| 1 | /* |
| 2 | * arch/ubicom32/kernel/process.c |
| 3 | * Ubicom32 architecture-dependent process handling. |
| 4 | * |
| 5 | * (C) Copyright 2009, Ubicom, Inc. |
| 6 | * Copyright (C) 1995 Hamish Macdonald |
| 7 | * |
| 8 | * 68060 fixes by Jesper Skov |
| 9 | * |
| 10 | * uClinux changes |
| 11 | * Copyright (C) 2000-2002, David McCullough <davidm@snapgear.com> |
| 12 | * |
| 13 | * This file is part of the Ubicom32 Linux Kernel Port. |
| 14 | * |
| 15 | * The Ubicom32 Linux Kernel Port is free software: you can redistribute |
| 16 | * it and/or modify it under the terms of the GNU General Public License |
| 17 | * as published by the Free Software Foundation, either version 2 of the |
| 18 | * License, or (at your option) any later version. |
| 19 | * |
| 20 | * The Ubicom32 Linux Kernel Port is distributed in the hope that it |
| 21 | * will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| 22 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| 23 | * the GNU General Public License for more details. |
| 24 | * |
| 25 | * You should have received a copy of the GNU General Public License |
| 26 | * along with the Ubicom32 Linux Kernel Port. If not, |
| 27 | * see <http://www.gnu.org/licenses/>. |
| 28 | * |
| 29 | * Ubicom32 implementation derived from (with many thanks): |
| 30 | * arch/m68knommu |
| 31 | * arch/blackfin |
| 32 | * arch/parisc |
| 33 | */ |
| 34 | |
| 35 | /* |
| 36 | * This file handles the architecture-dependent parts of process handling.. |
| 37 | */ |
| 38 | |
| 39 | #include <linux/module.h> |
| 40 | #include <linux/errno.h> |
| 41 | #include <linux/sched.h> |
| 42 | #include <linux/kernel.h> |
| 43 | #include <linux/mm.h> |
| 44 | #include <linux/smp.h> |
| 45 | #include <linux/smp_lock.h> |
| 46 | #include <linux/stddef.h> |
| 47 | #include <linux/unistd.h> |
| 48 | #include <linux/ptrace.h> |
| 49 | #include <linux/slab.h> |
| 50 | #include <linux/user.h> |
| 51 | #include <linux/a.out.h> |
| 52 | #include <linux/interrupt.h> |
| 53 | #include <linux/reboot.h> |
| 54 | #include <linux/fs.h> |
| 55 | #include <linux/pm.h> |
| 56 | |
| 57 | #include <linux/uaccess.h> |
| 58 | #include <asm/system.h> |
| 59 | #include <asm/traps.h> |
| 60 | #include <asm/machdep.h> |
| 61 | #include <asm/setup.h> |
| 62 | #include <asm/pgtable.h> |
| 63 | #include <asm/ip5000.h> |
| 64 | #include <asm/range-protect.h> |
| 65 | |
| 66 | #define DUMP_RANGE_REGISTER(REG, IDX) asm volatile ( \ |
| 67 | " move.4 %0, "REG"_RANGE"IDX"_EN \n\t" \ |
| 68 | " move.4 %1, "REG"_RANGE"IDX"_LO \n\t" \ |
| 69 | " move.4 %2, "REG"_RANGE"IDX"_HI \n\t" \ |
| 70 | : "=d"(en), "=d"(lo), "=d"(hi) \ |
| 71 | ); \ |
| 72 | printk(KERN_NOTICE REG"Range"IDX": en:%08x, range: %08x-%08x\n", \ |
| 73 | (unsigned int)en, \ |
| 74 | (unsigned int)lo, \ |
| 75 | (unsigned int)hi) |
| 76 | |
| 77 | asmlinkage void ret_from_fork(void); |
| 78 | |
| 79 | void (*pm_power_off)(void) = machine_power_off; |
| 80 | EXPORT_SYMBOL(pm_power_off); |
| 81 | |
| 82 | /* machine-dependent / hardware-specific power functions */ |
| 83 | void (*mach_reset)(void); |
| 84 | void (*mach_halt)(void); |
| 85 | void (*mach_power_off)(void); |
| 86 | |
| 87 | /* |
| 88 | * cpu_idle() |
| 89 | * The idle thread. |
| 90 | * |
| 91 | * Our idle loop suspends and is woken up by a timer interrupt. |
| 92 | */ |
| 93 | void cpu_idle(void) |
| 94 | { |
| 95 | while (1) { |
| 96 | local_irq_disable(); |
| 97 | while (!need_resched()) { |
| 98 | local_irq_enable(); |
| 99 | thread_suspend(); |
| 100 | local_irq_disable(); |
| 101 | } |
| 102 | local_irq_enable(); |
| 103 | preempt_enable_no_resched(); |
| 104 | schedule(); |
| 105 | preempt_disable(); |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | /* |
| 110 | * dump_fpu() |
| 111 | * |
| 112 | * Fill in the fpu structure for a core dump. (just a stub as we don't have |
| 113 | * an fpu) |
| 114 | */ |
| 115 | int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpregs) |
| 116 | { |
| 117 | return 1; |
| 118 | } |
| 119 | |
| 120 | /* |
| 121 | * machine_restart() |
| 122 | * Resets the system. |
| 123 | */ |
| 124 | void machine_restart(char *__unused) |
| 125 | { |
| 126 | /* |
| 127 | * Disable all threads except myself. We can do this |
| 128 | * directly without needing to call smp_send_stop |
| 129 | * because we have a unique architecture where |
| 130 | * one thread can disable one or more other threads. |
| 131 | */ |
| 132 | thread_disable_others(); |
| 133 | |
| 134 | /* |
| 135 | * Call the hardware-specific machine reset function. |
| 136 | */ |
| 137 | if (mach_reset) { |
| 138 | mach_reset(); |
| 139 | } |
| 140 | |
| 141 | printk(KERN_EMERG "System Restarting\n"); |
| 142 | |
| 143 | /* |
| 144 | * Set watchdog to trigger (after 1ms delay) (12 Mhz is the fixed OSC) |
| 145 | */ |
| 146 | UBICOM32_IO_TIMER->tkey = TIMER_TKEYVAL; |
| 147 | UBICOM32_IO_TIMER->wdcom = UBICOM32_IO_TIMER->mptval + |
| 148 | (12000000 / 1000); |
| 149 | UBICOM32_IO_TIMER->wdcfg = 0; |
| 150 | UBICOM32_IO_TIMER->tkey = 0; |
| 151 | |
| 152 | /* |
| 153 | * Wait for watchdog |
| 154 | */ |
| 155 | asm volatile ( |
| 156 | " move.4 MT_EN, #0 \n\t" |
| 157 | " pipe_flush 0 \n\t" |
| 158 | ); |
| 159 | |
| 160 | local_irq_disable(); |
| 161 | for (;;) { |
| 162 | thread_suspend(); |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | /* |
| 167 | * machine_halt() |
| 168 | * Halt the machine. |
| 169 | * |
| 170 | * Similar to machine_power_off, but don't shut off power. Add code |
| 171 | * here to freeze the system for e.g. post-mortem debug purpose when |
| 172 | * possible. This halt has nothing to do with the idle halt. |
| 173 | */ |
| 174 | void machine_halt(void) |
| 175 | { |
| 176 | /* |
| 177 | * Disable all threads except myself. We can do this |
| 178 | * directly without needing to call smp_send_stop |
| 179 | * because we have a unique architecture where |
| 180 | * one thread can disable one or more other threads. |
| 181 | */ |
| 182 | thread_disable_others(); |
| 183 | |
| 184 | /* |
| 185 | * Call the hardware-specific machine halt function. |
| 186 | */ |
| 187 | if (mach_halt) { |
| 188 | mach_halt(); |
| 189 | } |
| 190 | |
| 191 | printk(KERN_EMERG "System Halted, OK to turn off power\n"); |
| 192 | local_irq_disable(); |
| 193 | for (;;) { |
| 194 | thread_suspend(); |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | /* |
| 199 | * machine_power_off() |
| 200 | * Turn the power off, if a power off handler is defined, otherwise, spin |
| 201 | * endlessly. |
| 202 | */ |
| 203 | void machine_power_off(void) |
| 204 | { |
| 205 | /* |
| 206 | * Disable all threads except myself. We can do this |
| 207 | * directly without needing to call smp_send_stop |
| 208 | * because we have a unique architecture where |
| 209 | * one thread can disable one or more other threads. |
| 210 | */ |
| 211 | thread_disable_others(); |
| 212 | |
| 213 | /* |
| 214 | * Call the hardware-specific machine power off function. |
| 215 | */ |
| 216 | if (mach_power_off) { |
| 217 | mach_power_off(); |
| 218 | } |
| 219 | |
| 220 | printk(KERN_EMERG "System Halted, OK to turn off power\n"); |
| 221 | local_irq_disable(); |
| 222 | for (;;) { |
| 223 | thread_suspend(); |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | /* |
| 228 | * address_is_valid() |
| 229 | * check if an address is valid -- (for read access) |
| 230 | */ |
| 231 | static bool address_is_valid(const void *address) |
| 232 | { |
| 233 | int addr = (int)address; |
| 234 | unsigned long socm, eocm, sdram, edram; |
| 235 | |
| 236 | if (addr & 3) |
| 237 | return false; |
| 238 | |
| 239 | processor_ocm(&socm, &eocm); |
| 240 | processor_dram(&sdram, &edram); |
| 241 | if (addr >= socm && addr < eocm) |
| 242 | return true; |
| 243 | |
| 244 | if (addr >= sdram && addr < edram) |
| 245 | return true; |
| 246 | |
| 247 | return false; |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * vma_path_name_is_valid() |
| 252 | * check if path_name of a vma is a valid string |
| 253 | */ |
| 254 | static bool vma_path_name_is_valid(const char *str) |
| 255 | { |
| 256 | #define MAX_NAME_LEN 256 |
| 257 | int i = 0; |
| 258 | if (!address_is_valid(str)) |
| 259 | return false; |
| 260 | |
| 261 | for (; i < MAX_NAME_LEN; i++, str++) { |
| 262 | if (*str == '\0') |
| 263 | return true; |
| 264 | } |
| 265 | |
| 266 | return false; |
| 267 | } |
| 268 | |
| 269 | /* |
| 270 | * show_vmas() |
| 271 | * show vma info of a process |
| 272 | */ |
| 273 | void show_vmas(struct task_struct *task) |
| 274 | { |
| 275 | #ifdef CONFIG_DEBUG_VERBOSE |
| 276 | #define UBICOM32_MAX_VMA_COUNT 1024 |
| 277 | |
| 278 | struct vm_area_struct *vma; |
| 279 | struct file *file; |
| 280 | char *name = ""; |
| 281 | int flags, loop = 0; |
| 282 | |
| 283 | printk(KERN_NOTICE "Start of vma list\n"); |
| 284 | |
| 285 | if (!address_is_valid(task) || !address_is_valid(task->mm)) |
| 286 | goto error; |
| 287 | |
| 288 | vma = task->mm->mmap; |
| 289 | while (vma) { |
| 290 | if (!address_is_valid(vma)) |
| 291 | goto error; |
| 292 | |
| 293 | flags = vma->vm_flags; |
| 294 | file = vma->vm_file; |
| 295 | |
| 296 | if (file) { |
| 297 | /* seems better to use dentry op here, but sanity check is easier this way */ |
| 298 | if (!address_is_valid(file) || !address_is_valid(file->f_path.dentry) || !vma_path_name_is_valid(file->f_path.dentry->d_name.name)) |
| 299 | goto error; |
| 300 | |
| 301 | name = (char *)file->f_path.dentry->d_name.name; |
| 302 | } |
| 303 | |
| 304 | /* Similar to /proc/pid/maps format */ |
| 305 | printk(KERN_NOTICE "%08lx-%08lx %c%c%c%c %08lx %s\n", |
| 306 | vma->vm_start, |
| 307 | vma->vm_end, |
| 308 | flags & VM_READ ? 'r' : '-', |
| 309 | flags & VM_WRITE ? 'w' : '-', |
| 310 | flags & VM_EXEC ? 'x' : '-', |
| 311 | flags & VM_MAYSHARE ? flags & VM_SHARED ? 'S' : 's' : 'p', |
| 312 | vma->vm_pgoff << PAGE_SHIFT, |
| 313 | name); |
| 314 | |
| 315 | vma = vma->vm_next; |
| 316 | |
| 317 | if (loop++ > UBICOM32_MAX_VMA_COUNT) |
| 318 | goto error; |
| 319 | } |
| 320 | |
| 321 | printk(KERN_NOTICE "End of vma list\n"); |
| 322 | return; |
| 323 | |
| 324 | error: |
| 325 | printk(KERN_NOTICE "\nCorrupted vma list, abort!\n"); |
| 326 | #endif |
| 327 | } |
| 328 | |
| 329 | /* |
| 330 | * show_regs() |
| 331 | * Print out all of the registers. |
| 332 | */ |
| 333 | void show_regs(struct pt_regs *regs) |
| 334 | { |
| 335 | unsigned int i; |
| 336 | unsigned int en, lo, hi; |
| 337 | |
| 338 | printk(KERN_NOTICE "regs: %p, tid: %d\n", |
| 339 | (void *)regs, |
| 340 | thread_get_self()); |
| 341 | |
| 342 | printk(KERN_NOTICE "pc: %08x, previous_pc: %08x\n\n", |
| 343 | (unsigned int)regs->pc, |
| 344 | (unsigned int)regs->previous_pc); |
| 345 | |
| 346 | printk(KERN_NOTICE "Data registers\n"); |
| 347 | for (i = 0; i < 16; i++) { |
| 348 | printk("D%02d: %08x, ", i, (unsigned int)regs->dn[i]); |
| 349 | if ((i % 4) == 3) { |
| 350 | printk("\n"); |
| 351 | } |
| 352 | } |
| 353 | printk("\n"); |
| 354 | |
| 355 | printk(KERN_NOTICE "Address registers\n"); |
| 356 | for (i = 0; i < 8; i++) { |
| 357 | printk("A%02d: %08x, ", i, (unsigned int)regs->an[i]); |
| 358 | if ((i % 4) == 3) { |
| 359 | printk("\n"); |
| 360 | } |
| 361 | } |
| 362 | printk("\n"); |
| 363 | |
| 364 | printk(KERN_NOTICE "acc0: %08x-%08x, acc1: %08x-%08x\n", |
| 365 | (unsigned int)regs->acc0[1], |
| 366 | (unsigned int)regs->acc0[0], |
| 367 | (unsigned int)regs->acc1[1], |
| 368 | (unsigned int)regs->acc1[0]); |
| 369 | |
| 370 | printk(KERN_NOTICE "mac_rc16: %08x, source3: %08x\n", |
| 371 | (unsigned int)regs->mac_rc16, |
| 372 | (unsigned int)regs->source3); |
| 373 | |
| 374 | printk(KERN_NOTICE "inst_cnt: %08x, csr: %08x\n", |
| 375 | (unsigned int)regs->inst_cnt, |
| 376 | (unsigned int)regs->csr); |
| 377 | |
| 378 | printk(KERN_NOTICE "int_mask0: %08x, int_mask1: %08x\n", |
| 379 | (unsigned int)regs->int_mask0, |
| 380 | (unsigned int)regs->int_mask1); |
| 381 | |
| 382 | /* |
| 383 | * Dump range registers |
| 384 | */ |
| 385 | DUMP_RANGE_REGISTER("I", "0"); |
| 386 | DUMP_RANGE_REGISTER("I", "1"); |
| 387 | DUMP_RANGE_REGISTER("I", "2"); |
| 388 | DUMP_RANGE_REGISTER("I", "3"); |
| 389 | DUMP_RANGE_REGISTER("D", "0"); |
| 390 | DUMP_RANGE_REGISTER("D", "1"); |
| 391 | DUMP_RANGE_REGISTER("D", "2"); |
| 392 | DUMP_RANGE_REGISTER("D", "3"); |
| 393 | DUMP_RANGE_REGISTER("D", "4"); |
| 394 | |
| 395 | printk(KERN_NOTICE "frame_type: %d, nesting_level: %d, thread_type %d\n\n", |
| 396 | (int)regs->frame_type, |
| 397 | (int)regs->nesting_level, |
| 398 | (int)regs->thread_type); |
| 399 | } |
| 400 | |
| 401 | /* |
| 402 | * kernel_thread_helper() |
| 403 | * On execution d0 will be 0, d1 will be the argument to be passed to the |
| 404 | * kernel function. d2 contains the kernel function that needs to get |
| 405 | * called. d3 will contain address to do_exit which need to get moved |
| 406 | * into a5. On return from fork the child thread d0 will be 0. We call |
| 407 | * this dummy function which in turn loads the argument |
| 408 | */ |
| 409 | asmlinkage void kernel_thread_helper(void); |
| 410 | |
| 411 | /* |
| 412 | * kernel_thread() |
| 413 | * Create a kernel thread |
| 414 | */ |
| 415 | int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) |
| 416 | { |
| 417 | struct pt_regs regs; |
| 418 | |
| 419 | memset(®s, 0, sizeof(regs)); |
| 420 | |
| 421 | regs.dn[1] = (unsigned long)arg; |
| 422 | regs.dn[2] = (unsigned long)fn; |
| 423 | regs.dn[3] = (unsigned long)do_exit; |
| 424 | regs.an[5] = (unsigned long)kernel_thread_helper; |
| 425 | regs.pc = (unsigned long)kernel_thread_helper; |
| 426 | regs.nesting_level = 0; |
| 427 | regs.thread_type = KERNEL_THREAD; |
| 428 | |
| 429 | return do_fork(flags | CLONE_VM | CLONE_UNTRACED, |
| 430 | 0, ®s, 0, NULL, NULL); |
| 431 | } |
| 432 | EXPORT_SYMBOL(kernel_thread); |
| 433 | |
| 434 | /* |
| 435 | * flush_thread() |
| 436 | * XXX todo |
| 437 | */ |
| 438 | void flush_thread(void) |
| 439 | { |
| 440 | /* XXX todo */ |
| 441 | } |
| 442 | |
| 443 | /* |
| 444 | * sys_fork() |
| 445 | * Not implemented on no-mmu. |
| 446 | */ |
| 447 | asmlinkage int sys_fork(struct pt_regs *regs) |
| 448 | { |
| 449 | /* fork almost works, enough to trick you into looking elsewhere :-( */ |
| 450 | return -EINVAL; |
| 451 | } |
| 452 | |
| 453 | /* |
| 454 | * sys_vfork() |
| 455 | * By the time we get here, the non-volatile registers have also been saved |
| 456 | * on the stack. We do some ugly pointer stuff here.. (see also copy_thread |
| 457 | * which does context copy). |
| 458 | */ |
| 459 | asmlinkage int sys_vfork(struct pt_regs *regs) |
| 460 | { |
| 461 | unsigned long old_sp = regs->an[7]; |
| 462 | unsigned long old_a5 = regs->an[5]; |
| 463 | unsigned long old_return_address; |
| 464 | long do_fork_return; |
| 465 | |
| 466 | /* |
| 467 | * Read the old retrun address from the stack. |
| 468 | */ |
| 469 | if (copy_from_user(&old_return_address, |
| 470 | (void *)old_sp, sizeof(unsigned long))) { |
| 471 | force_sig(SIGSEGV, current); |
| 472 | return 0; |
| 473 | } |
| 474 | |
| 475 | /* |
| 476 | * Pop the vfork call frame by setting a5 and pc to the old_return |
| 477 | * address and incrementing the stack pointer by 4. |
| 478 | */ |
| 479 | regs->an[5] = old_return_address; |
| 480 | regs->pc = old_return_address; |
| 481 | regs->an[7] += 4; |
| 482 | |
| 483 | do_fork_return = do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, |
| 484 | regs->an[7], regs, 0, NULL, NULL); |
| 485 | |
| 486 | /* |
| 487 | * Now we have to test if the return code is an error. If it is an error |
| 488 | * then restore the frame and we will execute error processing in user |
| 489 | * space. Other wise the child and the parent will return to the correct |
| 490 | * places. |
| 491 | */ |
| 492 | if ((unsigned long)(do_fork_return) >= (unsigned long)(-125)) { |
| 493 | /* |
| 494 | * Error case. We need to restore the frame. |
| 495 | */ |
| 496 | regs->an[5] = old_a5; |
| 497 | regs->pc = old_a5; |
| 498 | regs->an[7] = old_sp; |
| 499 | } |
| 500 | |
| 501 | return do_fork_return; |
| 502 | } |
| 503 | |
| 504 | /* |
| 505 | * sys_clone() |
| 506 | * creates a child thread. |
| 507 | */ |
| 508 | asmlinkage int sys_clone(unsigned long clone_flags, |
| 509 | unsigned long newsp, |
| 510 | struct pt_regs *regs) |
| 511 | { |
| 512 | if (!newsp) |
| 513 | newsp = regs->an[7]; |
| 514 | return do_fork(clone_flags, newsp, regs, 0, |
| 515 | NULL, NULL); |
| 516 | } |
| 517 | |
| 518 | /* |
| 519 | * copy_thread() |
| 520 | * low level thread copy, only used by do_fork in kernel/fork.c |
| 521 | */ |
| 522 | int copy_thread(unsigned long clone_flags, |
| 523 | unsigned long usp, unsigned long topstk, |
| 524 | struct task_struct *p, struct pt_regs *regs) |
| 525 | |
| 526 | { |
| 527 | struct pt_regs *childregs; |
| 528 | |
| 529 | childregs = (struct pt_regs *) |
| 530 | (task_stack_page(p) + THREAD_SIZE - 8) - 1; |
| 531 | |
| 532 | *childregs = *regs; |
| 533 | |
| 534 | /* |
| 535 | * Set return value for child to be 0. |
| 536 | */ |
| 537 | childregs->dn[0] = 0; |
| 538 | |
| 539 | if (usp) |
| 540 | childregs->an[7] = usp; |
| 541 | else |
| 542 | childregs->an[7] = (unsigned long)task_stack_page(p) + |
| 543 | THREAD_SIZE - 8; |
| 544 | |
| 545 | /* |
| 546 | * Set up the switch_to frame to return to "ret_from_fork" |
| 547 | */ |
| 548 | p->thread.a5 = (unsigned long)ret_from_fork; |
| 549 | p->thread.sp = (unsigned long)childregs; |
| 550 | |
| 551 | return 0; |
| 552 | } |
| 553 | |
| 554 | /* |
| 555 | * sys_execve() |
| 556 | * executes a new program. |
| 557 | */ |
| 558 | asmlinkage int sys_execve(char *name, char **argv, |
| 559 | char **envp, struct pt_regs *regs) |
| 560 | { |
| 561 | int error; |
| 562 | char *filename; |
| 563 | |
| 564 | lock_kernel(); |
| 565 | filename = getname(name); |
| 566 | error = PTR_ERR(filename); |
| 567 | if (IS_ERR(filename)) |
| 568 | goto out; |
| 569 | error = do_execve(filename, argv, envp, regs); |
| 570 | putname(filename); |
| 571 | asm (" .global sys_execve_complete\n" |
| 572 | " sys_execve_complete:"); |
| 573 | out: |
| 574 | unlock_kernel(); |
| 575 | return error; |
| 576 | } |
| 577 | |
| 578 | /* |
| 579 | * Return saved PC of a blocked thread. |
| 580 | */ |
| 581 | unsigned long thread_saved_pc(struct task_struct *tsk) |
| 582 | { |
| 583 | return tsk->thread.a5; |
| 584 | } |
| 585 | |
| 586 | |
| 587 | unsigned long get_wchan(struct task_struct *p) |
| 588 | { |
| 589 | unsigned long pc; |
| 590 | |
| 591 | /* |
| 592 | * If we don't have a process, or it is not the current |
| 593 | * one or not RUNNING, it makes no sense to ask for a |
| 594 | * wchan. |
| 595 | */ |
| 596 | if (!p || p == current || p->state == TASK_RUNNING) |
| 597 | return 0; |
| 598 | |
| 599 | /* |
| 600 | * TODO: If the process is in the middle of schedule, we |
| 601 | * are supposed to do something different but for now we |
| 602 | * will return the same thing in both situations. |
| 603 | */ |
| 604 | pc = thread_saved_pc(p); |
| 605 | if (in_sched_functions(pc)) |
| 606 | return pc; |
| 607 | return pc; |
| 608 | } |
| 609 | |
| 610 | |
| 611 | /* |
| 612 | * Infrequently used interface to dump task registers to core files. |
| 613 | */ |
| 614 | int dump_task_regs(struct task_struct *task, elf_gregset_t *elfregs) |
| 615 | { |
| 616 | struct pt_regs *regs = task_pt_regs(task); |
| 617 | *(struct pt_regs *)elfregs = *regs; |
| 618 | |
| 619 | return 1; |
| 620 | } |
| 621 | |
| 622 | /* |
| 623 | * __switch_to is the function that implements the contex save and |
| 624 | * switch within the kernel. Since this is a function call very few |
| 625 | * registers have to be saved to pull this off. d0 holds prev and we |
| 626 | * want to preserve it. prev_switch is a pointer to task->thread |
| 627 | * structure. This is where we will save the register state. next_switch |
| 628 | * is pointer to the next task's thread structure that holds the |
| 629 | * registers. |
| 630 | */ |
| 631 | asmlinkage void *__switch_to(struct task_struct *prev, |
| 632 | struct thread_struct *prev_switch, |
| 633 | struct thread_struct *next_switch) |
| 634 | __attribute__((naked)); |
| 635 | |