| 1 | /* |
| 2 | * |
| 3 | * Copyright (c) 2004-2007 Atheros Communications Inc. |
| 4 | * All rights reserved. |
| 5 | * |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation; |
| 10 | * |
| 11 | * Software distributed under the License is distributed on an "AS |
| 12 | * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or |
| 13 | * implied. See the License for the specific language governing |
| 14 | * rights and limitations under the License. |
| 15 | * |
| 16 | * |
| 17 | * |
| 18 | */ |
| 19 | |
| 20 | /* |
| 21 | * This driver is a pseudo ethernet driver to access the Atheros AR6000 |
| 22 | * WLAN Device |
| 23 | */ |
| 24 | static const char athId[] __attribute__ ((unused)) = "$Id: //depot/sw/releases/olca2.0-GPL/host/os/linux/ar6000_drv.c#2 $"; |
| 25 | |
| 26 | #include "ar6000_drv.h" |
| 27 | #include "htc.h" |
| 28 | |
| 29 | MODULE_LICENSE("GPL and additional rights"); |
| 30 | |
| 31 | #ifndef REORG_APTC_HEURISTICS |
| 32 | #undef ADAPTIVE_POWER_THROUGHPUT_CONTROL |
| 33 | #endif /* REORG_APTC_HEURISTICS */ |
| 34 | |
| 35 | #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL |
| 36 | #define APTC_TRAFFIC_SAMPLING_INTERVAL 100 /* msec */ |
| 37 | #define APTC_UPPER_THROUGHPUT_THRESHOLD 3000 /* Kbps */ |
| 38 | #define APTC_LOWER_THROUGHPUT_THRESHOLD 2000 /* Kbps */ |
| 39 | |
| 40 | typedef struct aptc_traffic_record { |
| 41 | A_BOOL timerScheduled; |
| 42 | struct timeval samplingTS; |
| 43 | unsigned long bytesReceived; |
| 44 | unsigned long bytesTransmitted; |
| 45 | } APTC_TRAFFIC_RECORD; |
| 46 | |
| 47 | A_TIMER aptcTimer; |
| 48 | APTC_TRAFFIC_RECORD aptcTR; |
| 49 | #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ |
| 50 | |
| 51 | unsigned int bypasswmi = 0; |
| 52 | unsigned int debuglevel = 0; |
| 53 | int tspecCompliance = 1; |
| 54 | unsigned int busspeedlow = 0; |
| 55 | unsigned int onebitmode = 0; |
| 56 | unsigned int skipflash = 0; |
| 57 | unsigned int wmitimeout = 2; |
| 58 | unsigned int wlanNodeCaching = 1; |
| 59 | unsigned int enableuartprint = 0; |
| 60 | unsigned int logWmiRawMsgs = 0; |
| 61 | unsigned int enabletimerwar = 0; |
| 62 | unsigned int mbox_yield_limit = 99; |
| 63 | int reduce_credit_dribble = 1 + HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_ONE_HALF; |
| 64 | int allow_trace_signal = 0; |
| 65 | #ifdef CONFIG_HOST_TCMD_SUPPORT |
| 66 | unsigned int testmode =0; |
| 67 | #endif |
| 68 | |
| 69 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) |
| 70 | module_param(bypasswmi, int, 0644); |
| 71 | module_param(debuglevel, int, 0644); |
| 72 | module_param(tspecCompliance, int, 0644); |
| 73 | module_param(onebitmode, int, 0644); |
| 74 | module_param(busspeedlow, int, 0644); |
| 75 | module_param(skipflash, int, 0644); |
| 76 | module_param(wmitimeout, int, 0644); |
| 77 | module_param(wlanNodeCaching, int, 0644); |
| 78 | module_param(logWmiRawMsgs, int, 0644); |
| 79 | module_param(enableuartprint, int, 0644); |
| 80 | module_param(enabletimerwar, int, 0644); |
| 81 | module_param(mbox_yield_limit, int, 0644); |
| 82 | module_param(reduce_credit_dribble, int, 0644); |
| 83 | module_param(allow_trace_signal, int, 0644); |
| 84 | #ifdef CONFIG_HOST_TCMD_SUPPORT |
| 85 | module_param(testmode, int, 0644); |
| 86 | #endif |
| 87 | #else |
| 88 | |
| 89 | #define __user |
| 90 | /* for linux 2.4 and lower */ |
| 91 | MODULE_PARM(bypasswmi,"i"); |
| 92 | MODULE_PARM(debuglevel, "i"); |
| 93 | MODULE_PARM(onebitmode,"i"); |
| 94 | MODULE_PARM(busspeedlow, "i"); |
| 95 | MODULE_PARM(skipflash, "i"); |
| 96 | MODULE_PARM(wmitimeout, "i"); |
| 97 | MODULE_PARM(wlanNodeCaching, "i"); |
| 98 | MODULE_PARM(enableuartprint,"i"); |
| 99 | MODULE_PARM(logWmiRawMsgs, "i"); |
| 100 | MODULE_PARM(enabletimerwar,"i"); |
| 101 | MODULE_PARM(mbox_yield_limit,"i"); |
| 102 | MODULE_PARM(reduce_credit_dribble,"i"); |
| 103 | MODULE_PARM(allow_trace_signal,"i"); |
| 104 | #ifdef CONFIG_HOST_TCMD_SUPPORT |
| 105 | MODULE_PARM(testmode, "i"); |
| 106 | #endif |
| 107 | #endif |
| 108 | |
| 109 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,10) |
| 110 | /* in 2.6.10 and later this is now a pointer to a uint */ |
| 111 | unsigned int _mboxnum = HTC_MAILBOX_NUM_MAX; |
| 112 | #define mboxnum &_mboxnum |
| 113 | #else |
| 114 | unsigned int mboxnum = HTC_MAILBOX_NUM_MAX; |
| 115 | #endif |
| 116 | |
| 117 | #ifdef CONFIG_AR6000_WLAN_RESET |
| 118 | unsigned int resetok = 1; |
| 119 | #else |
| 120 | unsigned int resetok = 0; |
| 121 | #endif |
| 122 | |
| 123 | #ifdef DEBUG |
| 124 | A_UINT32 g_dbg_flags = DBG_DEFAULTS; |
| 125 | unsigned int debugflags = 0; |
| 126 | int debugdriver = 1; |
| 127 | unsigned int debughtc = 128; |
| 128 | unsigned int debugbmi = 1; |
| 129 | unsigned int debughif = 2; |
| 130 | unsigned int txcreditsavailable[HTC_MAILBOX_NUM_MAX] = {0}; |
| 131 | unsigned int txcreditsconsumed[HTC_MAILBOX_NUM_MAX] = {0}; |
| 132 | unsigned int txcreditintrenable[HTC_MAILBOX_NUM_MAX] = {0}; |
| 133 | unsigned int txcreditintrenableaggregate[HTC_MAILBOX_NUM_MAX] = {0}; |
| 134 | |
| 135 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) |
| 136 | module_param(debugflags, int, 0644); |
| 137 | module_param(debugdriver, int, 0644); |
| 138 | module_param(debughtc, int, 0644); |
| 139 | module_param(debugbmi, int, 0644); |
| 140 | module_param(debughif, int, 0644); |
| 141 | module_param(resetok, int, 0644); |
| 142 | module_param_array(txcreditsavailable, int, mboxnum, 0644); |
| 143 | module_param_array(txcreditsconsumed, int, mboxnum, 0644); |
| 144 | module_param_array(txcreditintrenable, int, mboxnum, 0644); |
| 145 | module_param_array(txcreditintrenableaggregate, int, mboxnum, 0644); |
| 146 | #else |
| 147 | /* linux 2.4 and lower */ |
| 148 | MODULE_PARM(debugflags,"i"); |
| 149 | MODULE_PARM(debugdriver, "i"); |
| 150 | MODULE_PARM(debughtc, "i"); |
| 151 | MODULE_PARM(debugbmi, "i"); |
| 152 | MODULE_PARM(debughif, "i"); |
| 153 | MODULE_PARM(resetok, "i"); |
| 154 | MODULE_PARM(txcreditsavailable, "0-3i"); |
| 155 | MODULE_PARM(txcreditsconsumed, "0-3i"); |
| 156 | MODULE_PARM(txcreditintrenable, "0-3i"); |
| 157 | MODULE_PARM(txcreditintrenableaggregate, "0-3i"); |
| 158 | #endif |
| 159 | |
| 160 | #endif /* DEBUG */ |
| 161 | |
| 162 | unsigned int tx_attempt[HTC_MAILBOX_NUM_MAX] = {0}; |
| 163 | unsigned int tx_post[HTC_MAILBOX_NUM_MAX] = {0}; |
| 164 | unsigned int tx_complete[HTC_MAILBOX_NUM_MAX] = {0}; |
| 165 | unsigned int hifBusRequestNumMax = 40; |
| 166 | unsigned int war23838_disabled = 0; |
| 167 | #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL |
| 168 | unsigned int enableAPTCHeuristics = 1; |
| 169 | #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ |
| 170 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) |
| 171 | module_param_array(tx_attempt, int, mboxnum, 0644); |
| 172 | module_param_array(tx_post, int, mboxnum, 0644); |
| 173 | module_param_array(tx_complete, int, mboxnum, 0644); |
| 174 | module_param(hifBusRequestNumMax, int, 0644); |
| 175 | module_param(war23838_disabled, int, 0644); |
| 176 | #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL |
| 177 | module_param(enableAPTCHeuristics, int, 0644); |
| 178 | #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ |
| 179 | #else |
| 180 | MODULE_PARM(tx_attempt, "0-3i"); |
| 181 | MODULE_PARM(tx_post, "0-3i"); |
| 182 | MODULE_PARM(tx_complete, "0-3i"); |
| 183 | MODULE_PARM(hifBusRequestNumMax, "i"); |
| 184 | MODULE_PARM(war23838_disabled, "i"); |
| 185 | #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL |
| 186 | MODULE_PARM(enableAPTCHeuristics, "i"); |
| 187 | #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ |
| 188 | #endif |
| 189 | |
| 190 | #ifdef BLOCK_TX_PATH_FLAG |
| 191 | int blocktx = 0; |
| 192 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) |
| 193 | module_param(blocktx, int, 0644); |
| 194 | #else |
| 195 | MODULE_PARM(blocktx, "i"); |
| 196 | #endif |
| 197 | #endif /* BLOCK_TX_PATH_FLAG */ |
| 198 | |
| 199 | // TODO move to arsoft_c |
| 200 | USER_RSSI_THOLD rssi_map[12]; |
| 201 | |
| 202 | int reconnect_flag = 0; |
| 203 | |
| 204 | DECLARE_WAIT_QUEUE_HEAD(ar6000_scan_queue); |
| 205 | |
| 206 | /* Function declarations */ |
| 207 | static int ar6000_init_module(void); |
| 208 | static void ar6000_cleanup_module(void); |
| 209 | |
| 210 | int ar6000_init(struct net_device *dev); |
| 211 | static int ar6000_open(struct net_device *dev); |
| 212 | static int ar6000_close(struct net_device *dev); |
| 213 | static int ar6000_cleanup(struct net_device *dev); |
| 214 | static void ar6000_init_control_info(AR_SOFTC_T *ar); |
| 215 | static int ar6000_data_tx(struct sk_buff *skb, struct net_device *dev); |
| 216 | |
| 217 | static void ar6000_destroy(struct net_device *dev, unsigned int unregister); |
| 218 | static void ar6000_detect_error(unsigned long ptr); |
| 219 | static struct net_device_stats *ar6000_get_stats(struct net_device *dev); |
| 220 | static struct iw_statistics *ar6000_get_iwstats(struct net_device * dev); |
| 221 | |
| 222 | /* |
| 223 | * HTC service connection handlers |
| 224 | */ |
| 225 | static void ar6000_avail_ev(HTC_HANDLE HTCHandle); |
| 226 | |
| 227 | static void ar6000_unavail_ev(void *Instance); |
| 228 | |
| 229 | static void ar6000_target_failure(void *Instance, A_STATUS Status); |
| 230 | |
| 231 | static void ar6000_rx(void *Context, HTC_PACKET *pPacket); |
| 232 | |
| 233 | static void ar6000_rx_refill(void *Context,HTC_ENDPOINT_ID Endpoint); |
| 234 | |
| 235 | static void ar6000_tx_complete(void *Context, HTC_PACKET *pPacket); |
| 236 | |
| 237 | static void ar6000_tx_queue_full(void *Context, HTC_ENDPOINT_ID Endpoint); |
| 238 | |
| 239 | static void ar6000_tx_queue_avail(void *Context, HTC_ENDPOINT_ID Endpoint); |
| 240 | |
| 241 | /* |
| 242 | * Static variables |
| 243 | */ |
| 244 | |
| 245 | static struct net_device *ar6000_devices[MAX_AR6000]; |
| 246 | extern struct iw_handler_def ath_iw_handler_def; |
| 247 | DECLARE_WAIT_QUEUE_HEAD(arEvent); |
| 248 | static void ar6000_cookie_init(AR_SOFTC_T *ar); |
| 249 | static void ar6000_cookie_cleanup(AR_SOFTC_T *ar); |
| 250 | static void ar6000_free_cookie(AR_SOFTC_T *ar, struct ar_cookie * cookie); |
| 251 | static struct ar_cookie *ar6000_alloc_cookie(AR_SOFTC_T *ar); |
| 252 | static void ar6000_TxDataCleanup(AR_SOFTC_T *ar); |
| 253 | |
| 254 | #ifdef USER_KEYS |
| 255 | static A_STATUS ar6000_reinstall_keys(AR_SOFTC_T *ar,A_UINT8 key_op_ctrl); |
| 256 | #endif |
| 257 | |
| 258 | |
| 259 | static struct ar_cookie s_ar_cookie_mem[MAX_COOKIE_NUM]; |
| 260 | |
| 261 | #define HOST_INTEREST_ITEM_ADDRESS(ar, item) \ |
| 262 | ((ar->arTargetType == TARGET_TYPE_AR6001) ? \ |
| 263 | AR6001_HOST_INTEREST_ITEM_ADDRESS(item) : \ |
| 264 | AR6002_HOST_INTEREST_ITEM_ADDRESS(item)) |
| 265 | |
| 266 | |
| 267 | /* Debug log support */ |
| 268 | |
| 269 | /* |
| 270 | * Flag to govern whether the debug logs should be parsed in the kernel |
| 271 | * or reported to the application. |
| 272 | */ |
| 273 | #ifdef DEBUG |
| 274 | #define REPORT_DEBUG_LOGS_TO_APP |
| 275 | #endif |
| 276 | |
| 277 | A_STATUS |
| 278 | ar6000_set_host_app_area(AR_SOFTC_T *ar) |
| 279 | { |
| 280 | A_UINT32 address, data; |
| 281 | struct host_app_area_s host_app_area; |
| 282 | |
| 283 | /* Fetch the address of the host_app_area_s instance in the host interest area */ |
| 284 | address = HOST_INTEREST_ITEM_ADDRESS(ar, hi_app_host_interest); |
| 285 | if (ar6000_ReadRegDiag(ar->arHifDevice, &address, &data) != A_OK) { |
| 286 | return A_ERROR; |
| 287 | } |
| 288 | address = data; |
| 289 | host_app_area.wmi_protocol_ver = WMI_PROTOCOL_VERSION; |
| 290 | if (ar6000_WriteDataDiag(ar->arHifDevice, address, |
| 291 | (A_UCHAR *)&host_app_area, |
| 292 | sizeof(struct host_app_area_s)) != A_OK) |
| 293 | { |
| 294 | return A_ERROR; |
| 295 | } |
| 296 | |
| 297 | return A_OK; |
| 298 | } |
| 299 | |
| 300 | A_UINT32 |
| 301 | dbglog_get_debug_hdr_ptr(AR_SOFTC_T *ar) |
| 302 | { |
| 303 | A_UINT32 param; |
| 304 | A_UINT32 address; |
| 305 | A_STATUS status; |
| 306 | |
| 307 | address = HOST_INTEREST_ITEM_ADDRESS(ar, hi_dbglog_hdr); |
| 308 | if ((status = ar6000_ReadDataDiag(ar->arHifDevice, address, |
| 309 | (A_UCHAR *)¶m, 4)) != A_OK) |
| 310 | { |
| 311 | param = 0; |
| 312 | } |
| 313 | |
| 314 | return param; |
| 315 | } |
| 316 | |
| 317 | /* |
| 318 | * The dbglog module has been initialized. Its ok to access the relevant |
| 319 | * data stuctures over the diagnostic window. |
| 320 | */ |
| 321 | void |
| 322 | ar6000_dbglog_init_done(AR_SOFTC_T *ar) |
| 323 | { |
| 324 | ar->dbglog_init_done = TRUE; |
| 325 | } |
| 326 | |
| 327 | A_UINT32 |
| 328 | dbglog_get_debug_fragment(A_INT8 *datap, A_UINT32 len, A_UINT32 limit) |
| 329 | { |
| 330 | A_INT32 *buffer; |
| 331 | A_UINT32 count; |
| 332 | A_UINT32 numargs; |
| 333 | A_UINT32 length; |
| 334 | A_UINT32 fraglen; |
| 335 | |
| 336 | count = fraglen = 0; |
| 337 | buffer = (A_INT32 *)datap; |
| 338 | length = (limit >> 2); |
| 339 | |
| 340 | if (len <= limit) { |
| 341 | fraglen = len; |
| 342 | } else { |
| 343 | while (count < length) { |
| 344 | numargs = DBGLOG_GET_NUMARGS(buffer[count]); |
| 345 | fraglen = (count << 2); |
| 346 | count += numargs + 1; |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | return fraglen; |
| 351 | } |
| 352 | |
| 353 | void |
| 354 | dbglog_parse_debug_logs(A_INT8 *datap, A_UINT32 len) |
| 355 | { |
| 356 | A_INT32 *buffer; |
| 357 | A_UINT32 count; |
| 358 | A_UINT32 timestamp; |
| 359 | A_UINT32 debugid; |
| 360 | A_UINT32 moduleid; |
| 361 | A_UINT32 numargs; |
| 362 | A_UINT32 length; |
| 363 | |
| 364 | count = 0; |
| 365 | buffer = (A_INT32 *)datap; |
| 366 | length = (len >> 2); |
| 367 | while (count < length) { |
| 368 | debugid = DBGLOG_GET_DBGID(buffer[count]); |
| 369 | moduleid = DBGLOG_GET_MODULEID(buffer[count]); |
| 370 | numargs = DBGLOG_GET_NUMARGS(buffer[count]); |
| 371 | timestamp = DBGLOG_GET_TIMESTAMP(buffer[count]); |
| 372 | switch (numargs) { |
| 373 | case 0: |
| 374 | AR_DEBUG_PRINTF("%d %d (%d)\n", moduleid, debugid, timestamp); |
| 375 | break; |
| 376 | |
| 377 | case 1: |
| 378 | AR_DEBUG_PRINTF("%d %d (%d): 0x%x\n", moduleid, debugid, |
| 379 | timestamp, buffer[count+1]); |
| 380 | break; |
| 381 | |
| 382 | case 2: |
| 383 | AR_DEBUG_PRINTF("%d %d (%d): 0x%x, 0x%x\n", moduleid, debugid, |
| 384 | timestamp, buffer[count+1], buffer[count+2]); |
| 385 | break; |
| 386 | |
| 387 | default: |
| 388 | AR_DEBUG_PRINTF("Invalid args: %d\n", numargs); |
| 389 | } |
| 390 | count += numargs + 1; |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | int |
| 395 | ar6000_dbglog_get_debug_logs(AR_SOFTC_T *ar) |
| 396 | { |
| 397 | struct dbglog_hdr_s debug_hdr; |
| 398 | struct dbglog_buf_s debug_buf; |
| 399 | A_UINT32 address; |
| 400 | A_UINT32 length; |
| 401 | A_UINT32 dropped; |
| 402 | A_UINT32 firstbuf; |
| 403 | A_UINT32 debug_hdr_ptr; |
| 404 | |
| 405 | if (!ar->dbglog_init_done) return A_ERROR; |
| 406 | |
| 407 | #ifndef CONFIG_AR6000_WLAN_DEBUG |
| 408 | return 0; |
| 409 | #endif |
| 410 | |
| 411 | AR6000_SPIN_LOCK(&ar->arLock, 0); |
| 412 | |
| 413 | if (ar->dbgLogFetchInProgress) { |
| 414 | AR6000_SPIN_UNLOCK(&ar->arLock, 0); |
| 415 | return A_EBUSY; |
| 416 | } |
| 417 | |
| 418 | /* block out others */ |
| 419 | ar->dbgLogFetchInProgress = TRUE; |
| 420 | |
| 421 | AR6000_SPIN_UNLOCK(&ar->arLock, 0); |
| 422 | |
| 423 | debug_hdr_ptr = dbglog_get_debug_hdr_ptr(ar); |
| 424 | printk("debug_hdr_ptr: 0x%x\n", debug_hdr_ptr); |
| 425 | |
| 426 | /* Get the contents of the ring buffer */ |
| 427 | if (debug_hdr_ptr) { |
| 428 | address = debug_hdr_ptr; |
| 429 | length = sizeof(struct dbglog_hdr_s); |
| 430 | ar6000_ReadDataDiag(ar->arHifDevice, address, |
| 431 | (A_UCHAR *)&debug_hdr, length); |
| 432 | address = (A_UINT32)debug_hdr.dbuf; |
| 433 | firstbuf = address; |
| 434 | dropped = debug_hdr.dropped; |
| 435 | length = sizeof(struct dbglog_buf_s); |
| 436 | ar6000_ReadDataDiag(ar->arHifDevice, address, |
| 437 | (A_UCHAR *)&debug_buf, length); |
| 438 | |
| 439 | do { |
| 440 | address = (A_UINT32)debug_buf.buffer; |
| 441 | length = debug_buf.length; |
| 442 | if ((length) && (debug_buf.length <= debug_buf.bufsize)) { |
| 443 | /* Rewind the index if it is about to overrun the buffer */ |
| 444 | if (ar->log_cnt > (DBGLOG_HOST_LOG_BUFFER_SIZE - length)) { |
| 445 | ar->log_cnt = 0; |
| 446 | } |
| 447 | if(A_OK != ar6000_ReadDataDiag(ar->arHifDevice, address, |
| 448 | (A_UCHAR *)&ar->log_buffer[ar->log_cnt], length)) |
| 449 | { |
| 450 | break; |
| 451 | } |
| 452 | ar6000_dbglog_event(ar, dropped, &ar->log_buffer[ar->log_cnt], length); |
| 453 | ar->log_cnt += length; |
| 454 | } else { |
| 455 | AR_DEBUG_PRINTF("Length: %d (Total size: %d)\n", |
| 456 | debug_buf.length, debug_buf.bufsize); |
| 457 | } |
| 458 | |
| 459 | address = (A_UINT32)debug_buf.next; |
| 460 | length = sizeof(struct dbglog_buf_s); |
| 461 | if(A_OK != ar6000_ReadDataDiag(ar->arHifDevice, address, |
| 462 | (A_UCHAR *)&debug_buf, length)) |
| 463 | { |
| 464 | break; |
| 465 | } |
| 466 | |
| 467 | } while (address != firstbuf); |
| 468 | } |
| 469 | |
| 470 | ar->dbgLogFetchInProgress = FALSE; |
| 471 | |
| 472 | return A_OK; |
| 473 | } |
| 474 | |
| 475 | void |
| 476 | ar6000_dbglog_event(AR_SOFTC_T *ar, A_UINT32 dropped, |
| 477 | A_INT8 *buffer, A_UINT32 length) |
| 478 | { |
| 479 | #ifdef REPORT_DEBUG_LOGS_TO_APP |
| 480 | #define MAX_WIRELESS_EVENT_SIZE 252 |
| 481 | /* |
| 482 | * Break it up into chunks of MAX_WIRELESS_EVENT_SIZE bytes of messages. |
| 483 | * There seems to be a limitation on the length of message that could be |
| 484 | * transmitted to the user app via this mechanism. |
| 485 | */ |
| 486 | A_UINT32 send, sent; |
| 487 | |
| 488 | sent = 0; |
| 489 | send = dbglog_get_debug_fragment(&buffer[sent], length - sent, |
| 490 | MAX_WIRELESS_EVENT_SIZE); |
| 491 | while (send) { |
| 492 | ar6000_send_event_to_app(ar, WMIX_DBGLOG_EVENTID, &buffer[sent], send); |
| 493 | sent += send; |
| 494 | send = dbglog_get_debug_fragment(&buffer[sent], length - sent, |
| 495 | MAX_WIRELESS_EVENT_SIZE); |
| 496 | } |
| 497 | #else |
| 498 | AR_DEBUG_PRINTF("Dropped logs: 0x%x\nDebug info length: %d\n", |
| 499 | dropped, length); |
| 500 | |
| 501 | /* Interpret the debug logs */ |
| 502 | dbglog_parse_debug_logs(buffer, length); |
| 503 | #endif /* REPORT_DEBUG_LOGS_TO_APP */ |
| 504 | } |
| 505 | |
| 506 | |
| 507 | |
| 508 | static int __init |
| 509 | ar6000_init_module(void) |
| 510 | { |
| 511 | static int probed = 0; |
| 512 | A_STATUS status; |
| 513 | HTC_INIT_INFO initInfo; |
| 514 | |
| 515 | A_MEMZERO(&initInfo,sizeof(initInfo)); |
| 516 | initInfo.AddInstance = ar6000_avail_ev; |
| 517 | initInfo.DeleteInstance = ar6000_unavail_ev; |
| 518 | initInfo.TargetFailure = ar6000_target_failure; |
| 519 | |
| 520 | |
| 521 | #ifdef DEBUG |
| 522 | /* Set the debug flags if specified at load time */ |
| 523 | if(debugflags != 0) |
| 524 | { |
| 525 | g_dbg_flags = debugflags; |
| 526 | } |
| 527 | #endif |
| 528 | |
| 529 | if (probed) { |
| 530 | return -ENODEV; |
| 531 | } |
| 532 | probed++; |
| 533 | |
| 534 | #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL |
| 535 | memset(&aptcTR, 0, sizeof(APTC_TRAFFIC_RECORD)); |
| 536 | #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ |
| 537 | |
| 538 | #ifdef CONFIG_HOST_GPIO_SUPPORT |
| 539 | ar6000_gpio_init(); |
| 540 | #endif /* CONFIG_HOST_GPIO_SUPPORT */ |
| 541 | |
| 542 | status = HTCInit(&initInfo); |
| 543 | if(status != A_OK) |
| 544 | return -ENODEV; |
| 545 | |
| 546 | return 0; |
| 547 | } |
| 548 | |
| 549 | static void __exit |
| 550 | ar6000_cleanup_module(void) |
| 551 | { |
| 552 | int i = 0; |
| 553 | struct net_device *ar6000_netdev; |
| 554 | |
| 555 | #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL |
| 556 | /* Delete the Adaptive Power Control timer */ |
| 557 | if (timer_pending(&aptcTimer)) { |
| 558 | del_timer_sync(&aptcTimer); |
| 559 | } |
| 560 | #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ |
| 561 | |
| 562 | for (i=0; i < MAX_AR6000; i++) { |
| 563 | if (ar6000_devices[i] != NULL) { |
| 564 | ar6000_netdev = ar6000_devices[i]; |
| 565 | ar6000_devices[i] = NULL; |
| 566 | ar6000_destroy(ar6000_netdev, 1); |
| 567 | } |
| 568 | } |
| 569 | |
| 570 | /* shutting down HTC will cause the HIF layer to detach from the |
| 571 | * underlying bus driver which will cause the subsequent deletion of |
| 572 | * all HIF and HTC instances */ |
| 573 | HTCShutDown(); |
| 574 | |
| 575 | AR_DEBUG_PRINTF("ar6000_cleanup: success\n"); |
| 576 | } |
| 577 | |
| 578 | #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL |
| 579 | void |
| 580 | aptcTimerHandler(unsigned long arg) |
| 581 | { |
| 582 | A_UINT32 numbytes; |
| 583 | A_UINT32 throughput; |
| 584 | AR_SOFTC_T *ar; |
| 585 | A_STATUS status; |
| 586 | |
| 587 | ar = (AR_SOFTC_T *)arg; |
| 588 | A_ASSERT(ar != NULL); |
| 589 | A_ASSERT(!timer_pending(&aptcTimer)); |
| 590 | |
| 591 | AR6000_SPIN_LOCK(&ar->arLock, 0); |
| 592 | |
| 593 | /* Get the number of bytes transferred */ |
| 594 | numbytes = aptcTR.bytesTransmitted + aptcTR.bytesReceived; |
| 595 | aptcTR.bytesTransmitted = aptcTR.bytesReceived = 0; |
| 596 | |
| 597 | /* Calculate and decide based on throughput thresholds */ |
| 598 | throughput = ((numbytes * 8)/APTC_TRAFFIC_SAMPLING_INTERVAL); /* Kbps */ |
| 599 | if (throughput < APTC_LOWER_THROUGHPUT_THRESHOLD) { |
| 600 | /* Enable Sleep and delete the timer */ |
| 601 | A_ASSERT(ar->arWmiReady == TRUE); |
| 602 | AR6000_SPIN_UNLOCK(&ar->arLock, 0); |
| 603 | status = wmi_powermode_cmd(ar->arWmi, REC_POWER); |
| 604 | AR6000_SPIN_LOCK(&ar->arLock, 0); |
| 605 | A_ASSERT(status == A_OK); |
| 606 | aptcTR.timerScheduled = FALSE; |
| 607 | } else { |
| 608 | A_TIMEOUT_MS(&aptcTimer, APTC_TRAFFIC_SAMPLING_INTERVAL, 0); |
| 609 | } |
| 610 | |
| 611 | AR6000_SPIN_UNLOCK(&ar->arLock, 0); |
| 612 | } |
| 613 | #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ |
| 614 | |
| 615 | |
| 616 | |
| 617 | /* set HTC block size, assume BMI is already initialized */ |
| 618 | A_STATUS ar6000_SetHTCBlockSize(AR_SOFTC_T *ar) |
| 619 | { |
| 620 | A_STATUS status; |
| 621 | A_UINT32 blocksizes[HTC_MAILBOX_NUM_MAX]; |
| 622 | |
| 623 | do { |
| 624 | /* get the block sizes */ |
| 625 | status = HIFConfigureDevice(ar->arHifDevice, HIF_DEVICE_GET_MBOX_BLOCK_SIZE, |
| 626 | blocksizes, sizeof(blocksizes)); |
| 627 | |
| 628 | if (A_FAILED(status)) { |
| 629 | AR_DEBUG_PRINTF("Failed to get block size info from HIF layer...\n"); |
| 630 | break; |
| 631 | } |
| 632 | /* note: we actually get the block size for mailbox 1, for SDIO the block |
| 633 | * size on mailbox 0 is artificially set to 1 */ |
| 634 | /* must be a power of 2 */ |
| 635 | A_ASSERT((blocksizes[1] & (blocksizes[1] - 1)) == 0); |
| 636 | |
| 637 | /* set the host interest area for the block size */ |
| 638 | status = BMIWriteMemory(ar->arHifDevice, |
| 639 | HOST_INTEREST_ITEM_ADDRESS(ar, hi_mbox_io_block_sz), |
| 640 | (A_UCHAR *)&blocksizes[1], |
| 641 | 4); |
| 642 | |
| 643 | if (A_FAILED(status)) { |
| 644 | AR_DEBUG_PRINTF("BMIWriteMemory for IO block size failed \n"); |
| 645 | break; |
| 646 | } |
| 647 | |
| 648 | AR_DEBUG_PRINTF("Block Size Set: %d (target address:0x%X)\n", |
| 649 | blocksizes[1], HOST_INTEREST_ITEM_ADDRESS(ar, hi_mbox_io_block_sz)); |
| 650 | |
| 651 | /* set the host interest area for the mbox ISR yield limit */ |
| 652 | status = BMIWriteMemory(ar->arHifDevice, |
| 653 | HOST_INTEREST_ITEM_ADDRESS(ar, hi_mbox_isr_yield_limit), |
| 654 | (A_UCHAR *)&mbox_yield_limit, |
| 655 | 4); |
| 656 | |
| 657 | if (A_FAILED(status)) { |
| 658 | AR_DEBUG_PRINTF("BMIWriteMemory for yield limit failed \n"); |
| 659 | break; |
| 660 | } |
| 661 | |
| 662 | } while (FALSE); |
| 663 | |
| 664 | return status; |
| 665 | } |
| 666 | |
| 667 | static void free_raw_buffers(AR_SOFTC_T *ar) |
| 668 | { |
| 669 | int i, j; |
| 670 | |
| 671 | for (i = 0; i != HTC_RAW_STREAM_NUM_MAX; i++) { |
| 672 | for (j = 0; j != RAW_HTC_READ_BUFFERS_NUM; j++) |
| 673 | kfree(ar->raw_htc_read_buffer[i][j]); |
| 674 | for (j = 0; j != RAW_HTC_WRITE_BUFFERS_NUM; j++) |
| 675 | kfree(ar->raw_htc_write_buffer[i][j]); |
| 676 | } |
| 677 | } |
| 678 | |
| 679 | static int alloc_raw_buffers(AR_SOFTC_T *ar) |
| 680 | { |
| 681 | int i, j; |
| 682 | raw_htc_buffer *b; |
| 683 | |
| 684 | for (i = 0; i != HTC_RAW_STREAM_NUM_MAX; i++) { |
| 685 | for (j = 0; j != RAW_HTC_READ_BUFFERS_NUM; j++) { |
| 686 | b = kzalloc(sizeof(*b), GFP_KERNEL); |
| 687 | if (!b) |
| 688 | return -ENOMEM; |
| 689 | ar->raw_htc_read_buffer[i][j] = b; |
| 690 | } |
| 691 | for (j = 0; j != RAW_HTC_WRITE_BUFFERS_NUM; j++) { |
| 692 | b = kzalloc(sizeof(*b), GFP_KERNEL); |
| 693 | if (!b) |
| 694 | return -ENOMEM; |
| 695 | ar->raw_htc_write_buffer[i][j] = b; |
| 696 | } |
| 697 | } |
| 698 | return 0; |
| 699 | } |
| 700 | |
| 701 | static const struct net_device_ops ar6000_netdev_ops = { |
| 702 | .ndo_init = &ar6000_init, |
| 703 | .ndo_open = &ar6000_open, |
| 704 | .ndo_stop = &ar6000_close, |
| 705 | .ndo_start_xmit = &ar6000_data_tx, |
| 706 | .ndo_get_stats = &ar6000_get_stats, |
| 707 | .ndo_do_ioctl = &ar6000_ioctl, |
| 708 | }; |
| 709 | /* |
| 710 | * HTC Event handlers |
| 711 | */ |
| 712 | static void |
| 713 | ar6000_avail_ev(HTC_HANDLE HTCHandle) |
| 714 | { |
| 715 | int i; |
| 716 | struct net_device *dev; |
| 717 | AR_SOFTC_T *ar; |
| 718 | int device_index = 0; |
| 719 | |
| 720 | AR_DEBUG_PRINTF("ar6000_available\n"); |
| 721 | |
| 722 | for (i=0; i < MAX_AR6000; i++) { |
| 723 | if (ar6000_devices[i] == NULL) { |
| 724 | break; |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | if (i == MAX_AR6000) { |
| 729 | AR_DEBUG_PRINTF("ar6000_available: max devices reached\n"); |
| 730 | return; |
| 731 | } |
| 732 | |
| 733 | /* Save this. It gives a bit better readability especially since */ |
| 734 | /* we use another local "i" variable below. */ |
| 735 | device_index = i; |
| 736 | |
| 737 | A_ASSERT(HTCHandle != NULL); |
| 738 | |
| 739 | dev = alloc_etherdev(sizeof(AR_SOFTC_T)); |
| 740 | if (dev == NULL) { |
| 741 | AR_DEBUG_PRINTF("ar6000_available: can't alloc etherdev\n"); |
| 742 | return; |
| 743 | } |
| 744 | |
| 745 | ether_setup(dev); |
| 746 | |
| 747 | if (netdev_priv(dev) == NULL) { |
| 748 | printk(KERN_CRIT "ar6000_available: Could not allocate memory\n"); |
| 749 | return; |
| 750 | } |
| 751 | |
| 752 | A_MEMZERO(netdev_priv(dev), sizeof(AR_SOFTC_T)); |
| 753 | |
| 754 | ar = (AR_SOFTC_T *)netdev_priv(dev); |
| 755 | ar->arNetDev = dev; |
| 756 | ar->arHtcTarget = HTCHandle; |
| 757 | ar->arHifDevice = HTCGetHifDevice(HTCHandle); |
| 758 | ar->arWlanState = WLAN_ENABLED; |
| 759 | ar->arRadioSwitch = WLAN_ENABLED; |
| 760 | ar->arDeviceIndex = device_index; |
| 761 | |
| 762 | A_INIT_TIMER(&ar->arHBChallengeResp.timer, ar6000_detect_error, dev); |
| 763 | ar->arHBChallengeResp.seqNum = 0; |
| 764 | ar->arHBChallengeResp.outstanding = FALSE; |
| 765 | ar->arHBChallengeResp.missCnt = 0; |
| 766 | ar->arHBChallengeResp.frequency = AR6000_HB_CHALLENGE_RESP_FREQ_DEFAULT; |
| 767 | ar->arHBChallengeResp.missThres = AR6000_HB_CHALLENGE_RESP_MISS_THRES_DEFAULT; |
| 768 | |
| 769 | ar6000_init_control_info(ar); |
| 770 | init_waitqueue_head(&arEvent); |
| 771 | sema_init(&ar->arSem, 1); |
| 772 | |
| 773 | if (alloc_raw_buffers(ar)) { |
| 774 | free_raw_buffers(ar); |
| 775 | /* |
| 776 | * @@@ Clean up our own mess, but for anything else, cheerfully mimick |
| 777 | * the beautiful error non-handling of the rest of this function. |
| 778 | */ |
| 779 | return; |
| 780 | } |
| 781 | |
| 782 | #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL |
| 783 | A_INIT_TIMER(&aptcTimer, aptcTimerHandler, ar); |
| 784 | #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ |
| 785 | |
| 786 | /* |
| 787 | * If requested, perform some magic which requires no cooperation from |
| 788 | * the Target. It causes the Target to ignore flash and execute to the |
| 789 | * OS from ROM. |
| 790 | * |
| 791 | * This is intended to support recovery from a corrupted flash on Targets |
| 792 | * that support flash. |
| 793 | */ |
| 794 | if (skipflash) |
| 795 | { |
| 796 | ar6000_reset_device_skipflash(ar->arHifDevice); |
| 797 | } |
| 798 | |
| 799 | BMIInit(); |
| 800 | { |
| 801 | struct bmi_target_info targ_info; |
| 802 | |
| 803 | if (BMIGetTargetInfo(ar->arHifDevice, &targ_info) != A_OK) { |
| 804 | return; |
| 805 | } |
| 806 | |
| 807 | ar->arVersion.target_ver = targ_info.target_ver; |
| 808 | ar->arTargetType = targ_info.target_type; |
| 809 | } |
| 810 | |
| 811 | if (enableuartprint) { |
| 812 | A_UINT32 param; |
| 813 | param = 1; |
| 814 | if (BMIWriteMemory(ar->arHifDevice, |
| 815 | HOST_INTEREST_ITEM_ADDRESS(ar, hi_serial_enable), |
| 816 | (A_UCHAR *)¶m, |
| 817 | 4)!= A_OK) |
| 818 | { |
| 819 | AR_DEBUG_PRINTF("BMIWriteMemory for enableuartprint failed \n"); |
| 820 | return ; |
| 821 | } |
| 822 | AR_DEBUG_PRINTF("Serial console prints enabled\n"); |
| 823 | } |
| 824 | #ifdef CONFIG_HOST_TCMD_SUPPORT |
| 825 | if(testmode) { |
| 826 | ar->arTargetMode = AR6000_TCMD_MODE; |
| 827 | }else { |
| 828 | ar->arTargetMode = AR6000_WLAN_MODE; |
| 829 | } |
| 830 | #endif |
| 831 | if (enabletimerwar) { |
| 832 | A_UINT32 param; |
| 833 | |
| 834 | if (BMIReadMemory(ar->arHifDevice, |
| 835 | HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag), |
| 836 | (A_UCHAR *)¶m, |
| 837 | 4)!= A_OK) |
| 838 | { |
| 839 | AR_DEBUG_PRINTF("BMIReadMemory for enabletimerwar failed \n"); |
| 840 | return; |
| 841 | } |
| 842 | |
| 843 | param |= HI_OPTION_TIMER_WAR; |
| 844 | |
| 845 | if (BMIWriteMemory(ar->arHifDevice, |
| 846 | HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag), |
| 847 | (A_UCHAR *)¶m, |
| 848 | 4) != A_OK) |
| 849 | { |
| 850 | AR_DEBUG_PRINTF("BMIWriteMemory for enabletimerwar failed \n"); |
| 851 | return; |
| 852 | } |
| 853 | AR_DEBUG_PRINTF("Timer WAR enabled\n"); |
| 854 | } |
| 855 | |
| 856 | |
| 857 | /* since BMIInit is called in the driver layer, we have to set the block |
| 858 | * size here for the target */ |
| 859 | |
| 860 | if (A_FAILED(ar6000_SetHTCBlockSize(ar))) { |
| 861 | return; |
| 862 | } |
| 863 | |
| 864 | spin_lock_init(&ar->arLock); |
| 865 | |
| 866 | dev->netdev_ops = &ar6000_netdev_ops; |
| 867 | dev->watchdog_timeo = AR6000_TX_TIMEOUT; |
| 868 | ar6000_ioctl_iwsetup(&ath_iw_handler_def); |
| 869 | dev->wireless_handlers = &ath_iw_handler_def; |
| 870 | ath_iw_handler_def.get_wireless_stats = ar6000_get_iwstats; /*Displayed via proc fs */ |
| 871 | |
| 872 | /* |
| 873 | * We need the OS to provide us with more headroom in order to |
| 874 | * perform dix to 802.3, WMI header encap, and the HTC header |
| 875 | */ |
| 876 | dev->hard_header_len = ETH_HLEN + sizeof(ATH_LLC_SNAP_HDR) + |
| 877 | sizeof(WMI_DATA_HDR) + HTC_HEADER_LEN; |
| 878 | |
| 879 | /* This runs the init function */ |
| 880 | SET_NETDEV_DEV(dev, HIFGetOSDevice(ar->arHifDevice)); |
| 881 | if (register_netdev(dev)) { |
| 882 | AR_DEBUG_PRINTF("ar6000_avail: register_netdev failed\n"); |
| 883 | ar6000_destroy(dev, 0); |
| 884 | return; |
| 885 | } |
| 886 | |
| 887 | HTCSetInstance(ar->arHtcTarget, ar); |
| 888 | |
| 889 | /* We only register the device in the global list if we succeed. */ |
| 890 | /* If the device is in the global list, it will be destroyed */ |
| 891 | /* when the module is unloaded. */ |
| 892 | ar6000_devices[device_index] = dev; |
| 893 | |
| 894 | AR_DEBUG_PRINTF("ar6000_avail: name=%s htcTarget=0x%x, dev=0x%x (%d), ar=0x%x\n", |
| 895 | dev->name, (A_UINT32)HTCHandle, (A_UINT32)dev, device_index, |
| 896 | (A_UINT32)ar); |
| 897 | } |
| 898 | |
| 899 | static void ar6000_target_failure(void *Instance, A_STATUS Status) |
| 900 | { |
| 901 | AR_SOFTC_T *ar = (AR_SOFTC_T *)Instance; |
| 902 | WMI_TARGET_ERROR_REPORT_EVENT errEvent; |
| 903 | static A_BOOL sip = FALSE; |
| 904 | |
| 905 | if (Status != A_OK) { |
| 906 | if (timer_pending(&ar->arHBChallengeResp.timer)) { |
| 907 | A_UNTIMEOUT(&ar->arHBChallengeResp.timer); |
| 908 | } |
| 909 | |
| 910 | /* try dumping target assertion information (if any) */ |
| 911 | ar6000_dump_target_assert_info(ar->arHifDevice,ar->arTargetType); |
| 912 | |
| 913 | /* |
| 914 | * Fetch the logs from the target via the diagnostic |
| 915 | * window. |
| 916 | */ |
| 917 | ar6000_dbglog_get_debug_logs(ar); |
| 918 | |
| 919 | /* Report the error only once */ |
| 920 | if (!sip) { |
| 921 | sip = TRUE; |
| 922 | errEvent.errorVal = WMI_TARGET_COM_ERR | |
| 923 | WMI_TARGET_FATAL_ERR; |
| 924 | #ifdef SEND_EVENT_TO_APP |
| 925 | ar6000_send_event_to_app(ar, WMI_ERROR_REPORT_EVENTID, |
| 926 | (A_UINT8 *)&errEvent, |
| 927 | sizeof(WMI_TARGET_ERROR_REPORT_EVENT)); |
| 928 | #endif |
| 929 | } |
| 930 | } |
| 931 | } |
| 932 | |
| 933 | static void |
| 934 | ar6000_unavail_ev(void *Instance) |
| 935 | { |
| 936 | AR_SOFTC_T *ar = (AR_SOFTC_T *)Instance; |
| 937 | /* NULL out it's entry in the global list */ |
| 938 | ar6000_devices[ar->arDeviceIndex] = NULL; |
| 939 | ar6000_destroy(ar->arNetDev, 1); |
| 940 | } |
| 941 | |
| 942 | /* |
| 943 | * We need to differentiate between the surprise and planned removal of the |
| 944 | * device because of the following consideration: |
| 945 | * - In case of surprise removal, the hcd already frees up the pending |
| 946 | * for the device and hence there is no need to unregister the function |
| 947 | * driver inorder to get these requests. For planned removal, the function |
| 948 | * driver has to explictly unregister itself to have the hcd return all the |
| 949 | * pending requests before the data structures for the devices are freed up. |
| 950 | * Note that as per the current implementation, the function driver will |
| 951 | * end up releasing all the devices since there is no API to selectively |
| 952 | * release a particular device. |
| 953 | * - Certain commands issued to the target can be skipped for surprise |
| 954 | * removal since they will anyway not go through. |
| 955 | */ |
| 956 | static void |
| 957 | ar6000_destroy(struct net_device *dev, unsigned int unregister) |
| 958 | { |
| 959 | AR_SOFTC_T *ar; |
| 960 | |
| 961 | AR_DEBUG_PRINTF("+ar6000_destroy \n"); |
| 962 | |
| 963 | if((dev == NULL) || ((ar = netdev_priv(dev)) == NULL)) |
| 964 | { |
| 965 | AR_DEBUG_PRINTF("%s(): Failed to get device structure.\n", __func__); |
| 966 | return; |
| 967 | } |
| 968 | |
| 969 | /* Clear the tx counters */ |
| 970 | memset(tx_attempt, 0, sizeof(tx_attempt)); |
| 971 | memset(tx_post, 0, sizeof(tx_post)); |
| 972 | memset(tx_complete, 0, sizeof(tx_complete)); |
| 973 | |
| 974 | /* Free up the device data structure */ |
| 975 | if (unregister) { |
| 976 | unregister_netdev(dev); |
| 977 | } else { |
| 978 | ar6000_close(dev); |
| 979 | ar6000_cleanup(dev); |
| 980 | } |
| 981 | |
| 982 | free_raw_buffers(ar); |
| 983 | |
| 984 | #ifndef free_netdev |
| 985 | kfree(dev); |
| 986 | #else |
| 987 | free_netdev(dev); |
| 988 | #endif |
| 989 | |
| 990 | AR_DEBUG_PRINTF("-ar6000_destroy \n"); |
| 991 | } |
| 992 | |
| 993 | static void ar6000_detect_error(unsigned long ptr) |
| 994 | { |
| 995 | struct net_device *dev = (struct net_device *)ptr; |
| 996 | AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev); |
| 997 | WMI_TARGET_ERROR_REPORT_EVENT errEvent; |
| 998 | |
| 999 | AR6000_SPIN_LOCK(&ar->arLock, 0); |
| 1000 | |
| 1001 | if (ar->arHBChallengeResp.outstanding) { |
| 1002 | ar->arHBChallengeResp.missCnt++; |
| 1003 | } else { |
| 1004 | ar->arHBChallengeResp.missCnt = 0; |
| 1005 | } |
| 1006 | |
| 1007 | if (ar->arHBChallengeResp.missCnt > ar->arHBChallengeResp.missThres) { |
| 1008 | /* Send Error Detect event to the application layer and do not reschedule the error detection module timer */ |
| 1009 | ar->arHBChallengeResp.missCnt = 0; |
| 1010 | ar->arHBChallengeResp.seqNum = 0; |
| 1011 | errEvent.errorVal = WMI_TARGET_COM_ERR | WMI_TARGET_FATAL_ERR; |
| 1012 | AR6000_SPIN_UNLOCK(&ar->arLock, 0); |
| 1013 | #ifdef SEND_EVENT_TO_APP |
| 1014 | ar6000_send_event_to_app(ar, WMI_ERROR_REPORT_EVENTID, |
| 1015 | (A_UINT8 *)&errEvent, |
| 1016 | sizeof(WMI_TARGET_ERROR_REPORT_EVENT)); |
| 1017 | #endif |
| 1018 | return; |
| 1019 | } |
| 1020 | |
| 1021 | /* Generate the sequence number for the next challenge */ |
| 1022 | ar->arHBChallengeResp.seqNum++; |
| 1023 | ar->arHBChallengeResp.outstanding = TRUE; |
| 1024 | |
| 1025 | AR6000_SPIN_UNLOCK(&ar->arLock, 0); |
| 1026 | |
| 1027 | /* Send the challenge on the control channel */ |
| 1028 | if (wmi_get_challenge_resp_cmd(ar->arWmi, ar->arHBChallengeResp.seqNum, DRV_HB_CHALLENGE) != A_OK) { |
| 1029 | AR_DEBUG_PRINTF("Unable to send heart beat challenge\n"); |
| 1030 | } |
| 1031 | |
| 1032 | |
| 1033 | /* Reschedule the timer for the next challenge */ |
| 1034 | A_TIMEOUT_MS(&ar->arHBChallengeResp.timer, ar->arHBChallengeResp.frequency * 1000, 0); |
| 1035 | } |
| 1036 | |
| 1037 | void ar6000_init_profile_info(AR_SOFTC_T *ar) |
| 1038 | { |
| 1039 | ar->arSsidLen = 0; |
| 1040 | A_MEMZERO(ar->arSsid, sizeof(ar->arSsid)); |
| 1041 | ar->arNetworkType = INFRA_NETWORK; |
| 1042 | ar->arDot11AuthMode = OPEN_AUTH; |
| 1043 | ar->arAuthMode = NONE_AUTH; |
| 1044 | ar->arPairwiseCrypto = NONE_CRYPT; |
| 1045 | ar->arPairwiseCryptoLen = 0; |
| 1046 | ar->arGroupCrypto = NONE_CRYPT; |
| 1047 | ar->arGroupCryptoLen = 0; |
| 1048 | A_MEMZERO(ar->arWepKeyList, sizeof(ar->arWepKeyList)); |
| 1049 | A_MEMZERO(ar->arReqBssid, sizeof(ar->arReqBssid)); |
| 1050 | A_MEMZERO(ar->arBssid, sizeof(ar->arBssid)); |
| 1051 | ar->arBssChannel = 0; |
| 1052 | } |
| 1053 | |
| 1054 | static void |
| 1055 | ar6000_init_control_info(AR_SOFTC_T *ar) |
| 1056 | { |
| 1057 | ar->arWmiEnabled = FALSE; |
| 1058 | ar6000_init_profile_info(ar); |
| 1059 | ar->arDefTxKeyIndex = 0; |
| 1060 | A_MEMZERO(ar->arWepKeyList, sizeof(ar->arWepKeyList)); |
| 1061 | ar->arChannelHint = 0; |
| 1062 | ar->arListenInterval = MAX_LISTEN_INTERVAL; |
| 1063 | ar->arVersion.host_ver = AR6K_SW_VERSION; |
| 1064 | ar->arRssi = 0; |
| 1065 | ar->arTxPwr = 0; |
| 1066 | ar->arTxPwrSet = FALSE; |
| 1067 | ar->arSkipScan = 0; |
| 1068 | ar->arBeaconInterval = 0; |
| 1069 | ar->arBitRate = 0; |
| 1070 | ar->arMaxRetries = 0; |
| 1071 | ar->arWmmEnabled = TRUE; |
| 1072 | } |
| 1073 | |
| 1074 | static int |
| 1075 | ar6000_open(struct net_device *dev) |
| 1076 | { |
| 1077 | /* Wake up the queues */ |
| 1078 | netif_start_queue(dev); |
| 1079 | |
| 1080 | return 0; |
| 1081 | } |
| 1082 | |
| 1083 | static int |
| 1084 | ar6000_close(struct net_device *dev) |
| 1085 | { |
| 1086 | /* Stop the transmit queues */ |
| 1087 | netif_stop_queue(dev); |
| 1088 | return 0; |
| 1089 | } |
| 1090 | |
| 1091 | static int |
| 1092 | ar6000_cleanup(struct net_device *dev) |
| 1093 | { |
| 1094 | AR_SOFTC_T *ar = netdev_priv(dev); |
| 1095 | |
| 1096 | /* Stop the transmit queues */ |
| 1097 | netif_stop_queue(dev); |
| 1098 | |
| 1099 | /* Disable the target and the interrupts associated with it */ |
| 1100 | if (ar->arWmiReady == TRUE) |
| 1101 | { |
| 1102 | if (!bypasswmi) |
| 1103 | { |
| 1104 | if (ar->arConnected == TRUE || ar->arConnectPending == TRUE) |
| 1105 | { |
| 1106 | AR_DEBUG_PRINTF("%s(): Disconnect\n", __func__); |
| 1107 | AR6000_SPIN_LOCK(&ar->arLock, 0); |
| 1108 | ar6000_init_profile_info(ar); |
| 1109 | AR6000_SPIN_UNLOCK(&ar->arLock, 0); |
| 1110 | wmi_disconnect_cmd(ar->arWmi); |
| 1111 | } |
| 1112 | |
| 1113 | ar6000_dbglog_get_debug_logs(ar); |
| 1114 | ar->arWmiReady = FALSE; |
| 1115 | ar->arConnected = FALSE; |
| 1116 | ar->arConnectPending = FALSE; |
| 1117 | wmi_shutdown(ar->arWmi); |
| 1118 | ar->arWmiEnabled = FALSE; |
| 1119 | ar->arWmi = NULL; |
| 1120 | ar->arWlanState = WLAN_ENABLED; |
| 1121 | #ifdef USER_KEYS |
| 1122 | ar->user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT; |
| 1123 | ar->user_key_ctrl = 0; |
| 1124 | #endif |
| 1125 | } |
| 1126 | |
| 1127 | AR_DEBUG_PRINTF("%s(): WMI stopped\n", __func__); |
| 1128 | } |
| 1129 | else |
| 1130 | { |
| 1131 | AR_DEBUG_PRINTF("%s(): WMI not ready 0x%08x 0x%08x\n", |
| 1132 | __func__, (unsigned int) ar, (unsigned int) ar->arWmi); |
| 1133 | |
| 1134 | /* Shut down WMI if we have started it */ |
| 1135 | if(ar->arWmiEnabled == TRUE) |
| 1136 | { |
| 1137 | AR_DEBUG_PRINTF("%s(): Shut down WMI\n", __func__); |
| 1138 | wmi_shutdown(ar->arWmi); |
| 1139 | ar->arWmiEnabled = FALSE; |
| 1140 | ar->arWmi = NULL; |
| 1141 | } |
| 1142 | } |
| 1143 | |
| 1144 | /* stop HTC */ |
| 1145 | HTCStop(ar->arHtcTarget); |
| 1146 | |
| 1147 | /* set the instance to NULL so we do not get called back on remove incase we |
| 1148 | * we're explicity destroyed by module unload */ |
| 1149 | HTCSetInstance(ar->arHtcTarget, NULL); |
| 1150 | |
| 1151 | if (resetok) { |
| 1152 | /* try to reset the device if we can |
| 1153 | * The driver may have been configure NOT to reset the target during |
| 1154 | * a debug session */ |
| 1155 | AR_DEBUG_PRINTF(" Attempting to reset target on instance destroy.... \n"); |
| 1156 | ar6000_reset_device(ar->arHifDevice, ar->arTargetType); |
| 1157 | } else { |
| 1158 | AR_DEBUG_PRINTF(" Host does not want target reset. \n"); |
| 1159 | } |
| 1160 | |
| 1161 | /* Done with cookies */ |
| 1162 | ar6000_cookie_cleanup(ar); |
| 1163 | |
| 1164 | /* Cleanup BMI */ |
| 1165 | BMIInit(); |
| 1166 | |
| 1167 | return 0; |
| 1168 | } |
| 1169 | |
| 1170 | /* connect to a service */ |
| 1171 | static A_STATUS ar6000_connectservice(AR_SOFTC_T *ar, |
| 1172 | HTC_SERVICE_CONNECT_REQ *pConnect, |
| 1173 | WMI_PRI_STREAM_ID WmiStreamID, |
| 1174 | char *pDesc) |
| 1175 | { |
| 1176 | A_STATUS status; |
| 1177 | HTC_SERVICE_CONNECT_RESP response; |
| 1178 | |
| 1179 | do { |
| 1180 | |
| 1181 | A_MEMZERO(&response,sizeof(response)); |
| 1182 | |
| 1183 | status = HTCConnectService(ar->arHtcTarget, |
| 1184 | pConnect, |
| 1185 | &response); |
| 1186 | |
| 1187 | if (A_FAILED(status)) { |
| 1188 | AR_DEBUG_PRINTF(" Failed to connect to %s service status:%d \n", pDesc, status); |
| 1189 | break; |
| 1190 | } |
| 1191 | |
| 1192 | if (WmiStreamID == WMI_NOT_MAPPED) { |
| 1193 | /* done */ |
| 1194 | break; |
| 1195 | } |
| 1196 | |
| 1197 | /* set endpoint mapping for the WMI stream in the driver layer */ |
| 1198 | arSetWMIStream2EndpointIDMap(ar,WmiStreamID,response.Endpoint); |
| 1199 | |
| 1200 | } while (FALSE); |
| 1201 | |
| 1202 | return status; |
| 1203 | } |
| 1204 | |
| 1205 | static void ar6000_TxDataCleanup(AR_SOFTC_T *ar) |
| 1206 | { |
| 1207 | /* flush all the data (non-control) streams |
| 1208 | * we only flush packets that are tagged as data, we leave any control packets that |
| 1209 | * were in the TX queues alone */ |
| 1210 | HTCFlushEndpoint(ar->arHtcTarget, |
| 1211 | arWMIStream2EndpointID(ar,WMI_BEST_EFFORT_PRI), |
| 1212 | AR6K_DATA_PKT_TAG); |
| 1213 | HTCFlushEndpoint(ar->arHtcTarget, |
| 1214 | arWMIStream2EndpointID(ar,WMI_LOW_PRI), |
| 1215 | AR6K_DATA_PKT_TAG); |
| 1216 | HTCFlushEndpoint(ar->arHtcTarget, |
| 1217 | arWMIStream2EndpointID(ar,WMI_HIGH_PRI), |
| 1218 | AR6K_DATA_PKT_TAG); |
| 1219 | HTCFlushEndpoint(ar->arHtcTarget, |
| 1220 | arWMIStream2EndpointID(ar,WMI_HIGHEST_PRI), |
| 1221 | AR6K_DATA_PKT_TAG); |
| 1222 | } |
| 1223 | |
| 1224 | /* This function does one time initialization for the lifetime of the device */ |
| 1225 | int ar6000_init(struct net_device *dev) |
| 1226 | { |
| 1227 | AR_SOFTC_T *ar; |
| 1228 | A_STATUS status; |
| 1229 | A_INT32 timeleft; |
| 1230 | |
| 1231 | if((ar = netdev_priv(dev)) == NULL) |
| 1232 | { |
| 1233 | return(-EIO); |
| 1234 | } |
| 1235 | |
| 1236 | /* Do we need to finish the BMI phase */ |
| 1237 | if(BMIDone(ar->arHifDevice) != A_OK) |
| 1238 | { |
| 1239 | return -EIO; |
| 1240 | } |
| 1241 | |
| 1242 | if (!bypasswmi) |
| 1243 | { |
| 1244 | #if 0 /* TBDXXX */ |
| 1245 | if (ar->arVersion.host_ver != ar->arVersion.target_ver) { |
| 1246 | A_PRINTF("WARNING: Host version 0x%x does not match Target " |
| 1247 | " version 0x%x!\n", |
| 1248 | ar->arVersion.host_ver, ar->arVersion.target_ver); |
| 1249 | } |
| 1250 | #endif |
| 1251 | |
| 1252 | /* Indicate that WMI is enabled (although not ready yet) */ |
| 1253 | ar->arWmiEnabled = TRUE; |
| 1254 | if ((ar->arWmi = wmi_init((void *) ar)) == NULL) |
| 1255 | { |
| 1256 | AR_DEBUG_PRINTF("%s() Failed to initialize WMI.\n", __func__); |
| 1257 | return(-EIO); |
| 1258 | } |
| 1259 | |
| 1260 | AR_DEBUG_PRINTF("%s() Got WMI @ 0x%08x.\n", __func__, |
| 1261 | (unsigned int) ar->arWmi); |
| 1262 | } |
| 1263 | |
| 1264 | do { |
| 1265 | HTC_SERVICE_CONNECT_REQ connect; |
| 1266 | |
| 1267 | /* the reason we have to wait for the target here is that the driver layer |
| 1268 | * has to init BMI in order to set the host block size, |
| 1269 | */ |
| 1270 | status = HTCWaitTarget(ar->arHtcTarget); |
| 1271 | |
| 1272 | if (A_FAILED(status)) { |
| 1273 | break; |
| 1274 | } |
| 1275 | |
| 1276 | A_MEMZERO(&connect,sizeof(connect)); |
| 1277 | /* meta data is unused for now */ |
| 1278 | connect.pMetaData = NULL; |
| 1279 | connect.MetaDataLength = 0; |
| 1280 | /* these fields are the same for all service endpoints */ |
| 1281 | connect.EpCallbacks.pContext = ar; |
| 1282 | connect.EpCallbacks.EpTxComplete = ar6000_tx_complete; |
| 1283 | connect.EpCallbacks.EpRecv = ar6000_rx; |
| 1284 | connect.EpCallbacks.EpRecvRefill = ar6000_rx_refill; |
| 1285 | connect.EpCallbacks.EpSendFull = ar6000_tx_queue_full; |
| 1286 | connect.EpCallbacks.EpSendAvail = ar6000_tx_queue_avail; |
| 1287 | /* set the max queue depth so that our ar6000_tx_queue_full handler gets called. |
| 1288 | * Linux has the peculiarity of not providing flow control between the |
| 1289 | * NIC and the network stack. There is no API to indicate that a TX packet |
| 1290 | * was sent which could provide some back pressure to the network stack. |
| 1291 | * Under linux you would have to wait till the network stack consumed all sk_buffs |
| 1292 | * before any back-flow kicked in. Which isn't very friendly. |
| 1293 | * So we have to manage this ourselves */ |
| 1294 | connect.MaxSendQueueDepth = 32; |
| 1295 | |
| 1296 | /* connect to control service */ |
| 1297 | connect.ServiceID = WMI_CONTROL_SVC; |
| 1298 | status = ar6000_connectservice(ar, |
| 1299 | &connect, |
| 1300 | WMI_CONTROL_PRI, |
| 1301 | "WMI CONTROL"); |
| 1302 | if (A_FAILED(status)) { |
| 1303 | break; |
| 1304 | } |
| 1305 | |
| 1306 | /* for the remaining data services set the connection flag to reduce dribbling, |
| 1307 | * if configured to do so */ |
| 1308 | if (reduce_credit_dribble) { |
| 1309 | connect.ConnectionFlags |= HTC_CONNECT_FLAGS_REDUCE_CREDIT_DRIBBLE; |
| 1310 | /* the credit dribble trigger threshold is (reduce_credit_dribble - 1) for a value |
| 1311 | * of 0-3 */ |
| 1312 | connect.ConnectionFlags &= ~HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_MASK; |
| 1313 | connect.ConnectionFlags |= |
| 1314 | ((A_UINT16)reduce_credit_dribble - 1) & HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_MASK; |
| 1315 | } |
| 1316 | /* connect to best-effort service */ |
| 1317 | connect.ServiceID = WMI_DATA_BE_SVC; |
| 1318 | |
| 1319 | status = ar6000_connectservice(ar, |
| 1320 | &connect, |
| 1321 | WMI_BEST_EFFORT_PRI, |
| 1322 | "WMI DATA BE"); |
| 1323 | if (A_FAILED(status)) { |
| 1324 | break; |
| 1325 | } |
| 1326 | |
| 1327 | /* connect to back-ground |
| 1328 | * map this to WMI LOW_PRI */ |
| 1329 | connect.ServiceID = WMI_DATA_BK_SVC; |
| 1330 | status = ar6000_connectservice(ar, |
| 1331 | &connect, |
| 1332 | WMI_LOW_PRI, |
| 1333 | "WMI DATA BK"); |
| 1334 | if (A_FAILED(status)) { |
| 1335 | break; |
| 1336 | } |
| 1337 | |
| 1338 | /* connect to Video service, map this to |
| 1339 | * to HI PRI */ |
| 1340 | connect.ServiceID = WMI_DATA_VI_SVC; |
| 1341 | status = ar6000_connectservice(ar, |
| 1342 | &connect, |
| 1343 | WMI_HIGH_PRI, |
| 1344 | "WMI DATA VI"); |
| 1345 | if (A_FAILED(status)) { |
| 1346 | break; |
| 1347 | } |
| 1348 | |
| 1349 | /* connect to VO service, this is currently not |
| 1350 | * mapped to a WMI priority stream due to historical reasons. |
| 1351 | * WMI originally defined 3 priorities over 3 mailboxes |
| 1352 | * We can change this when WMI is reworked so that priorities are not |
| 1353 | * dependent on mailboxes */ |
| 1354 | connect.ServiceID = WMI_DATA_VO_SVC; |
| 1355 | status = ar6000_connectservice(ar, |
| 1356 | &connect, |
| 1357 | WMI_HIGHEST_PRI, |
| 1358 | "WMI DATA VO"); |
| 1359 | if (A_FAILED(status)) { |
| 1360 | break; |
| 1361 | } |
| 1362 | |
| 1363 | A_ASSERT(arWMIStream2EndpointID(ar,WMI_CONTROL_PRI) != 0); |
| 1364 | A_ASSERT(arWMIStream2EndpointID(ar,WMI_BEST_EFFORT_PRI) != 0); |
| 1365 | A_ASSERT(arWMIStream2EndpointID(ar,WMI_LOW_PRI) != 0); |
| 1366 | A_ASSERT(arWMIStream2EndpointID(ar,WMI_HIGH_PRI) != 0); |
| 1367 | A_ASSERT(arWMIStream2EndpointID(ar,WMI_HIGHEST_PRI) != 0); |
| 1368 | } while (FALSE); |
| 1369 | |
| 1370 | if (A_FAILED(status)) { |
| 1371 | return (-EIO); |
| 1372 | } |
| 1373 | |
| 1374 | /* |
| 1375 | * give our connected endpoints some buffers |
| 1376 | */ |
| 1377 | ar6000_rx_refill(ar, arWMIStream2EndpointID(ar,WMI_CONTROL_PRI)); |
| 1378 | |
| 1379 | ar6000_rx_refill(ar, arWMIStream2EndpointID(ar,WMI_BEST_EFFORT_PRI)); |
| 1380 | |
| 1381 | /* |
| 1382 | * We will post the receive buffers only for SPE testing and so we are |
| 1383 | * making it conditional on the 'bypasswmi' flag. |
| 1384 | */ |
| 1385 | if (bypasswmi) { |
| 1386 | ar6000_rx_refill(ar,arWMIStream2EndpointID(ar,WMI_LOW_PRI)); |
| 1387 | ar6000_rx_refill(ar,arWMIStream2EndpointID(ar,WMI_HIGH_PRI)); |
| 1388 | } |
| 1389 | |
| 1390 | /* setup credit distribution */ |
| 1391 | ar6000_setup_credit_dist(ar->arHtcTarget, &ar->arCreditStateInfo); |
| 1392 | |
| 1393 | /* Since cookies are used for HTC transports, they should be */ |
| 1394 | /* initialized prior to enabling HTC. */ |
| 1395 | ar6000_cookie_init(ar); |
| 1396 | |
| 1397 | /* start HTC */ |
| 1398 | status = HTCStart(ar->arHtcTarget); |
| 1399 | |
| 1400 | if (status != A_OK) { |
| 1401 | if (ar->arWmiEnabled == TRUE) { |
| 1402 | wmi_shutdown(ar->arWmi); |
| 1403 | ar->arWmiEnabled = FALSE; |
| 1404 | ar->arWmi = NULL; |
| 1405 | } |
| 1406 | ar6000_cookie_cleanup(ar); |
| 1407 | return -EIO; |
| 1408 | } |
| 1409 | |
| 1410 | if (!bypasswmi) { |
| 1411 | /* Wait for Wmi event to be ready */ |
| 1412 | timeleft = wait_event_interruptible_timeout(arEvent, |
| 1413 | (ar->arWmiReady == TRUE), wmitimeout * HZ); |
| 1414 | |
| 1415 | if(!timeleft || signal_pending(current)) |
| 1416 | { |
| 1417 | AR_DEBUG_PRINTF("WMI is not ready or wait was interrupted\n"); |
| 1418 | #if defined(DWSIM) /* TBDXXX */ |
| 1419 | AR_DEBUG_PRINTF(".....but proceed anyway.\n"); |
| 1420 | #else |
| 1421 | return -EIO; |
| 1422 | #endif |
| 1423 | } |
| 1424 | |
| 1425 | AR_DEBUG_PRINTF("%s() WMI is ready\n", __func__); |
| 1426 | |
| 1427 | /* Communicate the wmi protocol verision to the target */ |
| 1428 | if ((ar6000_set_host_app_area(ar)) != A_OK) { |
| 1429 | AR_DEBUG_PRINTF("Unable to set the host app area\n"); |
| 1430 | } |
| 1431 | } |
| 1432 | |
| 1433 | ar->arNumDataEndPts = 1; |
| 1434 | |
| 1435 | return(0); |
| 1436 | } |
| 1437 | |
| 1438 | |
| 1439 | void |
| 1440 | ar6000_bitrate_rx(void *devt, A_INT32 rateKbps) |
| 1441 | { |
| 1442 | AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; |
| 1443 | |
| 1444 | ar->arBitRate = rateKbps; |
| 1445 | wake_up(&arEvent); |
| 1446 | } |
| 1447 | |
| 1448 | void |
| 1449 | ar6000_ratemask_rx(void *devt, A_UINT16 ratemask) |
| 1450 | { |
| 1451 | AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; |
| 1452 | |
| 1453 | ar->arRateMask = ratemask; |
| 1454 | wake_up(&arEvent); |
| 1455 | } |
| 1456 | |
| 1457 | void |
| 1458 | ar6000_txPwr_rx(void *devt, A_UINT8 txPwr) |
| 1459 | { |
| 1460 | AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; |
| 1461 | |
| 1462 | ar->arTxPwr = txPwr; |
| 1463 | wake_up(&arEvent); |
| 1464 | } |
| 1465 | |
| 1466 | |
| 1467 | void |
| 1468 | ar6000_channelList_rx(void *devt, A_INT8 numChan, A_UINT16 *chanList) |
| 1469 | { |
| 1470 | AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; |
| 1471 | |
| 1472 | A_MEMCPY(ar->arChannelList, chanList, numChan * sizeof (A_UINT16)); |
| 1473 | ar->arNumChannels = numChan; |
| 1474 | |
| 1475 | wake_up(&arEvent); |
| 1476 | } |
| 1477 | |
| 1478 | A_UINT8 |
| 1479 | ar6000_ibss_map_epid(struct sk_buff *skb, struct net_device *dev, A_UINT32 * mapNo) |
| 1480 | { |
| 1481 | AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev); |
| 1482 | A_UINT8 *datap; |
| 1483 | ATH_MAC_HDR *macHdr; |
| 1484 | A_UINT32 i, eptMap; |
| 1485 | |
| 1486 | (*mapNo) = 0; |
| 1487 | datap = A_NETBUF_DATA(skb); |
| 1488 | macHdr = (ATH_MAC_HDR *)(datap + sizeof(WMI_DATA_HDR)); |
| 1489 | if (IEEE80211_IS_MULTICAST(macHdr->dstMac)) { |
| 1490 | return ENDPOINT_2; |
| 1491 | } |
| 1492 | |
| 1493 | eptMap = -1; |
| 1494 | for (i = 0; i < ar->arNodeNum; i ++) { |
| 1495 | if (IEEE80211_ADDR_EQ(macHdr->dstMac, ar->arNodeMap[i].macAddress)) { |
| 1496 | (*mapNo) = i + 1; |
| 1497 | ar->arNodeMap[i].txPending ++; |
| 1498 | return ar->arNodeMap[i].epId; |
| 1499 | } |
| 1500 | |
| 1501 | if ((eptMap == -1) && !ar->arNodeMap[i].txPending) { |
| 1502 | eptMap = i; |
| 1503 | } |
| 1504 | } |
| 1505 | |
| 1506 | if (eptMap == -1) { |
| 1507 | eptMap = ar->arNodeNum; |
| 1508 | ar->arNodeNum ++; |
| 1509 | A_ASSERT(ar->arNodeNum <= MAX_NODE_NUM); |
| 1510 | } |
| 1511 | |
| 1512 | A_MEMCPY(ar->arNodeMap[eptMap].macAddress, macHdr->dstMac, IEEE80211_ADDR_LEN); |
| 1513 | |
| 1514 | for (i = ENDPOINT_2; i <= ENDPOINT_5; i ++) { |
| 1515 | if (!ar->arTxPending[i]) { |
| 1516 | ar->arNodeMap[eptMap].epId = i; |
| 1517 | break; |
| 1518 | } |
| 1519 | // No free endpoint is available, start redistribution on the inuse endpoints. |
| 1520 | if (i == ENDPOINT_5) { |
| 1521 | ar->arNodeMap[eptMap].epId = ar->arNexEpId; |
| 1522 | ar->arNexEpId ++; |
| 1523 | if (ar->arNexEpId > ENDPOINT_5) { |
| 1524 | ar->arNexEpId = ENDPOINT_2; |
| 1525 | } |
| 1526 | } |
| 1527 | } |
| 1528 | |
| 1529 | (*mapNo) = eptMap + 1; |
| 1530 | ar->arNodeMap[eptMap].txPending ++; |
| 1531 | |
| 1532 | return ar->arNodeMap[eptMap].epId; |
| 1533 | } |
| 1534 | |
| 1535 | #ifdef DEBUG |
| 1536 | static void ar6000_dump_skb(struct sk_buff *skb) |
| 1537 | { |
| 1538 | u_char *ch; |
| 1539 | for (ch = A_NETBUF_DATA(skb); |
| 1540 | (A_UINT32)ch < ((A_UINT32)A_NETBUF_DATA(skb) + |
| 1541 | A_NETBUF_LEN(skb)); ch++) |
| 1542 | { |
| 1543 | AR_DEBUG_PRINTF("%2.2x ", *ch); |
| 1544 | } |
| 1545 | AR_DEBUG_PRINTF("\n"); |
| 1546 | } |
| 1547 | #endif |
| 1548 | |
| 1549 | static int |
| 1550 | ar6000_data_tx(struct sk_buff *skb, struct net_device *dev) |
| 1551 | { |
| 1552 | AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev); |
| 1553 | WMI_PRI_STREAM_ID streamID = WMI_NOT_MAPPED; |
| 1554 | A_UINT32 mapNo = 0; |
| 1555 | int len; |
| 1556 | struct ar_cookie *cookie; |
| 1557 | A_BOOL checkAdHocPsMapping = FALSE; |
| 1558 | |
| 1559 | #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,13) |
| 1560 | skb->list = NULL; |
| 1561 | #endif |
| 1562 | |
| 1563 | AR_DEBUG2_PRINTF("ar6000_data_tx start - skb=0x%x, data=0x%x, len=0x%x\n", |
| 1564 | (A_UINT32)skb, (A_UINT32)A_NETBUF_DATA(skb), |
| 1565 | A_NETBUF_LEN(skb)); |
| 1566 | #ifdef CONFIG_HOST_TCMD_SUPPORT |
| 1567 | /* TCMD doesnt support any data, free the buf and return */ |
| 1568 | if(ar->arTargetMode == AR6000_TCMD_MODE) { |
| 1569 | A_NETBUF_FREE(skb); |
| 1570 | return 0; |
| 1571 | } |
| 1572 | #endif |
| 1573 | do { |
| 1574 | |
| 1575 | if (ar->arWmiReady == FALSE && bypasswmi == 0) { |
| 1576 | break; |
| 1577 | } |
| 1578 | |
| 1579 | #ifdef BLOCK_TX_PATH_FLAG |
| 1580 | if (blocktx) { |
| 1581 | break; |
| 1582 | } |
| 1583 | #endif /* BLOCK_TX_PATH_FLAG */ |
| 1584 | |
| 1585 | if (ar->arWmiEnabled) { |
| 1586 | if (A_NETBUF_HEADROOM(skb) < dev->hard_header_len) { |
| 1587 | struct sk_buff *newbuf; |
| 1588 | /* |
| 1589 | * We really should have gotten enough headroom but sometimes |
| 1590 | * we still get packets with not enough headroom. Copy the packet. |
| 1591 | */ |
| 1592 | len = A_NETBUF_LEN(skb); |
| 1593 | newbuf = A_NETBUF_ALLOC(len); |
| 1594 | if (newbuf == NULL) { |
| 1595 | break; |
| 1596 | } |
| 1597 | A_NETBUF_PUT(newbuf, len); |
| 1598 | A_MEMCPY(A_NETBUF_DATA(newbuf), A_NETBUF_DATA(skb), len); |
| 1599 | A_NETBUF_FREE(skb); |
| 1600 | skb = newbuf; |
| 1601 | /* fall through and assemble header */ |
| 1602 | } |
| 1603 | |
| 1604 | if (wmi_dix_2_dot3(ar->arWmi, skb) != A_OK) { |
| 1605 | AR_DEBUG_PRINTF("ar6000_data_tx - wmi_dix_2_dot3 failed\n"); |
| 1606 | break; |
| 1607 | } |
| 1608 | |
| 1609 | if (wmi_data_hdr_add(ar->arWmi, skb, DATA_MSGTYPE) != A_OK) { |
| 1610 | AR_DEBUG_PRINTF("ar6000_data_tx - wmi_data_hdr_add failed\n"); |
| 1611 | break; |
| 1612 | } |
| 1613 | |
| 1614 | if ((ar->arNetworkType == ADHOC_NETWORK) && |
| 1615 | ar->arIbssPsEnable && ar->arConnected) { |
| 1616 | /* flag to check adhoc mapping once we take the lock below: */ |
| 1617 | checkAdHocPsMapping = TRUE; |
| 1618 | |
| 1619 | } else { |
| 1620 | /* get the stream mapping */ |
| 1621 | if (ar->arWmmEnabled) { |
| 1622 | streamID = wmi_get_stream_id(ar->arWmi, |
| 1623 | wmi_implicit_create_pstream(ar->arWmi, skb, UPLINK_TRAFFIC, UNDEFINED_PRI)); |
| 1624 | } else { |
| 1625 | streamID = WMI_BEST_EFFORT_PRI; |
| 1626 | } |
| 1627 | } |
| 1628 | |
| 1629 | } else { |
| 1630 | struct iphdr *ipHdr; |
| 1631 | /* |
| 1632 | * the endpoint is directly based on the TOS field in the IP |
| 1633 | * header **** only for testing ****** |
| 1634 | */ |
| 1635 | ipHdr = A_NETBUF_DATA(skb) + sizeof(ATH_MAC_HDR); |
| 1636 | /* here we map the TOS field to an endpoint number, this is for |
| 1637 | * the endpointping test application */ |
| 1638 | streamID = IP_TOS_TO_WMI_PRI(ipHdr->tos); |
| 1639 | } |
| 1640 | |
| 1641 | } while (FALSE); |
| 1642 | |
| 1643 | /* did we succeed ? */ |
| 1644 | if ((streamID == WMI_NOT_MAPPED) && !checkAdHocPsMapping) { |
| 1645 | /* cleanup and exit */ |
| 1646 | A_NETBUF_FREE(skb); |
| 1647 | AR6000_STAT_INC(ar, tx_dropped); |
| 1648 | AR6000_STAT_INC(ar, tx_aborted_errors); |
| 1649 | return 0; |
| 1650 | } |
| 1651 | |
| 1652 | cookie = NULL; |
| 1653 | |
| 1654 | /* take the lock to protect driver data */ |
| 1655 | AR6000_SPIN_LOCK(&ar->arLock, 0); |
| 1656 | |
| 1657 | do { |
| 1658 | |
| 1659 | if (checkAdHocPsMapping) { |
| 1660 | streamID = ar6000_ibss_map_epid(skb, dev, &mapNo); |
| 1661 | } |
| 1662 | |
| 1663 | A_ASSERT(streamID != WMI_NOT_MAPPED); |
| 1664 | |
| 1665 | /* validate that the endpoint is connected */ |
| 1666 | if (arWMIStream2EndpointID(ar,streamID) == 0) { |
| 1667 | AR_DEBUG_PRINTF("Stream %d is NOT mapped!\n",streamID); |
| 1668 | break; |
| 1669 | } |
| 1670 | /* allocate resource for this packet */ |
| 1671 | cookie = ar6000_alloc_cookie(ar); |
| 1672 | |
| 1673 | if (cookie != NULL) { |
| 1674 | /* update counts while the lock is held */ |
| 1675 | ar->arTxPending[streamID]++; |
| 1676 | ar->arTotalTxDataPending++; |
| 1677 | } |
| 1678 | |
| 1679 | } while (FALSE); |
| 1680 | |
| 1681 | AR6000_SPIN_UNLOCK(&ar->arLock, 0); |
| 1682 | |
| 1683 | if (cookie != NULL) { |
| 1684 | cookie->arc_bp[0] = (A_UINT32)skb; |
| 1685 | cookie->arc_bp[1] = mapNo; |
| 1686 | SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt, |
| 1687 | cookie, |
| 1688 | A_NETBUF_DATA(skb), |
| 1689 | A_NETBUF_LEN(skb), |
| 1690 | arWMIStream2EndpointID(ar,streamID), |
| 1691 | AR6K_DATA_PKT_TAG); |
| 1692 | |
| 1693 | #ifdef DEBUG |
| 1694 | if (debugdriver >= 3) { |
| 1695 | ar6000_dump_skb(skb); |
| 1696 | } |
| 1697 | #endif |
| 1698 | /* HTC interface is asynchronous, if this fails, cleanup will happen in |
| 1699 | * the ar6000_tx_complete callback */ |
| 1700 | HTCSendPkt(ar->arHtcTarget, &cookie->HtcPkt); |
| 1701 | } else { |
| 1702 | /* no packet to send, cleanup */ |
| 1703 | A_NETBUF_FREE(skb); |
| 1704 | AR6000_STAT_INC(ar, tx_dropped); |
| 1705 | AR6000_STAT_INC(ar, tx_aborted_errors); |
| 1706 | } |
| 1707 | |
| 1708 | return 0; |
| 1709 | } |
| 1710 | |
| 1711 | #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL |
| 1712 | static void |
| 1713 | tvsub(register struct timeval *out, register struct timeval *in) |
| 1714 | { |
| 1715 | if((out->tv_usec -= in->tv_usec) < 0) { |
| 1716 | out->tv_sec--; |
| 1717 | out->tv_usec += 1000000; |
| 1718 | } |
| 1719 | out->tv_sec -= in->tv_sec; |
| 1720 | } |
| 1721 | |
| 1722 | void |
| 1723 | applyAPTCHeuristics(AR_SOFTC_T *ar) |
| 1724 | { |
| 1725 | A_UINT32 duration; |
| 1726 | A_UINT32 numbytes; |
| 1727 | A_UINT32 throughput; |
| 1728 | struct timeval ts; |
| 1729 | A_STATUS status; |
| 1730 | |
| 1731 | AR6000_SPIN_LOCK(&ar->arLock, 0); |
| 1732 | |
| 1733 | if ((enableAPTCHeuristics) && (!aptcTR.timerScheduled)) { |
| 1734 | do_gettimeofday(&ts); |
| 1735 | tvsub(&ts, &aptcTR.samplingTS); |
| 1736 | duration = ts.tv_sec * 1000 + ts.tv_usec / 1000; /* ms */ |
| 1737 | numbytes = aptcTR.bytesTransmitted + aptcTR.bytesReceived; |
| 1738 | |
| 1739 | if (duration > APTC_TRAFFIC_SAMPLING_INTERVAL) { |
| 1740 | /* Initialize the time stamp and byte count */ |
| 1741 | aptcTR.bytesTransmitted = aptcTR.bytesReceived = 0; |
| 1742 | do_gettimeofday(&aptcTR.samplingTS); |
| 1743 | |
| 1744 | /* Calculate and decide based on throughput thresholds */ |
| 1745 | throughput = ((numbytes * 8) / duration); |
| 1746 | if (throughput > APTC_UPPER_THROUGHPUT_THRESHOLD) { |
| 1747 | /* Disable Sleep and schedule a timer */ |
| 1748 | A_ASSERT(ar->arWmiReady == TRUE); |
| 1749 | AR6000_SPIN_UNLOCK(&ar->arLock, 0); |
| 1750 | status = wmi_powermode_cmd(ar->arWmi, MAX_PERF_POWER); |
| 1751 | AR6000_SPIN_LOCK(&ar->arLock, 0); |
| 1752 | A_TIMEOUT_MS(&aptcTimer, APTC_TRAFFIC_SAMPLING_INTERVAL, 0); |
| 1753 | aptcTR.timerScheduled = TRUE; |
| 1754 | } |
| 1755 | } |
| 1756 | } |
| 1757 | |
| 1758 | AR6000_SPIN_UNLOCK(&ar->arLock, 0); |
| 1759 | } |
| 1760 | #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ |
| 1761 | |
| 1762 | static void |
| 1763 | ar6000_tx_queue_full(void *Context, HTC_ENDPOINT_ID Endpoint) |
| 1764 | { |
| 1765 | AR_SOFTC_T *ar = (AR_SOFTC_T *) Context; |
| 1766 | |
| 1767 | if (Endpoint == arWMIStream2EndpointID(ar,WMI_CONTROL_PRI)) { |
| 1768 | if (!bypasswmi) { |
| 1769 | /* under normal WMI if this is getting full, then something is running rampant |
| 1770 | * the host should not be exhausting the WMI queue with too many commands |
| 1771 | * the only exception to this is during testing using endpointping */ |
| 1772 | |
| 1773 | AR6000_SPIN_LOCK(&ar->arLock, 0); |
| 1774 | /* set flag to handle subsequent messages */ |
| 1775 | ar->arWMIControlEpFull = TRUE; |
| 1776 | AR6000_SPIN_UNLOCK(&ar->arLock, 0); |
| 1777 | AR_DEBUG_PRINTF("WMI Control Endpoint is FULL!!! \n"); |
| 1778 | } |
| 1779 | } else { |
| 1780 | /* one of the data endpoints queues is getting full..need to stop network stack |
| 1781 | * the queue will resume after credits received */ |
| 1782 | netif_stop_queue(ar->arNetDev); |
| 1783 | } |
| 1784 | } |
| 1785 | |
| 1786 | static void |
| 1787 | ar6000_tx_queue_avail(void *Context, HTC_ENDPOINT_ID Endpoint) |
| 1788 | { |
| 1789 | AR_SOFTC_T *ar = (AR_SOFTC_T *)Context; |
| 1790 | |
| 1791 | if (Endpoint == arWMIStream2EndpointID(ar,WMI_CONTROL_PRI)) { |
| 1792 | /* FIXME: what do for it? */ |
| 1793 | } else { |
| 1794 | /* Wake up interface, rescheduling prevented. */ |
| 1795 | if (ar->arConnected == TRUE || bypasswmi) |
| 1796 | netif_wake_queue(ar->arNetDev); |
| 1797 | } |
| 1798 | } |
| 1799 | |
| 1800 | static void |
| 1801 | ar6000_tx_complete(void *Context, HTC_PACKET *pPacket) |
| 1802 | { |
| 1803 | AR_SOFTC_T *ar = (AR_SOFTC_T *)Context; |
| 1804 | void *cookie = (void *)pPacket->pPktContext; |
| 1805 | struct sk_buff *skb = NULL; |
| 1806 | A_UINT32 mapNo = 0; |
| 1807 | A_STATUS status; |
| 1808 | struct ar_cookie * ar_cookie; |
| 1809 | WMI_PRI_STREAM_ID streamID; |
| 1810 | A_BOOL wakeEvent = FALSE; |
| 1811 | |
| 1812 | status = pPacket->Status; |
| 1813 | ar_cookie = (struct ar_cookie *)cookie; |
| 1814 | skb = (struct sk_buff *)ar_cookie->arc_bp[0]; |
| 1815 | streamID = arEndpoint2WMIStreamID(ar,pPacket->Endpoint); |
| 1816 | mapNo = ar_cookie->arc_bp[1]; |
| 1817 | |
| 1818 | A_ASSERT(skb); |
| 1819 | A_ASSERT(pPacket->pBuffer == A_NETBUF_DATA(skb)); |
| 1820 | |
| 1821 | if (A_SUCCESS(status)) { |
| 1822 | A_ASSERT(pPacket->ActualLength == A_NETBUF_LEN(skb)); |
| 1823 | } |
| 1824 | |
| 1825 | AR_DEBUG2_PRINTF("ar6000_tx_complete skb=0x%x data=0x%x len=0x%x sid=%d ", |
| 1826 | (A_UINT32)skb, (A_UINT32)pPacket->pBuffer, |
| 1827 | pPacket->ActualLength, |
| 1828 | streamID); |
| 1829 | |
| 1830 | /* lock the driver as we update internal state */ |
| 1831 | AR6000_SPIN_LOCK(&ar->arLock, 0); |
| 1832 | |
| 1833 | ar->arTxPending[streamID]--; |
| 1834 | |
| 1835 | if ((streamID != WMI_CONTROL_PRI) || bypasswmi) { |
| 1836 | ar->arTotalTxDataPending--; |
| 1837 | } |
| 1838 | |
| 1839 | if (streamID == WMI_CONTROL_PRI) |
| 1840 | { |
| 1841 | if (ar->arWMIControlEpFull) { |
| 1842 | /* since this packet completed, the WMI EP is no longer full */ |
| 1843 | ar->arWMIControlEpFull = FALSE; |
| 1844 | } |
| 1845 | |
| 1846 | if (ar->arTxPending[streamID] == 0) { |
| 1847 | wakeEvent = TRUE; |
| 1848 | } |
| 1849 | } |
| 1850 | |
| 1851 | if (A_FAILED(status)) { |
| 1852 | AR_DEBUG_PRINTF("%s() -TX ERROR, status: 0x%x\n", __func__, |
| 1853 | status); |
| 1854 | AR6000_STAT_INC(ar, tx_errors); |
| 1855 | } else { |
| 1856 | AR_DEBUG2_PRINTF("OK\n"); |
| 1857 | AR6000_STAT_INC(ar, tx_packets); |
| 1858 | ar->arNetStats.tx_bytes += A_NETBUF_LEN(skb); |
| 1859 | #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL |
| 1860 | aptcTR.bytesTransmitted += a_netbuf_to_len(skb); |
| 1861 | applyAPTCHeuristics(ar); |
| 1862 | #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ |
| 1863 | } |
| 1864 | |
| 1865 | // TODO this needs to be looked at |
| 1866 | if ((ar->arNetworkType == ADHOC_NETWORK) && ar->arIbssPsEnable |
| 1867 | && (streamID != WMI_CONTROL_PRI) && mapNo) |
| 1868 | { |
| 1869 | mapNo --; |
| 1870 | ar->arNodeMap[mapNo].txPending --; |
| 1871 | |
| 1872 | if (!ar->arNodeMap[mapNo].txPending && (mapNo == (ar->arNodeNum - 1))) { |
| 1873 | A_UINT32 i; |
| 1874 | for (i = ar->arNodeNum; i > 0; i --) { |
| 1875 | if (!ar->arNodeMap[i - 1].txPending) { |
| 1876 | A_MEMZERO(&ar->arNodeMap[i - 1], sizeof(struct ar_node_mapping)); |
| 1877 | ar->arNodeNum --; |
| 1878 | } else { |
| 1879 | break; |
| 1880 | } |
| 1881 | } |
| 1882 | } |
| 1883 | } |
| 1884 | |
| 1885 | /* Freeing a cookie should not be contingent on either of */ |
| 1886 | /* these flags, just if we have a cookie or not. */ |
| 1887 | /* Can we even get here without a cookie? Fix later. */ |
| 1888 | if (ar->arWmiReady == TRUE || (bypasswmi)) |
| 1889 | { |
| 1890 | ar6000_free_cookie(ar, cookie); |
| 1891 | } |
| 1892 | |
| 1893 | AR6000_SPIN_UNLOCK(&ar->arLock, 0); |
| 1894 | |
| 1895 | /* lock is released, we can freely call other kernel APIs */ |
| 1896 | |
| 1897 | /* this indirectly frees the HTC_PACKET */ |
| 1898 | A_NETBUF_FREE(skb); |
| 1899 | |
| 1900 | if (wakeEvent) { |
| 1901 | wake_up(&arEvent); |
| 1902 | } |
| 1903 | } |
| 1904 | |
| 1905 | /* |
| 1906 | * Receive event handler. This is called by HTC when a packet is received |
| 1907 | */ |
| 1908 | int pktcount; |
| 1909 | static void |
| 1910 | ar6000_rx(void *Context, HTC_PACKET *pPacket) |
| 1911 | { |
| 1912 | AR_SOFTC_T *ar = (AR_SOFTC_T *)Context; |
| 1913 | struct sk_buff *skb = (struct sk_buff *)pPacket->pPktContext; |
| 1914 | int minHdrLen; |
| 1915 | A_STATUS status = pPacket->Status; |
| 1916 | WMI_PRI_STREAM_ID streamID = arEndpoint2WMIStreamID(ar,pPacket->Endpoint); |
| 1917 | HTC_ENDPOINT_ID ept = pPacket->Endpoint; |
| 1918 | |
| 1919 | A_ASSERT((status != A_OK) || (pPacket->pBuffer == (A_NETBUF_DATA(skb) + HTC_HEADER_LEN))); |
| 1920 | |
| 1921 | AR_DEBUG2_PRINTF("ar6000_rx ar=0x%x sid=%d, skb=0x%x, data=0x%x, len=0x%x ", |
| 1922 | (A_UINT32)ar, streamID, (A_UINT32)skb, (A_UINT32)pPacket->pBuffer, |
| 1923 | pPacket->ActualLength); |
| 1924 | if (status != A_OK) { |
| 1925 | AR_DEBUG2_PRINTF("ERR\n"); |
| 1926 | } else { |
| 1927 | AR_DEBUG2_PRINTF("OK\n"); |
| 1928 | } |
| 1929 | |
| 1930 | /* take lock to protect buffer counts |
| 1931 | * and adaptive power throughput state */ |
| 1932 | AR6000_SPIN_LOCK(&ar->arLock, 0); |
| 1933 | |
| 1934 | ar->arRxBuffers[streamID]--; |
| 1935 | |
| 1936 | if (A_SUCCESS(status)) { |
| 1937 | AR6000_STAT_INC(ar, rx_packets); |
| 1938 | ar->arNetStats.rx_bytes += pPacket->ActualLength; |
| 1939 | #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL |
| 1940 | aptcTR.bytesReceived += a_netbuf_to_len(skb); |
| 1941 | applyAPTCHeuristics(ar); |
| 1942 | #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ |
| 1943 | |
| 1944 | A_NETBUF_PUT(skb, pPacket->ActualLength + HTC_HEADER_LEN); |
| 1945 | A_NETBUF_PULL(skb, HTC_HEADER_LEN); |
| 1946 | |
| 1947 | #ifdef DEBUG |
| 1948 | if (debugdriver >= 2) { |
| 1949 | ar6000_dump_skb(skb); |
| 1950 | } |
| 1951 | #endif /* DEBUG */ |
| 1952 | } |
| 1953 | |
| 1954 | AR6000_SPIN_UNLOCK(&ar->arLock, 0); |
| 1955 | |
| 1956 | if (status != A_OK) { |
| 1957 | AR6000_STAT_INC(ar, rx_errors); |
| 1958 | A_NETBUF_FREE(skb); |
| 1959 | } else if (ar->arWmiEnabled == TRUE) { |
| 1960 | if (streamID == WMI_CONTROL_PRI) { |
| 1961 | /* |
| 1962 | * this is a wmi control msg |
| 1963 | */ |
| 1964 | wmi_control_rx(ar->arWmi, skb); |
| 1965 | } else { |
| 1966 | WMI_DATA_HDR *dhdr = (WMI_DATA_HDR *)A_NETBUF_DATA(skb); |
| 1967 | if (WMI_DATA_HDR_IS_MSG_TYPE(dhdr, CNTL_MSGTYPE)) { |
| 1968 | /* |
| 1969 | * this is a wmi control msg |
| 1970 | */ |
| 1971 | /* strip off WMI hdr */ |
| 1972 | wmi_data_hdr_remove(ar->arWmi, skb); |
| 1973 | wmi_control_rx(ar->arWmi, skb); |
| 1974 | } else { |
| 1975 | /* |
| 1976 | * this is a wmi data packet |
| 1977 | */ |
| 1978 | minHdrLen = sizeof (WMI_DATA_HDR) + sizeof(ATH_MAC_HDR) + |
| 1979 | sizeof(ATH_LLC_SNAP_HDR); |
| 1980 | |
| 1981 | if ((pPacket->ActualLength < minHdrLen) || |
| 1982 | (pPacket->ActualLength > AR6000_BUFFER_SIZE)) |
| 1983 | { |
| 1984 | /* |
| 1985 | * packet is too short or too long |
| 1986 | */ |
| 1987 | AR_DEBUG_PRINTF("TOO SHORT or TOO LONG\n"); |
| 1988 | AR6000_STAT_INC(ar, rx_errors); |
| 1989 | AR6000_STAT_INC(ar, rx_length_errors); |
| 1990 | A_NETBUF_FREE(skb); |
| 1991 | } else { |
| 1992 | if (ar->arWmmEnabled) { |
| 1993 | wmi_implicit_create_pstream(ar->arWmi, skb, |
| 1994 | DNLINK_TRAFFIC, UNDEFINED_PRI); |
| 1995 | } |
| 1996 | #if 0 |
| 1997 | /* Access RSSI values here */ |
| 1998 | AR_DEBUG_PRINTF("RSSI %d\n", |
| 1999 | ((WMI_DATA_HDR *) A_NETBUF_DATA(skb))->rssi); |
| 2000 | #endif |
| 2001 | wmi_data_hdr_remove(ar->arWmi, skb); |
| 2002 | wmi_dot3_2_dix(ar->arWmi, skb); |
| 2003 | |
| 2004 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) |
| 2005 | /* |
| 2006 | * extra push and memcpy, for eth_type_trans() of 2.4 kernel |
| 2007 | * will pull out hard_header_len bytes of the skb. |
| 2008 | */ |
| 2009 | A_NETBUF_PUSH(skb, sizeof(WMI_DATA_HDR) + sizeof(ATH_LLC_SNAP_HDR) + HTC_HEADER_LEN); |
| 2010 | A_MEMCPY(A_NETBUF_DATA(skb), A_NETBUF_DATA(skb) + sizeof(WMI_DATA_HDR) + |
| 2011 | sizeof(ATH_LLC_SNAP_HDR) + HTC_HEADER_LEN, sizeof(ATH_MAC_HDR)); |
| 2012 | #endif |
| 2013 | if ((ar->arNetDev->flags & IFF_UP) == IFF_UP) |
| 2014 | { |
| 2015 | skb->dev = ar->arNetDev; |
| 2016 | skb->protocol = eth_type_trans(skb, ar->arNetDev); |
| 2017 | netif_rx(skb); |
| 2018 | } |
| 2019 | else |
| 2020 | { |
| 2021 | A_NETBUF_FREE(skb); |
| 2022 | } |
| 2023 | } |
| 2024 | } |
| 2025 | } |
| 2026 | } else { |
| 2027 | if ((ar->arNetDev->flags & IFF_UP) == IFF_UP) |
| 2028 | { |
| 2029 | skb->dev = ar->arNetDev; |
| 2030 | skb->protocol = eth_type_trans(skb, ar->arNetDev); |
| 2031 | netif_rx(skb); |
| 2032 | } |
| 2033 | else |
| 2034 | { |
| 2035 | A_NETBUF_FREE(skb); |
| 2036 | } |
| 2037 | } |
| 2038 | |
| 2039 | if (status != A_ECANCELED) { |
| 2040 | /* |
| 2041 | * HTC provides A_ECANCELED status when it doesn't want to be refilled |
| 2042 | * (probably due to a shutdown) |
| 2043 | */ |
| 2044 | ar6000_rx_refill(Context, ept); |
| 2045 | } |
| 2046 | |
| 2047 | |
| 2048 | } |
| 2049 | |
| 2050 | static void |
| 2051 | ar6000_rx_refill(void *Context, HTC_ENDPOINT_ID Endpoint) |
| 2052 | { |
| 2053 | AR_SOFTC_T *ar = (AR_SOFTC_T *)Context; |
| 2054 | void *osBuf; |
| 2055 | int RxBuffers; |
| 2056 | int buffersToRefill; |
| 2057 | HTC_PACKET *pPacket; |
| 2058 | WMI_PRI_STREAM_ID streamId = arEndpoint2WMIStreamID(ar,Endpoint); |
| 2059 | |
| 2060 | buffersToRefill = (int)AR6000_MAX_RX_BUFFERS - |
| 2061 | (int)ar->arRxBuffers[streamId]; |
| 2062 | |
| 2063 | if (buffersToRefill <= 0) { |
| 2064 | /* fast return, nothing to fill */ |
| 2065 | return; |
| 2066 | } |
| 2067 | |
| 2068 | AR_DEBUG2_PRINTF("ar6000_rx_refill: providing htc with %d buffers at eid=%d\n", |
| 2069 | buffersToRefill, Endpoint); |
| 2070 | |
| 2071 | for (RxBuffers = 0; RxBuffers < buffersToRefill; RxBuffers++) { |
| 2072 | osBuf = A_NETBUF_ALLOC(AR6000_BUFFER_SIZE); |
| 2073 | if (NULL == osBuf) { |
| 2074 | break; |
| 2075 | } |
| 2076 | /* the HTC packet wrapper is at the head of the reserved area |
| 2077 | * in the skb */ |
| 2078 | pPacket = (HTC_PACKET *)(A_NETBUF_HEAD(osBuf)); |
| 2079 | /* set re-fill info */ |
| 2080 | SET_HTC_PACKET_INFO_RX_REFILL(pPacket,osBuf,A_NETBUF_DATA(osBuf),AR6000_BUFFER_SIZE,Endpoint); |
| 2081 | /* add this packet */ |
| 2082 | HTCAddReceivePkt(ar->arHtcTarget, pPacket); |
| 2083 | } |
| 2084 | |
| 2085 | /* update count */ |
| 2086 | AR6000_SPIN_LOCK(&ar->arLock, 0); |
| 2087 | ar->arRxBuffers[streamId] += RxBuffers; |
| 2088 | AR6000_SPIN_UNLOCK(&ar->arLock, 0); |
| 2089 | } |
| 2090 | |
| 2091 | static struct net_device_stats * |
| 2092 | ar6000_get_stats(struct net_device *dev) |
| 2093 | { |
| 2094 | AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev); |
| 2095 | return &ar->arNetStats; |
| 2096 | } |
| 2097 | |
| 2098 | static struct iw_statistics * |
| 2099 | ar6000_get_iwstats(struct net_device * dev) |
| 2100 | { |
| 2101 | AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev); |
| 2102 | TARGET_STATS *pStats = &ar->arTargetStats; |
| 2103 | struct iw_statistics * pIwStats = &ar->arIwStats; |
| 2104 | |
| 2105 | if ((ar->arWmiReady == FALSE) |
| 2106 | /* |
| 2107 | * The in_atomic function is used to determine if the scheduling is |
| 2108 | * allowed in the current context or not. This was introduced in 2.6 |
| 2109 | * From what I have read on the differences between 2.4 and 2.6, the |
| 2110 | * 2.4 kernel did not support preemption and so this check might not |
| 2111 | * be required for 2.4 kernels. |
| 2112 | */ |
| 2113 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) |
| 2114 | || (in_atomic()) |
| 2115 | #endif |
| 2116 | ) |
| 2117 | { |
| 2118 | pIwStats->status = 0; |
| 2119 | pIwStats->qual.qual = 0; |
| 2120 | pIwStats->qual.level =0; |
| 2121 | pIwStats->qual.noise = 0; |
| 2122 | pIwStats->discard.code =0; |
| 2123 | pIwStats->discard.retries=0; |
| 2124 | pIwStats->miss.beacon =0; |
| 2125 | return pIwStats; |
| 2126 | } |
| 2127 | if (down_interruptible(&ar->arSem)) { |
| 2128 | pIwStats->status = 0; |
| 2129 | return pIwStats; |
| 2130 | } |
| 2131 | |
| 2132 | |
| 2133 | ar->statsUpdatePending = TRUE; |
| 2134 | |
| 2135 | if(wmi_get_stats_cmd(ar->arWmi) != A_OK) { |
| 2136 | up(&ar->arSem); |
| 2137 | pIwStats->status = 0; |
| 2138 | return pIwStats; |
| 2139 | } |
| 2140 | |
| 2141 | wait_event_interruptible_timeout(arEvent, ar->statsUpdatePending == FALSE, wmitimeout * HZ); |
| 2142 | |
| 2143 | if (signal_pending(current)) { |
| 2144 | AR_DEBUG_PRINTF("ar6000 : WMI get stats timeout \n"); |
| 2145 | up(&ar->arSem); |
| 2146 | pIwStats->status = 0; |
| 2147 | return pIwStats; |
| 2148 | } |
| 2149 | pIwStats->status = 1 ; |
| 2150 | pIwStats->qual.qual = pStats->cs_aveBeacon_rssi; |
| 2151 | pIwStats->qual.level =pStats->cs_aveBeacon_rssi + 161; /* noise is -95 dBm */ |
| 2152 | pIwStats->qual.noise = pStats->noise_floor_calibation; |
| 2153 | pIwStats->discard.code = pStats->rx_decrypt_err; |
| 2154 | pIwStats->discard.retries = pStats->tx_retry_cnt; |
| 2155 | pIwStats->miss.beacon = pStats->cs_bmiss_cnt; |
| 2156 | up(&ar->arSem); |
| 2157 | return pIwStats; |
| 2158 | } |
| 2159 | |
| 2160 | void |
| 2161 | ar6000_ready_event(void *devt, A_UINT8 *datap, A_UINT8 phyCap) |
| 2162 | { |
| 2163 | AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; |
| 2164 | struct net_device *dev = ar->arNetDev; |
| 2165 | |
| 2166 | ar->arWmiReady = TRUE; |
| 2167 | wake_up(&arEvent); |
| 2168 | A_MEMCPY(dev->dev_addr, datap, AR6000_ETH_ADDR_LEN); |
| 2169 | AR_DEBUG_PRINTF("mac address = %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n", |
| 2170 | dev->dev_addr[0], dev->dev_addr[1], |
| 2171 | dev->dev_addr[2], dev->dev_addr[3], |
| 2172 | dev->dev_addr[4], dev->dev_addr[5]); |
| 2173 | |
| 2174 | ar->arPhyCapability = phyCap; |
| 2175 | } |
| 2176 | |
| 2177 | A_UINT8 |
| 2178 | ar6000_iptos_to_userPriority(A_UINT8 *pkt) |
| 2179 | { |
| 2180 | struct iphdr *ipHdr = (struct iphdr *)pkt; |
| 2181 | A_UINT8 userPriority; |
| 2182 | |
| 2183 | /* |
| 2184 | * IP Tos format : |
| 2185 | * (Refer Pg 57 WMM-test-plan-v1.2) |
| 2186 | * IP-TOS - 8bits |
| 2187 | * : DSCP(6-bits) ECN(2-bits) |
| 2188 | * : DSCP - P2 P1 P0 X X X |
| 2189 | * where (P2 P1 P0) form 802.1D |
| 2190 | */ |
| 2191 | userPriority = ipHdr->tos >> 5; |
| 2192 | return (userPriority & 0x7); |
| 2193 | } |
| 2194 | |
| 2195 | void |
| 2196 | ar6000_connect_event(AR_SOFTC_T *ar, A_UINT16 channel, A_UINT8 *bssid, |
| 2197 | A_UINT16 listenInterval, A_UINT16 beaconInterval, |
| 2198 | NETWORK_TYPE networkType, A_UINT8 beaconIeLen, |
| 2199 | A_UINT8 assocReqLen, A_UINT8 assocRespLen, |
| 2200 | A_UINT8 *assocInfo) |
| 2201 | { |
| 2202 | union iwreq_data wrqu; |
| 2203 | int i, beacon_ie_pos, assoc_resp_ie_pos, assoc_req_ie_pos; |
| 2204 | static const char *tag1 = "ASSOCINFO(ReqIEs="; |
| 2205 | static const char *tag2 = "ASSOCRESPIE="; |
| 2206 | static const char *beaconIetag = "BEACONIE="; |
| 2207 | char buf[WMI_CONTROL_MSG_MAX_LEN * 2 + sizeof(tag1)]; |
| 2208 | char *pos; |
| 2209 | A_UINT8 key_op_ctrl; |
| 2210 | |
| 2211 | A_MEMCPY(ar->arBssid, bssid, sizeof(ar->arBssid)); |
| 2212 | ar->arBssChannel = channel; |
| 2213 | |
| 2214 | A_PRINTF("AR6000 connected event on freq %d ", channel); |
| 2215 | A_PRINTF("with bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x " |
| 2216 | " listenInterval=%d, beaconInterval = %d, beaconIeLen = %d assocReqLen=%d" |
| 2217 | " assocRespLen =%d\n", |
| 2218 | bssid[0], bssid[1], bssid[2], |
| 2219 | bssid[3], bssid[4], bssid[5], |
| 2220 | listenInterval, beaconInterval, |
| 2221 | beaconIeLen, assocReqLen, assocRespLen); |
| 2222 | if (networkType & ADHOC_NETWORK) { |
| 2223 | if (networkType & ADHOC_CREATOR) { |
| 2224 | A_PRINTF("Network: Adhoc (Creator)\n"); |
| 2225 | } else { |
| 2226 | A_PRINTF("Network: Adhoc (Joiner)\n"); |
| 2227 | } |
| 2228 | } else { |
| 2229 | A_PRINTF("Network: Infrastructure\n"); |
| 2230 | } |
| 2231 | |
| 2232 | if (beaconIeLen && (sizeof(buf) > (9 + beaconIeLen * 2))) { |
| 2233 | AR_DEBUG_PRINTF("\nBeaconIEs= "); |
| 2234 | |
| 2235 | beacon_ie_pos = 0; |
| 2236 | A_MEMZERO(buf, sizeof(buf)); |
| 2237 | sprintf(buf, "%s", beaconIetag); |
| 2238 | pos = buf + 9; |
| 2239 | for (i = beacon_ie_pos; i < beacon_ie_pos + beaconIeLen; i++) { |
| 2240 | AR_DEBUG_PRINTF("%2.2x ", assocInfo[i]); |
| 2241 | sprintf(pos, "%2.2x", assocInfo[i]); |
| 2242 | pos += 2; |
| 2243 | } |
| 2244 | AR_DEBUG_PRINTF("\n"); |
| 2245 | |
| 2246 | A_MEMZERO(&wrqu, sizeof(wrqu)); |
| 2247 | wrqu.data.length = strlen(buf); |
| 2248 | wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf); |
| 2249 | } |
| 2250 | |
| 2251 | if (assocRespLen && (sizeof(buf) > (12 + (assocRespLen * 2)))) |
| 2252 | { |
| 2253 | assoc_resp_ie_pos = beaconIeLen + assocReqLen + |
| 2254 | sizeof(A_UINT16) + /* capinfo*/ |
| 2255 | sizeof(A_UINT16) + /* status Code */ |
| 2256 | sizeof(A_UINT16) ; /* associd */ |
| 2257 | A_MEMZERO(buf, sizeof(buf)); |
| 2258 | sprintf(buf, "%s", tag2); |
| 2259 | pos = buf + 12; |
| 2260 | AR_DEBUG_PRINTF("\nAssocRespIEs= "); |
| 2261 | /* |
| 2262 | * The Association Response Frame w.o. the WLAN header is delivered to |
| 2263 | * the host, so skip over to the IEs |
| 2264 | */ |
| 2265 | for (i = assoc_resp_ie_pos; i < assoc_resp_ie_pos + assocRespLen - 6; i++) |
| 2266 | { |
| 2267 | AR_DEBUG_PRINTF("%2.2x ", assocInfo[i]); |
| 2268 | sprintf(pos, "%2.2x", assocInfo[i]); |
| 2269 | pos += 2; |
| 2270 | } |
| 2271 | AR_DEBUG_PRINTF("\n"); |
| 2272 | |
| 2273 | A_MEMZERO(&wrqu, sizeof(wrqu)); |
| 2274 | wrqu.data.length = strlen(buf); |
| 2275 | wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf); |
| 2276 | } |
| 2277 | |
| 2278 | if (assocReqLen && (sizeof(buf) > (17 + (assocReqLen * 2)))) { |
| 2279 | /* |
| 2280 | * assoc Request includes capability and listen interval. Skip these. |
| 2281 | */ |
| 2282 | assoc_req_ie_pos = beaconIeLen + |
| 2283 | sizeof(A_UINT16) + /* capinfo*/ |
| 2284 | sizeof(A_UINT16); /* listen interval */ |
| 2285 | |
| 2286 | A_MEMZERO(buf, sizeof(buf)); |
| 2287 | sprintf(buf, "%s", tag1); |
| 2288 | pos = buf + 17; |
| 2289 | AR_DEBUG_PRINTF("AssocReqIEs= "); |
| 2290 | for (i = assoc_req_ie_pos; i < assoc_req_ie_pos + assocReqLen - 4; i++) { |
| 2291 | AR_DEBUG_PRINTF("%2.2x ", assocInfo[i]); |
| 2292 | sprintf(pos, "%2.2x", assocInfo[i]); |
| 2293 | pos += 2;; |
| 2294 | } |
| 2295 | AR_DEBUG_PRINTF("\n"); |
| 2296 | |
| 2297 | A_MEMZERO(&wrqu, sizeof(wrqu)); |
| 2298 | wrqu.data.length = strlen(buf); |
| 2299 | wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf); |
| 2300 | } |
| 2301 | |
| 2302 | #ifdef USER_KEYS |
| 2303 | if (ar->user_savedkeys_stat == USER_SAVEDKEYS_STAT_RUN && |
| 2304 | ar->user_saved_keys.keyOk == TRUE) |
| 2305 | { |
| 2306 | |
| 2307 | key_op_ctrl = KEY_OP_VALID_MASK & ~KEY_OP_INIT_TSC; |
| 2308 | if (ar->user_key_ctrl & AR6000_USER_SETKEYS_RSC_UNCHANGED) { |
| 2309 | key_op_ctrl &= ~KEY_OP_INIT_RSC; |
| 2310 | } else { |
| 2311 | key_op_ctrl |= KEY_OP_INIT_RSC; |
| 2312 | } |
| 2313 | ar6000_reinstall_keys(ar, key_op_ctrl); |
| 2314 | } |
| 2315 | #endif /* USER_KEYS */ |
| 2316 | |
| 2317 | /* flush data queues */ |
| 2318 | ar6000_TxDataCleanup(ar); |
| 2319 | |
| 2320 | netif_start_queue(ar->arNetDev); |
| 2321 | |
| 2322 | if ((OPEN_AUTH == ar->arDot11AuthMode) && |
| 2323 | (NONE_AUTH == ar->arAuthMode) && |
| 2324 | (WEP_CRYPT == ar->arPairwiseCrypto)) |
| 2325 | { |
| 2326 | if (!ar->arConnected) { |
| 2327 | ar6000_install_static_wep_keys(ar); |
| 2328 | } |
| 2329 | } |
| 2330 | |
| 2331 | ar->arConnected = TRUE; |
| 2332 | ar->arConnectPending = FALSE; |
| 2333 | |
| 2334 | reconnect_flag = 0; |
| 2335 | |
| 2336 | A_MEMZERO(&wrqu, sizeof(wrqu)); |
| 2337 | A_MEMCPY(wrqu.addr.sa_data, bssid, IEEE80211_ADDR_LEN); |
| 2338 | wrqu.addr.sa_family = ARPHRD_ETHER; |
| 2339 | wireless_send_event(ar->arNetDev, SIOCGIWAP, &wrqu, NULL); |
| 2340 | if ((ar->arNetworkType == ADHOC_NETWORK) && ar->arIbssPsEnable) { |
| 2341 | A_MEMZERO(ar->arNodeMap, sizeof(ar->arNodeMap)); |
| 2342 | ar->arNodeNum = 0; |
| 2343 | ar->arNexEpId = ENDPOINT_2; |
| 2344 | } |
| 2345 | |
| 2346 | } |
| 2347 | |
| 2348 | void ar6000_set_numdataendpts(AR_SOFTC_T *ar, A_UINT32 num) |
| 2349 | { |
| 2350 | A_ASSERT(num <= (HTC_MAILBOX_NUM_MAX - 1)); |
| 2351 | ar->arNumDataEndPts = num; |
| 2352 | } |
| 2353 | |
| 2354 | void |
| 2355 | ar6000_disconnect_event(AR_SOFTC_T *ar, A_UINT8 reason, A_UINT8 *bssid, |
| 2356 | A_UINT8 assocRespLen, A_UINT8 *assocInfo, A_UINT16 protocolReasonStatus) |
| 2357 | { |
| 2358 | A_UINT8 i; |
| 2359 | |
| 2360 | A_PRINTF("AR6000 disconnected"); |
| 2361 | if (bssid[0] || bssid[1] || bssid[2] || bssid[3] || bssid[4] || bssid[5]) { |
| 2362 | A_PRINTF(" from %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ", |
| 2363 | bssid[0], bssid[1], bssid[2], bssid[3], bssid[4], bssid[5]); |
| 2364 | } |
| 2365 | A_PRINTF("\n"); |
| 2366 | |
| 2367 | AR_DEBUG_PRINTF("\nDisconnect Reason is %d", reason); |
| 2368 | AR_DEBUG_PRINTF("\nProtocol Reason/Status Code is %d", protocolReasonStatus); |
| 2369 | AR_DEBUG_PRINTF("\nAssocResp Frame = %s", |
| 2370 | assocRespLen ? " " : "NULL"); |
| 2371 | for (i = 0; i < assocRespLen; i++) { |
| 2372 | if (!(i % 0x10)) { |
| 2373 | AR_DEBUG_PRINTF("\n"); |
| 2374 | } |
| 2375 | AR_DEBUG_PRINTF("%2.2x ", assocInfo[i]); |
| 2376 | } |
| 2377 | AR_DEBUG_PRINTF("\n"); |
| 2378 | /* |
| 2379 | * If the event is due to disconnect cmd from the host, only they the target |
| 2380 | * would stop trying to connect. Under any other condition, target would |
| 2381 | * keep trying to connect. |
| 2382 | * |
| 2383 | */ |
| 2384 | if( reason == DISCONNECT_CMD) |
| 2385 | { |
| 2386 | ar->arConnectPending = FALSE; |
| 2387 | } else { |
| 2388 | ar->arConnectPending = TRUE; |
| 2389 | if (((reason == ASSOC_FAILED) && (protocolReasonStatus == 0x11)) || |
| 2390 | ((reason == ASSOC_FAILED) && (protocolReasonStatus == 0x0) && (reconnect_flag == 1))) { |
| 2391 | ar->arConnected = TRUE; |
| 2392 | return; |
| 2393 | } |
| 2394 | } |
| 2395 | ar->arConnected = FALSE; |
| 2396 | |
| 2397 | if( (reason != CSERV_DISCONNECT) || (reconnect_flag != 1) ) { |
| 2398 | reconnect_flag = 0; |
| 2399 | } |
| 2400 | |
| 2401 | #ifdef USER_KEYS |
| 2402 | if (reason != CSERV_DISCONNECT) |
| 2403 | { |
| 2404 | ar->user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT; |
| 2405 | ar->user_key_ctrl = 0; |
| 2406 | } |
| 2407 | #endif /* USER_KEYS */ |
| 2408 | |
| 2409 | netif_stop_queue(ar->arNetDev); |
| 2410 | A_MEMZERO(ar->arBssid, sizeof(ar->arBssid)); |
| 2411 | ar->arBssChannel = 0; |
| 2412 | ar->arBeaconInterval = 0; |
| 2413 | |
| 2414 | ar6000_TxDataCleanup(ar); |
| 2415 | } |
| 2416 | |
| 2417 | void |
| 2418 | ar6000_regDomain_event(AR_SOFTC_T *ar, A_UINT32 regCode) |
| 2419 | { |
| 2420 | A_PRINTF("AR6000 Reg Code = 0x%x\n", regCode); |
| 2421 | ar->arRegCode = regCode; |
| 2422 | } |
| 2423 | |
| 2424 | void |
| 2425 | ar6000_neighborReport_event(AR_SOFTC_T *ar, int numAps, WMI_NEIGHBOR_INFO *info) |
| 2426 | { |
| 2427 | static const char *tag = "PRE-AUTH"; |
| 2428 | char buf[128]; |
| 2429 | union iwreq_data wrqu; |
| 2430 | int i; |
| 2431 | |
| 2432 | AR_DEBUG_PRINTF("AR6000 Neighbor Report Event\n"); |
| 2433 | for (i=0; i < numAps; info++, i++) { |
| 2434 | AR_DEBUG_PRINTF("bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ", |
| 2435 | info->bssid[0], info->bssid[1], info->bssid[2], |
| 2436 | info->bssid[3], info->bssid[4], info->bssid[5]); |
| 2437 | if (info->bssFlags & WMI_PREAUTH_CAPABLE_BSS) { |
| 2438 | AR_DEBUG_PRINTF("preauth-cap"); |
| 2439 | } |
| 2440 | if (info->bssFlags & WMI_PMKID_VALID_BSS) { |
| 2441 | AR_DEBUG_PRINTF(" pmkid-valid\n"); |
| 2442 | continue; /* we skip bss if the pmkid is already valid */ |
| 2443 | } |
| 2444 | AR_DEBUG_PRINTF("\n"); |
| 2445 | snprintf(buf, sizeof(buf), "%s%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x", |
| 2446 | tag, |
| 2447 | info->bssid[0], info->bssid[1], info->bssid[2], |
| 2448 | info->bssid[3], info->bssid[4], info->bssid[5], |
| 2449 | i, info->bssFlags); |
| 2450 | A_MEMZERO(&wrqu, sizeof(wrqu)); |
| 2451 | wrqu.data.length = strlen(buf); |
| 2452 | wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf); |
| 2453 | } |
| 2454 | } |
| 2455 | |
| 2456 | void |
| 2457 | ar6000_tkip_micerr_event(AR_SOFTC_T *ar, A_UINT8 keyid, A_BOOL ismcast) |
| 2458 | { |
| 2459 | static const char *tag = "MLME-MICHAELMICFAILURE.indication"; |
| 2460 | char buf[128]; |
| 2461 | union iwreq_data wrqu; |
| 2462 | |
| 2463 | A_PRINTF("AR6000 TKIP MIC error received for keyid %d %scast\n", |
| 2464 | keyid, ismcast ? "multi": "uni"); |
| 2465 | snprintf(buf, sizeof(buf), "%s(keyid=%d %scat)", tag, keyid, |
| 2466 | ismcast ? "multi" : "uni"); |
| 2467 | memset(&wrqu, 0, sizeof(wrqu)); |
| 2468 | wrqu.data.length = strlen(buf); |
| 2469 | wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf); |
| 2470 | } |
| 2471 | |
| 2472 | void |
| 2473 | ar6000_scanComplete_event(AR_SOFTC_T *ar, A_STATUS status) |
| 2474 | { |
| 2475 | AR_DEBUG_PRINTF("AR6000 scan complete: %d\n", status); |
| 2476 | |
| 2477 | ar->scan_complete = 1; |
| 2478 | wake_up_interruptible(&ar6000_scan_queue); |
| 2479 | } |
| 2480 | |
| 2481 | void |
| 2482 | ar6000_targetStats_event(AR_SOFTC_T *ar, WMI_TARGET_STATS *pTarget) |
| 2483 | { |
| 2484 | TARGET_STATS *pStats = &ar->arTargetStats; |
| 2485 | A_UINT8 ac; |
| 2486 | |
| 2487 | /*A_PRINTF("AR6000 updating target stats\n");*/ |
| 2488 | pStats->tx_packets += pTarget->txrxStats.tx_stats.tx_packets; |
| 2489 | pStats->tx_bytes += pTarget->txrxStats.tx_stats.tx_bytes; |
| 2490 | pStats->tx_unicast_pkts += pTarget->txrxStats.tx_stats.tx_unicast_pkts; |
| 2491 | pStats->tx_unicast_bytes += pTarget->txrxStats.tx_stats.tx_unicast_bytes; |
| 2492 | pStats->tx_multicast_pkts += pTarget->txrxStats.tx_stats.tx_multicast_pkts; |
| 2493 | pStats->tx_multicast_bytes += pTarget->txrxStats.tx_stats.tx_multicast_bytes; |
| 2494 | pStats->tx_broadcast_pkts += pTarget->txrxStats.tx_stats.tx_broadcast_pkts; |
| 2495 | pStats->tx_broadcast_bytes += pTarget->txrxStats.tx_stats.tx_broadcast_bytes; |
| 2496 | pStats->tx_rts_success_cnt += pTarget->txrxStats.tx_stats.tx_rts_success_cnt; |
| 2497 | for(ac = 0; ac < WMM_NUM_AC; ac++) |
| 2498 | pStats->tx_packet_per_ac[ac] += pTarget->txrxStats.tx_stats.tx_packet_per_ac[ac]; |
| 2499 | pStats->tx_errors += pTarget->txrxStats.tx_stats.tx_errors; |
| 2500 | pStats->tx_failed_cnt += pTarget->txrxStats.tx_stats.tx_failed_cnt; |
| 2501 | pStats->tx_retry_cnt += pTarget->txrxStats.tx_stats.tx_retry_cnt; |
| 2502 | pStats->tx_rts_fail_cnt += pTarget->txrxStats.tx_stats.tx_rts_fail_cnt; |
| 2503 | pStats->tx_unicast_rate = wmi_get_rate(pTarget->txrxStats.tx_stats.tx_unicast_rate); |
| 2504 | |
| 2505 | pStats->rx_packets += pTarget->txrxStats.rx_stats.rx_packets; |
| 2506 | pStats->rx_bytes += pTarget->txrxStats.rx_stats.rx_bytes; |
| 2507 | pStats->rx_unicast_pkts += pTarget->txrxStats.rx_stats.rx_unicast_pkts; |
| 2508 | pStats->rx_unicast_bytes += pTarget->txrxStats.rx_stats.rx_unicast_bytes; |
| 2509 | pStats->rx_multicast_pkts += pTarget->txrxStats.rx_stats.rx_multicast_pkts; |
| 2510 | pStats->rx_multicast_bytes += pTarget->txrxStats.rx_stats.rx_multicast_bytes; |
| 2511 | pStats->rx_broadcast_pkts += pTarget->txrxStats.rx_stats.rx_broadcast_pkts; |
| 2512 | pStats->rx_broadcast_bytes += pTarget->txrxStats.rx_stats.rx_broadcast_bytes; |
| 2513 | pStats->rx_fragment_pkt += pTarget->txrxStats.rx_stats.rx_fragment_pkt; |
| 2514 | pStats->rx_errors += pTarget->txrxStats.rx_stats.rx_errors; |
| 2515 | pStats->rx_crcerr += pTarget->txrxStats.rx_stats.rx_crcerr; |
| 2516 | pStats->rx_key_cache_miss += pTarget->txrxStats.rx_stats.rx_key_cache_miss; |
| 2517 | pStats->rx_decrypt_err += pTarget->txrxStats.rx_stats.rx_decrypt_err; |
| 2518 | pStats->rx_duplicate_frames += pTarget->txrxStats.rx_stats.rx_duplicate_frames; |
| 2519 | pStats->rx_unicast_rate = wmi_get_rate(pTarget->txrxStats.rx_stats.rx_unicast_rate); |
| 2520 | |
| 2521 | |
| 2522 | pStats->tkip_local_mic_failure |
| 2523 | += pTarget->txrxStats.tkipCcmpStats.tkip_local_mic_failure; |
| 2524 | pStats->tkip_counter_measures_invoked |
| 2525 | += pTarget->txrxStats.tkipCcmpStats.tkip_counter_measures_invoked; |
| 2526 | pStats->tkip_replays += pTarget->txrxStats.tkipCcmpStats.tkip_replays; |
| 2527 | pStats->tkip_format_errors += pTarget->txrxStats.tkipCcmpStats.tkip_format_errors; |
| 2528 | pStats->ccmp_format_errors += pTarget->txrxStats.tkipCcmpStats.ccmp_format_errors; |
| 2529 | pStats->ccmp_replays += pTarget->txrxStats.tkipCcmpStats.ccmp_replays; |
| 2530 | |
| 2531 | |
| 2532 | pStats->power_save_failure_cnt += pTarget->pmStats.power_save_failure_cnt; |
| 2533 | pStats->noise_floor_calibation = pTarget->noise_floor_calibation; |
| 2534 | |
| 2535 | pStats->cs_bmiss_cnt += pTarget->cservStats.cs_bmiss_cnt; |
| 2536 | pStats->cs_lowRssi_cnt += pTarget->cservStats.cs_lowRssi_cnt; |
| 2537 | pStats->cs_connect_cnt += pTarget->cservStats.cs_connect_cnt; |
| 2538 | pStats->cs_disconnect_cnt += pTarget->cservStats.cs_disconnect_cnt; |
| 2539 | pStats->cs_aveBeacon_snr = pTarget->cservStats.cs_aveBeacon_snr; |
| 2540 | pStats->cs_aveBeacon_rssi = pTarget->cservStats.cs_aveBeacon_rssi; |
| 2541 | pStats->cs_lastRoam_msec = pTarget->cservStats.cs_lastRoam_msec; |
| 2542 | pStats->cs_snr = pTarget->cservStats.cs_snr; |
| 2543 | pStats->cs_rssi = pTarget->cservStats.cs_rssi; |
| 2544 | |
| 2545 | pStats->lq_val = pTarget->lqVal; |
| 2546 | |
| 2547 | pStats->wow_num_pkts_dropped += pTarget->wowStats.wow_num_pkts_dropped; |
| 2548 | pStats->wow_num_host_pkt_wakeups += pTarget->wowStats.wow_num_host_pkt_wakeups; |
| 2549 | pStats->wow_num_host_event_wakeups += pTarget->wowStats.wow_num_host_event_wakeups; |
| 2550 | pStats->wow_num_events_discarded += pTarget->wowStats.wow_num_events_discarded; |
| 2551 | |
| 2552 | ar->statsUpdatePending = FALSE; |
| 2553 | wake_up(&arEvent); |
| 2554 | } |
| 2555 | |
| 2556 | void |
| 2557 | ar6000_rssiThreshold_event(AR_SOFTC_T *ar, WMI_RSSI_THRESHOLD_VAL newThreshold, A_INT16 rssi) |
| 2558 | { |
| 2559 | USER_RSSI_THOLD userRssiThold; |
| 2560 | |
| 2561 | userRssiThold.tag = rssi_map[newThreshold].tag; |
| 2562 | userRssiThold.rssi = rssi; |
| 2563 | AR_DEBUG2_PRINTF("rssi Threshold range = %d tag = %d rssi = %d\n", newThreshold, userRssiThold.tag, rssi); |
| 2564 | #ifdef SEND_EVENT_TO_APP |
| 2565 | ar6000_send_event_to_app(ar, WMI_RSSI_THRESHOLD_EVENTID,(A_UINT8 *)&userRssiThold, sizeof(USER_RSSI_THOLD)); |
| 2566 | #endif |
| 2567 | } |
| 2568 | |
| 2569 | |
| 2570 | void |
| 2571 | ar6000_hbChallengeResp_event(AR_SOFTC_T *ar, A_UINT32 cookie, A_UINT32 source) |
| 2572 | { |
| 2573 | if (source == APP_HB_CHALLENGE) { |
| 2574 | /* Report it to the app in case it wants a positive acknowledgement */ |
| 2575 | #ifdef SEND_EVENT_TO_APP |
| 2576 | ar6000_send_event_to_app(ar, WMIX_HB_CHALLENGE_RESP_EVENTID, |
| 2577 | (A_UINT8 *)&cookie, sizeof(cookie)); |
| 2578 | #endif |
| 2579 | } else { |
| 2580 | /* This would ignore the replys that come in after their due time */ |
| 2581 | if (cookie == ar->arHBChallengeResp.seqNum) { |
| 2582 | ar->arHBChallengeResp.outstanding = FALSE; |
| 2583 | } |
| 2584 | } |
| 2585 | } |
| 2586 | |
| 2587 | |
| 2588 | void |
| 2589 | ar6000_reportError_event(AR_SOFTC_T *ar, WMI_TARGET_ERROR_VAL errorVal) |
| 2590 | { |
| 2591 | char *errString[] = { |
| 2592 | [WMI_TARGET_PM_ERR_FAIL] "WMI_TARGET_PM_ERR_FAIL", |
| 2593 | [WMI_TARGET_KEY_NOT_FOUND] "WMI_TARGET_KEY_NOT_FOUND", |
| 2594 | [WMI_TARGET_DECRYPTION_ERR] "WMI_TARGET_DECRYPTION_ERR", |
| 2595 | [WMI_TARGET_BMISS] "WMI_TARGET_BMISS", |
| 2596 | [WMI_PSDISABLE_NODE_JOIN] "WMI_PSDISABLE_NODE_JOIN" |
| 2597 | }; |
| 2598 | |
| 2599 | A_PRINTF("AR6000 Error on Target. Error = 0x%x\n", errorVal); |
| 2600 | |
| 2601 | /* One error is reported at a time, and errorval is a bitmask */ |
| 2602 | if(errorVal & (errorVal - 1)) |
| 2603 | return; |
| 2604 | |
| 2605 | A_PRINTF("AR6000 Error type = "); |
| 2606 | switch(errorVal) |
| 2607 | { |
| 2608 | case WMI_TARGET_PM_ERR_FAIL: |
| 2609 | case WMI_TARGET_KEY_NOT_FOUND: |
| 2610 | case WMI_TARGET_DECRYPTION_ERR: |
| 2611 | case WMI_TARGET_BMISS: |
| 2612 | case WMI_PSDISABLE_NODE_JOIN: |
| 2613 | A_PRINTF("%s\n", errString[errorVal]); |
| 2614 | break; |
| 2615 | default: |
| 2616 | A_PRINTF("INVALID\n"); |
| 2617 | break; |
| 2618 | } |
| 2619 | |
| 2620 | } |
| 2621 | |
| 2622 | |
| 2623 | void |
| 2624 | ar6000_cac_event(AR_SOFTC_T *ar, A_UINT8 ac, A_UINT8 cacIndication, |
| 2625 | A_UINT8 statusCode, A_UINT8 *tspecSuggestion) |
| 2626 | { |
| 2627 | WMM_TSPEC_IE *tspecIe; |
| 2628 | |
| 2629 | /* |
| 2630 | * This is the TSPEC IE suggestion from AP. |
| 2631 | * Suggestion provided by AP under some error |
| 2632 | * cases, could be helpful for the host app. |
| 2633 | * Check documentation. |
| 2634 | */ |
| 2635 | tspecIe = (WMM_TSPEC_IE *)tspecSuggestion; |
| 2636 | |
| 2637 | /* |
| 2638 | * What do we do, if we get TSPEC rejection? One thought |
| 2639 | * that comes to mind is implictly delete the pstream... |
| 2640 | */ |
| 2641 | A_PRINTF("AR6000 CAC notification. " |
| 2642 | "AC = %d, cacIndication = 0x%x, statusCode = 0x%x\n", |
| 2643 | ac, cacIndication, statusCode); |
| 2644 | } |
| 2645 | |
| 2646 | #define AR6000_PRINT_BSSID(_pBss) do { \ |
| 2647 | A_PRINTF("%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ",\ |
| 2648 | (_pBss)[0],(_pBss)[1],(_pBss)[2],(_pBss)[3],\ |
| 2649 | (_pBss)[4],(_pBss)[5]); \ |
| 2650 | } while(0) |
| 2651 | |
| 2652 | void |
| 2653 | ar6000_roam_tbl_event(AR_SOFTC_T *ar, WMI_TARGET_ROAM_TBL *pTbl) |
| 2654 | { |
| 2655 | A_UINT8 i; |
| 2656 | |
| 2657 | A_PRINTF("ROAM TABLE NO OF ENTRIES is %d ROAM MODE is %d\n", |
| 2658 | pTbl->numEntries, pTbl->roamMode); |
| 2659 | for (i= 0; i < pTbl->numEntries; i++) { |
| 2660 | A_PRINTF("[%d]bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ", i, |
| 2661 | pTbl->bssRoamInfo[i].bssid[0], pTbl->bssRoamInfo[i].bssid[1], |
| 2662 | pTbl->bssRoamInfo[i].bssid[2], |
| 2663 | pTbl->bssRoamInfo[i].bssid[3], |
| 2664 | pTbl->bssRoamInfo[i].bssid[4], |
| 2665 | pTbl->bssRoamInfo[i].bssid[5]); |
| 2666 | A_PRINTF("RSSI %d RSSIDT %d LAST RSSI %d UTIL %d ROAM_UTIL %d" |
| 2667 | " BIAS %d\n", |
| 2668 | pTbl->bssRoamInfo[i].rssi, |
| 2669 | pTbl->bssRoamInfo[i].rssidt, |
| 2670 | pTbl->bssRoamInfo[i].last_rssi, |
| 2671 | pTbl->bssRoamInfo[i].util, |
| 2672 | pTbl->bssRoamInfo[i].roam_util, |
| 2673 | pTbl->bssRoamInfo[i].bias); |
| 2674 | } |
| 2675 | } |
| 2676 | |
| 2677 | void |
| 2678 | ar6000_wow_list_event(struct ar6_softc *ar, A_UINT8 num_filters, WMI_GET_WOW_LIST_REPLY *wow_reply) |
| 2679 | { |
| 2680 | A_UINT8 i,j; |
| 2681 | |
| 2682 | /*Each event now contains exactly one filter, see bug 26613*/ |
| 2683 | A_PRINTF("WOW pattern %d of %d patterns\n", wow_reply->this_filter_num, wow_reply->num_filters); |
| 2684 | A_PRINTF("wow mode = %s host mode = %s\n", |
| 2685 | (wow_reply->wow_mode == 0? "disabled":"enabled"), |
| 2686 | (wow_reply->host_mode == 1 ? "awake":"asleep")); |
| 2687 | |
| 2688 | |
| 2689 | /*If there are no patterns, the reply will only contain generic |
| 2690 | WoW information. Pattern information will exist only if there are |
| 2691 | patterns present. Bug 26716*/ |
| 2692 | |
| 2693 | /* If this event contains pattern information, display it*/ |
| 2694 | if (wow_reply->this_filter_num) { |
| 2695 | i=0; |
| 2696 | A_PRINTF("id=%d size=%d offset=%d\n", |
| 2697 | wow_reply->wow_filters[i].wow_filter_id, |
| 2698 | wow_reply->wow_filters[i].wow_filter_size, |
| 2699 | wow_reply->wow_filters[i].wow_filter_offset); |
| 2700 | A_PRINTF("wow pattern = "); |
| 2701 | for (j=0; j< wow_reply->wow_filters[i].wow_filter_size; j++) { |
| 2702 | A_PRINTF("%2.2x",wow_reply->wow_filters[i].wow_filter_pattern[j]); |
| 2703 | } |
| 2704 | |
| 2705 | A_PRINTF("\nwow mask = "); |
| 2706 | for (j=0; j< wow_reply->wow_filters[i].wow_filter_size; j++) { |
| 2707 | A_PRINTF("%2.2x",wow_reply->wow_filters[i].wow_filter_mask[j]); |
| 2708 | } |
| 2709 | A_PRINTF("\n"); |
| 2710 | } |
| 2711 | } |
| 2712 | |
| 2713 | /* |
| 2714 | * Report the Roaming related data collected on the target |
| 2715 | */ |
| 2716 | void |
| 2717 | ar6000_display_roam_time(WMI_TARGET_ROAM_TIME *p) |
| 2718 | { |
| 2719 | A_PRINTF("Disconnect Data : BSSID: "); |
| 2720 | AR6000_PRINT_BSSID(p->disassoc_bssid); |
| 2721 | A_PRINTF(" RSSI %d DISASSOC Time %d NO_TXRX_TIME %d\n", |
| 2722 | p->disassoc_bss_rssi,p->disassoc_time, |
| 2723 | p->no_txrx_time); |
| 2724 | A_PRINTF("Connect Data: BSSID: "); |
| 2725 | AR6000_PRINT_BSSID(p->assoc_bssid); |
| 2726 | A_PRINTF(" RSSI %d ASSOC Time %d TXRX_TIME %d\n", |
| 2727 | p->assoc_bss_rssi,p->assoc_time, |
| 2728 | p->allow_txrx_time); |
| 2729 | A_PRINTF("Last Data Tx Time (b4 Disassoc) %d "\ |
| 2730 | "First Data Tx Time (after Assoc) %d\n", |
| 2731 | p->last_data_txrx_time, p->first_data_txrx_time); |
| 2732 | } |
| 2733 | |
| 2734 | void |
| 2735 | ar6000_roam_data_event(AR_SOFTC_T *ar, WMI_TARGET_ROAM_DATA *p) |
| 2736 | { |
| 2737 | switch (p->roamDataType) { |
| 2738 | case ROAM_DATA_TIME: |
| 2739 | ar6000_display_roam_time(&p->u.roamTime); |
| 2740 | break; |
| 2741 | default: |
| 2742 | break; |
| 2743 | } |
| 2744 | } |
| 2745 | |
| 2746 | void |
| 2747 | ar6000_bssInfo_event_rx(AR_SOFTC_T *ar, A_UINT8 *datap, int len) |
| 2748 | { |
| 2749 | struct sk_buff *skb; |
| 2750 | WMI_BSS_INFO_HDR *bih = (WMI_BSS_INFO_HDR *)datap; |
| 2751 | |
| 2752 | |
| 2753 | if (!ar->arMgmtFilter) { |
| 2754 | return; |
| 2755 | } |
| 2756 | if (((ar->arMgmtFilter & IEEE80211_FILTER_TYPE_BEACON) && |
| 2757 | (bih->frameType != BEACON_FTYPE)) || |
| 2758 | ((ar->arMgmtFilter & IEEE80211_FILTER_TYPE_PROBE_RESP) && |
| 2759 | (bih->frameType != PROBERESP_FTYPE))) |
| 2760 | { |
| 2761 | return; |
| 2762 | } |
| 2763 | |
| 2764 | if ((skb = A_NETBUF_ALLOC_RAW(len)) != NULL) { |
| 2765 | |
| 2766 | A_NETBUF_PUT(skb, len); |
| 2767 | A_MEMCPY(A_NETBUF_DATA(skb), datap, len); |
| 2768 | skb->dev = ar->arNetDev; |
| 2769 | printk("MAC RAW...\n"); |
| 2770 | // skb->mac.raw = A_NETBUF_DATA(skb); |
| 2771 | skb->ip_summed = CHECKSUM_NONE; |
| 2772 | skb->pkt_type = PACKET_OTHERHOST; |
| 2773 | skb->protocol = __constant_htons(0x0019); |
| 2774 | netif_rx(skb); |
| 2775 | } |
| 2776 | } |
| 2777 | |
| 2778 | A_UINT32 wmiSendCmdNum; |
| 2779 | |
| 2780 | A_STATUS |
| 2781 | ar6000_control_tx(void *devt, void *osbuf, WMI_PRI_STREAM_ID streamID) |
| 2782 | { |
| 2783 | AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; |
| 2784 | A_STATUS status = A_OK; |
| 2785 | struct ar_cookie *cookie = NULL; |
| 2786 | int i; |
| 2787 | |
| 2788 | /* take lock to protect ar6000_alloc_cookie() */ |
| 2789 | AR6000_SPIN_LOCK(&ar->arLock, 0); |
| 2790 | |
| 2791 | do { |
| 2792 | |
| 2793 | AR_DEBUG2_PRINTF("ar_contrstatus = ol_tx: skb=0x%x, len=0x%x, sid=%d\n", |
| 2794 | (A_UINT32)osbuf, A_NETBUF_LEN(osbuf), streamID); |
| 2795 | |
| 2796 | if ((streamID == WMI_CONTROL_PRI) && (ar->arWMIControlEpFull)) { |
| 2797 | /* control endpoint is full, don't allocate resources, we |
| 2798 | * are just going to drop this packet */ |
| 2799 | cookie = NULL; |
| 2800 | AR_DEBUG_PRINTF(" WMI Control EP full, dropping packet : 0x%X, len:%d \n", |
| 2801 | (A_UINT32)osbuf, A_NETBUF_LEN(osbuf)); |
| 2802 | } else { |
| 2803 | cookie = ar6000_alloc_cookie(ar); |
| 2804 | } |
| 2805 | |
| 2806 | if (cookie == NULL) { |
| 2807 | status = A_NO_MEMORY; |
| 2808 | break; |
| 2809 | } |
| 2810 | |
| 2811 | if(logWmiRawMsgs) { |
| 2812 | A_PRINTF("WMI cmd send, msgNo %d :", wmiSendCmdNum); |
| 2813 | for(i = 0; i < a_netbuf_to_len(osbuf); i++) |
| 2814 | A_PRINTF("%x ", ((A_UINT8 *)a_netbuf_to_data(osbuf))[i]); |
| 2815 | A_PRINTF("\n"); |
| 2816 | } |
| 2817 | |
| 2818 | wmiSendCmdNum++; |
| 2819 | |
| 2820 | } while (FALSE); |
| 2821 | |
| 2822 | if (cookie != NULL) { |
| 2823 | /* got a structure to send it out on */ |
| 2824 | ar->arTxPending[streamID]++; |
| 2825 | |
| 2826 | if (streamID != WMI_CONTROL_PRI) { |
| 2827 | ar->arTotalTxDataPending++; |
| 2828 | } |
| 2829 | } |
| 2830 | |
| 2831 | AR6000_SPIN_UNLOCK(&ar->arLock, 0); |
| 2832 | |
| 2833 | if (cookie != NULL) { |
| 2834 | cookie->arc_bp[0] = (A_UINT32)osbuf; |
| 2835 | cookie->arc_bp[1] = 0; |
| 2836 | SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt, |
| 2837 | cookie, |
| 2838 | A_NETBUF_DATA(osbuf), |
| 2839 | A_NETBUF_LEN(osbuf), |
| 2840 | arWMIStream2EndpointID(ar,streamID), |
| 2841 | AR6K_CONTROL_PKT_TAG); |
| 2842 | /* this interface is asynchronous, if there is an error, cleanup will happen in the |
| 2843 | * TX completion callback */ |
| 2844 | HTCSendPkt(ar->arHtcTarget, &cookie->HtcPkt); |
| 2845 | status = A_OK; |
| 2846 | } |
| 2847 | |
| 2848 | return status; |
| 2849 | } |
| 2850 | |
| 2851 | /* indicate tx activity or inactivity on a WMI stream */ |
| 2852 | void ar6000_indicate_tx_activity(void *devt, A_UINT8 TrafficClass, A_BOOL Active) |
| 2853 | { |
| 2854 | AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; |
| 2855 | WMI_PRI_STREAM_ID streamid; |
| 2856 | |
| 2857 | if (ar->arWmiEnabled) { |
| 2858 | streamid = wmi_get_stream_id(ar->arWmi, TrafficClass); |
| 2859 | } else { |
| 2860 | /* for mbox ping testing, the traffic class is mapped directly as a stream ID, |
| 2861 | * see handling of AR6000_XIOCTL_TRAFFIC_ACTIVITY_CHANGE in ioctl.c */ |
| 2862 | streamid = (WMI_PRI_STREAM_ID)TrafficClass; |
| 2863 | } |
| 2864 | |
| 2865 | /* notify HTC, this may cause credit distribution changes */ |
| 2866 | |
| 2867 | HTCIndicateActivityChange(ar->arHtcTarget, |
| 2868 | arWMIStream2EndpointID(ar,streamid), |
| 2869 | Active); |
| 2870 | |
| 2871 | } |
| 2872 | |
| 2873 | module_init(ar6000_init_module); |
| 2874 | module_exit(ar6000_cleanup_module); |
| 2875 | |
| 2876 | /* Init cookie queue */ |
| 2877 | static void |
| 2878 | ar6000_cookie_init(AR_SOFTC_T *ar) |
| 2879 | { |
| 2880 | A_UINT32 i; |
| 2881 | |
| 2882 | ar->arCookieList = NULL; |
| 2883 | A_MEMZERO(s_ar_cookie_mem, sizeof(s_ar_cookie_mem)); |
| 2884 | |
| 2885 | for (i = 0; i < MAX_COOKIE_NUM; i++) { |
| 2886 | ar6000_free_cookie(ar, &s_ar_cookie_mem[i]); |
| 2887 | } |
| 2888 | } |
| 2889 | |
| 2890 | /* cleanup cookie queue */ |
| 2891 | static void |
| 2892 | ar6000_cookie_cleanup(AR_SOFTC_T *ar) |
| 2893 | { |
| 2894 | /* It is gone .... */ |
| 2895 | ar->arCookieList = NULL; |
| 2896 | } |
| 2897 | |
| 2898 | /* Init cookie queue */ |
| 2899 | static void |
| 2900 | ar6000_free_cookie(AR_SOFTC_T *ar, struct ar_cookie * cookie) |
| 2901 | { |
| 2902 | /* Insert first */ |
| 2903 | A_ASSERT(ar != NULL); |
| 2904 | A_ASSERT(cookie != NULL); |
| 2905 | cookie->arc_list_next = ar->arCookieList; |
| 2906 | ar->arCookieList = cookie; |
| 2907 | } |
| 2908 | |
| 2909 | /* cleanup cookie queue */ |
| 2910 | static struct ar_cookie * |
| 2911 | ar6000_alloc_cookie(AR_SOFTC_T *ar) |
| 2912 | { |
| 2913 | struct ar_cookie *cookie; |
| 2914 | |
| 2915 | cookie = ar->arCookieList; |
| 2916 | if(cookie != NULL) |
| 2917 | { |
| 2918 | ar->arCookieList = cookie->arc_list_next; |
| 2919 | } |
| 2920 | |
| 2921 | return cookie; |
| 2922 | } |
| 2923 | |
| 2924 | #ifdef SEND_EVENT_TO_APP |
| 2925 | /* |
| 2926 | * This function is used to send event which come from taget to |
| 2927 | * the application. The buf which send to application is include |
| 2928 | * the event ID and event content. |
| 2929 | */ |
| 2930 | #define EVENT_ID_LEN 2 |
| 2931 | void ar6000_send_event_to_app(AR_SOFTC_T *ar, A_UINT16 eventId, |
| 2932 | A_UINT8 *datap, int len) |
| 2933 | { |
| 2934 | |
| 2935 | #if (WIRELESS_EXT >= 15) |
| 2936 | |
| 2937 | /* note: IWEVCUSTOM only exists in wireless extensions after version 15 */ |
| 2938 | |
| 2939 | char *buf; |
| 2940 | A_UINT16 size; |
| 2941 | union iwreq_data wrqu; |
| 2942 | |
| 2943 | size = len + EVENT_ID_LEN; |
| 2944 | |
| 2945 | if (size > IW_CUSTOM_MAX) { |
| 2946 | AR_DEBUG_PRINTF("WMI event ID : 0x%4.4X, len = %d too big for IWEVCUSTOM (max=%d) \n", |
| 2947 | eventId, size, IW_CUSTOM_MAX); |
| 2948 | return; |
| 2949 | } |
| 2950 | |
| 2951 | buf = A_MALLOC_NOWAIT(size); |
| 2952 | A_MEMZERO(buf, size); |
| 2953 | A_MEMCPY(buf, &eventId, EVENT_ID_LEN); |
| 2954 | A_MEMCPY(buf+EVENT_ID_LEN, datap, len); |
| 2955 | |
| 2956 | //AR_DEBUG_PRINTF("event ID = %d,len = %d\n",*(A_UINT16*)buf, size); |
| 2957 | A_MEMZERO(&wrqu, sizeof(wrqu)); |
| 2958 | wrqu.data.length = size; |
| 2959 | wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf); |
| 2960 | |
| 2961 | A_FREE(buf); |
| 2962 | #endif |
| 2963 | |
| 2964 | |
| 2965 | } |
| 2966 | #endif |
| 2967 | |
| 2968 | |
| 2969 | void |
| 2970 | ar6000_tx_retry_err_event(void *devt) |
| 2971 | { |
| 2972 | AR_DEBUG2_PRINTF("Tx retries reach maximum!\n"); |
| 2973 | } |
| 2974 | |
| 2975 | void |
| 2976 | ar6000_snrThresholdEvent_rx(void *devt, WMI_SNR_THRESHOLD_VAL newThreshold, A_UINT8 snr) |
| 2977 | { |
| 2978 | AR_DEBUG2_PRINTF("snr threshold range %d, snr %d\n", newThreshold, snr); |
| 2979 | } |
| 2980 | |
| 2981 | void |
| 2982 | ar6000_lqThresholdEvent_rx(void *devt, WMI_LQ_THRESHOLD_VAL newThreshold, A_UINT8 lq) |
| 2983 | { |
| 2984 | AR_DEBUG2_PRINTF("lq threshold range %d, lq %d\n", newThreshold, lq); |
| 2985 | } |
| 2986 | |
| 2987 | |
| 2988 | |
| 2989 | A_UINT32 |
| 2990 | a_copy_to_user(void *to, const void *from, A_UINT32 n) |
| 2991 | { |
| 2992 | return(copy_to_user(to, from, n)); |
| 2993 | } |
| 2994 | |
| 2995 | A_UINT32 |
| 2996 | a_copy_from_user(void *to, const void *from, A_UINT32 n) |
| 2997 | { |
| 2998 | return(copy_from_user(to, from, n)); |
| 2999 | } |
| 3000 | |
| 3001 | |
| 3002 | A_STATUS |
| 3003 | ar6000_get_driver_cfg(struct net_device *dev, |
| 3004 | A_UINT16 cfgParam, |
| 3005 | void *result) |
| 3006 | { |
| 3007 | |
| 3008 | A_STATUS ret = 0; |
| 3009 | |
| 3010 | switch(cfgParam) |
| 3011 | { |
| 3012 | case AR6000_DRIVER_CFG_GET_WLANNODECACHING: |
| 3013 | *((A_UINT32 *)result) = wlanNodeCaching; |
| 3014 | break; |
| 3015 | case AR6000_DRIVER_CFG_LOG_RAW_WMI_MSGS: |
| 3016 | *((A_UINT32 *)result) = logWmiRawMsgs; |
| 3017 | break; |
| 3018 | default: |
| 3019 | ret = EINVAL; |
| 3020 | break; |
| 3021 | } |
| 3022 | |
| 3023 | return ret; |
| 3024 | } |
| 3025 | |
| 3026 | void |
| 3027 | ar6000_keepalive_rx(void *devt, A_UINT8 configured) |
| 3028 | { |
| 3029 | AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; |
| 3030 | |
| 3031 | ar->arKeepaliveConfigured = configured; |
| 3032 | wake_up(&arEvent); |
| 3033 | } |
| 3034 | |
| 3035 | void |
| 3036 | ar6000_pmkid_list_event(void *devt, A_UINT8 numPMKID, WMI_PMKID *pmkidList) |
| 3037 | { |
| 3038 | A_UINT8 i, j; |
| 3039 | |
| 3040 | A_PRINTF("Number of Cached PMKIDs is %d\n", numPMKID); |
| 3041 | |
| 3042 | for (i = 0; i < numPMKID; i++) { |
| 3043 | A_PRINTF("\nPMKID %d ", i); |
| 3044 | for (j = 0; j < WMI_PMKID_LEN; j++) { |
| 3045 | A_PRINTF("%2.2x", pmkidList->pmkid[j]); |
| 3046 | } |
| 3047 | pmkidList++; |
| 3048 | } |
| 3049 | } |
| 3050 | |
| 3051 | #ifdef USER_KEYS |
| 3052 | static A_STATUS |
| 3053 | |
| 3054 | ar6000_reinstall_keys(AR_SOFTC_T *ar, A_UINT8 key_op_ctrl) |
| 3055 | { |
| 3056 | A_STATUS status = A_OK; |
| 3057 | struct ieee80211req_key *uik = &ar->user_saved_keys.ucast_ik; |
| 3058 | struct ieee80211req_key *bik = &ar->user_saved_keys.bcast_ik; |
| 3059 | CRYPTO_TYPE keyType = ar->user_saved_keys.keyType; |
| 3060 | |
| 3061 | if (IEEE80211_CIPHER_CCKM_KRK != uik->ik_type) { |
| 3062 | if (NONE_CRYPT == keyType) { |
| 3063 | goto _reinstall_keys_out; |
| 3064 | } |
| 3065 | |
| 3066 | if (uik->ik_keylen) { |
| 3067 | status = wmi_addKey_cmd(ar->arWmi, uik->ik_keyix, |
| 3068 | ar->user_saved_keys.keyType, PAIRWISE_USAGE, |
| 3069 | uik->ik_keylen, (A_UINT8 *)&uik->ik_keyrsc, |
| 3070 | uik->ik_keydata, key_op_ctrl, SYNC_BEFORE_WMIFLAG); |
| 3071 | } |
| 3072 | |
| 3073 | } else { |
| 3074 | status = wmi_add_krk_cmd(ar->arWmi, uik->ik_keydata); |
| 3075 | } |
| 3076 | |
| 3077 | if (IEEE80211_CIPHER_CCKM_KRK != bik->ik_type) { |
| 3078 | if (NONE_CRYPT == keyType) { |
| 3079 | goto _reinstall_keys_out; |
| 3080 | } |
| 3081 | |
| 3082 | if (bik->ik_keylen) { |
| 3083 | status = wmi_addKey_cmd(ar->arWmi, bik->ik_keyix, |
| 3084 | ar->user_saved_keys.keyType, GROUP_USAGE, |
| 3085 | bik->ik_keylen, (A_UINT8 *)&bik->ik_keyrsc, |
| 3086 | bik->ik_keydata, key_op_ctrl, NO_SYNC_WMIFLAG); |
| 3087 | } |
| 3088 | } else { |
| 3089 | status = wmi_add_krk_cmd(ar->arWmi, bik->ik_keydata); |
| 3090 | } |
| 3091 | |
| 3092 | _reinstall_keys_out: |
| 3093 | ar->user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT; |
| 3094 | ar->user_key_ctrl = 0; |
| 3095 | |
| 3096 | return status; |
| 3097 | } |
| 3098 | #endif /* USER_KEYS */ |
| 3099 | |
| 3100 | |
| 3101 | void |
| 3102 | ar6000_dset_open_req( |
| 3103 | void *context, |
| 3104 | A_UINT32 id, |
| 3105 | A_UINT32 targHandle, |
| 3106 | A_UINT32 targReplyFn, |
| 3107 | A_UINT32 targReplyArg) |
| 3108 | { |
| 3109 | } |
| 3110 | |
| 3111 | void |
| 3112 | ar6000_dset_close( |
| 3113 | void *context, |
| 3114 | A_UINT32 access_cookie) |
| 3115 | { |
| 3116 | return; |
| 3117 | } |
| 3118 | |
| 3119 | void |
| 3120 | ar6000_dset_data_req( |
| 3121 | void *context, |
| 3122 | A_UINT32 accessCookie, |
| 3123 | A_UINT32 offset, |
| 3124 | A_UINT32 length, |
| 3125 | A_UINT32 targBuf, |
| 3126 | A_UINT32 targReplyFn, |
| 3127 | A_UINT32 targReplyArg) |
| 3128 | { |
| 3129 | } |
| 3130 | |