| 1 | /* |
| 2 | * arch/ubicom32/mach-common/profile.c |
| 3 | * Implementation for Ubicom32 Profiler |
| 4 | * |
| 5 | * (C) Copyright 2009, Ubicom, Inc. |
| 6 | * |
| 7 | * This file is part of the Ubicom32 Linux Kernel Port. |
| 8 | * |
| 9 | * The Ubicom32 Linux Kernel Port is free software: you can redistribute |
| 10 | * it and/or modify it under the terms of the GNU General Public License |
| 11 | * as published by the Free Software Foundation, either version 2 of the |
| 12 | * License, or (at your option) any later version. |
| 13 | * |
| 14 | * The Ubicom32 Linux Kernel Port is distributed in the hope that it |
| 15 | * will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| 16 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| 17 | * the GNU General Public License for more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License |
| 20 | * along with the Ubicom32 Linux Kernel Port. If not, |
| 21 | * see <http://www.gnu.org/licenses/>. |
| 22 | */ |
| 23 | |
| 24 | #include <linux/platform_device.h> |
| 25 | #include "profile.h" |
| 26 | #include <linux/seq_file.h> |
| 27 | #include <linux/proc_fs.h> |
| 28 | #include <linux/mm.h> |
| 29 | #include <linux/mmzone.h> |
| 30 | #include <linux/fs.h> |
| 31 | #include <linux/page-flags.h> |
| 32 | #include <asm/uaccess.h> |
| 33 | #include <asm/devtree.h> |
| 34 | #include <asm/profilesample.h> |
| 35 | #include <asm/memory_map.h> |
| 36 | #include <asm/page.h> |
| 37 | #include <asm/ip5000.h> |
| 38 | |
| 39 | /* |
| 40 | * spacs for all memory blocks so we can hold locks for short time when walking tables |
| 41 | */ |
| 42 | #define PROFILE_NUM_MAPS 5000 |
| 43 | static struct profile_map profile_pm[PROFILE_NUM_MAPS]; |
| 44 | |
| 45 | static struct profilenode *node = NULL; |
| 46 | static int profile_first_packet = 1; |
| 47 | |
| 48 | static int profile_open(struct inode *inode, struct file *filp) |
| 49 | { |
| 50 | if (!node) { |
| 51 | return -ENOENT; |
| 52 | } |
| 53 | node->busy = 1; |
| 54 | if (!node->enabled) { |
| 55 | node->enabled = 1; |
| 56 | node->busy = 0; |
| 57 | profile_first_packet = 1; |
| 58 | return 0; |
| 59 | } |
| 60 | node->busy = 0; |
| 61 | return -EBUSY; |
| 62 | } |
| 63 | |
| 64 | static int profile_sequence_num; |
| 65 | |
| 66 | /* |
| 67 | * make a packet full of sample data |
| 68 | */ |
| 69 | static int profile_make_data_packet(char *buf, int count) |
| 70 | { |
| 71 | int samples; /* number of samples requested */ |
| 72 | int i; |
| 73 | struct profile_header ph; |
| 74 | char *ptr; |
| 75 | |
| 76 | if (count < sizeof(struct profile_header) + sizeof(struct profile_sample)) { |
| 77 | return -EINVAL; |
| 78 | } |
| 79 | |
| 80 | /* |
| 81 | * fill in the packet header |
| 82 | */ |
| 83 | memset(&ph, 0, sizeof(struct profile_header)); |
| 84 | ph.magic = PROF_MAGIC + PROFILE_VERSION; |
| 85 | ph.header_size = sizeof(struct profile_header); |
| 86 | ph.clocks = node->clocks; |
| 87 | for (i = 0; i < PROFILE_MAX_THREADS; ++i) { |
| 88 | ph.instruction_count[i] = node->inst_count[i]; |
| 89 | } |
| 90 | ph.profile_instructions = 0; |
| 91 | ph.enabled = node->enabled_threads; |
| 92 | ph.hrt = node->hrt; |
| 93 | ph.high = 0; |
| 94 | ph.profiler_thread = node->profiler_thread; |
| 95 | ph.clock_freq = node->clock_freq; |
| 96 | ph.seq_num = profile_sequence_num++; |
| 97 | ph.cpu_id = node->cpu_id; |
| 98 | ph.perf_counters[0] = node->stats[0]; |
| 99 | ph.perf_counters[1] = node->stats[1]; |
| 100 | ph.perf_counters[2] = node->stats[2]; |
| 101 | ph.perf_counters[3] = node->stats[3]; |
| 102 | ph.ddr_freq = node->ddr_freq; |
| 103 | |
| 104 | ptr = buf + sizeof(struct profile_header); |
| 105 | |
| 106 | samples = (count - sizeof(struct profile_header)) / sizeof(struct profile_sample); |
| 107 | for (i = 0; i < samples && node->count; ++i) { |
| 108 | if (copy_to_user(ptr, &node->samples[node->tail], sizeof(struct profile_sample)) != 0) { |
| 109 | return -EFAULT; |
| 110 | } |
| 111 | node->count--; |
| 112 | node->tail++; |
| 113 | if (node->tail >= node->max_samples) { |
| 114 | node->tail = 0; |
| 115 | } |
| 116 | ptr += sizeof(struct profile_sample); |
| 117 | } |
| 118 | ph.sample_count = i; |
| 119 | if (copy_to_user(buf, &ph, sizeof(struct profile_header)) != 0) { |
| 120 | return -EFAULT; |
| 121 | } |
| 122 | if (ph.sample_count == 0) |
| 123 | return 0; |
| 124 | else |
| 125 | return sizeof(struct profile_header) + ph.sample_count * sizeof(struct profile_sample); |
| 126 | } |
| 127 | |
| 128 | static void profile_get_memory_stats(unsigned int *total_free, unsigned int *max_free) |
| 129 | { |
| 130 | struct list_head *p; |
| 131 | struct zone *zone; |
| 132 | unsigned int size; |
| 133 | |
| 134 | *total_free = 0; |
| 135 | *max_free = 0; |
| 136 | |
| 137 | /* |
| 138 | * get all the free regions. In each zone, the array of free_area lists contains the first page of each frame of size 1 << order |
| 139 | */ |
| 140 | for_each_zone(zone) { |
| 141 | unsigned long order, flags, i; |
| 142 | |
| 143 | if (!populated_zone(zone)) |
| 144 | continue; |
| 145 | |
| 146 | if (!is_normal(zone)) |
| 147 | continue; |
| 148 | |
| 149 | spin_lock_irqsave(&zone->lock, flags); |
| 150 | for_each_migratetype_order(order, i) { |
| 151 | size = ((1 << order) << PAGE_SHIFT) >> 10; |
| 152 | list_for_each(p, &(zone->free_area[order].free_list[i])) { |
| 153 | if (size > *max_free) { |
| 154 | *max_free = size; |
| 155 | } |
| 156 | *total_free += size; |
| 157 | } |
| 158 | } |
| 159 | spin_unlock_irqrestore(&zone->lock, flags); |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | struct profile_counter_pkt profile_builtin_stats[] = |
| 164 | { |
| 165 | { |
| 166 | "Free memory(KB)", 0 |
| 167 | }, |
| 168 | { |
| 169 | "Max free Block(KB)", 0 |
| 170 | } |
| 171 | }; |
| 172 | |
| 173 | /* |
| 174 | * make a packet full of performance counters |
| 175 | */ |
| 176 | static char prof_pkt[PROFILE_MAX_PACKET_SIZE]; |
| 177 | static int profile_make_stats_packet(char *buf, int count) |
| 178 | { |
| 179 | char *ptr = prof_pkt; |
| 180 | struct profile_header_counters hdr; |
| 181 | int stat_count = 0; |
| 182 | int i; |
| 183 | unsigned int total_free, max_free; |
| 184 | int builtin_count = sizeof(profile_builtin_stats) / sizeof(struct profile_counter_pkt); |
| 185 | |
| 186 | if (count > PROFILE_MAX_PACKET_SIZE) { |
| 187 | count = PROFILE_MAX_PACKET_SIZE; |
| 188 | } |
| 189 | stat_count = (count - sizeof(struct profile_header_counters)) / sizeof (struct profile_counter_pkt); |
| 190 | stat_count -= builtin_count; |
| 191 | |
| 192 | if (stat_count <= 0) { |
| 193 | return 0; |
| 194 | } |
| 195 | |
| 196 | if (stat_count > node->num_counters) { |
| 197 | stat_count = node->num_counters; |
| 198 | } |
| 199 | |
| 200 | hdr.magic = PROF_MAGIC_COUNTERS; |
| 201 | hdr.ultra_sample_time = node->clocks; |
| 202 | hdr.ultra_count = stat_count; |
| 203 | hdr.linux_sample_time = UBICOM32_IO_TIMER->sysval; |
| 204 | hdr.linux_count = builtin_count; |
| 205 | memcpy(ptr, (void *)&hdr, sizeof(struct profile_header_counters)); |
| 206 | ptr += sizeof(struct profile_header_counters); |
| 207 | |
| 208 | |
| 209 | for (i = 0; i < stat_count; ++i) { |
| 210 | memcpy(ptr, (void *)(&(node->counters[i])), sizeof(struct profile_counter)); |
| 211 | ptr += sizeof(struct profile_counter); |
| 212 | } |
| 213 | |
| 214 | /* |
| 215 | * built in statistics |
| 216 | */ |
| 217 | profile_get_memory_stats(&total_free, &max_free); |
| 218 | profile_builtin_stats[0].value = total_free; |
| 219 | profile_builtin_stats[1].value = max_free; |
| 220 | memcpy(ptr, (void *)profile_builtin_stats, sizeof(profile_builtin_stats)); |
| 221 | ptr += sizeof(profile_builtin_stats); |
| 222 | |
| 223 | if (copy_to_user(buf, prof_pkt, ptr - prof_pkt) != 0) { |
| 224 | return -EFAULT; |
| 225 | } |
| 226 | return ptr - prof_pkt; |
| 227 | } |
| 228 | |
| 229 | /* |
| 230 | * return a udp packet ready to send to the profiler tool |
| 231 | * when there are no packets left to make, return 0 |
| 232 | */ |
| 233 | static int profile_read(struct file *filp, char *buf, size_t count, loff_t *f_pos) |
| 234 | { |
| 235 | int result = 0; |
| 236 | if (!node) { |
| 237 | return -ENOENT; |
| 238 | } |
| 239 | node->busy = 1; |
| 240 | if (!node->enabled) { |
| 241 | node->busy = 0; |
| 242 | return -EPERM; |
| 243 | } |
| 244 | if (!node->samples) { |
| 245 | node->busy = 0; |
| 246 | return -ENOMEM; |
| 247 | } |
| 248 | |
| 249 | if (profile_first_packet) { |
| 250 | result = profile_make_stats_packet(buf, count); |
| 251 | profile_first_packet = 0; |
| 252 | } |
| 253 | if (result == 0) { |
| 254 | result = profile_make_data_packet(buf, count); |
| 255 | if (result == 0) { |
| 256 | profile_first_packet = 1; |
| 257 | } |
| 258 | } |
| 259 | node->busy = 0; |
| 260 | return result; |
| 261 | |
| 262 | } |
| 263 | |
| 264 | static int profile_release(struct inode *inode, struct file *filp) |
| 265 | { |
| 266 | if (!node) { |
| 267 | return -ENOENT; |
| 268 | } |
| 269 | node->busy = 1; |
| 270 | if (node->enabled) { |
| 271 | node->enabled = 0; |
| 272 | node->count = 0; |
| 273 | node->tail = node->head; |
| 274 | node->busy = 0; |
| 275 | return 0; |
| 276 | } |
| 277 | node->busy = 0; |
| 278 | profile_first_packet = 1; |
| 279 | return -EBADF; |
| 280 | } |
| 281 | |
| 282 | static const struct file_operations profile_fops = { |
| 283 | .open = profile_open, |
| 284 | .read = profile_read, |
| 285 | .release = profile_release, |
| 286 | }; |
| 287 | |
| 288 | static int page_aligned(void *x) |
| 289 | { |
| 290 | return !((unsigned int)x & ((1 << PAGE_SHIFT) - 1)); |
| 291 | } |
| 292 | |
| 293 | static int profile_maps_open(struct inode *inode, struct file *filp) |
| 294 | { |
| 295 | struct rb_node *rb; |
| 296 | int num = 0; |
| 297 | int slab_start; |
| 298 | struct vm_area_struct *vma; |
| 299 | int type = PROFILE_MAP_TYPE_UNKNOWN; |
| 300 | int flags, i; |
| 301 | struct list_head *p; |
| 302 | struct zone *zone; |
| 303 | |
| 304 | /* |
| 305 | * get the slab data (first so dups will show up as vmas) |
| 306 | */ |
| 307 | slab_start = num; |
| 308 | num += kmem_cache_block_info("size-512", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num); |
| 309 | num += kmem_cache_block_info("size-1024", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num); |
| 310 | num += kmem_cache_block_info("size-2048", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num); |
| 311 | num += kmem_cache_block_info("size-4096", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num); |
| 312 | num += kmem_cache_block_info("size-8192", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num); |
| 313 | |
| 314 | for (i = slab_start; i < num; ++i) { |
| 315 | profile_pm[i].type_size |= PROFILE_MAP_TYPE_SMALL << PROFILE_MAP_TYPE_SHIFT; |
| 316 | } |
| 317 | |
| 318 | slab_start = num; |
| 319 | num += kmem_cache_block_info("dentry", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num); |
| 320 | num += kmem_cache_block_info("inode_cache", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num); |
| 321 | num += kmem_cache_block_info("sysfs_dir_cache", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num); |
| 322 | num += kmem_cache_block_info("proc_inode_cache", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num); |
| 323 | |
| 324 | for (i = slab_start; i < num; ++i) { |
| 325 | profile_pm[i].type_size |= PROFILE_MAP_TYPE_FS << PROFILE_MAP_TYPE_SHIFT; |
| 326 | } |
| 327 | |
| 328 | /* |
| 329 | * get all the vma regions (allocated by mmap, most likely |
| 330 | */ |
| 331 | #if 0 |
| 332 | down_read(&nommu_vma_sem); |
| 333 | for (rb = rb_first(&nommu_vma_tree); rb && num < PROFILE_NUM_MAPS; rb = rb_next(rb)) { |
| 334 | vma = rb_entry(rb, struct vm_area_struct, vm_rb); |
| 335 | profile_pm[num].start = (vma->vm_start - SDRAMSTART) >> PAGE_SHIFT; |
| 336 | profile_pm[num].type_size = (vma->vm_end - vma->vm_start + (1 << PAGE_SHIFT) - 1) >> PAGE_SHIFT; |
| 337 | flags = vma->vm_flags & 0xf; |
| 338 | if (flags == (VM_READ | VM_EXEC)) { |
| 339 | type = PROFILE_MAP_TYPE_TEXT; |
| 340 | } else if (flags == (VM_READ | VM_WRITE | VM_EXEC)) { |
| 341 | type = PROFILE_MAP_TYPE_STACK; |
| 342 | } else if (flags == (VM_READ | VM_WRITE)) { |
| 343 | type = PROFILE_MAP_TYPE_APP_DATA; |
| 344 | } |
| 345 | profile_pm[num].type_size |= type << PROFILE_MAP_TYPE_SHIFT; |
| 346 | num++; |
| 347 | } |
| 348 | up_read(&nommu_vma_sem); |
| 349 | if (rb) { |
| 350 | return -ENOMEM; |
| 351 | } |
| 352 | #endif |
| 353 | |
| 354 | /* |
| 355 | * get all the free regions. In each zone, the array of free_area lists contains the first page of each frame of size 1 << order |
| 356 | */ |
| 357 | for_each_zone(zone) { |
| 358 | unsigned long order, flags, i; |
| 359 | struct page *page; |
| 360 | |
| 361 | if (!populated_zone(zone)) |
| 362 | continue; |
| 363 | |
| 364 | if (!is_normal(zone)) |
| 365 | continue; |
| 366 | |
| 367 | spin_lock_irqsave(&zone->lock, flags); |
| 368 | for_each_migratetype_order(order, i) { |
| 369 | list_for_each(p, &(zone->free_area[order].free_list[i])) { |
| 370 | page = list_entry(p, struct page, lru); |
| 371 | profile_pm[num].start = ((page_to_phys(page) - SDRAMSTART) >> PAGE_SHIFT) - 0x40; |
| 372 | profile_pm[num].type_size = (PROFILE_MAP_TYPE_FREE << PROFILE_MAP_TYPE_SHIFT) | order; |
| 373 | num++; |
| 374 | if (num >= PROFILE_NUM_MAPS) { |
| 375 | spin_unlock_irqrestore(&zone->lock, flags); |
| 376 | return -ENOMEM; |
| 377 | } |
| 378 | } |
| 379 | } |
| 380 | spin_unlock_irqrestore(&zone->lock, flags); |
| 381 | } |
| 382 | |
| 383 | /* |
| 384 | * get the filesystem inodes |
| 385 | */ |
| 386 | list_for_each(p, &(super_blocks)) { |
| 387 | struct super_block *sb; |
| 388 | struct list_head *q; |
| 389 | if (num >= PROFILE_NUM_MAPS) |
| 390 | break; |
| 391 | sb = list_entry(p, struct super_block, s_list); |
| 392 | if (page_aligned(sb)) { |
| 393 | profile_pm[num].start = ((unsigned int)sb - SDRAMSTART) >> PAGE_SHIFT; |
| 394 | profile_pm[num].type_size = (PROFILE_MAP_TYPE_FS << PROFILE_MAP_TYPE_SHIFT); |
| 395 | num++; |
| 396 | } |
| 397 | list_for_each(q, &(sb->s_inodes)) { |
| 398 | struct inode *in; |
| 399 | if (num >= PROFILE_NUM_MAPS) |
| 400 | break; |
| 401 | in = list_entry(q, struct inode, i_sb_list); |
| 402 | if (page_aligned(in)) { |
| 403 | profile_pm[num].start = ((unsigned int)in - SDRAMSTART) >> PAGE_SHIFT; |
| 404 | profile_pm[num].type_size = (PROFILE_MAP_TYPE_FS << PROFILE_MAP_TYPE_SHIFT); |
| 405 | num++; |
| 406 | } |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | /* |
| 411 | * get the buffer cache pages |
| 412 | */ |
| 413 | for (i = 0; i < num_physpages && num < PROFILE_NUM_MAPS; ++i) { |
| 414 | if ((mem_map + i)->flags & (1 << PG_lru)) { |
| 415 | int start = i; |
| 416 | while ((mem_map + i)->flags & (1 << PG_lru) && i < num_physpages) |
| 417 | i++; |
| 418 | profile_pm[num].start = start; |
| 419 | profile_pm[num].type_size = (i - start) | (PROFILE_MAP_TYPE_CACHE << PROFILE_MAP_TYPE_SHIFT); |
| 420 | num++; |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | filp->private_data = (void *)num; |
| 425 | return 0; |
| 426 | } |
| 427 | |
| 428 | /* |
| 429 | * return one packet of map data, or 0 if all maps have been returned already |
| 430 | */ |
| 431 | static int profile_maps_read(struct file *filp, char *buf, size_t count, loff_t *f_pos) |
| 432 | { |
| 433 | struct profile_header_maps header; |
| 434 | char *p = buf + sizeof(header); |
| 435 | int total = (int)filp->private_data; |
| 436 | |
| 437 | header.count = (count - sizeof(header)) / sizeof(struct profile_map); |
| 438 | if (header.count > PROFILE_MAX_MAPS) { |
| 439 | header.count = PROFILE_MAX_MAPS;; |
| 440 | } |
| 441 | if (header.count > total - *f_pos) { |
| 442 | header.count = total - *f_pos; |
| 443 | } |
| 444 | |
| 445 | if (header.count == 0) { |
| 446 | return 0; |
| 447 | } |
| 448 | |
| 449 | header.magic = PROF_MAGIC_MAPS; |
| 450 | header.page_shift = PAGE_SHIFT; |
| 451 | |
| 452 | if (copy_to_user(buf, &header, sizeof(header)) != 0) { |
| 453 | return -EFAULT; |
| 454 | } |
| 455 | if (copy_to_user(p, (void *)&profile_pm[*f_pos], sizeof(struct profile_map) * header.count) != 0) { |
| 456 | return -EFAULT; |
| 457 | } |
| 458 | *f_pos += header.count; |
| 459 | |
| 460 | return sizeof(header) + sizeof(struct profile_map) * header.count; |
| 461 | } |
| 462 | |
| 463 | static int profile_maps_release(struct inode *inode, struct file *filp) |
| 464 | { |
| 465 | return 0; |
| 466 | } |
| 467 | |
| 468 | static const struct file_operations profile_maps_fops = { |
| 469 | .open = profile_maps_open, |
| 470 | .read = profile_maps_read, |
| 471 | .release = profile_maps_release, |
| 472 | }; |
| 473 | |
| 474 | static int profile_rate_show(struct seq_file *m, void *v) |
| 475 | { |
| 476 | if (node) { |
| 477 | seq_printf(m, "%d samples per second. %d virtual counters.\n", node->rate, node->num_counters); |
| 478 | } else { |
| 479 | seq_printf(m, "Profiler is not initialized.\n"); |
| 480 | } |
| 481 | return 0; |
| 482 | } |
| 483 | |
| 484 | static int profile_rate_open(struct inode *inode, struct file *filp) |
| 485 | { |
| 486 | return single_open(filp, profile_rate_show, NULL); |
| 487 | } |
| 488 | |
| 489 | static int profile_rate_write(struct file *filp, const char *buf, size_t len, loff_t *off) |
| 490 | { |
| 491 | *off = 0; |
| 492 | return 0; |
| 493 | } |
| 494 | |
| 495 | static const struct file_operations profile_rate_fops = { |
| 496 | .open = profile_rate_open, |
| 497 | .read = seq_read, |
| 498 | .llseek = seq_lseek, |
| 499 | .release = single_release, |
| 500 | .write = profile_rate_write, |
| 501 | }; |
| 502 | |
| 503 | int ubi32_profile_init_module(void) |
| 504 | { |
| 505 | struct proc_dir_entry *pdir; |
| 506 | |
| 507 | /* |
| 508 | * find the device |
| 509 | */ |
| 510 | node = (struct profilenode *)devtree_find_node("profiler"); |
| 511 | if (!node) { |
| 512 | printk(KERN_INFO "Profiler does not exist.\n"); |
| 513 | return -ENODEV; |
| 514 | } |
| 515 | |
| 516 | /* |
| 517 | * allocate the sample buffer |
| 518 | */ |
| 519 | node->max_samples = PROFILE_MAX_SAMPLES; |
| 520 | node->samples = kmalloc(node->max_samples * sizeof(struct profile_sample), GFP_KERNEL); |
| 521 | if (!node->samples) { |
| 522 | printk(KERN_INFO "Profiler sample buffer kmalloc failed.\n"); |
| 523 | return -ENOMEM; |
| 524 | } |
| 525 | |
| 526 | /* |
| 527 | * connect to the file system |
| 528 | */ |
| 529 | pdir = proc_mkdir("profile", NULL); |
| 530 | if (!pdir) { |
| 531 | return -ENOMEM; |
| 532 | } |
| 533 | if (!proc_create("data", 0, pdir, &profile_fops)) { |
| 534 | return -ENOMEM; |
| 535 | } |
| 536 | if (!proc_create("rate", 0, pdir, &profile_rate_fops)) { |
| 537 | return -ENOMEM; |
| 538 | } |
| 539 | if (!proc_create("maps", 0, pdir, &profile_maps_fops)) { |
| 540 | return -ENOMEM; |
| 541 | } |
| 542 | return 0; |
| 543 | } |
| 544 | |
| 545 | |
| 546 | module_init(ubi32_profile_init_module); |
| 547 | |
| 548 | MODULE_AUTHOR("David Fotland"); |
| 549 | MODULE_LICENSE("GPL"); |
| 550 | |