| 1 | /* |
| 2 | * arch/ubicom32/mm/ocm-alloc.c |
| 3 | * OCM allocator for Uibcom32 On-Chip memory |
| 4 | * |
| 5 | * (C) Copyright 2009, Ubicom, Inc. |
| 6 | * Copyright 2004-2008 Analog Devices Inc. |
| 7 | * |
| 8 | * Based on: |
| 9 | * |
| 10 | * arch/blackfin/mm/sram-alloc.c |
| 11 | * |
| 12 | * |
| 13 | * This file is part of the Ubicom32 Linux Kernel Port. |
| 14 | * |
| 15 | * The Ubicom32 Linux Kernel Port is free software: you can redistribute |
| 16 | * it and/or modify it under the terms of the GNU General Public License |
| 17 | * as published by the Free Software Foundation, either version 2 of the |
| 18 | * License, or (at your option) any later version. |
| 19 | * |
| 20 | * The Ubicom32 Linux Kernel Port is distributed in the hope that it |
| 21 | * will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| 22 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| 23 | * the GNU General Public License for more details. |
| 24 | * |
| 25 | * You should have received a copy of the GNU General Public License |
| 26 | * along with the Ubicom32 Linux Kernel Port. If not, |
| 27 | * see <http://www.gnu.org/licenses/>. |
| 28 | * |
| 29 | * Ubicom32 implementation derived from (with many thanks): |
| 30 | * arch/m68knommu |
| 31 | * arch/blackfin |
| 32 | * arch/parisc |
| 33 | */ |
| 34 | |
| 35 | #include <linux/module.h> |
| 36 | #include <linux/kernel.h> |
| 37 | #include <linux/types.h> |
| 38 | #include <linux/miscdevice.h> |
| 39 | #include <linux/ioport.h> |
| 40 | #include <linux/fcntl.h> |
| 41 | #include <linux/init.h> |
| 42 | #include <linux/poll.h> |
| 43 | #include <linux/proc_fs.h> |
| 44 | #include <linux/mutex.h> |
| 45 | #include <linux/rtc.h> |
| 46 | #include <asm/ocm-alloc.h> |
| 47 | |
| 48 | #if 0 |
| 49 | #define DEBUGP printk |
| 50 | #else |
| 51 | #define DEBUGP(fmt, a...) |
| 52 | #endif |
| 53 | /* |
| 54 | * the data structure for OCM heap pieces |
| 55 | */ |
| 56 | struct ocm_piece { |
| 57 | void *paddr; |
| 58 | int size; |
| 59 | pid_t pid; |
| 60 | struct ocm_piece *next; |
| 61 | }; |
| 62 | |
| 63 | /* |
| 64 | * struct ocm_heap |
| 65 | */ |
| 66 | struct ocm_heap { |
| 67 | struct ocm_piece free_head; |
| 68 | struct ocm_piece used_head; |
| 69 | struct mutex lock; |
| 70 | }; |
| 71 | |
| 72 | static struct ocm_heap ocm_inst_heap; |
| 73 | int ubi32_ocm_skbuf_max = 21, ubi32_ocm_skbuf, ubi32_ddr_skbuf; |
| 74 | |
| 75 | /* |
| 76 | * OCM area for storing code |
| 77 | */ |
| 78 | extern asmlinkage void *__ocm_free_begin; |
| 79 | extern asmlinkage void *__ocm_free_end; |
| 80 | extern asmlinkage void *__ocm_inst_heap_begin; |
| 81 | extern asmlinkage void *__ocm_inst_heap_end; |
| 82 | #define OCM_INST_HEAP_BEGIN ((unsigned int)&__ocm_inst_heap_begin) |
| 83 | #define OCM_INST_HEAP_END ((unsigned int)&__ocm_inst_heap_end) |
| 84 | #define OCM_INST_HEAP_LENGTH (OCM_INST_HEAP_END - OCM_INST_HEAP_BEGIN) |
| 85 | |
| 86 | static struct kmem_cache *ocm_piece_cache; |
| 87 | |
| 88 | /* |
| 89 | * _ocm_heap_init() |
| 90 | */ |
| 91 | static int __init _ocm_heap_init(struct ocm_heap *ocmh, |
| 92 | unsigned int start, |
| 93 | unsigned int size) |
| 94 | { |
| 95 | ocmh->free_head.next = kmem_cache_alloc(ocm_piece_cache, GFP_KERNEL); |
| 96 | |
| 97 | if (!ocmh->free_head.next) |
| 98 | return -1; |
| 99 | |
| 100 | ocmh->free_head.next->paddr = (void *)start; |
| 101 | ocmh->free_head.next->size = size; |
| 102 | ocmh->free_head.next->pid = 0; |
| 103 | ocmh->free_head.next->next = 0; |
| 104 | |
| 105 | ocmh->used_head.next = NULL; |
| 106 | |
| 107 | /* mutex initialize */ |
| 108 | mutex_init(&ocmh->lock); |
| 109 | |
| 110 | return 0; |
| 111 | } |
| 112 | |
| 113 | /* |
| 114 | * _ocm_alloc_init() |
| 115 | * |
| 116 | * starts the ocm heap(s) |
| 117 | */ |
| 118 | static int __init _ocm_alloc_init(void) |
| 119 | { |
| 120 | if (OCM_INST_HEAP_LENGTH) { |
| 121 | ocm_piece_cache = kmem_cache_create("ocm_piece_cache", |
| 122 | sizeof(struct ocm_piece), |
| 123 | 0, SLAB_PANIC, NULL); |
| 124 | |
| 125 | if (_ocm_heap_init(&ocm_inst_heap, |
| 126 | OCM_INST_HEAP_BEGIN, |
| 127 | OCM_INST_HEAP_LENGTH) == 0) |
| 128 | printk(KERN_INFO "OCM Instruction Heap %d KB\n", |
| 129 | OCM_INST_HEAP_LENGTH >> 10); |
| 130 | else |
| 131 | printk(KERN_INFO "Failed to initialize OCM " |
| 132 | "Instruction Heap\n"); |
| 133 | |
| 134 | } else |
| 135 | printk(KERN_INFO "No space available for OCM " |
| 136 | "Instruction Heap\n"); |
| 137 | |
| 138 | return 0; |
| 139 | } |
| 140 | pure_initcall(_ocm_alloc_init); |
| 141 | |
| 142 | /* |
| 143 | * _ocm_alloc() |
| 144 | * generic alloc a block in the ocm heap, if successful |
| 145 | * returns the pointer. |
| 146 | */ |
| 147 | static void *_ocm_alloc(size_t size, pid_t pid, struct ocm_heap *ocmheap) |
| 148 | { |
| 149 | struct ocm_piece *pslot, *plast, *pavail; |
| 150 | struct ocm_piece *pfree_head = &ocmheap->free_head; |
| 151 | struct ocm_piece *pused_head = &ocmheap->used_head; |
| 152 | |
| 153 | if (size <= 0 || !pfree_head || !pused_head) |
| 154 | return NULL; |
| 155 | |
| 156 | /* Align the size */ |
| 157 | size = (size + 3) & ~3; |
| 158 | |
| 159 | pslot = pfree_head->next; |
| 160 | plast = pfree_head; |
| 161 | |
| 162 | /* |
| 163 | * search an available piece slot |
| 164 | */ |
| 165 | while (pslot != NULL && size > pslot->size) { |
| 166 | plast = pslot; |
| 167 | pslot = pslot->next; |
| 168 | } |
| 169 | |
| 170 | if (!pslot) |
| 171 | return NULL; |
| 172 | |
| 173 | if (pslot->size == size) { |
| 174 | /* |
| 175 | * Unlink this block from the list |
| 176 | */ |
| 177 | plast->next = pslot->next; |
| 178 | pavail = pslot; |
| 179 | } else { |
| 180 | /* |
| 181 | * Split this block in two. |
| 182 | */ |
| 183 | pavail = kmem_cache_alloc(ocm_piece_cache, GFP_KERNEL); |
| 184 | |
| 185 | if (!pavail) |
| 186 | return NULL; |
| 187 | |
| 188 | pavail->paddr = pslot->paddr; |
| 189 | pavail->size = size; |
| 190 | pslot->paddr += size; |
| 191 | pslot->size -= size; |
| 192 | } |
| 193 | |
| 194 | pavail->pid = pid; |
| 195 | |
| 196 | pslot = pused_head->next; |
| 197 | plast = pused_head; |
| 198 | |
| 199 | /* |
| 200 | * insert new piece into used piece list !!! |
| 201 | */ |
| 202 | while (pslot != NULL && pavail->paddr < pslot->paddr) { |
| 203 | plast = pslot; |
| 204 | pslot = pslot->next; |
| 205 | } |
| 206 | |
| 207 | pavail->next = pslot; |
| 208 | plast->next = pavail; |
| 209 | |
| 210 | DEBUGP("_ocm_alloc %d bytes at %p from in %p", |
| 211 | size, pavail->paddr, ocmheap); |
| 212 | |
| 213 | return pavail->paddr; |
| 214 | } |
| 215 | |
| 216 | #if 0 |
| 217 | /* Allocate the largest available block. */ |
| 218 | static void *_ocm_alloc_max(struct ocm_heap *ocmheap, |
| 219 | unsigned long *psize) |
| 220 | { |
| 221 | struct ocm_piece *pfree_head = &ocmheap->free_head; |
| 222 | struct ocm_piece *pslot, *pmax; |
| 223 | |
| 224 | pmax = pslot = pfree_head->next; |
| 225 | |
| 226 | /* search an available piece slot */ |
| 227 | while (pslot != NULL) { |
| 228 | if (pslot->size > pmax->size) |
| 229 | pmax = pslot; |
| 230 | pslot = pslot->next; |
| 231 | } |
| 232 | |
| 233 | if (!pmax) |
| 234 | return NULL; |
| 235 | |
| 236 | *psize = pmax->size; |
| 237 | |
| 238 | return _ocm_alloc(*psize, ocmheap); |
| 239 | } |
| 240 | #endif |
| 241 | |
| 242 | /* |
| 243 | * _ocm_free() |
| 244 | * generic free a block in the ocm heap, if successful |
| 245 | */ |
| 246 | static int _ocm_free(const void *addr, |
| 247 | struct ocm_heap *ocmheap) |
| 248 | { |
| 249 | struct ocm_piece *pslot, *plast, *pavail; |
| 250 | struct ocm_piece *pfree_head = &ocmheap->free_head; |
| 251 | struct ocm_piece *pused_head = &ocmheap->used_head; |
| 252 | |
| 253 | /* search the relevant memory slot */ |
| 254 | pslot = pused_head->next; |
| 255 | plast = pused_head; |
| 256 | |
| 257 | /* search an available piece slot */ |
| 258 | while (pslot != NULL && pslot->paddr != addr) { |
| 259 | plast = pslot; |
| 260 | pslot = pslot->next; |
| 261 | } |
| 262 | |
| 263 | if (!pslot) { |
| 264 | DEBUGP("_ocm_free %p not found in %p", addr, ocmheap); |
| 265 | return -1; |
| 266 | } |
| 267 | DEBUGP("_ocm_free %p from in %p", addr, ocmheap); |
| 268 | |
| 269 | plast->next = pslot->next; |
| 270 | pavail = pslot; |
| 271 | pavail->pid = 0; |
| 272 | |
| 273 | /* insert free pieces back to the free list */ |
| 274 | pslot = pfree_head->next; |
| 275 | plast = pfree_head; |
| 276 | |
| 277 | while (pslot != NULL && addr > pslot->paddr) { |
| 278 | plast = pslot; |
| 279 | pslot = pslot->next; |
| 280 | } |
| 281 | |
| 282 | if (plast != pfree_head && |
| 283 | plast->paddr + plast->size == pavail->paddr) { |
| 284 | plast->size += pavail->size; |
| 285 | kmem_cache_free(ocm_piece_cache, pavail); |
| 286 | } else { |
| 287 | pavail->next = plast->next; |
| 288 | plast->next = pavail; |
| 289 | plast = pavail; |
| 290 | } |
| 291 | |
| 292 | if (pslot && plast->paddr + plast->size == pslot->paddr) { |
| 293 | plast->size += pslot->size; |
| 294 | plast->next = pslot->next; |
| 295 | kmem_cache_free(ocm_piece_cache, pslot); |
| 296 | } |
| 297 | |
| 298 | return 0; |
| 299 | } |
| 300 | |
| 301 | /* |
| 302 | * ocm_inst_alloc() |
| 303 | * |
| 304 | * allocates a block of size in the ocm instrction heap, if |
| 305 | * successful returns address allocated. |
| 306 | */ |
| 307 | void *ocm_inst_alloc(size_t size, pid_t pid) |
| 308 | { |
| 309 | void *addr; |
| 310 | |
| 311 | if (!OCM_INST_HEAP_LENGTH) |
| 312 | return NULL; |
| 313 | |
| 314 | |
| 315 | mutex_lock(&ocm_inst_heap.lock); |
| 316 | |
| 317 | addr = _ocm_alloc(size, pid, &ocm_inst_heap); |
| 318 | |
| 319 | mutex_unlock(&ocm_inst_heap.lock); |
| 320 | |
| 321 | return addr; |
| 322 | } |
| 323 | EXPORT_SYMBOL(ocm_inst_alloc); |
| 324 | |
| 325 | /* |
| 326 | * ocm_inst_free() |
| 327 | * free a block in the ocm instrction heap, returns 0 if successful. |
| 328 | */ |
| 329 | int ocm_inst_free(const void *addr) |
| 330 | { |
| 331 | int ret; |
| 332 | |
| 333 | if (!OCM_INST_HEAP_LENGTH) |
| 334 | return -1; |
| 335 | |
| 336 | mutex_lock(&ocm_inst_heap.lock); |
| 337 | |
| 338 | ret = _ocm_free(addr, &ocm_inst_heap); |
| 339 | |
| 340 | mutex_unlock(&ocm_inst_heap.lock); |
| 341 | |
| 342 | return ret; |
| 343 | } |
| 344 | EXPORT_SYMBOL(ocm_inst_free); |
| 345 | |
| 346 | /* |
| 347 | * ocm_free() |
| 348 | * free a block in one of the ocm heaps, returns 0 if successful. |
| 349 | */ |
| 350 | int ocm_free(const void *addr) |
| 351 | { |
| 352 | if (addr >= (void *)OCM_INST_HEAP_BEGIN |
| 353 | && addr < (void *)(OCM_INST_HEAP_END)) |
| 354 | return ocm_inst_free(addr); |
| 355 | else |
| 356 | return -1; |
| 357 | } |
| 358 | EXPORT_SYMBOL(ocm_free); |
| 359 | |
| 360 | |
| 361 | #ifdef CONFIG_PROC_FS |
| 362 | /* Need to keep line of output the same. Currently, that is 46 bytes |
| 363 | * (including newline). |
| 364 | */ |
| 365 | static int _ocm_proc_read(char *buf, int *len, int count, const char *desc, |
| 366 | struct ocm_heap *ocmheap) |
| 367 | { |
| 368 | struct ocm_piece *pslot; |
| 369 | struct ocm_piece *pfree_head = &ocmheap->free_head; |
| 370 | struct ocm_piece *pused_head = &ocmheap->used_head; |
| 371 | |
| 372 | /* The format is the following |
| 373 | * --- OCM 123456789012345 Size PID State \n |
| 374 | * 12345678-12345678 1234567890 12345 1234567890\n |
| 375 | */ |
| 376 | int l; |
| 377 | l = sprintf(&buf[*len], "--- OCM %-15s Size PID State \n", |
| 378 | desc); |
| 379 | |
| 380 | *len += l; |
| 381 | count -= l; |
| 382 | |
| 383 | mutex_lock(&ocm_inst_heap.lock); |
| 384 | |
| 385 | /* |
| 386 | * search the relevant memory slot |
| 387 | */ |
| 388 | pslot = pused_head->next; |
| 389 | |
| 390 | while (pslot != NULL && count > 46) { |
| 391 | l = sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n", |
| 392 | pslot->paddr, pslot->paddr + pslot->size, |
| 393 | pslot->size, pslot->pid, "ALLOCATED"); |
| 394 | |
| 395 | *len += l; |
| 396 | count -= l; |
| 397 | pslot = pslot->next; |
| 398 | } |
| 399 | |
| 400 | pslot = pfree_head->next; |
| 401 | |
| 402 | while (pslot != NULL && count > 46) { |
| 403 | l = sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n", |
| 404 | pslot->paddr, pslot->paddr + pslot->size, |
| 405 | pslot->size, pslot->pid, "FREE"); |
| 406 | |
| 407 | *len += l; |
| 408 | count -= l; |
| 409 | pslot = pslot->next; |
| 410 | } |
| 411 | |
| 412 | mutex_unlock(&ocm_inst_heap.lock); |
| 413 | |
| 414 | return 0; |
| 415 | } |
| 416 | |
| 417 | static int ocm_proc_read(char *buf, char **start, off_t offset, int count, |
| 418 | int *eof, void *data) |
| 419 | { |
| 420 | int len = 0; |
| 421 | |
| 422 | len = sprintf(&buf[len], "--- OCM SKB usage (max RX buf %d)\n" |
| 423 | "(SKB in OCM) %d - (SKB in DDR) %d\n", |
| 424 | ubi32_ocm_skbuf_max, |
| 425 | ubi32_ocm_skbuf, |
| 426 | ubi32_ddr_skbuf); |
| 427 | |
| 428 | len += sprintf(&buf[len], "--- OCM Data Heap Size\n" |
| 429 | "%p-%p %10i\n", |
| 430 | ((void *)&__ocm_free_begin), |
| 431 | ((void *)&__ocm_free_end), |
| 432 | ((unsigned int)&__ocm_free_end) - |
| 433 | ((unsigned int)&__ocm_free_begin)); |
| 434 | |
| 435 | if (_ocm_proc_read(buf, &len, count - len, "Inst Heap", |
| 436 | &ocm_inst_heap)) |
| 437 | goto not_done; |
| 438 | *eof = 1; |
| 439 | not_done: |
| 440 | return len; |
| 441 | } |
| 442 | |
| 443 | static int ocm_proc_write(struct file *file, const char __user *buffer, |
| 444 | unsigned long count, void *data) |
| 445 | { |
| 446 | int n, v; |
| 447 | char in[8]; |
| 448 | |
| 449 | if (count > sizeof(in)) |
| 450 | return -EINVAL; |
| 451 | |
| 452 | if (copy_from_user(in, buffer, count)) |
| 453 | return -EFAULT; |
| 454 | in[count-1] = 0; |
| 455 | |
| 456 | printk(KERN_INFO "OCM skb alloc max = %s\n", in); |
| 457 | |
| 458 | n = 0; |
| 459 | v = 0; |
| 460 | while ((in[n] >= '0') && (in[n] <= '9')) { |
| 461 | v = v * 10 + (int)(in[n] - '0'); |
| 462 | n++; |
| 463 | } |
| 464 | |
| 465 | if (v == 0) |
| 466 | return -EINVAL; |
| 467 | |
| 468 | ubi32_ocm_skbuf_max = v; |
| 469 | ubi32_ocm_skbuf = ubi32_ddr_skbuf = 0; |
| 470 | |
| 471 | return count; |
| 472 | } |
| 473 | |
| 474 | static int __init sram_proc_init(void) |
| 475 | { |
| 476 | struct proc_dir_entry *ptr; |
| 477 | ptr = create_proc_entry("ocm", S_IFREG | S_IRUGO, NULL); |
| 478 | if (!ptr) { |
| 479 | printk(KERN_WARNING "unable to create /proc/ocm\n"); |
| 480 | return -1; |
| 481 | } |
| 482 | ptr->read_proc = ocm_proc_read; |
| 483 | ptr->write_proc = ocm_proc_write; |
| 484 | return 0; |
| 485 | } |
| 486 | late_initcall(sram_proc_init); |
| 487 | #endif |
| 488 | |