| 1 | /* |
| 2 | * drivers/mtd/devices/ubi32-m25p80.c |
| 3 | * NOR flash driver, Ubicom processor internal SPI flash interface. |
| 4 | * |
| 5 | * This code instantiates the serial flash that contains the |
| 6 | * original bootcode. The serial flash start at address 0x60000000 |
| 7 | * in both Ubicom32V3 and Ubicom32V4 ISAs. |
| 8 | * |
| 9 | * This piece of flash is made to appear as a Memory Technology |
| 10 | * Device (MTD) with this driver to allow Read/Write/Erase operations. |
| 11 | * |
| 12 | * (C) Copyright 2009, Ubicom, Inc. |
| 13 | * |
| 14 | * This file is part of the Ubicom32 Linux Kernel Port. |
| 15 | * |
| 16 | * The Ubicom32 Linux Kernel Port is free software: you can redistribute |
| 17 | * it and/or modify it under the terms of the GNU General Public License |
| 18 | * as published by the Free Software Foundation, either version 2 of the |
| 19 | * License, or (at your option) any later version. |
| 20 | * |
| 21 | * The Ubicom32 Linux Kernel Port is distributed in the hope that it |
| 22 | * will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| 23 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| 24 | * the GNU General Public License for more details. |
| 25 | * |
| 26 | * You should have received a copy of the GNU General Public License |
| 27 | * along with the Ubicom32 Linux Kernel Port. If not, |
| 28 | * see <http://www.gnu.org/licenses/>. |
| 29 | * |
| 30 | * Ubicom32 implementation derived from (with many thanks): |
| 31 | * arch/m68knommu |
| 32 | * arch/blackfin |
| 33 | * arch/parisc |
| 34 | */ |
| 35 | #include <linux/types.h> |
| 36 | #include <linux/device.h> |
| 37 | #include <linux/platform_device.h> |
| 38 | #include <linux/mtd/mtd.h> |
| 39 | #include <linux/mtd/partitions.h> |
| 40 | #include <linux/mtd/physmap.h> |
| 41 | #include <linux/spi/spi.h> |
| 42 | #include <linux/spi/flash.h> |
| 43 | |
| 44 | #include <linux/init.h> |
| 45 | #include <linux/module.h> |
| 46 | #include <linux/interrupt.h> |
| 47 | #include <linux/mutex.h> |
| 48 | |
| 49 | #include <asm/ip5000.h> |
| 50 | #include <asm/devtree.h> |
| 51 | |
| 52 | #define UBICOM32_FLASH_BASE 0x60000000 |
| 53 | #define UBICOM32_FLASH_MAX_SIZE 0x01000000 |
| 54 | #define UBICOM32_FLASH_START 0x00000000 |
| 55 | #define UBICOM32_KERNEL_OFFSET 0x00010000 /* The kernel starts after Ubicom |
| 56 | * .protect section. */ |
| 57 | |
| 58 | static struct mtd_partition ubicom32_flash_partitions[] = { |
| 59 | { |
| 60 | .name = "Bootloader", /* Protected Section |
| 61 | * Partition */ |
| 62 | .size = 0x10000, |
| 63 | .offset = UBICOM32_FLASH_START, |
| 64 | // .mask_flags = MTD_WRITEABLE /* Mark Read-only */ |
| 65 | }, |
| 66 | { |
| 67 | .name = "Kernel", /* Kernel Partition. */ |
| 68 | .size = 0, /* this will be set up during |
| 69 | * probe stage. At that time we |
| 70 | * will know end of linux image |
| 71 | * in flash. */ |
| 72 | .offset = MTDPART_OFS_APPEND, /* Starts right after Protected |
| 73 | * section. */ |
| 74 | // .mask_flags = MTD_WRITEABLE /* Mark Read-only */ |
| 75 | }, |
| 76 | { |
| 77 | .name = "Rest", /* Rest of the flash. */ |
| 78 | .size = 0x200000, /* Use up what remains in the |
| 79 | * flash. */ |
| 80 | .offset = MTDPART_OFS_NXTBLK, /* Starts right after Protected |
| 81 | * section. */ |
| 82 | } |
| 83 | }; |
| 84 | |
| 85 | static struct flash_platform_data ubicom32_flash_data = { |
| 86 | .name = "ubicom32_boot_flash", |
| 87 | .parts = ubicom32_flash_partitions, |
| 88 | .nr_parts = ARRAY_SIZE(ubicom32_flash_partitions), |
| 89 | }; |
| 90 | |
| 91 | static struct resource ubicom32_flash_resource[] = { |
| 92 | { |
| 93 | .start = UBICOM32_FLASH_BASE, |
| 94 | .end = UBICOM32_FLASH_BASE + |
| 95 | UBICOM32_FLASH_MAX_SIZE - 1, |
| 96 | .flags = IORESOURCE_MEM, |
| 97 | }, |
| 98 | }; |
| 99 | |
| 100 | static struct platform_device ubicom32_flash_device = { |
| 101 | .name = "ubicom32flashdriver", |
| 102 | .id = 0, /* Bus number */ |
| 103 | .num_resources = ARRAY_SIZE(ubicom32_flash_resource), |
| 104 | .resource = ubicom32_flash_resource, |
| 105 | .dev = { |
| 106 | .platform_data = &ubicom32_flash_data, |
| 107 | }, |
| 108 | }; |
| 109 | |
| 110 | static struct platform_device *ubicom32_flash_devices[] = { |
| 111 | &ubicom32_flash_device, |
| 112 | }; |
| 113 | |
| 114 | static int __init ubicom32_flash_init(void) |
| 115 | { |
| 116 | printk(KERN_INFO "%s(): registering device resources\n", |
| 117 | __FUNCTION__); |
| 118 | platform_add_devices(ubicom32_flash_devices, |
| 119 | ARRAY_SIZE(ubicom32_flash_devices)); |
| 120 | return 0; |
| 121 | } |
| 122 | |
| 123 | arch_initcall(ubicom32_flash_init); |
| 124 | |
| 125 | /* |
| 126 | * MTD SPI driver for ST M25Pxx (and similar) serial flash chips through |
| 127 | * Ubicom32 SPI controller. |
| 128 | * |
| 129 | * Author: Mike Lavender, mike@steroidmicros.com |
| 130 | * |
| 131 | * Copyright (c) 2005, Intec Automation Inc. |
| 132 | * |
| 133 | * Some parts are based on lart.c by Abraham Van Der Merwe |
| 134 | * |
| 135 | * Cleaned up and generalized based on mtd_dataflash.c |
| 136 | * |
| 137 | * This code is free software; you can redistribute it and/or modify |
| 138 | * it under the terms of the GNU General Public License version 2 as |
| 139 | * published by the Free Software Foundation. |
| 140 | * |
| 141 | */ |
| 142 | |
| 143 | #define FLASH_PAGESIZE 256 |
| 144 | |
| 145 | /* Flash opcodes. */ |
| 146 | #define OPCODE_WREN 0x06 /* Write enable */ |
| 147 | #define OPCODE_RDSR 0x05 /* Read status register */ |
| 148 | #define OPCODE_READ 0x03 /* Read data bytes (low frequency) */ |
| 149 | #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */ |
| 150 | #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */ |
| 151 | #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */ |
| 152 | #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */ |
| 153 | #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */ |
| 154 | #define OPCODE_RDID 0x9f /* Read JEDEC ID */ |
| 155 | |
| 156 | /* Status Register bits. */ |
| 157 | #define SR_WIP 1 /* Write in progress */ |
| 158 | #define SR_WEL 2 /* Write enable latch */ |
| 159 | /* meaning of other SR_* bits may differ between vendors */ |
| 160 | #define SR_BP0 4 /* Block protect 0 */ |
| 161 | #define SR_BP1 8 /* Block protect 1 */ |
| 162 | #define SR_BP2 0x10 /* Block protect 2 */ |
| 163 | #define SR_SRWD 0x80 /* SR write protect */ |
| 164 | |
| 165 | /* Define max times to check status register before we give up. */ |
| 166 | #define MAX_READY_WAIT_COUNT 100000 |
| 167 | |
| 168 | |
| 169 | #ifdef CONFIG_MTD_PARTITIONS |
| 170 | #define mtd_has_partitions() (1) |
| 171 | #else |
| 172 | #define mtd_has_partitions() (0) |
| 173 | #endif |
| 174 | |
| 175 | /* |
| 176 | * Ubicom32 FLASH Command Set |
| 177 | */ |
| 178 | #define FLASH_FC_INST_CMD 0x00 /* for SPI command only transaction */ |
| 179 | #define FLASH_FC_INST_WR 0x01 /* for SPI write transaction */ |
| 180 | #define FLASH_FC_INST_RD 0x02 /* for SPI read transaction */ |
| 181 | |
| 182 | #define ALIGN_DOWN(v, a) ((v) & ~((a) - 1)) |
| 183 | #define ALIGN_UP(v, a) (((v) + ((a) - 1)) & ~((a) - 1)) |
| 184 | |
| 185 | #define FLASH_COMMAND_KICK_OFF(io) \ |
| 186 | asm volatile( \ |
| 187 | " bset "D(IO_INT_CLR)"(%0), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t" \ |
| 188 | " jmpt.t .+4 \n\t" \ |
| 189 | " bset "D(IO_INT_SET)"(%0), #0, #%%bit("D(IO_XFL_INT_START)") \n\t" \ |
| 190 | : \ |
| 191 | : "a" (io) \ |
| 192 | : "memory", "cc" \ |
| 193 | ); |
| 194 | |
| 195 | #define FLASH_COMMAND_WAIT_FOR_COMPLETION(io) \ |
| 196 | asm volatile( \ |
| 197 | " btst "D(IO_INT_STATUS)"(%0), #%%bit("D(IO_XFL_INT_DONE)") \n\t" \ |
| 198 | " jmpeq.f .-4 \n\t" \ |
| 199 | : \ |
| 200 | : "a" (io) \ |
| 201 | : "memory", "cc" \ |
| 202 | ); |
| 203 | |
| 204 | #define FLASH_COMMAND_EXEC(io) \ |
| 205 | FLASH_COMMAND_KICK_OFF(io) \ |
| 206 | FLASH_COMMAND_WAIT_FOR_COMPLETION(io) |
| 207 | |
| 208 | |
| 209 | #define OSC1_FREQ 12000000 |
| 210 | #define TEN_MICRO_SECONDS (OSC1_FREQ * 10 / 1000000) |
| 211 | |
| 212 | /* |
| 213 | * We will have to eventually replace this null definition with the real thing. |
| 214 | */ |
| 215 | #define WATCHDOG_RESET() |
| 216 | |
| 217 | #define EXTFLASH_WRITE_FIFO_SIZE 32 |
| 218 | #define EXTFLASH_WRITE_BLOCK_SIZE EXTFLASH_WRITE_FIFO_SIZE /* limit the size to |
| 219 | * FIFO capacity, so |
| 220 | * the thread can be |
| 221 | * suspended. */ |
| 222 | |
| 223 | #define JFFS2_FILESYSTEM_SIZE 0x100000 |
| 224 | |
| 225 | /****************************************************************************/ |
| 226 | |
| 227 | struct m25p { |
| 228 | struct platform_device *plt_dev; |
| 229 | struct mutex lock; |
| 230 | struct mtd_info mtd; |
| 231 | unsigned partitioned:1; |
| 232 | u8 erase_opcode; |
| 233 | u8 command[4]; |
| 234 | }; |
| 235 | |
| 236 | static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd) |
| 237 | { |
| 238 | return container_of(mtd, struct m25p, mtd); |
| 239 | } |
| 240 | |
| 241 | /****************************************************************************/ |
| 242 | |
| 243 | /* |
| 244 | * Internal helper functions |
| 245 | */ |
| 246 | |
| 247 | /* |
| 248 | * Read the status register, returning its value in the location |
| 249 | * Return the status register value. |
| 250 | * Returns negative if error occurred. |
| 251 | */ |
| 252 | static int read_sr(struct m25p *flash) |
| 253 | { |
| 254 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; |
| 255 | |
| 256 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 257 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | |
| 258 | IO_XFL_CTL1_FC_DATA(1); |
| 259 | io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDSR); |
| 260 | FLASH_COMMAND_EXEC(io); |
| 261 | |
| 262 | return io->status1 & 0xff; |
| 263 | } |
| 264 | |
| 265 | /* |
| 266 | * mem_flash_io_read_u32() |
| 267 | */ |
| 268 | static u32 mem_flash_io_read_u32(u32 addr) |
| 269 | { |
| 270 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; |
| 271 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 272 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | |
| 273 | IO_XFL_CTL1_FC_DATA(4) | IO_XFL_CTL1_FC_DUMMY(1) | |
| 274 | IO_XFL_CTL1_FC_ADDR; |
| 275 | io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_FAST_READ) | |
| 276 | IO_XFL_CTL2_FC_ADDR(addr); |
| 277 | FLASH_COMMAND_EXEC(io); |
| 278 | return io->status1; |
| 279 | } |
| 280 | |
| 281 | /* |
| 282 | * mem_flash_read_u8() |
| 283 | */ |
| 284 | static u8 mem_flash_read_u8(u32 addr) |
| 285 | { |
| 286 | u32 tmp_addr = ALIGN_DOWN(addr, 4); |
| 287 | u32 tmp_data = mem_flash_io_read_u32(tmp_addr); |
| 288 | u8 *ptr = (u8 *)&tmp_data; |
| 289 | return ptr[addr & 0x3]; |
| 290 | } |
| 291 | |
| 292 | /* |
| 293 | * mem_flash_read() |
| 294 | * No need to lock as read is implemented with ireads (same as normal flash |
| 295 | * execution). |
| 296 | */ |
| 297 | static void mem_flash_read(u32 addr, void *dst, size_t length) |
| 298 | { |
| 299 | /* |
| 300 | * Range check |
| 301 | */ |
| 302 | /* |
| 303 | * Fix source alignment. |
| 304 | */ |
| 305 | while (addr & 0x03) { |
| 306 | if (length == 0) { |
| 307 | return; |
| 308 | } |
| 309 | *((u8 *)dst) = mem_flash_read_u8(addr++); |
| 310 | dst++; |
| 311 | length--; |
| 312 | } |
| 313 | |
| 314 | while (length >= 4) { |
| 315 | u32 tmp_data = mem_flash_io_read_u32(addr); |
| 316 | addr += 4; |
| 317 | length -= 4; |
| 318 | |
| 319 | /* |
| 320 | * Send the data to the destination. |
| 321 | */ |
| 322 | memcpy((void *)dst, (void *)&tmp_data, 4); |
| 323 | dst += 4; |
| 324 | } |
| 325 | |
| 326 | while (length--) { |
| 327 | *((u8 *)dst) = mem_flash_read_u8(addr++); |
| 328 | dst++; |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | /* |
| 333 | * mem_flash_wait_until_complete() |
| 334 | */ |
| 335 | static void mem_flash_wait_until_complete(void) |
| 336 | { |
| 337 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; |
| 338 | |
| 339 | do { |
| 340 | /* |
| 341 | * Put a delay here to deal with flash programming problem. |
| 342 | */ |
| 343 | u32 mptval = UBICOM32_IO_TIMER->mptval + TEN_MICRO_SECONDS; |
| 344 | while (UBICOM32_IO_TIMER->mptval < mptval) |
| 345 | ; |
| 346 | |
| 347 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 348 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | |
| 349 | IO_XFL_CTL1_FC_DATA(1); |
| 350 | io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDSR); |
| 351 | FLASH_COMMAND_EXEC(io); |
| 352 | } while (io->status1 & SR_WIP); |
| 353 | } |
| 354 | |
| 355 | /* |
| 356 | * mem_flash_write_next() |
| 357 | */ |
| 358 | static size_t mem_flash_write_next(u32 addr, u8 *buf, size_t length) |
| 359 | { |
| 360 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; |
| 361 | u32 data_start = addr; |
| 362 | u32 data_end = addr + length; |
| 363 | size_t count; |
| 364 | u32 i, j; |
| 365 | |
| 366 | /* |
| 367 | * Top limit address. |
| 368 | */ |
| 369 | u32 block_start = ALIGN_DOWN(data_start, 4); |
| 370 | u32 block_end = block_start + EXTFLASH_WRITE_BLOCK_SIZE; |
| 371 | |
| 372 | union { |
| 373 | u8 byte[EXTFLASH_WRITE_BLOCK_SIZE]; |
| 374 | u32 word[EXTFLASH_WRITE_BLOCK_SIZE / 4]; |
| 375 | } write_buf; |
| 376 | |
| 377 | u32 *flash_addr = (u32 *)block_start; |
| 378 | |
| 379 | /* |
| 380 | * The write block must be limited by FLASH internal buffer. |
| 381 | */ |
| 382 | u32 block_end_align = ALIGN_DOWN(block_end, 256); |
| 383 | bool write_needed; |
| 384 | |
| 385 | block_end = (block_end_align > block_start) |
| 386 | ? block_end_align : block_end; |
| 387 | data_end = (data_end <= block_end) ? data_end : block_end; |
| 388 | block_end = ALIGN_UP(data_end, 4); |
| 389 | count = data_end - data_start; |
| 390 | |
| 391 | /* |
| 392 | * Transfer data to a buffer. |
| 393 | */ |
| 394 | for (i = 0; i < (block_end - block_start) / 4; i++) { |
| 395 | /* |
| 396 | * The FLASH read can hold D-cache for a long time. |
| 397 | * Use I/O operation to read FLASH to avoid starving other |
| 398 | * threads, especially HRT. (Do this for application only) |
| 399 | */ |
| 400 | write_buf.word[i] = mem_flash_io_read_u32( |
| 401 | (u32)(&flash_addr[i])); |
| 402 | } |
| 403 | |
| 404 | write_needed = false; |
| 405 | for (i = 0, j = (data_start - block_start); |
| 406 | i < (data_end - data_start); i++, j++) { |
| 407 | write_needed = write_needed || (write_buf.byte[j] != buf[i]); |
| 408 | write_buf.byte[j] &= buf[i]; |
| 409 | } |
| 410 | |
| 411 | |
| 412 | /* |
| 413 | * If the data in FLASH is identical to what to be written. Then skip |
| 414 | * it. |
| 415 | */ |
| 416 | if (write_needed) { |
| 417 | /* |
| 418 | * Write to flash. |
| 419 | */ |
| 420 | void *tmp __attribute__((unused)); |
| 421 | s32 extra_words; |
| 422 | |
| 423 | asm volatile( |
| 424 | " move.4 %0, %2 \n\t" |
| 425 | " bset "D(IO_INT_SET)"(%1), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t" |
| 426 | " pipe_flush 0 \n\t" |
| 427 | " .rept "D(EXTFLASH_WRITE_FIFO_SIZE / 4)" \n\t" |
| 428 | " move.4 "D(IO_TX_FIFO)"(%1), (%0)4++ \n\t" |
| 429 | " .endr \n\t" |
| 430 | : "=&a" (tmp) |
| 431 | : "a" (io), "r" (&write_buf.word[0]) |
| 432 | : "memory", "cc" |
| 433 | ); |
| 434 | |
| 435 | /* Lock FLASH for write access. */ |
| 436 | io->ctl0 |= IO_XFL_CTL0_MCB_LOCK; |
| 437 | |
| 438 | /* Command: WREN */ |
| 439 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 440 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD); |
| 441 | io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_WREN); |
| 442 | FLASH_COMMAND_EXEC(io); |
| 443 | |
| 444 | /* Command: BYTE PROGRAM */ |
| 445 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 446 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | |
| 447 | IO_XFL_CTL1_FC_DATA(block_end - block_start) | |
| 448 | IO_XFL_CTL1_FC_ADDR; |
| 449 | io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_PP) | |
| 450 | IO_XFL_CTL2_FC_ADDR(block_start); |
| 451 | FLASH_COMMAND_KICK_OFF(io); |
| 452 | |
| 453 | extra_words = (s32)(block_end - block_start - |
| 454 | EXTFLASH_WRITE_FIFO_SIZE) / 4; |
| 455 | if (extra_words > 0) { |
| 456 | asm volatile( |
| 457 | " move.4 %0, %3 \n\t" |
| 458 | "1: cmpi "D(IO_FIFO_LEVEL)"(%1), #4 \n\t" |
| 459 | " jmpgt.s.t 1b \n\t" |
| 460 | " move.4 "D(IO_TX_FIFO)"(%1), (%0)4++ \n\t" |
| 461 | " add.4 %2, #-1, %2 \n\t" |
| 462 | " jmpgt.t 1b \n\t" |
| 463 | : "=&a" (tmp) |
| 464 | : "a" (io), "d" (extra_words), |
| 465 | "r" (&write_buf.word[EXTFLASH_WRITE_FIFO_SIZE / 4]) |
| 466 | : "memory", "cc" |
| 467 | ); |
| 468 | } |
| 469 | FLASH_COMMAND_WAIT_FOR_COMPLETION(io); |
| 470 | |
| 471 | mem_flash_wait_until_complete(); |
| 472 | |
| 473 | |
| 474 | /* Unlock FLASH for cache access. */ |
| 475 | io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK; |
| 476 | } |
| 477 | |
| 478 | /* |
| 479 | * Complete. |
| 480 | */ |
| 481 | return count; |
| 482 | } |
| 483 | |
| 484 | /* |
| 485 | * mem_flash_write() |
| 486 | */ |
| 487 | static void mem_flash_write(u32 addr, const void *src, size_t length) |
| 488 | { |
| 489 | /* |
| 490 | * Write data |
| 491 | */ |
| 492 | u8_t *ptr = (u8_t *)src; |
| 493 | while (length) { |
| 494 | size_t count = mem_flash_write_next(addr, ptr, length); |
| 495 | addr += count; |
| 496 | ptr += count; |
| 497 | length -= count; |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | /* |
| 502 | * Service routine to read status register until ready, or timeout occurs. |
| 503 | * Returns non-zero if error. |
| 504 | */ |
| 505 | static int wait_till_ready(struct m25p *flash) |
| 506 | { |
| 507 | int count; |
| 508 | int sr; |
| 509 | |
| 510 | /* one chip guarantees max 5 msec wait here after page writes, |
| 511 | * but potentially three seconds (!) after page erase. |
| 512 | */ |
| 513 | for (count = 0; count < MAX_READY_WAIT_COUNT; count++) { |
| 514 | u32 mptval; |
| 515 | sr = read_sr(flash); |
| 516 | if (sr < 0) |
| 517 | break; |
| 518 | else if (!(sr & SR_WIP)) |
| 519 | return 0; |
| 520 | |
| 521 | /* |
| 522 | * Put a 10us delay here to deal with flash programming problem. |
| 523 | */ |
| 524 | mptval = UBICOM32_IO_TIMER->mptval + TEN_MICRO_SECONDS; |
| 525 | while ((s32)(mptval - UBICOM32_IO_TIMER->mptval) > 0) { |
| 526 | WATCHDOG_RESET(); |
| 527 | } |
| 528 | /* REVISIT sometimes sleeping would be best */ |
| 529 | } |
| 530 | |
| 531 | return 1; |
| 532 | } |
| 533 | |
| 534 | /* |
| 535 | * mem_flash_erase_page() |
| 536 | */ |
| 537 | static void mem_flash_erase_page(u32 addr) |
| 538 | { |
| 539 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; |
| 540 | |
| 541 | /* Lock FLASH for write access. */ |
| 542 | io->ctl0 |= IO_XFL_CTL0_MCB_LOCK; |
| 543 | |
| 544 | /* Command: WREN */ |
| 545 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 546 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD); |
| 547 | io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_WREN); |
| 548 | FLASH_COMMAND_EXEC(io); |
| 549 | |
| 550 | /* Command: ERASE */ |
| 551 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 552 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD) | |
| 553 | IO_XFL_CTL1_FC_ADDR; |
| 554 | io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_SE) | |
| 555 | IO_XFL_CTL2_FC_ADDR(addr); |
| 556 | FLASH_COMMAND_EXEC(io); |
| 557 | |
| 558 | mem_flash_wait_until_complete(); |
| 559 | |
| 560 | /* Unlock FLASH for cache access. */ |
| 561 | io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK; |
| 562 | } |
| 563 | |
| 564 | /* |
| 565 | * mem_flash_erase() |
| 566 | */ |
| 567 | static u32 mem_flash_erase(u32 addr, u32 length) |
| 568 | { |
| 569 | /* |
| 570 | * Calculate the endaddress to be the first address of the page |
| 571 | * just beyond this erase section of pages. |
| 572 | */ |
| 573 | u32 endaddr = addr + length; |
| 574 | |
| 575 | /* |
| 576 | * Erase. |
| 577 | */ |
| 578 | while (addr < endaddr) { |
| 579 | u32 test_addr = addr; |
| 580 | mem_flash_erase_page(addr); |
| 581 | |
| 582 | /* |
| 583 | * Test how much was erased as actual flash page at this address |
| 584 | * may be smaller than the expected page size. |
| 585 | */ |
| 586 | while (test_addr < endaddr) { |
| 587 | /* |
| 588 | * The FLASH read can hold D-cache for a long time. Use |
| 589 | * I/O operation to read FLASH to avoid starving other |
| 590 | * threads, especially HRT. (Do this for application |
| 591 | * only) |
| 592 | */ |
| 593 | if (mem_flash_io_read_u32(test_addr) != 0xFFFFFFFF) { |
| 594 | break; |
| 595 | } |
| 596 | test_addr += 4; |
| 597 | } |
| 598 | if (test_addr == addr) { |
| 599 | printk("erase failed at address 0x%x, skipping", |
| 600 | test_addr); |
| 601 | test_addr += 4; |
| 602 | return 1; |
| 603 | } |
| 604 | addr = test_addr; |
| 605 | } |
| 606 | return 0; |
| 607 | } |
| 608 | |
| 609 | |
| 610 | /****************************************************************************/ |
| 611 | |
| 612 | /* |
| 613 | * MTD implementation |
| 614 | */ |
| 615 | |
| 616 | /* |
| 617 | * Erase an address range on the flash chip. The address range may extend |
| 618 | * one or more erase sectors. Return an error is there is a problem erasing. |
| 619 | */ |
| 620 | static int ubicom32_flash_driver_erase(struct mtd_info *mtd, |
| 621 | struct erase_info *instr) |
| 622 | { |
| 623 | struct m25p *flash = mtd_to_m25p(mtd); |
| 624 | u32 addr, len; |
| 625 | |
| 626 | DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %lld\n", |
| 627 | dev_name(&flash->plt_dev->dev), __FUNCTION__, "at", |
| 628 | (u32)instr->addr, instr->len); |
| 629 | |
| 630 | /* sanity checks */ |
| 631 | if (instr->addr + instr->len > flash->mtd.size) |
| 632 | return -EINVAL; |
| 633 | if ((instr->addr % mtd->erasesize) != 0 |
| 634 | || (instr->len % mtd->erasesize) != 0) { |
| 635 | return -EINVAL; |
| 636 | } |
| 637 | |
| 638 | addr = instr->addr + UBICOM32_FLASH_BASE; |
| 639 | len = instr->len; |
| 640 | |
| 641 | mutex_lock(&flash->lock); |
| 642 | |
| 643 | /* REVISIT in some cases we could speed up erasing large regions |
| 644 | * by using OPCODE_SE instead of OPCODE_BE_4K |
| 645 | */ |
| 646 | |
| 647 | /* now erase those sectors */ |
| 648 | if (mem_flash_erase(addr, len)) { |
| 649 | instr->state = MTD_ERASE_FAILED; |
| 650 | mutex_unlock(&flash->lock); |
| 651 | return -EIO; |
| 652 | } |
| 653 | |
| 654 | mutex_unlock(&flash->lock); |
| 655 | instr->state = MTD_ERASE_DONE; |
| 656 | mtd_erase_callback(instr); |
| 657 | return 0; |
| 658 | } |
| 659 | |
| 660 | /* |
| 661 | * Read an address range from the flash chip. The address range |
| 662 | * may be any size provided it is within the physical boundaries. |
| 663 | */ |
| 664 | static int ubicom32_flash_driver_read(struct mtd_info *mtd, loff_t from, |
| 665 | size_t len, size_t *retlen, u_char *buf) |
| 666 | { |
| 667 | struct m25p *flash = mtd_to_m25p(mtd); |
| 668 | u32 base_addr = UBICOM32_FLASH_BASE + from; |
| 669 | |
| 670 | DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n", |
| 671 | dev_name(&flash->plt_dev->dev), __FUNCTION__, "from", |
| 672 | (u32)from, len); |
| 673 | |
| 674 | /* sanity checks */ |
| 675 | if (!len) |
| 676 | return 0; |
| 677 | |
| 678 | if (from + len > flash->mtd.size) |
| 679 | return -EINVAL; |
| 680 | |
| 681 | /* Byte count starts at zero. */ |
| 682 | if (retlen) |
| 683 | *retlen = 0; |
| 684 | |
| 685 | mutex_lock(&flash->lock); |
| 686 | |
| 687 | /* Wait till previous write/erase is done. */ |
| 688 | if (wait_till_ready(flash)) { |
| 689 | /* REVISIT status return?? */ |
| 690 | mutex_unlock(&flash->lock); |
| 691 | return 1; |
| 692 | } |
| 693 | |
| 694 | mem_flash_read(base_addr, (void *)buf, len); |
| 695 | |
| 696 | if (retlen) |
| 697 | *retlen = len; |
| 698 | |
| 699 | mutex_unlock(&flash->lock); |
| 700 | |
| 701 | return 0; |
| 702 | } |
| 703 | |
| 704 | /* |
| 705 | * Write an address range to the flash chip. Data must be written in |
| 706 | * FLASH_PAGESIZE chunks. The address range may be any size provided |
| 707 | * it is within the physical boundaries. |
| 708 | */ |
| 709 | static int ubicom32_flash_driver_write(struct mtd_info *mtd, loff_t to, |
| 710 | size_t len, size_t *retlen, |
| 711 | const u_char *buf) |
| 712 | { |
| 713 | struct m25p *flash = mtd_to_m25p(mtd); |
| 714 | u32 base_addr = UBICOM32_FLASH_BASE + to; |
| 715 | DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n", |
| 716 | dev_name(&flash->plt_dev->dev), __FUNCTION__, "to", |
| 717 | (u32)to, len); |
| 718 | |
| 719 | if (retlen) |
| 720 | *retlen = 0; |
| 721 | |
| 722 | /* sanity checks */ |
| 723 | if (!len) |
| 724 | return 0; |
| 725 | |
| 726 | if (to + len > flash->mtd.size) |
| 727 | return -EINVAL; |
| 728 | |
| 729 | mutex_lock(&flash->lock); |
| 730 | |
| 731 | mem_flash_write(base_addr, (void *) buf, len); |
| 732 | |
| 733 | /* Wait until finished previous write command. */ |
| 734 | if (wait_till_ready(flash)) { |
| 735 | mutex_unlock(&flash->lock); |
| 736 | return 1; |
| 737 | } |
| 738 | |
| 739 | if (retlen) |
| 740 | *retlen = len; |
| 741 | |
| 742 | mutex_unlock(&flash->lock); |
| 743 | return 0; |
| 744 | } |
| 745 | |
| 746 | |
| 747 | /****************************************************************************/ |
| 748 | |
| 749 | /* |
| 750 | * SPI device driver setup and teardown |
| 751 | */ |
| 752 | |
| 753 | struct flash_info { |
| 754 | char *name; |
| 755 | |
| 756 | /* JEDEC id zero means "no ID" (most older chips); otherwise it has |
| 757 | * a high byte of zero plus three data bytes: the manufacturer id, |
| 758 | * then a two byte device id. |
| 759 | */ |
| 760 | u32 jedec_id; |
| 761 | |
| 762 | /* The size listed here is what works with OPCODE_SE, which isn't |
| 763 | * necessarily called a "sector" by the vendor. |
| 764 | */ |
| 765 | unsigned sector_size; |
| 766 | u16 n_sectors; |
| 767 | |
| 768 | u16 flags; |
| 769 | #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */ |
| 770 | }; |
| 771 | |
| 772 | |
| 773 | /* NOTE: double check command sets and memory organization when you add |
| 774 | * more flash chips. This current list focusses on newer chips, which |
| 775 | * have been converging on command sets which including JEDEC ID. |
| 776 | */ |
| 777 | static struct flash_info __devinitdata m25p_data[] = { |
| 778 | |
| 779 | /* Atmel -- some are (confusingly) marketed as "DataFlash" */ |
| 780 | { "at25fs010", 0x1f6601, 32 * 1024, 4, SECT_4K, }, |
| 781 | { "at25fs040", 0x1f6604, 64 * 1024, 8, SECT_4K, }, |
| 782 | |
| 783 | { "at25df041a", 0x1f4401, 64 * 1024, 8, SECT_4K, }, |
| 784 | |
| 785 | { "at26f004", 0x1f0400, 64 * 1024, 8, SECT_4K, }, |
| 786 | { "at26df081a", 0x1f4501, 64 * 1024, 16, SECT_4K, }, |
| 787 | { "at26df161a", 0x1f4601, 64 * 1024, 32, SECT_4K, }, |
| 788 | { "at26df321", 0x1f4701, 64 * 1024, 64, SECT_4K, }, |
| 789 | |
| 790 | /* Spansion -- single (large) sector size only, at least |
| 791 | * for the chips listed here (without boot sectors). |
| 792 | */ |
| 793 | { "s25sl004a", 0x010212, 64 * 1024, 8, }, |
| 794 | { "s25sl008a", 0x010213, 64 * 1024, 16, }, |
| 795 | { "s25sl016a", 0x010214, 64 * 1024, 32, }, |
| 796 | { "s25sl032a", 0x010215, 64 * 1024, 64, }, |
| 797 | { "s25sl064a", 0x010216, 64 * 1024, 128, }, |
| 798 | |
| 799 | /* SST -- large erase sizes are "overlays", "sectors" are 4K */ |
| 800 | { "sst25vf040b", 0xbf258d, 64 * 1024, 8, SECT_4K, }, |
| 801 | { "sst25vf080b", 0xbf258e, 64 * 1024, 16, SECT_4K, }, |
| 802 | { "sst25vf016b", 0xbf2541, 64 * 1024, 32, SECT_4K, }, |
| 803 | { "sst25vf032b", 0xbf254a, 64 * 1024, 64, SECT_4K, }, |
| 804 | |
| 805 | /* ST Microelectronics -- newer production may have feature updates */ |
| 806 | { "m25p05", 0x202010, 32 * 1024, 2, }, |
| 807 | { "m25p10", 0x202011, 32 * 1024, 4, }, |
| 808 | { "m25p20", 0x202012, 64 * 1024, 4, }, |
| 809 | { "m25p40", 0x202013, 64 * 1024, 8, }, |
| 810 | { "m25p80", 0, 64 * 1024, 16, }, |
| 811 | { "m25p16", 0x202015, 64 * 1024, 32, }, |
| 812 | { "m25p32", 0x202016, 64 * 1024, 64, }, |
| 813 | { "m25p64", 0x202017, 64 * 1024, 128, }, |
| 814 | { "m25p128", 0x202018, 256 * 1024, 64, }, |
| 815 | |
| 816 | { "m45pe80", 0x204014, 64 * 1024, 16, }, |
| 817 | { "m45pe16", 0x204015, 64 * 1024, 32, }, |
| 818 | |
| 819 | { "m25pe80", 0x208014, 64 * 1024, 16, }, |
| 820 | { "m25pe16", 0x208015, 64 * 1024, 32, SECT_4K, }, |
| 821 | |
| 822 | /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ |
| 823 | { "w25x10", 0xef3011, 64 * 1024, 2, SECT_4K, }, |
| 824 | { "w25x20", 0xef3012, 64 * 1024, 4, SECT_4K, }, |
| 825 | { "w25x40", 0xef3013, 64 * 1024, 8, SECT_4K, }, |
| 826 | { "w25x80", 0xef3014, 64 * 1024, 16, SECT_4K, }, |
| 827 | { "w25x16", 0xef3015, 64 * 1024, 32, SECT_4K, }, |
| 828 | { "w25x32", 0xef3016, 64 * 1024, 64, SECT_4K, }, |
| 829 | { "w25x64", 0xef3017, 64 * 1024, 128, SECT_4K, }, |
| 830 | |
| 831 | /* Macronix -- mx25lxxx */ |
| 832 | { "mx25l32", 0xc22016, 64 * 1024, 64, }, |
| 833 | { "mx25l64", 0xc22017, 64 * 1024, 128, }, |
| 834 | { "mx25l128", 0xc22018, 64 * 1024, 256, }, |
| 835 | |
| 836 | }; |
| 837 | |
| 838 | struct flash_info *__devinit jedec_probe(struct platform_device *spi) |
| 839 | { |
| 840 | int tmp; |
| 841 | u32 jedec; |
| 842 | struct flash_info *info; |
| 843 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; |
| 844 | |
| 845 | /* |
| 846 | * Setup and run RDID command on the flash. |
| 847 | */ |
| 848 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 849 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | |
| 850 | IO_XFL_CTL1_FC_DATA(3); |
| 851 | io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDID); |
| 852 | FLASH_COMMAND_EXEC(io); |
| 853 | |
| 854 | jedec = io->status1 & 0x00ffffff; |
| 855 | |
| 856 | for (tmp = 0, info = m25p_data; |
| 857 | tmp < ARRAY_SIZE(m25p_data); |
| 858 | tmp++, info++) { |
| 859 | if (info->jedec_id == jedec) |
| 860 | return info; |
| 861 | } |
| 862 | dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec); |
| 863 | return NULL; |
| 864 | } |
| 865 | |
| 866 | |
| 867 | /* |
| 868 | * board specific setup should have ensured the SPI clock used here |
| 869 | * matches what the READ command supports, at least until this driver |
| 870 | * understands FAST_READ (for clocks over 25 MHz). |
| 871 | */ |
| 872 | static int __devinit ubicom32_flash_probe(struct platform_device *spi) |
| 873 | { |
| 874 | struct flash_platform_data *data; |
| 875 | struct m25p *flash; |
| 876 | struct flash_info *info; |
| 877 | unsigned i; |
| 878 | |
| 879 | /* Platform data helps sort out which chip type we have, as |
| 880 | * well as how this board partitions it. If we don't have |
| 881 | * a chip ID, try the JEDEC id commands; they'll work for most |
| 882 | * newer chips, even if we don't recognize the particular chip. |
| 883 | */ |
| 884 | data = spi->dev.platform_data; |
| 885 | if (data && data->type) { |
| 886 | for (i = 0, info = m25p_data; |
| 887 | i < ARRAY_SIZE(m25p_data); |
| 888 | i++, info++) { |
| 889 | if (strcmp(data->type, info->name) == 0) |
| 890 | break; |
| 891 | } |
| 892 | |
| 893 | /* unrecognized chip? */ |
| 894 | if (i == ARRAY_SIZE(m25p_data)) { |
| 895 | DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n", |
| 896 | dev_name(&spi->dev), data->type); |
| 897 | info = NULL; |
| 898 | |
| 899 | /* recognized; is that chip really what's there? */ |
| 900 | } else if (info->jedec_id) { |
| 901 | struct flash_info *chip = jedec_probe(spi); |
| 902 | |
| 903 | if (!chip || chip != info) { |
| 904 | dev_warn(&spi->dev, "found %s, expected %s\n", |
| 905 | chip ? chip->name : "UNKNOWN", |
| 906 | info->name); |
| 907 | info = NULL; |
| 908 | } |
| 909 | } |
| 910 | } else |
| 911 | info = jedec_probe(spi); |
| 912 | |
| 913 | if (!info) |
| 914 | return -ENODEV; |
| 915 | |
| 916 | flash = kzalloc(sizeof *flash, GFP_KERNEL); |
| 917 | if (!flash) |
| 918 | return -ENOMEM; |
| 919 | |
| 920 | flash->plt_dev = spi; |
| 921 | mutex_init(&flash->lock); |
| 922 | dev_set_drvdata(&spi->dev, flash); |
| 923 | |
| 924 | if (data && data->name) |
| 925 | flash->mtd.name = data->name; |
| 926 | else |
| 927 | flash->mtd.name = dev_name(&spi->dev); |
| 928 | |
| 929 | flash->mtd.type = MTD_NORFLASH; |
| 930 | flash->mtd.writesize = 1; |
| 931 | flash->mtd.flags = MTD_CAP_NORFLASH; |
| 932 | flash->mtd.size = info->sector_size * info->n_sectors; |
| 933 | flash->mtd.erase = ubicom32_flash_driver_erase; |
| 934 | flash->mtd.read = ubicom32_flash_driver_read; |
| 935 | flash->mtd.write = ubicom32_flash_driver_write; |
| 936 | |
| 937 | /* prefer "small sector" erase if possible */ |
| 938 | /* |
| 939 | * The Ubicom erase code does not use the opcode for smaller sectors, |
| 940 | * so disable that functionality and keep erasesize == sector_size |
| 941 | * so that the test in ubicom32_flash_driver_erase works properly. |
| 942 | * |
| 943 | * This was: `if (info->flags & SECT_4K) {' instead of `if (0) {' |
| 944 | */ |
| 945 | if (0) { |
| 946 | flash->erase_opcode = OPCODE_BE_4K; |
| 947 | flash->mtd.erasesize = 4096; |
| 948 | } else { |
| 949 | flash->erase_opcode = OPCODE_SE; |
| 950 | flash->mtd.erasesize = info->sector_size; |
| 951 | } |
| 952 | |
| 953 | dev_info(&spi->dev, "%s (%lld Kbytes)\n", info->name, |
| 954 | flash->mtd.size / 1024); |
| 955 | |
| 956 | DEBUG(MTD_DEBUG_LEVEL2, |
| 957 | "mtd .name = %s, .size = 0x%.8llx (%lluMiB) " |
| 958 | ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", |
| 959 | flash->mtd.name, |
| 960 | flash->mtd.size, flash->mtd.size / (1024*1024), |
| 961 | flash->mtd.erasesize, flash->mtd.erasesize / 1024, |
| 962 | flash->mtd.numeraseregions); |
| 963 | |
| 964 | if (flash->mtd.numeraseregions) |
| 965 | for (i = 0; i < flash->mtd.numeraseregions; i++) |
| 966 | DEBUG(MTD_DEBUG_LEVEL2, |
| 967 | "mtd.eraseregions[%d] = { .offset = 0x%.8llx, " |
| 968 | ".erasesize = 0x%.8x (%uKiB), " |
| 969 | ".numblocks = %d }\n", |
| 970 | i, flash->mtd.eraseregions[i].offset, |
| 971 | flash->mtd.eraseregions[i].erasesize, |
| 972 | flash->mtd.eraseregions[i].erasesize / 1024, |
| 973 | flash->mtd.eraseregions[i].numblocks); |
| 974 | |
| 975 | |
| 976 | /* partitions should match sector boundaries; and it may be good to |
| 977 | * use readonly partitions for writeprotected sectors (BP2..BP0). |
| 978 | */ |
| 979 | if (mtd_has_partitions()) { |
| 980 | struct mtd_partition *parts = NULL; |
| 981 | int nr_parts = 0; |
| 982 | |
| 983 | #ifdef CONFIG_MTD_CMDLINE_PARTS |
| 984 | static const char *part_probes[] = { "cmdlinepart", NULL, }; |
| 985 | |
| 986 | nr_parts = parse_mtd_partitions(&flash->mtd, |
| 987 | part_probes, &parts, 0); |
| 988 | #endif |
| 989 | |
| 990 | if (nr_parts <= 0 && data && data->parts) { |
| 991 | parts = data->parts; |
| 992 | nr_parts = data->nr_parts; |
| 993 | if (nr_parts >= 2) { |
| 994 | /* |
| 995 | * Set last partition size to be 1M. |
| 996 | */ |
| 997 | parts[1].size = flash->mtd.size - |
| 998 | parts[0].size - JFFS2_FILESYSTEM_SIZE; |
| 999 | parts[2].size = JFFS2_FILESYSTEM_SIZE; |
| 1000 | } |
| 1001 | } |
| 1002 | |
| 1003 | if (nr_parts > 0) { |
| 1004 | for (i = 0; i < nr_parts; i++) { |
| 1005 | DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = " |
| 1006 | "{.name = %s, .offset = 0x%.8llx, " |
| 1007 | ".size = 0x%.8llx (%lluKiB) }\n", |
| 1008 | i, parts[i].name, |
| 1009 | parts[i].offset, |
| 1010 | parts[i].size, |
| 1011 | parts[i].size / 1024); |
| 1012 | } |
| 1013 | flash->partitioned = 1; |
| 1014 | return add_mtd_partitions(&flash->mtd, parts, nr_parts); |
| 1015 | } |
| 1016 | } else if (data->nr_parts) |
| 1017 | dev_warn(&spi->dev, "ignoring %d default partitions on %s\n", |
| 1018 | data->nr_parts, data->name); |
| 1019 | |
| 1020 | return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0; |
| 1021 | } |
| 1022 | |
| 1023 | |
| 1024 | static int __devexit ubicom32_flash_remove(struct spi_device *spi) |
| 1025 | { |
| 1026 | struct m25p *flash = dev_get_drvdata(&spi->dev); |
| 1027 | int status; |
| 1028 | |
| 1029 | /* Clean up MTD stuff. */ |
| 1030 | if (mtd_has_partitions() && flash->partitioned) |
| 1031 | status = del_mtd_partitions(&flash->mtd); |
| 1032 | else |
| 1033 | status = del_mtd_device(&flash->mtd); |
| 1034 | if (status == 0) |
| 1035 | kfree(flash); |
| 1036 | return 0; |
| 1037 | } |
| 1038 | |
| 1039 | static struct platform_driver ubicom32_flash_driver = { |
| 1040 | .driver = { |
| 1041 | .name = "ubicom32flashdriver", |
| 1042 | .bus = &platform_bus_type, |
| 1043 | .owner = THIS_MODULE, |
| 1044 | }, |
| 1045 | .probe = ubicom32_flash_probe, |
| 1046 | .remove = NULL, |
| 1047 | }; |
| 1048 | |
| 1049 | static int ubicom32_flash_driver_init(void) |
| 1050 | { |
| 1051 | return platform_driver_register(&ubicom32_flash_driver); |
| 1052 | } |
| 1053 | |
| 1054 | |
| 1055 | static void ubicom32_flash_driver_exit(void) |
| 1056 | { |
| 1057 | platform_driver_unregister(&ubicom32_flash_driver); |
| 1058 | } |
| 1059 | |
| 1060 | |
| 1061 | module_init(ubicom32_flash_driver_init); |
| 1062 | module_exit(ubicom32_flash_driver_exit); |
| 1063 | |
| 1064 | MODULE_LICENSE("GPL"); |
| 1065 | MODULE_AUTHOR("Mike Lavender"); |
| 1066 | MODULE_DESCRIPTION("Ubicom32 MTD SPI driver for ST M25Pxx flash chips"); |
| 1067 | |