| 1 | /* |
| 2 | * arch/ubicom32/kernel/smp.c |
| 3 | * SMP implementation for Ubicom32 processors. |
| 4 | * |
| 5 | * (C) Copyright 2009, Ubicom, Inc. |
| 6 | * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> |
| 7 | * Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com> |
| 8 | * Copyright (C) 2001,2004 Grant Grundler <grundler@parisc-linux.org> |
| 9 | * |
| 10 | * This file is part of the Ubicom32 Linux Kernel Port. |
| 11 | * |
| 12 | * The Ubicom32 Linux Kernel Port is free software: you can redistribute |
| 13 | * it and/or modify it under the terms of the GNU General Public License |
| 14 | * as published by the Free Software Foundation, either version 2 of the |
| 15 | * License, or (at your option) any later version. |
| 16 | * |
| 17 | * The Ubicom32 Linux Kernel Port is distributed in the hope that it |
| 18 | * will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| 19 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| 20 | * the GNU General Public License for more details. |
| 21 | * |
| 22 | * You should have received a copy of the GNU General Public License |
| 23 | * along with the Ubicom32 Linux Kernel Port. If not, |
| 24 | * see <http://www.gnu.org/licenses/>. |
| 25 | * |
| 26 | * Ubicom32 implementation derived from (with many thanks): |
| 27 | * arch/m68knommu |
| 28 | * arch/blackfin |
| 29 | * arch/parisc |
| 30 | */ |
| 31 | |
| 32 | #include <linux/types.h> |
| 33 | #include <linux/spinlock.h> |
| 34 | #include <linux/slab.h> |
| 35 | |
| 36 | #include <linux/kernel.h> |
| 37 | #include <linux/bootmem.h> |
| 38 | #include <linux/module.h> |
| 39 | #include <linux/sched.h> |
| 40 | #include <linux/init.h> |
| 41 | #include <linux/interrupt.h> |
| 42 | #include <linux/smp.h> |
| 43 | #include <linux/kernel_stat.h> |
| 44 | #include <linux/mm.h> |
| 45 | #include <linux/err.h> |
| 46 | #include <linux/delay.h> |
| 47 | #include <linux/bitops.h> |
| 48 | #include <linux/cpu.h> |
| 49 | #include <linux/profile.h> |
| 50 | #include <linux/delay.h> |
| 51 | #include <linux/io.h> |
| 52 | #include <linux/ptrace.h> |
| 53 | #include <linux/unistd.h> |
| 54 | #include <linux/irq.h> |
| 55 | |
| 56 | #include <asm/system.h> |
| 57 | #include <asm/atomic.h> |
| 58 | #include <asm/current.h> |
| 59 | #include <asm/tlbflush.h> |
| 60 | #include <asm/timex.h> |
| 61 | #include <asm/cpu.h> |
| 62 | #include <asm/irq.h> |
| 63 | #include <asm/processor.h> |
| 64 | #include <asm/thread.h> |
| 65 | #include <asm/sections.h> |
| 66 | #include <asm/ip5000.h> |
| 67 | |
| 68 | /* |
| 69 | * Mask the debug printout for IPI because they are too verbose |
| 70 | * for regular debugging. |
| 71 | */ |
| 72 | |
| 73 | // #define DEBUG_SMP 1 |
| 74 | #if !defined(DEBUG_SMP) |
| 75 | #define smp_debug(lvl, ...) |
| 76 | #else |
| 77 | static unsigned int smp_debug_lvl = 50; |
| 78 | #define smp_debug(lvl, printargs...) \ |
| 79 | if (lvl >= smp_debug_lvl) { \ |
| 80 | printk(printargs); \ |
| 81 | } |
| 82 | #endif |
| 83 | |
| 84 | #if !defined(DEBUG_SMP) |
| 85 | #define DEBUG_ASSERT(cond) |
| 86 | #else |
| 87 | #define DEBUG_ASSERT(cond) \ |
| 88 | if (!(cond)) { \ |
| 89 | THREAD_STALL; \ |
| 90 | } |
| 91 | #endif |
| 92 | |
| 93 | /* |
| 94 | * List of IPI Commands (more than one can be set at a time). |
| 95 | */ |
| 96 | enum ipi_message_type { |
| 97 | IPI_NOP, |
| 98 | IPI_RESCHEDULE, |
| 99 | IPI_CALL_FUNC, |
| 100 | IPI_CALL_FUNC_SINGLE, |
| 101 | IPI_CPU_STOP, |
| 102 | IPI_CPU_TIMER, |
| 103 | }; |
| 104 | |
| 105 | /* |
| 106 | * We maintain a hardware thread oriented view of online threads |
| 107 | * and those involved or needing IPI. |
| 108 | */ |
| 109 | static volatile unsigned long smp_online_threads = 0; |
| 110 | static volatile unsigned long smp_needs_ipi = 0; |
| 111 | static volatile unsigned long smp_inside_ipi = 0; |
| 112 | static unsigned long smp_irq_affinity[NR_IRQS]; |
| 113 | |
| 114 | /* |
| 115 | * What do we need to track on a per cpu/thread basis? |
| 116 | */ |
| 117 | DEFINE_PER_CPU(struct cpuinfo_ubicom32, cpu_data); |
| 118 | |
| 119 | /* |
| 120 | * Each thread cpuinfo IPI information is guarded by a lock |
| 121 | * that is kept local to this file. |
| 122 | */ |
| 123 | DEFINE_PER_CPU(spinlock_t, ipi_lock) = SPIN_LOCK_UNLOCKED; |
| 124 | |
| 125 | /* |
| 126 | * The IPI(s) are based on a software IRQ through the LDSR. |
| 127 | */ |
| 128 | unsigned int smp_ipi_irq; |
| 129 | |
| 130 | /* |
| 131 | * Define a spinlock so that only one cpu is able to modify the |
| 132 | * smp_needs_ipi and to set/clear the IRQ at a time. |
| 133 | */ |
| 134 | DEFINE_SPINLOCK(smp_ipi_lock); |
| 135 | |
| 136 | /* |
| 137 | * smp_halt_processor() |
| 138 | * Halt this hardware thread. |
| 139 | */ |
| 140 | static void smp_halt_processor(void) |
| 141 | { |
| 142 | int cpuid = thread_get_self(); |
| 143 | cpu_clear(smp_processor_id(), cpu_online_map); |
| 144 | local_irq_disable(); |
| 145 | printk(KERN_EMERG "cpu[%d] has halted. It is not OK to turn off power \ |
| 146 | until all cpu's are off.\n", cpuid); |
| 147 | for (;;) { |
| 148 | thread_suspend(); |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | /* |
| 153 | * ipi_interrupt() |
| 154 | * Handle an Interprocessor Interrupt. |
| 155 | */ |
| 156 | static irqreturn_t ipi_interrupt(int irq, void *dev_id) |
| 157 | { |
| 158 | int cpuid = smp_processor_id(); |
| 159 | struct cpuinfo_ubicom32 *p = &per_cpu(cpu_data, cpuid); |
| 160 | unsigned long ops; |
| 161 | |
| 162 | /* |
| 163 | * Count this now; we may make a call that never returns. |
| 164 | */ |
| 165 | p->ipi_count++; |
| 166 | |
| 167 | /* |
| 168 | * We are about to process all ops. If another cpu has stated |
| 169 | * that we need an IPI, we will have already processed it. By |
| 170 | * clearing our smp_needs_ipi, and processing all ops, |
| 171 | * we reduce the number of IPI interrupts. However, this introduces |
| 172 | * the possibility that smp_needs_ipi will be clear and the soft irq |
| 173 | * will have gone off; so we need to make the get_affinity() path |
| 174 | * tolerant of spurious interrupts. |
| 175 | */ |
| 176 | spin_lock(&smp_ipi_lock); |
| 177 | smp_needs_ipi &= ~(1 << p->tid); |
| 178 | spin_unlock(&smp_ipi_lock); |
| 179 | |
| 180 | for (;;) { |
| 181 | /* |
| 182 | * Read the set of IPI commands we should handle. |
| 183 | */ |
| 184 | spinlock_t *lock = &per_cpu(ipi_lock, cpuid); |
| 185 | spin_lock(lock); |
| 186 | ops = p->ipi_pending; |
| 187 | p->ipi_pending = 0; |
| 188 | spin_unlock(lock); |
| 189 | |
| 190 | /* |
| 191 | * If we have no IPI commands to execute, break out. |
| 192 | */ |
| 193 | if (!ops) { |
| 194 | break; |
| 195 | } |
| 196 | |
| 197 | /* |
| 198 | * Execute the set of commands in the ops word, one command |
| 199 | * at a time in no particular order. Strip of each command |
| 200 | * as we execute it. |
| 201 | */ |
| 202 | while (ops) { |
| 203 | unsigned long which = ffz(~ops); |
| 204 | ops &= ~(1 << which); |
| 205 | |
| 206 | BUG_ON(!irqs_disabled()); |
| 207 | switch (which) { |
| 208 | case IPI_NOP: |
| 209 | smp_debug(100, KERN_INFO "cpu[%d]: " |
| 210 | "IPI_NOP\n", cpuid); |
| 211 | break; |
| 212 | |
| 213 | case IPI_RESCHEDULE: |
| 214 | /* |
| 215 | * Reschedule callback. Everything to be |
| 216 | * done is done by the interrupt return path. |
| 217 | */ |
| 218 | smp_debug(200, KERN_INFO "cpu[%d]: " |
| 219 | "IPI_RESCHEDULE\n", cpuid); |
| 220 | break; |
| 221 | |
| 222 | case IPI_CALL_FUNC: |
| 223 | smp_debug(100, KERN_INFO "cpu[%d]: " |
| 224 | "IPI_CALL_FUNC\n", cpuid); |
| 225 | generic_smp_call_function_interrupt(); |
| 226 | break; |
| 227 | |
| 228 | case IPI_CALL_FUNC_SINGLE: |
| 229 | smp_debug(100, KERN_INFO "cpu[%d]: " |
| 230 | "IPI_CALL_FUNC_SINGLE\n", cpuid); |
| 231 | generic_smp_call_function_single_interrupt(); |
| 232 | break; |
| 233 | |
| 234 | case IPI_CPU_STOP: |
| 235 | smp_debug(100, KERN_INFO "cpu[%d]: " |
| 236 | "IPI_CPU_STOP\n", cpuid); |
| 237 | smp_halt_processor(); |
| 238 | break; |
| 239 | |
| 240 | #if !defined(CONFIG_LOCAL_TIMERS) |
| 241 | case IPI_CPU_TIMER: |
| 242 | smp_debug(100, KERN_INFO "cpu[%d]: " |
| 243 | "IPI_CPU_TIMER\n", cpuid); |
| 244 | #if defined(CONFIG_GENERIC_CLOCKEVENTS) |
| 245 | local_timer_interrupt(); |
| 246 | #else |
| 247 | update_process_times(user_mode(get_irq_regs())); |
| 248 | profile_tick(CPU_PROFILING); |
| 249 | #endif |
| 250 | #endif |
| 251 | break; |
| 252 | |
| 253 | default: |
| 254 | printk(KERN_CRIT "cpu[%d]: " |
| 255 | "Unknown IPI: %lu\n", cpuid, which); |
| 256 | |
| 257 | return IRQ_NONE; |
| 258 | } |
| 259 | |
| 260 | /* |
| 261 | * Let in any pending interrupts |
| 262 | */ |
| 263 | BUG_ON(!irqs_disabled()); |
| 264 | local_irq_enable(); |
| 265 | local_irq_disable(); |
| 266 | } |
| 267 | } |
| 268 | return IRQ_HANDLED; |
| 269 | } |
| 270 | |
| 271 | /* |
| 272 | * ipi_send() |
| 273 | * Send an Interprocessor Interrupt. |
| 274 | */ |
| 275 | static void ipi_send(int cpu, enum ipi_message_type op) |
| 276 | { |
| 277 | struct cpuinfo_ubicom32 *p = &per_cpu(cpu_data, cpu); |
| 278 | spinlock_t *lock = &per_cpu(ipi_lock, cpu); |
| 279 | unsigned long flags; |
| 280 | |
| 281 | /* |
| 282 | * We protect the setting of the ipi_pending field and ensure |
| 283 | * that the ipi delivery mechanism and interrupt are atomically |
| 284 | * handled. |
| 285 | */ |
| 286 | spin_lock_irqsave(lock, flags); |
| 287 | p->ipi_pending |= 1 << op; |
| 288 | spin_unlock_irqrestore(lock, flags); |
| 289 | |
| 290 | spin_lock_irqsave(&smp_ipi_lock, flags); |
| 291 | smp_needs_ipi |= (1 << p->tid); |
| 292 | ubicom32_set_interrupt(smp_ipi_irq); |
| 293 | spin_unlock_irqrestore(&smp_ipi_lock, flags); |
| 294 | smp_debug(100, KERN_INFO "cpu[%d]: send: %d\n", cpu, op); |
| 295 | } |
| 296 | |
| 297 | /* |
| 298 | * ipi_send_mask |
| 299 | * Send an IPI to each cpu in mask. |
| 300 | */ |
| 301 | static inline void ipi_send_mask(unsigned int op, const struct cpumask mask) |
| 302 | { |
| 303 | int cpu; |
| 304 | for_each_cpu_mask(cpu, mask) { |
| 305 | ipi_send(cpu, op); |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | /* |
| 310 | * ipi_send_allbutself() |
| 311 | * Send an IPI to all threads but ourselves. |
| 312 | */ |
| 313 | static inline void ipi_send_allbutself(unsigned int op) |
| 314 | { |
| 315 | int self = smp_processor_id(); |
| 316 | struct cpumask result; |
| 317 | cpumask_copy(&result, &cpu_online_map); |
| 318 | cpu_clear(self, result); |
| 319 | ipi_send_mask(op, result); |
| 320 | } |
| 321 | |
| 322 | /* |
| 323 | * smp_enable_vector() |
| 324 | */ |
| 325 | static void smp_enable_vector(unsigned int irq) |
| 326 | { |
| 327 | ubicom32_clear_interrupt(smp_ipi_irq); |
| 328 | ldsr_enable_vector(irq); |
| 329 | } |
| 330 | |
| 331 | /* |
| 332 | * smp_disable_vector() |
| 333 | * Disable the interrupt by clearing the appropriate bit in the |
| 334 | * LDSR Mask Register. |
| 335 | */ |
| 336 | static void smp_disable_vector(unsigned int irq) |
| 337 | { |
| 338 | ldsr_disable_vector(irq); |
| 339 | } |
| 340 | |
| 341 | /* |
| 342 | * smp_mask_vector() |
| 343 | */ |
| 344 | static void smp_mask_vector(unsigned int irq) |
| 345 | { |
| 346 | ldsr_mask_vector(irq); |
| 347 | } |
| 348 | |
| 349 | /* |
| 350 | * smp_unmask_vector() |
| 351 | */ |
| 352 | static void smp_unmask_vector(unsigned int irq) |
| 353 | { |
| 354 | ldsr_unmask_vector(irq); |
| 355 | } |
| 356 | |
| 357 | /* |
| 358 | * smp_end_vector() |
| 359 | * Called once an interrupt is completed (reset the LDSR mask). |
| 360 | */ |
| 361 | static void smp_end_vector(unsigned int irq) |
| 362 | { |
| 363 | struct cpuinfo_ubicom32 *p = &per_cpu(cpu_data, smp_processor_id()); |
| 364 | spin_lock(&smp_ipi_lock); |
| 365 | smp_inside_ipi &= ~(1 << p->tid); |
| 366 | if (smp_inside_ipi) { |
| 367 | spin_unlock(&smp_ipi_lock); |
| 368 | return; |
| 369 | } |
| 370 | spin_unlock(&smp_ipi_lock); |
| 371 | ldsr_unmask_vector(irq); |
| 372 | smp_debug(100, KERN_INFO "cpu[%d]: unamesk vector\n", smp_processor_id()); |
| 373 | } |
| 374 | |
| 375 | /* |
| 376 | * Special hanlder functions for SMP. |
| 377 | */ |
| 378 | static struct irq_chip ubicom32_smp_chip = { |
| 379 | .name = "UbicoIPI", |
| 380 | .startup = NULL, |
| 381 | .shutdown = NULL, |
| 382 | .enable = smp_enable_vector, |
| 383 | .disable = smp_disable_vector, |
| 384 | .ack = NULL, |
| 385 | .mask = smp_mask_vector, |
| 386 | .unmask = smp_unmask_vector, |
| 387 | .end = smp_end_vector, |
| 388 | }; |
| 389 | |
| 390 | /* |
| 391 | * smp_reset_ipi() |
| 392 | * None of these cpu(s) got their IPI, turn it back on. |
| 393 | * |
| 394 | * Note: This is called by the LDSR which is not a full |
| 395 | * Linux cpu. Thus you must use the raw form of locks |
| 396 | * because lock debugging will not work on the partial |
| 397 | * cpu nature of the LDSR. |
| 398 | */ |
| 399 | void smp_reset_ipi(unsigned long mask) |
| 400 | { |
| 401 | __raw_spin_lock(&smp_ipi_lock.raw_lock); |
| 402 | smp_needs_ipi |= mask; |
| 403 | smp_inside_ipi &= ~mask; |
| 404 | ubicom32_set_interrupt(smp_ipi_irq); |
| 405 | __raw_spin_unlock(&smp_ipi_lock.raw_lock); |
| 406 | smp_debug(100, KERN_INFO "smp: reset IPIs for: 0x%x\n", mask); |
| 407 | } |
| 408 | |
| 409 | /* |
| 410 | * smp_get_affinity() |
| 411 | * Choose the thread affinity for this interrupt. |
| 412 | * |
| 413 | * Note: This is called by the LDSR which is not a full |
| 414 | * Linux cpu. Thus you must use the raw form of locks |
| 415 | * because lock debugging will not work on the partial |
| 416 | * cpu nature of the LDSR. |
| 417 | */ |
| 418 | unsigned long smp_get_affinity(unsigned int irq, int *all) |
| 419 | { |
| 420 | unsigned long mask = 0; |
| 421 | |
| 422 | /* |
| 423 | * Most IRQ(s) are delivered in a round robin fashion. |
| 424 | */ |
| 425 | if (irq != smp_ipi_irq) { |
| 426 | unsigned long result = smp_irq_affinity[irq] & smp_online_threads; |
| 427 | DEBUG_ASSERT(result); |
| 428 | *all = 0; |
| 429 | return result; |
| 430 | } |
| 431 | |
| 432 | /* |
| 433 | * This is an IPI request. Return all cpu(s) scheduled for an IPI. |
| 434 | * We also track those cpu(s) that are going to be "receiving" IPI this |
| 435 | * round. When all CPU(s) have called smp_end_vector(), |
| 436 | * we will unmask the IPI interrupt. |
| 437 | */ |
| 438 | __raw_spin_lock(&smp_ipi_lock.raw_lock); |
| 439 | ubicom32_clear_interrupt(smp_ipi_irq); |
| 440 | if (smp_needs_ipi) { |
| 441 | mask = smp_needs_ipi; |
| 442 | smp_inside_ipi |= smp_needs_ipi; |
| 443 | smp_needs_ipi = 0; |
| 444 | } |
| 445 | __raw_spin_unlock(&smp_ipi_lock.raw_lock); |
| 446 | *all = 1; |
| 447 | return mask; |
| 448 | } |
| 449 | |
| 450 | /* |
| 451 | * smp_set_affinity() |
| 452 | * Set the affinity for this irq but store the value in tid(s). |
| 453 | */ |
| 454 | void smp_set_affinity(unsigned int irq, const struct cpumask *dest) |
| 455 | { |
| 456 | int cpuid; |
| 457 | unsigned long *paffinity = &smp_irq_affinity[irq]; |
| 458 | |
| 459 | /* |
| 460 | * If none specified, all cpus are allowed. |
| 461 | */ |
| 462 | if (cpus_empty(*dest)) { |
| 463 | *paffinity = 0xffffffff; |
| 464 | return; |
| 465 | } |
| 466 | |
| 467 | /* |
| 468 | * Make sure to clear the old value before setting up the |
| 469 | * list. |
| 470 | */ |
| 471 | *paffinity = 0; |
| 472 | for_each_cpu_mask(cpuid, *dest) { |
| 473 | struct cpuinfo_ubicom32 *p = &per_cpu(cpu_data, cpuid); |
| 474 | *paffinity |= (1 << p->tid); |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | /* |
| 479 | * smp_send_stop() |
| 480 | * Send a stop request to all CPU but this one. |
| 481 | */ |
| 482 | void smp_send_stop(void) |
| 483 | { |
| 484 | ipi_send_allbutself(IPI_CPU_STOP); |
| 485 | } |
| 486 | |
| 487 | /* |
| 488 | * smp_send_timer_all() |
| 489 | * Send all cpu(s) but this one, a request to update times. |
| 490 | */ |
| 491 | void smp_send_timer_all(void) |
| 492 | { |
| 493 | ipi_send_allbutself(IPI_CPU_TIMER); |
| 494 | } |
| 495 | |
| 496 | /* |
| 497 | * smp_timer_broadcast() |
| 498 | * Use an IPI to broadcast a timer message |
| 499 | */ |
| 500 | void smp_timer_broadcast(const struct cpumask *mask) |
| 501 | { |
| 502 | ipi_send_mask(IPI_CPU_TIMER, *mask); |
| 503 | } |
| 504 | |
| 505 | /* |
| 506 | * smp_send_reschedule() |
| 507 | * Send a reschedule request to the specified cpu. |
| 508 | */ |
| 509 | void smp_send_reschedule(int cpu) |
| 510 | { |
| 511 | ipi_send(cpu, IPI_RESCHEDULE); |
| 512 | } |
| 513 | |
| 514 | /* |
| 515 | * arch_send_call_function_ipi() |
| 516 | * Cause each cpu in the mask to call the generic function handler. |
| 517 | */ |
| 518 | void arch_send_call_function_ipi_mask(const struct cpumask *mask) |
| 519 | { |
| 520 | int cpu; |
| 521 | for_each_cpu_mask(cpu, *mask) { |
| 522 | ipi_send(cpu, IPI_CALL_FUNC); |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | /* |
| 527 | * arch_send_call_function_single_ipi() |
| 528 | * Cause the specified cpu to call the generic function handler. |
| 529 | */ |
| 530 | void arch_send_call_function_single_ipi(int cpu) |
| 531 | { |
| 532 | ipi_send(cpu, IPI_CALL_FUNC_SINGLE); |
| 533 | } |
| 534 | |
| 535 | /* |
| 536 | * setup_profiling_timer() |
| 537 | * Dummy function created to keep Oprofile happy in the SMP case. |
| 538 | */ |
| 539 | int setup_profiling_timer(unsigned int multiplier) |
| 540 | { |
| 541 | return 0; |
| 542 | } |
| 543 | |
| 544 | /* |
| 545 | * smp_mainline_start() |
| 546 | * Start a slave thread executing a mainline Linux context. |
| 547 | */ |
| 548 | static void __init smp_mainline_start(void *arg) |
| 549 | { |
| 550 | int cpuid = smp_processor_id(); |
| 551 | struct cpuinfo_ubicom32 *p = &per_cpu(cpu_data, cpuid); |
| 552 | |
| 553 | BUG_ON(p->tid != thread_get_self()); |
| 554 | |
| 555 | /* |
| 556 | * Well, support 2.4 linux scheme as well. |
| 557 | */ |
| 558 | if (cpu_test_and_set(cpuid, cpu_online_map)) { |
| 559 | printk(KERN_CRIT "cpu[%d]: already initialized!\n", cpuid); |
| 560 | smp_halt_processor(); |
| 561 | return; |
| 562 | } |
| 563 | |
| 564 | /* |
| 565 | * Initialise the idle task for this CPU |
| 566 | */ |
| 567 | atomic_inc(&init_mm.mm_count); |
| 568 | current->active_mm = &init_mm; |
| 569 | if (current->mm) { |
| 570 | printk(KERN_CRIT "cpu[%d]: idle task already has memory " |
| 571 | "management\n", cpuid); |
| 572 | smp_halt_processor(); |
| 573 | return; |
| 574 | } |
| 575 | |
| 576 | /* |
| 577 | * TODO: X86 does this prior to calling notify, try to understand why? |
| 578 | */ |
| 579 | preempt_disable(); |
| 580 | |
| 581 | #if defined(CONFIG_GENERIC_CLOCKEVENTS) |
| 582 | /* |
| 583 | * Setup a local timer event so that this cpu will get timer interrupts |
| 584 | */ |
| 585 | if (local_timer_setup(cpuid) == -1) { |
| 586 | printk(KERN_CRIT "cpu[%d]: timer alloc failed\n", cpuid); |
| 587 | smp_halt_processor(); |
| 588 | return; |
| 589 | } |
| 590 | #endif |
| 591 | |
| 592 | /* |
| 593 | * Notify those interested that we are up and alive. This must |
| 594 | * be done before interrupts are enabled. It must also be completed |
| 595 | * before the bootstrap cpu returns from __cpu_up() (see comment |
| 596 | * above cpu_set() of the cpu_online_map). |
| 597 | */ |
| 598 | notify_cpu_starting(cpuid); |
| 599 | |
| 600 | /* |
| 601 | * Indicate that this thread is now online and present. Setting |
| 602 | * cpu_online_map has the side effect of allowing the bootstrap |
| 603 | * cpu to continue along; so anything that MUST be done prior to the |
| 604 | * bootstrap cpu returning from __cpu_up() needs to go above here. |
| 605 | */ |
| 606 | cpu_set(cpuid, cpu_online_map); |
| 607 | cpu_set(cpuid, cpu_present_map); |
| 608 | |
| 609 | /* |
| 610 | * Maintain a thread mapping in addition to the cpu mapping. |
| 611 | */ |
| 612 | smp_online_threads |= (1 << p->tid); |
| 613 | |
| 614 | /* |
| 615 | * Enable interrupts for this thread. |
| 616 | */ |
| 617 | local_irq_enable(); |
| 618 | |
| 619 | /* |
| 620 | * Enter the idle loop and wait for a timer to schedule some work. |
| 621 | */ |
| 622 | printk(KERN_INFO "cpu[%d]: entering cpu_idle()\n", cpuid); |
| 623 | cpu_idle(); |
| 624 | |
| 625 | /* Not Reached */ |
| 626 | } |
| 627 | |
| 628 | /* |
| 629 | * smp_cpus_done() |
| 630 | * Called once the kernel_init() has brought up all cpu(s). |
| 631 | */ |
| 632 | void smp_cpus_done(unsigned int cpu_max) |
| 633 | { |
| 634 | /* Do Nothing */ |
| 635 | } |
| 636 | |
| 637 | /* |
| 638 | * __cpu_up() |
| 639 | * Called to startup a sepcific cpu. |
| 640 | */ |
| 641 | int __cpuinit __cpu_up(unsigned int cpu) |
| 642 | { |
| 643 | struct task_struct *idle; |
| 644 | unsigned int *stack; |
| 645 | long timeout; |
| 646 | struct cpuinfo_ubicom32 *p = &per_cpu(cpu_data, cpu); |
| 647 | |
| 648 | /* |
| 649 | * Create an idle task for this CPU. |
| 650 | */ |
| 651 | idle = fork_idle(cpu); |
| 652 | if (IS_ERR(idle)) { |
| 653 | panic("cpu[%d]: fork failed\n", cpu); |
| 654 | return -ENOSYS; |
| 655 | } |
| 656 | task_thread_info(idle)->cpu = cpu; |
| 657 | |
| 658 | /* |
| 659 | * Setup the sw_ksp[] to point to this new task. |
| 660 | */ |
| 661 | sw_ksp[p->tid] = (unsigned int)idle->stack; |
| 662 | stack = (unsigned int *)(sw_ksp[p->tid] + PAGE_SIZE - 8); |
| 663 | |
| 664 | /* |
| 665 | * Cause the specified thread to execute our smp_mainline_start |
| 666 | * function as a TYPE_NORMAL thread. |
| 667 | */ |
| 668 | printk(KERN_INFO "cpu[%d]: launching mainline Linux thread\n", cpu); |
| 669 | if (thread_start(p->tid, smp_mainline_start, (void *)NULL, stack, |
| 670 | THREAD_TYPE_NORMAL) == -1) { |
| 671 | printk(KERN_WARNING "cpu[%d]: failed thread_start\n", cpu); |
| 672 | return -ENOSYS; |
| 673 | } |
| 674 | |
| 675 | /* |
| 676 | * Wait for the thread to start up. The thread will set |
| 677 | * the online bit when it is running. Our caller execpts the |
| 678 | * cpu to be online if we return 0. |
| 679 | */ |
| 680 | for (timeout = 0; timeout < 10000; timeout++) { |
| 681 | if (cpu_online(cpu)) { |
| 682 | break; |
| 683 | } |
| 684 | |
| 685 | udelay(100); |
| 686 | barrier(); |
| 687 | continue; |
| 688 | } |
| 689 | |
| 690 | if (!cpu_online(cpu)) { |
| 691 | printk(KERN_CRIT "cpu[%d]: failed to live after %ld us\n", |
| 692 | cpu, timeout * 100); |
| 693 | return -ENOSYS; |
| 694 | } |
| 695 | |
| 696 | printk(KERN_INFO "cpu[%d]: came alive after %ld us\n", |
| 697 | cpu, timeout * 100); |
| 698 | return 0; |
| 699 | } |
| 700 | |
| 701 | /* |
| 702 | * Data used by setup_irq for the IPI. |
| 703 | */ |
| 704 | static struct irqaction ipi_irq = { |
| 705 | .name = "ipi", |
| 706 | .flags = IRQF_DISABLED | IRQF_PERCPU, |
| 707 | .handler = ipi_interrupt, |
| 708 | }; |
| 709 | |
| 710 | /* |
| 711 | * smp_prepare_cpus() |
| 712 | * Mark threads that are available to Linux as possible cpus(s). |
| 713 | */ |
| 714 | void __init smp_prepare_cpus(unsigned int max_cpus) |
| 715 | { |
| 716 | int i; |
| 717 | |
| 718 | /* |
| 719 | * We will need a software IRQ to send IPI(s). We will use |
| 720 | * a single software IRQ for all IPI(s). |
| 721 | */ |
| 722 | if (irq_soft_alloc(&smp_ipi_irq) < 0) { |
| 723 | panic("no software IRQ is available\n"); |
| 724 | return; |
| 725 | } |
| 726 | |
| 727 | /* |
| 728 | * For the IPI interrupt, we want to use our own chip definition. |
| 729 | * This allows us to define what happens in SMP IPI without affecting |
| 730 | * the performance of the other interrupts. |
| 731 | * |
| 732 | * Next, Register the IPI interrupt function against the soft IRQ. |
| 733 | */ |
| 734 | set_irq_chip(smp_ipi_irq, &ubicom32_smp_chip); |
| 735 | setup_irq(smp_ipi_irq, &ipi_irq); |
| 736 | |
| 737 | /* |
| 738 | * We use the device tree node to determine how many |
| 739 | * free cpus we will have (up to NR_CPUS) and we indicate |
| 740 | * that those cpus are present. |
| 741 | * |
| 742 | * We need to do this very early in the SMP case |
| 743 | * because the Linux init code uses the cpu_present_map. |
| 744 | */ |
| 745 | for_each_possible_cpu(i) { |
| 746 | thread_t tid; |
| 747 | struct cpuinfo_ubicom32 *p = &per_cpu(cpu_data, i); |
| 748 | |
| 749 | /* |
| 750 | * Skip the bootstrap cpu |
| 751 | */ |
| 752 | if (i == 0) { |
| 753 | continue; |
| 754 | } |
| 755 | |
| 756 | /* |
| 757 | * If we have a free thread left in the mask, |
| 758 | * indicate that the cpu is present. |
| 759 | */ |
| 760 | tid = thread_alloc(); |
| 761 | if (tid == (thread_t)-1) { |
| 762 | break; |
| 763 | } |
| 764 | |
| 765 | /* |
| 766 | * Save the hardware thread id for this cpu. |
| 767 | */ |
| 768 | p->tid = tid; |
| 769 | cpu_set(i, cpu_present_map); |
| 770 | printk(KERN_INFO "cpu[%d]: added to cpu_present_map - tid: %d\n", i, tid); |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | /* |
| 775 | * smp_prepare_boot_cpu() |
| 776 | * Copy the per_cpu data into the appropriate spot for the bootstrap cpu. |
| 777 | * |
| 778 | * The code in boot_cpu_init() has already set the boot cpu's |
| 779 | * state in the possible, present, and online maps. |
| 780 | */ |
| 781 | void __devinit smp_prepare_boot_cpu(void) |
| 782 | { |
| 783 | struct cpuinfo_ubicom32 *p = &per_cpu(cpu_data, 0); |
| 784 | |
| 785 | smp_online_threads |= (1 << p->tid); |
| 786 | printk(KERN_INFO "cpu[%d]: bootstrap CPU online - tid: %ld\n", |
| 787 | current_thread_info()->cpu, p->tid); |
| 788 | } |
| 789 | |
| 790 | /* |
| 791 | * smp_setup_processor_id() |
| 792 | * Set the current_thread_info() structure cpu value. |
| 793 | * |
| 794 | * We set the value to the true hardware thread value that we are running on. |
| 795 | * NOTE: this function overrides the weak alias function in main.c |
| 796 | */ |
| 797 | void __init smp_setup_processor_id(void) |
| 798 | { |
| 799 | struct cpuinfo_ubicom32 *p = &per_cpu(cpu_data, 0); |
| 800 | int i; |
| 801 | for_each_cpu_mask(i, CPU_MASK_ALL) |
| 802 | set_cpu_possible(i, true); |
| 803 | |
| 804 | current_thread_info()->cpu = 0; |
| 805 | p->tid = thread_get_self(); |
| 806 | } |
| 807 | |