| 1 | /* |
| 2 | * arch/ubicom32/kernel/ldsr.c |
| 3 | * Ubicom32 architecture Linux Device Services Driver Interface |
| 4 | * |
| 5 | * (C) Copyright 2009, Ubicom, Inc. |
| 6 | * |
| 7 | * This file is part of the Ubicom32 Linux Kernel Port. |
| 8 | * |
| 9 | * The Ubicom32 Linux Kernel Port is free software: you can redistribute |
| 10 | * it and/or modify it under the terms of the GNU General Public License |
| 11 | * as published by the Free Software Foundation, either version 2 of the |
| 12 | * License, or (at your option) any later version. |
| 13 | * |
| 14 | * The Ubicom32 Linux Kernel Port is distributed in the hope that it |
| 15 | * will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| 16 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| 17 | * the GNU General Public License for more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License |
| 20 | * along with the Ubicom32 Linux Kernel Port. If not, |
| 21 | * see <http://www.gnu.org/licenses/>. |
| 22 | * |
| 23 | * Ubicom32 implementation derived from (with many thanks): |
| 24 | * arch/m68knommu |
| 25 | * arch/blackfin |
| 26 | * arch/parisc |
| 27 | * |
| 28 | * NOTES: |
| 29 | * |
| 30 | * The LDSR is a programmable interrupt controller that is written in software. |
| 31 | * It emulates the behavior of an pic by fielding the interrupts, choosing a |
| 32 | * victim thread to take the interrupt and forcing that thread to take a context |
| 33 | * switch to the appropriate interrupt handler. |
| 34 | * |
| 35 | * Because traps are treated as just a special class of interrupts, the LDSR |
| 36 | * also handles the processing of traps. |
| 37 | * |
| 38 | * Because we compile Linux both UP and SMP, we need the LDSR to use |
| 39 | * architectural locking that is not "compiled out" when compiling UP. For now, |
| 40 | * we use the single atomic bit lock. |
| 41 | */ |
| 42 | #include <linux/kernel.h> |
| 43 | #include <linux/init.h> |
| 44 | #include <linux/sched.h> |
| 45 | #include <linux/interrupt.h> |
| 46 | #include <linux/irq.h> |
| 47 | #include <linux/profile.h> |
| 48 | #include <linux/clocksource.h> |
| 49 | #include <linux/types.h> |
| 50 | #include <linux/module.h> |
| 51 | #include <linux/cpumask.h> |
| 52 | #include <linux/bug.h> |
| 53 | #include <linux/delay.h> |
| 54 | #include <asm/ip5000.h> |
| 55 | #include <asm/atomic.h> |
| 56 | #include <asm/machdep.h> |
| 57 | #include <asm/asm-offsets.h> |
| 58 | #include <asm/traps.h> |
| 59 | #include <asm/thread.h> |
| 60 | #include <asm/range-protect.h> |
| 61 | |
| 62 | /* |
| 63 | * One can not print from the LDSR so the best we can do is |
| 64 | * check a condition and stall all of the threads. |
| 65 | */ |
| 66 | |
| 67 | // #define DEBUG_LDSR 1 |
| 68 | #if defined(DEBUG_LDSR) |
| 69 | #define DEBUG_ASSERT(cond) \ |
| 70 | if (!(cond)) { \ |
| 71 | THREAD_STALL; \ |
| 72 | } |
| 73 | #else |
| 74 | #define DEBUG_ASSERT(cond) |
| 75 | #endif |
| 76 | |
| 77 | /* |
| 78 | * Make global so that we can use it in the RFI code in assembly. |
| 79 | */ |
| 80 | unsigned int ldsr_soft_irq_mask; |
| 81 | EXPORT_SYMBOL(ldsr_soft_irq_mask); |
| 82 | |
| 83 | static unsigned int ldsr_suspend_mask; |
| 84 | static unsigned int ldsr_soft_irq; |
| 85 | static unsigned int ldsr_stack_space[1024]; |
| 86 | |
| 87 | static struct ldsr_register_bank { |
| 88 | volatile unsigned int enabled0; |
| 89 | volatile unsigned int enabled1; |
| 90 | volatile unsigned int mask0; |
| 91 | volatile unsigned int mask1; |
| 92 | unsigned int total; |
| 93 | unsigned int retry; |
| 94 | unsigned int backout; |
| 95 | } ldsr_interrupt; |
| 96 | |
| 97 | /* |
| 98 | * Which thread/cpu are we? |
| 99 | */ |
| 100 | static int ldsr_tid = -1; |
| 101 | |
| 102 | #if defined(CONFIG_IRQSTACKS) |
| 103 | /* |
| 104 | * per-CPU IRQ stacks (thread information and stack) |
| 105 | * |
| 106 | * NOTE: Do not use DEFINE_PER_CPU() as it makes it harder |
| 107 | * to find the location of ctx from assembly language. |
| 108 | */ |
| 109 | union irq_ctx { |
| 110 | struct thread_info tinfo; |
| 111 | u32 stack[THREAD_SIZE/sizeof(u32)]; |
| 112 | }; |
| 113 | static union irq_ctx *percpu_irq_ctxs[NR_CPUS]; |
| 114 | |
| 115 | /* |
| 116 | * Storage for the interrupt stack. |
| 117 | */ |
| 118 | #if !defined(CONFIG_IRQSTACKS_USEOCM) |
| 119 | static char percpu_irq_stacks[(NR_CPUS * THREAD_SIZE) + (THREAD_SIZE - 1)]; |
| 120 | #else |
| 121 | /* |
| 122 | * For OCM, the linker will ensure that space is allocated for the stack |
| 123 | * see (vmlinux.lds.S) |
| 124 | */ |
| 125 | static char percpu_irq_stacks[]; |
| 126 | #endif |
| 127 | |
| 128 | #endif |
| 129 | |
| 130 | /* |
| 131 | * Save trap IRQ because we need to un-suspend if it gets set. |
| 132 | */ |
| 133 | static unsigned int ldsr_trap_irq_mask; |
| 134 | static unsigned int ldsr_trap_irq; |
| 135 | |
| 136 | /* |
| 137 | * ret_from_interrupt_to_kernel |
| 138 | * Just restore the context and do nothing else. |
| 139 | */ |
| 140 | asmlinkage void ret_from_interrupt_to_kernel(void)__attribute__((naked)); |
| 141 | |
| 142 | /* |
| 143 | * ret_from_interrupt_to_user |
| 144 | * Call scheduler if needed. Just restore the context. |
| 145 | */ |
| 146 | asmlinkage void ret_from_interrupt_to_user(void)__attribute__((naked)); |
| 147 | |
| 148 | #ifdef DEBUG_LDSR |
| 149 | u32_t old_sp, old_pc, old_a0, old_a5, old_a3; |
| 150 | struct pt_regs copy_regs, *copy_save_area; |
| 151 | #endif |
| 152 | |
| 153 | int __user_mode(unsigned long sp) |
| 154 | { |
| 155 | |
| 156 | u32_t saved_stack_base = sp & ~(ASM_THREAD_SIZE - 1); |
| 157 | #if defined(CONFIG_IRQSTACKS_USEOCM) |
| 158 | if ((union irq_ctx *)saved_stack_base == percpu_irq_ctxs[smp_processor_id()]) { |
| 159 | /* |
| 160 | * On the interrupt stack. |
| 161 | */ |
| 162 | return 0; |
| 163 | } |
| 164 | #endif |
| 165 | |
| 166 | if (!(u32_t)current) { |
| 167 | return 0; |
| 168 | } |
| 169 | return saved_stack_base != ((u32_t)current->stack); |
| 170 | } |
| 171 | |
| 172 | /* |
| 173 | * ldsr_lock_release() |
| 174 | * Release the LDSR lock. |
| 175 | */ |
| 176 | static void ldsr_lock_release(void) |
| 177 | { |
| 178 | UBICOM32_UNLOCK(LDSR_LOCK_BIT); |
| 179 | } |
| 180 | |
| 181 | /* |
| 182 | * ldsr_lock_acquire() |
| 183 | * Acquire the LDSR lock, spin if not available. |
| 184 | */ |
| 185 | static void ldsr_lock_acquire(void) |
| 186 | { |
| 187 | UBICOM32_LOCK(LDSR_LOCK_BIT); |
| 188 | } |
| 189 | |
| 190 | /* |
| 191 | * ldsr_thread_irq_disable() |
| 192 | * Disable interrupts for the specified thread. |
| 193 | */ |
| 194 | static void ldsr_thread_irq_disable(unsigned int tid) |
| 195 | { |
| 196 | unsigned int mask = (1 << tid); |
| 197 | |
| 198 | asm volatile ( |
| 199 | " or.4 scratchpad1, scratchpad1, %0 \n\t" |
| 200 | : |
| 201 | : "d"(mask) |
| 202 | : "cc" |
| 203 | ); |
| 204 | } |
| 205 | |
| 206 | /* |
| 207 | * ldsr_thread_get_interrupts() |
| 208 | * Get the interrupt state for all threads. |
| 209 | */ |
| 210 | static unsigned long ldsr_thread_get_interrupts(void) |
| 211 | { |
| 212 | unsigned long ret = 0; |
| 213 | asm volatile ( |
| 214 | " move.4 %0, scratchpad1 \n\t" |
| 215 | : "=r" (ret) |
| 216 | : |
| 217 | ); |
| 218 | return ret; |
| 219 | } |
| 220 | |
| 221 | /* |
| 222 | * ldsr_emulate_and_run() |
| 223 | * Emulate the instruction and then set the thread to run. |
| 224 | */ |
| 225 | static void ldsr_emulate_and_run(unsigned int tid) |
| 226 | { |
| 227 | unsigned int thread_mask = (1 << tid); |
| 228 | u32_t write_csr = (tid << 15) | (1 << 14); |
| 229 | |
| 230 | /* |
| 231 | * Emulate the unaligned access. |
| 232 | */ |
| 233 | unaligned_emulate(tid); |
| 234 | |
| 235 | /* |
| 236 | * Get the thread back in a running state. |
| 237 | */ |
| 238 | asm volatile ( |
| 239 | " setcsr %0 \n\t" |
| 240 | " setcsr_flush 0 \n\t" |
| 241 | " move.4 trap_cause, #0 \n\t" /* Clear the trap cause |
| 242 | * register */ |
| 243 | " setcsr #0 \n\t" |
| 244 | " setcsr_flush 0 \n\t" |
| 245 | " move.4 mt_dbg_active_set, %1 \n\t" /* Activate thread even if |
| 246 | * in dbg/fault state */ |
| 247 | " move.4 mt_active_set, %1 \n\t" /* Restart target |
| 248 | * thread. */ |
| 249 | : |
| 250 | : "r" (write_csr), "d" (thread_mask) |
| 251 | : "cc" |
| 252 | ); |
| 253 | thread_enable_mask(thread_mask); |
| 254 | } |
| 255 | |
| 256 | /* |
| 257 | * ldsr_preemptive_context_save() |
| 258 | * save thread context from another hardware thread. The other thread must |
| 259 | * be stalled. |
| 260 | */ |
| 261 | static inline void ldsr_preemptive_context_save(u32_t thread, |
| 262 | struct pt_regs *regs) |
| 263 | { |
| 264 | /* |
| 265 | * Save the current state of the specified thread |
| 266 | */ |
| 267 | asm volatile ( |
| 268 | " move.4 a3, %0 \n\t" |
| 269 | |
| 270 | /* set src1 from the target thread */ |
| 271 | " move.4 csr, %1 \n\t" |
| 272 | " setcsr_flush 0 \n\t" |
| 273 | " setcsr_flush 0 \n\t" |
| 274 | |
| 275 | /* copy state from the other thread */ |
| 276 | " move.4 "D(PT_D0)"(a3), d0 \n\t" |
| 277 | " move.4 "D(PT_D1)"(a3), d1 \n\t" |
| 278 | " move.4 "D(PT_D2)"(a3), d2 \n\t" |
| 279 | " move.4 "D(PT_D3)"(a3), d3 \n\t" |
| 280 | " move.4 "D(PT_D4)"(a3), d4 \n\t" |
| 281 | " move.4 "D(PT_D5)"(a3), d5 \n\t" |
| 282 | " move.4 "D(PT_D6)"(a3), d6 \n\t" |
| 283 | " move.4 "D(PT_D7)"(a3), d7 \n\t" |
| 284 | " move.4 "D(PT_D8)"(a3), d8 \n\t" |
| 285 | " move.4 "D(PT_D9)"(a3), d9 \n\t" |
| 286 | " move.4 "D(PT_D10)"(a3), d10 \n\t" |
| 287 | " move.4 "D(PT_D11)"(a3), d11 \n\t" |
| 288 | " move.4 "D(PT_D12)"(a3), d12 \n\t" |
| 289 | " move.4 "D(PT_D13)"(a3), d13 \n\t" |
| 290 | " move.4 "D(PT_D14)"(a3), d14 \n\t" |
| 291 | " move.4 "D(PT_D15)"(a3), d15 \n\t" |
| 292 | " move.4 "D(PT_A0)"(a3), a0 \n\t" |
| 293 | " move.4 "D(PT_A1)"(a3), a1 \n\t" |
| 294 | " move.4 "D(PT_A2)"(a3), a2 \n\t" |
| 295 | " move.4 "D(PT_A3)"(a3), a3 \n\t" |
| 296 | " move.4 "D(PT_A4)"(a3), a4 \n\t" |
| 297 | " move.4 "D(PT_A5)"(a3), a5 \n\t" |
| 298 | " move.4 "D(PT_A6)"(a3), a6 \n\t" |
| 299 | " move.4 "D(PT_SP)"(a3), a7 \n\t" |
| 300 | " move.4 "D(PT_ACC0HI)"(a3), acc0_hi \n\t" |
| 301 | " move.4 "D(PT_ACC0LO)"(a3), acc0_lo \n\t" |
| 302 | " move.4 "D(PT_MAC_RC16)"(a3), mac_rc16 \n\t" |
| 303 | " move.4 "D(PT_ACC1HI)"(a3), acc1_hi \n\t" |
| 304 | " move.4 "D(PT_ACC1LO)"(a3), acc1_lo \n\t" |
| 305 | " move.4 "D(PT_SOURCE3)"(a3), source3 \n\t" |
| 306 | " move.4 "D(PT_INST_CNT)"(a3), inst_cnt \n\t" |
| 307 | " move.4 "D(PT_CSR)"(a3), csr \n\t" |
| 308 | " move.4 "D(PT_DUMMY_UNUSED)"(a3), #0 \n\t" |
| 309 | " move.4 "D(PT_INT_MASK0)"(a3), int_mask0 \n\t" |
| 310 | " move.4 "D(PT_INT_MASK1)"(a3), int_mask1 \n\t" |
| 311 | " move.4 "D(PT_TRAP_CAUSE)"(a3), trap_cause \n\t" |
| 312 | " move.4 "D(PT_PC)"(a3), pc \n\t" |
| 313 | " move.4 "D(PT_PREVIOUS_PC)"(a3), previous_pc \n\t" |
| 314 | /* disable csr thread select */ |
| 315 | " movei csr, #0 \n\t" |
| 316 | " setcsr_flush 0 \n\t" |
| 317 | : |
| 318 | : "r" (regs->dn), "d" ((thread << 9) | (1 << 8)) |
| 319 | : "a3" |
| 320 | ); |
| 321 | } |
| 322 | |
| 323 | /* |
| 324 | * ldsr_rotate_threads() |
| 325 | * Simple round robin algorithm for choosing the next cpu |
| 326 | */ |
| 327 | static int ldsr_rotate_threads(unsigned long cpus) |
| 328 | { |
| 329 | static unsigned char ldsr_bits[8] = { |
| 330 | 3, 0, 1, 0, 2, 0, 1, 0 |
| 331 | }; |
| 332 | |
| 333 | static int nextbit; |
| 334 | int thisbit; |
| 335 | |
| 336 | /* |
| 337 | * Move the interrupts down so that we consider interrupts from where |
| 338 | * we left off, then take the interrupts we would lose and move them |
| 339 | * to the top half of the interrupts value. |
| 340 | */ |
| 341 | cpus = (cpus >> nextbit) | (cpus << ((sizeof(cpus) * 8) - nextbit)); |
| 342 | |
| 343 | /* |
| 344 | * 50% of the time we won't take this at all and then of the cases where |
| 345 | * we do about 50% of those we only execute once. |
| 346 | */ |
| 347 | if (!(cpus & 0xffff)) { |
| 348 | nextbit += 16; |
| 349 | cpus >>= 16; |
| 350 | } |
| 351 | |
| 352 | if (!(cpus & 0xff)) { |
| 353 | nextbit += 8; |
| 354 | cpus >>= 8; |
| 355 | } |
| 356 | |
| 357 | if (!(cpus & 0xf)) { |
| 358 | nextbit += 4; |
| 359 | cpus >>= 4; |
| 360 | } |
| 361 | |
| 362 | nextbit += ldsr_bits[cpus & 0x7]; |
| 363 | thisbit = (nextbit & ((sizeof(cpus) * 8) - 1)); |
| 364 | nextbit = (thisbit + 1) & ((sizeof(cpus) * 8) - 1); |
| 365 | DEBUG_ASSERT(thisbit < THREAD_ARCHITECTURAL_MAX); |
| 366 | return thisbit; |
| 367 | } |
| 368 | |
| 369 | /* |
| 370 | * ldsr_rotate_interrupts() |
| 371 | * Get rotating next set bit value. |
| 372 | */ |
| 373 | static int ldsr_rotate_interrupts(unsigned long long interrupts) |
| 374 | { |
| 375 | static unsigned char ldsr_bits[8] = { |
| 376 | 3, 0, 1, 0, 2, 0, 1, 0 |
| 377 | }; |
| 378 | |
| 379 | static int nextbit; |
| 380 | int thisbit; |
| 381 | |
| 382 | /* |
| 383 | * Move the interrupts down so that we consider interrupts from where |
| 384 | * we left off, then take the interrupts we would lose and move them |
| 385 | * to the top half of the interrupts value. |
| 386 | */ |
| 387 | interrupts = (interrupts >> nextbit) | |
| 388 | (interrupts << ((sizeof(interrupts) * 8) - nextbit)); |
| 389 | |
| 390 | /* |
| 391 | * 50% of the time we won't take this at all and then of the cases where |
| 392 | * we do about 50% of those we only execute once. |
| 393 | */ |
| 394 | if (!(interrupts & 0xffffffff)) { |
| 395 | nextbit += 32; |
| 396 | interrupts >>= 32; |
| 397 | } |
| 398 | |
| 399 | if (!(interrupts & 0xffff)) { |
| 400 | nextbit += 16; |
| 401 | interrupts >>= 16; |
| 402 | } |
| 403 | |
| 404 | if (!(interrupts & 0xff)) { |
| 405 | nextbit += 8; |
| 406 | interrupts >>= 8; |
| 407 | } |
| 408 | |
| 409 | if (!(interrupts & 0xf)) { |
| 410 | nextbit += 4; |
| 411 | interrupts >>= 4; |
| 412 | } |
| 413 | |
| 414 | nextbit += ldsr_bits[interrupts & 0x7]; |
| 415 | thisbit = (nextbit & ((sizeof(interrupts) * 8) - 1)); |
| 416 | nextbit = (thisbit + 1) & ((sizeof(interrupts) * 8) - 1); |
| 417 | |
| 418 | DEBUG_ASSERT(thisbit < (sizeof(interrupts) * 8)); |
| 419 | return thisbit; |
| 420 | } |
| 421 | |
| 422 | /* |
| 423 | * ldsr_backout_or_irq() |
| 424 | * |
| 425 | * One way or the other this interrupt is not being |
| 426 | * processed, make sure that it is reset. We are |
| 427 | * not going to call irq_end_vector() so unmask the |
| 428 | * interrupt. |
| 429 | */ |
| 430 | static void ldsr_backout_of_irq(int vector, unsigned long tid_mask) |
| 431 | { |
| 432 | #if defined(CONFIG_SMP) |
| 433 | if (unlikely(vector == smp_ipi_irq)) { |
| 434 | smp_reset_ipi(tid_mask); |
| 435 | } |
| 436 | #endif |
| 437 | ldsr_unmask_vector(vector); |
| 438 | ldsr_interrupt.backout++; |
| 439 | } |
| 440 | |
| 441 | #if defined(CONFIG_IRQSTACKS) |
| 442 | /* |
| 443 | * ldsr_choose_savearea_and_returnvec() |
| 444 | * Test our current state (user, kernel, interrupt) and set things up. |
| 445 | * |
| 446 | * This version of the function uses 3 stacks and nests interrupts |
| 447 | * on the interrupt stack. |
| 448 | */ |
| 449 | static struct pt_regs *ldsr_choose_savearea_and_returnvec(thread_t tid, u32_t linux_sp, u32_t *pvec) |
| 450 | { |
| 451 | struct pt_regs *save_area; |
| 452 | u32_t masked_linux_sp = linux_sp & ~(THREAD_SIZE - 1); |
| 453 | struct thread_info * ti= (struct thread_info *)sw_ksp[tid]; |
| 454 | |
| 455 | #if defined(CONFIG_SMP) |
| 456 | union irq_ctx *icp = percpu_irq_ctxs[tid]; |
| 457 | #else |
| 458 | union irq_ctx *icp = percpu_irq_ctxs[0]; |
| 459 | #endif |
| 460 | |
| 461 | if (masked_linux_sp == (u32_t)icp) { |
| 462 | /* |
| 463 | * Fault/Interrupt occurred while on the interrupt stack. |
| 464 | */ |
| 465 | save_area = (struct pt_regs *)((char *)linux_sp - sizeof(struct pt_regs) - 8); |
| 466 | *pvec = (u32_t)(&ret_from_interrupt_to_kernel); |
| 467 | } else { |
| 468 | /* |
| 469 | * Fault/Interrupt occurred while on user/kernel stack. This is a new |
| 470 | * first use of the interrupt stack. |
| 471 | */ |
| 472 | save_area = (struct pt_regs *) ((char *)icp + sizeof(icp->stack) - sizeof(struct pt_regs) - 8); |
| 473 | if (masked_linux_sp == (u32_t)ti) { |
| 474 | *pvec = (u32_t)(&ret_from_interrupt_to_kernel); |
| 475 | } else { |
| 476 | *pvec = (u32_t)(&ret_from_interrupt_to_user); |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * Because the softirq code will execute on the "interrupt" stack, we |
| 481 | * need to maintain the knowledge of what "task" was executing on the |
| 482 | * cpu. This is done by copying the thread_info->task from the cpu |
| 483 | * we are about to context switch into the interrupt contexts thread_info |
| 484 | * structure. |
| 485 | */ |
| 486 | icp->tinfo.task = ti->task; |
| 487 | icp->tinfo.preempt_count = |
| 488 | (icp->tinfo.preempt_count & ~SOFTIRQ_MASK) | |
| 489 | (ti->preempt_count & SOFTIRQ_MASK); |
| 490 | icp->tinfo.interrupt_nesting = 0; |
| 491 | } |
| 492 | save_area->nesting_level = icp->tinfo.interrupt_nesting; |
| 493 | return save_area; |
| 494 | } |
| 495 | |
| 496 | #else |
| 497 | /* |
| 498 | * ldsr_choose_savearea_and_returnvec() |
| 499 | * Test our current state (user, kernel, interrupt) and set things up. |
| 500 | * |
| 501 | * The version of the function uses just the user & kernel stack and |
| 502 | * nests interrupts on the existing kernel stack. |
| 503 | */ |
| 504 | static struct pt_regs *ldsr_choose_savearea_and_returnvec(thread_t tid, u32_t linux_sp, u32_t *pvec) |
| 505 | { |
| 506 | struct pt_regs *save_area; |
| 507 | u32_t masked_linux_sp = linux_sp & ~(THREAD_SIZE - 1); |
| 508 | struct thread_info *ti = (struct thread_info *)sw_ksp[tid]; |
| 509 | |
| 510 | if (masked_linux_sp == (u32_t)ti) { |
| 511 | /* |
| 512 | * Fault/Interrupt occurred while on the kernel stack. |
| 513 | */ |
| 514 | save_area = (struct pt_regs *)((char *)linux_sp - sizeof(struct pt_regs) - 8); |
| 515 | *pvec = (u32_t) (&ret_from_interrupt_to_kernel); |
| 516 | } else { |
| 517 | /* |
| 518 | * Fault/Interrupt occurred while on user stack. |
| 519 | */ |
| 520 | ti->interrupt_nesting = 0; |
| 521 | save_area = (struct pt_regs *)((u32_t)ti + THREAD_SIZE - sizeof(struct pt_regs) - 8); |
| 522 | *pvec = (u32_t) (&ret_from_interrupt_to_user); |
| 523 | } |
| 524 | save_area->nesting_level = ti->interrupt_nesting; |
| 525 | return save_area; |
| 526 | } |
| 527 | #endif |
| 528 | |
| 529 | /* |
| 530 | * ldsr_ctxsw_thread() |
| 531 | * Context switch a mainline thread to execute do_IRQ() for the specified |
| 532 | * vector. |
| 533 | */ |
| 534 | static void ldsr_ctxsw_thread(int vector, thread_t tid) |
| 535 | { |
| 536 | u32_t linux_sp; |
| 537 | u32_t return_vector; |
| 538 | struct pt_regs *save_area, *regs; |
| 539 | u32_t thread_mask = (1 << tid); |
| 540 | u32_t read_csr = ((tid << 9) | (1 << 8)); |
| 541 | u32_t write_csr = (tid << 15) | (1 << 14); |
| 542 | u32_t interrupt_vector = (u32_t)(&do_IRQ); |
| 543 | |
| 544 | unsigned int frame_type = UBICOM32_FRAME_TYPE_INTERRUPT; |
| 545 | |
| 546 | |
| 547 | DEBUG_ASSERT(!thread_is_enabled(tid)); |
| 548 | |
| 549 | /* |
| 550 | * Acquire the necessary global and per thread locks for tid. |
| 551 | * As a side effect, we ensure that the thread has not trapped |
| 552 | * and return true if it has. |
| 553 | */ |
| 554 | if (unlikely(thread_is_trapped(tid))) { |
| 555 | /* |
| 556 | * Read the trap cause, the sp and clear the MT_TRAP bits. |
| 557 | */ |
| 558 | unsigned int cause; |
| 559 | asm volatile ( |
| 560 | " setcsr %3 \n\t" |
| 561 | " setcsr_flush 0 \n\t" |
| 562 | " setcsr_flush 0 \n\t" |
| 563 | " move.4 %0, TRAP_CAUSE \n\t" |
| 564 | " move.4 %1, SP \n\t" |
| 565 | " setcsr #0 \n\t" |
| 566 | " setcsr_flush 0 \n\t" |
| 567 | " move.4 MT_BREAK_CLR, %2\n\t" |
| 568 | " move.4 MT_TRAP_CLR, %2 \n\t" |
| 569 | : "=&r" (cause), "=&r" (linux_sp) |
| 570 | : "r" (thread_mask), "m" (read_csr) |
| 571 | ); |
| 572 | |
| 573 | ldsr_backout_of_irq(vector, (1 << tid)); |
| 574 | |
| 575 | #if !defined(CONFIG_UNALIGNED_ACCESS_DISABLED) |
| 576 | /* |
| 577 | * See if the unaligned trap handler can deal with this. |
| 578 | * If so, emulate the instruction and then just restart |
| 579 | * the thread. |
| 580 | */ |
| 581 | if (unaligned_only(cause)) { |
| 582 | #if defined(CONFIG_UNALIGNED_ACCESS_USERSPACE_ONLY) |
| 583 | /* |
| 584 | * Check if this is a kernel stack if so we will not |
| 585 | * handle the trap |
| 586 | */ |
| 587 | u32_t masked_linux_sp = linux_sp & ~(THREAD_SIZE - 1); |
| 588 | if ((masked_linux_sp != (u32_t)sw_ksp[tid]) && |
| 589 | unaligned_only(cause)) { |
| 590 | ldsr_emulate_and_run(tid); |
| 591 | return; |
| 592 | } |
| 593 | #else |
| 594 | ldsr_emulate_and_run(tid); |
| 595 | return; |
| 596 | #endif |
| 597 | |
| 598 | } |
| 599 | #endif |
| 600 | |
| 601 | interrupt_vector = (u32_t)(&trap_handler); |
| 602 | frame_type = UBICOM32_FRAME_TYPE_TRAP; |
| 603 | } else { |
| 604 | /* |
| 605 | * Read the target thread's SP |
| 606 | */ |
| 607 | asm volatile ( |
| 608 | " setcsr %1 \n\t" |
| 609 | " setcsr_flush 0 \n\t" |
| 610 | " setcsr_flush 0 \n\t" |
| 611 | " move.4 %0, SP \n\t" |
| 612 | " setcsr #0 \n\t" |
| 613 | " setcsr_flush 0 \n\t" |
| 614 | : "=m" (linux_sp) |
| 615 | : "m" (read_csr) |
| 616 | ); |
| 617 | } |
| 618 | |
| 619 | /* |
| 620 | * We are delivering an interrupt, count it. |
| 621 | */ |
| 622 | ldsr_interrupt.total++; |
| 623 | |
| 624 | /* |
| 625 | * At this point, we will definitely force this thread to |
| 626 | * a new context, show its interrupts as disabled. |
| 627 | */ |
| 628 | ldsr_thread_irq_disable(tid); |
| 629 | |
| 630 | /* |
| 631 | * Test our current state (user, kernel, interrupt). Save the |
| 632 | * appropriate data and setup for the return. |
| 633 | */ |
| 634 | save_area = ldsr_choose_savearea_and_returnvec(tid, linux_sp, &return_vector); |
| 635 | |
| 636 | /* |
| 637 | * The pt_regs (save_area) contains the type of thread that we are dealing |
| 638 | * with (KERNEL/NORMAL) and is copied into each pt_regs area. We get this |
| 639 | * from the current tasks kernel pt_regs area that always exists at the |
| 640 | * top of the kernel stack. |
| 641 | */ |
| 642 | regs = (struct pt_regs *)((u32_t)sw_ksp[tid] + THREAD_SIZE - sizeof(struct pt_regs) - 8); |
| 643 | save_area->thread_type = regs->thread_type; |
| 644 | |
| 645 | /* |
| 646 | * Preserve the context of the Linux thread. |
| 647 | */ |
| 648 | ldsr_preemptive_context_save(tid, save_area); |
| 649 | |
| 650 | /* |
| 651 | * Load the fram_type into the save_area. |
| 652 | */ |
| 653 | save_area->frame_type = frame_type; |
| 654 | |
| 655 | #ifdef CONFIG_STOP_ON_TRAP |
| 656 | /* |
| 657 | * Before we get backtrace and showing stacks working well, it sometimes |
| 658 | * helps to enter the debugger when a trap occurs before we change the |
| 659 | * thread to handle the fault. This optional code causes all threads to |
| 660 | * stop on every trap frame. One assumes that GDB connected via the |
| 661 | * mailbox interface will be used to recover from this state. |
| 662 | */ |
| 663 | if (frame_type == UBICOM32_FRAME_TYPE_TRAP) { |
| 664 | THREAD_STALL; |
| 665 | } |
| 666 | #endif |
| 667 | |
| 668 | #ifdef DEBUG_LDSR |
| 669 | copy_regs = *save_area; |
| 670 | copy_save_area = save_area; |
| 671 | |
| 672 | old_a0 = save_area->an[0]; |
| 673 | old_a3 = save_area->an[3]; |
| 674 | old_sp = save_area->an[7]; |
| 675 | old_a5 = save_area->an[5]; |
| 676 | old_pc = save_area->pc; |
| 677 | #endif |
| 678 | |
| 679 | /* |
| 680 | * Now we have to switch the kernel thread to run do_IRQ function. |
| 681 | * Set pc to do_IRQ |
| 682 | * Set d0 to vector |
| 683 | * Set d1 to save_area. |
| 684 | * Set a5 to the proper return vector. |
| 685 | */ |
| 686 | asm volatile ( |
| 687 | " setcsr %0 \n\t" |
| 688 | " setcsr_flush 0 \n\t" |
| 689 | " move.4 d0, %5 \n\t" /* d0 = 0 vector # */ |
| 690 | " move.4 d1, %1 \n\t" /* d1 = save_area */ |
| 691 | " move.4 sp, %1 \n\t" /* sp = save_area */ |
| 692 | " move.4 a5, %2 \n\t" /* a5 = return_vector */ |
| 693 | " move.4 pc, %3 \n\t" /* pc = do_IRQ routine. */ |
| 694 | " move.4 trap_cause, #0 \n\t" /* Clear the trap cause |
| 695 | * register */ |
| 696 | " setcsr #0 \n\t" |
| 697 | " setcsr_flush 0 \n\t" |
| 698 | " enable_kernel_ranges %4 \n\t" |
| 699 | " move.4 mt_dbg_active_set, %4 \n\t" /* Activate thread even if |
| 700 | * in dbg/fault state */ |
| 701 | " move.4 mt_active_set, %4 \n\t" /* Restart target |
| 702 | * thread. */ |
| 703 | : |
| 704 | : "r" (write_csr), "r" (save_area), |
| 705 | "r" (return_vector), "r" (interrupt_vector), |
| 706 | "d" (thread_mask), "r" (vector) |
| 707 | : "cc" |
| 708 | ); |
| 709 | thread_enable_mask(thread_mask); |
| 710 | } |
| 711 | |
| 712 | /* |
| 713 | * ldsr_deliver_interrupt() |
| 714 | * Deliver the interrupt to one of the threads or all of the threads. |
| 715 | */ |
| 716 | static void ldsr_deliver_interrupt(int vector, |
| 717 | unsigned long deliver_to, |
| 718 | int all) |
| 719 | { |
| 720 | unsigned long disabled_threads; |
| 721 | unsigned long possible_threads; |
| 722 | unsigned long trapped_threads; |
| 723 | unsigned long global_locks; |
| 724 | |
| 725 | /* |
| 726 | * Disable all of the threads that we might want to send |
| 727 | * this interrupt to. |
| 728 | */ |
| 729 | retry: |
| 730 | DEBUG_ASSERT(deliver_to); |
| 731 | thread_disable_mask(deliver_to); |
| 732 | |
| 733 | /* |
| 734 | * If any threads are in the trap state, we have to service the |
| 735 | * trap for those threads first. |
| 736 | */ |
| 737 | asm volatile ( |
| 738 | "move.4 %0, MT_TRAP \n\t" |
| 739 | : "=r" (trapped_threads) |
| 740 | : |
| 741 | ); |
| 742 | |
| 743 | trapped_threads &= deliver_to; |
| 744 | if (unlikely(trapped_threads)) { |
| 745 | /* |
| 746 | * all traps will be handled, so clear the trap bit before restarting any threads |
| 747 | */ |
| 748 | ubicom32_clear_interrupt(ldsr_trap_irq); |
| 749 | |
| 750 | /* |
| 751 | * Let the remaining untrapped threads, continue. |
| 752 | */ |
| 753 | deliver_to &= ~trapped_threads; |
| 754 | if (deliver_to) { |
| 755 | thread_enable_mask(deliver_to); |
| 756 | } |
| 757 | |
| 758 | /* |
| 759 | * For the trapped threads force them to handle |
| 760 | * a trap. |
| 761 | */ |
| 762 | while (trapped_threads) { |
| 763 | unsigned long which = ffz(~trapped_threads); |
| 764 | trapped_threads &= ~(1 << which); |
| 765 | ldsr_ctxsw_thread(vector, which); |
| 766 | } |
| 767 | return; |
| 768 | } |
| 769 | |
| 770 | /* |
| 771 | * Can we deliver an interrupt to any of the threads? |
| 772 | */ |
| 773 | disabled_threads = ldsr_thread_get_interrupts(); |
| 774 | possible_threads = deliver_to & ~disabled_threads; |
| 775 | if (unlikely(!possible_threads)) { |
| 776 | #if defined(CONFIG_SMP) |
| 777 | /* |
| 778 | * In the SMP case, we can not wait because 1 cpu might be |
| 779 | * sending an IPI to another cpu which is currently blocked. |
| 780 | * The only way to ensure IPI delivery is to backout and |
| 781 | * keep trying. For SMP, we don't sleep until the interrupts |
| 782 | * are delivered. |
| 783 | */ |
| 784 | thread_enable_mask(deliver_to); |
| 785 | ldsr_backout_of_irq(vector, deliver_to); |
| 786 | return; |
| 787 | #else |
| 788 | /* |
| 789 | * In the UP case, we have nothing to do so we should wait. |
| 790 | * |
| 791 | * Since the INT_MASK0 and INT_MASK1 are "re-loaded" before we |
| 792 | * suspend in the outer loop, we do not need to save them here. |
| 793 | * |
| 794 | * We test that we were awakened for our specific interrupts |
| 795 | * because the ldsr mask/unmask operations will force the ldsr |
| 796 | * awake even if the interrupt on the mainline thread is not |
| 797 | * completed. |
| 798 | */ |
| 799 | unsigned int scratch = 0; |
| 800 | thread_enable_mask(deliver_to); |
| 801 | asm volatile ( |
| 802 | " move.4 INT_MASK0, %1 \n\t" |
| 803 | " move.4 INT_MASK1, #0 \n\t" |
| 804 | |
| 805 | "1: suspend \n\t" |
| 806 | " move.4 %0, INT_STAT0 \n\t" |
| 807 | " and.4 %0, %0, %1 \n\t" |
| 808 | " jmpeq.f 1b \n\t" |
| 809 | |
| 810 | " move.4 INT_CLR0, %2 \n\t" |
| 811 | : "+r" (scratch) |
| 812 | : "d" (ldsr_suspend_mask), "r" (ldsr_soft_irq_mask) |
| 813 | : "cc" |
| 814 | ); |
| 815 | |
| 816 | /* |
| 817 | * This delay is sized to coincide with the time it takes a |
| 818 | * thread to complete the exit (see return_from_interrupt). |
| 819 | */ |
| 820 | ldsr_interrupt.retry++; |
| 821 | __delay(10); |
| 822 | goto retry; |
| 823 | #endif |
| 824 | } |
| 825 | |
| 826 | /* |
| 827 | * If any of the global locks are held, we can not deliver any |
| 828 | * interrupts, we spin delay(10) and then try again. If our |
| 829 | * spinning becomes a bottle neck, we will need to suspend but for |
| 830 | * now lets just spin. |
| 831 | */ |
| 832 | asm volatile ( |
| 833 | "move.4 %0, scratchpad1 \n\t" |
| 834 | : "=r" (global_locks) |
| 835 | : |
| 836 | ); |
| 837 | if (unlikely(global_locks & 0xffff0000)) { |
| 838 | thread_enable_mask(deliver_to); |
| 839 | |
| 840 | /* |
| 841 | * This delay is sized to coincide with the average time it |
| 842 | * takes a thread to release a global lock. |
| 843 | */ |
| 844 | ldsr_interrupt.retry++; |
| 845 | __delay(10); |
| 846 | goto retry; |
| 847 | } |
| 848 | |
| 849 | /* |
| 850 | * Deliver to one cpu. |
| 851 | */ |
| 852 | if (!all) { |
| 853 | /* |
| 854 | * Find our victim and then enable everyone else. |
| 855 | */ |
| 856 | unsigned long victim = ldsr_rotate_threads(possible_threads); |
| 857 | DEBUG_ASSERT((deliver_to & (1 << victim))); |
| 858 | DEBUG_ASSERT((possible_threads & (1 << victim))); |
| 859 | |
| 860 | deliver_to &= ~(1 << victim); |
| 861 | if (deliver_to) { |
| 862 | thread_enable_mask(deliver_to); |
| 863 | } |
| 864 | ldsr_ctxsw_thread(vector, victim); |
| 865 | return; |
| 866 | } |
| 867 | |
| 868 | /* |
| 869 | * If we can't deliver to some threads, wake them |
| 870 | * back up and reset things to deliver to them. |
| 871 | */ |
| 872 | deliver_to &= ~possible_threads; |
| 873 | if (unlikely(deliver_to)) { |
| 874 | thread_enable_mask(deliver_to); |
| 875 | ldsr_backout_of_irq(vector, deliver_to); |
| 876 | } |
| 877 | |
| 878 | /* |
| 879 | * Deliver to all possible threads(s). |
| 880 | */ |
| 881 | while (possible_threads) { |
| 882 | unsigned long victim = ffz(~possible_threads); |
| 883 | possible_threads &= ~(1 << victim); |
| 884 | ldsr_ctxsw_thread(vector, victim); |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | /* |
| 889 | * ldsr_thread() |
| 890 | * This thread acts as the interrupt controller for Linux. |
| 891 | */ |
| 892 | static void ldsr_thread(void *arg) |
| 893 | { |
| 894 | int stat0; |
| 895 | int stat1; |
| 896 | int interrupt0; |
| 897 | int interrupt1; |
| 898 | long long interrupts; |
| 899 | unsigned long cpus; |
| 900 | |
| 901 | #if !defined(CONFIG_SMP) |
| 902 | /* |
| 903 | * In a non-smp configuration, we can not use the cpu(s) arrays because |
| 904 | * there is not a 1-1 correspondence between cpus(s) and our threads. |
| 905 | * Thus we must get a local idea of the mainline threads and use the |
| 906 | * one and only 1 set as the victim. We do this once before the ldsr |
| 907 | * loop. |
| 908 | * |
| 909 | * In the SMP case, we will use the cpu(s) map to determine which cpu(s) |
| 910 | * are valid to send interrupts to. |
| 911 | */ |
| 912 | int victim = 0; |
| 913 | unsigned int mainline = thread_get_mainline(); |
| 914 | if (mainline == 0) { |
| 915 | panic("no mainline Linux threads to interrupt"); |
| 916 | return; |
| 917 | } |
| 918 | victim = ffz(~mainline); |
| 919 | cpus = (1 << victim); |
| 920 | #endif |
| 921 | |
| 922 | while (1) { |
| 923 | /* |
| 924 | * If one changes this code not to reload the INT_MASK(s), you |
| 925 | * need to know that code in the lock waiting above does not |
| 926 | * reset the MASK registers back; so that code will need to be |
| 927 | * changed. |
| 928 | */ |
| 929 | ldsr_lock_acquire(); |
| 930 | asm volatile ( |
| 931 | " move.4 INT_MASK0, %0 \n\t" |
| 932 | " move.4 INT_MASK1, %1 \n\t" |
| 933 | : |
| 934 | : "U4" (ldsr_interrupt.mask0), "U4" (ldsr_interrupt.mask1) |
| 935 | ); |
| 936 | ldsr_lock_release(); |
| 937 | thread_suspend(); |
| 938 | |
| 939 | /* |
| 940 | * Read the interrupt status registers |
| 941 | */ |
| 942 | asm volatile ( |
| 943 | "move.4 %0, INT_STAT0 \n\t" |
| 944 | "move.4 %1, INT_STAT1 \n\t" |
| 945 | : "=r" (stat0), "=r" (stat1) |
| 946 | : |
| 947 | ); |
| 948 | |
| 949 | /* |
| 950 | * We only care about interrupts that we have been told to care |
| 951 | * about. The interrupt must be enabled, unmasked, and have |
| 952 | * occurred in the hardware. |
| 953 | */ |
| 954 | ldsr_lock_acquire(); |
| 955 | interrupt0 = ldsr_interrupt.enabled0 & |
| 956 | ldsr_interrupt.mask0 & stat0; |
| 957 | interrupt1 = ldsr_interrupt.enabled1 & |
| 958 | ldsr_interrupt.mask1 & stat1; |
| 959 | ldsr_lock_release(); |
| 960 | |
| 961 | /* |
| 962 | * For each interrupt in the "snapshot" we will mask the |
| 963 | * interrupt handle the interrupt (typically calling do_IRQ()). |
| 964 | * |
| 965 | * The interrupt is unmasked by desc->chip->end() function in |
| 966 | * the per chip generic interrupt handling code |
| 967 | * (arch/ubicom32/kernel/irq.c).8 |
| 968 | */ |
| 969 | interrupts = ((unsigned long long)interrupt1 << 32) | |
| 970 | interrupt0; |
| 971 | while (interrupts) { |
| 972 | int all = 0; |
| 973 | int vector = ldsr_rotate_interrupts(interrupts); |
| 974 | interrupts &= ~((unsigned long long)1 << vector); |
| 975 | |
| 976 | /* |
| 977 | * Now mask off this vector so that the LDSR ignores |
| 978 | * it until it is acknowledged. |
| 979 | */ |
| 980 | ldsr_mask_vector(vector); |
| 981 | #if !defined(CONFIG_SMP) |
| 982 | ldsr_deliver_interrupt(vector, cpus, all); |
| 983 | #else |
| 984 | cpus = smp_get_affinity(vector, &all); |
| 985 | if (!cpus) { |
| 986 | /* |
| 987 | * No CPU to deliver to so just leave |
| 988 | * the interrupt unmasked and increase |
| 989 | * the backout count. We will eventually |
| 990 | * return and deliver it again. |
| 991 | */ |
| 992 | ldsr_unmask_vector(vector); |
| 993 | ldsr_interrupt.backout++; |
| 994 | continue; |
| 995 | } |
| 996 | ldsr_deliver_interrupt(vector, cpus, all); |
| 997 | #endif |
| 998 | } |
| 999 | } |
| 1000 | |
| 1001 | /* NOTREACHED */ |
| 1002 | } |
| 1003 | |
| 1004 | /* |
| 1005 | * ldsr_mask_vector() |
| 1006 | * Temporarily mask the interrupt vector, turn off the bit in the mask |
| 1007 | * register. |
| 1008 | */ |
| 1009 | void ldsr_mask_vector(unsigned int vector) |
| 1010 | { |
| 1011 | unsigned int mask; |
| 1012 | if (vector < 32) { |
| 1013 | mask = ~(1 << vector); |
| 1014 | ldsr_lock_acquire(); |
| 1015 | ldsr_interrupt.mask0 &= mask; |
| 1016 | ldsr_lock_release(); |
| 1017 | thread_resume(ldsr_tid); |
| 1018 | return; |
| 1019 | } |
| 1020 | |
| 1021 | mask = ~(1 << (vector - 32)); |
| 1022 | ldsr_lock_acquire(); |
| 1023 | ldsr_interrupt.mask1 &= mask; |
| 1024 | ldsr_lock_release(); |
| 1025 | thread_resume(ldsr_tid); |
| 1026 | } |
| 1027 | |
| 1028 | /* |
| 1029 | * ldsr_unmask_vector() |
| 1030 | * Unmask the interrupt vector so that it can be used, turn on the bit in |
| 1031 | * the mask register. |
| 1032 | * |
| 1033 | * Because it is legal for the interrupt path to disable an interrupt, |
| 1034 | * the unmasking code must ensure that disabled interrupts are not |
| 1035 | * unmasked. |
| 1036 | */ |
| 1037 | void ldsr_unmask_vector(unsigned int vector) |
| 1038 | { |
| 1039 | unsigned int mask; |
| 1040 | if (vector < 32) { |
| 1041 | mask = (1 << vector); |
| 1042 | ldsr_lock_acquire(); |
| 1043 | ldsr_interrupt.mask0 |= (mask & ldsr_interrupt.enabled0); |
| 1044 | ldsr_lock_release(); |
| 1045 | thread_resume(ldsr_tid); |
| 1046 | return; |
| 1047 | } |
| 1048 | |
| 1049 | mask = (1 << (vector - 32)); |
| 1050 | ldsr_lock_acquire(); |
| 1051 | ldsr_interrupt.mask1 |= (mask & ldsr_interrupt.enabled1); |
| 1052 | ldsr_lock_release(); |
| 1053 | thread_resume(ldsr_tid); |
| 1054 | } |
| 1055 | |
| 1056 | /* |
| 1057 | * ldsr_enable_vector() |
| 1058 | * The LDSR implements an interrupt controller and has a local (to the |
| 1059 | * LDSR) copy of its interrupt mask. |
| 1060 | */ |
| 1061 | void ldsr_enable_vector(unsigned int vector) |
| 1062 | { |
| 1063 | unsigned int mask; |
| 1064 | if (vector < 32) { |
| 1065 | mask = (1 << vector); |
| 1066 | ldsr_lock_acquire(); |
| 1067 | ldsr_interrupt.enabled0 |= mask; |
| 1068 | ldsr_interrupt.mask0 |= mask; |
| 1069 | ldsr_lock_release(); |
| 1070 | thread_resume(ldsr_tid); |
| 1071 | return; |
| 1072 | } |
| 1073 | |
| 1074 | mask = (1 << (vector - 32)); |
| 1075 | ldsr_lock_acquire(); |
| 1076 | ldsr_interrupt.enabled1 |= mask; |
| 1077 | ldsr_interrupt.mask1 |= mask; |
| 1078 | ldsr_lock_release(); |
| 1079 | thread_resume(ldsr_tid); |
| 1080 | } |
| 1081 | |
| 1082 | /* |
| 1083 | * ldsr_disable_vector() |
| 1084 | * The LDSR implements an interrupt controller and has a local (to the |
| 1085 | * LDSR) copy of its interrupt mask. |
| 1086 | */ |
| 1087 | void ldsr_disable_vector(unsigned int vector) |
| 1088 | { |
| 1089 | unsigned int mask; |
| 1090 | |
| 1091 | if (vector < 32) { |
| 1092 | mask = ~(1 << vector); |
| 1093 | ldsr_lock_acquire(); |
| 1094 | ldsr_interrupt.enabled0 &= mask; |
| 1095 | ldsr_interrupt.mask0 &= mask; |
| 1096 | ldsr_lock_release(); |
| 1097 | thread_resume(ldsr_tid); |
| 1098 | return; |
| 1099 | } |
| 1100 | |
| 1101 | mask = ~(1 << (vector - 32)); |
| 1102 | ldsr_lock_acquire(); |
| 1103 | ldsr_interrupt.enabled1 &= mask; |
| 1104 | ldsr_interrupt.mask1 &= mask; |
| 1105 | ldsr_lock_release(); |
| 1106 | thread_resume(ldsr_tid); |
| 1107 | } |
| 1108 | |
| 1109 | /* |
| 1110 | * ldsr_get_threadid() |
| 1111 | * Return the threadid of the LDSR thread. |
| 1112 | */ |
| 1113 | thread_t ldsr_get_threadid(void) |
| 1114 | { |
| 1115 | return ldsr_tid; |
| 1116 | } |
| 1117 | |
| 1118 | /* |
| 1119 | * ldsr_set_trap_irq() |
| 1120 | * Save away the trap Soft IRQ |
| 1121 | * |
| 1122 | * See the per thread lock suspend code above for an explination. |
| 1123 | */ |
| 1124 | void ldsr_set_trap_irq(unsigned int irq) |
| 1125 | { |
| 1126 | ldsr_trap_irq = irq; |
| 1127 | ldsr_trap_irq_mask = (1 << irq); |
| 1128 | ldsr_suspend_mask |= ldsr_trap_irq_mask; |
| 1129 | } |
| 1130 | |
| 1131 | /* |
| 1132 | * ldsr_init() |
| 1133 | * Initialize the LDSR (Interrupt Controller) |
| 1134 | */ |
| 1135 | void ldsr_init(void) |
| 1136 | { |
| 1137 | #if defined(CONFIG_IRQSTACKS) |
| 1138 | int i; |
| 1139 | union irq_ctx *icp; |
| 1140 | #endif |
| 1141 | |
| 1142 | void *stack_high = (void *)ldsr_stack_space; |
| 1143 | stack_high += sizeof(ldsr_stack_space); |
| 1144 | stack_high -= 8; |
| 1145 | |
| 1146 | |
| 1147 | /* |
| 1148 | * Obtain a soft IRQ to use |
| 1149 | */ |
| 1150 | if (irq_soft_alloc(&ldsr_soft_irq) < 0) { |
| 1151 | panic("no software IRQ is available\n"); |
| 1152 | return; |
| 1153 | } |
| 1154 | ldsr_soft_irq_mask |= (1 << ldsr_soft_irq); |
| 1155 | ldsr_suspend_mask |= ldsr_soft_irq_mask; |
| 1156 | |
| 1157 | /* |
| 1158 | * Now allocate and start the LDSR thread. |
| 1159 | */ |
| 1160 | ldsr_tid = thread_alloc(); |
| 1161 | if (ldsr_tid < 0) { |
| 1162 | panic("no thread available to run LDSR"); |
| 1163 | return; |
| 1164 | } |
| 1165 | |
| 1166 | #if defined(CONFIG_IRQSTACKS) |
| 1167 | /* |
| 1168 | * Initialize the per-cpu irq thread_info structure that |
| 1169 | * is at the top of each per-cpu irq stack. |
| 1170 | */ |
| 1171 | icp = (union irq_ctx *) |
| 1172 | (((unsigned long)percpu_irq_stacks + (THREAD_SIZE - 1)) & ~(THREAD_SIZE - 1)); |
| 1173 | for (i = 0; i < NR_CPUS; i++) { |
| 1174 | struct thread_info *ti = &(icp->tinfo); |
| 1175 | ti->task = NULL; |
| 1176 | ti->exec_domain = NULL; |
| 1177 | ti->cpu = i; |
| 1178 | ti->preempt_count = 0; |
| 1179 | ti->interrupt_nesting = 0; |
| 1180 | percpu_irq_ctxs[i] = icp++; |
| 1181 | } |
| 1182 | #endif |
| 1183 | thread_start(ldsr_tid, ldsr_thread, NULL, |
| 1184 | stack_high, THREAD_TYPE_NORMAL); |
| 1185 | } |
| 1186 | |