Root/target/linux/ubicom32/files/drivers/mtd/devices/ubi32-m25p80.c

1/*
2 * drivers/mtd/devices/ubi32-m25p80.c
3 * NOR flash driver, Ubicom processor internal SPI flash interface.
4 *
5 * This code instantiates the serial flash that contains the
6 * original bootcode. The serial flash start at address 0x60000000
7 * in both Ubicom32V3 and Ubicom32V4 ISAs.
8 *
9 * This piece of flash is made to appear as a Memory Technology
10 * Device (MTD) with this driver to allow Read/Write/Erase operations.
11 *
12 * (C) Copyright 2009, Ubicom, Inc.
13 *
14 * This file is part of the Ubicom32 Linux Kernel Port.
15 *
16 * The Ubicom32 Linux Kernel Port is free software: you can redistribute
17 * it and/or modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation, either version 2 of the
19 * License, or (at your option) any later version.
20 *
21 * The Ubicom32 Linux Kernel Port is distributed in the hope that it
22 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
23 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
24 * the GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with the Ubicom32 Linux Kernel Port. If not,
28 * see <http://www.gnu.org/licenses/>.
29 *
30 * Ubicom32 implementation derived from (with many thanks):
31 * arch/m68knommu
32 * arch/blackfin
33 * arch/parisc
34 */
35#include <linux/types.h>
36#include <linux/device.h>
37#include <linux/platform_device.h>
38#include <linux/mtd/mtd.h>
39#include <linux/mtd/partitions.h>
40#include <linux/mtd/physmap.h>
41#include <linux/spi/spi.h>
42#include <linux/spi/flash.h>
43
44#include <linux/init.h>
45#include <linux/module.h>
46#include <linux/interrupt.h>
47#include <linux/mutex.h>
48
49#include <asm/ip5000.h>
50#include <asm/devtree.h>
51
52#define UBICOM32_FLASH_BASE 0x60000000
53#define UBICOM32_FLASH_MAX_SIZE 0x01000000
54#define UBICOM32_FLASH_START 0x00000000
55#define UBICOM32_KERNEL_OFFSET 0x00010000 /* The kernel starts after Ubicom
56                        * .protect section. */
57
58static struct mtd_partition ubicom32_flash_partitions[] = {
59    {
60        .name = "Bootloader", /* Protected Section
61                         * Partition */
62        .size = 0x10000,
63        .offset = UBICOM32_FLASH_START,
64// .mask_flags = MTD_WRITEABLE /* Mark Read-only */
65    },
66    {
67        .name = "Kernel", /* Kernel Partition. */
68        .size = 0, /* this will be set up during
69                         * probe stage. At that time we
70                         * will know end of linux image
71                         * in flash. */
72        .offset = MTDPART_OFS_APPEND, /* Starts right after Protected
73                         * section. */
74// .mask_flags = MTD_WRITEABLE /* Mark Read-only */
75    },
76    {
77        .name = "Rest", /* Rest of the flash. */
78        .size = 0x200000, /* Use up what remains in the
79                         * flash. */
80        .offset = MTDPART_OFS_NXTBLK, /* Starts right after Protected
81                         * section. */
82    }
83};
84
85static struct flash_platform_data ubicom32_flash_data = {
86    .name = "ubicom32_boot_flash",
87    .parts = ubicom32_flash_partitions,
88    .nr_parts = ARRAY_SIZE(ubicom32_flash_partitions),
89};
90
91static struct resource ubicom32_flash_resource[] = {
92    {
93        .start = UBICOM32_FLASH_BASE,
94        .end = UBICOM32_FLASH_BASE +
95        UBICOM32_FLASH_MAX_SIZE - 1,
96        .flags = IORESOURCE_MEM,
97    },
98};
99
100static struct platform_device ubicom32_flash_device = {
101    .name = "ubicom32flashdriver",
102    .id = 0, /* Bus number */
103    .num_resources = ARRAY_SIZE(ubicom32_flash_resource),
104    .resource = ubicom32_flash_resource,
105    .dev = {
106        .platform_data = &ubicom32_flash_data,
107    },
108};
109
110static struct platform_device *ubicom32_flash_devices[] = {
111    &ubicom32_flash_device,
112};
113
114static int __init ubicom32_flash_init(void)
115{
116    printk(KERN_INFO "%s(): registering device resources\n",
117           __FUNCTION__);
118    platform_add_devices(ubicom32_flash_devices,
119                 ARRAY_SIZE(ubicom32_flash_devices));
120    return 0;
121}
122
123arch_initcall(ubicom32_flash_init);
124
125/*
126 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips through
127 * Ubicom32 SPI controller.
128 *
129 * Author: Mike Lavender, mike@steroidmicros.com
130 *
131 * Copyright (c) 2005, Intec Automation Inc.
132 *
133 * Some parts are based on lart.c by Abraham Van Der Merwe
134 *
135 * Cleaned up and generalized based on mtd_dataflash.c
136 *
137 * This code is free software; you can redistribute it and/or modify
138 * it under the terms of the GNU General Public License version 2 as
139 * published by the Free Software Foundation.
140 *
141 */
142
143#define FLASH_PAGESIZE 256
144
145/* Flash opcodes. */
146#define OPCODE_WREN 0x06 /* Write enable */
147#define OPCODE_RDSR 0x05 /* Read status register */
148#define OPCODE_READ 0x03 /* Read data bytes (low frequency) */
149#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
150#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
151#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
152#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
153#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
154#define OPCODE_RDID 0x9f /* Read JEDEC ID */
155
156/* Status Register bits. */
157#define SR_WIP 1 /* Write in progress */
158#define SR_WEL 2 /* Write enable latch */
159/* meaning of other SR_* bits may differ between vendors */
160#define SR_BP0 4 /* Block protect 0 */
161#define SR_BP1 8 /* Block protect 1 */
162#define SR_BP2 0x10 /* Block protect 2 */
163#define SR_SRWD 0x80 /* SR write protect */
164
165/* Define max times to check status register before we give up. */
166#define MAX_READY_WAIT_COUNT 100000
167
168
169#ifdef CONFIG_MTD_PARTITIONS
170#define mtd_has_partitions() (1)
171#else
172#define mtd_has_partitions() (0)
173#endif
174
175/*
176 * Ubicom32 FLASH Command Set
177 */
178#define FLASH_FC_INST_CMD 0x00 /* for SPI command only transaction */
179#define FLASH_FC_INST_WR 0x01 /* for SPI write transaction */
180#define FLASH_FC_INST_RD 0x02 /* for SPI read transaction */
181
182#define ALIGN_DOWN(v, a) ((v) & ~((a) - 1))
183#define ALIGN_UP(v, a) (((v) + ((a) - 1)) & ~((a) - 1))
184
185#define FLASH_COMMAND_KICK_OFF(io) \
186    asm volatile( \
187    " bset "D(IO_INT_CLR)"(%0), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t" \
188    " jmpt.t .+4 \n\t" \
189    " bset "D(IO_INT_SET)"(%0), #0, #%%bit("D(IO_XFL_INT_START)") \n\t" \
190        : \
191        : "a" (io) \
192        : "memory", "cc" \
193    );
194
195#define FLASH_COMMAND_WAIT_FOR_COMPLETION(io) \
196    asm volatile( \
197    " btst "D(IO_INT_STATUS)"(%0), #%%bit("D(IO_XFL_INT_DONE)") \n\t" \
198    " jmpeq.f .-4 \n\t" \
199        : \
200        : "a" (io) \
201        : "memory", "cc" \
202    );
203
204#define FLASH_COMMAND_EXEC(io) \
205    FLASH_COMMAND_KICK_OFF(io) \
206    FLASH_COMMAND_WAIT_FOR_COMPLETION(io)
207
208
209#define OSC1_FREQ 12000000
210#define TEN_MICRO_SECONDS (OSC1_FREQ * 10 / 1000000)
211
212/*
213 * We will have to eventually replace this null definition with the real thing.
214 */
215#define WATCHDOG_RESET()
216
217#define EXTFLASH_WRITE_FIFO_SIZE 32
218#define EXTFLASH_WRITE_BLOCK_SIZE EXTFLASH_WRITE_FIFO_SIZE /* limit the size to
219                                * FIFO capacity, so
220                                * the thread can be
221                                * suspended. */
222
223#define JFFS2_FILESYSTEM_SIZE 0x100000
224
225/****************************************************************************/
226
227struct m25p {
228    struct platform_device *plt_dev;
229    struct mutex lock;
230    struct mtd_info mtd;
231    unsigned partitioned:1;
232    u8 erase_opcode;
233    u8 command[4];
234};
235
236static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
237{
238    return container_of(mtd, struct m25p, mtd);
239}
240
241/****************************************************************************/
242
243/*
244 * Internal helper functions
245 */
246
247/*
248 * Read the status register, returning its value in the location
249 * Return the status register value.
250 * Returns negative if error occurred.
251 */
252static int read_sr(struct m25p *flash)
253{
254    struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
255
256    io->ctl1 &= ~IO_XFL_CTL1_MASK;
257    io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) |
258        IO_XFL_CTL1_FC_DATA(1);
259    io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDSR);
260    FLASH_COMMAND_EXEC(io);
261
262    return io->status1 & 0xff;
263}
264
265/*
266 * mem_flash_io_read_u32()
267 */
268static u32 mem_flash_io_read_u32(u32 addr)
269{
270    struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
271    io->ctl1 &= ~IO_XFL_CTL1_MASK;
272    io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) |
273        IO_XFL_CTL1_FC_DATA(4) | IO_XFL_CTL1_FC_DUMMY(1) |
274        IO_XFL_CTL1_FC_ADDR;
275    io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_FAST_READ) |
276        IO_XFL_CTL2_FC_ADDR(addr);
277    FLASH_COMMAND_EXEC(io);
278    return io->status1;
279}
280
281/*
282 * mem_flash_read_u8()
283 */
284static u8 mem_flash_read_u8(u32 addr)
285{
286    u32 tmp_addr = ALIGN_DOWN(addr, 4);
287    u32 tmp_data = mem_flash_io_read_u32(tmp_addr);
288    u8 *ptr = (u8 *)&tmp_data;
289    return ptr[addr & 0x3];
290}
291
292/*
293 * mem_flash_read()
294 * No need to lock as read is implemented with ireads (same as normal flash
295 * execution).
296 */
297static void mem_flash_read(u32 addr, void *dst, size_t length)
298{
299    /*
300     * Range check
301     */
302    /*
303     * Fix source alignment.
304     */
305    while (addr & 0x03) {
306        if (length == 0) {
307            return;
308        }
309        *((u8 *)dst) = mem_flash_read_u8(addr++);
310        dst++;
311        length--;
312    }
313
314    while (length >= 4) {
315        u32 tmp_data = mem_flash_io_read_u32(addr);
316        addr += 4;
317        length -= 4;
318
319        /*
320         * Send the data to the destination.
321         */
322        memcpy((void *)dst, (void *)&tmp_data, 4);
323        dst += 4;
324    }
325
326    while (length--) {
327        *((u8 *)dst) = mem_flash_read_u8(addr++);
328        dst++;
329    }
330}
331
332/*
333 * mem_flash_wait_until_complete()
334 */
335static void mem_flash_wait_until_complete(void)
336{
337    struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
338
339    do {
340        /*
341         * Put a delay here to deal with flash programming problem.
342         */
343        u32 mptval = UBICOM32_IO_TIMER->mptval + TEN_MICRO_SECONDS;
344        while (UBICOM32_IO_TIMER->mptval < mptval)
345            ;
346
347        io->ctl1 &= ~IO_XFL_CTL1_MASK;
348        io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) |
349            IO_XFL_CTL1_FC_DATA(1);
350        io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDSR);
351        FLASH_COMMAND_EXEC(io);
352    } while (io->status1 & SR_WIP);
353}
354
355/*
356 * mem_flash_write_next()
357 */
358static size_t mem_flash_write_next(u32 addr, u8 *buf, size_t length)
359{
360    struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
361    u32 data_start = addr;
362    u32 data_end = addr + length;
363    size_t count;
364    u32 i, j;
365
366    /*
367     * Top limit address.
368     */
369    u32 block_start = ALIGN_DOWN(data_start, 4);
370    u32 block_end = block_start + EXTFLASH_WRITE_BLOCK_SIZE;
371
372    union {
373        u8 byte[EXTFLASH_WRITE_BLOCK_SIZE];
374        u32 word[EXTFLASH_WRITE_BLOCK_SIZE / 4];
375    } write_buf;
376
377    u32 *flash_addr = (u32 *)block_start;
378
379    /*
380     * The write block must be limited by FLASH internal buffer.
381     */
382    u32 block_end_align = ALIGN_DOWN(block_end, 256);
383    bool write_needed;
384
385    block_end = (block_end_align > block_start)
386        ? block_end_align : block_end;
387    data_end = (data_end <= block_end) ? data_end : block_end;
388    block_end = ALIGN_UP(data_end, 4);
389    count = data_end - data_start;
390
391    /*
392     * Transfer data to a buffer.
393     */
394    for (i = 0; i < (block_end - block_start) / 4; i++) {
395        /*
396         * The FLASH read can hold D-cache for a long time.
397         * Use I/O operation to read FLASH to avoid starving other
398         * threads, especially HRT. (Do this for application only)
399         */
400        write_buf.word[i] = mem_flash_io_read_u32(
401            (u32)(&flash_addr[i]));
402    }
403
404    write_needed = false;
405    for (i = 0, j = (data_start - block_start);
406         i < (data_end - data_start); i++, j++) {
407        write_needed = write_needed || (write_buf.byte[j] != buf[i]);
408        write_buf.byte[j] &= buf[i];
409    }
410
411
412    /*
413     * If the data in FLASH is identical to what to be written. Then skip
414     * it.
415     */
416    if (write_needed) {
417        /*
418         * Write to flash.
419         */
420        void *tmp __attribute__((unused));
421        s32 extra_words;
422
423        asm volatile(
424        " move.4 %0, %2 \n\t"
425        " bset "D(IO_INT_SET)"(%1), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t"
426        " pipe_flush 0 \n\t"
427        " .rept "D(EXTFLASH_WRITE_FIFO_SIZE / 4)" \n\t"
428        " move.4 "D(IO_TX_FIFO)"(%1), (%0)4++ \n\t"
429        " .endr \n\t"
430            : "=&a" (tmp)
431            : "a" (io), "r" (&write_buf.word[0])
432            : "memory", "cc"
433        );
434
435        /* Lock FLASH for write access. */
436        io->ctl0 |= IO_XFL_CTL0_MCB_LOCK;
437
438        /* Command: WREN */
439        io->ctl1 &= ~IO_XFL_CTL1_MASK;
440        io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD);
441        io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_WREN);
442        FLASH_COMMAND_EXEC(io);
443
444        /* Command: BYTE PROGRAM */
445        io->ctl1 &= ~IO_XFL_CTL1_MASK;
446        io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) |
447            IO_XFL_CTL1_FC_DATA(block_end - block_start) |
448            IO_XFL_CTL1_FC_ADDR;
449        io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_PP) |
450            IO_XFL_CTL2_FC_ADDR(block_start);
451        FLASH_COMMAND_KICK_OFF(io);
452
453        extra_words = (s32)(block_end - block_start -
454                    EXTFLASH_WRITE_FIFO_SIZE) / 4;
455        if (extra_words > 0) {
456            asm volatile(
457            " move.4 %0, %3 \n\t"
458            "1: cmpi "D(IO_FIFO_LEVEL)"(%1), #4 \n\t"
459            " jmpgt.s.t 1b \n\t"
460            " move.4 "D(IO_TX_FIFO)"(%1), (%0)4++ \n\t"
461            " add.4 %2, #-1, %2 \n\t"
462            " jmpgt.t 1b \n\t"
463                : "=&a" (tmp)
464                : "a" (io), "d" (extra_words),
465                  "r" (&write_buf.word[EXTFLASH_WRITE_FIFO_SIZE / 4])
466                : "memory", "cc"
467            );
468        }
469        FLASH_COMMAND_WAIT_FOR_COMPLETION(io);
470
471        mem_flash_wait_until_complete();
472
473
474        /* Unlock FLASH for cache access. */
475        io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK;
476    }
477
478    /*
479     * Complete.
480     */
481    return count;
482}
483
484/*
485 * mem_flash_write()
486 */
487static void mem_flash_write(u32 addr, const void *src, size_t length)
488{
489    /*
490     * Write data
491     */
492    u8_t *ptr = (u8_t *)src;
493    while (length) {
494        size_t count = mem_flash_write_next(addr, ptr, length);
495        addr += count;
496        ptr += count;
497        length -= count;
498    }
499}
500
501/*
502 * Service routine to read status register until ready, or timeout occurs.
503 * Returns non-zero if error.
504 */
505static int wait_till_ready(struct m25p *flash)
506{
507    int count;
508    int sr;
509
510    /* one chip guarantees max 5 msec wait here after page writes,
511     * but potentially three seconds (!) after page erase.
512     */
513    for (count = 0; count < MAX_READY_WAIT_COUNT; count++) {
514        u32 mptval;
515        sr = read_sr(flash);
516        if (sr < 0)
517            break;
518        else if (!(sr & SR_WIP))
519            return 0;
520
521        /*
522         * Put a 10us delay here to deal with flash programming problem.
523         */
524        mptval = UBICOM32_IO_TIMER->mptval + TEN_MICRO_SECONDS;
525        while ((s32)(mptval - UBICOM32_IO_TIMER->mptval) > 0) {
526            WATCHDOG_RESET();
527        }
528        /* REVISIT sometimes sleeping would be best */
529    }
530
531    return 1;
532}
533
534/*
535 * mem_flash_erase_page()
536 */
537static void mem_flash_erase_page(u32 addr)
538{
539    struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
540
541    /* Lock FLASH for write access. */
542    io->ctl0 |= IO_XFL_CTL0_MCB_LOCK;
543
544    /* Command: WREN */
545    io->ctl1 &= ~IO_XFL_CTL1_MASK;
546    io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD);
547    io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_WREN);
548    FLASH_COMMAND_EXEC(io);
549
550    /* Command: ERASE */
551    io->ctl1 &= ~IO_XFL_CTL1_MASK;
552    io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD) |
553        IO_XFL_CTL1_FC_ADDR;
554    io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_SE) |
555        IO_XFL_CTL2_FC_ADDR(addr);
556    FLASH_COMMAND_EXEC(io);
557
558    mem_flash_wait_until_complete();
559
560    /* Unlock FLASH for cache access. */
561    io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK;
562}
563
564/*
565 * mem_flash_erase()
566 */
567static u32 mem_flash_erase(u32 addr, u32 length)
568{
569    /*
570     * Calculate the endaddress to be the first address of the page
571     * just beyond this erase section of pages.
572     */
573    u32 endaddr = addr + length;
574
575    /*
576     * Erase.
577     */
578    while (addr < endaddr) {
579        u32 test_addr = addr;
580        mem_flash_erase_page(addr);
581
582        /*
583         * Test how much was erased as actual flash page at this address
584         * may be smaller than the expected page size.
585         */
586        while (test_addr < endaddr) {
587            /*
588             * The FLASH read can hold D-cache for a long time. Use
589             * I/O operation to read FLASH to avoid starving other
590             * threads, especially HRT. (Do this for application
591             * only)
592             */
593            if (mem_flash_io_read_u32(test_addr) != 0xFFFFFFFF) {
594                break;
595            }
596            test_addr += 4;
597        }
598        if (test_addr == addr) {
599            printk("erase failed at address 0x%x, skipping",
600                   test_addr);
601            test_addr += 4;
602            return 1;
603        }
604        addr = test_addr;
605    }
606    return 0;
607}
608
609
610/****************************************************************************/
611
612/*
613 * MTD implementation
614 */
615
616/*
617 * Erase an address range on the flash chip. The address range may extend
618 * one or more erase sectors. Return an error is there is a problem erasing.
619 */
620static int ubicom32_flash_driver_erase(struct mtd_info *mtd,
621                       struct erase_info *instr)
622{
623    struct m25p *flash = mtd_to_m25p(mtd);
624    u32 addr, len;
625
626    DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %lld\n",
627          dev_name(&flash->plt_dev->dev), __FUNCTION__, "at",
628          (u32)instr->addr, instr->len);
629
630    /* sanity checks */
631    if (instr->addr + instr->len > flash->mtd.size)
632        return -EINVAL;
633    if ((instr->addr % mtd->erasesize) != 0
634            || (instr->len % mtd->erasesize) != 0) {
635        return -EINVAL;
636    }
637
638    addr = instr->addr + UBICOM32_FLASH_BASE;
639    len = instr->len;
640
641    mutex_lock(&flash->lock);
642
643    /* REVISIT in some cases we could speed up erasing large regions
644     * by using OPCODE_SE instead of OPCODE_BE_4K
645     */
646
647    /* now erase those sectors */
648    if (mem_flash_erase(addr, len)) {
649        instr->state = MTD_ERASE_FAILED;
650        mutex_unlock(&flash->lock);
651        return -EIO;
652    }
653
654    mutex_unlock(&flash->lock);
655    instr->state = MTD_ERASE_DONE;
656    mtd_erase_callback(instr);
657    return 0;
658}
659
660/*
661 * Read an address range from the flash chip. The address range
662 * may be any size provided it is within the physical boundaries.
663 */
664static int ubicom32_flash_driver_read(struct mtd_info *mtd, loff_t from,
665                      size_t len, size_t *retlen, u_char *buf)
666{
667    struct m25p *flash = mtd_to_m25p(mtd);
668    u32 base_addr = UBICOM32_FLASH_BASE + from;
669
670    DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n",
671          dev_name(&flash->plt_dev->dev), __FUNCTION__, "from",
672          (u32)from, len);
673
674    /* sanity checks */
675    if (!len)
676        return 0;
677
678    if (from + len > flash->mtd.size)
679        return -EINVAL;
680
681    /* Byte count starts at zero. */
682    if (retlen)
683        *retlen = 0;
684
685    mutex_lock(&flash->lock);
686
687    /* Wait till previous write/erase is done. */
688    if (wait_till_ready(flash)) {
689        /* REVISIT status return?? */
690        mutex_unlock(&flash->lock);
691        return 1;
692    }
693
694    mem_flash_read(base_addr, (void *)buf, len);
695
696    if (retlen)
697        *retlen = len;
698
699    mutex_unlock(&flash->lock);
700
701    return 0;
702}
703
704/*
705 * Write an address range to the flash chip. Data must be written in
706 * FLASH_PAGESIZE chunks. The address range may be any size provided
707 * it is within the physical boundaries.
708 */
709static int ubicom32_flash_driver_write(struct mtd_info *mtd, loff_t to,
710                       size_t len, size_t *retlen,
711                       const u_char *buf)
712{
713    struct m25p *flash = mtd_to_m25p(mtd);
714    u32 base_addr = UBICOM32_FLASH_BASE + to;
715    DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n",
716          dev_name(&flash->plt_dev->dev), __FUNCTION__, "to",
717          (u32)to, len);
718
719    if (retlen)
720        *retlen = 0;
721
722    /* sanity checks */
723    if (!len)
724        return 0;
725
726    if (to + len > flash->mtd.size)
727        return -EINVAL;
728
729    mutex_lock(&flash->lock);
730
731    mem_flash_write(base_addr, (void *) buf, len);
732
733    /* Wait until finished previous write command. */
734    if (wait_till_ready(flash)) {
735        mutex_unlock(&flash->lock);
736        return 1;
737    }
738
739    if (retlen)
740        *retlen = len;
741
742    mutex_unlock(&flash->lock);
743    return 0;
744}
745
746
747/****************************************************************************/
748
749/*
750 * SPI device driver setup and teardown
751 */
752
753struct flash_info {
754    char *name;
755
756    /* JEDEC id zero means "no ID" (most older chips); otherwise it has
757     * a high byte of zero plus three data bytes: the manufacturer id,
758     * then a two byte device id.
759     */
760    u32 jedec_id;
761
762    /* The size listed here is what works with OPCODE_SE, which isn't
763     * necessarily called a "sector" by the vendor.
764     */
765    unsigned sector_size;
766    u16 n_sectors;
767
768    u16 flags;
769#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
770};
771
772
773/* NOTE: double check command sets and memory organization when you add
774 * more flash chips. This current list focusses on newer chips, which
775 * have been converging on command sets which including JEDEC ID.
776 */
777static struct flash_info __devinitdata m25p_data[] = {
778
779    /* Atmel -- some are (confusingly) marketed as "DataFlash" */
780    { "at25fs010", 0x1f6601, 32 * 1024, 4, SECT_4K, },
781    { "at25fs040", 0x1f6604, 64 * 1024, 8, SECT_4K, },
782
783    { "at25df041a", 0x1f4401, 64 * 1024, 8, SECT_4K, },
784
785    { "at26f004", 0x1f0400, 64 * 1024, 8, SECT_4K, },
786    { "at26df081a", 0x1f4501, 64 * 1024, 16, SECT_4K, },
787    { "at26df161a", 0x1f4601, 64 * 1024, 32, SECT_4K, },
788    { "at26df321", 0x1f4701, 64 * 1024, 64, SECT_4K, },
789
790    /* Spansion -- single (large) sector size only, at least
791     * for the chips listed here (without boot sectors).
792     */
793    { "s25sl004a", 0x010212, 64 * 1024, 8, },
794    { "s25sl008a", 0x010213, 64 * 1024, 16, },
795    { "s25sl016a", 0x010214, 64 * 1024, 32, },
796    { "s25sl032a", 0x010215, 64 * 1024, 64, },
797    { "s25sl064a", 0x010216, 64 * 1024, 128, },
798
799    /* SST -- large erase sizes are "overlays", "sectors" are 4K */
800    { "sst25vf040b", 0xbf258d, 64 * 1024, 8, SECT_4K, },
801    { "sst25vf080b", 0xbf258e, 64 * 1024, 16, SECT_4K, },
802    { "sst25vf016b", 0xbf2541, 64 * 1024, 32, SECT_4K, },
803    { "sst25vf032b", 0xbf254a, 64 * 1024, 64, SECT_4K, },
804
805    /* ST Microelectronics -- newer production may have feature updates */
806    { "m25p05", 0x202010, 32 * 1024, 2, },
807    { "m25p10", 0x202011, 32 * 1024, 4, },
808    { "m25p20", 0x202012, 64 * 1024, 4, },
809    { "m25p40", 0x202013, 64 * 1024, 8, },
810    { "m25p80", 0, 64 * 1024, 16, },
811    { "m25p16", 0x202015, 64 * 1024, 32, },
812    { "m25p32", 0x202016, 64 * 1024, 64, },
813    { "m25p64", 0x202017, 64 * 1024, 128, },
814    { "m25p128", 0x202018, 256 * 1024, 64, },
815
816    { "m45pe80", 0x204014, 64 * 1024, 16, },
817    { "m45pe16", 0x204015, 64 * 1024, 32, },
818
819    { "m25pe80", 0x208014, 64 * 1024, 16, },
820    { "m25pe16", 0x208015, 64 * 1024, 32, SECT_4K, },
821
822    /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
823    { "w25x10", 0xef3011, 64 * 1024, 2, SECT_4K, },
824    { "w25x20", 0xef3012, 64 * 1024, 4, SECT_4K, },
825    { "w25x40", 0xef3013, 64 * 1024, 8, SECT_4K, },
826    { "w25x80", 0xef3014, 64 * 1024, 16, SECT_4K, },
827    { "w25x16", 0xef3015, 64 * 1024, 32, SECT_4K, },
828    { "w25x32", 0xef3016, 64 * 1024, 64, SECT_4K, },
829    { "w25x64", 0xef3017, 64 * 1024, 128, SECT_4K, },
830
831    /* Macronix -- mx25lxxx */
832    { "mx25l32", 0xc22016, 64 * 1024, 64, },
833    { "mx25l64", 0xc22017, 64 * 1024, 128, },
834    { "mx25l128", 0xc22018, 64 * 1024, 256, },
835
836};
837
838struct flash_info *__devinit jedec_probe(struct platform_device *spi)
839{
840    int tmp;
841    u32 jedec;
842    struct flash_info *info;
843    struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
844
845    /*
846     * Setup and run RDID command on the flash.
847     */
848    io->ctl1 &= ~IO_XFL_CTL1_MASK;
849    io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) |
850        IO_XFL_CTL1_FC_DATA(3);
851    io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDID);
852    FLASH_COMMAND_EXEC(io);
853
854    jedec = io->status1 & 0x00ffffff;
855
856    for (tmp = 0, info = m25p_data;
857            tmp < ARRAY_SIZE(m25p_data);
858            tmp++, info++) {
859        if (info->jedec_id == jedec)
860            return info;
861    }
862    dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
863    return NULL;
864}
865
866
867/*
868 * board specific setup should have ensured the SPI clock used here
869 * matches what the READ command supports, at least until this driver
870 * understands FAST_READ (for clocks over 25 MHz).
871 */
872static int __devinit ubicom32_flash_probe(struct platform_device *spi)
873{
874    struct flash_platform_data *data;
875    struct m25p *flash;
876    struct flash_info *info;
877    unsigned i;
878
879    /* Platform data helps sort out which chip type we have, as
880     * well as how this board partitions it. If we don't have
881     * a chip ID, try the JEDEC id commands; they'll work for most
882     * newer chips, even if we don't recognize the particular chip.
883     */
884    data = spi->dev.platform_data;
885    if (data && data->type) {
886        for (i = 0, info = m25p_data;
887                i < ARRAY_SIZE(m25p_data);
888                i++, info++) {
889            if (strcmp(data->type, info->name) == 0)
890                break;
891        }
892
893        /* unrecognized chip? */
894        if (i == ARRAY_SIZE(m25p_data)) {
895            DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n",
896                  dev_name(&spi->dev), data->type);
897            info = NULL;
898
899        /* recognized; is that chip really what's there? */
900        } else if (info->jedec_id) {
901            struct flash_info *chip = jedec_probe(spi);
902
903            if (!chip || chip != info) {
904                dev_warn(&spi->dev, "found %s, expected %s\n",
905                        chip ? chip->name : "UNKNOWN",
906                        info->name);
907                info = NULL;
908            }
909        }
910    } else
911        info = jedec_probe(spi);
912
913    if (!info)
914        return -ENODEV;
915
916    flash = kzalloc(sizeof *flash, GFP_KERNEL);
917    if (!flash)
918        return -ENOMEM;
919
920    flash->plt_dev = spi;
921    mutex_init(&flash->lock);
922    dev_set_drvdata(&spi->dev, flash);
923
924    if (data && data->name)
925        flash->mtd.name = data->name;
926    else
927        flash->mtd.name = dev_name(&spi->dev);
928
929    flash->mtd.type = MTD_NORFLASH;
930    flash->mtd.writesize = 1;
931    flash->mtd.flags = MTD_CAP_NORFLASH;
932    flash->mtd.size = info->sector_size * info->n_sectors;
933    flash->mtd.erase = ubicom32_flash_driver_erase;
934    flash->mtd.read = ubicom32_flash_driver_read;
935    flash->mtd.write = ubicom32_flash_driver_write;
936
937    /* prefer "small sector" erase if possible */
938    /*
939     * The Ubicom erase code does not use the opcode for smaller sectors,
940     * so disable that functionality and keep erasesize == sector_size
941     * so that the test in ubicom32_flash_driver_erase works properly.
942     *
943     * This was: `if (info->flags & SECT_4K) {' instead of `if (0) {'
944     */
945    if (0) {
946        flash->erase_opcode = OPCODE_BE_4K;
947        flash->mtd.erasesize = 4096;
948    } else {
949        flash->erase_opcode = OPCODE_SE;
950        flash->mtd.erasesize = info->sector_size;
951    }
952
953    dev_info(&spi->dev, "%s (%lld Kbytes)\n", info->name,
954         flash->mtd.size / 1024);
955
956    DEBUG(MTD_DEBUG_LEVEL2,
957        "mtd .name = %s, .size = 0x%.8llx (%lluMiB) "
958            ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
959        flash->mtd.name,
960        flash->mtd.size, flash->mtd.size / (1024*1024),
961        flash->mtd.erasesize, flash->mtd.erasesize / 1024,
962        flash->mtd.numeraseregions);
963
964    if (flash->mtd.numeraseregions)
965        for (i = 0; i < flash->mtd.numeraseregions; i++)
966            DEBUG(MTD_DEBUG_LEVEL2,
967                "mtd.eraseregions[%d] = { .offset = 0x%.8llx, "
968                ".erasesize = 0x%.8x (%uKiB), "
969                ".numblocks = %d }\n",
970                i, flash->mtd.eraseregions[i].offset,
971                flash->mtd.eraseregions[i].erasesize,
972                flash->mtd.eraseregions[i].erasesize / 1024,
973                flash->mtd.eraseregions[i].numblocks);
974
975
976    /* partitions should match sector boundaries; and it may be good to
977     * use readonly partitions for writeprotected sectors (BP2..BP0).
978     */
979    if (mtd_has_partitions()) {
980        struct mtd_partition *parts = NULL;
981        int nr_parts = 0;
982
983#ifdef CONFIG_MTD_CMDLINE_PARTS
984        static const char *part_probes[] = { "cmdlinepart", NULL, };
985
986        nr_parts = parse_mtd_partitions(&flash->mtd,
987                part_probes, &parts, 0);
988#endif
989
990        if (nr_parts <= 0 && data && data->parts) {
991            parts = data->parts;
992            nr_parts = data->nr_parts;
993            if (nr_parts >= 2) {
994                /*
995                 * Set last partition size to be 1M.
996                 */
997                parts[1].size = flash->mtd.size -
998                    parts[0].size - JFFS2_FILESYSTEM_SIZE;
999                parts[2].size = JFFS2_FILESYSTEM_SIZE;
1000            }
1001        }
1002
1003        if (nr_parts > 0) {
1004            for (i = 0; i < nr_parts; i++) {
1005                DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
1006                    "{.name = %s, .offset = 0x%.8llx, "
1007                        ".size = 0x%.8llx (%lluKiB) }\n",
1008                    i, parts[i].name,
1009                    parts[i].offset,
1010                    parts[i].size,
1011                    parts[i].size / 1024);
1012            }
1013            flash->partitioned = 1;
1014            return add_mtd_partitions(&flash->mtd, parts, nr_parts);
1015        }
1016    } else if (data->nr_parts)
1017        dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
1018                data->nr_parts, data->name);
1019
1020    return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
1021}
1022
1023
1024static int __devexit ubicom32_flash_remove(struct spi_device *spi)
1025{
1026    struct m25p *flash = dev_get_drvdata(&spi->dev);
1027    int status;
1028
1029    /* Clean up MTD stuff. */
1030    if (mtd_has_partitions() && flash->partitioned)
1031        status = del_mtd_partitions(&flash->mtd);
1032    else
1033        status = del_mtd_device(&flash->mtd);
1034    if (status == 0)
1035        kfree(flash);
1036    return 0;
1037}
1038
1039static struct platform_driver ubicom32_flash_driver = {
1040    .driver = {
1041        .name = "ubicom32flashdriver",
1042        .bus = &platform_bus_type,
1043        .owner = THIS_MODULE,
1044    },
1045    .probe = ubicom32_flash_probe,
1046    .remove = NULL,
1047};
1048
1049static int ubicom32_flash_driver_init(void)
1050{
1051    return platform_driver_register(&ubicom32_flash_driver);
1052}
1053
1054
1055static void ubicom32_flash_driver_exit(void)
1056{
1057    platform_driver_unregister(&ubicom32_flash_driver);
1058}
1059
1060
1061module_init(ubicom32_flash_driver_init);
1062module_exit(ubicom32_flash_driver_exit);
1063
1064MODULE_LICENSE("GPL");
1065MODULE_AUTHOR("Mike Lavender");
1066MODULE_DESCRIPTION("Ubicom32 MTD SPI driver for ST M25Pxx flash chips");
1067

Archive Download this file



interactive