| 1 | |
| 2 | /* |
| 3 | * |
| 4 | * Copyright (c) 2004-2007 Atheros Communications Inc. |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License version 2 as |
| 10 | * published by the Free Software Foundation; |
| 11 | * |
| 12 | * Software distributed under the License is distributed on an "AS |
| 13 | * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or |
| 14 | * implied. See the License for the specific language governing |
| 15 | * rights and limitations under the License. |
| 16 | * |
| 17 | * |
| 18 | * |
| 19 | */ |
| 20 | |
| 21 | #include "a_config.h" |
| 22 | #include "athdefs.h" |
| 23 | #include "a_types.h" |
| 24 | #include "AR6Khwreg.h" |
| 25 | #include "targaddrs.h" |
| 26 | #include "a_osapi.h" |
| 27 | #include "hif.h" |
| 28 | #include "htc_api.h" |
| 29 | #include "bmi.h" |
| 30 | #include "bmi_msg.h" |
| 31 | #include "common_drv.h" |
| 32 | #include "a_debug.h" |
| 33 | #include "targaddrs.h" |
| 34 | |
| 35 | #define HOST_INTEREST_ITEM_ADDRESS(target, item) \ |
| 36 | (((TargetType) == TARGET_TYPE_AR6001) ? \ |
| 37 | AR6001_HOST_INTEREST_ITEM_ADDRESS(item) : \ |
| 38 | AR6002_HOST_INTEREST_ITEM_ADDRESS(item)) |
| 39 | |
| 40 | |
| 41 | /* Compile the 4BYTE version of the window register setup routine, |
| 42 | * This mitigates host interconnect issues with non-4byte aligned bus requests, some |
| 43 | * interconnects use bus adapters that impose strict limitations. |
| 44 | * Since diag window access is not intended for performance critical operations, the 4byte mode should |
| 45 | * be satisfactory even though it generates 4X the bus activity. */ |
| 46 | |
| 47 | #ifdef USE_4BYTE_REGISTER_ACCESS |
| 48 | |
| 49 | /* set the window address register (using 4-byte register access ). */ |
| 50 | A_STATUS ar6000_SetAddressWindowRegister(HIF_DEVICE *hifDevice, A_UINT32 RegisterAddr, A_UINT32 Address) |
| 51 | { |
| 52 | A_STATUS status; |
| 53 | A_UINT8 addrValue[4]; |
| 54 | int i; |
| 55 | |
| 56 | /* write bytes 1,2,3 of the register to set the upper address bytes, the LSB is written |
| 57 | * last to initiate the access cycle */ |
| 58 | |
| 59 | for (i = 1; i <= 3; i++) { |
| 60 | /* fill the buffer with the address byte value we want to hit 4 times*/ |
| 61 | addrValue[0] = ((A_UINT8 *)&Address)[i]; |
| 62 | addrValue[1] = addrValue[0]; |
| 63 | addrValue[2] = addrValue[0]; |
| 64 | addrValue[3] = addrValue[0]; |
| 65 | |
| 66 | /* hit each byte of the register address with a 4-byte write operation to the same address, |
| 67 | * this is a harmless operation */ |
| 68 | status = HIFReadWrite(hifDevice, |
| 69 | RegisterAddr+i, |
| 70 | addrValue, |
| 71 | 4, |
| 72 | HIF_WR_SYNC_BYTE_FIX, |
| 73 | NULL); |
| 74 | if (status != A_OK) { |
| 75 | break; |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | if (status != A_OK) { |
| 80 | AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Cannot write initial bytes of 0x%x to window reg: 0x%X \n", |
| 81 | RegisterAddr, Address)); |
| 82 | return status; |
| 83 | } |
| 84 | |
| 85 | /* write the address register again, this time write the whole 4-byte value. |
| 86 | * The effect here is that the LSB write causes the cycle to start, the extra |
| 87 | * 3 byte write to bytes 1,2,3 has no effect since we are writing the same values again */ |
| 88 | status = HIFReadWrite(hifDevice, |
| 89 | RegisterAddr, |
| 90 | (A_UCHAR *)(&Address), |
| 91 | 4, |
| 92 | HIF_WR_SYNC_BYTE_INC, |
| 93 | NULL); |
| 94 | |
| 95 | if (status != A_OK) { |
| 96 | AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Cannot write 0x%x to window reg: 0x%X \n", |
| 97 | RegisterAddr, Address)); |
| 98 | return status; |
| 99 | } |
| 100 | |
| 101 | return A_OK; |
| 102 | |
| 103 | |
| 104 | |
| 105 | } |
| 106 | |
| 107 | |
| 108 | #else |
| 109 | |
| 110 | /* set the window address register */ |
| 111 | A_STATUS ar6000_SetAddressWindowRegister(HIF_DEVICE *hifDevice, A_UINT32 RegisterAddr, A_UINT32 Address) |
| 112 | { |
| 113 | A_STATUS status; |
| 114 | |
| 115 | /* write bytes 1,2,3 of the register to set the upper address bytes, the LSB is written |
| 116 | * last to initiate the access cycle */ |
| 117 | status = HIFReadWrite(hifDevice, |
| 118 | RegisterAddr+1, /* write upper 3 bytes */ |
| 119 | ((A_UCHAR *)(&Address))+1, |
| 120 | sizeof(A_UINT32)-1, |
| 121 | HIF_WR_SYNC_BYTE_INC, |
| 122 | NULL); |
| 123 | |
| 124 | if (status != A_OK) { |
| 125 | AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Cannot write initial bytes of 0x%x to window reg: 0x%X \n", |
| 126 | RegisterAddr, Address)); |
| 127 | return status; |
| 128 | } |
| 129 | |
| 130 | /* write the LSB of the register, this initiates the operation */ |
| 131 | status = HIFReadWrite(hifDevice, |
| 132 | RegisterAddr, |
| 133 | (A_UCHAR *)(&Address), |
| 134 | sizeof(A_UINT8), |
| 135 | HIF_WR_SYNC_BYTE_INC, |
| 136 | NULL); |
| 137 | |
| 138 | if (status != A_OK) { |
| 139 | AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Cannot write 0x%x to window reg: 0x%X \n", |
| 140 | RegisterAddr, Address)); |
| 141 | return status; |
| 142 | } |
| 143 | |
| 144 | return A_OK; |
| 145 | } |
| 146 | |
| 147 | #endif |
| 148 | |
| 149 | /* |
| 150 | * Read from the AR6000 through its diagnostic window. |
| 151 | * No cooperation from the Target is required for this. |
| 152 | */ |
| 153 | A_STATUS |
| 154 | ar6000_ReadRegDiag(HIF_DEVICE *hifDevice, A_UINT32 *address, A_UINT32 *data) |
| 155 | { |
| 156 | A_STATUS status; |
| 157 | |
| 158 | /* set window register to start read cycle */ |
| 159 | status = ar6000_SetAddressWindowRegister(hifDevice, |
| 160 | WINDOW_READ_ADDR_ADDRESS, |
| 161 | *address); |
| 162 | |
| 163 | if (status != A_OK) { |
| 164 | return status; |
| 165 | } |
| 166 | |
| 167 | /* read the data */ |
| 168 | status = HIFReadWrite(hifDevice, |
| 169 | WINDOW_DATA_ADDRESS, |
| 170 | (A_UCHAR *)data, |
| 171 | sizeof(A_UINT32), |
| 172 | HIF_RD_SYNC_BYTE_INC, |
| 173 | NULL); |
| 174 | if (status != A_OK) { |
| 175 | AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Cannot read from WINDOW_DATA_ADDRESS\n")); |
| 176 | return status; |
| 177 | } |
| 178 | |
| 179 | return status; |
| 180 | } |
| 181 | |
| 182 | |
| 183 | /* |
| 184 | * Write to the AR6000 through its diagnostic window. |
| 185 | * No cooperation from the Target is required for this. |
| 186 | */ |
| 187 | A_STATUS |
| 188 | ar6000_WriteRegDiag(HIF_DEVICE *hifDevice, A_UINT32 *address, A_UINT32 *data) |
| 189 | { |
| 190 | A_STATUS status; |
| 191 | |
| 192 | /* set write data */ |
| 193 | status = HIFReadWrite(hifDevice, |
| 194 | WINDOW_DATA_ADDRESS, |
| 195 | (A_UCHAR *)data, |
| 196 | sizeof(A_UINT32), |
| 197 | HIF_WR_SYNC_BYTE_INC, |
| 198 | NULL); |
| 199 | if (status != A_OK) { |
| 200 | AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Cannot write 0x%x to WINDOW_DATA_ADDRESS\n", *data)); |
| 201 | return status; |
| 202 | } |
| 203 | |
| 204 | /* set window register, which starts the write cycle */ |
| 205 | return ar6000_SetAddressWindowRegister(hifDevice, |
| 206 | WINDOW_WRITE_ADDR_ADDRESS, |
| 207 | *address); |
| 208 | } |
| 209 | |
| 210 | A_STATUS |
| 211 | ar6000_ReadDataDiag(HIF_DEVICE *hifDevice, A_UINT32 address, |
| 212 | A_UCHAR *data, A_UINT32 length) |
| 213 | { |
| 214 | A_UINT32 count; |
| 215 | A_STATUS status = A_OK; |
| 216 | |
| 217 | for (count = 0; count < length; count += 4, address += 4) { |
| 218 | if ((status = ar6000_ReadRegDiag(hifDevice, &address, |
| 219 | (A_UINT32 *)&data[count])) != A_OK) |
| 220 | { |
| 221 | break; |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | return status; |
| 226 | } |
| 227 | |
| 228 | A_STATUS |
| 229 | ar6000_WriteDataDiag(HIF_DEVICE *hifDevice, A_UINT32 address, |
| 230 | A_UCHAR *data, A_UINT32 length) |
| 231 | { |
| 232 | A_UINT32 count; |
| 233 | A_STATUS status = A_OK; |
| 234 | |
| 235 | for (count = 0; count < length; count += 4, address += 4) { |
| 236 | if ((status = ar6000_WriteRegDiag(hifDevice, &address, |
| 237 | (A_UINT32 *)&data[count])) != A_OK) |
| 238 | { |
| 239 | break; |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | return status; |
| 244 | } |
| 245 | |
| 246 | A_STATUS |
| 247 | ar6000_reset_device_skipflash(HIF_DEVICE *hifDevice) |
| 248 | { |
| 249 | int i; |
| 250 | struct forceROM_s { |
| 251 | A_UINT32 addr; |
| 252 | A_UINT32 data; |
| 253 | }; |
| 254 | struct forceROM_s *ForceROM; |
| 255 | int szForceROM; |
| 256 | A_UINT32 instruction; |
| 257 | |
| 258 | static struct forceROM_s ForceROM_REV2[] = { |
| 259 | /* NB: This works for old REV2 ROM (old). */ |
| 260 | {0x00001ff0, 0x175b0027}, /* jump instruction at 0xa0001ff0 */ |
| 261 | {0x00001ff4, 0x00000000}, /* nop instruction at 0xa0001ff4 */ |
| 262 | |
| 263 | {MC_REMAP_TARGET_ADDRESS, 0x00001ff0}, /* remap to 0xa0001ff0 */ |
| 264 | {MC_REMAP_COMPARE_ADDRESS, 0x01000040},/* ...from 0xbfc00040 */ |
| 265 | {MC_REMAP_SIZE_ADDRESS, 0x00000000}, /* ...1 cache line */ |
| 266 | {MC_REMAP_VALID_ADDRESS, 0x00000001}, /* ...remap is valid */ |
| 267 | |
| 268 | {LOCAL_COUNT_ADDRESS+0x10, 0}, /* clear BMI credit counter */ |
| 269 | |
| 270 | {RESET_CONTROL_ADDRESS, RESET_CONTROL_WARM_RST_MASK}, |
| 271 | }; |
| 272 | |
| 273 | static struct forceROM_s ForceROM_NEW[] = { |
| 274 | /* NB: This works for AR6000 ROM REV3 and beyond. */ |
| 275 | {LOCAL_SCRATCH_ADDRESS, AR6K_OPTION_IGNORE_FLASH}, |
| 276 | {LOCAL_COUNT_ADDRESS+0x10, 0}, /* clear BMI credit counter */ |
| 277 | {RESET_CONTROL_ADDRESS, RESET_CONTROL_WARM_RST_MASK}, |
| 278 | }; |
| 279 | |
| 280 | /* |
| 281 | * Examine a semi-arbitrary instruction that's different |
| 282 | * in REV2 and other revisions. |
| 283 | * NB: If a Host port does not require simultaneous support |
| 284 | * for multiple revisions of Target ROM, this code can be elided. |
| 285 | */ |
| 286 | (void)ar6000_ReadDataDiag(hifDevice, 0x01000040, |
| 287 | (A_UCHAR *)&instruction, 4); |
| 288 | |
| 289 | AR_DEBUG_PRINTF(ATH_LOG_ERR, ("instruction=0x%x\n", instruction)); |
| 290 | |
| 291 | if (instruction == 0x3c1aa200) { |
| 292 | /* It's an old ROM */ |
| 293 | ForceROM = ForceROM_REV2; |
| 294 | szForceROM = sizeof(ForceROM_REV2)/sizeof(*ForceROM); |
| 295 | AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Using OLD method\n")); |
| 296 | } else { |
| 297 | ForceROM = ForceROM_NEW; |
| 298 | szForceROM = sizeof(ForceROM_NEW)/sizeof(*ForceROM); |
| 299 | AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Using NEW method\n")); |
| 300 | } |
| 301 | |
| 302 | AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Force Target to execute from ROM....\n")); |
| 303 | for (i = 0; i < szForceROM; i++) |
| 304 | { |
| 305 | if (ar6000_WriteRegDiag(hifDevice, |
| 306 | &ForceROM[i].addr, |
| 307 | &ForceROM[i].data) != A_OK) |
| 308 | { |
| 309 | AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Cannot force Target to execute ROM!\n")); |
| 310 | return A_ERROR; |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | msleep(50); /* delay to allow dragon to come to BMI phase */ |
| 315 | return A_OK; |
| 316 | } |
| 317 | |
| 318 | /* reset device */ |
| 319 | A_STATUS ar6000_reset_device(HIF_DEVICE *hifDevice, A_UINT32 TargetType) |
| 320 | { |
| 321 | |
| 322 | #if !defined(DWSIM) |
| 323 | A_STATUS status = A_OK; |
| 324 | A_UINT32 address; |
| 325 | A_UINT32 data; |
| 326 | |
| 327 | do { |
| 328 | |
| 329 | // address = RESET_CONTROL_ADDRESS; |
| 330 | data = RESET_CONTROL_COLD_RST_MASK; |
| 331 | |
| 332 | /* Hardcode the address of RESET_CONTROL_ADDRESS based on the target type */ |
| 333 | if (TargetType == TARGET_TYPE_AR6001) { |
| 334 | address = 0x0C000000; |
| 335 | } else { |
| 336 | if (TargetType == TARGET_TYPE_AR6002) { |
| 337 | address = 0x00004000; |
| 338 | } else { |
| 339 | A_ASSERT(0); |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | status = ar6000_WriteRegDiag(hifDevice, &address, &data); |
| 344 | |
| 345 | if (A_FAILED(status)) { |
| 346 | break; |
| 347 | } |
| 348 | |
| 349 | /* |
| 350 | * Read back the RESET CAUSE register to ensure that the cold reset |
| 351 | * went through. |
| 352 | */ |
| 353 | msleep(2000); /* 2 second delay to allow things to settle down */ |
| 354 | |
| 355 | |
| 356 | // address = RESET_CAUSE_ADDRESS; |
| 357 | /* Hardcode the address of RESET_CAUSE_ADDRESS based on the target type */ |
| 358 | if (TargetType == TARGET_TYPE_AR6001) { |
| 359 | address = 0x0C0000CC; |
| 360 | } else { |
| 361 | if (TargetType == TARGET_TYPE_AR6002) { |
| 362 | address = 0x000040C0; |
| 363 | } else { |
| 364 | A_ASSERT(0); |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | data = 0; |
| 369 | status = ar6000_ReadRegDiag(hifDevice, &address, &data); |
| 370 | |
| 371 | if (A_FAILED(status)) { |
| 372 | break; |
| 373 | } |
| 374 | |
| 375 | AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Reset Cause readback: 0x%X \n",data)); |
| 376 | data &= RESET_CAUSE_LAST_MASK; |
| 377 | if (data != 2) { |
| 378 | AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Unable to cold reset the target \n")); |
| 379 | } |
| 380 | |
| 381 | } while (FALSE); |
| 382 | |
| 383 | if (A_FAILED(status)) { |
| 384 | AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Failed to reset target \n")); |
| 385 | } |
| 386 | #endif |
| 387 | return A_OK; |
| 388 | } |
| 389 | |
| 390 | #define REG_DUMP_COUNT_AR6001 38 /* WORDs, derived from AR6001_regdump.h */ |
| 391 | #define REG_DUMP_COUNT_AR6002 32 /* WORDs, derived from AR6002_regdump.h */ |
| 392 | |
| 393 | |
| 394 | #if REG_DUMP_COUNT_AR6001 <= REG_DUMP_COUNT_AR6002 |
| 395 | #define REGISTER_DUMP_LEN_MAX REG_DUMP_COUNT_AR6002 |
| 396 | #else |
| 397 | #define REGISTER_DUMP_LEN_MAX REG_DUMP_COUNT_AR6001 |
| 398 | #endif |
| 399 | |
| 400 | void ar6000_dump_target_assert_info(HIF_DEVICE *hifDevice, A_UINT32 TargetType) |
| 401 | { |
| 402 | A_UINT32 address; |
| 403 | A_UINT32 regDumpArea = 0; |
| 404 | A_STATUS status; |
| 405 | A_UINT32 regDumpValues[REGISTER_DUMP_LEN_MAX]; |
| 406 | A_UINT32 regDumpCount = 0; |
| 407 | A_UINT32 i; |
| 408 | |
| 409 | do { |
| 410 | |
| 411 | /* the reg dump pointer is copied to the host interest area */ |
| 412 | address = HOST_INTEREST_ITEM_ADDRESS(TargetType, hi_failure_state); |
| 413 | |
| 414 | if (TargetType == TARGET_TYPE_AR6001) { |
| 415 | /* for AR6001, this is a fixed location because the ptr is actually stuck in cache, |
| 416 | * this may be fixed in later firmware versions */ |
| 417 | address = 0x18a0; |
| 418 | regDumpCount = REG_DUMP_COUNT_AR6001; |
| 419 | |
| 420 | } else if (TargetType == TARGET_TYPE_AR6002) { |
| 421 | |
| 422 | regDumpCount = REG_DUMP_COUNT_AR6002; |
| 423 | |
| 424 | } else { |
| 425 | A_ASSERT(0); |
| 426 | } |
| 427 | |
| 428 | /* read RAM location through diagnostic window */ |
| 429 | status = ar6000_ReadRegDiag(hifDevice, &address, ®DumpArea); |
| 430 | |
| 431 | if (A_FAILED(status)) { |
| 432 | AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("AR6K: Failed to get ptr to register dump area \n")); |
| 433 | break; |
| 434 | } |
| 435 | |
| 436 | AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("AR6K: Location of register dump data: 0x%X \n",regDumpArea)); |
| 437 | |
| 438 | if (regDumpArea == 0) { |
| 439 | /* no reg dump */ |
| 440 | break; |
| 441 | } |
| 442 | |
| 443 | if (TargetType == TARGET_TYPE_AR6001) { |
| 444 | regDumpArea &= 0x0FFFFFFF; /* convert to physical address in target memory */ |
| 445 | } |
| 446 | |
| 447 | /* fetch register dump data */ |
| 448 | status = ar6000_ReadDataDiag(hifDevice, |
| 449 | regDumpArea, |
| 450 | (A_UCHAR *)®DumpValues[0], |
| 451 | regDumpCount * (sizeof(A_UINT32))); |
| 452 | |
| 453 | if (A_FAILED(status)) { |
| 454 | AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("AR6K: Failed to get register dump \n")); |
| 455 | break; |
| 456 | } |
| 457 | |
| 458 | AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("AR6K: Register Dump: \n")); |
| 459 | |
| 460 | for (i = 0; i < regDumpCount; i++) { |
| 461 | AR_DEBUG_PRINTF(ATH_DEBUG_ERR,(" %d : 0x%8.8X \n",i, regDumpValues[i])); |
| 462 | } |
| 463 | |
| 464 | } while (FALSE); |
| 465 | |
| 466 | } |
| 467 | |
| 468 | |