Root/target/linux/ubicom32/files/drivers/mmc/host/ubicom32sd.c

1/*
2 * drivers/mmc/host/ubicom32sd.c
3 * Ubicom32 Secure Digital Host Controller Interface driver
4 *
5 * (C) Copyright 2009, Ubicom, Inc.
6 *
7 * This file is part of the Ubicom32 Linux Kernel Port.
8 *
9 * The Ubicom32 Linux Kernel Port is free software: you can redistribute
10 * it and/or modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation, either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * The Ubicom32 Linux Kernel Port is distributed in the hope that it
15 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
16 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
17 * the GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with the Ubicom32 Linux Kernel Port. If not,
21 * see <http://www.gnu.org/licenses/>.
22 */
23
24#include <linux/module.h>
25#include <linux/platform_device.h>
26#include <linux/delay.h>
27#include <linux/scatterlist.h>
28#include <linux/leds.h>
29#include <linux/gpio.h>
30#include <linux/mmc/host.h>
31
32#include <asm/ubicom32sd.h>
33
34#define DRIVER_NAME "ubicom32sd"
35
36#define sd_printk(...)
37//#define sd_printk printk
38
39#define SDTIO_VP_VERSION 3
40
41#define SDTIO_MAX_SG_BLOCKS 16
42
43enum sdtio_commands {
44    SDTIO_COMMAND_NOP,
45    SDTIO_COMMAND_SETUP,
46    SDTIO_COMMAND_SETUP_SDIO,
47    SDTIO_COMMAND_EXECUTE,
48    SDTIO_COMMAND_RESET,
49};
50
51#define SDTIO_COMMAND_SHIFT 24
52#define SDTIO_COMMAND_FLAG_STOP_RSP_CRC (1 << 10)
53#define SDTIO_COMMAND_FLAG_STOP_RSP_136 (1 << 9)
54#define SDTIO_COMMAND_FLAG_STOP_RSP (1 << 8)
55#define SDTIO_COMMAND_FLAG_STOP_CMD (1 << 7)
56#define SDTIO_COMMAND_FLAG_DATA_STREAM (1 << 6)
57#define SDTIO_COMMAND_FLAG_DATA_RD (1 << 5)
58#define SDTIO_COMMAND_FLAG_DATA_WR (1 << 4)
59#define SDTIO_COMMAND_FLAG_CMD_RSP_CRC (1 << 3)
60#define SDTIO_COMMAND_FLAG_CMD_RSP_136 (1 << 2)
61#define SDTIO_COMMAND_FLAG_CMD_RSP (1 << 1)
62#define SDTIO_COMMAND_FLAG_CMD (1 << 0)
63
64/*
65 * SDTIO_COMMAND_SETUP_SDIO
66 */
67#define SDTIO_COMMAND_FLAG_SDIO_INT_EN (1 << 0)
68
69/*
70 * SDTIO_COMMAND_SETUP
71 * clock speed in arg
72 */
73#define SDTIO_COMMAND_FLAG_4BIT (1 << 3)
74#define SDTIO_COMMAND_FLAG_1BIT (1 << 2)
75#define SDTIO_COMMAND_FLAG_SET_CLOCK (1 << 1)
76#define SDTIO_COMMAND_FLAG_SET_WIDTH (1 << 0)
77
78#define SDTIO_COMMAND_FLAG_CMD_RSP_MASK (SDTIO_COMMAND_FLAG_CMD_RSP | SDTIO_COMMAND_FLAG_CMD_RSP_136)
79#define SDTIO_COMMAND_FLAG_STOP_RSP_MASK (SDTIO_COMMAND_FLAG_STOP_RSP | SDTIO_COMMAND_FLAG_STOP_RSP_136)
80#define SDTIO_COMMAND_FLAG_RSP_MASK (SDTIO_COMMAND_FLAG_CMD_RSP_MASK | SDTIO_COMMAND_FLAG_STOP_RSP_MASK)
81
82struct sdtio_vp_sg {
83    volatile void *addr;
84    volatile u32_t len;
85};
86
87#define SDTIO_VP_INT_STATUS_DONE (1 << 31)
88#define SDTIO_VP_INT_STATUS_SDIO_INT (1 << 10)
89#define SDTIO_VP_INT_STATUS_DATA_CRC_ERR (1 << 9)
90#define SDTIO_VP_INT_STATUS_DATA_PROG_ERR (1 << 8)
91#define SDTIO_VP_INT_STATUS_DATA_TIMEOUT (1 << 7)
92#define SDTIO_VP_INT_STATUS_STOP_RSP_CRC (1 << 6)
93#define SDTIO_VP_INT_STATUS_STOP_RSP_TIMEOUT (1 << 5)
94#define SDTIO_VP_INT_STATUS_CMD_RSP_CRC (1 << 4)
95#define SDTIO_VP_INT_STATUS_CMD_RSP_TIMEOUT (1 << 3)
96#define SDTIO_VP_INT_STATUS_CMD_TIMEOUT (1 << 2)
97#define SDTIO_VP_INT_STATUS_CARD1_INSERT (1 << 1)
98#define SDTIO_VP_INT_STATUS_CARD0_INSERT (1 << 0)
99
100struct sdtio_vp_regs {
101    u32_t version;
102    u32_t f_max;
103    u32_t f_min;
104
105    volatile u32_t int_status;
106
107    volatile u32_t command;
108    volatile u32_t arg;
109
110    volatile u32_t cmd_opcode;
111    volatile u32_t cmd_arg;
112    volatile u32_t cmd_rsp0;
113    volatile u32_t cmd_rsp1;
114    volatile u32_t cmd_rsp2;
115    volatile u32_t cmd_rsp3;
116
117    volatile u32_t stop_opcode;
118    volatile u32_t stop_arg;
119    volatile u32_t stop_rsp0;
120    volatile u32_t stop_rsp1;
121    volatile u32_t stop_rsp2;
122    volatile u32_t stop_rsp3;
123
124    volatile u32_t data_timeout_ns;
125    volatile u16_t data_blksz;
126    volatile u16_t data_blkct;
127    volatile u32_t data_bytes_transferred;
128    volatile u32_t sg_len;
129    struct sdtio_vp_sg sg[SDTIO_MAX_SG_BLOCKS];
130};
131
132struct ubicom32sd_data {
133    const struct ubicom32sd_platform_data *pdata;
134
135    struct mmc_host *mmc;
136
137    /*
138     * Lock used to protect the data structure
139    spinlock_t lock;
140     */
141    int int_en;
142    int int_pend;
143
144    /*
145     * Receive and transmit interrupts used for communicating
146     * with hardware
147     */
148    int irq_tx;
149    int irq_rx;
150
151    /*
152     * Current outstanding mmc request
153     */
154    struct mmc_request *mrq;
155
156    /*
157     * Hardware registers
158     */
159    struct sdtio_vp_regs *regs;
160};
161
162/*****************************************************************************\
163 * *
164 * Suspend/resume *
165 * *
166\*****************************************************************************/
167
168#if 0//def CONFIG_PM
169
170int ubicom32sd_suspend_host(struct ubicom32sd_host *host, pm_message_t state)
171{
172    int ret;
173
174    ret = mmc_suspend_host(host->mmc, state);
175    if (ret)
176        return ret;
177
178    free_irq(host->irq, host);
179
180    return 0;
181}
182
183EXPORT_SYMBOL_GPL(ubicom32sd_suspend_host);
184
185int ubicom32sd_resume_host(struct ubicom32sd_host *host)
186{
187    int ret;
188
189    if (host->flags & UBICOM32SD_USE_DMA) {
190        if (host->ops->enable_dma)
191            host->ops->enable_dma(host);
192    }
193
194    ret = request_irq(host->irq, ubicom32sd_irq, IRQF_SHARED,
195              mmc_hostname(host->mmc), host);
196    if (ret)
197        return ret;
198
199    ubicom32sd_init(host);
200    mmiowb();
201
202    ret = mmc_resume_host(host->mmc);
203    if (ret)
204        return ret;
205
206    return 0;
207}
208
209EXPORT_SYMBOL_GPL(ubicom32sd_resume_host);
210
211#endif /* CONFIG_PM */
212
213/*
214 * ubicom32sd_send_command_sync
215 */
216static void ubicom32sd_send_command_sync(struct ubicom32sd_data *ud, u32_t command, u32_t arg)
217{
218    ud->regs->command = command;
219    ud->regs->arg = arg;
220    ubicom32_set_interrupt(ud->irq_tx);
221    while (ud->regs->command) {
222        ndelay(100);
223    }
224}
225
226/*
227 * ubicom32sd_send_command
228 */
229static void ubicom32sd_send_command(struct ubicom32sd_data *ud, u32_t command, u32_t arg)
230{
231    ud->regs->command = command;
232    ud->regs->arg = arg;
233    ubicom32_set_interrupt(ud->irq_tx);
234}
235
236/*
237 * ubicom32sd_reset
238 */
239static void ubicom32sd_reset(struct ubicom32sd_data *ud)
240{
241    ubicom32sd_send_command_sync(ud, SDTIO_COMMAND_RESET << SDTIO_COMMAND_SHIFT, 0);
242    ud->regs->int_status = 0;
243}
244
245/*
246 * ubicom32sd_mmc_request
247 */
248static void ubicom32sd_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
249{
250    struct ubicom32sd_data *ud = (struct ubicom32sd_data *)mmc_priv(mmc);
251    u32_t command = SDTIO_COMMAND_EXECUTE << SDTIO_COMMAND_SHIFT;
252    int ret = 0;
253
254    WARN(ud->mrq != NULL, "ud->mrq still set to %p\n", ud->mrq);
255    //pr_debug("send cmd %08x arg %08x flags %08x\n", cmd->opcode, cmd->arg, cmd->flags);
256
257    if (mrq->cmd) {
258        struct mmc_command *cmd = mrq->cmd;
259
260        sd_printk("%s:\t\t\tsetup cmd %02d arg %08x flags %08x\n", mmc_hostname(mmc), cmd->opcode, cmd->arg, cmd->flags);
261
262        ud->regs->cmd_opcode = cmd->opcode;
263        ud->regs->cmd_arg = cmd->arg;
264
265        command |= SDTIO_COMMAND_FLAG_CMD;
266
267        if (cmd->flags & MMC_RSP_PRESENT) {
268            command |= SDTIO_COMMAND_FLAG_CMD_RSP;
269        }
270
271        if (cmd->flags & MMC_RSP_136) {
272            command |= SDTIO_COMMAND_FLAG_CMD_RSP_136;
273        }
274
275        if (cmd->flags & MMC_RSP_CRC) {
276            command |= SDTIO_COMMAND_FLAG_CMD_RSP_CRC;
277        }
278    }
279
280    if (mrq->data) {
281        struct mmc_data *data = mrq->data;
282        struct scatterlist *sg = data->sg;
283        int i;
284
285printk("%s:\t\t\tsetup data blksz %d num %d sglen=%d fl=%08x Tns=%u\n", mmc_hostname(mmc), data->blksz, data->blocks, data->sg_len, data->flags, data->timeout_ns);
286
287        sd_printk("%s:\t\t\tsetup data blksz %d num %d sglen=%d fl=%08x Tns=%u\n",
288              mmc_hostname(mmc), data->blksz, data->blocks, data->sg_len,
289              data->flags, data->timeout_ns);
290
291        if (data->sg_len > SDTIO_MAX_SG_BLOCKS) {
292            ret = -EINVAL;
293            data->error = -EINVAL;
294            goto fail;
295        }
296
297        ud->regs->data_timeout_ns = data->timeout_ns;
298        ud->regs->data_blksz = data->blksz;
299        ud->regs->data_blkct = data->blocks;
300        ud->regs->sg_len = data->sg_len;
301
302        /*
303         * Load all of our sg list into the driver sg buffer
304         */
305        for (i = 0; i < data->sg_len; i++) {
306            sd_printk("%s: sg %d = %p %d\n", mmc_hostname(mmc), i, sg_virt(sg), sg->length);
307            ud->regs->sg[i].addr = sg_virt(sg);
308            ud->regs->sg[i].len = sg->length;
309            if (((u32_t)ud->regs->sg[i].addr & 0x03) || (sg->length & 0x03)) {
310                sd_printk("%s: Need aligned buffers\n", mmc_hostname(mmc));
311                ret = -EINVAL;
312                data->error = -EINVAL;
313                goto fail;
314            }
315            sg++;
316        }
317        if (data->flags & MMC_DATA_READ) {
318            command |= SDTIO_COMMAND_FLAG_DATA_RD;
319        } else if (data->flags & MMC_DATA_WRITE) {
320            command |= SDTIO_COMMAND_FLAG_DATA_WR;
321        } else if (data->flags & MMC_DATA_STREAM) {
322            command |= SDTIO_COMMAND_FLAG_DATA_STREAM;
323        }
324    }
325
326    if (mrq->stop) {
327        struct mmc_command *stop = mrq->stop;
328        sd_printk("%s: \t\t\tsetup stop %02d arg %08x flags %08x\n", mmc_hostname(mmc), stop->opcode, stop->arg, stop->flags);
329
330        ud->regs->stop_opcode = stop->opcode;
331        ud->regs->stop_arg = stop->arg;
332
333        command |= SDTIO_COMMAND_FLAG_STOP_CMD;
334
335        if (stop->flags & MMC_RSP_PRESENT) {
336            command |= SDTIO_COMMAND_FLAG_STOP_RSP;
337        }
338
339        if (stop->flags & MMC_RSP_136) {
340            command |= SDTIO_COMMAND_FLAG_STOP_RSP_136;
341        }
342
343        if (stop->flags & MMC_RSP_CRC) {
344            command |= SDTIO_COMMAND_FLAG_STOP_RSP_CRC;
345        }
346    }
347
348    ud->mrq = mrq;
349
350    sd_printk("%s: Sending command %08x\n", mmc_hostname(mmc), command);
351
352    ubicom32sd_send_command(ud, command, 0);
353
354    return;
355fail:
356    sd_printk("%s: mmcreq ret = %d\n", mmc_hostname(mmc), ret);
357    mrq->cmd->error = ret;
358    mmc_request_done(mmc, mrq);
359}
360
361/*
362 * ubicom32sd_mmc_set_ios
363 */
364static void ubicom32sd_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
365{
366    struct ubicom32sd_data *ud = (struct ubicom32sd_data *)mmc_priv(mmc);
367    u32_t command = SDTIO_COMMAND_SETUP << SDTIO_COMMAND_SHIFT;
368    u32_t arg = 0;
369    sd_printk("%s: ios call bw:%u pm:%u clk:%u\n", mmc_hostname(mmc), 1 << ios->bus_width, ios->power_mode, ios->clock);
370
371    switch (ios->bus_width) {
372    case MMC_BUS_WIDTH_1:
373        command |= SDTIO_COMMAND_FLAG_SET_WIDTH | SDTIO_COMMAND_FLAG_1BIT;
374        break;
375
376    case MMC_BUS_WIDTH_4:
377        command |= SDTIO_COMMAND_FLAG_SET_WIDTH | SDTIO_COMMAND_FLAG_4BIT;
378        break;
379    }
380
381    if (ios->clock) {
382        arg = ios->clock;
383        command |= SDTIO_COMMAND_FLAG_SET_CLOCK;
384    }
385
386    switch (ios->power_mode) {
387
388    /*
389     * Turn off the SD bus (power + clock)
390     */
391    case MMC_POWER_OFF:
392        gpio_set_value(ud->pdata->cards[0].pin_pwr, !ud->pdata->cards[0].pwr_polarity);
393        command |= SDTIO_COMMAND_FLAG_SET_CLOCK;
394        break;
395
396    /*
397     * Turn on the power to the SD bus
398     */
399    case MMC_POWER_ON:
400        gpio_set_value(ud->pdata->cards[0].pin_pwr, ud->pdata->cards[0].pwr_polarity);
401        break;
402
403    /*
404     * Turn on the clock to the SD bus
405     */
406    case MMC_POWER_UP:
407        /*
408         * Done above
409         */
410        break;
411    }
412
413    ubicom32sd_send_command_sync(ud, command, arg);
414
415    /*
416     * Let the power settle down
417     */
418    udelay(500);
419}
420
421/*
422 * ubicom32sd_mmc_get_cd
423 */
424static int ubicom32sd_mmc_get_cd(struct mmc_host *mmc)
425{
426    struct ubicom32sd_data *ud = (struct ubicom32sd_data *)mmc_priv(mmc);
427    sd_printk("%s: get cd %u %u\n", mmc_hostname(mmc), ud->pdata->cards[0].pin_cd, gpio_get_value(ud->pdata->cards[0].pin_cd));
428
429    return gpio_get_value(ud->pdata->cards[0].pin_cd) ?
430                ud->pdata->cards[0].cd_polarity :
431                !ud->pdata->cards[0].cd_polarity;
432}
433
434/*
435 * ubicom32sd_mmc_get_ro
436 */
437static int ubicom32sd_mmc_get_ro(struct mmc_host *mmc)
438{
439    struct ubicom32sd_data *ud = (struct ubicom32sd_data *)mmc_priv(mmc);
440    sd_printk("%s: get ro %u %u\n", mmc_hostname(mmc), ud->pdata->cards[0].pin_wp, gpio_get_value(ud->pdata->cards[0].pin_wp));
441
442    return gpio_get_value(ud->pdata->cards[0].pin_wp) ?
443                ud->pdata->cards[0].wp_polarity :
444                !ud->pdata->cards[0].wp_polarity;
445}
446
447/*
448 * ubicom32sd_mmc_enable_sdio_irq
449 */
450static void ubicom32sd_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
451{
452    struct ubicom32sd_data *ud = (struct ubicom32sd_data *)mmc_priv(mmc);
453
454    ud->int_en = enable;
455    if (enable && ud->int_pend) {
456        ud->int_pend = 0;
457        mmc_signal_sdio_irq(mmc);
458    }
459}
460
461/*
462 * ubicom32sd_interrupt
463 */
464static irqreturn_t ubicom32sd_interrupt(int irq, void *dev)
465{
466    struct mmc_host *mmc = (struct mmc_host *)dev;
467    struct mmc_request *mrq;
468    struct ubicom32sd_data *ud;
469    u32_t int_status;
470
471    if (!mmc) {
472        return IRQ_HANDLED;
473    }
474
475    ud = (struct ubicom32sd_data *)mmc_priv(mmc);
476    if (!ud) {
477        return IRQ_HANDLED;
478    }
479
480    int_status = ud->regs->int_status;
481    ud->regs->int_status &= ~int_status;
482
483    if (int_status & SDTIO_VP_INT_STATUS_SDIO_INT) {
484        if (ud->int_en) {
485            ud->int_pend = 0;
486            mmc_signal_sdio_irq(mmc);
487        } else {
488            ud->int_pend++;
489        }
490    }
491
492    if (!(int_status & SDTIO_VP_INT_STATUS_DONE)) {
493        return IRQ_HANDLED;
494    }
495
496    mrq = ud->mrq;
497    if (!mrq) {
498        sd_printk("%s: Spurious interrupt", mmc_hostname(mmc));
499        return IRQ_HANDLED;
500    }
501    ud->mrq = NULL;
502
503    /*
504     * SDTIO_VP_INT_DONE
505     */
506    if (mrq->cmd->flags & MMC_RSP_PRESENT) {
507        struct mmc_command *cmd = mrq->cmd;
508        cmd->error = 0;
509
510        if ((cmd->flags & MMC_RSP_CRC) && (int_status & SDTIO_VP_INT_STATUS_CMD_RSP_CRC)) {
511            cmd->error = -EILSEQ;
512        } else if (int_status & SDTIO_VP_INT_STATUS_CMD_RSP_TIMEOUT) {
513            cmd->error = -ETIMEDOUT;
514            goto done;
515        } else if (cmd->flags & MMC_RSP_136) {
516            cmd->resp[0] = ud->regs->cmd_rsp0;
517            cmd->resp[1] = ud->regs->cmd_rsp1;
518            cmd->resp[2] = ud->regs->cmd_rsp2;
519            cmd->resp[3] = ud->regs->cmd_rsp3;
520        } else {
521            cmd->resp[0] = ud->regs->cmd_rsp0;
522        }
523        sd_printk("%s:\t\t\tResponse %08x %08x %08x %08x err=%d\n", mmc_hostname(mmc), cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3], cmd->error);
524    }
525
526    if (mrq->data) {
527        struct mmc_data *data = mrq->data;
528
529        if (int_status & SDTIO_VP_INT_STATUS_DATA_TIMEOUT) {
530            data->error = -ETIMEDOUT;
531            sd_printk("%s:\t\t\tData Timeout\n", mmc_hostname(mmc));
532            goto done;
533        } else if (int_status & SDTIO_VP_INT_STATUS_DATA_CRC_ERR) {
534            data->error = -EILSEQ;
535            sd_printk("%s:\t\t\tData CRC\n", mmc_hostname(mmc));
536            goto done;
537        } else if (int_status & SDTIO_VP_INT_STATUS_DATA_PROG_ERR) {
538            data->error = -EILSEQ;
539            sd_printk("%s:\t\t\tData Program Error\n", mmc_hostname(mmc));
540            goto done;
541        } else {
542            data->error = 0;
543            data->bytes_xfered = ud->regs->data_bytes_transferred;
544        }
545    }
546
547    if (mrq->stop && (mrq->stop->flags & MMC_RSP_PRESENT)) {
548        struct mmc_command *stop = mrq->stop;
549        stop->error = 0;
550
551        if ((stop->flags & MMC_RSP_CRC) && (int_status & SDTIO_VP_INT_STATUS_STOP_RSP_CRC)) {
552            stop->error = -EILSEQ;
553        } else if (int_status & SDTIO_VP_INT_STATUS_STOP_RSP_TIMEOUT) {
554            stop->error = -ETIMEDOUT;
555            goto done;
556        } else if (stop->flags & MMC_RSP_136) {
557            stop->resp[0] = ud->regs->stop_rsp0;
558            stop->resp[1] = ud->regs->stop_rsp1;
559            stop->resp[2] = ud->regs->stop_rsp2;
560            stop->resp[3] = ud->regs->stop_rsp3;
561        } else {
562            stop->resp[0] = ud->regs->stop_rsp0;
563        }
564        sd_printk("%s:\t\t\tStop Response %08x %08x %08x %08x err=%d\n", mmc_hostname(mmc), stop->resp[0], stop->resp[1], stop->resp[2], stop->resp[3], stop->error);
565    }
566
567done:
568    mmc_request_done(mmc, mrq);
569
570    return IRQ_HANDLED;
571}
572
573static struct mmc_host_ops ubicom32sd_ops = {
574    .request = ubicom32sd_mmc_request,
575    .set_ios = ubicom32sd_mmc_set_ios,
576    .get_ro = ubicom32sd_mmc_get_ro,
577    .get_cd = ubicom32sd_mmc_get_cd,
578    .enable_sdio_irq = ubicom32sd_mmc_enable_sdio_irq,
579};
580
581/*
582 * ubicom32sd_probe
583 */
584static int __devinit ubicom32sd_probe(struct platform_device *pdev)
585{
586    struct ubicom32sd_platform_data *pdata = (struct ubicom32sd_platform_data *)pdev->dev.platform_data;
587    struct mmc_host *mmc;
588    struct ubicom32sd_data *ud;
589    struct resource *res_regs;
590    struct resource *res_irq_tx;
591    struct resource *res_irq_rx;
592    int ret;
593
594    /*
595     * Get our resources, regs is the hardware driver base address
596     * and the tx and rx irqs are used to communicate with the
597     * hardware driver.
598     */
599    res_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
600    res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
601    res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
602    if (!res_regs || !res_irq_tx || !res_irq_rx) {
603        ret = -EINVAL;
604        goto fail;
605    }
606
607    /*
608     * Reserve any gpios we need
609     */
610    ret = gpio_request(pdata->cards[0].pin_wp, "sd-wp");
611    if (ret) {
612        goto fail;
613    }
614    gpio_direction_input(pdata->cards[0].pin_wp);
615
616    ret = gpio_request(pdata->cards[0].pin_cd, "sd-cd");
617    if (ret) {
618        goto fail_cd;
619    }
620    gpio_direction_input(pdata->cards[0].pin_cd);
621
622    /*
623     * HACK: for the dual port controller on port F, we don't support the second port right now
624     */
625    if (pdata->ncards > 1) {
626        ret = gpio_request(pdata->cards[1].pin_pwr, "sd-pwr");
627        gpio_direction_output(pdata->cards[1].pin_pwr, !pdata->cards[1].pwr_polarity);
628        gpio_direction_output(pdata->cards[1].pin_pwr, pdata->cards[1].pwr_polarity);
629    }
630
631    ret = gpio_request(pdata->cards[0].pin_pwr, "sd-pwr");
632    if (ret) {
633        goto fail_pwr;
634    }
635    gpio_direction_output(pdata->cards[0].pin_pwr, !pdata->cards[0].pwr_polarity);
636
637    /*
638     * Allocate the MMC driver, it includes memory for our data.
639     */
640    mmc = mmc_alloc_host(sizeof(struct ubicom32sd_data), &pdev->dev);
641    if (!mmc) {
642        ret = -ENOMEM;
643        goto fail_mmc;
644    }
645    ud = (struct ubicom32sd_data *)mmc_priv(mmc);
646    ud->mmc = mmc;
647    ud->pdata = pdata;
648    ud->regs = (struct sdtio_vp_regs *)res_regs->start;
649    ud->irq_tx = res_irq_tx->start;
650    ud->irq_rx = res_irq_rx->start;
651    platform_set_drvdata(pdev, mmc);
652
653    ret = request_irq(ud->irq_rx, ubicom32sd_interrupt, IRQF_DISABLED, mmc_hostname(mmc), mmc);
654    if (ret) {
655        goto fail_mmc;
656    }
657
658    /*
659     * Fill in the mmc structure
660     */
661    mmc->ops = &ubicom32sd_ops;
662    mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_NEEDS_POLL | MMC_CAP_SDIO_IRQ |
663            MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED;
664
665    mmc->f_min = ud->regs->f_min;
666    mmc->f_max = ud->regs->f_max;
667    mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
668
669    /*
670     * Setup some restrictions on transfers
671     *
672     * We allow up to SDTIO_MAX_SG_BLOCKS of data to DMA into, there are
673     * not really any "max_seg_size", "max_req_size", or "max_blk_count"
674     * restrictions (must be less than U32_MAX though), pick
675     * something large?!...
676     *
677     * The hardware can do up to 4095 bytes per block, since the spec
678     * only requires 2048, we'll set it to that and not worry about
679     * potential weird blk lengths.
680     */
681    mmc->max_hw_segs = SDTIO_MAX_SG_BLOCKS;
682    mmc->max_phys_segs = SDTIO_MAX_SG_BLOCKS;
683    mmc->max_seg_size = 1024 * 1024;
684    mmc->max_req_size = 1024 * 1024;
685    mmc->max_blk_count = 1024;
686
687    mmc->max_blk_size = 2048;
688
689    ubicom32sd_reset(ud);
690
691    /*
692     * enable interrupts
693     */
694    ud->int_en = 0;
695    ubicom32sd_send_command_sync(ud, SDTIO_COMMAND_SETUP_SDIO << SDTIO_COMMAND_SHIFT | SDTIO_COMMAND_FLAG_SDIO_INT_EN, 0);
696
697    mmc_add_host(mmc);
698
699    printk(KERN_INFO "%s at %p, irq %d/%d\n", mmc_hostname(mmc),
700            ud->regs, ud->irq_tx, ud->irq_rx);
701    return 0;
702
703fail_mmc:
704    gpio_free(pdata->cards[0].pin_pwr);
705fail_pwr:
706    gpio_free(pdata->cards[0].pin_cd);
707fail_cd:
708    gpio_free(pdata->cards[0].pin_wp);
709fail:
710    return ret;
711}
712
713/*
714 * ubicom32sd_remove
715 */
716static int __devexit ubicom32sd_remove(struct platform_device *pdev)
717{
718    struct mmc_host *mmc = platform_get_drvdata(pdev);
719
720    platform_set_drvdata(pdev, NULL);
721
722    if (mmc) {
723        struct ubicom32sd_data *ud = (struct ubicom32sd_data *)mmc_priv(mmc);
724
725        gpio_free(ud->pdata->cards[0].pin_pwr);
726        gpio_free(ud->pdata->cards[0].pin_cd);
727        gpio_free(ud->pdata->cards[0].pin_wp);
728
729        mmc_remove_host(mmc);
730        mmc_free_host(mmc);
731    }
732
733    /*
734     * Note that our data is allocated as part of the mmc structure
735     * so we don't need to free it.
736     */
737    return 0;
738}
739
740static struct platform_driver ubicom32sd_driver = {
741    .driver = {
742        .name = DRIVER_NAME,
743        .owner = THIS_MODULE,
744    },
745    .probe = ubicom32sd_probe,
746    .remove = __devexit_p(ubicom32sd_remove),
747#if 0
748    .suspend = ubicom32sd_suspend,
749    .resume = ubicom32sd_resume,
750#endif
751};
752
753/*
754 * ubicom32sd_init
755 */
756static int __init ubicom32sd_init(void)
757{
758    return platform_driver_register(&ubicom32sd_driver);
759}
760module_init(ubicom32sd_init);
761
762/*
763 * ubicom32sd_exit
764 */
765static void __exit ubicom32sd_exit(void)
766{
767    platform_driver_unregister(&ubicom32sd_driver);
768}
769module_exit(ubicom32sd_exit);
770
771MODULE_AUTHOR("Patrick Tjin");
772MODULE_DESCRIPTION("Ubicom32 Secure Digital Host Controller Interface driver");
773MODULE_LICENSE("GPL");
774

Archive Download this file



interactive