
| 4886 | cris_free_io_interface(if_usb_2); |
| 4887 | } |
| 4888 | |
| 4889 | devdrv_dbg("Freed all claimed resources\n"); |
| 4890 | |
| 4891 | return 0; |
| 4892 | } |
| 4893 | |
| 4894 | |
| 4895 | #ifdef CONFIG_PM |
| 4896 | |
| 4897 | static int devdrv_hcd_suspend(struct usb_hcd *hcd, u32 state, u32 level) |
| 4898 | { |
| 4899 | return 0; /* no-op for now */ |
| 4900 | } |
| 4901 | |
| 4902 | static int devdrv_hcd_resume(struct usb_hcd *hcd, u32 level) |
| 4903 | { |
| 4904 | return 0; /* no-op for now */ |
| 4905 | } |
| 4906 | |
| 4907 | #endif /* CONFIG_PM */ |
| 4908 | |
| 4909 | |
| 4910 | /*************************************************************/ |
| 4911 | /*************************************************************/ |
| 4912 | /* Module block */ |
| 4913 | /*************************************************************/ |
| 4914 | /*************************************************************/ |
| 4915 | |
| 4916 | /* register driver */ |
| 4917 | static int __init module_hcd_init(void) |
| 4918 | { |
| 4919 | |
| 4920 | if (usb_disabled()) |
| 4921 | return -ENODEV; |
| 4922 | |
| 4923 | /* Here we select enabled ports by following defines created from |
| 4924 | menuconfig */ |
| 4925 | #ifndef CONFIG_ETRAX_USB_HOST_PORT1 |
| 4926 | ports &= ~(1<<0); |
| 4927 | #endif |
| 4928 | #ifndef CONFIG_ETRAX_USB_HOST_PORT2 |
| 4929 | ports &= ~(1<<1); |
| 4930 | #endif |
| 4931 | |
| 4932 | printk(KERN_INFO "%s version "VERSION" "COPYRIGHT"\n", product_desc); |
| 4933 | |
| 4934 | devdrv_hc_platform_device = |
| 4935 | platform_device_register_simple((char *) hc_name, 0, NULL, 0); |
| 4936 | |
| 4937 | if (IS_ERR(devdrv_hc_platform_device)) |
| 4938 | return PTR_ERR(devdrv_hc_platform_device); |
| 4939 | return driver_register(&devdrv_hc_device_driver); |
| 4940 | /* |
| 4941 | * Note that we do not set the DMA mask for the device, |
| 4942 | * i.e. we pretend that we will use PIO, since no specific |
| 4943 | * allocation routines are needed for DMA buffers. This will |
| 4944 | * cause the HCD buffer allocation routines to fall back to |
| 4945 | * kmalloc(). |
| 4946 | */ |
| 4947 | } |
| 4948 | |
| 4949 | /* unregister driver */ |
| 4950 | static void __exit module_hcd_exit(void) |
| 4951 | { |
| 4952 | driver_unregister(&devdrv_hc_device_driver); |
| 4953 | } |
| 4954 | |
| 4955 | |
| 4956 | /* Module hooks */ |
| 4957 | module_init(module_hcd_init); |
| 4958 | module_exit(module_hcd_exit); |
| 4959 | |
| 4960 | |