| 1 | /* |
| 2 | * Micron SPI-ER NAND Flash Memory |
| 3 | * This code uses the built in Ubicom flash controller |
| 4 | * |
| 5 | * (C) Copyright 2009, Ubicom, Inc. |
| 6 | * |
| 7 | * This file is part of the Ubicom32 Linux Kernel Port. |
| 8 | * |
| 9 | * The Ubicom32 Linux Kernel Port is free software: you can redistribute |
| 10 | * it and/or modify it under the terms of the GNU General Public License |
| 11 | * as published by the Free Software Foundation, either version 2 of the |
| 12 | * License, or (at your option) any later version. |
| 13 | * |
| 14 | * The Ubicom32 Linux Kernel Port is distributed in the hope that it |
| 15 | * will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| 16 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| 17 | * the GNU General Public License for more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License |
| 20 | * along with the Ubicom32 Linux Kernel Port. If not, |
| 21 | * see <http://www.gnu.org/licenses/>. |
| 22 | */ |
| 23 | #include <linux/module.h> |
| 24 | #include <linux/init.h> |
| 25 | #include <linux/slab.h> |
| 26 | #include <linux/delay.h> |
| 27 | #include <linux/device.h> |
| 28 | #include <linux/platform_device.h> |
| 29 | #include <linux/mutex.h> |
| 30 | #include <linux/err.h> |
| 31 | |
| 32 | #include <linux/mtd/mtd.h> |
| 33 | #include <linux/mtd/partitions.h> |
| 34 | |
| 35 | #define DRIVER_NAME "ubi32-nand-spi-er" |
| 36 | #define UBI32_NAND_SPI_ER_BLOCK_FROM_ROW(row) (row >> 6) |
| 37 | |
| 38 | #define UBI32_NAND_SPI_ER_STATUS_P_FAIL (1 << 3) |
| 39 | #define UBI32_NAND_SPI_ER_STATUS_E_FAIL (1 << 2) |
| 40 | #define UBI32_NAND_SPI_ER_STATUS_OIP (1 << 0) |
| 41 | |
| 42 | #define UBI32_NAND_SPI_ER_LAST_ROW_INVALID 0xFFFFFFFF |
| 43 | #define UBI32_NAND_SPI_ER_BAD_BLOCK_MARK_OFFSET 0x08 |
| 44 | |
| 45 | struct ubi32_nand_spi_er_device { |
| 46 | const char *name; |
| 47 | |
| 48 | uint16_t id; |
| 49 | |
| 50 | unsigned int blocks; |
| 51 | unsigned int pages_per_block; |
| 52 | unsigned int page_size; |
| 53 | unsigned int write_size; |
| 54 | unsigned int erase_size; |
| 55 | }; |
| 56 | |
| 57 | struct ubi32_nand_spi_er { |
| 58 | char name[24]; |
| 59 | |
| 60 | const struct ubi32_nand_spi_er_device *device; |
| 61 | |
| 62 | struct mutex lock; |
| 63 | struct platform_device *pdev; |
| 64 | |
| 65 | struct mtd_info mtd; |
| 66 | |
| 67 | unsigned int last_row; /* the last row we fetched */ |
| 68 | |
| 69 | /* |
| 70 | * Bad block table (MUST be last in strcuture) |
| 71 | */ |
| 72 | unsigned long nbb; |
| 73 | unsigned long bbt[0]; |
| 74 | }; |
| 75 | |
| 76 | /* |
| 77 | * Chip supports a write_size of 512, but we cannot do partial |
| 78 | * page with command 0x84. |
| 79 | * |
| 80 | * We need to use command 0x84 because we cannot fill the FIFO fast |
| 81 | * enough to transfer the whole 512 bytes at a time. (maybe through |
| 82 | * OCM?) |
| 83 | */ |
| 84 | const struct ubi32_nand_spi_er_device ubi32_nand_spi_er_devices[] = { |
| 85 | { |
| 86 | name: "MT29F1G01ZDC", |
| 87 | id: 0x2C12, |
| 88 | blocks: 1024, |
| 89 | pages_per_block: 64, |
| 90 | page_size: 2048, |
| 91 | write_size: 2048, |
| 92 | erase_size: 64 * 2048, |
| 93 | }, |
| 94 | { |
| 95 | name: "MT29F1G01ZDC", |
| 96 | id: 0x2C13, |
| 97 | blocks: 1024, |
| 98 | pages_per_block: 64, |
| 99 | page_size: 2048, |
| 100 | write_size: 2048, |
| 101 | erase_size: 64 * 2048, |
| 102 | }, |
| 103 | }; |
| 104 | |
| 105 | static int read_only = 0; |
| 106 | module_param(read_only, int, 0); |
| 107 | MODULE_PARM_DESC(read_only, "Leave device locked"); |
| 108 | |
| 109 | /* |
| 110 | * Ubicom32 FLASH Command Set |
| 111 | */ |
| 112 | #define FLASH_PORT RA |
| 113 | |
| 114 | #define FLASH_FC_INST_CMD 0x00 /* for SPI command only transaction */ |
| 115 | #define FLASH_FC_INST_WR 0x01 /* for SPI write transaction */ |
| 116 | #define FLASH_FC_INST_RD 0x02 /* for SPI read transaction */ |
| 117 | |
| 118 | #define FLASH_COMMAND_KICK_OFF(io) \ |
| 119 | asm volatile( \ |
| 120 | " bset "D(IO_INT_CLR)"(%0), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t" \ |
| 121 | " jmpt.t .+4 \n\t" \ |
| 122 | " bset "D(IO_INT_SET)"(%0), #0, #%%bit("D(IO_XFL_INT_START)") \n\t" \ |
| 123 | : \ |
| 124 | : "a" (io) \ |
| 125 | : "cc" \ |
| 126 | ); |
| 127 | |
| 128 | #define FLASH_COMMAND_WAIT_FOR_COMPLETION(io) \ |
| 129 | asm volatile( \ |
| 130 | " btst "D(IO_INT_STATUS)"(%0), #%%bit("D(IO_XFL_INT_DONE)") \n\t" \ |
| 131 | " jmpeq.f .-4 \n\t" \ |
| 132 | : \ |
| 133 | : "a" (io) \ |
| 134 | : "cc" \ |
| 135 | ); |
| 136 | |
| 137 | #define FLASH_COMMAND_EXEC(io) \ |
| 138 | FLASH_COMMAND_KICK_OFF(io) \ |
| 139 | FLASH_COMMAND_WAIT_FOR_COMPLETION(io) |
| 140 | |
| 141 | /* |
| 142 | * ubi32_nand_spi_er_get_feature |
| 143 | * Get Feature register |
| 144 | */ |
| 145 | static uint8_t ubi32_nand_spi_er_get_feature(uint32_t reg) |
| 146 | { |
| 147 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; |
| 148 | |
| 149 | /* |
| 150 | * Note that this will produce the sequence: |
| 151 | * SI [0F][REG][00][00] |
| 152 | * SO ---------[SR][SR][SR] |
| 153 | * Since the flash controller can only output 24 bits of address, this is |
| 154 | * ok for this command since the data will just repeat as long as the CS |
| 155 | * is asserted and the clock is running. |
| 156 | */ |
| 157 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 158 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | IO_XFL_CTL1_FC_DATA(1) | |
| 159 | IO_XFL_CTL1_FC_ADDR; |
| 160 | io->ctl2 = IO_XFL_CTL2_FC_CMD(0x0F) | IO_XFL_CTL2_FC_ADDR(reg << 16); |
| 161 | FLASH_COMMAND_EXEC(io); |
| 162 | |
| 163 | return io->status1 & 0xFF; |
| 164 | } |
| 165 | |
| 166 | /* |
| 167 | * ubi32_nand_spi_er_write_buf |
| 168 | * writes a buffer to the bus |
| 169 | * |
| 170 | * Writes 511 + 1 bytes to the bus, we have to stuff one data byte into the address. |
| 171 | */ |
| 172 | static void ubi32_nand_spi_er_write_buf(const uint8_t *buf, uint32_t col) |
| 173 | { |
| 174 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; |
| 175 | uint32_t tmp; |
| 176 | |
| 177 | asm volatile ( |
| 178 | " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t" |
| 179 | " pipe_flush 0 \n\t" |
| 180 | : |
| 181 | : [port] "a" (FLASH_PORT) |
| 182 | : "cc" |
| 183 | ); |
| 184 | |
| 185 | /* |
| 186 | * Write the data into the cache |
| 187 | */ |
| 188 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 189 | #ifdef SUPPORT_512_FIFO |
| 190 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(511) | |
| 191 | #endif |
| 192 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(31) | |
| 193 | IO_XFL_CTL1_FC_ADDR; |
| 194 | |
| 195 | /* |
| 196 | * Construct the address with the first byte of data |
| 197 | */ |
| 198 | tmp = (col << 8) | *buf++; |
| 199 | io->ctl2 = IO_XFL_CTL2_FC_CMD(0x84) | IO_XFL_CTL2_FC_ADDR(tmp); |
| 200 | |
| 201 | asm volatile ( |
| 202 | |
| 203 | /* |
| 204 | * Move 32 bytes |
| 205 | * |
| 206 | * The first word needs to be [11][22][33][33] to work around a flash |
| 207 | * controller bug. |
| 208 | */ |
| 209 | " move.2 %[tmp], (%[data])2++ \n\t" |
| 210 | " shmrg.1 %[tmp], (%[data]), %[tmp] \n\t" |
| 211 | " shmrg.1 %[tmp], (%[data])1++, %[tmp] \n\t" |
| 212 | " move.4 "D(IO_TX_FIFO)"(%[port]), %[tmp] \n\t" |
| 213 | |
| 214 | /* |
| 215 | * We're aligned again! |
| 216 | */ |
| 217 | " .rept 7 \n\t" |
| 218 | " move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t" |
| 219 | " .endr \n\t" |
| 220 | |
| 221 | /* |
| 222 | * Kick off the flash command |
| 223 | */ |
| 224 | " bset "D(IO_INT_CLR)"(%[port]), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t" |
| 225 | " jmpt.t .+4 \n\t" |
| 226 | " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_XFL_INT_START)") \n\t" |
| 227 | |
| 228 | #ifdef SUPPORT_512_FIFO |
| 229 | /* |
| 230 | * Fill the remaining 120 words as space becomes available |
| 231 | */ |
| 232 | "1: \n\t" |
| 233 | " cmpi "D(IO_FIFO_LEVEL)"(%[port]), #4 \n\t" |
| 234 | " jmpgt.s.t 1b \n\t" |
| 235 | " move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t" |
| 236 | " move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t" |
| 237 | " move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t" |
| 238 | " move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t" |
| 239 | " add.4 %[cnt], #-4, %[cnt] \n\t" |
| 240 | " jmpgt.t 1b \n\t" |
| 241 | #endif |
| 242 | /* |
| 243 | * Wait for the transaction to finish |
| 244 | */ |
| 245 | " btst "D(IO_INT_STATUS)"(%[port]), #%%bit("D(IO_XFL_INT_DONE)") \n\t" |
| 246 | " jmpeq.f .-4 \n\t" |
| 247 | |
| 248 | : [tmp] "=&d" (tmp), |
| 249 | [data] "+&a" (buf) |
| 250 | : [column] "d" (col), |
| 251 | [port] "a" (FLASH_PORT), |
| 252 | [cnt] "d" (120) // see above comment |
| 253 | : "cc" |
| 254 | ); |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * ubi32_nand_spi_er_send_rd_addr |
| 259 | * perform FC_RD: CMD + address |
| 260 | */ |
| 261 | static void ubi32_nand_spi_er_send_rd_addr(uint8_t command, uint32_t address) |
| 262 | { |
| 263 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; |
| 264 | |
| 265 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 266 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | IO_XFL_CTL1_FC_DATA(4) | |
| 267 | IO_XFL_CTL1_FC_ADDR; |
| 268 | io->ctl2 = IO_XFL_CTL2_FC_CMD(command) | IO_XFL_CTL2_FC_ADDR(address); |
| 269 | FLASH_COMMAND_EXEC(io); |
| 270 | } |
| 271 | |
| 272 | /* |
| 273 | * ubi32_nand_spi_er_send_cmd_addr |
| 274 | * perform FC_(xxx): CMD + address |
| 275 | */ |
| 276 | static void ubi32_nand_spi_er_send_cmd_addr(uint8_t command, uint32_t address) |
| 277 | { |
| 278 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; |
| 279 | |
| 280 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 281 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD) | IO_XFL_CTL1_FC_ADDR; |
| 282 | io->ctl2 = IO_XFL_CTL2_FC_CMD(command) | IO_XFL_CTL2_FC_ADDR(address); |
| 283 | FLASH_COMMAND_EXEC(io); |
| 284 | } |
| 285 | |
| 286 | /* |
| 287 | * ubi32_nand_spi_er_write_disable |
| 288 | * clear the write enable bit |
| 289 | */ |
| 290 | static void ubi32_nand_spi_er_write_disable(void) |
| 291 | { |
| 292 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; |
| 293 | |
| 294 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 295 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD); |
| 296 | io->ctl2 = IO_XFL_CTL2_FC_CMD(0x04); |
| 297 | FLASH_COMMAND_EXEC(io); |
| 298 | } |
| 299 | |
| 300 | /* |
| 301 | * ubi32_nand_spi_er_write_enable |
| 302 | * set the write enable bit |
| 303 | */ |
| 304 | static void ubi32_nand_spi_er_write_enable(void) |
| 305 | { |
| 306 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; |
| 307 | |
| 308 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 309 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD); |
| 310 | io->ctl2 = IO_XFL_CTL2_FC_CMD(0x06); |
| 311 | FLASH_COMMAND_EXEC(io); |
| 312 | } |
| 313 | |
| 314 | /* |
| 315 | * ubi32_nand_spi_er_busywait |
| 316 | * Wait until the chip is not busy |
| 317 | */ |
| 318 | static uint8_t ubi32_nand_spi_er_busywait(void) |
| 319 | { |
| 320 | int i; |
| 321 | uint8_t data; |
| 322 | |
| 323 | /* |
| 324 | * tRD is 100us, so don't delay too long, however, tERS is |
| 325 | * 10ms so you'd better loop enough. |
| 326 | */ |
| 327 | for (i = 0; i < 200; i++) { |
| 328 | data = ubi32_nand_spi_er_get_feature(0xC0); |
| 329 | if (!(data & UBI32_NAND_SPI_ER_STATUS_OIP)) { |
| 330 | break; |
| 331 | } |
| 332 | |
| 333 | udelay(50); |
| 334 | } |
| 335 | |
| 336 | return data; |
| 337 | } |
| 338 | |
| 339 | /* |
| 340 | * ubi32_nand_spi_er_erase |
| 341 | * Erase a block, parameters must be block aligned |
| 342 | */ |
| 343 | static int ubi32_nand_spi_er_erase(struct mtd_info *mtd, struct erase_info *instr) |
| 344 | { |
| 345 | struct ubi32_nand_spi_er *chip = mtd->priv; |
| 346 | int res; |
| 347 | |
| 348 | DEBUG(MTD_DEBUG_LEVEL3, "%s: erase addr:%x len:%x\n", chip->name, instr->addr, instr->len); |
| 349 | |
| 350 | if ((instr->addr + instr->len) > mtd->size) { |
| 351 | return -EINVAL; |
| 352 | } |
| 353 | |
| 354 | if (instr->addr & (chip->device->erase_size - 1)) { |
| 355 | DEBUG(MTD_DEBUG_LEVEL1, "%s: erase address is not aligned %x\n", chip->name, instr->addr); |
| 356 | return -EINVAL; |
| 357 | } |
| 358 | |
| 359 | if (instr->len & (chip->device->erase_size - 1)) { |
| 360 | DEBUG(MTD_DEBUG_LEVEL1, "%s: erase len is not aligned %x\n", chip->name, instr->len); |
| 361 | return -EINVAL; |
| 362 | } |
| 363 | |
| 364 | mutex_lock(&chip->lock); |
| 365 | chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID; |
| 366 | |
| 367 | while (instr->len) { |
| 368 | uint32_t block = instr->addr >> 17; |
| 369 | uint32_t row = block << 6; |
| 370 | uint8_t stat; |
| 371 | DEBUG(MTD_DEBUG_LEVEL3, "%s: block erase row:%x block:%x addr:%x rem:%x\n", chip->name, row, block, instr->addr, instr->len); |
| 372 | |
| 373 | /* |
| 374 | * Test for bad block |
| 375 | */ |
| 376 | if (test_bit(block, chip->bbt)) { |
| 377 | instr->fail_addr = block << 17; |
| 378 | instr->state = MTD_ERASE_FAILED; |
| 379 | res = -EBADMSG; |
| 380 | goto done; |
| 381 | } |
| 382 | |
| 383 | ubi32_nand_spi_er_write_enable(); |
| 384 | |
| 385 | /* |
| 386 | * Block erase |
| 387 | */ |
| 388 | ubi32_nand_spi_er_send_cmd_addr(0xD8, row); |
| 389 | |
| 390 | /* |
| 391 | * Wait |
| 392 | */ |
| 393 | stat = ubi32_nand_spi_er_busywait(); |
| 394 | if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) { |
| 395 | instr->fail_addr = block << 17; |
| 396 | instr->state = MTD_ERASE_FAILED; |
| 397 | DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat); |
| 398 | |
| 399 | /* |
| 400 | * Chip is stuck? |
| 401 | */ |
| 402 | res = -EIO; |
| 403 | goto done; |
| 404 | } |
| 405 | |
| 406 | /* |
| 407 | * Check the status register |
| 408 | */ |
| 409 | if (stat & UBI32_NAND_SPI_ER_STATUS_E_FAIL) { |
| 410 | DEBUG(MTD_DEBUG_LEVEL1, "%s: E_FAIL signalled (%02x)\n", chip->name, stat); |
| 411 | instr->fail_addr = block << 17; |
| 412 | instr->state = MTD_ERASE_FAILED; |
| 413 | goto done; |
| 414 | } |
| 415 | |
| 416 | /* |
| 417 | * Next |
| 418 | */ |
| 419 | block++; |
| 420 | instr->len -= chip->device->erase_size; |
| 421 | instr->addr += chip->device->erase_size; |
| 422 | } |
| 423 | |
| 424 | instr->state = MTD_ERASE_DONE; |
| 425 | |
| 426 | mutex_unlock(&chip->lock); |
| 427 | return 0; |
| 428 | |
| 429 | done: |
| 430 | ubi32_nand_spi_er_write_disable(); |
| 431 | |
| 432 | mutex_unlock(&chip->lock); |
| 433 | |
| 434 | mtd_erase_callback(instr); |
| 435 | return 0; |
| 436 | } |
| 437 | |
| 438 | /* |
| 439 | * ubi32_nand_spi_er_read |
| 440 | * |
| 441 | * return -EUCLEAN: ecc error recovered |
| 442 | * return -EBADMSG: ecc error not recovered |
| 443 | */ |
| 444 | static int ubi32_nand_spi_er_read(struct mtd_info *mtd, loff_t from, size_t len, |
| 445 | size_t *retlen, u_char *buf) |
| 446 | { |
| 447 | struct ubi32_nand_spi_er *chip = mtd->priv; |
| 448 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; |
| 449 | |
| 450 | uint32_t row; |
| 451 | uint32_t column; |
| 452 | int retval = 0; |
| 453 | uint32_t *pbuf = (uint32_t *)buf; |
| 454 | |
| 455 | *retlen = 0; |
| 456 | DEBUG(MTD_DEBUG_LEVEL2, "%s: read block from %llx len %d into %p\n", chip->name, from, len, buf); |
| 457 | |
| 458 | /* |
| 459 | * buf should be aligned |
| 460 | */ |
| 461 | if ((uint32_t)buf & 0x03) { |
| 462 | return -EINVAL; |
| 463 | } |
| 464 | |
| 465 | /* |
| 466 | * Zero length reads, nothing to do |
| 467 | */ |
| 468 | if (len == 0) { |
| 469 | return 0; |
| 470 | } |
| 471 | |
| 472 | /* |
| 473 | * Reject reads which go over the end of the flash |
| 474 | */ |
| 475 | if ((from + len) > mtd->size) { |
| 476 | return -EINVAL; |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * Get the row and column address to start at |
| 481 | */ |
| 482 | row = from >> 11; |
| 483 | column = from & 0x7FF; |
| 484 | DEBUG(MTD_DEBUG_LEVEL3, "%s: row=%x %d column=%x %d last_row=%x %d\n", chip->name, row, row, column, column, chip->last_row, chip->last_row); |
| 485 | |
| 486 | /* |
| 487 | * Read the data from the chip |
| 488 | */ |
| 489 | mutex_lock(&chip->lock); |
| 490 | while (len) { |
| 491 | uint8_t stat; |
| 492 | size_t toread; |
| 493 | int i; |
| 494 | int tmp; |
| 495 | |
| 496 | /* |
| 497 | * Figure out how much to read |
| 498 | * |
| 499 | * If we are reading from the middle of a page then the most we |
| 500 | * can read is to the end of the page |
| 501 | */ |
| 502 | toread = len; |
| 503 | if (toread > (chip->device->page_size - column)) { |
| 504 | toread = chip->device->page_size - column; |
| 505 | } |
| 506 | |
| 507 | DEBUG(MTD_DEBUG_LEVEL3, "%s: buf=%p toread=%x row=%x column=%x last_row=%x\n", chip->name, pbuf, toread, row, column, chip->last_row); |
| 508 | |
| 509 | if (chip->last_row != row) { |
| 510 | /* |
| 511 | * Check if the block is bad |
| 512 | */ |
| 513 | if (test_bit(UBI32_NAND_SPI_ER_BLOCK_FROM_ROW(row), chip->bbt)) { |
| 514 | mutex_unlock(&chip->lock); |
| 515 | return -EBADMSG; |
| 516 | } |
| 517 | |
| 518 | /* |
| 519 | * Load the appropriate page |
| 520 | */ |
| 521 | ubi32_nand_spi_er_send_cmd_addr(0x13, row); |
| 522 | |
| 523 | /* |
| 524 | * Wait |
| 525 | */ |
| 526 | stat = ubi32_nand_spi_er_busywait(); |
| 527 | if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) { |
| 528 | DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat); |
| 529 | |
| 530 | /* |
| 531 | * Chip is stuck? |
| 532 | */ |
| 533 | mutex_unlock(&chip->lock); |
| 534 | return -EIO; |
| 535 | } |
| 536 | |
| 537 | /* |
| 538 | * Check the ECC bits |
| 539 | */ |
| 540 | stat >>= 4; |
| 541 | if (stat == 1) { |
| 542 | DEBUG(MTD_DEBUG_LEVEL1, "%s: ECC recovered, row=%x\n", chip->name, row); |
| 543 | retval = -EUCLEAN; |
| 544 | } |
| 545 | if (stat == 2) { |
| 546 | DEBUG(MTD_DEBUG_LEVEL0, "%s: failed ECC, row=%x\n", chip->name, row); |
| 547 | chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID; |
| 548 | mutex_unlock(&chip->lock); |
| 549 | return -EBADMSG; |
| 550 | } |
| 551 | |
| 552 | } |
| 553 | |
| 554 | chip->last_row = row; |
| 555 | |
| 556 | /* |
| 557 | * Read out the data: |
| 558 | * We can always read a little too much since there is the |
| 559 | * OOB after byte addr 2047. The most we'll overread is 3 bytes. |
| 560 | */ |
| 561 | if (((uint32_t)pbuf & 0x03) == 0) { |
| 562 | /* |
| 563 | * Aligned read |
| 564 | */ |
| 565 | tmp = toread & (~0x03); |
| 566 | for (i = 0; i < tmp; i += 4) { |
| 567 | ubi32_nand_spi_er_send_rd_addr(0x03, column << 8); |
| 568 | *pbuf++ = io->status1; |
| 569 | column += 4; |
| 570 | } |
| 571 | } else { |
| 572 | /* |
| 573 | * Unaligned read |
| 574 | */ |
| 575 | tmp = toread & (~0x03); |
| 576 | for (i = 0; i < tmp; i += 4) { |
| 577 | ubi32_nand_spi_er_send_rd_addr(0x03, column << 8); |
| 578 | memcpy(pbuf, &io->status1, 4); |
| 579 | column += 4; |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | /* |
| 584 | * Fill in any single bytes |
| 585 | */ |
| 586 | tmp = toread & 0x03; |
| 587 | if (tmp) { |
| 588 | uint8_t *bbuf = pbuf; |
| 589 | uint32_t val; |
| 590 | ubi32_nand_spi_er_send_rd_addr(0x03, column << 8); |
| 591 | val = io->status1; |
| 592 | for (i = 0; i < tmp; i++) { |
| 593 | *bbuf++ = val >> 24; |
| 594 | val <<= 8; |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | len -= toread; |
| 599 | *retlen += toread; |
| 600 | |
| 601 | /* |
| 602 | * For the next page, increment the row and always start at column 0 |
| 603 | */ |
| 604 | column = 0; |
| 605 | row++; |
| 606 | } |
| 607 | |
| 608 | mutex_unlock(&chip->lock); |
| 609 | return retval; |
| 610 | } |
| 611 | |
| 612 | /* |
| 613 | * ubi32_nand_spi_er_write |
| 614 | */ |
| 615 | #define WRITE_NOT_ALIGNED(x) ((x & (device->write_size - 1)) != 0) |
| 616 | static int ubi32_nand_spi_er_write(struct mtd_info *mtd, loff_t to, size_t len, |
| 617 | size_t *retlen, const u_char *buf) |
| 618 | { |
| 619 | struct ubi32_nand_spi_er *chip = mtd->priv; |
| 620 | const struct ubi32_nand_spi_er_device *device = chip->device; |
| 621 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; |
| 622 | uint32_t row; |
| 623 | uint32_t col; |
| 624 | int res = 0; |
| 625 | size_t towrite; |
| 626 | |
| 627 | DEBUG(MTD_DEBUG_LEVEL2, "%s: write block to %llx len %d from %p\n", chip->name, to, len, buf); |
| 628 | |
| 629 | *retlen = 0; |
| 630 | |
| 631 | /* |
| 632 | * nothing to write |
| 633 | */ |
| 634 | if (!len) { |
| 635 | return 0; |
| 636 | } |
| 637 | |
| 638 | /* |
| 639 | * Reject writes which go over the end of the flash |
| 640 | */ |
| 641 | if ((to + len) > mtd->size) { |
| 642 | return -EINVAL; |
| 643 | } |
| 644 | |
| 645 | /* |
| 646 | * buf should be aligned to 16 bits |
| 647 | */ |
| 648 | if ((uint32_t)buf & 0x01) { |
| 649 | return -EINVAL; |
| 650 | } |
| 651 | |
| 652 | /* |
| 653 | * Check to see if everything is page aligned |
| 654 | */ |
| 655 | if (WRITE_NOT_ALIGNED(to) || WRITE_NOT_ALIGNED(len)) { |
| 656 | printk(KERN_NOTICE "ubi32_nand_spi_er_write: Attempt to write non page aligned data\n"); |
| 657 | return -EINVAL; |
| 658 | } |
| 659 | |
| 660 | mutex_lock(&chip->lock); |
| 661 | |
| 662 | io->ctl0 |= IO_XFL_CTL0_MCB_LOCK; |
| 663 | |
| 664 | chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID; |
| 665 | |
| 666 | /* |
| 667 | * If the first write is a partial write then write at most the number of |
| 668 | * bytes to get us page aligned and then the remainder will be |
| 669 | * page aligned. The last bit may be a partial page as well. |
| 670 | */ |
| 671 | col = to & (device->page_size - 1); |
| 672 | towrite = device->page_size - col; |
| 673 | if (towrite > len) { |
| 674 | towrite = len; |
| 675 | } |
| 676 | |
| 677 | /* |
| 678 | * Write the data |
| 679 | */ |
| 680 | row = to >> 11; |
| 681 | while (len) { |
| 682 | uint8_t stat; |
| 683 | uint32_t my_towrite; |
| 684 | |
| 685 | DEBUG(MTD_DEBUG_LEVEL3, "%s: write %p to row:%x col:%x len:%x rem:%x\n", chip->name, buf, row, col, towrite, len); |
| 686 | |
| 687 | ubi32_nand_spi_er_write_enable(); |
| 688 | |
| 689 | /* |
| 690 | * Move the data into the cache |
| 691 | */ |
| 692 | my_towrite = towrite; |
| 693 | while (my_towrite) { |
| 694 | uint32_t len = my_towrite; |
| 695 | if (len > 32) { |
| 696 | len = 32; |
| 697 | } |
| 698 | |
| 699 | ubi32_nand_spi_er_write_buf(buf, col); |
| 700 | buf += len; |
| 701 | col += len; |
| 702 | my_towrite -= len; |
| 703 | } |
| 704 | |
| 705 | /* |
| 706 | * Program execute |
| 707 | */ |
| 708 | ubi32_nand_spi_er_send_cmd_addr(0x10, row); |
| 709 | |
| 710 | /* |
| 711 | * Wait |
| 712 | */ |
| 713 | stat = ubi32_nand_spi_er_busywait(); |
| 714 | if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) { |
| 715 | DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat); |
| 716 | |
| 717 | /* |
| 718 | * Chip is stuck? |
| 719 | */ |
| 720 | res = -EIO; |
| 721 | goto done; |
| 722 | } |
| 723 | |
| 724 | if (stat & (1 << 3)) { |
| 725 | res = -EBADMSG; |
| 726 | goto done; |
| 727 | } |
| 728 | |
| 729 | row++; |
| 730 | len -= towrite; |
| 731 | *retlen += towrite; |
| 732 | |
| 733 | /* |
| 734 | * At this point, we are always page aligned so start at column 0. |
| 735 | * Note we may not have a full page to write at the end, hence the |
| 736 | * check if towrite > len. |
| 737 | */ |
| 738 | col = 0; |
| 739 | towrite = device->page_size; |
| 740 | if (towrite > len) { |
| 741 | towrite = len; |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK; |
| 746 | |
| 747 | mutex_unlock(&chip->lock); |
| 748 | return res; |
| 749 | |
| 750 | done: |
| 751 | ubi32_nand_spi_er_write_disable(); |
| 752 | |
| 753 | io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK; |
| 754 | |
| 755 | mutex_unlock(&chip->lock); |
| 756 | |
| 757 | return res; |
| 758 | } |
| 759 | |
| 760 | /* |
| 761 | * ubi32_nand_spi_er_isbad |
| 762 | */ |
| 763 | static int ubi32_nand_spi_er_isbad(struct mtd_info *mtd, loff_t ofs) |
| 764 | { |
| 765 | struct ubi32_nand_spi_er *chip = mtd->priv; |
| 766 | uint32_t block; |
| 767 | |
| 768 | if (ofs & (chip->device->erase_size - 1)) { |
| 769 | DEBUG(MTD_DEBUG_LEVEL1, "%s: address not aligned %llx\n", chip->name, ofs); |
| 770 | return -EINVAL; |
| 771 | } |
| 772 | |
| 773 | block = ofs >> 17; |
| 774 | |
| 775 | return test_bit(block, chip->bbt); |
| 776 | } |
| 777 | |
| 778 | /* |
| 779 | * ubi32_nand_spi_er_markbad |
| 780 | */ |
| 781 | static int ubi32_nand_spi_er_markbad(struct mtd_info *mtd, loff_t ofs) |
| 782 | { |
| 783 | struct ubi32_nand_spi_er *chip = mtd->priv; |
| 784 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; |
| 785 | uint32_t block; |
| 786 | uint32_t row; |
| 787 | int res = 0; |
| 788 | uint8_t stat; |
| 789 | |
| 790 | if (ofs & (chip->device->erase_size - 1)) { |
| 791 | DEBUG(MTD_DEBUG_LEVEL1, "%s: address not aligned %llx\n", chip->name, ofs); |
| 792 | return -EINVAL; |
| 793 | } |
| 794 | |
| 795 | block = ofs >> 17; |
| 796 | |
| 797 | /* |
| 798 | * If it's already marked bad, no need to mark it |
| 799 | */ |
| 800 | if (test_bit(block, chip->bbt)) { |
| 801 | return 0; |
| 802 | } |
| 803 | |
| 804 | /* |
| 805 | * Mark it in our cache |
| 806 | */ |
| 807 | __set_bit(block, chip->bbt); |
| 808 | |
| 809 | /* |
| 810 | * Write the user bad block mark. If it fails, then we really |
| 811 | * can't do anything about it. |
| 812 | */ |
| 813 | mutex_lock(&chip->lock); |
| 814 | chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID; |
| 815 | |
| 816 | ubi32_nand_spi_er_write_enable(); |
| 817 | |
| 818 | /* |
| 819 | * Write the mark |
| 820 | */ |
| 821 | io->ctl0 |= IO_XFL_CTL0_MCB_LOCK; |
| 822 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 823 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(6); |
| 824 | io->ctl2 = IO_XFL_CTL2_FC_CMD(0x84); |
| 825 | |
| 826 | asm volatile ( |
| 827 | " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t" |
| 828 | " pipe_flush 0 \n\t" |
| 829 | |
| 830 | /* |
| 831 | * Move the data into the FIFO |
| 832 | */ |
| 833 | " move.4 "D(IO_TX_FIFO)"(%[port]), %[word1] \n\t" |
| 834 | " move.4 "D(IO_TX_FIFO)"(%[port]), %[word2] \n\t" |
| 835 | |
| 836 | /* |
| 837 | * Kick off the flash command |
| 838 | */ |
| 839 | " bset "D(IO_INT_CLR)"(%[port]), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t" |
| 840 | " jmpt.t .+4 \n\t" |
| 841 | " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_XFL_INT_START)") \n\t" |
| 842 | |
| 843 | /* |
| 844 | * Wait for the transaction to finish |
| 845 | */ |
| 846 | " btst "D(IO_INT_STATUS)"(%[port]), #%%bit("D(IO_XFL_INT_DONE)") \n\t" |
| 847 | " jmpeq.f .-4 \n\t" |
| 848 | |
| 849 | : |
| 850 | : [word1] "d" (0x0800dead | (UBI32_NAND_SPI_ER_BAD_BLOCK_MARK_OFFSET << 16)), |
| 851 | [word2] "d" (0xbeef0000), |
| 852 | [port] "a" (FLASH_PORT) |
| 853 | : "cc" |
| 854 | ); |
| 855 | |
| 856 | io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK; |
| 857 | |
| 858 | /* |
| 859 | * Program execute |
| 860 | */ |
| 861 | row = block << 6; |
| 862 | ubi32_nand_spi_er_send_cmd_addr(0x10, row); |
| 863 | |
| 864 | /* |
| 865 | * Wait |
| 866 | */ |
| 867 | stat = ubi32_nand_spi_er_busywait(); |
| 868 | if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) { |
| 869 | DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat); |
| 870 | |
| 871 | /* |
| 872 | * Chip is stuck? |
| 873 | */ |
| 874 | res = -EIO; |
| 875 | goto done; |
| 876 | } |
| 877 | |
| 878 | if (stat & (1 << 3)) { |
| 879 | res = -EBADMSG; |
| 880 | } |
| 881 | |
| 882 | done: |
| 883 | ubi32_nand_spi_er_write_disable(); |
| 884 | |
| 885 | mutex_unlock(&chip->lock); |
| 886 | |
| 887 | return res; |
| 888 | } |
| 889 | |
| 890 | /* |
| 891 | * ubi32_nand_spi_er_read_bbt |
| 892 | */ |
| 893 | static int ubi32_nand_spi_er_read_bbt(struct ubi32_nand_spi_er *chip) |
| 894 | { |
| 895 | int j; |
| 896 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; |
| 897 | |
| 898 | for (j = 0; j < chip->device->blocks; j++) { |
| 899 | unsigned short row = j << 6; |
| 900 | uint8_t stat; |
| 901 | |
| 902 | /* |
| 903 | * Read Page |
| 904 | */ |
| 905 | ubi32_nand_spi_er_send_cmd_addr(0x13, row); |
| 906 | |
| 907 | /* |
| 908 | * Wait |
| 909 | */ |
| 910 | stat = ubi32_nand_spi_er_busywait(); |
| 911 | if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) { |
| 912 | DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat); |
| 913 | |
| 914 | /* |
| 915 | * Chip is stuck? |
| 916 | */ |
| 917 | return -EIO; |
| 918 | } |
| 919 | |
| 920 | /* |
| 921 | * Check factory bad block mark |
| 922 | */ |
| 923 | ubi32_nand_spi_er_send_rd_addr(0x03, 0x080000); |
| 924 | |
| 925 | if ((io->status1 >> 24) != 0xFF) { |
| 926 | chip->nbb++; |
| 927 | __set_bit(j, chip->bbt); |
| 928 | continue; |
| 929 | } |
| 930 | |
| 931 | ubi32_nand_spi_er_send_rd_addr(0x03, 0x080000 | (UBI32_NAND_SPI_ER_BAD_BLOCK_MARK_OFFSET << 8)); |
| 932 | if (io->status1 == 0xdeadbeef) { |
| 933 | chip->nbb++; |
| 934 | __set_bit(j, chip->bbt); |
| 935 | } |
| 936 | } |
| 937 | |
| 938 | #if defined(CONFIG_MTD_DEBUG) && (MTD_DEBUG_LEVEL3 <= CONFIG_MTD_DEBUG_VERBOSE) |
| 939 | printk("%s: Bad Block Table:", chip->name); |
| 940 | for (j = 0; j < chip->device->blocks; j++) { |
| 941 | if ((j % 64) == 0) { |
| 942 | printk("\n%s: block %03x: ", chip->name, j); |
| 943 | } |
| 944 | printk("%c", test_bit(j, chip->bbt) ? 'X' : '.'); |
| 945 | } |
| 946 | printk("\n%s: Bad Block Numbers: ", chip->name); |
| 947 | for (j = 0; j < chip->device->blocks; j++) { |
| 948 | if (test_bit(j, chip->bbt)) { |
| 949 | printk("%x ", j); |
| 950 | } |
| 951 | } |
| 952 | printk("\n"); |
| 953 | #endif |
| 954 | |
| 955 | return 0; |
| 956 | } |
| 957 | |
| 958 | #ifndef MODULE |
| 959 | /* |
| 960 | * Called at boot time: |
| 961 | * |
| 962 | * ubi32_nand_spi_er=read_only |
| 963 | * if read_only specified then do not unlock device |
| 964 | */ |
| 965 | static int __init ubi32_nand_spi_er_setup(char *str) |
| 966 | { |
| 967 | if (str && (strncasecmp(str, "read_only", 9) == 0)) { |
| 968 | read_only = 1; |
| 969 | } |
| 970 | return 0; |
| 971 | } |
| 972 | |
| 973 | __setup("ubi32_nand_spi_er=", ubi32_nand_spi_er_setup); |
| 974 | #endif |
| 975 | |
| 976 | /* |
| 977 | * ubi32_nand_spi_er_probe |
| 978 | * Detect and initialize ubi32_nand_spi_er device. |
| 979 | */ |
| 980 | static int __devinit ubi32_nand_spi_er_probe(struct platform_device *pdev) |
| 981 | { |
| 982 | uint32_t i; |
| 983 | uint32_t id; |
| 984 | int res; |
| 985 | size_t bbt_bytes; |
| 986 | struct ubi32_nand_spi_er *chip; |
| 987 | const struct ubi32_nand_spi_er_device *device; |
| 988 | struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; |
| 989 | |
| 990 | /* |
| 991 | * Reset |
| 992 | */ |
| 993 | for (i = 0; i < 2; i++) { |
| 994 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 995 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD); |
| 996 | io->ctl2 = IO_XFL_CTL2_FC_CMD(0xFF); |
| 997 | FLASH_COMMAND_EXEC(io); |
| 998 | udelay(250); |
| 999 | } |
| 1000 | udelay(1000); |
| 1001 | |
| 1002 | /* |
| 1003 | * Read out ID |
| 1004 | */ |
| 1005 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 1006 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | IO_XFL_CTL1_FC_DATA(2) | |
| 1007 | IO_XFL_CTL1_FC_ADDR; |
| 1008 | io->ctl2 = IO_XFL_CTL2_FC_CMD(0x9F); |
| 1009 | FLASH_COMMAND_EXEC(io); |
| 1010 | |
| 1011 | id = io->status1 >> 16; |
| 1012 | device = ubi32_nand_spi_er_devices; |
| 1013 | for (i = 0; i < ARRAY_SIZE(ubi32_nand_spi_er_devices); i++) { |
| 1014 | if (device->id == id) { |
| 1015 | break; |
| 1016 | } |
| 1017 | device++; |
| 1018 | } |
| 1019 | if (i == ARRAY_SIZE(ubi32_nand_spi_er_devices)) { |
| 1020 | return -ENODEV; |
| 1021 | } |
| 1022 | |
| 1023 | /* |
| 1024 | * Initialize our chip structure |
| 1025 | */ |
| 1026 | bbt_bytes = DIV_ROUND_UP(device->blocks, BITS_PER_BYTE); |
| 1027 | chip = kzalloc(sizeof(struct ubi32_nand_spi_er) + bbt_bytes, GFP_KERNEL); |
| 1028 | if (!chip) { |
| 1029 | return -ENOMEM; |
| 1030 | } |
| 1031 | snprintf(chip->name, sizeof(chip->name), "%s", device->name); |
| 1032 | |
| 1033 | chip->device = device; |
| 1034 | chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID; |
| 1035 | |
| 1036 | mutex_init(&chip->lock); |
| 1037 | |
| 1038 | chip->mtd.type = MTD_NANDFLASH; |
| 1039 | chip->mtd.flags = MTD_WRITEABLE; |
| 1040 | |
| 1041 | /* |
| 1042 | * #blocks * block size * n blocks |
| 1043 | */ |
| 1044 | chip->mtd.size = device->blocks * device->pages_per_block * device->page_size; |
| 1045 | chip->mtd.erasesize = device->erase_size; |
| 1046 | |
| 1047 | /* |
| 1048 | * 1 page, optionally we can support partial write (512) |
| 1049 | */ |
| 1050 | chip->mtd.writesize = device->write_size; |
| 1051 | chip->mtd.name = device->name; |
| 1052 | chip->mtd.erase = ubi32_nand_spi_er_erase; |
| 1053 | chip->mtd.read = ubi32_nand_spi_er_read; |
| 1054 | chip->mtd.write = ubi32_nand_spi_er_write; |
| 1055 | chip->mtd.block_isbad = ubi32_nand_spi_er_isbad; |
| 1056 | chip->mtd.block_markbad = ubi32_nand_spi_er_markbad; |
| 1057 | chip->mtd.priv = chip; |
| 1058 | |
| 1059 | /* |
| 1060 | * Cache the bad block table |
| 1061 | */ |
| 1062 | res = ubi32_nand_spi_er_read_bbt(chip); |
| 1063 | if (res) { |
| 1064 | kfree(chip); |
| 1065 | return res; |
| 1066 | } |
| 1067 | |
| 1068 | /* |
| 1069 | * Un/lock the chip |
| 1070 | */ |
| 1071 | io->ctl0 |= IO_XFL_CTL0_MCB_LOCK; |
| 1072 | io->ctl1 &= ~IO_XFL_CTL1_MASK; |
| 1073 | io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(2); |
| 1074 | io->ctl2 = IO_XFL_CTL2_FC_CMD(0x1F); |
| 1075 | |
| 1076 | if (read_only) { |
| 1077 | i = 0xa0380000; |
| 1078 | } else { |
| 1079 | i = 0xa0000000; |
| 1080 | } |
| 1081 | asm volatile ( |
| 1082 | " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t" |
| 1083 | " pipe_flush 0 \n\t" |
| 1084 | |
| 1085 | /* |
| 1086 | * Move the data into the FIFO |
| 1087 | */ |
| 1088 | " move.4 "D(IO_TX_FIFO)"(%[port]), %[word1] \n\t" |
| 1089 | |
| 1090 | /* |
| 1091 | * Kick off the flash command |
| 1092 | */ |
| 1093 | " bset "D(IO_INT_CLR)"(%[port]), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t" |
| 1094 | " jmpt.t .+4 \n\t" |
| 1095 | " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_XFL_INT_START)") \n\t" |
| 1096 | |
| 1097 | /* |
| 1098 | * Wait for the transaction to finish |
| 1099 | */ |
| 1100 | " btst "D(IO_INT_STATUS)"(%[port]), #%%bit("D(IO_XFL_INT_DONE)") \n\t" |
| 1101 | " jmpeq.f .-4 \n\t" |
| 1102 | |
| 1103 | : |
| 1104 | : [word1] "d" (i), |
| 1105 | [port] "a" (FLASH_PORT) |
| 1106 | : "cc" |
| 1107 | ); |
| 1108 | io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK; |
| 1109 | |
| 1110 | dev_set_drvdata(&pdev->dev, chip); |
| 1111 | |
| 1112 | printk(KERN_INFO "%s: added device size: %u KBytes %lu bad blocks %s\n", chip->mtd.name, DIV_ROUND_UP(chip->mtd.size, 1024), chip->nbb, read_only ? "[read only]" : ""); |
| 1113 | return add_mtd_device(&chip->mtd); |
| 1114 | } |
| 1115 | |
| 1116 | /* |
| 1117 | * ubi32_nand_spi_er_remove |
| 1118 | */ |
| 1119 | static int __devexit ubi32_nand_spi_er_remove(struct platform_device *pdev) |
| 1120 | { |
| 1121 | struct ubi32_nand_spi_er *chip = dev_get_drvdata(&pdev->dev); |
| 1122 | int status; |
| 1123 | |
| 1124 | DEBUG(MTD_DEBUG_LEVEL1, "%s: remove\n", chip->name); |
| 1125 | |
| 1126 | status = del_mtd_device(&chip->mtd); |
| 1127 | if (status == 0) { |
| 1128 | kfree(chip); |
| 1129 | } |
| 1130 | |
| 1131 | dev_set_drvdata(&pdev->dev, NULL); |
| 1132 | return status; |
| 1133 | } |
| 1134 | |
| 1135 | static struct platform_device *ubi32_nand_spi_er_device; |
| 1136 | |
| 1137 | static struct platform_driver ubi32_nand_spi_er_driver = { |
| 1138 | .driver = { |
| 1139 | .name = DRIVER_NAME, |
| 1140 | .owner = THIS_MODULE, |
| 1141 | }, |
| 1142 | |
| 1143 | .probe = ubi32_nand_spi_er_probe, |
| 1144 | .remove = ubi32_nand_spi_er_remove, |
| 1145 | }; |
| 1146 | |
| 1147 | /* |
| 1148 | * ubi32_nand_spi_er_init |
| 1149 | */ |
| 1150 | static int __init ubi32_nand_spi_er_init(void) |
| 1151 | { |
| 1152 | int ret; |
| 1153 | |
| 1154 | ret = platform_driver_register(&ubi32_nand_spi_er_driver); |
| 1155 | |
| 1156 | if (ret) { |
| 1157 | return ret; |
| 1158 | } |
| 1159 | |
| 1160 | ubi32_nand_spi_er_device = platform_device_alloc(DRIVER_NAME, 0); |
| 1161 | if (!ubi32_nand_spi_er_device) { |
| 1162 | return -ENOMEM; |
| 1163 | } |
| 1164 | |
| 1165 | ret = platform_device_add(ubi32_nand_spi_er_device); |
| 1166 | if (ret) { |
| 1167 | platform_device_put(ubi32_nand_spi_er_device); |
| 1168 | platform_driver_unregister(&ubi32_nand_spi_er_driver); |
| 1169 | } |
| 1170 | |
| 1171 | return ret; |
| 1172 | } |
| 1173 | module_init(ubi32_nand_spi_er_init); |
| 1174 | |
| 1175 | /* |
| 1176 | * ubi32_nand_spi_er_exit |
| 1177 | */ |
| 1178 | static void __exit ubi32_nand_spi_er_exit(void) |
| 1179 | { |
| 1180 | platform_device_unregister(ubi32_nand_spi_er_device); |
| 1181 | platform_driver_unregister(&ubi32_nand_spi_er_driver); |
| 1182 | } |
| 1183 | module_exit(ubi32_nand_spi_er_exit); |
| 1184 | |
| 1185 | |
| 1186 | MODULE_LICENSE("GPL"); |
| 1187 | MODULE_AUTHOR("Patrick Tjin"); |
| 1188 | MODULE_DESCRIPTION("MTD ubi32_nand_spi_er driver for ubicom32 SPI flash controller."); |
| 1189 | |