Root/target/linux/lantiq/patches/0018-MIPS-lantiq-adds-dwc_otg.patch

1From ffd7924fcc69ff146d62f131d72ef18575bf0227 Mon Sep 17 00:00:00 2001
2From: John Crispin <blogic@openwrt.org>
3Date: Fri, 30 Sep 2011 14:37:36 +0200
4Subject: [PATCH 18/24] MIPS: lantiq: adds dwc_otg
5
6---
7 drivers/usb/Kconfig | 2 +
8 drivers/usb/Makefile | 2 +
9 drivers/usb/core/hub.c | 4 +-
10 drivers/usb/dwc_otg/Kconfig | 37 +
11 drivers/usb/dwc_otg/Makefile | 39 +
12 drivers/usb/dwc_otg/dwc_otg_attr.c | 802 ++++++++
13 drivers/usb/dwc_otg/dwc_otg_attr.h | 67 +
14 drivers/usb/dwc_otg/dwc_otg_cil.c | 3025 +++++++++++++++++++++++++++++++
15 drivers/usb/dwc_otg/dwc_otg_cil.h | 911 ++++++++++
16 drivers/usb/dwc_otg/dwc_otg_cil_ifx.h | 58 +
17 drivers/usb/dwc_otg/dwc_otg_cil_intr.c | 708 ++++++++
18 drivers/usb/dwc_otg/dwc_otg_driver.c | 1274 +++++++++++++
19 drivers/usb/dwc_otg/dwc_otg_driver.h | 84 +
20 drivers/usb/dwc_otg/dwc_otg_hcd.c | 2870 +++++++++++++++++++++++++++++
21 drivers/usb/dwc_otg/dwc_otg_hcd.h | 676 +++++++
22 drivers/usb/dwc_otg/dwc_otg_hcd_intr.c | 1841 +++++++++++++++++++
23 drivers/usb/dwc_otg/dwc_otg_hcd_queue.c | 794 ++++++++
24 drivers/usb/dwc_otg/dwc_otg_ifx.c | 100 +
25 drivers/usb/dwc_otg/dwc_otg_ifx.h | 85 +
26 drivers/usb/dwc_otg/dwc_otg_plat.h | 269 +++
27 drivers/usb/dwc_otg/dwc_otg_regs.h | 1797 ++++++++++++++++++
28 21 files changed, 15443 insertions(+), 2 deletions(-)
29 create mode 100644 drivers/usb/dwc_otg/Kconfig
30 create mode 100644 drivers/usb/dwc_otg/Makefile
31 create mode 100644 drivers/usb/dwc_otg/dwc_otg_attr.c
32 create mode 100644 drivers/usb/dwc_otg/dwc_otg_attr.h
33 create mode 100644 drivers/usb/dwc_otg/dwc_otg_cil.c
34 create mode 100644 drivers/usb/dwc_otg/dwc_otg_cil.h
35 create mode 100644 drivers/usb/dwc_otg/dwc_otg_cil_ifx.h
36 create mode 100644 drivers/usb/dwc_otg/dwc_otg_cil_intr.c
37 create mode 100644 drivers/usb/dwc_otg/dwc_otg_driver.c
38 create mode 100644 drivers/usb/dwc_otg/dwc_otg_driver.h
39 create mode 100644 drivers/usb/dwc_otg/dwc_otg_hcd.c
40 create mode 100644 drivers/usb/dwc_otg/dwc_otg_hcd.h
41 create mode 100644 drivers/usb/dwc_otg/dwc_otg_hcd_intr.c
42 create mode 100644 drivers/usb/dwc_otg/dwc_otg_hcd_queue.c
43 create mode 100644 drivers/usb/dwc_otg/dwc_otg_ifx.c
44 create mode 100644 drivers/usb/dwc_otg/dwc_otg_ifx.h
45 create mode 100644 drivers/usb/dwc_otg/dwc_otg_plat.h
46 create mode 100644 drivers/usb/dwc_otg/dwc_otg_regs.h
47
48--- a/drivers/usb/Kconfig
49+++ b/drivers/usb/Kconfig
50@@ -116,6 +116,8 @@ source "drivers/usb/wusbcore/Kconfig"
51 
52 source "drivers/usb/host/Kconfig"
53 
54+source "drivers/usb/dwc_otg/Kconfig"
55+
56 source "drivers/usb/musb/Kconfig"
57 
58 source "drivers/usb/renesas_usbhs/Kconfig"
59--- a/drivers/usb/Makefile
60+++ b/drivers/usb/Makefile
61@@ -28,6 +28,8 @@ obj-$(CONFIG_USB_C67X00_HCD) += c67x00/
62 
63 obj-$(CONFIG_USB_WUSB) += wusbcore/
64 
65+obj-$(CONFIG_DWC_OTG) += dwc_otg/
66+
67 obj-$(CONFIG_USB_ACM) += class/
68 obj-$(CONFIG_USB_PRINTER) += class/
69 obj-$(CONFIG_USB_WDM) += class/
70--- a/drivers/usb/core/hub.c
71+++ b/drivers/usb/core/hub.c
72@@ -2891,11 +2891,11 @@ hub_port_init (struct usb_hub *hub, stru
73         udev->ttport = hdev->ttport;
74     } else if (udev->speed != USB_SPEED_HIGH
75             && hdev->speed == USB_SPEED_HIGH) {
76- if (!hub->tt.hub) {
77+/* if (!hub->tt.hub) {
78             dev_err(&udev->dev, "parent hub has no TT\n");
79             retval = -EINVAL;
80             goto fail;
81- }
82+ }*/
83         udev->tt = &hub->tt;
84         udev->ttport = port1;
85     }
86--- /dev/null
87+++ b/drivers/usb/dwc_otg/Kconfig
88@@ -0,0 +1,37 @@
89+config DWC_OTG
90+ tristate "Synopsis DWC_OTG support"
91+ depends on USB
92+ help
93+ This driver supports Synopsis DWC_OTG IP core
94+ embebbed on many SOCs (ralink, infineon, etc)
95+
96+choice
97+ prompt "USB Operation Mode"
98+ depends on DWC_OTG
99+ default DWC_OTG_HOST_ONLY
100+
101+config DWC_OTG_HOST_ONLY
102+ bool "HOST ONLY MODE"
103+ depends on DWC_OTG
104+
105+#config DWC_OTG_DEVICE_ONLY
106+# bool "DEVICE ONLY MODE"
107+# depends on DWC_OTG
108+endchoice
109+
110+choice
111+ prompt "Platform"
112+ depends on DWC_OTG
113+ default DWC_OTG_LANTIQ
114+
115+config DWC_OTG_LANTIQ
116+ bool "Lantiq"
117+ depends on LANTIQ
118+ help
119+ Danube USB Host Controller
120+ platform support
121+endchoice
122+
123+config DWC_OTG_DEBUG
124+ bool "Enable debug mode"
125+ depends on DWC_OTG
126--- /dev/null
127+++ b/drivers/usb/dwc_otg/Makefile
128@@ -0,0 +1,39 @@
129+#
130+# Makefile for DWC_otg Highspeed USB controller driver
131+#
132+
133+ifeq ($(CONFIG_DWC_OTG_DEBUG),y)
134+EXTRA_CFLAGS += -DDEBUG
135+endif
136+
137+# Use one of the following flags to compile the software in host-only or
138+# device-only mode based on the configuration selected by the user
139+ifeq ($(CONFIG_DWC_OTG_HOST_ONLY),y)
140+ EXTRA_CFLAGS += -DDWC_OTG_HOST_ONLY -DDWC_HOST_ONLY
141+ EXTRA_CFLAGS += -DDWC_OTG_EN_ISOC -DDWC_EN_ISOC
142+else ifeq ($(CONFIG_DWC_OTG_DEVICE_ONLY),y)
143+ EXTRA_CFLAGS += -DDWC_OTG_DEVICE_ONLY
144+else
145+ EXTRA_CFLAGS += -DDWC_OTG_MODE
146+endif
147+
148+# EXTRA_CFLAGS += -DDWC_HS_ELECT_TST
149+# EXTRA_CFLAGS += -DDWC_OTG_EXT_CHG_PUMP
150+
151+ifeq ($(CONFIG_DWC_OTG_LANTIQ),y)
152+ EXTRA_CFLAGS += -Dlinux -D__LINUX__ -DDWC_OTG_IFX -DDWC_OTG_HOST_ONLY -DDWC_HOST_ONLY -D__KERNEL__
153+endif
154+ifeq ($(CONFIG_DWC_OTG_LANTIQ),m)
155+ EXTRA_CFLAGS += -Dlinux -D__LINUX__ -DDWC_OTG_IFX -DDWC_HOST_ONLY -DMODULE -D__KERNEL__ -DDEBUG
156+endif
157+
158+obj-$(CONFIG_DWC_OTG) := dwc_otg.o
159+dwc_otg-objs := dwc_otg_hcd.o dwc_otg_hcd_intr.o dwc_otg_hcd_queue.o
160+#dwc_otg-objs += dwc_otg_pcd.o dwc_otg_pcd_intr.o
161+dwc_otg-objs += dwc_otg_attr.o
162+dwc_otg-objs += dwc_otg_cil.o dwc_otg_cil_intr.o
163+dwc_otg-objs += dwc_otg_ifx.o
164+dwc_otg-objs += dwc_otg_driver.o
165+
166+#obj-$(CONFIG_DWC_OTG_IFX) := dwc_otg_ifx.o
167+#dwc_otg_ifx-objs := dwc_otg_ifx.o
168--- /dev/null
169+++ b/drivers/usb/dwc_otg/dwc_otg_attr.c
170@@ -0,0 +1,802 @@
171+/* ==========================================================================
172+ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_attr.c $
173+ * $Revision: 1.1.1.1 $
174+ * $Date: 2009-04-17 06:15:34 $
175+ * $Change: 537387 $
176+ *
177+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
178+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
179+ * otherwise expressly agreed to in writing between Synopsys and you.
180+ *
181+ * The Software IS NOT an item of Licensed Software or Licensed Product under
182+ * any End User Software License Agreement or Agreement for Licensed Product
183+ * with Synopsys or any supplement thereto. You are permitted to use and
184+ * redistribute this Software in source and binary forms, with or without
185+ * modification, provided that redistributions of source code must retain this
186+ * notice. You may not view, use, disclose, copy or distribute this file or
187+ * any information contained herein except pursuant to this license grant from
188+ * Synopsys. If you do not agree with this notice, including the disclaimer
189+ * below, then you are not authorized to use the Software.
190+ *
191+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
192+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
193+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
194+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
195+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
196+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
197+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
198+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
199+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
200+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
201+ * DAMAGE.
202+ * ========================================================================== */
203+
204+/** @file
205+ *
206+ * The diagnostic interface will provide access to the controller for
207+ * bringing up the hardware and testing. The Linux driver attributes
208+ * feature will be used to provide the Linux Diagnostic
209+ * Interface. These attributes are accessed through sysfs.
210+ */
211+
212+/** @page "Linux Module Attributes"
213+ *
214+ * The Linux module attributes feature is used to provide the Linux
215+ * Diagnostic Interface. These attributes are accessed through sysfs.
216+ * The diagnostic interface will provide access to the controller for
217+ * bringing up the hardware and testing.
218+
219+
220+ The following table shows the attributes.
221+ <table>
222+ <tr>
223+ <td><b> Name</b></td>
224+ <td><b> Description</b></td>
225+ <td><b> Access</b></td>
226+ </tr>
227+
228+ <tr>
229+ <td> mode </td>
230+ <td> Returns the current mode: 0 for device mode, 1 for host mode</td>
231+ <td> Read</td>
232+ </tr>
233+
234+ <tr>
235+ <td> hnpcapable </td>
236+ <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register.
237+ Read returns the current value.</td>
238+ <td> Read/Write</td>
239+ </tr>
240+
241+ <tr>
242+ <td> srpcapable </td>
243+ <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register.
244+ Read returns the current value.</td>
245+ <td> Read/Write</td>
246+ </tr>
247+
248+ <tr>
249+ <td> hnp </td>
250+ <td> Initiates the Host Negotiation Protocol. Read returns the status.</td>
251+ <td> Read/Write</td>
252+ </tr>
253+
254+ <tr>
255+ <td> srp </td>
256+ <td> Initiates the Session Request Protocol. Read returns the status.</td>
257+ <td> Read/Write</td>
258+ </tr>
259+
260+ <tr>
261+ <td> buspower </td>
262+ <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td>
263+ <td> Read/Write</td>
264+ </tr>
265+
266+ <tr>
267+ <td> bussuspend </td>
268+ <td> Suspends the USB bus.</td>
269+ <td> Read/Write</td>
270+ </tr>
271+
272+ <tr>
273+ <td> busconnected </td>
274+ <td> Gets the connection status of the bus</td>
275+ <td> Read</td>
276+ </tr>
277+
278+ <tr>
279+ <td> gotgctl </td>
280+ <td> Gets or sets the Core Control Status Register.</td>
281+ <td> Read/Write</td>
282+ </tr>
283+
284+ <tr>
285+ <td> gusbcfg </td>
286+ <td> Gets or sets the Core USB Configuration Register</td>
287+ <td> Read/Write</td>
288+ </tr>
289+
290+ <tr>
291+ <td> grxfsiz </td>
292+ <td> Gets or sets the Receive FIFO Size Register</td>
293+ <td> Read/Write</td>
294+ </tr>
295+
296+ <tr>
297+ <td> gnptxfsiz </td>
298+ <td> Gets or sets the non-periodic Transmit Size Register</td>
299+ <td> Read/Write</td>
300+ </tr>
301+
302+ <tr>
303+ <td> gpvndctl </td>
304+ <td> Gets or sets the PHY Vendor Control Register</td>
305+ <td> Read/Write</td>
306+ </tr>
307+
308+ <tr>
309+ <td> ggpio </td>
310+ <td> Gets the value in the lower 16-bits of the General Purpose IO Register
311+ or sets the upper 16 bits.</td>
312+ <td> Read/Write</td>
313+ </tr>
314+
315+ <tr>
316+ <td> guid </td>
317+ <td> Gets or sets the value of the User ID Register</td>
318+ <td> Read/Write</td>
319+ </tr>
320+
321+ <tr>
322+ <td> gsnpsid </td>
323+ <td> Gets the value of the Synopsys ID Regester</td>
324+ <td> Read</td>
325+ </tr>
326+
327+ <tr>
328+ <td> devspeed </td>
329+ <td> Gets or sets the device speed setting in the DCFG register</td>
330+ <td> Read/Write</td>
331+ </tr>
332+
333+ <tr>
334+ <td> enumspeed </td>
335+ <td> Gets the device enumeration Speed.</td>
336+ <td> Read</td>
337+ </tr>
338+
339+ <tr>
340+ <td> hptxfsiz </td>
341+ <td> Gets the value of the Host Periodic Transmit FIFO</td>
342+ <td> Read</td>
343+ </tr>
344+
345+ <tr>
346+ <td> hprt0 </td>
347+ <td> Gets or sets the value in the Host Port Control and Status Register</td>
348+ <td> Read/Write</td>
349+ </tr>
350+
351+ <tr>
352+ <td> regoffset </td>
353+ <td> Sets the register offset for the next Register Access</td>
354+ <td> Read/Write</td>
355+ </tr>
356+
357+ <tr>
358+ <td> regvalue </td>
359+ <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td>
360+ <td> Read/Write</td>
361+ </tr>
362+
363+ <tr>
364+ <td> remote_wakeup </td>
365+ <td> On read, shows the status of Remote Wakeup. On write, initiates a remote
366+ wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote
367+ Wakeup signalling bit in the Device Control Register is set for 1
368+ milli-second.</td>
369+ <td> Read/Write</td>
370+ </tr>
371+
372+ <tr>
373+ <td> regdump </td>
374+ <td> Dumps the contents of core registers.</td>
375+ <td> Read</td>
376+ </tr>
377+
378+ <tr>
379+ <td> hcddump </td>
380+ <td> Dumps the current HCD state.</td>
381+ <td> Read</td>
382+ </tr>
383+
384+ <tr>
385+ <td> hcd_frrem </td>
386+ <td> Shows the average value of the Frame Remaining
387+ field in the Host Frame Number/Frame Remaining register when an SOF interrupt
388+ occurs. This can be used to determine the average interrupt latency. Also
389+ shows the average Frame Remaining value for start_transfer and the "a" and
390+ "b" sample points. The "a" and "b" sample points may be used during debugging
391+ bto determine how long it takes to execute a section of the HCD code.</td>
392+ <td> Read</td>
393+ </tr>
394+
395+ <tr>
396+ <td> rd_reg_test </td>
397+ <td> Displays the time required to read the GNPTXFSIZ register many times
398+ (the output shows the number of times the register is read).
399+ <td> Read</td>
400+ </tr>
401+
402+ <tr>
403+ <td> wr_reg_test </td>
404+ <td> Displays the time required to write the GNPTXFSIZ register many times
405+ (the output shows the number of times the register is written).
406+ <td> Read</td>
407+ </tr>
408+
409+ </table>
410+
411+ Example usage:
412+ To get the current mode:
413+ cat /sys/devices/lm0/mode
414+
415+ To power down the USB:
416+ echo 0 > /sys/devices/lm0/buspower
417+ */
418+#include <linux/kernel.h>
419+#include <linux/module.h>
420+#include <linux/moduleparam.h>
421+#include <linux/init.h>
422+#include <linux/device.h>
423+#include <linux/errno.h>
424+#include <linux/types.h>
425+#include <linux/stat.h> /* permission constants */
426+
427+#include <asm/io.h>
428+
429+#include "dwc_otg_plat.h"
430+#include "dwc_otg_attr.h"
431+#include "dwc_otg_driver.h"
432+// #include "dwc_otg_pcd.h"
433+#include "dwc_otg_hcd.h"
434+
435+// 20070316, winder added.
436+#ifndef SZ_256K
437+#define SZ_256K 0x00040000
438+#endif
439+
440+/*
441+ * MACROs for defining sysfs attribute
442+ */
443+#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
444+static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
445+{ \
446+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\
447+ uint32_t val; \
448+ val = dwc_read_reg32 (_addr_); \
449+ val = (val & (_mask_)) >> _shift_; \
450+ return sprintf (buf, "%s = 0x%x\n", _string_, val); \
451+}
452+#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
453+static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, const char *buf, size_t count) \
454+{ \
455+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\
456+ uint32_t set = simple_strtoul(buf, NULL, 16); \
457+ uint32_t clear = set; \
458+ clear = ((~clear) << _shift_) & _mask_; \
459+ set = (set << _shift_) & _mask_; \
460+ dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \
461+ dwc_modify_reg32(_addr_, clear, set); \
462+ return count; \
463+}
464+
465+#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
466+DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
467+DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
468+DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
469+
470+#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
471+DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
472+DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
473+
474+/*
475+ * MACROs for defining sysfs attribute for 32-bit registers
476+ */
477+#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
478+static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
479+{ \
480+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\
481+ uint32_t val; \
482+ val = dwc_read_reg32 (_addr_); \
483+ return sprintf (buf, "%s = 0x%08x\n", _string_, val); \
484+}
485+#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
486+static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, const char *buf, size_t count) \
487+{ \
488+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\
489+ uint32_t val = simple_strtoul(buf, NULL, 16); \
490+ dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \
491+ dwc_write_reg32(_addr_, val); \
492+ return count; \
493+}
494+
495+#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_,_addr_,_string_) \
496+DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
497+DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
498+DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
499+
500+#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_,_addr_,_string_) \
501+DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
502+DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
503+
504+
505+/** @name Functions for Show/Store of Attributes */
506+/**@{*/
507+
508+/**
509+ * Show the register offset of the Register Access.
510+ */
511+static ssize_t regoffset_show( struct device *_dev, struct device_attribute *attr, char *buf)
512+{
513+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
514+ return snprintf(buf, sizeof("0xFFFFFFFF\n")+1,"0x%08x\n", otg_dev->reg_offset);
515+}
516+
517+/**
518+ * Set the register offset for the next Register Access Read/Write
519+ */
520+static ssize_t regoffset_store( struct device *_dev, struct device_attribute *attr, const char *buf,
521+ size_t count )
522+{
523+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
524+ uint32_t offset = simple_strtoul(buf, NULL, 16);
525+ //dev_dbg(_dev, "Offset=0x%08x\n", offset);
526+ if (offset < SZ_256K ) {
527+ otg_dev->reg_offset = offset;
528+ }
529+ else {
530+ dev_err( _dev, "invalid offset\n" );
531+ }
532+
533+ return count;
534+}
535+DEVICE_ATTR(regoffset, S_IRUGO|S_IWUSR, regoffset_show, regoffset_store);
536+
537+/**
538+ * Show the value of the register at the offset in the reg_offset
539+ * attribute.
540+ */
541+static ssize_t regvalue_show( struct device *_dev, struct device_attribute *attr, char *buf)
542+{
543+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
544+ uint32_t val;
545+ volatile uint32_t *addr;
546+
547+ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
548+ /* Calculate the address */
549+ addr = (uint32_t*)(otg_dev->reg_offset +
550+ (uint8_t*)otg_dev->base);
551+ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
552+ val = dwc_read_reg32( addr );
553+ return snprintf(buf, sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n")+1,
554+ "Reg@0x%06x = 0x%08x\n",
555+ otg_dev->reg_offset, val);
556+ }
557+ else {
558+ dev_err(_dev, "Invalid offset (0x%0x)\n",
559+ otg_dev->reg_offset);
560+ return sprintf(buf, "invalid offset\n" );
561+ }
562+}
563+
564+/**
565+ * Store the value in the register at the offset in the reg_offset
566+ * attribute.
567+ *
568+ */
569+static ssize_t regvalue_store( struct device *_dev, struct device_attribute *attr, const char *buf,
570+ size_t count )
571+{
572+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
573+ volatile uint32_t * addr;
574+ uint32_t val = simple_strtoul(buf, NULL, 16);
575+ //dev_dbg(_dev, "Offset=0x%08x Val=0x%08x\n", otg_dev->reg_offset, val);
576+ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
577+ /* Calculate the address */
578+ addr = (uint32_t*)(otg_dev->reg_offset +
579+ (uint8_t*)otg_dev->base);
580+ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
581+ dwc_write_reg32( addr, val );
582+ }
583+ else {
584+ dev_err(_dev, "Invalid Register Offset (0x%08x)\n",
585+ otg_dev->reg_offset);
586+ }
587+ return count;
588+}
589+DEVICE_ATTR(regvalue, S_IRUGO|S_IWUSR, regvalue_show, regvalue_store);
590+
591+/*
592+ * Attributes
593+ */
594+DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<20),20,"Mode");
595+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<9),9,"Mode");
596+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<8),8,"Mode");
597+
598+//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
599+//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
600+DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected,otg_dev->core_if->host_if->hprt0,0x01,0,"Bus Connected");
601+
602+DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,&(otg_dev->core_if->core_global_regs->gotgctl),"GOTGCTL");
603+DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,&(otg_dev->core_if->core_global_regs->gusbcfg),"GUSBCFG");
604+DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,&(otg_dev->core_if->core_global_regs->grxfsiz),"GRXFSIZ");
605+DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,&(otg_dev->core_if->core_global_regs->gnptxfsiz),"GNPTXFSIZ");
606+DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,&(otg_dev->core_if->core_global_regs->gpvndctl),"GPVNDCTL");
607+DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,&(otg_dev->core_if->core_global_regs->ggpio),"GGPIO");
608+DWC_OTG_DEVICE_ATTR_REG32_RW(guid,&(otg_dev->core_if->core_global_regs->guid),"GUID");
609+DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,&(otg_dev->core_if->core_global_regs->gsnpsid),"GSNPSID");
610+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dcfg),0x3,0,"Device Speed");
611+DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dsts),0x6,1,"Device Enumeration Speed");
612+
613+DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,&(otg_dev->core_if->core_global_regs->hptxfsiz),"HPTXFSIZ");
614+DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0,otg_dev->core_if->host_if->hprt0,"HPRT0");
615+
616+
617+/**
618+ * @todo Add code to initiate the HNP.
619+ */
620+/**
621+ * Show the HNP status bit
622+ */
623+static ssize_t hnp_show( struct device *_dev, struct device_attribute *attr, char *buf)
624+{
625+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
626+ gotgctl_data_t val;
627+ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
628+ return sprintf (buf, "HstNegScs = 0x%x\n", val.b.hstnegscs);
629+}
630+
631+/**
632+ * Set the HNP Request bit
633+ */
634+static ssize_t hnp_store( struct device *_dev, struct device_attribute *attr, const char *buf,
635+ size_t count )
636+{
637+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
638+ uint32_t in = simple_strtoul(buf, NULL, 16);
639+ uint32_t *addr = (uint32_t *)&(otg_dev->core_if->core_global_regs->gotgctl);
640+ gotgctl_data_t mem;
641+ mem.d32 = dwc_read_reg32(addr);
642+ mem.b.hnpreq = in;
643+ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
644+ dwc_write_reg32(addr, mem.d32);
645+ return count;
646+}
647+DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store);
648+
649+/**
650+ * @todo Add code to initiate the SRP.
651+ */
652+/**
653+ * Show the SRP status bit
654+ */
655+static ssize_t srp_show( struct device *_dev, struct device_attribute *attr, char *buf)
656+{
657+#ifndef DWC_HOST_ONLY
658+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
659+ gotgctl_data_t val;
660+ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
661+ return sprintf (buf, "SesReqScs = 0x%x\n", val.b.sesreqscs);
662+#else
663+ return sprintf(buf, "Host Only Mode!\n");
664+#endif
665+}
666+
667+/**
668+ * Set the SRP Request bit
669+ */
670+static ssize_t srp_store( struct device *_dev, struct device_attribute *attr, const char *buf,
671+ size_t count )
672+{
673+#ifndef DWC_HOST_ONLY
674+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
675+ dwc_otg_pcd_initiate_srp(otg_dev->pcd);
676+#endif
677+ return count;
678+}
679+DEVICE_ATTR(srp, 0644, srp_show, srp_store);
680+
681+/**
682+ * @todo Need to do more for power on/off?
683+ */
684+/**
685+ * Show the Bus Power status
686+ */
687+static ssize_t buspower_show( struct device *_dev, struct device_attribute *attr, char *buf)
688+{
689+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
690+ hprt0_data_t val;
691+ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
692+ return sprintf (buf, "Bus Power = 0x%x\n", val.b.prtpwr);
693+}
694+
695+
696+/**
697+ * Set the Bus Power status
698+ */
699+static ssize_t buspower_store( struct device *_dev, struct device_attribute *attr, const char *buf,
700+ size_t count )
701+{
702+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
703+ uint32_t on = simple_strtoul(buf, NULL, 16);
704+ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
705+ hprt0_data_t mem;
706+
707+ mem.d32 = dwc_read_reg32(addr);
708+ mem.b.prtpwr = on;
709+
710+ //dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
711+ dwc_write_reg32(addr, mem.d32);
712+
713+ return count;
714+}
715+DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store);
716+
717+/**
718+ * @todo Need to do more for suspend?
719+ */
720+/**
721+ * Show the Bus Suspend status
722+ */
723+static ssize_t bussuspend_show( struct device *_dev, struct device_attribute *attr, char *buf)
724+{
725+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
726+ hprt0_data_t val;
727+ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
728+ return sprintf (buf, "Bus Suspend = 0x%x\n", val.b.prtsusp);
729+}
730+
731+/**
732+ * Set the Bus Suspend status
733+ */
734+static ssize_t bussuspend_store( struct device *_dev, struct device_attribute *attr, const char *buf,
735+ size_t count )
736+{
737+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
738+ uint32_t in = simple_strtoul(buf, NULL, 16);
739+ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
740+ hprt0_data_t mem;
741+ mem.d32 = dwc_read_reg32(addr);
742+ mem.b.prtsusp = in;
743+ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
744+ dwc_write_reg32(addr, mem.d32);
745+ return count;
746+}
747+DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store);
748+
749+/**
750+ * Show the status of Remote Wakeup.
751+ */
752+static ssize_t remote_wakeup_show( struct device *_dev, struct device_attribute *attr, char *buf)
753+{
754+#ifndef DWC_HOST_ONLY
755+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
756+ dctl_data_t val;
757+ val.d32 = dwc_read_reg32( &otg_dev->core_if->dev_if->dev_global_regs->dctl);
758+ return sprintf( buf, "Remote Wakeup = %d Enabled = %d\n",
759+ val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable);
760+#else
761+ return sprintf(buf, "Host Only Mode!\n");
762+#endif
763+}
764+
765+/**
766+ * Initiate a remote wakeup of the host. The Device control register
767+ * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable
768+ * flag is set.
769+ *
770+ */
771+static ssize_t remote_wakeup_store( struct device *_dev, struct device_attribute *attr, const char *buf,
772+ size_t count )
773+{
774+#ifndef DWC_HOST_ONLY
775+ uint32_t val = simple_strtoul(buf, NULL, 16);
776+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
777+ if (val&1) {
778+ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1);
779+ }
780+ else {
781+ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0);
782+ }
783+#endif
784+ return count;
785+}
786+DEVICE_ATTR(remote_wakeup, S_IRUGO|S_IWUSR, remote_wakeup_show,
787+ remote_wakeup_store);
788+
789+/**
790+ * Dump global registers and either host or device registers (depending on the
791+ * current mode of the core).
792+ */
793+static ssize_t regdump_show( struct device *_dev, struct device_attribute *attr, char *buf)
794+{
795+#ifdef DEBUG
796+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
797+ printk("%s otg_dev=0x%p\n", __FUNCTION__, otg_dev);
798+
799+ dwc_otg_dump_global_registers( otg_dev->core_if);
800+ if (dwc_otg_is_host_mode(otg_dev->core_if)) {
801+ dwc_otg_dump_host_registers( otg_dev->core_if);
802+ } else {
803+ dwc_otg_dump_dev_registers( otg_dev->core_if);
804+ }
805+#endif
806+
807+ return sprintf( buf, "Register Dump\n" );
808+}
809+
810+DEVICE_ATTR(regdump, S_IRUGO|S_IWUSR, regdump_show, 0);
811+
812+/**
813+ * Dump the current hcd state.
814+ */
815+static ssize_t hcddump_show( struct device *_dev, struct device_attribute *attr, char *buf)
816+{
817+#ifndef DWC_DEVICE_ONLY
818+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
819+ dwc_otg_hcd_dump_state(otg_dev->hcd);
820+#endif
821+ return sprintf( buf, "HCD Dump\n" );
822+}
823+
824+DEVICE_ATTR(hcddump, S_IRUGO|S_IWUSR, hcddump_show, 0);
825+
826+/**
827+ * Dump the average frame remaining at SOF. This can be used to
828+ * determine average interrupt latency. Frame remaining is also shown for
829+ * start transfer and two additional sample points.
830+ */
831+static ssize_t hcd_frrem_show( struct device *_dev, struct device_attribute *attr, char *buf)
832+{
833+#ifndef DWC_DEVICE_ONLY
834+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
835+ dwc_otg_hcd_dump_frrem(otg_dev->hcd);
836+#endif
837+ return sprintf( buf, "HCD Dump Frame Remaining\n" );
838+}
839+
840+DEVICE_ATTR(hcd_frrem, S_IRUGO|S_IWUSR, hcd_frrem_show, 0);
841+
842+/**
843+ * Displays the time required to read the GNPTXFSIZ register many times (the
844+ * output shows the number of times the register is read).
845+ */
846+#define RW_REG_COUNT 10000000
847+#define MSEC_PER_JIFFIE 1000/HZ
848+static ssize_t rd_reg_test_show( struct device *_dev, struct device_attribute *attr, char *buf)
849+{
850+ int i;
851+ int time;
852+ int start_jiffies;
853+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
854+
855+ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
856+ HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
857+ start_jiffies = jiffies;
858+ for (i = 0; i < RW_REG_COUNT; i++) {
859+ dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
860+ }
861+ time = jiffies - start_jiffies;
862+ return sprintf( buf, "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
863+ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time );
864+}
865+
866+DEVICE_ATTR(rd_reg_test, S_IRUGO|S_IWUSR, rd_reg_test_show, 0);
867+
868+/**
869+ * Displays the time required to write the GNPTXFSIZ register many times (the
870+ * output shows the number of times the register is written).
871+ */
872+static ssize_t wr_reg_test_show( struct device *_dev, struct device_attribute *attr, char *buf)
873+{
874+ int i;
875+ int time;
876+ int start_jiffies;
877+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
878+ uint32_t reg_val;
879+
880+ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
881+ HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
882+ reg_val = dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
883+ start_jiffies = jiffies;
884+ for (i = 0; i < RW_REG_COUNT; i++) {
885+ dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, reg_val);
886+ }
887+ time = jiffies - start_jiffies;
888+ return sprintf( buf, "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
889+ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
890+}
891+
892+DEVICE_ATTR(wr_reg_test, S_IRUGO|S_IWUSR, wr_reg_test_show, 0);
893+/**@}*/
894+
895+/**
896+ * Create the device files
897+ */
898+void dwc_otg_attr_create (struct device *_dev)
899+{
900+ int retval;
901+
902+ retval = device_create_file(_dev, &dev_attr_regoffset);
903+ retval += device_create_file(_dev, &dev_attr_regvalue);
904+ retval += device_create_file(_dev, &dev_attr_mode);
905+ retval += device_create_file(_dev, &dev_attr_hnpcapable);
906+ retval += device_create_file(_dev, &dev_attr_srpcapable);
907+ retval += device_create_file(_dev, &dev_attr_hnp);
908+ retval += device_create_file(_dev, &dev_attr_srp);
909+ retval += device_create_file(_dev, &dev_attr_buspower);
910+ retval += device_create_file(_dev, &dev_attr_bussuspend);
911+ retval += device_create_file(_dev, &dev_attr_busconnected);
912+ retval += device_create_file(_dev, &dev_attr_gotgctl);
913+ retval += device_create_file(_dev, &dev_attr_gusbcfg);
914+ retval += device_create_file(_dev, &dev_attr_grxfsiz);
915+ retval += device_create_file(_dev, &dev_attr_gnptxfsiz);
916+ retval += device_create_file(_dev, &dev_attr_gpvndctl);
917+ retval += device_create_file(_dev, &dev_attr_ggpio);
918+ retval += device_create_file(_dev, &dev_attr_guid);
919+ retval += device_create_file(_dev, &dev_attr_gsnpsid);
920+ retval += device_create_file(_dev, &dev_attr_devspeed);
921+ retval += device_create_file(_dev, &dev_attr_enumspeed);
922+ retval += device_create_file(_dev, &dev_attr_hptxfsiz);
923+ retval += device_create_file(_dev, &dev_attr_hprt0);
924+ retval += device_create_file(_dev, &dev_attr_remote_wakeup);
925+ retval += device_create_file(_dev, &dev_attr_regdump);
926+ retval += device_create_file(_dev, &dev_attr_hcddump);
927+ retval += device_create_file(_dev, &dev_attr_hcd_frrem);
928+ retval += device_create_file(_dev, &dev_attr_rd_reg_test);
929+ retval += device_create_file(_dev, &dev_attr_wr_reg_test);
930+
931+ if(retval != 0)
932+ {
933+ DWC_PRINT("cannot create sysfs device files.\n");
934+ // DWC_PRINT("killing own sysfs device files!\n");
935+ dwc_otg_attr_remove(_dev);
936+ }
937+}
938+
939+/**
940+ * Remove the device files
941+ */
942+void dwc_otg_attr_remove (struct device *_dev)
943+{
944+ device_remove_file(_dev, &dev_attr_regoffset);
945+ device_remove_file(_dev, &dev_attr_regvalue);
946+ device_remove_file(_dev, &dev_attr_mode);
947+ device_remove_file(_dev, &dev_attr_hnpcapable);
948+ device_remove_file(_dev, &dev_attr_srpcapable);
949+ device_remove_file(_dev, &dev_attr_hnp);
950+ device_remove_file(_dev, &dev_attr_srp);
951+ device_remove_file(_dev, &dev_attr_buspower);
952+ device_remove_file(_dev, &dev_attr_bussuspend);
953+ device_remove_file(_dev, &dev_attr_busconnected);
954+ device_remove_file(_dev, &dev_attr_gotgctl);
955+ device_remove_file(_dev, &dev_attr_gusbcfg);
956+ device_remove_file(_dev, &dev_attr_grxfsiz);
957+ device_remove_file(_dev, &dev_attr_gnptxfsiz);
958+ device_remove_file(_dev, &dev_attr_gpvndctl);
959+ device_remove_file(_dev, &dev_attr_ggpio);
960+ device_remove_file(_dev, &dev_attr_guid);
961+ device_remove_file(_dev, &dev_attr_gsnpsid);
962+ device_remove_file(_dev, &dev_attr_devspeed);
963+ device_remove_file(_dev, &dev_attr_enumspeed);
964+ device_remove_file(_dev, &dev_attr_hptxfsiz);
965+ device_remove_file(_dev, &dev_attr_hprt0);
966+ device_remove_file(_dev, &dev_attr_remote_wakeup);
967+ device_remove_file(_dev, &dev_attr_regdump);
968+ device_remove_file(_dev, &dev_attr_hcddump);
969+ device_remove_file(_dev, &dev_attr_hcd_frrem);
970+ device_remove_file(_dev, &dev_attr_rd_reg_test);
971+ device_remove_file(_dev, &dev_attr_wr_reg_test);
972+}
973--- /dev/null
974+++ b/drivers/usb/dwc_otg/dwc_otg_attr.h
975@@ -0,0 +1,67 @@
976+/* ==========================================================================
977+ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_attr.h $
978+ * $Revision: 1.1.1.1 $
979+ * $Date: 2009-04-17 06:15:34 $
980+ * $Change: 510275 $
981+ *
982+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
983+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
984+ * otherwise expressly agreed to in writing between Synopsys and you.
985+ *
986+ * The Software IS NOT an item of Licensed Software or Licensed Product under
987+ * any End User Software License Agreement or Agreement for Licensed Product
988+ * with Synopsys or any supplement thereto. You are permitted to use and
989+ * redistribute this Software in source and binary forms, with or without
990+ * modification, provided that redistributions of source code must retain this
991+ * notice. You may not view, use, disclose, copy or distribute this file or
992+ * any information contained herein except pursuant to this license grant from
993+ * Synopsys. If you do not agree with this notice, including the disclaimer
994+ * below, then you are not authorized to use the Software.
995+ *
996+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
997+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
998+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
999+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
1000+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
1001+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
1002+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
1003+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
1004+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
1005+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
1006+ * DAMAGE.
1007+ * ========================================================================== */
1008+
1009+#if !defined(__DWC_OTG_ATTR_H__)
1010+#define __DWC_OTG_ATTR_H__
1011+
1012+/** @file
1013+ * This file contains the interface to the Linux device attributes.
1014+ */
1015+extern struct device_attribute dev_attr_regoffset;
1016+extern struct device_attribute dev_attr_regvalue;
1017+
1018+extern struct device_attribute dev_attr_mode;
1019+extern struct device_attribute dev_attr_hnpcapable;
1020+extern struct device_attribute dev_attr_srpcapable;
1021+extern struct device_attribute dev_attr_hnp;
1022+extern struct device_attribute dev_attr_srp;
1023+extern struct device_attribute dev_attr_buspower;
1024+extern struct device_attribute dev_attr_bussuspend;
1025+extern struct device_attribute dev_attr_busconnected;
1026+extern struct device_attribute dev_attr_gotgctl;
1027+extern struct device_attribute dev_attr_gusbcfg;
1028+extern struct device_attribute dev_attr_grxfsiz;
1029+extern struct device_attribute dev_attr_gnptxfsiz;
1030+extern struct device_attribute dev_attr_gpvndctl;
1031+extern struct device_attribute dev_attr_ggpio;
1032+extern struct device_attribute dev_attr_guid;
1033+extern struct device_attribute dev_attr_gsnpsid;
1034+extern struct device_attribute dev_attr_devspeed;
1035+extern struct device_attribute dev_attr_enumspeed;
1036+extern struct device_attribute dev_attr_hptxfsiz;
1037+extern struct device_attribute dev_attr_hprt0;
1038+
1039+void dwc_otg_attr_create (struct device *_dev);
1040+void dwc_otg_attr_remove (struct device *_dev);
1041+
1042+#endif
1043--- /dev/null
1044+++ b/drivers/usb/dwc_otg/dwc_otg_cil.c
1045@@ -0,0 +1,3025 @@
1046+/* ==========================================================================
1047+ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil.c $
1048+ * $Revision: 1.1.1.1 $
1049+ * $Date: 2009-04-17 06:15:34 $
1050+ * $Change: 631780 $
1051+ *
1052+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
1053+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
1054+ * otherwise expressly agreed to in writing between Synopsys and you.
1055+ *
1056+ * The Software IS NOT an item of Licensed Software or Licensed Product under
1057+ * any End User Software License Agreement or Agreement for Licensed Product
1058+ * with Synopsys or any supplement thereto. You are permitted to use and
1059+ * redistribute this Software in source and binary forms, with or without
1060+ * modification, provided that redistributions of source code must retain this
1061+ * notice. You may not view, use, disclose, copy or distribute this file or
1062+ * any information contained herein except pursuant to this license grant from
1063+ * Synopsys. If you do not agree with this notice, including the disclaimer
1064+ * below, then you are not authorized to use the Software.
1065+ *
1066+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
1067+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1068+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1069+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
1070+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
1071+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
1072+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
1073+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
1074+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
1075+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
1076+ * DAMAGE.
1077+ * ========================================================================== */
1078+
1079+/** @file
1080+ *
1081+ * The Core Interface Layer provides basic services for accessing and
1082+ * managing the DWC_otg hardware. These services are used by both the
1083+ * Host Controller Driver and the Peripheral Controller Driver.
1084+ *
1085+ * The CIL manages the memory map for the core so that the HCD and PCD
1086+ * don't have to do this separately. It also handles basic tasks like
1087+ * reading/writing the registers and data FIFOs in the controller.
1088+ * Some of the data access functions provide encapsulation of several
1089+ * operations required to perform a task, such as writing multiple
1090+ * registers to start a transfer. Finally, the CIL performs basic
1091+ * services that are not specific to either the host or device modes
1092+ * of operation. These services include management of the OTG Host
1093+ * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A
1094+ * Diagnostic API is also provided to allow testing of the controller
1095+ * hardware.
1096+ *
1097+ * The Core Interface Layer has the following requirements:
1098+ * - Provides basic controller operations.
1099+ * - Minimal use of OS services.
1100+ * - The OS services used will be abstracted by using inline functions
1101+ * or macros.
1102+ *
1103+ */
1104+#include <asm/unaligned.h>
1105+
1106+#ifdef DEBUG
1107+#include <linux/jiffies.h>
1108+#endif
1109+
1110+#include "dwc_otg_plat.h"
1111+
1112+#include "dwc_otg_regs.h"
1113+#include "dwc_otg_cil.h"
1114+
1115+/**
1116+ * This function is called to initialize the DWC_otg CSR data
1117+ * structures. The register addresses in the device and host
1118+ * structures are initialized from the base address supplied by the
1119+ * caller. The calling function must make the OS calls to get the
1120+ * base address of the DWC_otg controller registers. The core_params
1121+ * argument holds the parameters that specify how the core should be
1122+ * configured.
1123+ *
1124+ * @param[in] _reg_base_addr Base address of DWC_otg core registers
1125+ * @param[in] _core_params Pointer to the core configuration parameters
1126+ *
1127+ */
1128+dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr,
1129+ dwc_otg_core_params_t *_core_params)
1130+{
1131+ dwc_otg_core_if_t *core_if = 0;
1132+ dwc_otg_dev_if_t *dev_if = 0;
1133+ dwc_otg_host_if_t *host_if = 0;
1134+ uint8_t *reg_base = (uint8_t *)_reg_base_addr;
1135+ int i = 0;
1136+
1137+ DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, _reg_base_addr, _core_params);
1138+
1139+ core_if = kmalloc( sizeof(dwc_otg_core_if_t), GFP_KERNEL);
1140+ if (core_if == 0) {
1141+ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_core_if_t failed\n");
1142+ return 0;
1143+ }
1144+ memset(core_if, 0, sizeof(dwc_otg_core_if_t));
1145+
1146+ core_if->core_params = _core_params;
1147+ core_if->core_global_regs = (dwc_otg_core_global_regs_t *)reg_base;
1148+ /*
1149+ * Allocate the Device Mode structures.
1150+ */
1151+ dev_if = kmalloc( sizeof(dwc_otg_dev_if_t), GFP_KERNEL);
1152+ if (dev_if == 0) {
1153+ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n");
1154+ kfree( core_if );
1155+ return 0;
1156+ }
1157+
1158+ dev_if->dev_global_regs =
1159+ (dwc_otg_device_global_regs_t *)(reg_base + DWC_DEV_GLOBAL_REG_OFFSET);
1160+
1161+ for (i=0; i<MAX_EPS_CHANNELS; i++) {
1162+ dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *)
1163+ (reg_base + DWC_DEV_IN_EP_REG_OFFSET +
1164+ (i * DWC_EP_REG_OFFSET));
1165+
1166+ dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *)
1167+ (reg_base + DWC_DEV_OUT_EP_REG_OFFSET +
1168+ (i * DWC_EP_REG_OFFSET));
1169+ DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n",
1170+ i, &dev_if->in_ep_regs[i]->diepctl);
1171+ DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n",
1172+ i, &dev_if->out_ep_regs[i]->doepctl);
1173+ }
1174+ dev_if->speed = 0; // unknown
1175+ //dev_if->num_eps = MAX_EPS_CHANNELS;
1176+ //dev_if->num_perio_eps = 0;
1177+
1178+ core_if->dev_if = dev_if;
1179+ /*
1180+ * Allocate the Host Mode structures.
1181+ */
1182+ host_if = kmalloc( sizeof(dwc_otg_host_if_t), GFP_KERNEL);
1183+ if (host_if == 0) {
1184+ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_host_if_t failed\n");
1185+ kfree( dev_if );
1186+ kfree( core_if );
1187+ return 0;
1188+ }
1189+
1190+ host_if->host_global_regs = (dwc_otg_host_global_regs_t *)
1191+ (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET);
1192+ host_if->hprt0 = (uint32_t*)(reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET);
1193+ for (i=0; i<MAX_EPS_CHANNELS; i++) {
1194+ host_if->hc_regs[i] = (dwc_otg_hc_regs_t *)
1195+ (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET +
1196+ (i * DWC_OTG_CHAN_REGS_OFFSET));
1197+ DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n",
1198+ i, &host_if->hc_regs[i]->hcchar);
1199+ }
1200+ host_if->num_host_channels = MAX_EPS_CHANNELS;
1201+ core_if->host_if = host_if;
1202+
1203+ for (i=0; i<MAX_EPS_CHANNELS; i++) {
1204+ core_if->data_fifo[i] =
1205+ (uint32_t *)(reg_base + DWC_OTG_DATA_FIFO_OFFSET +
1206+ (i * DWC_OTG_DATA_FIFO_SIZE));
1207+ DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n",
1208+ i, (unsigned)core_if->data_fifo[i]);
1209+ } // for loop.
1210+
1211+ core_if->pcgcctl = (uint32_t*)(reg_base + DWC_OTG_PCGCCTL_OFFSET);
1212+
1213+ /*
1214+ * Store the contents of the hardware configuration registers here for
1215+ * easy access later.
1216+ */
1217+ core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1);
1218+ core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2);
1219+ core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3);
1220+ core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4);
1221+
1222+ DWC_DEBUGPL(DBG_CILV,"hwcfg1=%08x\n",core_if->hwcfg1.d32);
1223+ DWC_DEBUGPL(DBG_CILV,"hwcfg2=%08x\n",core_if->hwcfg2.d32);
1224+ DWC_DEBUGPL(DBG_CILV,"hwcfg3=%08x\n",core_if->hwcfg3.d32);
1225+ DWC_DEBUGPL(DBG_CILV,"hwcfg4=%08x\n",core_if->hwcfg4.d32);
1226+
1227+
1228+ DWC_DEBUGPL(DBG_CILV,"op_mode=%0x\n",core_if->hwcfg2.b.op_mode);
1229+ DWC_DEBUGPL(DBG_CILV,"arch=%0x\n",core_if->hwcfg2.b.architecture);
1230+ DWC_DEBUGPL(DBG_CILV,"num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep);
1231+ DWC_DEBUGPL(DBG_CILV,"num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan);
1232+ DWC_DEBUGPL(DBG_CILV,"nonperio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.nonperio_tx_q_depth);
1233+ DWC_DEBUGPL(DBG_CILV,"host_perio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.host_perio_tx_q_depth);
1234+ DWC_DEBUGPL(DBG_CILV,"dev_token_q_depth=0x%0x\n",core_if->hwcfg2.b.dev_token_q_depth);
1235+
1236+ DWC_DEBUGPL(DBG_CILV,"Total FIFO SZ=%d\n", core_if->hwcfg3.b.dfifo_depth);
1237+ DWC_DEBUGPL(DBG_CILV,"xfer_size_cntr_width=%0x\n", core_if->hwcfg3.b.xfer_size_cntr_width);
1238+
1239+ /*
1240+ * Set the SRP sucess bit for FS-I2c
1241+ */
1242+ core_if->srp_success = 0;
1243+ core_if->srp_timer_started = 0;
1244+
1245+ return core_if;
1246+}
1247+/**
1248+ * This function frees the structures allocated by dwc_otg_cil_init().
1249+ *
1250+ * @param[in] _core_if The core interface pointer returned from
1251+ * dwc_otg_cil_init().
1252+ *
1253+ */
1254+void dwc_otg_cil_remove( dwc_otg_core_if_t *_core_if )
1255+{
1256+ /* Disable all interrupts */
1257+ dwc_modify_reg32( &_core_if->core_global_regs->gahbcfg, 1, 0);
1258+ dwc_write_reg32( &_core_if->core_global_regs->gintmsk, 0);
1259+
1260+ if ( _core_if->dev_if ) {
1261+ kfree( _core_if->dev_if );
1262+ }
1263+ if ( _core_if->host_if ) {
1264+ kfree( _core_if->host_if );
1265+ }
1266+ kfree( _core_if );
1267+}
1268+
1269+/**
1270+ * This function enables the controller's Global Interrupt in the AHB Config
1271+ * register.
1272+ *
1273+ * @param[in] _core_if Programming view of DWC_otg controller.
1274+ */
1275+extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if )
1276+{
1277+ gahbcfg_data_t ahbcfg = { .d32 = 0};
1278+ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
1279+ dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32);
1280+}
1281+/**
1282+ * This function disables the controller's Global Interrupt in the AHB Config
1283+ * register.
1284+ *
1285+ * @param[in] _core_if Programming view of DWC_otg controller.
1286+ */
1287+extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if )
1288+{
1289+ gahbcfg_data_t ahbcfg = { .d32 = 0};
1290+ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
1291+ dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
1292+}
1293+
1294+/**
1295+ * This function initializes the commmon interrupts, used in both
1296+ * device and host modes.
1297+ *
1298+ * @param[in] _core_if Programming view of the DWC_otg controller
1299+ *
1300+ */
1301+static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t *_core_if)
1302+{
1303+ dwc_otg_core_global_regs_t *global_regs =
1304+ _core_if->core_global_regs;
1305+ gintmsk_data_t intr_mask = { .d32 = 0};
1306+ /* Clear any pending OTG Interrupts */
1307+ dwc_write_reg32( &global_regs->gotgint, 0xFFFFFFFF);
1308+ /* Clear any pending interrupts */
1309+ dwc_write_reg32( &global_regs->gintsts, 0xFFFFFFFF);
1310+ /*
1311+ * Enable the interrupts in the GINTMSK.
1312+ */
1313+ intr_mask.b.modemismatch = 1;
1314+ intr_mask.b.otgintr = 1;
1315+ if (!_core_if->dma_enable) {
1316+ intr_mask.b.rxstsqlvl = 1;
1317+ }
1318+ intr_mask.b.conidstschng = 1;
1319+ intr_mask.b.wkupintr = 1;
1320+ intr_mask.b.disconnect = 1;
1321+ intr_mask.b.usbsuspend = 1;
1322+ intr_mask.b.sessreqintr = 1;
1323+ dwc_write_reg32( &global_regs->gintmsk, intr_mask.d32);
1324+}
1325+
1326+/**
1327+ * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY
1328+ * type.
1329+ */
1330+static void init_fslspclksel(dwc_otg_core_if_t *_core_if)
1331+{
1332+ uint32_t val;
1333+ hcfg_data_t hcfg;
1334+
1335+ if (((_core_if->hwcfg2.b.hs_phy_type == 2) &&
1336+ (_core_if->hwcfg2.b.fs_phy_type == 1) &&
1337+ (_core_if->core_params->ulpi_fs_ls)) ||
1338+ (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS))
1339+ {
1340+ /* Full speed PHY */
1341+ val = DWC_HCFG_48_MHZ;
1342+ } else {
1343+ /* High speed PHY running at full speed or high speed */
1344+ val = DWC_HCFG_30_60_MHZ;
1345+ }
1346+
1347+ DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val);
1348+ hcfg.d32 = dwc_read_reg32(&_core_if->host_if->host_global_regs->hcfg);
1349+ hcfg.b.fslspclksel = val;
1350+ dwc_write_reg32(&_core_if->host_if->host_global_regs->hcfg, hcfg.d32);
1351+}
1352+
1353+/**
1354+ * Initializes the DevSpd field of the DCFG register depending on the PHY type
1355+ * and the enumeration speed of the device.
1356+ */
1357+static void init_devspd(dwc_otg_core_if_t *_core_if)
1358+{
1359+ uint32_t val;
1360+ dcfg_data_t dcfg;
1361+
1362+ if (((_core_if->hwcfg2.b.hs_phy_type == 2) &&
1363+ (_core_if->hwcfg2.b.fs_phy_type == 1) &&
1364+ (_core_if->core_params->ulpi_fs_ls)) ||
1365+ (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS))
1366+ {
1367+ /* Full speed PHY */
1368+ val = 0x3;
1369+ } else if (_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
1370+ /* High speed PHY running at full speed */
1371+ val = 0x1;
1372+ } else {
1373+ /* High speed PHY running at high speed */
1374+ val = 0x0;
1375+ }
1376+
1377+ DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val);
1378+ dcfg.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dcfg);
1379+ dcfg.b.devspd = val;
1380+ dwc_write_reg32(&_core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
1381+}
1382+
1383+/**
1384+ * This function calculates the number of IN EPS
1385+ * using GHWCFG1 and GHWCFG2 registers values
1386+ *
1387+ * @param _pcd the pcd structure.
1388+ */
1389+static uint32_t calc_num_in_eps(dwc_otg_core_if_t * _core_if)
1390+{
1391+ uint32_t num_in_eps = 0;
1392+ uint32_t num_eps = _core_if->hwcfg2.b.num_dev_ep;
1393+ uint32_t hwcfg1 = _core_if->hwcfg1.d32 >> 2;
1394+ uint32_t num_tx_fifos = _core_if->hwcfg4.b.num_in_eps;
1395+ int i;
1396+ for (i = 0; i < num_eps; ++i) {
1397+ if (!(hwcfg1 & 0x1))
1398+ num_in_eps++;
1399+ hwcfg1 >>= 2;
1400+ }
1401+ if (_core_if->hwcfg4.b.ded_fifo_en) {
1402+ num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps;
1403+ }
1404+ return num_in_eps;
1405+}
1406+
1407+
1408+/**
1409+ * This function calculates the number of OUT EPS
1410+ * using GHWCFG1 and GHWCFG2 registers values
1411+ *
1412+ * @param _pcd the pcd structure.
1413+ */
1414+static uint32_t calc_num_out_eps(dwc_otg_core_if_t * _core_if)
1415+{
1416+ uint32_t num_out_eps = 0;
1417+ uint32_t num_eps = _core_if->hwcfg2.b.num_dev_ep;
1418+ uint32_t hwcfg1 = _core_if->hwcfg1.d32 >> 2;
1419+ int i;
1420+ for (i = 0; i < num_eps; ++i) {
1421+ if (!(hwcfg1 & 0x2))
1422+ num_out_eps++;
1423+ hwcfg1 >>= 2;
1424+ }
1425+ return num_out_eps;
1426+}
1427+/**
1428+ * This function initializes the DWC_otg controller registers and
1429+ * prepares the core for device mode or host mode operation.
1430+ *
1431+ * @param _core_if Programming view of the DWC_otg controller
1432+ *
1433+ */
1434+void dwc_otg_core_init(dwc_otg_core_if_t *_core_if)
1435+{
1436+ dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs;
1437+ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
1438+ int i = 0;
1439+ gahbcfg_data_t ahbcfg = { .d32 = 0};
1440+ gusbcfg_data_t usbcfg = { .d32 = 0 };
1441+ gi2cctl_data_t i2cctl = {.d32 = 0};
1442+
1443+ DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n",_core_if);
1444+
1445+ /* Common Initialization */
1446+
1447+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1448+ DWC_DEBUGPL(DBG_CIL, "USB config register: 0x%08x\n", usbcfg.d32);
1449+
1450+ /* Program the ULPI External VBUS bit if needed */
1451+ //usbcfg.b.ulpi_ext_vbus_drv = 1;
1452+ //usbcfg.b.ulpi_ext_vbus_drv = 0;
1453+ usbcfg.b.ulpi_ext_vbus_drv =
1454+ (_core_if->core_params->phy_ulpi_ext_vbus == DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0;
1455+
1456+ /* Set external TS Dline pulsing */
1457+ usbcfg.b.term_sel_dl_pulse = (_core_if->core_params->ts_dline == 1) ? 1 : 0;
1458+ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
1459+
1460+ /* Reset the Controller */
1461+ dwc_otg_core_reset( _core_if );
1462+
1463+ /* Initialize parameters from Hardware configuration registers. */
1464+#if 0
1465+ dev_if->num_eps = _core_if->hwcfg2.b.num_dev_ep;
1466+ dev_if->num_perio_eps = _core_if->hwcfg4.b.num_dev_perio_in_ep;
1467+#else
1468+ dev_if->num_in_eps = calc_num_in_eps(_core_if);
1469+ dev_if->num_out_eps = calc_num_out_eps(_core_if);
1470+#endif
1471+ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n",
1472+ _core_if->hwcfg4.b.num_dev_perio_in_ep);
1473+ DWC_DEBUGPL(DBG_CIL, "Is power optimization enabled? %s\n",
1474+ _core_if->hwcfg4.b.power_optimiz ? "Yes" : "No");
1475+ DWC_DEBUGPL(DBG_CIL, "vbus_valid filter enabled? %s\n",
1476+ _core_if->hwcfg4.b.vbus_valid_filt_en ? "Yes" : "No");
1477+ DWC_DEBUGPL(DBG_CIL, "iddig filter enabled? %s\n",
1478+ _core_if->hwcfg4.b.iddig_filt_en ? "Yes" : "No");
1479+
1480+ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n",_core_if->hwcfg4.b.num_dev_perio_in_ep);
1481+ for (i=0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
1482+ dev_if->perio_tx_fifo_size[i] =
1483+ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
1484+ DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n", i,
1485+ dev_if->perio_tx_fifo_size[i]);
1486+ }
1487+ for (i = 0; i < _core_if->hwcfg4.b.num_in_eps; i++) {
1488+ dev_if->tx_fifo_size[i] =
1489+ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
1490+ DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n", i,
1491+ dev_if->perio_tx_fifo_size[i]);
1492+ }
1493+
1494+ _core_if->total_fifo_size = _core_if->hwcfg3.b.dfifo_depth;
1495+ _core_if->rx_fifo_size = dwc_read_reg32(&global_regs->grxfsiz);
1496+ _core_if->nperio_tx_fifo_size = dwc_read_reg32(&global_regs->gnptxfsiz) >> 16;
1497+
1498+ DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", _core_if->total_fifo_size);
1499+ DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", _core_if->rx_fifo_size);
1500+ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", _core_if->nperio_tx_fifo_size);
1501+
1502+ /* This programming sequence needs to happen in FS mode before any other
1503+ * programming occurs */
1504+ if ((_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) &&
1505+ (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
1506+ /* If FS mode with FS PHY */
1507+
1508+ /* core_init() is now called on every switch so only call the
1509+ * following for the first time through. */
1510+ if (!_core_if->phy_init_done) {
1511+ _core_if->phy_init_done = 1;
1512+ DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n");
1513+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1514+ usbcfg.b.physel = 1;
1515+ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
1516+
1517+ /* Reset after a PHY select */
1518+ dwc_otg_core_reset( _core_if );
1519+ }
1520+
1521+ /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
1522+ * do this on HNP Dev/Host mode switches (done in dev_init and
1523+ * host_init). */
1524+ if (dwc_otg_is_host_mode(_core_if)) {
1525+ DWC_DEBUGPL(DBG_CIL, "host mode\n");
1526+ init_fslspclksel(_core_if);
1527+ } else {
1528+ DWC_DEBUGPL(DBG_CIL, "device mode\n");
1529+ init_devspd(_core_if);
1530+ }
1531+
1532+ if (_core_if->core_params->i2c_enable) {
1533+ DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n");
1534+ /* Program GUSBCFG.OtgUtmifsSel to I2C */
1535+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1536+ usbcfg.b.otgutmifssel = 1;
1537+ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
1538+
1539+ /* Program GI2CCTL.I2CEn */
1540+ i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl);
1541+ i2cctl.b.i2cdevaddr = 1;
1542+ i2cctl.b.i2cen = 0;
1543+ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
1544+ i2cctl.b.i2cen = 1;
1545+ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
1546+ }
1547+
1548+ } /* endif speed == DWC_SPEED_PARAM_FULL */
1549+ else {
1550+ /* High speed PHY. */
1551+ if (!_core_if->phy_init_done) {
1552+ _core_if->phy_init_done = 1;
1553+ DWC_DEBUGPL(DBG_CIL, "High spped PHY\n");
1554+ /* HS PHY parameters. These parameters are preserved
1555+ * during soft reset so only program the first time. Do
1556+ * a soft reset immediately after setting phyif. */
1557+ usbcfg.b.ulpi_utmi_sel = _core_if->core_params->phy_type;
1558+ if (usbcfg.b.ulpi_utmi_sel == 2) { // winder
1559+ DWC_DEBUGPL(DBG_CIL, "ULPI\n");
1560+ /* ULPI interface */
1561+ usbcfg.b.phyif = 0;
1562+ usbcfg.b.ddrsel = _core_if->core_params->phy_ulpi_ddr;
1563+ } else {
1564+ /* UTMI+ interface */
1565+ if (_core_if->core_params->phy_utmi_width == 16) {
1566+ usbcfg.b.phyif = 1;
1567+ DWC_DEBUGPL(DBG_CIL, "UTMI+ 16\n");
1568+ } else {
1569+ DWC_DEBUGPL(DBG_CIL, "UTMI+ 8\n");
1570+ usbcfg.b.phyif = 0;
1571+ }
1572+ }
1573+ dwc_write_reg32( &global_regs->gusbcfg, usbcfg.d32);
1574+
1575+ /* Reset after setting the PHY parameters */
1576+ dwc_otg_core_reset( _core_if );
1577+ }
1578+ }
1579+
1580+ if ((_core_if->hwcfg2.b.hs_phy_type == 2) &&
1581+ (_core_if->hwcfg2.b.fs_phy_type == 1) &&
1582+ (_core_if->core_params->ulpi_fs_ls))
1583+ {
1584+ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n");
1585+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1586+ usbcfg.b.ulpi_fsls = 1;
1587+ usbcfg.b.ulpi_clk_sus_m = 1;
1588+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
1589+ } else {
1590+ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS=0\n");
1591+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1592+ usbcfg.b.ulpi_fsls = 0;
1593+ usbcfg.b.ulpi_clk_sus_m = 0;
1594+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
1595+ }
1596+
1597+ /* Program the GAHBCFG Register.*/
1598+ switch (_core_if->hwcfg2.b.architecture){
1599+
1600+ case DWC_SLAVE_ONLY_ARCH:
1601+ DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n");
1602+ ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
1603+ ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
1604+ _core_if->dma_enable = 0;
1605+ break;
1606+
1607+ case DWC_EXT_DMA_ARCH:
1608+ DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n");
1609+ ahbcfg.b.hburstlen = _core_if->core_params->dma_burst_size;
1610+ _core_if->dma_enable = (_core_if->core_params->dma_enable != 0);
1611+ break;
1612+
1613+ case DWC_INT_DMA_ARCH:
1614+ DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n");
1615+ //ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR;
1616+ ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR4;
1617+ _core_if->dma_enable = (_core_if->core_params->dma_enable != 0);
1618+ break;
1619+ }
1620+ ahbcfg.b.dmaenable = _core_if->dma_enable;
1621+ dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32);
1622+ _core_if->en_multiple_tx_fifo = _core_if->hwcfg4.b.ded_fifo_en;
1623+
1624+ /*
1625+ * Program the GUSBCFG register.
1626+ */
1627+ usbcfg.d32 = dwc_read_reg32( &global_regs->gusbcfg );
1628+
1629+ switch (_core_if->hwcfg2.b.op_mode) {
1630+ case DWC_MODE_HNP_SRP_CAPABLE:
1631+ usbcfg.b.hnpcap = (_core_if->core_params->otg_cap ==
1632+ DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
1633+ usbcfg.b.srpcap = (_core_if->core_params->otg_cap !=
1634+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
1635+ break;
1636+
1637+ case DWC_MODE_SRP_ONLY_CAPABLE:
1638+ usbcfg.b.hnpcap = 0;
1639+ usbcfg.b.srpcap = (_core_if->core_params->otg_cap !=
1640+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
1641+ break;
1642+
1643+ case DWC_MODE_NO_HNP_SRP_CAPABLE:
1644+ usbcfg.b.hnpcap = 0;
1645+ usbcfg.b.srpcap = 0;
1646+ break;
1647+
1648+ case DWC_MODE_SRP_CAPABLE_DEVICE:
1649+ usbcfg.b.hnpcap = 0;
1650+ usbcfg.b.srpcap = (_core_if->core_params->otg_cap !=
1651+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
1652+ break;
1653+
1654+ case DWC_MODE_NO_SRP_CAPABLE_DEVICE:
1655+ usbcfg.b.hnpcap = 0;
1656+ usbcfg.b.srpcap = 0;
1657+ break;
1658+
1659+ case DWC_MODE_SRP_CAPABLE_HOST:
1660+ usbcfg.b.hnpcap = 0;
1661+ usbcfg.b.srpcap = (_core_if->core_params->otg_cap !=
1662+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
1663+ break;
1664+
1665+ case DWC_MODE_NO_SRP_CAPABLE_HOST:
1666+ usbcfg.b.hnpcap = 0;
1667+ usbcfg.b.srpcap = 0;
1668+ break;
1669+ }
1670+
1671+ dwc_write_reg32( &global_regs->gusbcfg, usbcfg.d32);
1672+
1673+ /* Enable common interrupts */
1674+ dwc_otg_enable_common_interrupts( _core_if );
1675+
1676+ /* Do device or host intialization based on mode during PCD
1677+ * and HCD initialization */
1678+ if (dwc_otg_is_host_mode( _core_if )) {
1679+ DWC_DEBUGPL(DBG_ANY, "Host Mode\n" );
1680+ _core_if->op_state = A_HOST;
1681+ } else {
1682+ DWC_DEBUGPL(DBG_ANY, "Device Mode\n" );
1683+ _core_if->op_state = B_PERIPHERAL;
1684+#ifdef DWC_DEVICE_ONLY
1685+ dwc_otg_core_dev_init( _core_if );
1686+#endif
1687+ }
1688+}
1689+
1690+
1691+/**
1692+ * This function enables the Device mode interrupts.
1693+ *
1694+ * @param _core_if Programming view of DWC_otg controller
1695+ */
1696+void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if)
1697+{
1698+ gintmsk_data_t intr_mask = { .d32 = 0};
1699+ dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs;
1700+
1701+ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
1702+
1703+ /* Disable all interrupts. */
1704+ dwc_write_reg32( &global_regs->gintmsk, 0);
1705+
1706+ /* Clear any pending interrupts */
1707+ dwc_write_reg32( &global_regs->gintsts, 0xFFFFFFFF);
1708+
1709+ /* Enable the common interrupts */
1710+ dwc_otg_enable_common_interrupts( _core_if );
1711+
1712+ /* Enable interrupts */
1713+ intr_mask.b.usbreset = 1;
1714+ intr_mask.b.enumdone = 1;
1715+ //intr_mask.b.epmismatch = 1;
1716+ intr_mask.b.inepintr = 1;
1717+ intr_mask.b.outepintr = 1;
1718+ intr_mask.b.erlysuspend = 1;
1719+ if (_core_if->en_multiple_tx_fifo == 0) {
1720+ intr_mask.b.epmismatch = 1;
1721+ }
1722+
1723+ /** @todo NGS: Should this be a module parameter? */
1724+ intr_mask.b.isooutdrop = 1;
1725+ intr_mask.b.eopframe = 1;
1726+ intr_mask.b.incomplisoin = 1;
1727+ intr_mask.b.incomplisoout = 1;
1728+
1729+ dwc_modify_reg32( &global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
1730+
1731+ DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__,
1732+ dwc_read_reg32( &global_regs->gintmsk));
1733+}
1734+
1735+/**
1736+ * This function initializes the DWC_otg controller registers for
1737+ * device mode.
1738+ *
1739+ * @param _core_if Programming view of DWC_otg controller
1740+ *
1741+ */
1742+void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if)
1743+{
1744+ dwc_otg_core_global_regs_t *global_regs =
1745+ _core_if->core_global_regs;
1746+ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
1747+ dwc_otg_core_params_t *params = _core_if->core_params;
1748+ dcfg_data_t dcfg = {.d32 = 0};
1749+ grstctl_t resetctl = { .d32=0 };
1750+ int i;
1751+ uint32_t rx_fifo_size;
1752+ fifosize_data_t nptxfifosize;
1753+ fifosize_data_t txfifosize;
1754+ dthrctl_data_t dthrctl;
1755+
1756+ fifosize_data_t ptxfifosize;
1757+
1758+ /* Restart the Phy Clock */
1759+ dwc_write_reg32(_core_if->pcgcctl, 0);
1760+
1761+ /* Device configuration register */
1762+ init_devspd(_core_if);
1763+ dcfg.d32 = dwc_read_reg32( &dev_if->dev_global_regs->dcfg);
1764+ dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80;
1765+ dwc_write_reg32( &dev_if->dev_global_regs->dcfg, dcfg.d32 );
1766+
1767+ /* Configure data FIFO sizes */
1768+ if ( _core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo ) {
1769+
1770+ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", _core_if->total_fifo_size);
1771+ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->dev_rx_fifo_size);
1772+ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", params->dev_nperio_tx_fifo_size);
1773+
1774+ /* Rx FIFO */
1775+ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
1776+ dwc_read_reg32(&global_regs->grxfsiz));
1777+ rx_fifo_size = params->dev_rx_fifo_size;
1778+ dwc_write_reg32( &global_regs->grxfsiz, rx_fifo_size );
1779+ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
1780+ dwc_read_reg32(&global_regs->grxfsiz));
1781+
1782+ /** Set Periodic Tx FIFO Mask all bits 0 */
1783+ _core_if->p_tx_msk = 0;
1784+
1785+ /** Set Tx FIFO Mask all bits 0 */
1786+ _core_if->tx_msk = 0;
1787+ if (_core_if->en_multiple_tx_fifo == 0) {
1788+ /* Non-periodic Tx FIFO */
1789+ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
1790+ dwc_read_reg32(&global_regs->gnptxfsiz));
1791+ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
1792+ nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
1793+ dwc_write_reg32( &global_regs->gnptxfsiz, nptxfifosize.d32 );
1794+ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
1795+ dwc_read_reg32(&global_regs->gnptxfsiz));
1796+
1797+
1798+ /**@todo NGS: Fix Periodic FIFO Sizing! */
1799+ /*
1800+ * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15.
1801+ * Indexes of the FIFO size module parameters in the
1802+ * dev_perio_tx_fifo_size array and the FIFO size registers in
1803+ * the dptxfsiz array run from 0 to 14.
1804+ */
1805+ /** @todo Finish debug of this */
1806+ ptxfifosize.b.startaddr =
1807+ nptxfifosize.b.startaddr + nptxfifosize.b.depth;
1808+ for (i = 0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep;i++) {
1809+ ptxfifosize.b.depth = params->dev_perio_tx_fifo_size[i];
1810+ DWC_DEBUGPL(DBG_CIL,"initial dptxfsiz_dieptxf[%d]=%08x\n",
1811+ i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
1812+ dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i],ptxfifosize.d32);
1813+ DWC_DEBUGPL(DBG_CIL,"new dptxfsiz_dieptxf[%d]=%08x\n",
1814+ i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
1815+ ptxfifosize.b.startaddr += ptxfifosize.b.depth;
1816+ }
1817+ } else {
1818+
1819+ /*
1820+ * Tx FIFOs These FIFOs are numbered from 1 to 15.
1821+ * Indexes of the FIFO size module parameters in the
1822+ * dev_tx_fifo_size array and the FIFO size registers in
1823+ * the dptxfsiz_dieptxf array run from 0 to 14.
1824+ */
1825+
1826+ /* Non-periodic Tx FIFO */
1827+ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
1828+ dwc_read_reg32(&global_regs->gnptxfsiz));
1829+ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
1830+ nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
1831+ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
1832+ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
1833+ dwc_read_reg32(&global_regs->gnptxfsiz));
1834+ txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
1835+ for (i = 1;i < _core_if->hwcfg4.b.num_dev_perio_in_ep;i++) {
1836+ txfifosize.b.depth = params->dev_tx_fifo_size[i];
1837+ DWC_DEBUGPL(DBG_CIL,"initial dptxfsiz_dieptxf[%d]=%08x\n",
1838+ i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
1839+ dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i - 1],txfifosize.d32);
1840+ DWC_DEBUGPL(DBG_CIL,"new dptxfsiz_dieptxf[%d]=%08x\n",
1841+ i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i-1]));
1842+ txfifosize.b.startaddr += txfifosize.b.depth;
1843+ }
1844+ }
1845+ }
1846+ /* Flush the FIFOs */
1847+ dwc_otg_flush_tx_fifo(_core_if, 0x10); /* all Tx FIFOs */
1848+ dwc_otg_flush_rx_fifo(_core_if);
1849+
1850+ /* Flush the Learning Queue. */
1851+ resetctl.b.intknqflsh = 1;
1852+ dwc_write_reg32( &_core_if->core_global_regs->grstctl, resetctl.d32);
1853+
1854+ /* Clear all pending Device Interrupts */
1855+ dwc_write_reg32( &dev_if->dev_global_regs->diepmsk, 0 );
1856+ dwc_write_reg32( &dev_if->dev_global_regs->doepmsk, 0 );
1857+ dwc_write_reg32( &dev_if->dev_global_regs->daint, 0xFFFFFFFF );
1858+ dwc_write_reg32( &dev_if->dev_global_regs->daintmsk, 0 );
1859+
1860+ for (i = 0; i <= dev_if->num_in_eps; i++) {
1861+ depctl_data_t depctl;
1862+ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
1863+ if (depctl.b.epena) {
1864+ depctl.d32 = 0;
1865+ depctl.b.epdis = 1;
1866+ depctl.b.snak = 1;
1867+ } else {
1868+ depctl.d32 = 0;
1869+ }
1870+ dwc_write_reg32( &dev_if->in_ep_regs[i]->diepctl, depctl.d32);
1871+
1872+ dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0);
1873+ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0);
1874+ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF);
1875+ }
1876+ for (i = 0; i <= dev_if->num_out_eps; i++) {
1877+ depctl_data_t depctl;
1878+ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
1879+ if (depctl.b.epena) {
1880+ depctl.d32 = 0;
1881+ depctl.b.epdis = 1;
1882+ depctl.b.snak = 1;
1883+ } else {
1884+ depctl.d32 = 0;
1885+ }
1886+ dwc_write_reg32( &dev_if->out_ep_regs[i]->doepctl, depctl.d32);
1887+
1888+ //dwc_write_reg32( &dev_if->in_ep_regs[i]->dieptsiz, 0);
1889+ dwc_write_reg32( &dev_if->out_ep_regs[i]->doeptsiz, 0);
1890+ //dwc_write_reg32( &dev_if->in_ep_regs[i]->diepdma, 0);
1891+ dwc_write_reg32( &dev_if->out_ep_regs[i]->doepdma, 0);
1892+ //dwc_write_reg32( &dev_if->in_ep_regs[i]->diepint, 0xFF);
1893+ dwc_write_reg32( &dev_if->out_ep_regs[i]->doepint, 0xFF);
1894+ }
1895+
1896+ if (_core_if->en_multiple_tx_fifo && _core_if->dma_enable) {
1897+ dev_if->non_iso_tx_thr_en = _core_if->core_params->thr_ctl & 0x1;
1898+ dev_if->iso_tx_thr_en = (_core_if->core_params->thr_ctl >> 1) & 0x1;
1899+ dev_if->rx_thr_en = (_core_if->core_params->thr_ctl >> 2) & 0x1;
1900+ dev_if->rx_thr_length = _core_if->core_params->rx_thr_length;
1901+ dev_if->tx_thr_length = _core_if->core_params->tx_thr_length;
1902+ dthrctl.d32 = 0;
1903+ dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en;
1904+ dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en;
1905+ dthrctl.b.tx_thr_len = dev_if->tx_thr_length;
1906+ dthrctl.b.rx_thr_en = dev_if->rx_thr_en;
1907+ dthrctl.b.rx_thr_len = dev_if->rx_thr_length;
1908+ dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl,dthrctl.d32);
1909+ DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\n"
1910+ "Rx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n",
1911+ dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en,
1912+ dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len,
1913+ dthrctl.b.rx_thr_len);
1914+ }
1915+ dwc_otg_enable_device_interrupts( _core_if );
1916+ {
1917+ diepmsk_data_t msk = {.d32 = 0};
1918+ msk.b.txfifoundrn = 1;
1919+ dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32,msk.d32);
1920+}
1921+}
1922+
1923+/**
1924+ * This function enables the Host mode interrupts.
1925+ *
1926+ * @param _core_if Programming view of DWC_otg controller
1927+ */
1928+void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if)
1929+{
1930+ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs;
1931+ gintmsk_data_t intr_mask = {.d32 = 0};
1932+
1933+ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
1934+
1935+ /* Disable all interrupts. */
1936+ dwc_write_reg32(&global_regs->gintmsk, 0);
1937+
1938+ /* Clear any pending interrupts. */
1939+ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
1940+
1941+ /* Enable the common interrupts */
1942+ dwc_otg_enable_common_interrupts(_core_if);
1943+
1944+ /*
1945+ * Enable host mode interrupts without disturbing common
1946+ * interrupts.
1947+ */
1948+ intr_mask.b.sofintr = 1;
1949+ intr_mask.b.portintr = 1;
1950+ intr_mask.b.hcintr = 1;
1951+
1952+ //dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
1953+ //dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
1954+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
1955+}
1956+
1957+/**
1958+ * This function disables the Host Mode interrupts.
1959+ *
1960+ * @param _core_if Programming view of DWC_otg controller
1961+ */
1962+void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if)
1963+{
1964+ dwc_otg_core_global_regs_t *global_regs =
1965+ _core_if->core_global_regs;
1966+ gintmsk_data_t intr_mask = {.d32 = 0};
1967+
1968+ DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__);
1969+
1970+ /*
1971+ * Disable host mode interrupts without disturbing common
1972+ * interrupts.
1973+ */
1974+ intr_mask.b.sofintr = 1;
1975+ intr_mask.b.portintr = 1;
1976+ intr_mask.b.hcintr = 1;
1977+ intr_mask.b.ptxfempty = 1;
1978+ intr_mask.b.nptxfempty = 1;
1979+
1980+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
1981+}
1982+
1983+#if 0
1984+/* currently not used, keep it here as if needed later */
1985+static int phy_read(dwc_otg_core_if_t * _core_if, int addr)
1986+{
1987+ u32 val;
1988+ int timeout = 10;
1989+
1990+ dwc_write_reg32(&_core_if->core_global_regs->gpvndctl,
1991+ 0x02000000 | (addr << 16));
1992+ val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl);
1993+ while (((val & 0x08000000) == 0) && (timeout--)) {
1994+ udelay(1000);
1995+ val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl);
1996+ }
1997+ val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl);
1998+ printk("%s: addr=%02x regval=%02x\n", __func__, addr, val & 0x000000ff);
1999+
2000+ return 0;
2001+}
2002+#endif
2003+
2004+/**
2005+ * This function initializes the DWC_otg controller registers for
2006+ * host mode.
2007+ *
2008+ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the
2009+ * request queues. Host channels are reset to ensure that they are ready for
2010+ * performing transfers.
2011+ *
2012+ * @param _core_if Programming view of DWC_otg controller
2013+ *
2014+ */
2015+void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if)
2016+{
2017+ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs;
2018+ dwc_otg_host_if_t *host_if = _core_if->host_if;
2019+ dwc_otg_core_params_t *params = _core_if->core_params;
2020+ hprt0_data_t hprt0 = {.d32 = 0};
2021+ fifosize_data_t nptxfifosize;
2022+ fifosize_data_t ptxfifosize;
2023+ int i;
2024+ hcchar_data_t hcchar;
2025+ hcfg_data_t hcfg;
2026+ dwc_otg_hc_regs_t *hc_regs;
2027+ int num_channels;
2028+ gotgctl_data_t gotgctl = {.d32 = 0};
2029+
2030+ DWC_DEBUGPL(DBG_CILV,"%s(%p)\n", __func__, _core_if);
2031+
2032+ /* Restart the Phy Clock */
2033+ dwc_write_reg32(_core_if->pcgcctl, 0);
2034+
2035+ /* Initialize Host Configuration Register */
2036+ init_fslspclksel(_core_if);
2037+ if (_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
2038+ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
2039+ hcfg.b.fslssupp = 1;
2040+ dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32);
2041+ }
2042+
2043+ /* Configure data FIFO sizes */
2044+ if (_core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
2045+ DWC_DEBUGPL(DBG_CIL,"Total FIFO Size=%d\n", _core_if->total_fifo_size);
2046+ DWC_DEBUGPL(DBG_CIL,"Rx FIFO Size=%d\n", params->host_rx_fifo_size);
2047+ DWC_DEBUGPL(DBG_CIL,"NP Tx FIFO Size=%d\n", params->host_nperio_tx_fifo_size);
2048+ DWC_DEBUGPL(DBG_CIL,"P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size);
2049+
2050+ /* Rx FIFO */
2051+ DWC_DEBUGPL(DBG_CIL,"initial grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
2052+ dwc_write_reg32(&global_regs->grxfsiz, params->host_rx_fifo_size);
2053+ DWC_DEBUGPL(DBG_CIL,"new grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
2054+
2055+ /* Non-periodic Tx FIFO */
2056+ DWC_DEBUGPL(DBG_CIL,"initial gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
2057+ nptxfifosize.b.depth = params->host_nperio_tx_fifo_size;
2058+ nptxfifosize.b.startaddr = params->host_rx_fifo_size;
2059+ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
2060+ DWC_DEBUGPL(DBG_CIL,"new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
2061+
2062+ /* Periodic Tx FIFO */
2063+ DWC_DEBUGPL(DBG_CIL,"initial hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
2064+ ptxfifosize.b.depth = params->host_perio_tx_fifo_size;
2065+ ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
2066+ dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32);
2067+ DWC_DEBUGPL(DBG_CIL,"new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
2068+ }
2069+
2070+ /* Clear Host Set HNP Enable in the OTG Control Register */
2071+ gotgctl.b.hstsethnpen = 1;
2072+ dwc_modify_reg32( &global_regs->gotgctl, gotgctl.d32, 0);
2073+
2074+ /* Make sure the FIFOs are flushed. */
2075+ dwc_otg_flush_tx_fifo(_core_if, 0x10 /* all Tx FIFOs */);
2076+ dwc_otg_flush_rx_fifo(_core_if);
2077+
2078+ /* Flush out any leftover queued requests. */
2079+ num_channels = _core_if->core_params->host_channels;
2080+ for (i = 0; i < num_channels; i++) {
2081+ hc_regs = _core_if->host_if->hc_regs[i];
2082+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2083+ hcchar.b.chen = 0;
2084+ hcchar.b.chdis = 1;
2085+ hcchar.b.epdir = 0;
2086+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2087+ }
2088+
2089+ /* Halt all channels to put them into a known state. */
2090+ for (i = 0; i < num_channels; i++) {
2091+ int count = 0;
2092+ hc_regs = _core_if->host_if->hc_regs[i];
2093+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2094+ hcchar.b.chen = 1;
2095+ hcchar.b.chdis = 1;
2096+ hcchar.b.epdir = 0;
2097+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2098+ DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i);
2099+ do {
2100+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2101+ if (++count > 200) {
2102+ DWC_ERROR("%s: Unable to clear halt on channel %d\n",
2103+ __func__, i);
2104+ break;
2105+ }
2106+ udelay(100);
2107+ } while (hcchar.b.chen);
2108+ }
2109+
2110+ /* Turn on the vbus power. */
2111+ DWC_PRINT("Init: Port Power? op_state=%d\n", _core_if->op_state);
2112+ if (_core_if->op_state == A_HOST){
2113+ hprt0.d32 = dwc_otg_read_hprt0(_core_if);
2114+ DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr);
2115+ if (hprt0.b.prtpwr == 0 ) {
2116+ hprt0.b.prtpwr = 1;
2117+ dwc_write_reg32(host_if->hprt0, hprt0.d32);
2118+ }
2119+ }
2120+
2121+ dwc_otg_enable_host_interrupts( _core_if );
2122+}
2123+
2124+/**
2125+ * Prepares a host channel for transferring packets to/from a specific
2126+ * endpoint. The HCCHARn register is set up with the characteristics specified
2127+ * in _hc. Host channel interrupts that may need to be serviced while this
2128+ * transfer is in progress are enabled.
2129+ *
2130+ * @param _core_if Programming view of DWC_otg controller
2131+ * @param _hc Information needed to initialize the host channel
2132+ */
2133+void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
2134+{
2135+ uint32_t intr_enable;
2136+ hcintmsk_data_t hc_intr_mask;
2137+ gintmsk_data_t gintmsk = {.d32 = 0};
2138+ hcchar_data_t hcchar;
2139+ hcsplt_data_t hcsplt;
2140+
2141+ uint8_t hc_num = _hc->hc_num;
2142+ dwc_otg_host_if_t *host_if = _core_if->host_if;
2143+ dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num];
2144+
2145+ /* Clear old interrupt conditions for this host channel. */
2146+ hc_intr_mask.d32 = 0xFFFFFFFF;
2147+ hc_intr_mask.b.reserved = 0;
2148+ dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32);
2149+
2150+ /* Enable channel interrupts required for this transfer. */
2151+ hc_intr_mask.d32 = 0;
2152+ hc_intr_mask.b.chhltd = 1;
2153+ if (_core_if->dma_enable) {
2154+ hc_intr_mask.b.ahberr = 1;
2155+ if (_hc->error_state && !_hc->do_split &&
2156+ _hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
2157+ hc_intr_mask.b.ack = 1;
2158+ if (_hc->ep_is_in) {
2159+ hc_intr_mask.b.datatglerr = 1;
2160+ if (_hc->ep_type != DWC_OTG_EP_TYPE_INTR) {
2161+ hc_intr_mask.b.nak = 1;
2162+ }
2163+ }
2164+ }
2165+ } else {
2166+ switch (_hc->ep_type) {
2167+ case DWC_OTG_EP_TYPE_CONTROL:
2168+ case DWC_OTG_EP_TYPE_BULK:
2169+ hc_intr_mask.b.xfercompl = 1;
2170+ hc_intr_mask.b.stall = 1;
2171+ hc_intr_mask.b.xacterr = 1;
2172+ hc_intr_mask.b.datatglerr = 1;
2173+ if (_hc->ep_is_in) {
2174+ hc_intr_mask.b.bblerr = 1;
2175+ } else {
2176+ hc_intr_mask.b.nak = 1;
2177+ hc_intr_mask.b.nyet = 1;
2178+ if (_hc->do_ping) {
2179+ hc_intr_mask.b.ack = 1;
2180+ }
2181+ }
2182+
2183+ if (_hc->do_split) {
2184+ hc_intr_mask.b.nak = 1;
2185+ if (_hc->complete_split) {
2186+ hc_intr_mask.b.nyet = 1;
2187+ }
2188+ else {
2189+ hc_intr_mask.b.ack = 1;
2190+ }
2191+ }
2192+
2193+ if (_hc->error_state) {
2194+ hc_intr_mask.b.ack = 1;
2195+ }
2196+ break;
2197+ case DWC_OTG_EP_TYPE_INTR:
2198+ hc_intr_mask.b.xfercompl = 1;
2199+ hc_intr_mask.b.nak = 1;
2200+ hc_intr_mask.b.stall = 1;
2201+ hc_intr_mask.b.xacterr = 1;
2202+ hc_intr_mask.b.datatglerr = 1;
2203+ hc_intr_mask.b.frmovrun = 1;
2204+
2205+ if (_hc->ep_is_in) {
2206+ hc_intr_mask.b.bblerr = 1;
2207+ }
2208+ if (_hc->error_state) {
2209+ hc_intr_mask.b.ack = 1;
2210+ }
2211+ if (_hc->do_split) {
2212+ if (_hc->complete_split) {
2213+ hc_intr_mask.b.nyet = 1;
2214+ }
2215+ else {
2216+ hc_intr_mask.b.ack = 1;
2217+ }
2218+ }
2219+ break;
2220+ case DWC_OTG_EP_TYPE_ISOC:
2221+ hc_intr_mask.b.xfercompl = 1;
2222+ hc_intr_mask.b.frmovrun = 1;
2223+ hc_intr_mask.b.ack = 1;
2224+
2225+ if (_hc->ep_is_in) {
2226+ hc_intr_mask.b.xacterr = 1;
2227+ hc_intr_mask.b.bblerr = 1;
2228+ }
2229+ break;
2230+ }
2231+ }
2232+ dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32);
2233+
2234+ /* Enable the top level host channel interrupt. */
2235+ intr_enable = (1 << hc_num);
2236+ dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
2237+
2238+ /* Make sure host channel interrupts are enabled. */
2239+ gintmsk.b.hcintr = 1;
2240+ dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
2241+
2242+ /*
2243+ * Program the HCCHARn register with the endpoint characteristics for
2244+ * the current transfer.
2245+ */
2246+ hcchar.d32 = 0;
2247+ hcchar.b.devaddr = _hc->dev_addr;
2248+ hcchar.b.epnum = _hc->ep_num;
2249+ hcchar.b.epdir = _hc->ep_is_in;
2250+ hcchar.b.lspddev = (_hc->speed == DWC_OTG_EP_SPEED_LOW);
2251+ hcchar.b.eptype = _hc->ep_type;
2252+ hcchar.b.mps = _hc->max_packet;
2253+
2254+ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
2255+
2256+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
2257+ DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr);
2258+ DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum);
2259+ DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir);
2260+ DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev);
2261+ DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype);
2262+ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
2263+ DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt);
2264+
2265+ /*
2266+ * Program the HCSPLIT register for SPLITs
2267+ */
2268+ hcsplt.d32 = 0;
2269+ if (_hc->do_split) {
2270+ DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", _hc->hc_num,
2271+ _hc->complete_split ? "CSPLIT" : "SSPLIT");
2272+ hcsplt.b.compsplt = _hc->complete_split;
2273+ hcsplt.b.xactpos = _hc->xact_pos;
2274+ hcsplt.b.hubaddr = _hc->hub_addr;
2275+ hcsplt.b.prtaddr = _hc->port_addr;
2276+ DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", _hc->complete_split);
2277+ DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", _hc->xact_pos);
2278+ DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", _hc->hub_addr);
2279+ DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", _hc->port_addr);
2280+ DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", _hc->ep_is_in);
2281+ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
2282+ DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", _hc->xfer_len);
2283+ }
2284+ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
2285+
2286+}
2287+
2288+/**
2289+ * Attempts to halt a host channel. This function should only be called in
2290+ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
2291+ * normal circumstances in DMA mode, the controller halts the channel when the
2292+ * transfer is complete or a condition occurs that requires application
2293+ * intervention.
2294+ *
2295+ * In slave mode, checks for a free request queue entry, then sets the Channel
2296+ * Enable and Channel Disable bits of the Host Channel Characteristics
2297+ * register of the specified channel to intiate the halt. If there is no free
2298+ * request queue entry, sets only the Channel Disable bit of the HCCHARn
2299+ * register to flush requests for this channel. In the latter case, sets a
2300+ * flag to indicate that the host channel needs to be halted when a request
2301+ * queue slot is open.
2302+ *
2303+ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
2304+ * HCCHARn register. The controller ensures there is space in the request
2305+ * queue before submitting the halt request.
2306+ *
2307+ * Some time may elapse before the core flushes any posted requests for this
2308+ * host channel and halts. The Channel Halted interrupt handler completes the
2309+ * deactivation of the host channel.
2310+ *
2311+ * @param _core_if Controller register interface.
2312+ * @param _hc Host channel to halt.
2313+ * @param _halt_status Reason for halting the channel.
2314+ */
2315+void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if,
2316+ dwc_hc_t *_hc,
2317+ dwc_otg_halt_status_e _halt_status)
2318+{
2319+ gnptxsts_data_t nptxsts;
2320+ hptxsts_data_t hptxsts;
2321+ hcchar_data_t hcchar;
2322+ dwc_otg_hc_regs_t *hc_regs;
2323+ dwc_otg_core_global_regs_t *global_regs;
2324+ dwc_otg_host_global_regs_t *host_global_regs;
2325+
2326+ hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
2327+ global_regs = _core_if->core_global_regs;
2328+ host_global_regs = _core_if->host_if->host_global_regs;
2329+
2330+ WARN_ON(_halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS);
2331+
2332+ if (_halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
2333+ _halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
2334+ /*
2335+ * Disable all channel interrupts except Ch Halted. The QTD
2336+ * and QH state associated with this transfer has been cleared
2337+ * (in the case of URB_DEQUEUE), so the channel needs to be
2338+ * shut down carefully to prevent crashes.
2339+ */
2340+ hcintmsk_data_t hcintmsk;
2341+ hcintmsk.d32 = 0;
2342+ hcintmsk.b.chhltd = 1;
2343+ dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32);
2344+
2345+ /*
2346+ * Make sure no other interrupts besides halt are currently
2347+ * pending. Handling another interrupt could cause a crash due
2348+ * to the QTD and QH state.
2349+ */
2350+ dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32);
2351+
2352+ /*
2353+ * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
2354+ * even if the channel was already halted for some other
2355+ * reason.
2356+ */
2357+ _hc->halt_status = _halt_status;
2358+
2359+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2360+ if (hcchar.b.chen == 0) {
2361+ /*
2362+ * The channel is either already halted or it hasn't
2363+ * started yet. In DMA mode, the transfer may halt if
2364+ * it finishes normally or a condition occurs that
2365+ * requires driver intervention. Don't want to halt
2366+ * the channel again. In either Slave or DMA mode,
2367+ * it's possible that the transfer has been assigned
2368+ * to a channel, but not started yet when an URB is
2369+ * dequeued. Don't want to halt a channel that hasn't
2370+ * started yet.
2371+ */
2372+ return;
2373+ }
2374+ }
2375+
2376+ if (_hc->halt_pending) {
2377+ /*
2378+ * A halt has already been issued for this channel. This might
2379+ * happen when a transfer is aborted by a higher level in
2380+ * the stack.
2381+ */
2382+#ifdef DEBUG
2383+ DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n",
2384+ __func__, _hc->hc_num);
2385+
2386+/* dwc_otg_dump_global_registers(_core_if); */
2387+/* dwc_otg_dump_host_registers(_core_if); */
2388+#endif
2389+ return;
2390+ }
2391+
2392+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2393+ hcchar.b.chen = 1;
2394+ hcchar.b.chdis = 1;
2395+
2396+ if (!_core_if->dma_enable) {
2397+ /* Check for space in the request queue to issue the halt. */
2398+ if (_hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
2399+ _hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
2400+ nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts);
2401+ if (nptxsts.b.nptxqspcavail == 0) {
2402+ hcchar.b.chen = 0;
2403+ }
2404+ } else {
2405+ hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts);
2406+ if ((hptxsts.b.ptxqspcavail == 0) || (_core_if->queuing_high_bandwidth)) {
2407+ hcchar.b.chen = 0;
2408+ }
2409+ }
2410+ }
2411+
2412+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2413+
2414+ _hc->halt_status = _halt_status;
2415+
2416+ if (hcchar.b.chen) {
2417+ _hc->halt_pending = 1;
2418+ _hc->halt_on_queue = 0;
2419+ } else {
2420+ _hc->halt_on_queue = 1;
2421+ }
2422+
2423+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
2424+ DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32);
2425+ DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", _hc->halt_pending);
2426+ DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", _hc->halt_on_queue);
2427+ DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", _hc->halt_status);
2428+
2429+ return;
2430+}
2431+
2432+/**
2433+ * Clears the transfer state for a host channel. This function is normally
2434+ * called after a transfer is done and the host channel is being released.
2435+ *
2436+ * @param _core_if Programming view of DWC_otg controller.
2437+ * @param _hc Identifies the host channel to clean up.
2438+ */
2439+void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
2440+{
2441+ dwc_otg_hc_regs_t *hc_regs;
2442+
2443+ _hc->xfer_started = 0;
2444+
2445+ /*
2446+ * Clear channel interrupt enables and any unhandled channel interrupt
2447+ * conditions.
2448+ */
2449+ hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
2450+ dwc_write_reg32(&hc_regs->hcintmsk, 0);
2451+ dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF);
2452+
2453+#ifdef DEBUG
2454+ del_timer(&_core_if->hc_xfer_timer[_hc->hc_num]);
2455+ {
2456+ hcchar_data_t hcchar;
2457+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2458+ if (hcchar.b.chdis) {
2459+ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
2460+ __func__, _hc->hc_num, hcchar.d32);
2461+ }
2462+ }
2463+#endif
2464+}
2465+
2466+/**
2467+ * Sets the channel property that indicates in which frame a periodic transfer
2468+ * should occur. This is always set to the _next_ frame. This function has no
2469+ * effect on non-periodic transfers.
2470+ *
2471+ * @param _core_if Programming view of DWC_otg controller.
2472+ * @param _hc Identifies the host channel to set up and its properties.
2473+ * @param _hcchar Current value of the HCCHAR register for the specified host
2474+ * channel.
2475+ */
2476+static inline void hc_set_even_odd_frame(dwc_otg_core_if_t *_core_if,
2477+ dwc_hc_t *_hc,
2478+ hcchar_data_t *_hcchar)
2479+{
2480+ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
2481+ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2482+ hfnum_data_t hfnum;
2483+ hfnum.d32 = dwc_read_reg32(&_core_if->host_if->host_global_regs->hfnum);
2484+ /* 1 if _next_ frame is odd, 0 if it's even */
2485+ _hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
2486+#ifdef DEBUG
2487+ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR && _hc->do_split && !_hc->complete_split) {
2488+ switch (hfnum.b.frnum & 0x7) {
2489+ case 7:
2490+ _core_if->hfnum_7_samples++;
2491+ _core_if->hfnum_7_frrem_accum += hfnum.b.frrem;
2492+ break;
2493+ case 0:
2494+ _core_if->hfnum_0_samples++;
2495+ _core_if->hfnum_0_frrem_accum += hfnum.b.frrem;
2496+ break;
2497+ default:
2498+ _core_if->hfnum_other_samples++;
2499+ _core_if->hfnum_other_frrem_accum += hfnum.b.frrem;
2500+ break;
2501+ }
2502+ }
2503+#endif
2504+ }
2505+}
2506+
2507+#ifdef DEBUG
2508+static void hc_xfer_timeout(unsigned long _ptr)
2509+{
2510+ hc_xfer_info_t *xfer_info = (hc_xfer_info_t *)_ptr;
2511+ int hc_num = xfer_info->hc->hc_num;
2512+ DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num);
2513+ DWC_WARN(" start_hcchar_val 0x%08x\n", xfer_info->core_if->start_hcchar_val[hc_num]);
2514+}
2515+#endif
2516+
2517+/*
2518+ * This function does the setup for a data transfer for a host channel and
2519+ * starts the transfer. May be called in either Slave mode or DMA mode. In
2520+ * Slave mode, the caller must ensure that there is sufficient space in the
2521+ * request queue and Tx Data FIFO.
2522+ *
2523+ * For an OUT transfer in Slave mode, it loads a data packet into the
2524+ * appropriate FIFO. If necessary, additional data packets will be loaded in
2525+ * the Host ISR.
2526+ *
2527+ * For an IN transfer in Slave mode, a data packet is requested. The data
2528+ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
2529+ * additional data packets are requested in the Host ISR.
2530+ *
2531+ * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
2532+ * register along with a packet count of 1 and the channel is enabled. This
2533+ * causes a single PING transaction to occur. Other fields in HCTSIZ are
2534+ * simply set to 0 since no data transfer occurs in this case.
2535+ *
2536+ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
2537+ * all the information required to perform the subsequent data transfer. In
2538+ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
2539+ * controller performs the entire PING protocol, then starts the data
2540+ * transfer.
2541+ *
2542+ * @param _core_if Programming view of DWC_otg controller.
2543+ * @param _hc Information needed to initialize the host channel. The xfer_len
2544+ * value may be reduced to accommodate the max widths of the XferSize and
2545+ * PktCnt fields in the HCTSIZn register. The multi_count value may be changed
2546+ * to reflect the final xfer_len value.
2547+ */
2548+void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
2549+{
2550+ hcchar_data_t hcchar;
2551+ hctsiz_data_t hctsiz;
2552+ uint16_t num_packets;
2553+ uint32_t max_hc_xfer_size = _core_if->core_params->max_transfer_size;
2554+ uint16_t max_hc_pkt_count = _core_if->core_params->max_packet_count;
2555+ dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
2556+
2557+ hctsiz.d32 = 0;
2558+
2559+ if (_hc->do_ping) {
2560+ if (!_core_if->dma_enable) {
2561+ dwc_otg_hc_do_ping(_core_if, _hc);
2562+ _hc->xfer_started = 1;
2563+ return;
2564+ } else {
2565+ hctsiz.b.dopng = 1;
2566+ }
2567+ }
2568+
2569+ if (_hc->do_split) {
2570+ num_packets = 1;
2571+
2572+ if (_hc->complete_split && !_hc->ep_is_in) {
2573+ /* For CSPLIT OUT Transfer, set the size to 0 so the
2574+ * core doesn't expect any data written to the FIFO */
2575+ _hc->xfer_len = 0;
2576+ } else if (_hc->ep_is_in || (_hc->xfer_len > _hc->max_packet)) {
2577+ _hc->xfer_len = _hc->max_packet;
2578+ } else if (!_hc->ep_is_in && (_hc->xfer_len > 188)) {
2579+ _hc->xfer_len = 188;
2580+ }
2581+
2582+ hctsiz.b.xfersize = _hc->xfer_len;
2583+ } else {
2584+ /*
2585+ * Ensure that the transfer length and packet count will fit
2586+ * in the widths allocated for them in the HCTSIZn register.
2587+ */
2588+ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
2589+ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2590+ /*
2591+ * Make sure the transfer size is no larger than one
2592+ * (micro)frame's worth of data. (A check was done
2593+ * when the periodic transfer was accepted to ensure
2594+ * that a (micro)frame's worth of data can be
2595+ * programmed into a channel.)
2596+ */
2597+ uint32_t max_periodic_len = _hc->multi_count * _hc->max_packet;
2598+ if (_hc->xfer_len > max_periodic_len) {
2599+ _hc->xfer_len = max_periodic_len;
2600+ } else {
2601+ }
2602+ } else if (_hc->xfer_len > max_hc_xfer_size) {
2603+ /* Make sure that xfer_len is a multiple of max packet size. */
2604+ _hc->xfer_len = max_hc_xfer_size - _hc->max_packet + 1;
2605+ }
2606+
2607+ if (_hc->xfer_len > 0) {
2608+ num_packets = (_hc->xfer_len + _hc->max_packet - 1) / _hc->max_packet;
2609+ if (num_packets > max_hc_pkt_count) {
2610+ num_packets = max_hc_pkt_count;
2611+ _hc->xfer_len = num_packets * _hc->max_packet;
2612+ }
2613+ } else {
2614+ /* Need 1 packet for transfer length of 0. */
2615+ num_packets = 1;
2616+ }
2617+
2618+ if (_hc->ep_is_in) {
2619+ /* Always program an integral # of max packets for IN transfers. */
2620+ _hc->xfer_len = num_packets * _hc->max_packet;
2621+ }
2622+
2623+ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
2624+ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2625+ /*
2626+ * Make sure that the multi_count field matches the
2627+ * actual transfer length.
2628+ */
2629+ _hc->multi_count = num_packets;
2630+
2631+ }
2632+
2633+ if (_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2634+ /* Set up the initial PID for the transfer. */
2635+ if (_hc->speed == DWC_OTG_EP_SPEED_HIGH) {
2636+ if (_hc->ep_is_in) {
2637+ if (_hc->multi_count == 1) {
2638+ _hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
2639+ } else if (_hc->multi_count == 2) {
2640+ _hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
2641+ } else {
2642+ _hc->data_pid_start = DWC_OTG_HC_PID_DATA2;
2643+ }
2644+ } else {
2645+ if (_hc->multi_count == 1) {
2646+ _hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
2647+ } else {
2648+ _hc->data_pid_start = DWC_OTG_HC_PID_MDATA;
2649+ }
2650+ }
2651+ } else {
2652+ _hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
2653+ }
2654+ }
2655+
2656+ hctsiz.b.xfersize = _hc->xfer_len;
2657+ }
2658+
2659+ _hc->start_pkt_count = num_packets;
2660+ hctsiz.b.pktcnt = num_packets;
2661+ hctsiz.b.pid = _hc->data_pid_start;
2662+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
2663+
2664+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
2665+ DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize);
2666+ DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt);
2667+ DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid);
2668+
2669+ if (_core_if->dma_enable) {
2670+#ifdef DEBUG
2671+if(((uint32_t)_hc->xfer_buff)%4)
2672+printk("dwc_otg_hc_start_transfer _hc->xfer_buff not 4 byte alignment\n");
2673+#endif
2674+ dwc_write_reg32(&hc_regs->hcdma, (uint32_t)_hc->xfer_buff);
2675+ }
2676+
2677+ /* Start the split */
2678+ if (_hc->do_split) {
2679+ hcsplt_data_t hcsplt;
2680+ hcsplt.d32 = dwc_read_reg32 (&hc_regs->hcsplt);
2681+ hcsplt.b.spltena = 1;
2682+ dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32);
2683+ }
2684+
2685+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2686+ hcchar.b.multicnt = _hc->multi_count;
2687+ hc_set_even_odd_frame(_core_if, _hc, &hcchar);
2688+#ifdef DEBUG
2689+ _core_if->start_hcchar_val[_hc->hc_num] = hcchar.d32;
2690+ if (hcchar.b.chdis) {
2691+ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
2692+ __func__, _hc->hc_num, hcchar.d32);
2693+ }
2694+#endif
2695+
2696+ /* Set host channel enable after all other setup is complete. */
2697+ hcchar.b.chen = 1;
2698+ hcchar.b.chdis = 0;
2699+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2700+
2701+ _hc->xfer_started = 1;
2702+ _hc->requests++;
2703+
2704+ if (!_core_if->dma_enable && !_hc->ep_is_in && _hc->xfer_len > 0) {
2705+ /* Load OUT packet into the appropriate Tx FIFO. */
2706+ dwc_otg_hc_write_packet(_core_if, _hc);
2707+ }
2708+
2709+#ifdef DEBUG
2710+ /* Start a timer for this transfer. */
2711+ _core_if->hc_xfer_timer[_hc->hc_num].function = hc_xfer_timeout;
2712+ _core_if->hc_xfer_info[_hc->hc_num].core_if = _core_if;
2713+ _core_if->hc_xfer_info[_hc->hc_num].hc = _hc;
2714+ _core_if->hc_xfer_timer[_hc->hc_num].data = (unsigned long)(&_core_if->hc_xfer_info[_hc->hc_num]);
2715+ _core_if->hc_xfer_timer[_hc->hc_num].expires = jiffies + (HZ*10);
2716+ add_timer(&_core_if->hc_xfer_timer[_hc->hc_num]);
2717+#endif
2718+}
2719+
2720+/**
2721+ * This function continues a data transfer that was started by previous call
2722+ * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is
2723+ * sufficient space in the request queue and Tx Data FIFO. This function
2724+ * should only be called in Slave mode. In DMA mode, the controller acts
2725+ * autonomously to complete transfers programmed to a host channel.
2726+ *
2727+ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
2728+ * if there is any data remaining to be queued. For an IN transfer, another
2729+ * data packet is always requested. For the SETUP phase of a control transfer,
2730+ * this function does nothing.
2731+ *
2732+ * @return 1 if a new request is queued, 0 if no more requests are required
2733+ * for this transfer.
2734+ */
2735+int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
2736+{
2737+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
2738+
2739+ if (_hc->do_split) {
2740+ /* SPLITs always queue just once per channel */
2741+ return 0;
2742+ } else if (_hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
2743+ /* SETUPs are queued only once since they can't be NAKed. */
2744+ return 0;
2745+ } else if (_hc->ep_is_in) {
2746+ /*
2747+ * Always queue another request for other IN transfers. If
2748+ * back-to-back INs are issued and NAKs are received for both,
2749+ * the driver may still be processing the first NAK when the
2750+ * second NAK is received. When the interrupt handler clears
2751+ * the NAK interrupt for the first NAK, the second NAK will
2752+ * not be seen. So we can't depend on the NAK interrupt
2753+ * handler to requeue a NAKed request. Instead, IN requests
2754+ * are issued each time this function is called. When the
2755+ * transfer completes, the extra requests for the channel will
2756+ * be flushed.
2757+ */
2758+ hcchar_data_t hcchar;
2759+ dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
2760+
2761+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2762+ hc_set_even_odd_frame(_core_if, _hc, &hcchar);
2763+ hcchar.b.chen = 1;
2764+ hcchar.b.chdis = 0;
2765+ DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32);
2766+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2767+ _hc->requests++;
2768+ return 1;
2769+ } else {
2770+ /* OUT transfers. */
2771+ if (_hc->xfer_count < _hc->xfer_len) {
2772+ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
2773+ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2774+ hcchar_data_t hcchar;
2775+ dwc_otg_hc_regs_t *hc_regs;
2776+ hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
2777+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2778+ hc_set_even_odd_frame(_core_if, _hc, &hcchar);
2779+ }
2780+
2781+ /* Load OUT packet into the appropriate Tx FIFO. */
2782+ dwc_otg_hc_write_packet(_core_if, _hc);
2783+ _hc->requests++;
2784+ return 1;
2785+ } else {
2786+ return 0;
2787+ }
2788+ }
2789+}
2790+
2791+/**
2792+ * Starts a PING transfer. This function should only be called in Slave mode.
2793+ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
2794+ */
2795+void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
2796+{
2797+ hcchar_data_t hcchar;
2798+ hctsiz_data_t hctsiz;
2799+ dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
2800+
2801+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
2802+
2803+ hctsiz.d32 = 0;
2804+ hctsiz.b.dopng = 1;
2805+ hctsiz.b.pktcnt = 1;
2806+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
2807+
2808+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2809+ hcchar.b.chen = 1;
2810+ hcchar.b.chdis = 0;
2811+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2812+}
2813+
2814+/*
2815+ * This function writes a packet into the Tx FIFO associated with the Host
2816+ * Channel. For a channel associated with a non-periodic EP, the non-periodic
2817+ * Tx FIFO is written. For a channel associated with a periodic EP, the
2818+ * periodic Tx FIFO is written. This function should only be called in Slave
2819+ * mode.
2820+ *
2821+ * Upon return the xfer_buff and xfer_count fields in _hc are incremented by
2822+ * then number of bytes written to the Tx FIFO.
2823+ */
2824+void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
2825+{
2826+ uint32_t i;
2827+ uint32_t remaining_count;
2828+ uint32_t byte_count;
2829+ uint32_t dword_count;
2830+
2831+ uint32_t *data_buff = (uint32_t *)(_hc->xfer_buff);
2832+ uint32_t *data_fifo = _core_if->data_fifo[_hc->hc_num];
2833+
2834+ remaining_count = _hc->xfer_len - _hc->xfer_count;
2835+ if (remaining_count > _hc->max_packet) {
2836+ byte_count = _hc->max_packet;
2837+ } else {
2838+ byte_count = remaining_count;
2839+ }
2840+
2841+ dword_count = (byte_count + 3) / 4;
2842+
2843+ if ((((unsigned long)data_buff) & 0x3) == 0) {
2844+ /* xfer_buff is DWORD aligned. */
2845+ for (i = 0; i < dword_count; i++, data_buff++) {
2846+ dwc_write_reg32(data_fifo, *data_buff);
2847+ }
2848+ } else {
2849+ /* xfer_buff is not DWORD aligned. */
2850+ for (i = 0; i < dword_count; i++, data_buff++) {
2851+ dwc_write_reg32(data_fifo, get_unaligned(data_buff));
2852+ }
2853+ }
2854+
2855+ _hc->xfer_count += byte_count;
2856+ _hc->xfer_buff += byte_count;
2857+}
2858+
2859+/**
2860+ * Gets the current USB frame number. This is the frame number from the last
2861+ * SOF packet.
2862+ */
2863+uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if)
2864+{
2865+ dsts_data_t dsts;
2866+ dsts.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dsts);
2867+
2868+ /* read current frame/microfreme number from DSTS register */
2869+ return dsts.b.soffn;
2870+}
2871+
2872+/**
2873+ * This function reads a setup packet from the Rx FIFO into the destination
2874+ * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl)
2875+ * Interrupt routine when a SETUP packet has been received in Slave mode.
2876+ *
2877+ * @param _core_if Programming view of DWC_otg controller.
2878+ * @param _dest Destination buffer for packet data.
2879+ */
2880+void dwc_otg_read_setup_packet(dwc_otg_core_if_t *_core_if, uint32_t *_dest)
2881+{
2882+ /* Get the 8 bytes of a setup transaction data */
2883+
2884+ /* Pop 2 DWORDS off the receive data FIFO into memory */
2885+ _dest[0] = dwc_read_reg32(_core_if->data_fifo[0]);
2886+ _dest[1] = dwc_read_reg32(_core_if->data_fifo[0]);
2887+ //_dest[0] = dwc_read_datafifo32(_core_if->data_fifo[0]);
2888+ //_dest[1] = dwc_read_datafifo32(_core_if->data_fifo[0]);
2889+}
2890+
2891+
2892+/**
2893+ * This function enables EP0 OUT to receive SETUP packets and configures EP0
2894+ * IN for transmitting packets. It is normally called when the
2895+ * "Enumeration Done" interrupt occurs.
2896+ *
2897+ * @param _core_if Programming view of DWC_otg controller.
2898+ * @param _ep The EP0 data.
2899+ */
2900+void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
2901+{
2902+ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
2903+ dsts_data_t dsts;
2904+ depctl_data_t diepctl;
2905+ depctl_data_t doepctl;
2906+ dctl_data_t dctl ={.d32=0};
2907+
2908+ /* Read the Device Status and Endpoint 0 Control registers */
2909+ dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts);
2910+ diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl);
2911+ doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl);
2912+
2913+ /* Set the MPS of the IN EP based on the enumeration speed */
2914+ switch (dsts.b.enumspd) {
2915+ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
2916+ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
2917+ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
2918+ diepctl.b.mps = DWC_DEP0CTL_MPS_64;
2919+ break;
2920+ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
2921+ diepctl.b.mps = DWC_DEP0CTL_MPS_8;
2922+ break;
2923+ }
2924+
2925+ dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
2926+
2927+ /* Enable OUT EP for receive */
2928+ doepctl.b.epena = 1;
2929+ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
2930+
2931+#ifdef VERBOSE
2932+ DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
2933+ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
2934+ DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
2935+ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
2936+#endif
2937+ dctl.b.cgnpinnak = 1;
2938+ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
2939+ DWC_DEBUGPL(DBG_PCDV,"dctl=%0x\n",
2940+ dwc_read_reg32(&dev_if->dev_global_regs->dctl));
2941+}
2942+
2943+/**
2944+ * This function activates an EP. The Device EP control register for
2945+ * the EP is configured as defined in the ep structure. Note: This
2946+ * function is not used for EP0.
2947+ *
2948+ * @param _core_if Programming view of DWC_otg controller.
2949+ * @param _ep The EP to activate.
2950+ */
2951+void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
2952+{
2953+ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
2954+ depctl_data_t depctl;
2955+ volatile uint32_t *addr;
2956+ daint_data_t daintmsk = {.d32=0};
2957+
2958+ DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, _ep->num,
2959+ (_ep->is_in?"IN":"OUT"));
2960+
2961+ /* Read DEPCTLn register */
2962+ if (_ep->is_in == 1) {
2963+ addr = &dev_if->in_ep_regs[_ep->num]->diepctl;
2964+ daintmsk.ep.in = 1<<_ep->num;
2965+ } else {
2966+ addr = &dev_if->out_ep_regs[_ep->num]->doepctl;
2967+ daintmsk.ep.out = 1<<_ep->num;
2968+ }
2969+
2970+ /* If the EP is already active don't change the EP Control
2971+ * register. */
2972+ depctl.d32 = dwc_read_reg32(addr);
2973+ if (!depctl.b.usbactep) {
2974+ depctl.b.mps = _ep->maxpacket;
2975+ depctl.b.eptype = _ep->type;
2976+ depctl.b.txfnum = _ep->tx_fifo_num;
2977+
2978+ if (_ep->type == DWC_OTG_EP_TYPE_ISOC) {
2979+ depctl.b.setd0pid = 1; // ???
2980+ } else {
2981+ depctl.b.setd0pid = 1;
2982+ }
2983+ depctl.b.usbactep = 1;
2984+
2985+ dwc_write_reg32(addr, depctl.d32);
2986+ DWC_DEBUGPL(DBG_PCDV,"DEPCTL=%08x\n", dwc_read_reg32(addr));
2987+ }
2988+
2989+
2990+ /* Enable the Interrupt for this EP */
2991+ dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk,
2992+ 0, daintmsk.d32);
2993+ DWC_DEBUGPL(DBG_PCDV,"DAINTMSK=%0x\n",
2994+ dwc_read_reg32(&dev_if->dev_global_regs->daintmsk));
2995+ _ep->stall_clear_flag = 0;
2996+ return;
2997+}
2998+
2999+/**
3000+ * This function deactivates an EP. This is done by clearing the USB Active
3001+ * EP bit in the Device EP control register. Note: This function is not used
3002+ * for EP0. EP0 cannot be deactivated.
3003+ *
3004+ * @param _core_if Programming view of DWC_otg controller.
3005+ * @param _ep The EP to deactivate.
3006+ */
3007+void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
3008+{
3009+ depctl_data_t depctl ={.d32 = 0};
3010+ volatile uint32_t *addr;
3011+ daint_data_t daintmsk = {.d32=0};
3012+
3013+ /* Read DEPCTLn register */
3014+ if (_ep->is_in == 1) {
3015+ addr = &_core_if->dev_if->in_ep_regs[_ep->num]->diepctl;
3016+ daintmsk.ep.in = 1<<_ep->num;
3017+ } else {
3018+ addr = &_core_if->dev_if->out_ep_regs[_ep->num]->doepctl;
3019+ daintmsk.ep.out = 1<<_ep->num;
3020+ }
3021+
3022+ depctl.b.usbactep = 0;
3023+ dwc_write_reg32(addr, depctl.d32);
3024+
3025+ /* Disable the Interrupt for this EP */
3026+ dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->daintmsk,
3027+ daintmsk.d32, 0);
3028+
3029+ return;
3030+}
3031+
3032+/**
3033+ * This function does the setup for a data transfer for an EP and
3034+ * starts the transfer. For an IN transfer, the packets will be
3035+ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
3036+ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
3037+ *
3038+ * @param _core_if Programming view of DWC_otg controller.
3039+ * @param _ep The EP to start the transfer on.
3040+ */
3041+void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
3042+{
3043+ /** @todo Refactor this funciton to check the transfer size
3044+ * count value does not execed the number bits in the Transfer
3045+ * count register. */
3046+ depctl_data_t depctl;
3047+ deptsiz_data_t deptsiz;
3048+ gintmsk_data_t intr_mask = { .d32 = 0};
3049+
3050+#ifdef CHECK_PACKET_COUNTER_WIDTH
3051+ const uint32_t MAX_XFER_SIZE =
3052+ _core_if->core_params->max_transfer_size;
3053+ const uint32_t MAX_PKT_COUNT =
3054+ _core_if->core_params->max_packet_count;
3055+ uint32_t num_packets;
3056+ uint32_t transfer_len;
3057+ dwc_otg_dev_out_ep_regs_t *out_regs =
3058+ _core_if->dev_if->out_ep_regs[_ep->num];
3059+ dwc_otg_dev_in_ep_regs_t *in_regs =
3060+ _core_if->dev_if->in_ep_regs[_ep->num];
3061+ gnptxsts_data_t txstatus;
3062+
3063+ int lvl = SET_DEBUG_LEVEL(DBG_PCD);
3064+
3065+
3066+ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
3067+ "xfer_buff=%p start_xfer_buff=%p\n",
3068+ _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len,
3069+ _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff);
3070+
3071+ transfer_len = _ep->xfer_len - _ep->xfer_count;
3072+ if (transfer_len > MAX_XFER_SIZE) {
3073+ transfer_len = MAX_XFER_SIZE;
3074+ }
3075+ if (transfer_len == 0) {
3076+ num_packets = 1;
3077+ /* OUT EP to recieve Zero-length packet set transfer
3078+ * size to maxpacket size. */
3079+ if (!_ep->is_in) {
3080+ transfer_len = _ep->maxpacket;
3081+ }
3082+ } else {
3083+ num_packets =
3084+ (transfer_len + _ep->maxpacket - 1) / _ep->maxpacket;
3085+ if (num_packets > MAX_PKT_COUNT) {
3086+ num_packets = MAX_PKT_COUNT;
3087+ }
3088+ }
3089+ DWC_DEBUGPL(DBG_PCD, "transfer_len=%d #pckt=%d\n", transfer_len,
3090+ num_packets);
3091+
3092+ deptsiz.b.xfersize = transfer_len;
3093+ deptsiz.b.pktcnt = num_packets;
3094+
3095+ /* IN endpoint */
3096+ if (_ep->is_in == 1) {
3097+ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
3098+ } else {/* OUT endpoint */
3099+ depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
3100+ }
3101+
3102+ /* EP enable, IN data in FIFO */
3103+ depctl.b.cnak = 1;
3104+ depctl.b.epena = 1;
3105+ /* IN endpoint */
3106+ if (_ep->is_in == 1) {
3107+ txstatus.d32 =
3108+ dwc_read_reg32(&_core_if->core_global_regs->gnptxsts);
3109+ if (txstatus.b.nptxqspcavail == 0) {
3110+ DWC_DEBUGPL(DBG_ANY, "TX Queue Full (0x%0x)\n",
3111+ txstatus.d32);
3112+ return;
3113+ }
3114+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3115+ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
3116+ /**
3117+ * Enable the Non-Periodic Tx FIFO empty interrupt, the
3118+ * data will be written into the fifo by the ISR.
3119+ */
3120+ if (_core_if->dma_enable) {
3121+ dwc_write_reg32(&in_regs->diepdma, (uint32_t) _ep->xfer_buff);
3122+ } else {
3123+ if (_core_if->en_multiple_tx_fifo == 0) {
3124+ intr_mask.b.nptxfempty = 1;
3125+ dwc_modify_reg32( &_core_if->core_global_regs->gintsts,
3126+ intr_mask.d32, 0);
3127+ dwc_modify_reg32( &_core_if->core_global_regs->gintmsk,
3128+ intr_mask.d32, intr_mask.d32);
3129+ } else {
3130+ /* Enable the Tx FIFO Empty Interrupt for this EP */
3131+ if (_ep->xfer_len > 0 &&
3132+ _ep->type != DWC_OTG_EP_TYPE_ISOC) {
3133+ uint32_t fifoemptymsk = 0;
3134+ fifoemptymsk = (0x1 << _ep->num);
3135+ dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->
3136+ dtknqr4_fifoemptymsk,0, fifoemptymsk);
3137+ }
3138+ }
3139+ }
3140+ } else { /* OUT endpoint */
3141+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3142+ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
3143+ if (_core_if->dma_enable) {
3144+ dwc_write_reg32(&out_regs->doepdma,(uint32_t) _ep->xfer_buff);
3145+ }
3146+ }
3147+ DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n",
3148+ dwc_read_reg32(&out_regs->doepctl),
3149+ dwc_read_reg32(&out_regs->doeptsiz));
3150+ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
3151+ dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk),
3152+ dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
3153+
3154+ SET_DEBUG_LEVEL(lvl);
3155+#endif
3156+ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
3157+
3158+ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
3159+ "xfer_buff=%p start_xfer_buff=%p\n",
3160+ _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len,
3161+ _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff);
3162+
3163+ /* IN endpoint */
3164+ if (_ep->is_in == 1) {
3165+ dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[_ep->num];
3166+ gnptxsts_data_t gtxstatus;
3167+ gtxstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts);
3168+ if (_core_if->en_multiple_tx_fifo == 0 &&
3169+ gtxstatus.b.nptxqspcavail == 0) {
3170+#ifdef DEBUG
3171+ DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32);
3172+#endif
3173+ //return;
3174+ MDELAY(100); //james
3175+ }
3176+
3177+ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
3178+ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
3179+
3180+ /* Zero Length Packet? */
3181+ if (_ep->xfer_len == 0) {
3182+ deptsiz.b.xfersize = 0;
3183+ deptsiz.b.pktcnt = 1;
3184+ } else {
3185+
3186+ /* Program the transfer size and packet count
3187+ * as follows: xfersize = N * maxpacket +
3188+ * short_packet pktcnt = N + (short_packet
3189+ * exist ? 1 : 0)
3190+ */
3191+ deptsiz.b.xfersize = _ep->xfer_len;
3192+ deptsiz.b.pktcnt = (_ep->xfer_len - 1 + _ep->maxpacket) / _ep->maxpacket;
3193+ }
3194+
3195+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3196+
3197+ /* Write the DMA register */
3198+ if (_core_if->dma_enable) {
3199+#if 1 // winder
3200+ dma_cache_wback_inv((unsigned long) _ep->xfer_buff, _ep->xfer_len); // winder
3201+ dwc_write_reg32 (&(in_regs->diepdma),
3202+ CPHYSADDR((uint32_t)_ep->xfer_buff)); // winder
3203+#else
3204+ dwc_write_reg32 (&(in_regs->diepdma),
3205+ (uint32_t)_ep->dma_addr);
3206+#endif
3207+ } else {
3208+ if (_ep->type != DWC_OTG_EP_TYPE_ISOC) {
3209+ /**
3210+ * Enable the Non-Periodic Tx FIFO empty interrupt,
3211+ * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
3212+ * the data will be written into the fifo by the ISR.
3213+ */
3214+ if (_core_if->en_multiple_tx_fifo == 0) {
3215+ intr_mask.b.nptxfempty = 1;
3216+ dwc_modify_reg32( &_core_if->core_global_regs->gintsts,
3217+ intr_mask.d32, 0);
3218+ dwc_modify_reg32( &_core_if->core_global_regs->gintmsk,
3219+ intr_mask.d32, intr_mask.d32);
3220+ } else {
3221+ /* Enable the Tx FIFO Empty Interrupt for this EP */
3222+ if (_ep->xfer_len > 0) {
3223+ uint32_t fifoemptymsk = 0;
3224+ fifoemptymsk = 1 << _ep->num;
3225+ dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->
3226+ dtknqr4_fifoemptymsk,0,fifoemptymsk);
3227+ }
3228+ }
3229+ }
3230+ }
3231+
3232+ /* EP enable, IN data in FIFO */
3233+ depctl.b.cnak = 1;
3234+ depctl.b.epena = 1;
3235+ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
3236+
3237+ if (_core_if->dma_enable) {
3238+ depctl.d32 = dwc_read_reg32 (&_core_if->dev_if->in_ep_regs[0]->diepctl);
3239+ depctl.b.nextep = _ep->num;
3240+ dwc_write_reg32 (&_core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
3241+
3242+ }
3243+ } else {
3244+ /* OUT endpoint */
3245+ dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num];
3246+
3247+ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
3248+ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
3249+
3250+ /* Program the transfer size and packet count as follows:
3251+ *
3252+ * pktcnt = N
3253+ * xfersize = N * maxpacket
3254+ */
3255+ if (_ep->xfer_len == 0) {
3256+ /* Zero Length Packet */
3257+ deptsiz.b.xfersize = _ep->maxpacket;
3258+ deptsiz.b.pktcnt = 1;
3259+ } else {
3260+ deptsiz.b.pktcnt = (_ep->xfer_len + (_ep->maxpacket - 1)) / _ep->maxpacket;
3261+ deptsiz.b.xfersize = deptsiz.b.pktcnt * _ep->maxpacket;
3262+ }
3263+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3264+
3265+ DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n",
3266+ _ep->num, deptsiz.b.xfersize, deptsiz.b.pktcnt);
3267+
3268+ if (_core_if->dma_enable) {
3269+#if 1 // winder
3270+ dwc_write_reg32 (&(out_regs->doepdma),
3271+ CPHYSADDR((uint32_t)_ep->xfer_buff)); // winder
3272+#else
3273+ dwc_write_reg32 (&(out_regs->doepdma),
3274+ (uint32_t)_ep->dma_addr);
3275+#endif
3276+ }
3277+
3278+ if (_ep->type == DWC_OTG_EP_TYPE_ISOC) {
3279+ /** @todo NGS: dpid is read-only. Use setd0pid
3280+ * or setd1pid. */
3281+ if (_ep->even_odd_frame) {
3282+ depctl.b.setd1pid = 1;
3283+ } else {
3284+ depctl.b.setd0pid = 1;
3285+ }
3286+ }
3287+
3288+ /* EP enable */
3289+ depctl.b.cnak = 1;
3290+ depctl.b.epena = 1;
3291+
3292+ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
3293+
3294+ DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n",
3295+ dwc_read_reg32(&out_regs->doepctl),
3296+ dwc_read_reg32(&out_regs->doeptsiz));
3297+ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
3298+ dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk),
3299+ dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
3300+ }
3301+}
3302+
3303+
3304+/**
3305+ * This function does the setup for a data transfer for EP0 and starts
3306+ * the transfer. For an IN transfer, the packets will be loaded into
3307+ * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are
3308+ * unloaded from the Rx FIFO in the ISR.
3309+ *
3310+ * @param _core_if Programming view of DWC_otg controller.
3311+ * @param _ep The EP0 data.
3312+ */
3313+void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
3314+{
3315+ volatile depctl_data_t depctl;
3316+ volatile deptsiz0_data_t deptsiz;
3317+ gintmsk_data_t intr_mask = { .d32 = 0};
3318+
3319+ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
3320+ "xfer_buff=%p start_xfer_buff=%p total_len=%d\n",
3321+ _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len,
3322+ _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff,
3323+ _ep->total_len);
3324+ _ep->total_len = _ep->xfer_len;
3325+
3326+ /* IN endpoint */
3327+ if (_ep->is_in == 1) {
3328+ dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[0];
3329+ gnptxsts_data_t gtxstatus;
3330+ gtxstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts);
3331+ if (_core_if->en_multiple_tx_fifo == 0 &&
3332+ gtxstatus.b.nptxqspcavail == 0) {
3333+#ifdef DEBUG
3334+ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
3335+ DWC_DEBUGPL(DBG_PCD,"DIEPCTL0=%0x\n",
3336+ dwc_read_reg32(&in_regs->diepctl));
3337+ DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n",
3338+ deptsiz.d32, deptsiz.b.xfersize,deptsiz.b.pktcnt);
3339+ DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n", gtxstatus.d32);
3340+#endif /* */
3341+ printk("TX Queue or FIFO Full!!!!\n"); // test-only
3342+ //return;
3343+ MDELAY(100); //james
3344+ }
3345+
3346+ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
3347+ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
3348+
3349+ /* Zero Length Packet? */
3350+ if (_ep->xfer_len == 0) {
3351+ deptsiz.b.xfersize = 0;
3352+ deptsiz.b.pktcnt = 1;
3353+ } else {
3354+ /* Program the transfer size and packet count
3355+ * as follows: xfersize = N * maxpacket +
3356+ * short_packet pktcnt = N + (short_packet
3357+ * exist ? 1 : 0)
3358+ */
3359+ if (_ep->xfer_len > _ep->maxpacket) {
3360+ _ep->xfer_len = _ep->maxpacket;
3361+ deptsiz.b.xfersize = _ep->maxpacket;
3362+ }
3363+ else {
3364+ deptsiz.b.xfersize = _ep->xfer_len;
3365+ }
3366+ deptsiz.b.pktcnt = 1;
3367+
3368+ }
3369+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3370+ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
3371+ _ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt, deptsiz.d32);
3372+
3373+ /* Write the DMA register */
3374+ if (_core_if->dma_enable) {
3375+ dwc_write_reg32(&(in_regs->diepdma), (uint32_t) _ep->dma_addr);
3376+ }
3377+
3378+ /* EP enable, IN data in FIFO */
3379+ depctl.b.cnak = 1;
3380+ depctl.b.epena = 1;
3381+ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
3382+
3383+ /**
3384+ * Enable the Non-Periodic Tx FIFO empty interrupt, the
3385+ * data will be written into the fifo by the ISR.
3386+ */
3387+ if (!_core_if->dma_enable) {
3388+ if (_core_if->en_multiple_tx_fifo == 0) {
3389+ intr_mask.b.nptxfempty = 1;
3390+ dwc_modify_reg32(&_core_if->core_global_regs->gintsts, intr_mask.d32, 0);
3391+ dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, intr_mask.d32,
3392+ intr_mask.d32);
3393+ } else {
3394+ /* Enable the Tx FIFO Empty Interrupt for this EP */
3395+ if (_ep->xfer_len > 0) {
3396+ uint32_t fifoemptymsk = 0;
3397+ fifoemptymsk |= 1 << _ep->num;
3398+ dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
3399+ 0, fifoemptymsk);
3400+ }
3401+
3402+ }
3403+ }
3404+ } else {
3405+ /* OUT endpoint */
3406+ dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num];
3407+
3408+ depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
3409+ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
3410+
3411+ /* Program the transfer size and packet count as follows:
3412+ * xfersize = N * (maxpacket + 4 - (maxpacket % 4))
3413+ * pktcnt = N */
3414+ if (_ep->xfer_len == 0) {
3415+ /* Zero Length Packet */
3416+ deptsiz.b.xfersize = _ep->maxpacket;
3417+ deptsiz.b.pktcnt = 1;
3418+ } else {
3419+ deptsiz.b.pktcnt = (_ep->xfer_len + (_ep->maxpacket - 1)) / _ep->maxpacket;
3420+ deptsiz.b.xfersize = deptsiz.b.pktcnt * _ep->maxpacket;
3421+ }
3422+
3423+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3424+ DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n",
3425+ _ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt);
3426+
3427+ if (_core_if->dma_enable) {
3428+ dwc_write_reg32(&(out_regs->doepdma), (uint32_t) _ep->dma_addr);
3429+ }
3430+
3431+ /* EP enable */
3432+ depctl.b.cnak = 1;
3433+ depctl.b.epena = 1;
3434+ dwc_write_reg32 (&(out_regs->doepctl), depctl.d32);
3435+ }
3436+}
3437+
3438+/**
3439+ * This function continues control IN transfers started by
3440+ * dwc_otg_ep0_start_transfer, when the transfer does not fit in a
3441+ * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one
3442+ * bit for the packet count.
3443+ *
3444+ * @param _core_if Programming view of DWC_otg controller.
3445+ * @param _ep The EP0 data.
3446+ */
3447+void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
3448+{
3449+ depctl_data_t depctl;
3450+ deptsiz0_data_t deptsiz;
3451+ gintmsk_data_t intr_mask = { .d32 = 0};
3452+
3453+ if (_ep->is_in == 1) {
3454+ dwc_otg_dev_in_ep_regs_t *in_regs =
3455+ _core_if->dev_if->in_ep_regs[0];
3456+ gnptxsts_data_t tx_status = {.d32 = 0};
3457+
3458+ tx_status.d32 = dwc_read_reg32( &_core_if->core_global_regs->gnptxsts );
3459+ /** @todo Should there be check for room in the Tx
3460+ * Status Queue. If not remove the code above this comment. */
3461+
3462+ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
3463+ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
3464+
3465+ /* Program the transfer size and packet count
3466+ * as follows: xfersize = N * maxpacket +
3467+ * short_packet pktcnt = N + (short_packet
3468+ * exist ? 1 : 0)
3469+ */
3470+ deptsiz.b.xfersize = (_ep->total_len - _ep->xfer_count) > _ep->maxpacket ? _ep->maxpacket :
3471+ (_ep->total_len - _ep->xfer_count);
3472+ deptsiz.b.pktcnt = 1;
3473+ _ep->xfer_len += deptsiz.b.xfersize;
3474+
3475+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3476+ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
3477+ _ep->xfer_len,
3478+ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
3479+
3480+ /* Write the DMA register */
3481+ if (_core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
3482+ dwc_write_reg32 (&(in_regs->diepdma),
3483+ CPHYSADDR((uint32_t)_ep->dma_addr)); // winder
3484+ }
3485+
3486+ /* EP enable, IN data in FIFO */
3487+ depctl.b.cnak = 1;
3488+ depctl.b.epena = 1;
3489+ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
3490+
3491+ /**
3492+ * Enable the Non-Periodic Tx FIFO empty interrupt, the
3493+ * data will be written into the fifo by the ISR.
3494+ */
3495+ if (!_core_if->dma_enable) {
3496+ /* First clear it from GINTSTS */
3497+ intr_mask.b.nptxfempty = 1;
3498+ dwc_write_reg32( &_core_if->core_global_regs->gintsts,
3499+ intr_mask.d32 );
3500+
3501+ dwc_modify_reg32( &_core_if->core_global_regs->gintmsk,
3502+ intr_mask.d32, intr_mask.d32);
3503+ }
3504+
3505+ }
3506+
3507+}
3508+
3509+#ifdef DEBUG
3510+void dump_msg(const u8 *buf, unsigned int length)
3511+{
3512+ unsigned int start, num, i;
3513+ char line[52], *p;
3514+
3515+ if (length >= 512)
3516+ return;
3517+ start = 0;
3518+ while (length > 0) {
3519+ num = min(length, 16u);
3520+ p = line;
3521+ for (i = 0; i < num; ++i) {
3522+ if (i == 8)
3523+ *p++ = ' ';
3524+ sprintf(p, " %02x", buf[i]);
3525+ p += 3;
3526+ }
3527+ *p = 0;
3528+ DWC_PRINT( "%6x: %s\n", start, line);
3529+ buf += num;
3530+ start += num;
3531+ length -= num;
3532+ }
3533+}
3534+#else
3535+static inline void dump_msg(const u8 *buf, unsigned int length)
3536+{
3537+}
3538+#endif
3539+
3540+/**
3541+ * This function writes a packet into the Tx FIFO associated with the
3542+ * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For
3543+ * periodic EPs the periodic Tx FIFO associated with the EP is written
3544+ * with all packets for the next micro-frame.
3545+ *
3546+ * @param _core_if Programming view of DWC_otg controller.
3547+ * @param _ep The EP to write packet for.
3548+ * @param _dma Indicates if DMA is being used.
3549+ */
3550+void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma)
3551+{
3552+ /**
3553+ * The buffer is padded to DWORD on a per packet basis in
3554+ * slave/dma mode if the MPS is not DWORD aligned. The last
3555+ * packet, if short, is also padded to a multiple of DWORD.
3556+ *
3557+ * ep->xfer_buff always starts DWORD aligned in memory and is a
3558+ * multiple of DWORD in length
3559+ *
3560+ * ep->xfer_len can be any number of bytes
3561+ *
3562+ * ep->xfer_count is a multiple of ep->maxpacket until the last
3563+ * packet
3564+ *
3565+ * FIFO access is DWORD */
3566+
3567+ uint32_t i;
3568+ uint32_t byte_count;
3569+ uint32_t dword_count;
3570+ uint32_t *fifo;
3571+ uint32_t *data_buff = (uint32_t *)_ep->xfer_buff;
3572+
3573+ //DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, _core_if, _ep);
3574+ if (_ep->xfer_count >= _ep->xfer_len) {
3575+ DWC_WARN("%s() No data for EP%d!!!\n", __func__, _ep->num);
3576+ return;
3577+ }
3578+
3579+ /* Find the byte length of the packet either short packet or MPS */
3580+ if ((_ep->xfer_len - _ep->xfer_count) < _ep->maxpacket) {
3581+ byte_count = _ep->xfer_len - _ep->xfer_count;
3582+ }
3583+ else {
3584+ byte_count = _ep->maxpacket;
3585+ }
3586+
3587+ /* Find the DWORD length, padded by extra bytes as neccessary if MPS
3588+ * is not a multiple of DWORD */
3589+ dword_count = (byte_count + 3) / 4;
3590+
3591+#ifdef VERBOSE
3592+ dump_msg(_ep->xfer_buff, byte_count);
3593+#endif
3594+ if (_ep->type == DWC_OTG_EP_TYPE_ISOC) {
3595+ /**@todo NGS Where are the Periodic Tx FIFO addresses
3596+ * intialized? What should this be? */
3597+ fifo = _core_if->data_fifo[_ep->tx_fifo_num];
3598+ } else {
3599+ fifo = _core_if->data_fifo[_ep->num];
3600+ }
3601+
3602+ DWC_DEBUGPL((DBG_PCDV|DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n",
3603+ fifo, data_buff, *data_buff, byte_count);
3604+
3605+
3606+ if (!_dma) {
3607+ for (i=0; i<dword_count; i++, data_buff++) {
3608+ dwc_write_reg32( fifo, *data_buff );
3609+ }
3610+ }
3611+
3612+ _ep->xfer_count += byte_count;
3613+ _ep->xfer_buff += byte_count;
3614+#if 1 // winder, why do we need this??
3615+ _ep->dma_addr += byte_count;
3616+#endif
3617+}
3618+
3619+/**
3620+ * Set the EP STALL.
3621+ *
3622+ * @param _core_if Programming view of DWC_otg controller.
3623+ * @param _ep The EP to set the stall on.
3624+ */
3625+void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
3626+{
3627+ depctl_data_t depctl;
3628+ volatile uint32_t *depctl_addr;
3629+
3630+ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, _ep->num,
3631+ (_ep->is_in?"IN":"OUT"));
3632+
3633+ if (_ep->is_in == 1) {
3634+ depctl_addr = &(_core_if->dev_if->in_ep_regs[_ep->num]->diepctl);
3635+ depctl.d32 = dwc_read_reg32(depctl_addr);
3636+
3637+ /* set the disable and stall bits */
3638+ if (depctl.b.epena) {
3639+ depctl.b.epdis = 1;
3640+ }
3641+ depctl.b.stall = 1;
3642+ dwc_write_reg32(depctl_addr, depctl.d32);
3643+
3644+ } else {
3645+ depctl_addr = &(_core_if->dev_if->out_ep_regs[_ep->num]->doepctl);
3646+ depctl.d32 = dwc_read_reg32(depctl_addr);
3647+
3648+ /* set the stall bit */
3649+ depctl.b.stall = 1;
3650+ dwc_write_reg32(depctl_addr, depctl.d32);
3651+ }
3652+ DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr));
3653+ return;
3654+}
3655+
3656+/**
3657+ * Clear the EP STALL.
3658+ *
3659+ * @param _core_if Programming view of DWC_otg controller.
3660+ * @param _ep The EP to clear stall from.
3661+ */
3662+void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
3663+{
3664+ depctl_data_t depctl;
3665+ volatile uint32_t *depctl_addr;
3666+
3667+ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, _ep->num,
3668+ (_ep->is_in?"IN":"OUT"));
3669+
3670+ if (_ep->is_in == 1) {
3671+ depctl_addr = &(_core_if->dev_if->in_ep_regs[_ep->num]->diepctl);
3672+ } else {
3673+ depctl_addr = &(_core_if->dev_if->out_ep_regs[_ep->num]->doepctl);
3674+ }
3675+
3676+ depctl.d32 = dwc_read_reg32(depctl_addr);
3677+
3678+ /* clear the stall bits */
3679+ depctl.b.stall = 0;
3680+
3681+ /*
3682+ * USB Spec 9.4.5: For endpoints using data toggle, regardless
3683+ * of whether an endpoint has the Halt feature set, a
3684+ * ClearFeature(ENDPOINT_HALT) request always results in the
3685+ * data toggle being reinitialized to DATA0.
3686+ */
3687+ if (_ep->type == DWC_OTG_EP_TYPE_INTR ||
3688+ _ep->type == DWC_OTG_EP_TYPE_BULK) {
3689+ depctl.b.setd0pid = 1; /* DATA0 */
3690+ }
3691+
3692+ dwc_write_reg32(depctl_addr, depctl.d32);
3693+ DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr));
3694+ return;
3695+}
3696+
3697+/**
3698+ * This function reads a packet from the Rx FIFO into the destination
3699+ * buffer. To read SETUP data use dwc_otg_read_setup_packet.
3700+ *
3701+ * @param _core_if Programming view of DWC_otg controller.
3702+ * @param _dest Destination buffer for the packet.
3703+ * @param _bytes Number of bytes to copy to the destination.
3704+ */
3705+void dwc_otg_read_packet(dwc_otg_core_if_t *_core_if,
3706+ uint8_t *_dest,
3707+ uint16_t _bytes)
3708+{
3709+ int i;
3710+ int word_count = (_bytes + 3) / 4;
3711+
3712+ volatile uint32_t *fifo = _core_if->data_fifo[0];
3713+ uint32_t *data_buff = (uint32_t *)_dest;
3714+
3715+ /**
3716+ * @todo Account for the case where _dest is not dword aligned. This
3717+ * requires reading data from the FIFO into a uint32_t temp buffer,
3718+ * then moving it into the data buffer.
3719+ */
3720+
3721+ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__,
3722+ _core_if, _dest, _bytes);
3723+
3724+ for (i=0; i<word_count; i++, data_buff++) {
3725+ *data_buff = dwc_read_reg32(fifo);
3726+ }
3727+
3728+ return;
3729+}
3730+
3731+
3732+#ifdef DEBUG
3733+/**
3734+ * This functions reads the device registers and prints them
3735+ *
3736+ * @param _core_if Programming view of DWC_otg controller.
3737+ */
3738+void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if)
3739+{
3740+ int i;
3741+ volatile uint32_t *addr;
3742+
3743+ DWC_PRINT("Device Global Registers\n");
3744+ addr=&_core_if->dev_if->dev_global_regs->dcfg;
3745+ DWC_PRINT("DCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3746+ addr=&_core_if->dev_if->dev_global_regs->dctl;
3747+ DWC_PRINT("DCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3748+ addr=&_core_if->dev_if->dev_global_regs->dsts;
3749+ DWC_PRINT("DSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3750+ addr=&_core_if->dev_if->dev_global_regs->diepmsk;
3751+ DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3752+ addr=&_core_if->dev_if->dev_global_regs->doepmsk;
3753+ DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3754+ addr=&_core_if->dev_if->dev_global_regs->daint;
3755+ DWC_PRINT("DAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3756+ addr=&_core_if->dev_if->dev_global_regs->dtknqr1;
3757+ DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3758+ if (_core_if->hwcfg2.b.dev_token_q_depth > 6) {
3759+ addr=&_core_if->dev_if->dev_global_regs->dtknqr2;
3760+ DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n",
3761+ (uint32_t)addr,dwc_read_reg32(addr));
3762+ }
3763+
3764+ addr=&_core_if->dev_if->dev_global_regs->dvbusdis;
3765+ DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3766+
3767+ addr=&_core_if->dev_if->dev_global_regs->dvbuspulse;
3768+ DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n",
3769+ (uint32_t)addr,dwc_read_reg32(addr));
3770+
3771+ if (_core_if->hwcfg2.b.dev_token_q_depth > 14) {
3772+ addr = &_core_if->dev_if->dev_global_regs->dtknqr3_dthrctl;
3773+ DWC_PRINT("DTKNQR3 @0x%08X : 0x%08X\n",
3774+ (uint32_t)addr, dwc_read_reg32(addr));
3775+ }
3776+
3777+ if (_core_if->hwcfg2.b.dev_token_q_depth > 22) {
3778+ addr = &_core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
3779+ DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n", (uint32_t) addr,
3780+ dwc_read_reg32(addr));
3781+ }
3782+ for (i = 0; i <= _core_if->dev_if->num_in_eps; i++) {
3783+ DWC_PRINT("Device IN EP %d Registers\n", i);
3784+ addr=&_core_if->dev_if->in_ep_regs[i]->diepctl;
3785+ DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3786+ addr=&_core_if->dev_if->in_ep_regs[i]->diepint;
3787+ DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3788+ addr=&_core_if->dev_if->in_ep_regs[i]->dieptsiz;
3789+ DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3790+ addr=&_core_if->dev_if->in_ep_regs[i]->diepdma;
3791+ DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3792+
3793+addr = &_core_if->dev_if->in_ep_regs[i]->dtxfsts;
3794+ DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n", (uint32_t) addr,
3795+ dwc_read_reg32(addr));
3796+ }
3797+ for (i = 0; i <= _core_if->dev_if->num_out_eps; i++) {
3798+ DWC_PRINT("Device OUT EP %d Registers\n", i);
3799+ addr=&_core_if->dev_if->out_ep_regs[i]->doepctl;
3800+ DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3801+ addr=&_core_if->dev_if->out_ep_regs[i]->doepfn;
3802+ DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3803+ addr=&_core_if->dev_if->out_ep_regs[i]->doepint;
3804+ DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3805+ addr=&_core_if->dev_if->out_ep_regs[i]->doeptsiz;
3806+ DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3807+ addr=&_core_if->dev_if->out_ep_regs[i]->doepdma;
3808+ DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3809+ }
3810+ return;
3811+}
3812+
3813+/**
3814+ * This function reads the host registers and prints them
3815+ *
3816+ * @param _core_if Programming view of DWC_otg controller.
3817+ */
3818+void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if)
3819+{
3820+ int i;
3821+ volatile uint32_t *addr;
3822+
3823+ DWC_PRINT("Host Global Registers\n");
3824+ addr=&_core_if->host_if->host_global_regs->hcfg;
3825+ DWC_PRINT("HCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3826+ addr=&_core_if->host_if->host_global_regs->hfir;
3827+ DWC_PRINT("HFIR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3828+ addr=&_core_if->host_if->host_global_regs->hfnum;
3829+ DWC_PRINT("HFNUM @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3830+ addr=&_core_if->host_if->host_global_regs->hptxsts;
3831+ DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3832+ addr=&_core_if->host_if->host_global_regs->haint;
3833+ DWC_PRINT("HAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3834+ addr=&_core_if->host_if->host_global_regs->haintmsk;
3835+ DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3836+ addr=_core_if->host_if->hprt0;
3837+ DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3838+
3839+ for (i=0; i<_core_if->core_params->host_channels; i++) {
3840+ DWC_PRINT("Host Channel %d Specific Registers\n", i);
3841+ addr=&_core_if->host_if->hc_regs[i]->hcchar;
3842+ DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3843+ addr=&_core_if->host_if->hc_regs[i]->hcsplt;
3844+ DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3845+ addr=&_core_if->host_if->hc_regs[i]->hcint;
3846+ DWC_PRINT("HCINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3847+ addr=&_core_if->host_if->hc_regs[i]->hcintmsk;
3848+ DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3849+ addr=&_core_if->host_if->hc_regs[i]->hctsiz;
3850+ DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3851+ addr=&_core_if->host_if->hc_regs[i]->hcdma;
3852+ DWC_PRINT("HCDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3853+
3854+ }
3855+ return;
3856+}
3857+
3858+/**
3859+ * This function reads the core global registers and prints them
3860+ *
3861+ * @param _core_if Programming view of DWC_otg controller.
3862+ */
3863+void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if)
3864+{
3865+ int i;
3866+ volatile uint32_t *addr;
3867+
3868+ DWC_PRINT("Core Global Registers\n");
3869+ addr=&_core_if->core_global_regs->gotgctl;
3870+ DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3871+ addr=&_core_if->core_global_regs->gotgint;
3872+ DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3873+ addr=&_core_if->core_global_regs->gahbcfg;
3874+ DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3875+ addr=&_core_if->core_global_regs->gusbcfg;
3876+ DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3877+ addr=&_core_if->core_global_regs->grstctl;
3878+ DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3879+ addr=&_core_if->core_global_regs->gintsts;
3880+ DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3881+ addr=&_core_if->core_global_regs->gintmsk;
3882+ DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3883+ addr=&_core_if->core_global_regs->grxstsr;
3884+ DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3885+ //addr=&_core_if->core_global_regs->grxstsp;
3886+ //DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3887+ addr=&_core_if->core_global_regs->grxfsiz;
3888+ DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3889+ addr=&_core_if->core_global_regs->gnptxfsiz;
3890+ DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3891+ addr=&_core_if->core_global_regs->gnptxsts;
3892+ DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3893+ addr=&_core_if->core_global_regs->gi2cctl;
3894+ DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3895+ addr=&_core_if->core_global_regs->gpvndctl;
3896+ DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3897+ addr=&_core_if->core_global_regs->ggpio;
3898+ DWC_PRINT("GGPIO @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3899+ addr=&_core_if->core_global_regs->guid;
3900+ DWC_PRINT("GUID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3901+ addr=&_core_if->core_global_regs->gsnpsid;
3902+ DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3903+ addr=&_core_if->core_global_regs->ghwcfg1;
3904+ DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3905+ addr=&_core_if->core_global_regs->ghwcfg2;
3906+ DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3907+ addr=&_core_if->core_global_regs->ghwcfg3;
3908+ DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3909+ addr=&_core_if->core_global_regs->ghwcfg4;
3910+ DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3911+ addr=&_core_if->core_global_regs->hptxfsiz;
3912+ DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3913+
3914+ for (i=0; i<_core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
3915+ addr=&_core_if->core_global_regs->dptxfsiz_dieptxf[i];
3916+ DWC_PRINT("DPTXFSIZ[%d] @0x%08X : 0x%08X\n",i,(uint32_t)addr,dwc_read_reg32(addr));
3917+ }
3918+
3919+}
3920+#endif
3921+
3922+/**
3923+ * Flush a Tx FIFO.
3924+ *
3925+ * @param _core_if Programming view of DWC_otg controller.
3926+ * @param _num Tx FIFO to flush.
3927+ */
3928+extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if,
3929+ const int _num )
3930+{
3931+ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs;
3932+ volatile grstctl_t greset = { .d32 = 0};
3933+ int count = 0;
3934+
3935+ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "Flush Tx FIFO %d\n", _num);
3936+
3937+ greset.b.txfflsh = 1;
3938+ greset.b.txfnum = _num;
3939+ dwc_write_reg32( &global_regs->grstctl, greset.d32 );
3940+
3941+ do {
3942+ greset.d32 = dwc_read_reg32( &global_regs->grstctl);
3943+ if (++count > 10000){
3944+ DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
3945+ __func__, greset.d32,
3946+ dwc_read_reg32( &global_regs->gnptxsts));
3947+ break;
3948+ }
3949+
3950+ udelay(1);
3951+ } while (greset.b.txfflsh == 1);
3952+ /* Wait for 3 PHY Clocks*/
3953+ UDELAY(1);
3954+}
3955+
3956+/**
3957+ * Flush Rx FIFO.
3958+ *
3959+ * @param _core_if Programming view of DWC_otg controller.
3960+ */
3961+extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if )
3962+{
3963+ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs;
3964+ volatile grstctl_t greset = { .d32 = 0};
3965+ int count = 0;
3966+
3967+ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "%s\n", __func__);
3968+ /*
3969+ *
3970+ */
3971+ greset.b.rxfflsh = 1;
3972+ dwc_write_reg32( &global_regs->grstctl, greset.d32 );
3973+
3974+ do {
3975+ greset.d32 = dwc_read_reg32( &global_regs->grstctl);
3976+ if (++count > 10000){
3977+ DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__,
3978+ greset.d32);
3979+ break;
3980+ }
3981+ } while (greset.b.rxfflsh == 1);
3982+ /* Wait for 3 PHY Clocks*/
3983+ UDELAY(1);
3984+}
3985+
3986+/**
3987+ * Do core a soft reset of the core. Be careful with this because it
3988+ * resets all the internal state machines of the core.
3989+ */
3990+
3991+void dwc_otg_core_reset(dwc_otg_core_if_t *_core_if)
3992+{
3993+ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs;
3994+ volatile grstctl_t greset = { .d32 = 0};
3995+ int count = 0;
3996+
3997+ DWC_DEBUGPL(DBG_CILV, "%s\n", __func__);
3998+ /* Wait for AHB master IDLE state. */
3999+ do {
4000+ UDELAY(10);
4001+ greset.d32 = dwc_read_reg32( &global_regs->grstctl);
4002+ if (++count > 100000){
4003+ DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x %x\n", __func__,
4004+ greset.d32, greset.b.ahbidle);
4005+ return;
4006+ }
4007+ } while (greset.b.ahbidle == 0);
4008+
4009+// winder add.
4010+#if 1
4011+ /* Note: Actually, I don't exactly why we need to put delay here. */
4012+ MDELAY(100);
4013+#endif
4014+ /* Core Soft Reset */
4015+ count = 0;
4016+ greset.b.csftrst = 1;
4017+ dwc_write_reg32( &global_regs->grstctl, greset.d32 );
4018+// winder add.
4019+#if 1
4020+ /* Note: Actually, I don't exactly why we need to put delay here. */
4021+ MDELAY(100);
4022+#endif
4023+ do {
4024+ greset.d32 = dwc_read_reg32( &global_regs->grstctl);
4025+ if (++count > 10000){
4026+ DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__,
4027+ greset.d32);
4028+ break;
4029+ }
4030+ udelay(1);
4031+ } while (greset.b.csftrst == 1);
4032+ /* Wait for 3 PHY Clocks*/
4033+ //DWC_PRINT("100ms\n");
4034+ MDELAY(100);
4035+}
4036+
4037+
4038+
4039+/**
4040+ * Register HCD callbacks. The callbacks are used to start and stop
4041+ * the HCD for interrupt processing.
4042+ *
4043+ * @param _core_if Programming view of DWC_otg controller.
4044+ * @param _cb the HCD callback structure.
4045+ * @param _p pointer to be passed to callback function (usb_hcd*).
4046+ */
4047+extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if,
4048+ dwc_otg_cil_callbacks_t *_cb,
4049+ void *_p)
4050+{
4051+ _core_if->hcd_cb = _cb;
4052+ _cb->p = _p;
4053+}
4054+
4055+/**
4056+ * Register PCD callbacks. The callbacks are used to start and stop
4057+ * the PCD for interrupt processing.
4058+ *
4059+ * @param _core_if Programming view of DWC_otg controller.
4060+ * @param _cb the PCD callback structure.
4061+ * @param _p pointer to be passed to callback function (pcd*).
4062+ */
4063+extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if,
4064+ dwc_otg_cil_callbacks_t *_cb,
4065+ void *_p)
4066+{
4067+ _core_if->pcd_cb = _cb;
4068+ _cb->p = _p;
4069+}
4070+
4071--- /dev/null
4072+++ b/drivers/usb/dwc_otg/dwc_otg_cil.h
4073@@ -0,0 +1,911 @@
4074+/* ==========================================================================
4075+ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil.h $
4076+ * $Revision: 1.1.1.1 $
4077+ * $Date: 2009-04-17 06:15:34 $
4078+ * $Change: 631780 $
4079+ *
4080+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
4081+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
4082+ * otherwise expressly agreed to in writing between Synopsys and you.
4083+ *
4084+ * The Software IS NOT an item of Licensed Software or Licensed Product under
4085+ * any End User Software License Agreement or Agreement for Licensed Product
4086+ * with Synopsys or any supplement thereto. You are permitted to use and
4087+ * redistribute this Software in source and binary forms, with or without
4088+ * modification, provided that redistributions of source code must retain this
4089+ * notice. You may not view, use, disclose, copy or distribute this file or
4090+ * any information contained herein except pursuant to this license grant from
4091+ * Synopsys. If you do not agree with this notice, including the disclaimer
4092+ * below, then you are not authorized to use the Software.
4093+ *
4094+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
4095+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
4096+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
4097+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
4098+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
4099+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
4100+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
4101+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
4102+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
4103+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
4104+ * DAMAGE.
4105+ * ========================================================================== */
4106+
4107+#if !defined(__DWC_CIL_H__)
4108+#define __DWC_CIL_H__
4109+
4110+#include "dwc_otg_plat.h"
4111+
4112+#include "dwc_otg_regs.h"
4113+#ifdef DEBUG
4114+#include "linux/timer.h"
4115+#endif
4116+
4117+/* the OTG capabilities. */
4118+#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
4119+#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
4120+#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
4121+/* the maximum speed of operation in host and device mode. */
4122+#define DWC_SPEED_PARAM_HIGH 0
4123+#define DWC_SPEED_PARAM_FULL 1
4124+/* the PHY clock rate in low power mode when connected to a
4125+ * Low Speed device in host mode. */
4126+#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
4127+#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
4128+/* the type of PHY interface to use. */
4129+#define DWC_PHY_TYPE_PARAM_FS 0
4130+#define DWC_PHY_TYPE_PARAM_UTMI 1
4131+#define DWC_PHY_TYPE_PARAM_ULPI 2
4132+/* whether to use the internal or external supply to
4133+ * drive the vbus with a ULPI phy. */
4134+#define DWC_PHY_ULPI_INTERNAL_VBUS 0
4135+#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
4136+/* EP type. */
4137+
4138+/**
4139+ * @file
4140+ * This file contains the interface to the Core Interface Layer.
4141+ */
4142+
4143+/**
4144+ * The <code>dwc_ep</code> structure represents the state of a single
4145+ * endpoint when acting in device mode. It contains the data items
4146+ * needed for an endpoint to be activated and transfer packets.
4147+ */
4148+typedef struct dwc_ep {
4149+ /** EP number used for register address lookup */
4150+ uint8_t num;
4151+ /** EP direction 0 = OUT */
4152+ unsigned is_in : 1;
4153+ /** EP active. */
4154+ unsigned active : 1;
4155+
4156+ /** Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use non-periodic Tx FIFO
4157+ If dedicated Tx FIFOs are enabled for all IN Eps - Tx FIFO # FOR IN EPs*/
4158+ unsigned tx_fifo_num : 4;
4159+ /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */
4160+ unsigned type : 2;
4161+#define DWC_OTG_EP_TYPE_CONTROL 0
4162+#define DWC_OTG_EP_TYPE_ISOC 1
4163+#define DWC_OTG_EP_TYPE_BULK 2
4164+#define DWC_OTG_EP_TYPE_INTR 3
4165+
4166+ /** DATA start PID for INTR and BULK EP */
4167+ unsigned data_pid_start : 1;
4168+ /** Frame (even/odd) for ISOC EP */
4169+ unsigned even_odd_frame : 1;
4170+ /** Max Packet bytes */
4171+ unsigned maxpacket : 11;
4172+
4173+ /** @name Transfer state */
4174+ /** @{ */
4175+
4176+ /**
4177+ * Pointer to the beginning of the transfer buffer -- do not modify
4178+ * during transfer.
4179+ */
4180+
4181+ uint32_t dma_addr;
4182+
4183+ uint8_t *start_xfer_buff;
4184+ /** pointer to the transfer buffer */
4185+ uint8_t *xfer_buff;
4186+ /** Number of bytes to transfer */
4187+ unsigned xfer_len : 19;
4188+ /** Number of bytes transferred. */
4189+ unsigned xfer_count : 19;
4190+ /** Sent ZLP */
4191+ unsigned sent_zlp : 1;
4192+ /** Total len for control transfer */
4193+ unsigned total_len : 19;
4194+
4195+ /** stall clear flag */
4196+ unsigned stall_clear_flag : 1;
4197+
4198+ /** @} */
4199+} dwc_ep_t;
4200+
4201+/*
4202+ * Reasons for halting a host channel.
4203+ */
4204+typedef enum dwc_otg_halt_status {
4205+ DWC_OTG_HC_XFER_NO_HALT_STATUS,
4206+ DWC_OTG_HC_XFER_COMPLETE,
4207+ DWC_OTG_HC_XFER_URB_COMPLETE,
4208+ DWC_OTG_HC_XFER_ACK,
4209+ DWC_OTG_HC_XFER_NAK,
4210+ DWC_OTG_HC_XFER_NYET,
4211+ DWC_OTG_HC_XFER_STALL,
4212+ DWC_OTG_HC_XFER_XACT_ERR,
4213+ DWC_OTG_HC_XFER_FRAME_OVERRUN,
4214+ DWC_OTG_HC_XFER_BABBLE_ERR,
4215+ DWC_OTG_HC_XFER_DATA_TOGGLE_ERR,
4216+ DWC_OTG_HC_XFER_AHB_ERR,
4217+ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE,
4218+ DWC_OTG_HC_XFER_URB_DEQUEUE
4219+} dwc_otg_halt_status_e;
4220+
4221+/**
4222+ * Host channel descriptor. This structure represents the state of a single
4223+ * host channel when acting in host mode. It contains the data items needed to
4224+ * transfer packets to an endpoint via a host channel.
4225+ */
4226+typedef struct dwc_hc {
4227+ /** Host channel number used for register address lookup */
4228+ uint8_t hc_num;
4229+
4230+ /** Device to access */
4231+ unsigned dev_addr : 7;
4232+
4233+ /** EP to access */
4234+ unsigned ep_num : 4;
4235+
4236+ /** EP direction. 0: OUT, 1: IN */
4237+ unsigned ep_is_in : 1;
4238+
4239+ /**
4240+ * EP speed.
4241+ * One of the following values:
4242+ * - DWC_OTG_EP_SPEED_LOW
4243+ * - DWC_OTG_EP_SPEED_FULL
4244+ * - DWC_OTG_EP_SPEED_HIGH
4245+ */
4246+ unsigned speed : 2;
4247+#define DWC_OTG_EP_SPEED_LOW 0
4248+#define DWC_OTG_EP_SPEED_FULL 1
4249+#define DWC_OTG_EP_SPEED_HIGH 2
4250+
4251+ /**
4252+ * Endpoint type.
4253+ * One of the following values:
4254+ * - DWC_OTG_EP_TYPE_CONTROL: 0
4255+ * - DWC_OTG_EP_TYPE_ISOC: 1
4256+ * - DWC_OTG_EP_TYPE_BULK: 2
4257+ * - DWC_OTG_EP_TYPE_INTR: 3
4258+ */
4259+ unsigned ep_type : 2;
4260+
4261+ /** Max packet size in bytes */
4262+ unsigned max_packet : 11;
4263+
4264+ /**
4265+ * PID for initial transaction.
4266+ * 0: DATA0,<br>
4267+ * 1: DATA2,<br>
4268+ * 2: DATA1,<br>
4269+ * 3: MDATA (non-Control EP),
4270+ * SETUP (Control EP)
4271+ */
4272+ unsigned data_pid_start : 2;
4273+#define DWC_OTG_HC_PID_DATA0 0
4274+#define DWC_OTG_HC_PID_DATA2 1
4275+#define DWC_OTG_HC_PID_DATA1 2
4276+#define DWC_OTG_HC_PID_MDATA 3
4277+#define DWC_OTG_HC_PID_SETUP 3
4278+
4279+ /** Number of periodic transactions per (micro)frame */
4280+ unsigned multi_count: 2;
4281+
4282+ /** @name Transfer State */
4283+ /** @{ */
4284+
4285+ /** Pointer to the current transfer buffer position. */
4286+ uint8_t *xfer_buff;
4287+ /** Total number of bytes to transfer. */
4288+ uint32_t xfer_len;
4289+ /** Number of bytes transferred so far. */
4290+ uint32_t xfer_count;
4291+ /** Packet count at start of transfer.*/
4292+ uint16_t start_pkt_count;
4293+
4294+ /**
4295+ * Flag to indicate whether the transfer has been started. Set to 1 if
4296+ * it has been started, 0 otherwise.
4297+ */
4298+ uint8_t xfer_started;
4299+
4300+ /**
4301+ * Set to 1 to indicate that a PING request should be issued on this
4302+ * channel. If 0, process normally.
4303+ */
4304+ uint8_t do_ping;
4305+
4306+ /**
4307+ * Set to 1 to indicate that the error count for this transaction is
4308+ * non-zero. Set to 0 if the error count is 0.
4309+ */
4310+ uint8_t error_state;
4311+
4312+ /**
4313+ * Set to 1 to indicate that this channel should be halted the next
4314+ * time a request is queued for the channel. This is necessary in
4315+ * slave mode if no request queue space is available when an attempt
4316+ * is made to halt the channel.
4317+ */
4318+ uint8_t halt_on_queue;
4319+
4320+ /**
4321+ * Set to 1 if the host channel has been halted, but the core is not
4322+ * finished flushing queued requests. Otherwise 0.
4323+ */
4324+ uint8_t halt_pending;
4325+
4326+ /**
4327+ * Reason for halting the host channel.
4328+ */
4329+ dwc_otg_halt_status_e halt_status;
4330+
4331+ /*
4332+ * Split settings for the host channel
4333+ */
4334+ uint8_t do_split; /**< Enable split for the channel */
4335+ uint8_t complete_split; /**< Enable complete split */
4336+ uint8_t hub_addr; /**< Address of high speed hub */
4337+
4338+ uint8_t port_addr; /**< Port of the low/full speed device */
4339+ /** Split transaction position
4340+ * One of the following values:
4341+ * - DWC_HCSPLIT_XACTPOS_MID
4342+ * - DWC_HCSPLIT_XACTPOS_BEGIN
4343+ * - DWC_HCSPLIT_XACTPOS_END
4344+ * - DWC_HCSPLIT_XACTPOS_ALL */
4345+ uint8_t xact_pos;
4346+
4347+ /** Set when the host channel does a short read. */
4348+ uint8_t short_read;
4349+
4350+ /**
4351+ * Number of requests issued for this channel since it was assigned to
4352+ * the current transfer (not counting PINGs).
4353+ */
4354+ uint8_t requests;
4355+
4356+ /**
4357+ * Queue Head for the transfer being processed by this channel.
4358+ */
4359+ struct dwc_otg_qh *qh;
4360+
4361+ /** @} */
4362+
4363+ /** Entry in list of host channels. */
4364+ struct list_head hc_list_entry;
4365+} dwc_hc_t;
4366+
4367+/**
4368+ * The following parameters may be specified when starting the module. These
4369+ * parameters define how the DWC_otg controller should be configured.
4370+ * Parameter values are passed to the CIL initialization function
4371+ * dwc_otg_cil_init.
4372+ */
4373+
4374+typedef struct dwc_otg_core_params
4375+{
4376+ int32_t opt;
4377+//#define dwc_param_opt_default 1
4378+ /**
4379+ * Specifies the OTG capabilities. The driver will automatically
4380+ * detect the value for this parameter if none is specified.
4381+ * 0 - HNP and SRP capable (default)
4382+ * 1 - SRP Only capable
4383+ * 2 - No HNP/SRP capable
4384+ */
4385+ int32_t otg_cap;
4386+#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
4387+#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
4388+#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
4389+//#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE
4390+ /**
4391+ * Specifies whether to use slave or DMA mode for accessing the data
4392+ * FIFOs. The driver will automatically detect the value for this
4393+ * parameter if none is specified.
4394+ * 0 - Slave
4395+ * 1 - DMA (default, if available)
4396+ */
4397+ int32_t dma_enable;
4398+//#define dwc_param_dma_enable_default 1
4399+ /** The DMA Burst size (applicable only for External DMA
4400+ * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32)
4401+ */
4402+ int32_t dma_burst_size; /* Translate this to GAHBCFG values */
4403+//#define dwc_param_dma_burst_size_default 32
4404+ /**
4405+ * Specifies the maximum speed of operation in host and device mode.
4406+ * The actual speed depends on the speed of the attached device and
4407+ * the value of phy_type. The actual speed depends on the speed of the
4408+ * attached device.
4409+ * 0 - High Speed (default)
4410+ * 1 - Full Speed
4411+ */
4412+ int32_t speed;
4413+//#define dwc_param_speed_default 0
4414+#define DWC_SPEED_PARAM_HIGH 0
4415+#define DWC_SPEED_PARAM_FULL 1
4416+
4417+ /** Specifies whether low power mode is supported when attached
4418+ * to a Full Speed or Low Speed device in host mode.
4419+ * 0 - Don't support low power mode (default)
4420+ * 1 - Support low power mode
4421+ */
4422+ int32_t host_support_fs_ls_low_power;
4423+//#define dwc_param_host_support_fs_ls_low_power_default 0
4424+ /** Specifies the PHY clock rate in low power mode when connected to a
4425+ * Low Speed device in host mode. This parameter is applicable only if
4426+ * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
4427+ * then defaults to 6 MHZ otherwise 48 MHZ.
4428+ *
4429+ * 0 - 48 MHz
4430+ * 1 - 6 MHz
4431+ */
4432+ int32_t host_ls_low_power_phy_clk;
4433+//#define dwc_param_host_ls_low_power_phy_clk_default 0
4434+#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
4435+#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
4436+ /**
4437+ * 0 - Use cC FIFO size parameters
4438+ * 1 - Allow dynamic FIFO sizing (default)
4439+ */
4440+ int32_t enable_dynamic_fifo;
4441+//#define dwc_param_enable_dynamic_fifo_default 1
4442+ /** Total number of 4-byte words in the data FIFO memory. This
4443+ * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic
4444+ * Tx FIFOs.
4445+ * 32 to 32768 (default 8192)
4446+ * Note: The total FIFO memory depth in the FPGA configuration is 8192.
4447+ */
4448+ int32_t data_fifo_size;
4449+//#define dwc_param_data_fifo_size_default 8192
4450+ /** Number of 4-byte words in the Rx FIFO in device mode when dynamic
4451+ * FIFO sizing is enabled.
4452+ * 16 to 32768 (default 1064)
4453+ */
4454+ int32_t dev_rx_fifo_size;
4455+//#define dwc_param_dev_rx_fifo_size_default 1064
4456+ /** Number of 4-byte words in the non-periodic Tx FIFO in device mode
4457+ * when dynamic FIFO sizing is enabled.
4458+ * 16 to 32768 (default 1024)
4459+ */
4460+ int32_t dev_nperio_tx_fifo_size;
4461+//#define dwc_param_dev_nperio_tx_fifo_size_default 1024
4462+ /** Number of 4-byte words in each of the periodic Tx FIFOs in device
4463+ * mode when dynamic FIFO sizing is enabled.
4464+ * 4 to 768 (default 256)
4465+ */
4466+ uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS];
4467+//#define dwc_param_dev_perio_tx_fifo_size_default 256
4468+ /** Number of 4-byte words in the Rx FIFO in host mode when dynamic
4469+ * FIFO sizing is enabled.
4470+ * 16 to 32768 (default 1024)
4471+ */
4472+ int32_t host_rx_fifo_size;
4473+//#define dwc_param_host_rx_fifo_size_default 1024
4474+ /** Number of 4-byte words in the non-periodic Tx FIFO in host mode
4475+ * when Dynamic FIFO sizing is enabled in the core.
4476+ * 16 to 32768 (default 1024)
4477+ */
4478+ int32_t host_nperio_tx_fifo_size;
4479+//#define dwc_param_host_nperio_tx_fifo_size_default 1024
4480+ /** Number of 4-byte words in the host periodic Tx FIFO when dynamic
4481+ * FIFO sizing is enabled.
4482+ * 16 to 32768 (default 1024)
4483+ */
4484+ int32_t host_perio_tx_fifo_size;
4485+//#define dwc_param_host_perio_tx_fifo_size_default 1024
4486+ /** The maximum transfer size supported in bytes.
4487+ * 2047 to 65,535 (default 65,535)
4488+ */
4489+ int32_t max_transfer_size;
4490+//#define dwc_param_max_transfer_size_default 65535
4491+ /** The maximum number of packets in a transfer.
4492+ * 15 to 511 (default 511)
4493+ */
4494+ int32_t max_packet_count;
4495+//#define dwc_param_max_packet_count_default 511
4496+ /** The number of host channel registers to use.
4497+ * 1 to 16 (default 12)
4498+ * Note: The FPGA configuration supports a maximum of 12 host channels.
4499+ */
4500+ int32_t host_channels;
4501+//#define dwc_param_host_channels_default 12
4502+ /** The number of endpoints in addition to EP0 available for device
4503+ * mode operations.
4504+ * 1 to 15 (default 6 IN and OUT)
4505+ * Note: The FPGA configuration supports a maximum of 6 IN and OUT
4506+ * endpoints in addition to EP0.
4507+ */
4508+ int32_t dev_endpoints;
4509+//#define dwc_param_dev_endpoints_default 6
4510+ /**
4511+ * Specifies the type of PHY interface to use. By default, the driver
4512+ * will automatically detect the phy_type.
4513+ *
4514+ * 0 - Full Speed PHY
4515+ * 1 - UTMI+ (default)
4516+ * 2 - ULPI
4517+ */
4518+ int32_t phy_type;
4519+#define DWC_PHY_TYPE_PARAM_FS 0
4520+#define DWC_PHY_TYPE_PARAM_UTMI 1
4521+#define DWC_PHY_TYPE_PARAM_ULPI 2
4522+//#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
4523+ /**
4524+ * Specifies the UTMI+ Data Width. This parameter is
4525+ * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
4526+ * PHY_TYPE, this parameter indicates the data width between
4527+ * the MAC and the ULPI Wrapper.) Also, this parameter is
4528+ * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
4529+ * to "8 and 16 bits", meaning that the core has been
4530+ * configured to work at either data path width.
4531+ *
4532+ * 8 or 16 bits (default 16)
4533+ */
4534+ int32_t phy_utmi_width;
4535+//#define dwc_param_phy_utmi_width_default 16
4536+ /**
4537+ * Specifies whether the ULPI operates at double or single
4538+ * data rate. This parameter is only applicable if PHY_TYPE is
4539+ * ULPI.
4540+ *
4541+ * 0 - single data rate ULPI interface with 8 bit wide data
4542+ * bus (default)
4543+ * 1 - double data rate ULPI interface with 4 bit wide data
4544+ * bus
4545+ */
4546+ int32_t phy_ulpi_ddr;
4547+//#define dwc_param_phy_ulpi_ddr_default 0
4548+ /**
4549+ * Specifies whether to use the internal or external supply to
4550+ * drive the vbus with a ULPI phy.
4551+ */
4552+ int32_t phy_ulpi_ext_vbus;
4553+#define DWC_PHY_ULPI_INTERNAL_VBUS 0
4554+#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
4555+//#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
4556+ /**
4557+ * Specifies whether to use the I2Cinterface for full speed PHY. This
4558+ * parameter is only applicable if PHY_TYPE is FS.
4559+ * 0 - No (default)
4560+ * 1 - Yes
4561+ */
4562+ int32_t i2c_enable;
4563+//#define dwc_param_i2c_enable_default 0
4564+
4565+ int32_t ulpi_fs_ls;
4566+//#define dwc_param_ulpi_fs_ls_default 0
4567+
4568+ int32_t ts_dline;
4569+//#define dwc_param_ts_dline_default 0
4570+
4571+ /**
4572+ * Specifies whether dedicated transmit FIFOs are
4573+ * enabled for non periodic IN endpoints in device mode
4574+ * 0 - No
4575+ * 1 - Yes
4576+ */
4577+ int32_t en_multiple_tx_fifo;
4578+#define dwc_param_en_multiple_tx_fifo_default 1
4579+
4580+ /** Number of 4-byte words in each of the Tx FIFOs in device
4581+ * mode when dynamic FIFO sizing is enabled.
4582+ * 4 to 768 (default 256)
4583+ */
4584+ uint32_t dev_tx_fifo_size[MAX_TX_FIFOS];
4585+#define dwc_param_dev_tx_fifo_size_default 256
4586+
4587+ /** Thresholding enable flag-
4588+ * bit 0 - enable non-ISO Tx thresholding
4589+ * bit 1 - enable ISO Tx thresholding
4590+ * bit 2 - enable Rx thresholding
4591+ */
4592+ uint32_t thr_ctl;
4593+#define dwc_param_thr_ctl_default 0
4594+
4595+ /** Thresholding length for Tx
4596+ * FIFOs in 32 bit DWORDs
4597+ */
4598+ uint32_t tx_thr_length;
4599+#define dwc_param_tx_thr_length_default 64
4600+
4601+ /** Thresholding length for Rx
4602+ * FIFOs in 32 bit DWORDs
4603+ */
4604+ uint32_t rx_thr_length;
4605+#define dwc_param_rx_thr_length_default 64
4606+} dwc_otg_core_params_t;
4607+
4608+#ifdef DEBUG
4609+struct dwc_otg_core_if;
4610+typedef struct hc_xfer_info
4611+{
4612+ struct dwc_otg_core_if *core_if;
4613+ dwc_hc_t *hc;
4614+} hc_xfer_info_t;
4615+#endif
4616+
4617+/**
4618+ * The <code>dwc_otg_core_if</code> structure contains information needed to manage
4619+ * the DWC_otg controller acting in either host or device mode. It
4620+ * represents the programming view of the controller as a whole.
4621+ */
4622+typedef struct dwc_otg_core_if
4623+{
4624+ /** Parameters that define how the core should be configured.*/
4625+ dwc_otg_core_params_t *core_params;
4626+
4627+ /** Core Global registers starting at offset 000h. */
4628+ dwc_otg_core_global_regs_t *core_global_regs;
4629+
4630+ /** Device-specific information */
4631+ dwc_otg_dev_if_t *dev_if;
4632+ /** Host-specific information */
4633+ dwc_otg_host_if_t *host_if;
4634+
4635+ /*
4636+ * Set to 1 if the core PHY interface bits in USBCFG have been
4637+ * initialized.
4638+ */
4639+ uint8_t phy_init_done;
4640+
4641+ /*
4642+ * SRP Success flag, set by srp success interrupt in FS I2C mode
4643+ */
4644+ uint8_t srp_success;
4645+ uint8_t srp_timer_started;
4646+
4647+ /* Common configuration information */
4648+ /** Power and Clock Gating Control Register */
4649+ volatile uint32_t *pcgcctl;
4650+#define DWC_OTG_PCGCCTL_OFFSET 0xE00
4651+
4652+ /** Push/pop addresses for endpoints or host channels.*/
4653+ uint32_t *data_fifo[MAX_EPS_CHANNELS];
4654+#define DWC_OTG_DATA_FIFO_OFFSET 0x1000
4655+#define DWC_OTG_DATA_FIFO_SIZE 0x1000
4656+
4657+ /** Total RAM for FIFOs (Bytes) */
4658+ uint16_t total_fifo_size;
4659+ /** Size of Rx FIFO (Bytes) */
4660+ uint16_t rx_fifo_size;
4661+ /** Size of Non-periodic Tx FIFO (Bytes) */
4662+ uint16_t nperio_tx_fifo_size;
4663+
4664+ /** 1 if DMA is enabled, 0 otherwise. */
4665+ uint8_t dma_enable;
4666+
4667+ /** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */
4668+ uint8_t en_multiple_tx_fifo;
4669+
4670+ /** Set to 1 if multiple packets of a high-bandwidth transfer is in
4671+ * process of being queued */
4672+ uint8_t queuing_high_bandwidth;
4673+
4674+ /** Hardware Configuration -- stored here for convenience.*/
4675+ hwcfg1_data_t hwcfg1;
4676+ hwcfg2_data_t hwcfg2;
4677+ hwcfg3_data_t hwcfg3;
4678+ hwcfg4_data_t hwcfg4;
4679+
4680+ /** The operational State, during transations
4681+ * (a_host>>a_peripherial and b_device=>b_host) this may not
4682+ * match the core but allows the software to determine
4683+ * transitions.
4684+ */
4685+ uint8_t op_state;
4686+
4687+ /**
4688+ * Set to 1 if the HCD needs to be restarted on a session request
4689+ * interrupt. This is required if no connector ID status change has
4690+ * occurred since the HCD was last disconnected.
4691+ */
4692+ uint8_t restart_hcd_on_session_req;
4693+
4694+ /** HCD callbacks */
4695+ /** A-Device is a_host */
4696+#define A_HOST (1)
4697+ /** A-Device is a_suspend */
4698+#define A_SUSPEND (2)
4699+ /** A-Device is a_peripherial */
4700+#define A_PERIPHERAL (3)
4701+ /** B-Device is operating as a Peripheral. */
4702+#define B_PERIPHERAL (4)
4703+ /** B-Device is operating as a Host. */
4704+#define B_HOST (5)
4705+
4706+ /** HCD callbacks */
4707+ struct dwc_otg_cil_callbacks *hcd_cb;
4708+ /** PCD callbacks */
4709+ struct dwc_otg_cil_callbacks *pcd_cb;
4710+
4711+ /** Device mode Periodic Tx FIFO Mask */
4712+ uint32_t p_tx_msk;
4713+ /** Device mode Periodic Tx FIFO Mask */
4714+ uint32_t tx_msk;
4715+
4716+#ifdef DEBUG
4717+ uint32_t start_hcchar_val[MAX_EPS_CHANNELS];
4718+
4719+ hc_xfer_info_t hc_xfer_info[MAX_EPS_CHANNELS];
4720+ struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS];
4721+
4722+#if 1 // winder
4723+ uint32_t hfnum_7_samples;
4724+ uint32_t hfnum_7_frrem_accum;
4725+ uint32_t hfnum_0_samples;
4726+ uint32_t hfnum_0_frrem_accum;
4727+ uint32_t hfnum_other_samples;
4728+ uint32_t hfnum_other_frrem_accum;
4729+#else
4730+ uint32_t hfnum_7_samples;
4731+ uint64_t hfnum_7_frrem_accum;
4732+ uint32_t hfnum_0_samples;
4733+ uint64_t hfnum_0_frrem_accum;
4734+ uint32_t hfnum_other_samples;
4735+ uint64_t hfnum_other_frrem_accum;
4736+#endif
4737+ resource_size_t phys_addr; /* Added to support PLB DMA : phys-virt mapping */
4738+#endif
4739+
4740+} dwc_otg_core_if_t;
4741+
4742+/*
4743+ * The following functions support initialization of the CIL driver component
4744+ * and the DWC_otg controller.
4745+ */
4746+extern dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr,
4747+ dwc_otg_core_params_t *_core_params);
4748+extern void dwc_otg_cil_remove(dwc_otg_core_if_t *_core_if);
4749+extern void dwc_otg_core_init(dwc_otg_core_if_t *_core_if);
4750+extern void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if);
4751+extern void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if);
4752+extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if );
4753+extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if );
4754+
4755+/** @name Device CIL Functions
4756+ * The following functions support managing the DWC_otg controller in device
4757+ * mode.
4758+ */
4759+/**@{*/
4760+extern void dwc_otg_wakeup(dwc_otg_core_if_t *_core_if);
4761+extern void dwc_otg_read_setup_packet (dwc_otg_core_if_t *_core_if, uint32_t *_dest);
4762+extern uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if);
4763+extern void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
4764+extern void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
4765+extern void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
4766+extern void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
4767+extern void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
4768+extern void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
4769+extern void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma);
4770+extern void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
4771+extern void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
4772+extern void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if);
4773+extern void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if);
4774+/**@}*/
4775+
4776+/** @name Host CIL Functions
4777+ * The following functions support managing the DWC_otg controller in host
4778+ * mode.
4779+ */
4780+/**@{*/
4781+extern void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
4782+extern void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if,
4783+ dwc_hc_t *_hc,
4784+ dwc_otg_halt_status_e _halt_status);
4785+extern void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
4786+extern void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
4787+extern int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
4788+extern void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
4789+extern void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
4790+extern void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if);
4791+extern void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if);
4792+
4793+/**
4794+ * This function Reads HPRT0 in preparation to modify. It keeps the
4795+ * WC bits 0 so that if they are read as 1, they won't clear when you
4796+ * write it back
4797+ */
4798+static inline uint32_t dwc_otg_read_hprt0(dwc_otg_core_if_t *_core_if)
4799+{
4800+ hprt0_data_t hprt0;
4801+ hprt0.d32 = dwc_read_reg32(_core_if->host_if->hprt0);
4802+ hprt0.b.prtena = 0;
4803+ hprt0.b.prtconndet = 0;
4804+ hprt0.b.prtenchng = 0;
4805+ hprt0.b.prtovrcurrchng = 0;
4806+ return hprt0.d32;
4807+}
4808+
4809+extern void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if);
4810+/**@}*/
4811+
4812+/** @name Common CIL Functions
4813+ * The following functions support managing the DWC_otg controller in either
4814+ * device or host mode.
4815+ */
4816+/**@{*/
4817+
4818+extern void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
4819+ uint8_t *dest,
4820+ uint16_t bytes);
4821+
4822+extern void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if);
4823+
4824+extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if,
4825+ const int _num );
4826+extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if );
4827+extern void dwc_otg_core_reset( dwc_otg_core_if_t *_core_if );
4828+
4829+#define NP_TXFIFO_EMPTY -1
4830+#define MAX_NP_TXREQUEST_Q_SLOTS 8
4831+/**
4832+ * This function returns the endpoint number of the request at
4833+ * the top of non-periodic TX FIFO, or -1 if the request FIFO is
4834+ * empty.
4835+ */
4836+static inline int dwc_otg_top_nptxfifo_epnum(dwc_otg_core_if_t *_core_if) {
4837+ gnptxsts_data_t txstatus = {.d32 = 0};
4838+
4839+ txstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts);
4840+ return (txstatus.b.nptxqspcavail == MAX_NP_TXREQUEST_Q_SLOTS ?
4841+ -1 : txstatus.b.nptxqtop_chnep);
4842+}
4843+/**
4844+ * This function returns the Core Interrupt register.
4845+ */
4846+static inline uint32_t dwc_otg_read_core_intr(dwc_otg_core_if_t *_core_if) {
4847+ return (dwc_read_reg32(&_core_if->core_global_regs->gintsts) &
4848+ dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
4849+}
4850+
4851+/**
4852+ * This function returns the OTG Interrupt register.
4853+ */
4854+static inline uint32_t dwc_otg_read_otg_intr (dwc_otg_core_if_t *_core_if) {
4855+ return (dwc_read_reg32 (&_core_if->core_global_regs->gotgint));
4856+}
4857+
4858+/**
4859+ * This function reads the Device All Endpoints Interrupt register and
4860+ * returns the IN endpoint interrupt bits.
4861+ */
4862+static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(dwc_otg_core_if_t *_core_if) {
4863+ uint32_t v;
4864+ v = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daint) &
4865+ dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk);
4866+ return (v & 0xffff);
4867+
4868+}
4869+
4870+/**
4871+ * This function reads the Device All Endpoints Interrupt register and
4872+ * returns the OUT endpoint interrupt bits.
4873+ */
4874+static inline uint32_t dwc_otg_read_dev_all_out_ep_intr(dwc_otg_core_if_t *_core_if) {
4875+ uint32_t v;
4876+ v = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daint) &
4877+ dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk);
4878+ return ((v & 0xffff0000) >> 16);
4879+}
4880+
4881+/**
4882+ * This function returns the Device IN EP Interrupt register
4883+ */
4884+static inline uint32_t dwc_otg_read_dev_in_ep_intr(dwc_otg_core_if_t *_core_if,
4885+ dwc_ep_t *_ep)
4886+{
4887+ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
4888+ uint32_t v, msk, emp;
4889+ msk = dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
4890+ emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
4891+ msk |= ((emp >> _ep->num) & 0x1) << 7;
4892+ v = dwc_read_reg32(&dev_if->in_ep_regs[_ep->num]->diepint) & msk;
4893+/*
4894+ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
4895+ uint32_t v;
4896+ v = dwc_read_reg32(&dev_if->in_ep_regs[_ep->num]->diepint) &
4897+ dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
4898+*/
4899+ return v;
4900+}
4901+/**
4902+ * This function returns the Device OUT EP Interrupt register
4903+ */
4904+static inline uint32_t dwc_otg_read_dev_out_ep_intr(dwc_otg_core_if_t *_core_if,
4905+ dwc_ep_t *_ep)
4906+{
4907+ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
4908+ uint32_t v;
4909+ v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) &
4910+ dwc_read_reg32(&dev_if->dev_global_regs->doepmsk);
4911+ return v;
4912+}
4913+
4914+/**
4915+ * This function returns the Host All Channel Interrupt register
4916+ */
4917+static inline uint32_t dwc_otg_read_host_all_channels_intr (dwc_otg_core_if_t *_core_if)
4918+{
4919+ return (dwc_read_reg32 (&_core_if->host_if->host_global_regs->haint));
4920+}
4921+
4922+static inline uint32_t dwc_otg_read_host_channel_intr (dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
4923+{
4924+ return (dwc_read_reg32 (&_core_if->host_if->hc_regs[_hc->hc_num]->hcint));
4925+}
4926+
4927+
4928+/**
4929+ * This function returns the mode of the operation, host or device.
4930+ *
4931+ * @return 0 - Device Mode, 1 - Host Mode
4932+ */
4933+static inline uint32_t dwc_otg_mode(dwc_otg_core_if_t *_core_if) {
4934+ return (dwc_read_reg32( &_core_if->core_global_regs->gintsts ) & 0x1);
4935+}
4936+
4937+static inline uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t *_core_if)
4938+{
4939+ return (dwc_otg_mode(_core_if) != DWC_HOST_MODE);
4940+}
4941+static inline uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t *_core_if)
4942+{
4943+ return (dwc_otg_mode(_core_if) == DWC_HOST_MODE);
4944+}
4945+
4946+extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if );
4947+
4948+
4949+/**@}*/
4950+
4951+/**
4952+ * DWC_otg CIL callback structure. This structure allows the HCD and
4953+ * PCD to register functions used for starting and stopping the PCD
4954+ * and HCD for role change on for a DRD.
4955+ */
4956+typedef struct dwc_otg_cil_callbacks
4957+{
4958+ /** Start function for role change */
4959+ int (*start) (void *_p);
4960+ /** Stop Function for role change */
4961+ int (*stop) (void *_p);
4962+ /** Disconnect Function for role change */
4963+ int (*disconnect) (void *_p);
4964+ /** Resume/Remote wakeup Function */
4965+ int (*resume_wakeup) (void *_p);
4966+ /** Suspend function */
4967+ int (*suspend) (void *_p);
4968+ /** Session Start (SRP) */
4969+ int (*session_start) (void *_p);
4970+ /** Pointer passed to start() and stop() */
4971+ void *p;
4972+} dwc_otg_cil_callbacks_t;
4973+
4974+
4975+
4976+extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if,
4977+ dwc_otg_cil_callbacks_t *_cb,
4978+ void *_p);
4979+extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if,
4980+ dwc_otg_cil_callbacks_t *_cb,
4981+ void *_p);
4982+
4983+
4984+#endif
4985--- /dev/null
4986+++ b/drivers/usb/dwc_otg/dwc_otg_cil_ifx.h
4987@@ -0,0 +1,58 @@
4988+/******************************************************************************
4989+**
4990+** FILE NAME : dwc_otg_cil_ifx.h
4991+** PROJECT : Twinpass/Danube
4992+** MODULES : DWC OTG USB
4993+**
4994+** DATE : 07 Sep. 2007
4995+** AUTHOR : Sung Winder
4996+** DESCRIPTION : Default param value.
4997+** COPYRIGHT : Copyright (c) 2007
4998+** Infineon Technologies AG
4999+** 2F, No.2, Li-Hsin Rd., Hsinchu Science Park,
5000+** Hsin-chu City, 300 Taiwan.
5001+**
5002+** This program is free software; you can redistribute it and/or modify
5003+** it under the terms of the GNU General Public License as published by
5004+** the Free Software Foundation; either version 2 of the License, or
5005+** (at your option) any later version.
5006+**
5007+** HISTORY
5008+** $Date $Author $Comment
5009+** 12 April 2007 Sung Winder Initiate Version
5010+*******************************************************************************/
5011+#if !defined(__DWC_OTG_CIL_IFX_H__)
5012+#define __DWC_OTG_CIL_IFX_H__
5013+
5014+/* ================ Default param value ================== */
5015+#define dwc_param_opt_default 1
5016+#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE
5017+#define dwc_param_dma_enable_default 1
5018+#define dwc_param_dma_burst_size_default 32
5019+#define dwc_param_speed_default DWC_SPEED_PARAM_HIGH
5020+#define dwc_param_host_support_fs_ls_low_power_default 0
5021+#define dwc_param_host_ls_low_power_phy_clk_default DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ
5022+#define dwc_param_enable_dynamic_fifo_default 1
5023+#define dwc_param_data_fifo_size_default 2048
5024+#define dwc_param_dev_rx_fifo_size_default 1024
5025+#define dwc_param_dev_nperio_tx_fifo_size_default 1024
5026+#define dwc_param_dev_perio_tx_fifo_size_default 768
5027+#define dwc_param_host_rx_fifo_size_default 640
5028+#define dwc_param_host_nperio_tx_fifo_size_default 640
5029+#define dwc_param_host_perio_tx_fifo_size_default 768
5030+#define dwc_param_max_transfer_size_default 65535
5031+#define dwc_param_max_packet_count_default 511
5032+#define dwc_param_host_channels_default 16
5033+#define dwc_param_dev_endpoints_default 6
5034+#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
5035+#define dwc_param_phy_utmi_width_default 16
5036+#define dwc_param_phy_ulpi_ddr_default 0
5037+#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
5038+#define dwc_param_i2c_enable_default 0
5039+#define dwc_param_ulpi_fs_ls_default 0
5040+#define dwc_param_ts_dline_default 0
5041+
5042+/* ======================================================= */
5043+
5044+#endif // __DWC_OTG_CIL_IFX_H__
5045+
5046--- /dev/null
5047+++ b/drivers/usb/dwc_otg/dwc_otg_cil_intr.c
5048@@ -0,0 +1,708 @@
5049+/* ==========================================================================
5050+ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil_intr.c $
5051+ * $Revision: 1.1.1.1 $
5052+ * $Date: 2009-04-17 06:15:34 $
5053+ * $Change: 553126 $
5054+ *
5055+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
5056+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
5057+ * otherwise expressly agreed to in writing between Synopsys and you.
5058+ *
5059+ * The Software IS NOT an item of Licensed Software or Licensed Product under
5060+ * any End User Software License Agreement or Agreement for Licensed Product
5061+ * with Synopsys or any supplement thereto. You are permitted to use and
5062+ * redistribute this Software in source and binary forms, with or without
5063+ * modification, provided that redistributions of source code must retain this
5064+ * notice. You may not view, use, disclose, copy or distribute this file or
5065+ * any information contained herein except pursuant to this license grant from
5066+ * Synopsys. If you do not agree with this notice, including the disclaimer
5067+ * below, then you are not authorized to use the Software.
5068+ *
5069+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
5070+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
5071+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
5072+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
5073+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
5074+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
5075+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
5076+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
5077+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
5078+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
5079+ * DAMAGE.
5080+ * ========================================================================== */
5081+
5082+/** @file
5083+ *
5084+ * The Core Interface Layer provides basic services for accessing and
5085+ * managing the DWC_otg hardware. These services are used by both the
5086+ * Host Controller Driver and the Peripheral Controller Driver.
5087+ *
5088+ * This file contains the Common Interrupt handlers.
5089+ */
5090+#include "dwc_otg_plat.h"
5091+#include "dwc_otg_regs.h"
5092+#include "dwc_otg_cil.h"
5093+
5094+#ifdef DEBUG
5095+inline const char *op_state_str( dwc_otg_core_if_t *_core_if )
5096+{
5097+ return (_core_if->op_state==A_HOST?"a_host":
5098+ (_core_if->op_state==A_SUSPEND?"a_suspend":
5099+ (_core_if->op_state==A_PERIPHERAL?"a_peripheral":
5100+ (_core_if->op_state==B_PERIPHERAL?"b_peripheral":
5101+ (_core_if->op_state==B_HOST?"b_host":
5102+ "unknown")))));
5103+}
5104+#endif
5105+
5106+/** This function will log a debug message
5107+ *
5108+ * @param _core_if Programming view of DWC_otg controller.
5109+ */
5110+int32_t dwc_otg_handle_mode_mismatch_intr (dwc_otg_core_if_t *_core_if)
5111+{
5112+ gintsts_data_t gintsts;
5113+ DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n",
5114+ dwc_otg_mode(_core_if) ? "Host" : "Device");
5115+
5116+ /* Clear interrupt */
5117+ gintsts.d32 = 0;
5118+ gintsts.b.modemismatch = 1;
5119+ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32);
5120+ return 1;
5121+}
5122+
5123+/** Start the HCD. Helper function for using the HCD callbacks.
5124+ *
5125+ * @param _core_if Programming view of DWC_otg controller.
5126+ */
5127+static inline void hcd_start( dwc_otg_core_if_t *_core_if )
5128+{
5129+ if (_core_if->hcd_cb && _core_if->hcd_cb->start) {
5130+ _core_if->hcd_cb->start( _core_if->hcd_cb->p );
5131+ }
5132+}
5133+/** Stop the HCD. Helper function for using the HCD callbacks.
5134+ *
5135+ * @param _core_if Programming view of DWC_otg controller.
5136+ */
5137+static inline void hcd_stop( dwc_otg_core_if_t *_core_if )
5138+{
5139+ if (_core_if->hcd_cb && _core_if->hcd_cb->stop) {
5140+ _core_if->hcd_cb->stop( _core_if->hcd_cb->p );
5141+ }
5142+}
5143+/** Disconnect the HCD. Helper function for using the HCD callbacks.
5144+ *
5145+ * @param _core_if Programming view of DWC_otg controller.
5146+ */
5147+static inline void hcd_disconnect( dwc_otg_core_if_t *_core_if )
5148+{
5149+ if (_core_if->hcd_cb && _core_if->hcd_cb->disconnect) {
5150+ _core_if->hcd_cb->disconnect( _core_if->hcd_cb->p );
5151+ }
5152+}
5153+/** Inform the HCD the a New Session has begun. Helper function for
5154+ * using the HCD callbacks.
5155+ *
5156+ * @param _core_if Programming view of DWC_otg controller.
5157+ */
5158+static inline void hcd_session_start( dwc_otg_core_if_t *_core_if )
5159+{
5160+ if (_core_if->hcd_cb && _core_if->hcd_cb->session_start) {
5161+ _core_if->hcd_cb->session_start( _core_if->hcd_cb->p );
5162+ }
5163+}
5164+
5165+/** Start the PCD. Helper function for using the PCD callbacks.
5166+ *
5167+ * @param _core_if Programming view of DWC_otg controller.
5168+ */
5169+static inline void pcd_start( dwc_otg_core_if_t *_core_if )
5170+{
5171+ if (_core_if->pcd_cb && _core_if->pcd_cb->start ) {
5172+ _core_if->pcd_cb->start( _core_if->pcd_cb->p );
5173+ }
5174+}
5175+/** Stop the PCD. Helper function for using the PCD callbacks.
5176+ *
5177+ * @param _core_if Programming view of DWC_otg controller.
5178+ */
5179+static inline void pcd_stop( dwc_otg_core_if_t *_core_if )
5180+{
5181+ if (_core_if->pcd_cb && _core_if->pcd_cb->stop ) {
5182+ _core_if->pcd_cb->stop( _core_if->pcd_cb->p );
5183+ }
5184+}
5185+/** Suspend the PCD. Helper function for using the PCD callbacks.
5186+ *
5187+ * @param _core_if Programming view of DWC_otg controller.
5188+ */
5189+static inline void pcd_suspend( dwc_otg_core_if_t *_core_if )
5190+{
5191+ if (_core_if->pcd_cb && _core_if->pcd_cb->suspend ) {
5192+ _core_if->pcd_cb->suspend( _core_if->pcd_cb->p );
5193+ }
5194+}
5195+/** Resume the PCD. Helper function for using the PCD callbacks.
5196+ *
5197+ * @param _core_if Programming view of DWC_otg controller.
5198+ */
5199+static inline void pcd_resume( dwc_otg_core_if_t *_core_if )
5200+{
5201+ if (_core_if->pcd_cb && _core_if->pcd_cb->resume_wakeup ) {
5202+ _core_if->pcd_cb->resume_wakeup( _core_if->pcd_cb->p );
5203+ }
5204+}
5205+
5206+/**
5207+ * This function handles the OTG Interrupts. It reads the OTG
5208+ * Interrupt Register (GOTGINT) to determine what interrupt has
5209+ * occurred.
5210+ *
5211+ * @param _core_if Programming view of DWC_otg controller.
5212+ */
5213+int32_t dwc_otg_handle_otg_intr(dwc_otg_core_if_t *_core_if)
5214+{
5215+ dwc_otg_core_global_regs_t *global_regs =
5216+ _core_if->core_global_regs;
5217+ gotgint_data_t gotgint;
5218+ gotgctl_data_t gotgctl;
5219+ gintmsk_data_t gintmsk;
5220+
5221+ gotgint.d32 = dwc_read_reg32( &global_regs->gotgint);
5222+ gotgctl.d32 = dwc_read_reg32( &global_regs->gotgctl);
5223+ DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32,
5224+ op_state_str(_core_if));
5225+ //DWC_DEBUGPL(DBG_CIL, "gotgctl=%08x\n", gotgctl.d32 );
5226+
5227+ if (gotgint.b.sesenddet) {
5228+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
5229+ "Session End Detected++ (%s)\n",
5230+ op_state_str(_core_if));
5231+ gotgctl.d32 = dwc_read_reg32( &global_regs->gotgctl);
5232+
5233+ if (_core_if->op_state == B_HOST) {
5234+ pcd_start( _core_if );
5235+ _core_if->op_state = B_PERIPHERAL;
5236+ } else {
5237+ /* If not B_HOST and Device HNP still set. HNP
5238+ * Did not succeed!*/
5239+ if (gotgctl.b.devhnpen) {
5240+ DWC_DEBUGPL(DBG_ANY, "Session End Detected\n");
5241+ DWC_ERROR( "Device Not Connected/Responding!\n" );
5242+ }
5243+
5244+ /* If Session End Detected the B-Cable has
5245+ * been disconnected. */
5246+ /* Reset PCD and Gadget driver to a
5247+ * clean state. */
5248+ pcd_stop(_core_if);
5249+ }
5250+ gotgctl.d32 = 0;
5251+ gotgctl.b.devhnpen = 1;
5252+ dwc_modify_reg32( &global_regs->gotgctl,
5253+ gotgctl.d32, 0);
5254+ }
5255+ if (gotgint.b.sesreqsucstschng) {
5256+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
5257+ "Session Reqeust Success Status Change++\n");
5258+ gotgctl.d32 = dwc_read_reg32( &global_regs->gotgctl);
5259+ if (gotgctl.b.sesreqscs) {
5260+ if ((_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
5261+ (_core_if->core_params->i2c_enable)) {
5262+ _core_if->srp_success = 1;
5263+ }
5264+ else {
5265+ pcd_resume( _core_if );
5266+ /* Clear Session Request */
5267+ gotgctl.d32 = 0;
5268+ gotgctl.b.sesreq = 1;
5269+ dwc_modify_reg32( &global_regs->gotgctl,
5270+ gotgctl.d32, 0);
5271+ }
5272+ }
5273+ }
5274+ if (gotgint.b.hstnegsucstschng) {
5275+ /* Print statements during the HNP interrupt handling
5276+ * can cause it to fail.*/
5277+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
5278+ if (gotgctl.b.hstnegscs) {
5279+ if (dwc_otg_is_host_mode(_core_if) ) {
5280+ _core_if->op_state = B_HOST;
5281+ /*
5282+ * Need to disable SOF interrupt immediately.
5283+ * When switching from device to host, the PCD
5284+ * interrupt handler won't handle the
5285+ * interrupt if host mode is already set. The
5286+ * HCD interrupt handler won't get called if
5287+ * the HCD state is HALT. This means that the
5288+ * interrupt does not get handled and Linux
5289+ * complains loudly.
5290+ */
5291+ gintmsk.d32 = 0;
5292+ gintmsk.b.sofintr = 1;
5293+ dwc_modify_reg32(&global_regs->gintmsk,
5294+ gintmsk.d32, 0);
5295+ pcd_stop(_core_if);
5296+ /*
5297+ * Initialize the Core for Host mode.
5298+ */
5299+ hcd_start( _core_if );
5300+ _core_if->op_state = B_HOST;
5301+ }
5302+ } else {
5303+ gotgctl.d32 = 0;
5304+ gotgctl.b.hnpreq = 1;
5305+ gotgctl.b.devhnpen = 1;
5306+ dwc_modify_reg32( &global_regs->gotgctl,
5307+ gotgctl.d32, 0);
5308+ DWC_DEBUGPL( DBG_ANY, "HNP Failed\n");
5309+ DWC_ERROR( "Device Not Connected/Responding\n" );
5310+ }
5311+ }
5312+ if (gotgint.b.hstnegdet) {
5313+ /* The disconnect interrupt is set at the same time as
5314+ * Host Negotiation Detected. During the mode
5315+ * switch all interrupts are cleared so the disconnect
5316+ * interrupt handler will not get executed.
5317+ */
5318+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
5319+ "Host Negotiation Detected++ (%s)\n",
5320+ (dwc_otg_is_host_mode(_core_if)?"Host":"Device"));
5321+ if (dwc_otg_is_device_mode(_core_if)){
5322+ DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n",_core_if->op_state);
5323+ hcd_disconnect( _core_if );
5324+ pcd_start( _core_if );
5325+ _core_if->op_state = A_PERIPHERAL;
5326+ } else {
5327+ /*
5328+ * Need to disable SOF interrupt immediately. When
5329+ * switching from device to host, the PCD interrupt
5330+ * handler won't handle the interrupt if host mode is
5331+ * already set. The HCD interrupt handler won't get
5332+ * called if the HCD state is HALT. This means that
5333+ * the interrupt does not get handled and Linux
5334+ * complains loudly.
5335+ */
5336+ gintmsk.d32 = 0;
5337+ gintmsk.b.sofintr = 1;
5338+ dwc_modify_reg32(&global_regs->gintmsk,
5339+ gintmsk.d32, 0);
5340+ pcd_stop( _core_if );
5341+ hcd_start( _core_if );
5342+ _core_if->op_state = A_HOST;
5343+ }
5344+ }
5345+ if (gotgint.b.adevtoutchng) {
5346+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
5347+ "A-Device Timeout Change++\n");
5348+ }
5349+ if (gotgint.b.debdone) {
5350+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
5351+ "Debounce Done++\n");
5352+ }
5353+
5354+ /* Clear GOTGINT */
5355+ dwc_write_reg32 (&_core_if->core_global_regs->gotgint, gotgint.d32);
5356+
5357+ return 1;
5358+}
5359+
5360+/**
5361+ * This function handles the Connector ID Status Change Interrupt. It
5362+ * reads the OTG Interrupt Register (GOTCTL) to determine whether this
5363+ * is a Device to Host Mode transition or a Host Mode to Device
5364+ * Transition.
5365+ *
5366+ * This only occurs when the cable is connected/removed from the PHY
5367+ * connector.
5368+ *
5369+ * @param _core_if Programming view of DWC_otg controller.
5370+ */
5371+int32_t dwc_otg_handle_conn_id_status_change_intr(dwc_otg_core_if_t *_core_if)
5372+{
5373+ uint32_t count = 0;
5374+
5375+ gintsts_data_t gintsts = { .d32 = 0 };
5376+ gintmsk_data_t gintmsk = { .d32 = 0 };
5377+ gotgctl_data_t gotgctl = { .d32 = 0 };
5378+
5379+ /*
5380+ * Need to disable SOF interrupt immediately. If switching from device
5381+ * to host, the PCD interrupt handler won't handle the interrupt if
5382+ * host mode is already set. The HCD interrupt handler won't get
5383+ * called if the HCD state is HALT. This means that the interrupt does
5384+ * not get handled and Linux complains loudly.
5385+ */
5386+ gintmsk.b.sofintr = 1;
5387+ dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
5388+
5389+ DWC_DEBUGPL(DBG_CIL, " ++Connector ID Status Change Interrupt++ (%s)\n",
5390+ (dwc_otg_is_host_mode(_core_if)?"Host":"Device"));
5391+ gotgctl.d32 = dwc_read_reg32(&_core_if->core_global_regs->gotgctl);
5392+ DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32);
5393+ DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts);
5394+
5395+ /* B-Device connector (Device Mode) */
5396+ if (gotgctl.b.conidsts) {
5397+ /* Wait for switch to device mode. */
5398+ while (!dwc_otg_is_device_mode(_core_if) ){
5399+ DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n",
5400+ (dwc_otg_is_host_mode(_core_if)?"Host":"Peripheral"));
5401+ MDELAY(100);
5402+ if (++count > 10000) *(uint32_t*)NULL=0;
5403+ }
5404+ _core_if->op_state = B_PERIPHERAL;
5405+ dwc_otg_core_init(_core_if);
5406+ dwc_otg_enable_global_interrupts(_core_if);
5407+ pcd_start( _core_if );
5408+ } else {
5409+ /* A-Device connector (Host Mode) */
5410+ while (!dwc_otg_is_host_mode(_core_if) ) {
5411+ DWC_PRINT("Waiting for Host Mode, Mode=%s\n",
5412+ (dwc_otg_is_host_mode(_core_if)?"Host":"Peripheral"));
5413+ MDELAY(100);
5414+ if (++count > 10000) *(uint32_t*)NULL=0;
5415+ }
5416+ _core_if->op_state = A_HOST;
5417+ /*
5418+ * Initialize the Core for Host mode.
5419+ */
5420+ dwc_otg_core_init(_core_if);
5421+ dwc_otg_enable_global_interrupts(_core_if);
5422+ hcd_start( _core_if );
5423+ }
5424+
5425+ /* Set flag and clear interrupt */
5426+ gintsts.b.conidstschng = 1;
5427+ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32);
5428+
5429+ return 1;
5430+}
5431+
5432+/**
5433+ * This interrupt indicates that a device is initiating the Session
5434+ * Request Protocol to request the host to turn on bus power so a new
5435+ * session can begin. The handler responds by turning on bus power. If
5436+ * the DWC_otg controller is in low power mode, the handler brings the
5437+ * controller out of low power mode before turning on bus power.
5438+ *
5439+ * @param _core_if Programming view of DWC_otg controller.
5440+ */
5441+int32_t dwc_otg_handle_session_req_intr( dwc_otg_core_if_t *_core_if )
5442+{
5443+#ifndef DWC_HOST_ONLY // winder
5444+ hprt0_data_t hprt0;
5445+#endif
5446+ gintsts_data_t gintsts;
5447+
5448+#ifndef DWC_HOST_ONLY
5449+ DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n");
5450+
5451+ if (dwc_otg_is_device_mode(_core_if) ) {
5452+ DWC_PRINT("SRP: Device mode\n");
5453+ } else {
5454+ DWC_PRINT("SRP: Host mode\n");
5455+
5456+ /* Turn on the port power bit. */
5457+ hprt0.d32 = dwc_otg_read_hprt0( _core_if );
5458+ hprt0.b.prtpwr = 1;
5459+ dwc_write_reg32(_core_if->host_if->hprt0, hprt0.d32);
5460+
5461+ /* Start the Connection timer. So a message can be displayed
5462+ * if connect does not occur within 10 seconds. */
5463+ hcd_session_start( _core_if );
5464+ }
5465+#endif
5466+
5467+ /* Clear interrupt */
5468+ gintsts.d32 = 0;
5469+ gintsts.b.sessreqintr = 1;
5470+ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32);
5471+
5472+ return 1;
5473+}
5474+
5475+/**
5476+ * This interrupt indicates that the DWC_otg controller has detected a
5477+ * resume or remote wakeup sequence. If the DWC_otg controller is in
5478+ * low power mode, the handler must brings the controller out of low
5479+ * power mode. The controller automatically begins resume
5480+ * signaling. The handler schedules a time to stop resume signaling.
5481+ */
5482+int32_t dwc_otg_handle_wakeup_detected_intr( dwc_otg_core_if_t *_core_if )
5483+{
5484+ gintsts_data_t gintsts;
5485+
5486+ DWC_DEBUGPL(DBG_ANY, "++Resume and Remote Wakeup Detected Interrupt++\n");
5487+
5488+ if (dwc_otg_is_device_mode(_core_if) ) {
5489+ dctl_data_t dctl = {.d32=0};
5490+ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n",
5491+ dwc_read_reg32( &_core_if->dev_if->dev_global_regs->dsts));
5492+#ifdef PARTIAL_POWER_DOWN
5493+ if (_core_if->hwcfg4.b.power_optimiz) {
5494+ pcgcctl_data_t power = {.d32=0};
5495+
5496+ power.d32 = dwc_read_reg32( _core_if->pcgcctl );
5497+ DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32);
5498+
5499+ power.b.stoppclk = 0;
5500+ dwc_write_reg32( _core_if->pcgcctl, power.d32);
5501+
5502+ power.b.pwrclmp = 0;
5503+ dwc_write_reg32( _core_if->pcgcctl, power.d32);
5504+
5505+ power.b.rstpdwnmodule = 0;
5506+ dwc_write_reg32( _core_if->pcgcctl, power.d32);
5507+ }
5508+#endif
5509+ /* Clear the Remote Wakeup Signalling */
5510+ dctl.b.rmtwkupsig = 1;
5511+ dwc_modify_reg32( &_core_if->dev_if->dev_global_regs->dctl,
5512+ dctl.d32, 0 );
5513+
5514+ if (_core_if->pcd_cb && _core_if->pcd_cb->resume_wakeup) {
5515+ _core_if->pcd_cb->resume_wakeup( _core_if->pcd_cb->p );
5516+ }
5517+
5518+ } else {
5519+ /*
5520+ * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
5521+ * so that OPT tests pass with all PHYs).
5522+ */
5523+ hprt0_data_t hprt0 = {.d32=0};
5524+ pcgcctl_data_t pcgcctl = {.d32=0};
5525+ /* Restart the Phy Clock */
5526+ pcgcctl.b.stoppclk = 1;
5527+ dwc_modify_reg32(_core_if->pcgcctl, pcgcctl.d32, 0);
5528+ UDELAY(10);
5529+
5530+ /* Now wait for 70 ms. */
5531+ hprt0.d32 = dwc_otg_read_hprt0( _core_if );
5532+ DWC_DEBUGPL(DBG_ANY,"Resume: HPRT0=%0x\n", hprt0.d32);
5533+ MDELAY(70);
5534+ hprt0.b.prtres = 0; /* Resume */
5535+ dwc_write_reg32(_core_if->host_if->hprt0, hprt0.d32);
5536+ DWC_DEBUGPL(DBG_ANY,"Clear Resume: HPRT0=%0x\n", dwc_read_reg32(_core_if->host_if->hprt0));
5537+ }
5538+
5539+ /* Clear interrupt */
5540+ gintsts.d32 = 0;
5541+ gintsts.b.wkupintr = 1;
5542+ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32);
5543+
5544+ return 1;
5545+}
5546+
5547+/**
5548+ * This interrupt indicates that a device has been disconnected from
5549+ * the root port.
5550+ */
5551+int32_t dwc_otg_handle_disconnect_intr( dwc_otg_core_if_t *_core_if)
5552+{
5553+ gintsts_data_t gintsts;
5554+
5555+ DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n",
5556+ (dwc_otg_is_host_mode(_core_if)?"Host":"Device"),
5557+ op_state_str(_core_if));
5558+
5559+/** @todo Consolidate this if statement. */
5560+#ifndef DWC_HOST_ONLY
5561+ if (_core_if->op_state == B_HOST) {
5562+ /* If in device mode Disconnect and stop the HCD, then
5563+ * start the PCD. */
5564+ hcd_disconnect( _core_if );
5565+ pcd_start( _core_if );
5566+ _core_if->op_state = B_PERIPHERAL;
5567+ } else if (dwc_otg_is_device_mode(_core_if)) {
5568+ gotgctl_data_t gotgctl = { .d32 = 0 };
5569+ gotgctl.d32 = dwc_read_reg32(&_core_if->core_global_regs->gotgctl);
5570+ if (gotgctl.b.hstsethnpen==1) {
5571+ /* Do nothing, if HNP in process the OTG
5572+ * interrupt "Host Negotiation Detected"
5573+ * interrupt will do the mode switch.
5574+ */
5575+ } else if (gotgctl.b.devhnpen == 0) {
5576+ /* If in device mode Disconnect and stop the HCD, then
5577+ * start the PCD. */
5578+ hcd_disconnect( _core_if );
5579+ pcd_start( _core_if );
5580+ _core_if->op_state = B_PERIPHERAL;
5581+ } else {
5582+ DWC_DEBUGPL(DBG_ANY,"!a_peripheral && !devhnpen\n");
5583+ }
5584+ } else {
5585+ if (_core_if->op_state == A_HOST) {
5586+ /* A-Cable still connected but device disconnected. */
5587+ hcd_disconnect( _core_if );
5588+ }
5589+ }
5590+#endif
5591+/* Without OTG, we should use the disconnect function!? winder added.*/
5592+#if 1 // NO OTG, so host only!!
5593+ hcd_disconnect( _core_if );
5594+#endif
5595+
5596+ gintsts.d32 = 0;
5597+ gintsts.b.disconnect = 1;
5598+ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32);
5599+ return 1;
5600+}
5601+/**
5602+ * This interrupt indicates that SUSPEND state has been detected on
5603+ * the USB.
5604+ *
5605+ * For HNP the USB Suspend interrupt signals the change from
5606+ * "a_peripheral" to "a_host".
5607+ *
5608+ * When power management is enabled the core will be put in low power
5609+ * mode.
5610+ */
5611+int32_t dwc_otg_handle_usb_suspend_intr(dwc_otg_core_if_t *_core_if )
5612+{
5613+ dsts_data_t dsts;
5614+ gintsts_data_t gintsts;
5615+
5616+ //805141:<IFTW-fchang>.removed DWC_DEBUGPL(DBG_ANY,"USB SUSPEND\n");
5617+
5618+ if (dwc_otg_is_device_mode( _core_if ) ) {
5619+ /* Check the Device status register to determine if the Suspend
5620+ * state is active. */
5621+ dsts.d32 = dwc_read_reg32( &_core_if->dev_if->dev_global_regs->dsts);
5622+ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32);
5623+ DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d "
5624+ "HWCFG4.power Optimize=%d\n",
5625+ dsts.b.suspsts, _core_if->hwcfg4.b.power_optimiz);
5626+
5627+
5628+#ifdef PARTIAL_POWER_DOWN
5629+/** @todo Add a module parameter for power management. */
5630+
5631+ if (dsts.b.suspsts && _core_if->hwcfg4.b.power_optimiz) {
5632+ pcgcctl_data_t power = {.d32=0};
5633+ DWC_DEBUGPL(DBG_CIL, "suspend\n");
5634+
5635+ power.b.pwrclmp = 1;
5636+ dwc_write_reg32( _core_if->pcgcctl, power.d32);
5637+
5638+ power.b.rstpdwnmodule = 1;
5639+ dwc_modify_reg32( _core_if->pcgcctl, 0, power.d32);
5640+
5641+ power.b.stoppclk = 1;
5642+ dwc_modify_reg32( _core_if->pcgcctl, 0, power.d32);
5643+
5644+ } else {
5645+ DWC_DEBUGPL(DBG_ANY,"disconnect?\n");
5646+ }
5647+#endif
5648+ /* PCD callback for suspend. */
5649+ pcd_suspend(_core_if);
5650+ } else {
5651+ if (_core_if->op_state == A_PERIPHERAL) {
5652+ DWC_DEBUGPL(DBG_ANY,"a_peripheral->a_host\n");
5653+ /* Clear the a_peripheral flag, back to a_host. */
5654+ pcd_stop( _core_if );
5655+ hcd_start( _core_if );
5656+ _core_if->op_state = A_HOST;
5657+ }
5658+ }
5659+
5660+ /* Clear interrupt */
5661+ gintsts.d32 = 0;
5662+ gintsts.b.usbsuspend = 1;
5663+ dwc_write_reg32( &_core_if->core_global_regs->gintsts, gintsts.d32);
5664+
5665+ return 1;
5666+}
5667+
5668+
5669+/**
5670+ * This function returns the Core Interrupt register.
5671+ */
5672+static inline uint32_t dwc_otg_read_common_intr(dwc_otg_core_if_t *_core_if)
5673+{
5674+ gintsts_data_t gintsts;
5675+ gintmsk_data_t gintmsk;
5676+ gintmsk_data_t gintmsk_common = {.d32=0};
5677+ gintmsk_common.b.wkupintr = 1;
5678+ gintmsk_common.b.sessreqintr = 1;
5679+ gintmsk_common.b.conidstschng = 1;
5680+ gintmsk_common.b.otgintr = 1;
5681+ gintmsk_common.b.modemismatch = 1;
5682+ gintmsk_common.b.disconnect = 1;
5683+ gintmsk_common.b.usbsuspend = 1;
5684+ /** @todo: The port interrupt occurs while in device
5685+ * mode. Added code to CIL to clear the interrupt for now!
5686+ */
5687+ gintmsk_common.b.portintr = 1;
5688+
5689+ gintsts.d32 = dwc_read_reg32(&_core_if->core_global_regs->gintsts);
5690+ gintmsk.d32 = dwc_read_reg32(&_core_if->core_global_regs->gintmsk);
5691+#ifdef DEBUG
5692+ /* if any common interrupts set */
5693+ if (gintsts.d32 & gintmsk_common.d32) {
5694+ DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n",
5695+ gintsts.d32, gintmsk.d32);
5696+ }
5697+#endif
5698+
5699+ return ((gintsts.d32 & gintmsk.d32 ) & gintmsk_common.d32);
5700+
5701+}
5702+
5703+/**
5704+ * Common interrupt handler.
5705+ *
5706+ * The common interrupts are those that occur in both Host and Device mode.
5707+ * This handler handles the following interrupts:
5708+ * - Mode Mismatch Interrupt
5709+ * - Disconnect Interrupt
5710+ * - OTG Interrupt
5711+ * - Connector ID Status Change Interrupt
5712+ * - Session Request Interrupt.
5713+ * - Resume / Remote Wakeup Detected Interrupt.
5714+ *
5715+ */
5716+extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if )
5717+{
5718+ int retval = 0;
5719+ gintsts_data_t gintsts;
5720+
5721+ gintsts.d32 = dwc_otg_read_common_intr(_core_if);
5722+
5723+ if (gintsts.b.modemismatch) {
5724+ retval |= dwc_otg_handle_mode_mismatch_intr( _core_if );
5725+ }
5726+ if (gintsts.b.otgintr) {
5727+ retval |= dwc_otg_handle_otg_intr( _core_if );
5728+ }
5729+ if (gintsts.b.conidstschng) {
5730+ retval |= dwc_otg_handle_conn_id_status_change_intr( _core_if );
5731+ }
5732+ if (gintsts.b.disconnect) {
5733+ retval |= dwc_otg_handle_disconnect_intr( _core_if );
5734+ }
5735+ if (gintsts.b.sessreqintr) {
5736+ retval |= dwc_otg_handle_session_req_intr( _core_if );
5737+ }
5738+ if (gintsts.b.wkupintr) {
5739+ retval |= dwc_otg_handle_wakeup_detected_intr( _core_if );
5740+ }
5741+ if (gintsts.b.usbsuspend) {
5742+ retval |= dwc_otg_handle_usb_suspend_intr( _core_if );
5743+ }
5744+ if (gintsts.b.portintr && dwc_otg_is_device_mode(_core_if)) {
5745+ /* The port interrupt occurs while in device mode with HPRT0
5746+ * Port Enable/Disable.
5747+ */
5748+ gintsts.d32 = 0;
5749+ gintsts.b.portintr = 1;
5750+ dwc_write_reg32(&_core_if->core_global_regs->gintsts,
5751+ gintsts.d32);
5752+ retval |= 1;
5753+
5754+ }
5755+ return retval;
5756+}
5757--- /dev/null
5758+++ b/drivers/usb/dwc_otg/dwc_otg_driver.c
5759@@ -0,0 +1,1274 @@
5760+/* ==========================================================================
5761+ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_driver.c $
5762+ * $Revision: 1.1.1.1 $
5763+ * $Date: 2009-04-17 06:15:34 $
5764+ * $Change: 631780 $
5765+ *
5766+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
5767+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
5768+ * otherwise expressly agreed to in writing between Synopsys and you.
5769+ *
5770+ * The Software IS NOT an item of Licensed Software or Licensed Product under
5771+ * any End User Software License Agreement or Agreement for Licensed Product
5772+ * with Synopsys or any supplement thereto. You are permitted to use and
5773+ * redistribute this Software in source and binary forms, with or without
5774+ * modification, provided that redistributions of source code must retain this
5775+ * notice. You may not view, use, disclose, copy or distribute this file or
5776+ * any information contained herein except pursuant to this license grant from
5777+ * Synopsys. If you do not agree with this notice, including the disclaimer
5778+ * below, then you are not authorized to use the Software.
5779+ *
5780+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
5781+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
5782+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
5783+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
5784+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
5785+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
5786+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
5787+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
5788+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
5789+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
5790+ * DAMAGE.
5791+ * ========================================================================== */
5792+
5793+/** @file
5794+ * The dwc_otg_driver module provides the initialization and cleanup entry
5795+ * points for the DWC_otg driver. This module will be dynamically installed
5796+ * after Linux is booted using the insmod command. When the module is
5797+ * installed, the dwc_otg_init function is called. When the module is
5798+ * removed (using rmmod), the dwc_otg_cleanup function is called.
5799+ *
5800+ * This module also defines a data structure for the dwc_otg_driver, which is
5801+ * used in conjunction with the standard ARM lm_device structure. These
5802+ * structures allow the OTG driver to comply with the standard Linux driver
5803+ * model in which devices and drivers are registered with a bus driver. This
5804+ * has the benefit that Linux can expose attributes of the driver and device
5805+ * in its special sysfs file system. Users can then read or write files in
5806+ * this file system to perform diagnostics on the driver components or the
5807+ * device.
5808+ */
5809+
5810+#include <linux/kernel.h>
5811+#include <linux/module.h>
5812+#include <linux/moduleparam.h>
5813+#include <linux/init.h>
5814+#include <linux/gpio.h>
5815+
5816+#include <linux/device.h>
5817+#include <linux/platform_device.h>
5818+
5819+#include <linux/errno.h>
5820+#include <linux/types.h>
5821+#include <linux/stat.h> /* permission constants */
5822+#include <linux/irq.h>
5823+#include <asm/io.h>
5824+
5825+#include "dwc_otg_plat.h"
5826+#include "dwc_otg_attr.h"
5827+#include "dwc_otg_driver.h"
5828+#include "dwc_otg_cil.h"
5829+#include "dwc_otg_cil_ifx.h"
5830+
5831+// #include "dwc_otg_pcd.h" // device
5832+#include "dwc_otg_hcd.h" // host
5833+
5834+#include "dwc_otg_ifx.h" // for Infineon platform specific.
5835+
5836+#define DWC_DRIVER_VERSION "2.60a 22-NOV-2006"
5837+#define DWC_DRIVER_DESC "HS OTG USB Controller driver"
5838+
5839+const char dwc_driver_name[] = "dwc_otg";
5840+
5841+static unsigned long dwc_iomem_base = IFX_USB_IOMEM_BASE;
5842+int dwc_irq = LTQ_USB_INT;
5843+//int dwc_irq = 54;
5844+//int dwc_irq = IFXMIPS_USB_OC_INT;
5845+
5846+extern int ifx_usb_hc_init(unsigned long base_addr, int irq);
5847+extern void ifx_usb_hc_remove(void);
5848+
5849+/*-------------------------------------------------------------------------*/
5850+/* Encapsulate the module parameter settings */
5851+
5852+static dwc_otg_core_params_t dwc_otg_module_params = {
5853+ .opt = -1,
5854+ .otg_cap = -1,
5855+ .dma_enable = -1,
5856+ .dma_burst_size = -1,
5857+ .speed = -1,
5858+ .host_support_fs_ls_low_power = -1,
5859+ .host_ls_low_power_phy_clk = -1,
5860+ .enable_dynamic_fifo = -1,
5861+ .data_fifo_size = -1,
5862+ .dev_rx_fifo_size = -1,
5863+ .dev_nperio_tx_fifo_size = -1,
5864+ .dev_perio_tx_fifo_size = /* dev_perio_tx_fifo_size_1 */ {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, /* 15 */
5865+ .host_rx_fifo_size = -1,
5866+ .host_nperio_tx_fifo_size = -1,
5867+ .host_perio_tx_fifo_size = -1,
5868+ .max_transfer_size = -1,
5869+ .max_packet_count = -1,
5870+ .host_channels = -1,
5871+ .dev_endpoints = -1,
5872+ .phy_type = -1,
5873+ .phy_utmi_width = -1,
5874+ .phy_ulpi_ddr = -1,
5875+ .phy_ulpi_ext_vbus = -1,
5876+ .i2c_enable = -1,
5877+ .ulpi_fs_ls = -1,
5878+ .ts_dline = -1,
5879+ .en_multiple_tx_fifo = -1,
5880+ .dev_tx_fifo_size = { /* dev_tx_fifo_size */
5881+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
5882+ }, /* 15 */
5883+ .thr_ctl = -1,
5884+ .tx_thr_length = -1,
5885+ .rx_thr_length = -1,
5886+};
5887+
5888+/**
5889+ * This function shows the Driver Version.
5890+ */
5891+static ssize_t version_show(struct device_driver *dev, char *buf)
5892+{
5893+ return snprintf(buf, sizeof(DWC_DRIVER_VERSION)+2,"%s\n",
5894+ DWC_DRIVER_VERSION);
5895+}
5896+static DRIVER_ATTR(version, S_IRUGO, version_show, NULL);
5897+
5898+/**
5899+ * Global Debug Level Mask.
5900+ */
5901+uint32_t g_dbg_lvl = 0xff; /* OFF */
5902+
5903+/**
5904+ * This function shows the driver Debug Level.
5905+ */
5906+static ssize_t dbg_level_show(struct device_driver *_drv, char *_buf)
5907+{
5908+ return sprintf(_buf, "0x%0x\n", g_dbg_lvl);
5909+}
5910+/**
5911+ * This function stores the driver Debug Level.
5912+ */
5913+static ssize_t dbg_level_store(struct device_driver *_drv, const char *_buf,
5914+ size_t _count)
5915+{
5916+ g_dbg_lvl = simple_strtoul(_buf, NULL, 16);
5917+ return _count;
5918+}
5919+static DRIVER_ATTR(debuglevel, S_IRUGO|S_IWUSR, dbg_level_show, dbg_level_store);
5920+
5921+/**
5922+ * This function is called during module intialization to verify that
5923+ * the module parameters are in a valid state.
5924+ */
5925+static int check_parameters(dwc_otg_core_if_t *core_if)
5926+{
5927+ int i;
5928+ int retval = 0;
5929+
5930+/* Checks if the parameter is outside of its valid range of values */
5931+#define DWC_OTG_PARAM_TEST(_param_,_low_,_high_) \
5932+ ((dwc_otg_module_params._param_ < (_low_)) || \
5933+ (dwc_otg_module_params._param_ > (_high_)))
5934+
5935+/* If the parameter has been set by the user, check that the parameter value is
5936+ * within the value range of values. If not, report a module error. */
5937+#define DWC_OTG_PARAM_ERR(_param_,_low_,_high_,_string_) \
5938+ do { \
5939+ if (dwc_otg_module_params._param_ != -1) { \
5940+ if (DWC_OTG_PARAM_TEST(_param_,(_low_),(_high_))) { \
5941+ DWC_ERROR("`%d' invalid for parameter `%s'\n", \
5942+ dwc_otg_module_params._param_, _string_); \
5943+ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
5944+ retval ++; \
5945+ } \
5946+ } \
5947+ } while (0)
5948+
5949+ DWC_OTG_PARAM_ERR(opt,0,1,"opt");
5950+ DWC_OTG_PARAM_ERR(otg_cap,0,2,"otg_cap");
5951+ DWC_OTG_PARAM_ERR(dma_enable,0,1,"dma_enable");
5952+ DWC_OTG_PARAM_ERR(speed,0,1,"speed");
5953+ DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power,0,1,"host_support_fs_ls_low_power");
5954+ DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk,0,1,"host_ls_low_power_phy_clk");
5955+ DWC_OTG_PARAM_ERR(enable_dynamic_fifo,0,1,"enable_dynamic_fifo");
5956+ DWC_OTG_PARAM_ERR(data_fifo_size,32,32768,"data_fifo_size");
5957+ DWC_OTG_PARAM_ERR(dev_rx_fifo_size,16,32768,"dev_rx_fifo_size");
5958+ DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size,16,32768,"dev_nperio_tx_fifo_size");
5959+ DWC_OTG_PARAM_ERR(host_rx_fifo_size,16,32768,"host_rx_fifo_size");
5960+ DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size,16,32768,"host_nperio_tx_fifo_size");
5961+ DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size,16,32768,"host_perio_tx_fifo_size");
5962+ DWC_OTG_PARAM_ERR(max_transfer_size,2047,524288,"max_transfer_size");
5963+ DWC_OTG_PARAM_ERR(max_packet_count,15,511,"max_packet_count");
5964+ DWC_OTG_PARAM_ERR(host_channels,1,16,"host_channels");
5965+ DWC_OTG_PARAM_ERR(dev_endpoints,1,15,"dev_endpoints");
5966+ DWC_OTG_PARAM_ERR(phy_type,0,2,"phy_type");
5967+ DWC_OTG_PARAM_ERR(phy_ulpi_ddr,0,1,"phy_ulpi_ddr");
5968+ DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus,0,1,"phy_ulpi_ext_vbus");
5969+ DWC_OTG_PARAM_ERR(i2c_enable,0,1,"i2c_enable");
5970+ DWC_OTG_PARAM_ERR(ulpi_fs_ls,0,1,"ulpi_fs_ls");
5971+ DWC_OTG_PARAM_ERR(ts_dline,0,1,"ts_dline");
5972+
5973+ if (dwc_otg_module_params.dma_burst_size != -1) {
5974+ if (DWC_OTG_PARAM_TEST(dma_burst_size,1,1) &&
5975+ DWC_OTG_PARAM_TEST(dma_burst_size,4,4) &&
5976+ DWC_OTG_PARAM_TEST(dma_burst_size,8,8) &&
5977+ DWC_OTG_PARAM_TEST(dma_burst_size,16,16) &&
5978+ DWC_OTG_PARAM_TEST(dma_burst_size,32,32) &&
5979+ DWC_OTG_PARAM_TEST(dma_burst_size,64,64) &&
5980+ DWC_OTG_PARAM_TEST(dma_burst_size,128,128) &&
5981+ DWC_OTG_PARAM_TEST(dma_burst_size,256,256))
5982+ {
5983+ DWC_ERROR("`%d' invalid for parameter `dma_burst_size'\n",
5984+ dwc_otg_module_params.dma_burst_size);
5985+ dwc_otg_module_params.dma_burst_size = 32;
5986+ retval ++;
5987+ }
5988+ }
5989+
5990+ if (dwc_otg_module_params.phy_utmi_width != -1) {
5991+ if (DWC_OTG_PARAM_TEST(phy_utmi_width,8,8) &&
5992+ DWC_OTG_PARAM_TEST(phy_utmi_width,16,16))
5993+ {
5994+ DWC_ERROR("`%d' invalid for parameter `phy_utmi_width'\n",
5995+ dwc_otg_module_params.phy_utmi_width);
5996+ //dwc_otg_module_params.phy_utmi_width = 16;
5997+ dwc_otg_module_params.phy_utmi_width = 8;
5998+ retval ++;
5999+ }
6000+ }
6001+
6002+ for (i=0; i<15; i++) {
6003+ /** @todo should be like above */
6004+ //DWC_OTG_PARAM_ERR(dev_perio_tx_fifo_size[i],4,768,"dev_perio_tx_fifo_size");
6005+ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != -1) {
6006+ if (DWC_OTG_PARAM_TEST(dev_perio_tx_fifo_size[i],4,768)) {
6007+ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
6008+ dwc_otg_module_params.dev_perio_tx_fifo_size[i], "dev_perio_tx_fifo_size", i);
6009+ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
6010+ retval ++;
6011+ }
6012+ }
6013+ }
6014+
6015+ DWC_OTG_PARAM_ERR(en_multiple_tx_fifo, 0, 1, "en_multiple_tx_fifo");
6016+ for (i = 0; i < 15; i++) {
6017+ /** @todo should be like above */
6018+ //DWC_OTG_PARAM_ERR(dev_tx_fifo_size[i],4,768,"dev_tx_fifo_size");
6019+ if (dwc_otg_module_params.dev_tx_fifo_size[i] != -1) {
6020+ if (DWC_OTG_PARAM_TEST(dev_tx_fifo_size[i], 4, 768)) {
6021+ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
6022+ dwc_otg_module_params.dev_tx_fifo_size[i],
6023+ "dev_tx_fifo_size", i);
6024+ dwc_otg_module_params.dev_tx_fifo_size[i] =
6025+ dwc_param_dev_tx_fifo_size_default;
6026+ retval++;
6027+ }
6028+ }
6029+ }
6030+ DWC_OTG_PARAM_ERR(thr_ctl, 0, 7, "thr_ctl");
6031+ DWC_OTG_PARAM_ERR(tx_thr_length, 8, 128, "tx_thr_length");
6032+ DWC_OTG_PARAM_ERR(rx_thr_length, 8, 128, "rx_thr_length");
6033+
6034+ /* At this point, all module parameters that have been set by the user
6035+ * are valid, and those that have not are left unset. Now set their
6036+ * default values and/or check the parameters against the hardware
6037+ * configurations of the OTG core. */
6038+
6039+
6040+
6041+/* This sets the parameter to the default value if it has not been set by the
6042+ * user */
6043+#define DWC_OTG_PARAM_SET_DEFAULT(_param_) \
6044+ ({ \
6045+ int changed = 1; \
6046+ if (dwc_otg_module_params._param_ == -1) { \
6047+ changed = 0; \
6048+ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
6049+ } \
6050+ changed; \
6051+ })
6052+
6053+/* This checks the macro agains the hardware configuration to see if it is
6054+ * valid. It is possible that the default value could be invalid. In this
6055+ * case, it will report a module error if the user touched the parameter.
6056+ * Otherwise it will adjust the value without any error. */
6057+#define DWC_OTG_PARAM_CHECK_VALID(_param_,_str_,_is_valid_,_set_valid_) \
6058+ ({ \
6059+ int changed = DWC_OTG_PARAM_SET_DEFAULT(_param_); \
6060+ int error = 0; \
6061+ if (!(_is_valid_)) { \
6062+ if (changed) { \
6063+ DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_,_str_); \
6064+ error = 1; \
6065+ } \
6066+ dwc_otg_module_params._param_ = (_set_valid_); \
6067+ } \
6068+ error; \
6069+ })
6070+
6071+ /* OTG Cap */
6072+ retval += DWC_OTG_PARAM_CHECK_VALID(otg_cap,"otg_cap",
6073+ ({
6074+ int valid;
6075+ valid = 1;
6076+ switch (dwc_otg_module_params.otg_cap) {
6077+ case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE:
6078+ if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) valid = 0;
6079+ break;
6080+ case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE:
6081+ if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) &&
6082+ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) &&
6083+ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) &&
6084+ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST))
6085+ {
6086+ valid = 0;
6087+ }
6088+ break;
6089+ case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE:
6090+ /* always valid */
6091+ break;
6092+ }
6093+ valid;
6094+ }),
6095+ (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) ||
6096+ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) ||
6097+ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
6098+ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ?
6099+ DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE :
6100+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE));
6101+
6102+ retval += DWC_OTG_PARAM_CHECK_VALID(dma_enable,"dma_enable",
6103+ ((dwc_otg_module_params.dma_enable == 1) && (core_if->hwcfg2.b.architecture == 0)) ? 0 : 1,
6104+ 0);
6105+
6106+ retval += DWC_OTG_PARAM_CHECK_VALID(opt,"opt",
6107+ 1,
6108+ 0);
6109+
6110+ DWC_OTG_PARAM_SET_DEFAULT(dma_burst_size);
6111+
6112+ retval += DWC_OTG_PARAM_CHECK_VALID(host_support_fs_ls_low_power,
6113+ "host_support_fs_ls_low_power",
6114+ 1, 0);
6115+
6116+ retval += DWC_OTG_PARAM_CHECK_VALID(enable_dynamic_fifo,
6117+ "enable_dynamic_fifo",
6118+ ((dwc_otg_module_params.enable_dynamic_fifo == 0) ||
6119+ (core_if->hwcfg2.b.dynamic_fifo == 1)), 0);
6120+
6121+
6122+ retval += DWC_OTG_PARAM_CHECK_VALID(data_fifo_size,
6123+ "data_fifo_size",
6124+ (dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth),
6125+ core_if->hwcfg3.b.dfifo_depth);
6126+
6127+ retval += DWC_OTG_PARAM_CHECK_VALID(dev_rx_fifo_size,
6128+ "dev_rx_fifo_size",
6129+ (dwc_otg_module_params.dev_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
6130+ dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
6131+
6132+ retval += DWC_OTG_PARAM_CHECK_VALID(dev_nperio_tx_fifo_size,
6133+ "dev_nperio_tx_fifo_size",
6134+ (dwc_otg_module_params.dev_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
6135+ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
6136+
6137+ retval += DWC_OTG_PARAM_CHECK_VALID(host_rx_fifo_size,
6138+ "host_rx_fifo_size",
6139+ (dwc_otg_module_params.host_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
6140+ dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
6141+
6142+
6143+ retval += DWC_OTG_PARAM_CHECK_VALID(host_nperio_tx_fifo_size,
6144+ "host_nperio_tx_fifo_size",
6145+ (dwc_otg_module_params.host_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
6146+ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
6147+
6148+ retval += DWC_OTG_PARAM_CHECK_VALID(host_perio_tx_fifo_size,
6149+ "host_perio_tx_fifo_size",
6150+ (dwc_otg_module_params.host_perio_tx_fifo_size <= ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))),
6151+ ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16)));
6152+
6153+ retval += DWC_OTG_PARAM_CHECK_VALID(max_transfer_size,
6154+ "max_transfer_size",
6155+ (dwc_otg_module_params.max_transfer_size < (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))),
6156+ ((1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1));
6157+
6158+ retval += DWC_OTG_PARAM_CHECK_VALID(max_packet_count,
6159+ "max_packet_count",
6160+ (dwc_otg_module_params.max_packet_count < (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))),
6161+ ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1));
6162+
6163+ retval += DWC_OTG_PARAM_CHECK_VALID(host_channels,
6164+ "host_channels",
6165+ (dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1)),
6166+ (core_if->hwcfg2.b.num_host_chan + 1));
6167+
6168+ retval += DWC_OTG_PARAM_CHECK_VALID(dev_endpoints,
6169+ "dev_endpoints",
6170+ (dwc_otg_module_params.dev_endpoints <= (core_if->hwcfg2.b.num_dev_ep)),
6171+ core_if->hwcfg2.b.num_dev_ep);
6172+
6173+/*
6174+ * Define the following to disable the FS PHY Hardware checking. This is for
6175+ * internal testing only.
6176+ *
6177+ * #define NO_FS_PHY_HW_CHECKS
6178+ */
6179+
6180+#ifdef NO_FS_PHY_HW_CHECKS
6181+ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
6182+ "phy_type", 1, 0);
6183+#else
6184+ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
6185+ "phy_type",
6186+ ({
6187+ int valid = 0;
6188+ if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) &&
6189+ ((core_if->hwcfg2.b.hs_phy_type == 1) ||
6190+ (core_if->hwcfg2.b.hs_phy_type == 3)))
6191+ {
6192+ valid = 1;
6193+ }
6194+ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) &&
6195+ ((core_if->hwcfg2.b.hs_phy_type == 2) ||
6196+ (core_if->hwcfg2.b.hs_phy_type == 3)))
6197+ {
6198+ valid = 1;
6199+ }
6200+ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) &&
6201+ (core_if->hwcfg2.b.fs_phy_type == 1))
6202+ {
6203+ valid = 1;
6204+ }
6205+ valid;
6206+ }),
6207+ ({
6208+ int set = DWC_PHY_TYPE_PARAM_FS;
6209+ if (core_if->hwcfg2.b.hs_phy_type) {
6210+ if ((core_if->hwcfg2.b.hs_phy_type == 3) ||
6211+ (core_if->hwcfg2.b.hs_phy_type == 1)) {
6212+ set = DWC_PHY_TYPE_PARAM_UTMI;
6213+ }
6214+ else {
6215+ set = DWC_PHY_TYPE_PARAM_ULPI;
6216+ }
6217+ }
6218+ set;
6219+ }));
6220+#endif
6221+
6222+ retval += DWC_OTG_PARAM_CHECK_VALID(speed,"speed",
6223+ (dwc_otg_module_params.speed == 0) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
6224+ dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0);
6225+
6226+ retval += DWC_OTG_PARAM_CHECK_VALID(host_ls_low_power_phy_clk,
6227+ "host_ls_low_power_phy_clk",
6228+ ((dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1),
6229+ ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ));
6230+
6231+ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ddr);
6232+ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ext_vbus);
6233+ DWC_OTG_PARAM_SET_DEFAULT(phy_utmi_width);
6234+ DWC_OTG_PARAM_SET_DEFAULT(ulpi_fs_ls);
6235+ DWC_OTG_PARAM_SET_DEFAULT(ts_dline);
6236+
6237+#ifdef NO_FS_PHY_HW_CHECKS
6238+ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable,
6239+ "i2c_enable", 1, 0);
6240+#else
6241+ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable,
6242+ "i2c_enable",
6243+ (dwc_otg_module_params.i2c_enable == 1) && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1,
6244+ 0);
6245+#endif
6246+
6247+ for (i=0; i<16; i++) {
6248+
6249+ int changed = 1;
6250+ int error = 0;
6251+
6252+ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) {
6253+ changed = 0;
6254+ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
6255+ }
6256+ if (!(dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
6257+ if (changed) {
6258+ DWC_ERROR("`%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_perio_tx_fifo_size[i],i);
6259+ error = 1;
6260+ }
6261+ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
6262+ }
6263+ retval += error;
6264+ }
6265+
6266+ retval += DWC_OTG_PARAM_CHECK_VALID(en_multiple_tx_fifo,
6267+ "en_multiple_tx_fifo",
6268+ ((dwc_otg_module_params.en_multiple_tx_fifo == 1) &&
6269+ (core_if->hwcfg4.b.ded_fifo_en == 0)) ? 0 : 1, 0);
6270+
6271+ for (i = 0; i < 16; i++) {
6272+ int changed = 1;
6273+ int error = 0;
6274+ if (dwc_otg_module_params.dev_tx_fifo_size[i] == -1) {
6275+ changed = 0;
6276+ dwc_otg_module_params.dev_tx_fifo_size[i] =
6277+ dwc_param_dev_tx_fifo_size_default;
6278+ }
6279+ if (!(dwc_otg_module_params.dev_tx_fifo_size[i] <=
6280+ (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
6281+ if (changed) {
6282+ DWC_ERROR("%d' invalid for parameter `dev_perio_fifo_size_%d'."
6283+ "Check HW configuration.\n",dwc_otg_module_params.dev_tx_fifo_size[i],i);
6284+ error = 1;
6285+ }
6286+ dwc_otg_module_params.dev_tx_fifo_size[i] =
6287+ dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
6288+ }
6289+ retval += error;
6290+ }
6291+ DWC_OTG_PARAM_SET_DEFAULT(thr_ctl);
6292+ DWC_OTG_PARAM_SET_DEFAULT(tx_thr_length);
6293+ DWC_OTG_PARAM_SET_DEFAULT(rx_thr_length);
6294+ return retval;
6295+} // check_parameters
6296+
6297+
6298+/**
6299+ * This function is the top level interrupt handler for the Common
6300+ * (Device and host modes) interrupts.
6301+ */
6302+static irqreturn_t dwc_otg_common_irq(int _irq, void *_dev)
6303+{
6304+ dwc_otg_device_t *otg_dev = _dev;
6305+ int32_t retval = IRQ_NONE;
6306+
6307+ retval = dwc_otg_handle_common_intr( otg_dev->core_if );
6308+
6309+ mask_and_ack_ifx_irq (_irq);
6310+
6311+ return IRQ_RETVAL(retval);
6312+}
6313+
6314+
6315+/**
6316+ * This function is called when a DWC_OTG device is unregistered with the
6317+ * dwc_otg_driver. This happens, for example, when the rmmod command is
6318+ * executed. The device may or may not be electrically present. If it is
6319+ * present, the driver stops device processing. Any resources used on behalf
6320+ * of this device are freed.
6321+ *
6322+ * @return
6323+ */
6324+static int
6325+dwc_otg_driver_remove(struct platform_device *_dev)
6326+{
6327+ //dwc_otg_device_t *otg_dev = dev_get_drvdata(&_dev->dev);
6328+ dwc_otg_device_t *otg_dev = platform_get_drvdata(_dev);
6329+
6330+ DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, _dev);
6331+
6332+ if (otg_dev == NULL) {
6333+ /* Memory allocation for the dwc_otg_device failed. */
6334+ return 0;
6335+ }
6336+
6337+ /*
6338+ * Free the IRQ
6339+ */
6340+ if (otg_dev->common_irq_installed) {
6341+ free_irq( otg_dev->irq, otg_dev );
6342+ }
6343+
6344+#ifndef DWC_DEVICE_ONLY
6345+ if (otg_dev->hcd != NULL) {
6346+ dwc_otg_hcd_remove(&_dev->dev);
6347+ }
6348+#endif
6349+ printk("after removehcd\n");
6350+
6351+// Note: Integrate HOST and DEVICE(Gadget) is not planned yet.
6352+#ifndef DWC_HOST_ONLY
6353+ if (otg_dev->pcd != NULL) {
6354+ dwc_otg_pcd_remove(otg_dev);
6355+ }
6356+#endif
6357+ if (otg_dev->core_if != NULL) {
6358+ dwc_otg_cil_remove( otg_dev->core_if );
6359+ }
6360+ printk("after removecil\n");
6361+
6362+ /*
6363+ * Remove the device attributes
6364+ */
6365+ dwc_otg_attr_remove(&_dev->dev);
6366+ printk("after removeattr\n");
6367+
6368+ /*
6369+ * Return the memory.
6370+ */
6371+ if (otg_dev->base != NULL) {
6372+ iounmap(otg_dev->base);
6373+ }
6374+ if (otg_dev->phys_addr != 0) {
6375+ release_mem_region(otg_dev->phys_addr, otg_dev->base_len);
6376+ }
6377+ kfree(otg_dev);
6378+
6379+ /*
6380+ * Clear the drvdata pointer.
6381+ */
6382+ //dev_set_drvdata(&_dev->dev, 0);
6383+ platform_set_drvdata(_dev, 0);
6384+ return 0;
6385+}
6386+
6387+/**
6388+ * This function is called when an DWC_OTG device is bound to a
6389+ * dwc_otg_driver. It creates the driver components required to
6390+ * control the device (CIL, HCD, and PCD) and it initializes the
6391+ * device. The driver components are stored in a dwc_otg_device
6392+ * structure. A reference to the dwc_otg_device is saved in the
6393+ * lm_device. This allows the driver to access the dwc_otg_device
6394+ * structure on subsequent calls to driver methods for this device.
6395+ *
6396+ * @return
6397+ */
6398+static int __devinit
6399+dwc_otg_driver_probe(struct platform_device *_dev)
6400+{
6401+ int retval = 0;
6402+ dwc_otg_device_t *dwc_otg_device;
6403+ int pin = (int)_dev->dev.platform_data;
6404+ int32_t snpsid;
6405+ struct resource *res;
6406+ gusbcfg_data_t usbcfg = {.d32 = 0};
6407+
6408+ // GPIOs
6409+ if(pin >= 0)
6410+ {
6411+ gpio_request(pin, "usb_power");
6412+ gpio_direction_output(pin, 1);
6413+ gpio_set_value(pin, 1);
6414+ gpio_export(pin, 0);
6415+ }
6416+ dev_dbg(&_dev->dev, "dwc_otg_driver_probe (%p)\n", _dev);
6417+
6418+ dwc_otg_device = kmalloc(sizeof(dwc_otg_device_t), GFP_KERNEL);
6419+ if (dwc_otg_device == 0) {
6420+ dev_err(&_dev->dev, "kmalloc of dwc_otg_device failed\n");
6421+ retval = -ENOMEM;
6422+ goto fail;
6423+ }
6424+ memset(dwc_otg_device, 0, sizeof(*dwc_otg_device));
6425+ dwc_otg_device->reg_offset = 0xFFFFFFFF;
6426+
6427+ /*
6428+ * Retrieve the memory and IRQ resources.
6429+ */
6430+ dwc_otg_device->irq = platform_get_irq(_dev, 0);
6431+ if (dwc_otg_device->irq == 0) {
6432+ dev_err(&_dev->dev, "no device irq\n");
6433+ retval = -ENODEV;
6434+ goto fail;
6435+ }
6436+ dev_dbg(&_dev->dev, "OTG - device irq: %d\n", dwc_otg_device->irq);
6437+ res = platform_get_resource(_dev, IORESOURCE_MEM, 0);
6438+ if (res == NULL) {
6439+ dev_err(&_dev->dev, "no CSR address\n");
6440+ retval = -ENODEV;
6441+ goto fail;
6442+ }
6443+ dev_dbg(&_dev->dev, "OTG - ioresource_mem start0x%08x: end:0x%08x\n",
6444+ (unsigned)res->start, (unsigned)res->end);
6445+ dwc_otg_device->phys_addr = res->start;
6446+ dwc_otg_device->base_len = res->end - res->start + 1;
6447+ if (request_mem_region(dwc_otg_device->phys_addr, dwc_otg_device->base_len,
6448+ dwc_driver_name) == NULL) {
6449+ dev_err(&_dev->dev, "request_mem_region failed\n");
6450+ retval = -EBUSY;
6451+ goto fail;
6452+ }
6453+
6454+ /*
6455+ * Map the DWC_otg Core memory into virtual address space.
6456+ */
6457+ dwc_otg_device->base = ioremap_nocache(dwc_otg_device->phys_addr, dwc_otg_device->base_len);
6458+ if (dwc_otg_device->base == NULL) {
6459+ dev_err(&_dev->dev, "ioremap() failed\n");
6460+ retval = -ENOMEM;
6461+ goto fail;
6462+ }
6463+ dev_dbg(&_dev->dev, "mapped base=0x%08x\n", (unsigned)dwc_otg_device->base);
6464+
6465+ /*
6466+ * Attempt to ensure this device is really a DWC_otg Controller.
6467+ * Read and verify the SNPSID register contents. The value should be
6468+ * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX".
6469+ */
6470+ snpsid = dwc_read_reg32((uint32_t *)((uint8_t *)dwc_otg_device->base + 0x40));
6471+ if ((snpsid & 0xFFFFF000) != 0x4F542000) {
6472+ dev_err(&_dev->dev, "Bad value for SNPSID: 0x%08x\n", snpsid);
6473+ retval = -EINVAL;
6474+ goto fail;
6475+ }
6476+
6477+ /*
6478+ * Initialize driver data to point to the global DWC_otg
6479+ * Device structure.
6480+ */
6481+ platform_set_drvdata(_dev, dwc_otg_device);
6482+ dev_dbg(&_dev->dev, "dwc_otg_device=0x%p\n", dwc_otg_device);
6483+ dwc_otg_device->core_if = dwc_otg_cil_init( dwc_otg_device->base, &dwc_otg_module_params);
6484+ if (dwc_otg_device->core_if == 0) {
6485+ dev_err(&_dev->dev, "CIL initialization failed!\n");
6486+ retval = -ENOMEM;
6487+ goto fail;
6488+ }
6489+
6490+ /*
6491+ * Validate parameter values.
6492+ */
6493+ if (check_parameters(dwc_otg_device->core_if) != 0) {
6494+ retval = -EINVAL;
6495+ goto fail;
6496+ }
6497+
6498+ /* Added for PLB DMA phys virt mapping */
6499+ //dwc_otg_device->core_if->phys_addr = dwc_otg_device->phys_addr;
6500+ /*
6501+ * Create Device Attributes in sysfs
6502+ */
6503+ dwc_otg_attr_create (&_dev->dev);
6504+
6505+ /*
6506+ * Disable the global interrupt until all the interrupt
6507+ * handlers are installed.
6508+ */
6509+ dwc_otg_disable_global_interrupts( dwc_otg_device->core_if );
6510+ /*
6511+ * Install the interrupt handler for the common interrupts before
6512+ * enabling common interrupts in core_init below.
6513+ */
6514+ DWC_DEBUGPL( DBG_CIL, "registering (common) handler for irq%d\n", dwc_otg_device->irq);
6515+
6516+ retval = request_irq((unsigned int)dwc_otg_device->irq, dwc_otg_common_irq,
6517+ //SA_INTERRUPT|SA_SHIRQ, "dwc_otg", (void *)dwc_otg_device );
6518+ IRQF_SHARED, "dwc_otg", (void *)dwc_otg_device );
6519+ //IRQF_DISABLED, "dwc_otg", (void *)dwc_otg_device );
6520+ if (retval != 0) {
6521+ DWC_ERROR("request of irq%d failed retval: %d\n", dwc_otg_device->irq, retval);
6522+ retval = -EBUSY;
6523+ goto fail;
6524+ } else {
6525+ dwc_otg_device->common_irq_installed = 1;
6526+ }
6527+
6528+ /*
6529+ * Initialize the DWC_otg core.
6530+ */
6531+ dwc_otg_core_init( dwc_otg_device->core_if );
6532+
6533+
6534+#ifndef DWC_HOST_ONLY // otg device mode. (gadget.)
6535+ /*
6536+ * Initialize the PCD
6537+ */
6538+ retval = dwc_otg_pcd_init(dwc_otg_device);
6539+ if (retval != 0) {
6540+ DWC_ERROR("dwc_otg_pcd_init failed\n");
6541+ dwc_otg_device->pcd = NULL;
6542+ goto fail;
6543+ }
6544+#endif // DWC_HOST_ONLY
6545+
6546+#ifndef DWC_DEVICE_ONLY // otg host mode. (HCD)
6547+ /*
6548+ * Initialize the HCD
6549+ */
6550+#if 1 /*fscz*/
6551+ /* force_host_mode */
6552+ usbcfg.d32 = dwc_read_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg);
6553+ usbcfg.b.force_host_mode = 1;
6554+ dwc_write_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg, usbcfg.d32);
6555+#endif
6556+ retval = dwc_otg_hcd_init(&_dev->dev, dwc_otg_device);
6557+ if (retval != 0) {
6558+ DWC_ERROR("dwc_otg_hcd_init failed\n");
6559+ dwc_otg_device->hcd = NULL;
6560+ goto fail;
6561+ }
6562+#endif // DWC_DEVICE_ONLY
6563+
6564+ /*
6565+ * Enable the global interrupt after all the interrupt
6566+ * handlers are installed.
6567+ */
6568+ dwc_otg_enable_global_interrupts( dwc_otg_device->core_if );
6569+#if 0 /*fscz*/
6570+ usbcfg.d32 = dwc_read_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg);
6571+ usbcfg.b.force_host_mode = 0;
6572+ dwc_write_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg, usbcfg.d32);
6573+#endif
6574+
6575+
6576+ return 0;
6577+
6578+fail:
6579+ dwc_otg_driver_remove(_dev);
6580+ return retval;
6581+}
6582+
6583+/**
6584+ * This structure defines the methods to be called by a bus driver
6585+ * during the lifecycle of a device on that bus. Both drivers and
6586+ * devices are registered with a bus driver. The bus driver matches
6587+ * devices to drivers based on information in the device and driver
6588+ * structures.
6589+ *
6590+ * The probe function is called when the bus driver matches a device
6591+ * to this driver. The remove function is called when a device is
6592+ * unregistered with the bus driver.
6593+ */
6594+struct platform_driver dwc_otg_driver = {
6595+ .probe = dwc_otg_driver_probe,
6596+ .remove = dwc_otg_driver_remove,
6597+// .suspend = dwc_otg_driver_suspend,
6598+// .resume = dwc_otg_driver_resume,
6599+ .driver = {
6600+ .name = dwc_driver_name,
6601+ .owner = THIS_MODULE,
6602+ },
6603+};
6604+EXPORT_SYMBOL(dwc_otg_driver);
6605+
6606+/**
6607+ * This function is called when the dwc_otg_driver is installed with the
6608+ * insmod command. It registers the dwc_otg_driver structure with the
6609+ * appropriate bus driver. This will cause the dwc_otg_driver_probe function
6610+ * to be called. In addition, the bus driver will automatically expose
6611+ * attributes defined for the device and driver in the special sysfs file
6612+ * system.
6613+ *
6614+ * @return
6615+ */
6616+static int __init dwc_otg_init(void)
6617+{
6618+ int retval = 0;
6619+
6620+ printk(KERN_INFO "%s: version %s\n", dwc_driver_name, DWC_DRIVER_VERSION);
6621+
6622+ // ifxmips setup
6623+ retval = ifx_usb_hc_init(dwc_iomem_base, dwc_irq);
6624+ if (retval < 0)
6625+ {
6626+ printk(KERN_ERR "%s retval=%d\n", __func__, retval);
6627+ return retval;
6628+ }
6629+ dwc_otg_power_on(); // ifx only!!
6630+
6631+
6632+ retval = platform_driver_register(&dwc_otg_driver);
6633+
6634+ if (retval < 0) {
6635+ printk(KERN_ERR "%s retval=%d\n", __func__, retval);
6636+ goto error1;
6637+ }
6638+
6639+ retval = driver_create_file(&dwc_otg_driver.driver, &driver_attr_version);
6640+ if (retval < 0)
6641+ {
6642+ printk(KERN_ERR "%s retval=%d\n", __func__, retval);
6643+ goto error2;
6644+ }
6645+ retval = driver_create_file(&dwc_otg_driver.driver, &driver_attr_debuglevel);
6646+ if (retval < 0)
6647+ {
6648+ printk(KERN_ERR "%s retval=%d\n", __func__, retval);
6649+ goto error3;
6650+ }
6651+ return retval;
6652+
6653+
6654+error3:
6655+ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version);
6656+error2:
6657+ driver_unregister(&dwc_otg_driver.driver);
6658+error1:
6659+ ifx_usb_hc_remove();
6660+ return retval;
6661+}
6662+module_init(dwc_otg_init);
6663+
6664+/**
6665+ * This function is called when the driver is removed from the kernel
6666+ * with the rmmod command. The driver unregisters itself with its bus
6667+ * driver.
6668+ *
6669+ */
6670+static void __exit dwc_otg_cleanup(void)
6671+{
6672+ printk(KERN_DEBUG "dwc_otg_cleanup()\n");
6673+
6674+ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_debuglevel);
6675+ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version);
6676+
6677+ platform_driver_unregister(&dwc_otg_driver);
6678+ ifx_usb_hc_remove();
6679+
6680+ printk(KERN_INFO "%s module removed\n", dwc_driver_name);
6681+}
6682+module_exit(dwc_otg_cleanup);
6683+
6684+MODULE_DESCRIPTION(DWC_DRIVER_DESC);
6685+MODULE_AUTHOR("Synopsys Inc.");
6686+MODULE_LICENSE("GPL");
6687+
6688+module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444);
6689+MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None");
6690+module_param_named(opt, dwc_otg_module_params.opt, int, 0444);
6691+MODULE_PARM_DESC(opt, "OPT Mode");
6692+module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444);
6693+MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled");
6694+module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int, 0444);
6695+MODULE_PARM_DESC(dma_burst_size, "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256");
6696+module_param_named(speed, dwc_otg_module_params.speed, int, 0444);
6697+MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed");
6698+module_param_named(host_support_fs_ls_low_power, dwc_otg_module_params.host_support_fs_ls_low_power, int, 0444);
6699+MODULE_PARM_DESC(host_support_fs_ls_low_power, "Support Low Power w/FS or LS 0=Support 1=Don't Support");
6700+module_param_named(host_ls_low_power_phy_clk, dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444);
6701+MODULE_PARM_DESC(host_ls_low_power_phy_clk, "Low Speed Low Power Clock 0=48Mhz 1=6Mhz");
6702+module_param_named(enable_dynamic_fifo, dwc_otg_module_params.enable_dynamic_fifo, int, 0444);
6703+MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing");
6704+module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int, 0444);
6705+MODULE_PARM_DESC(data_fifo_size, "Total number of words in the data FIFO memory 32-32768");
6706+module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, int, 0444);
6707+MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
6708+module_param_named(dev_nperio_tx_fifo_size, dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444);
6709+MODULE_PARM_DESC(dev_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
6710+module_param_named(dev_perio_tx_fifo_size_1, dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444);
6711+MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, "Number of words in the periodic Tx FIFO 4-768");
6712+module_param_named(dev_perio_tx_fifo_size_2, dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444);
6713+MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, "Number of words in the periodic Tx FIFO 4-768");
6714+module_param_named(dev_perio_tx_fifo_size_3, dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444);
6715+MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, "Number of words in the periodic Tx FIFO 4-768");
6716+module_param_named(dev_perio_tx_fifo_size_4, dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444);
6717+MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, "Number of words in the periodic Tx FIFO 4-768");
6718+module_param_named(dev_perio_tx_fifo_size_5, dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444);
6719+MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, "Number of words in the periodic Tx FIFO 4-768");
6720+module_param_named(dev_perio_tx_fifo_size_6, dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444);
6721+MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, "Number of words in the periodic Tx FIFO 4-768");
6722+module_param_named(dev_perio_tx_fifo_size_7, dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444);
6723+MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, "Number of words in the periodic Tx FIFO 4-768");
6724+module_param_named(dev_perio_tx_fifo_size_8, dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444);
6725+MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, "Number of words in the periodic Tx FIFO 4-768");
6726+module_param_named(dev_perio_tx_fifo_size_9, dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444);
6727+MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, "Number of words in the periodic Tx FIFO 4-768");
6728+module_param_named(dev_perio_tx_fifo_size_10, dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444);
6729+MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, "Number of words in the periodic Tx FIFO 4-768");
6730+module_param_named(dev_perio_tx_fifo_size_11, dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444);
6731+MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, "Number of words in the periodic Tx FIFO 4-768");
6732+module_param_named(dev_perio_tx_fifo_size_12, dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444);
6733+MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, "Number of words in the periodic Tx FIFO 4-768");
6734+module_param_named(dev_perio_tx_fifo_size_13, dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444);
6735+MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, "Number of words in the periodic Tx FIFO 4-768");
6736+module_param_named(dev_perio_tx_fifo_size_14, dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444);
6737+MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, "Number of words in the periodic Tx FIFO 4-768");
6738+module_param_named(dev_perio_tx_fifo_size_15, dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444);
6739+MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, "Number of words in the periodic Tx FIFO 4-768");
6740+module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, int, 0444);
6741+MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
6742+module_param_named(host_nperio_tx_fifo_size, dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444);
6743+MODULE_PARM_DESC(host_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
6744+module_param_named(host_perio_tx_fifo_size, dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444);
6745+MODULE_PARM_DESC(host_perio_tx_fifo_size, "Number of words in the host periodic Tx FIFO 16-32768");
6746+module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, int, 0444);
6747+/** @todo Set the max to 512K, modify checks */
6748+MODULE_PARM_DESC(max_transfer_size, "The maximum transfer size supported in bytes 2047-65535");
6749+module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, int, 0444);
6750+MODULE_PARM_DESC(max_packet_count, "The maximum number of packets in a transfer 15-511");
6751+module_param_named(host_channels, dwc_otg_module_params.host_channels, int, 0444);
6752+MODULE_PARM_DESC(host_channels, "The number of host channel registers to use 1-16");
6753+module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, 0444);
6754+MODULE_PARM_DESC(dev_endpoints, "The number of endpoints in addition to EP0 available for device mode 1-15");
6755+module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444);
6756+MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI");
6757+module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, 0444);
6758+MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits");
6759+module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444);
6760+MODULE_PARM_DESC(phy_ulpi_ddr, "ULPI at double or single data rate 0=Single 1=Double");
6761+module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, int, 0444);
6762+MODULE_PARM_DESC(phy_ulpi_ext_vbus, "ULPI PHY using internal or external vbus 0=Internal");
6763+module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444);
6764+MODULE_PARM_DESC(i2c_enable, "FS PHY Interface");
6765+module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444);
6766+MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only");
6767+module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444);
6768+MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs");
6769+module_param_named(debug, g_dbg_lvl, int, 0444);
6770+MODULE_PARM_DESC(debug, "0");
6771+module_param_named(en_multiple_tx_fifo,
6772+ dwc_otg_module_params.en_multiple_tx_fifo, int, 0444);
6773+MODULE_PARM_DESC(en_multiple_tx_fifo,
6774+ "Dedicated Non Periodic Tx FIFOs 0=disabled 1=enabled");
6775+module_param_named(dev_tx_fifo_size_1,
6776+ dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444);
6777+MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768");
6778+module_param_named(dev_tx_fifo_size_2,
6779+ dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444);
6780+MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768");
6781+module_param_named(dev_tx_fifo_size_3,
6782+ dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444);
6783+MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768");
6784+module_param_named(dev_tx_fifo_size_4,
6785+ dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444);
6786+MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768");
6787+module_param_named(dev_tx_fifo_size_5,
6788+ dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444);
6789+MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768");
6790+module_param_named(dev_tx_fifo_size_6,
6791+ dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444);
6792+MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768");
6793+module_param_named(dev_tx_fifo_size_7,
6794+ dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444);
6795+MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768");
6796+module_param_named(dev_tx_fifo_size_8,
6797+ dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444);
6798+MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768");
6799+module_param_named(dev_tx_fifo_size_9,
6800+ dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444);
6801+MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768");
6802+module_param_named(dev_tx_fifo_size_10,
6803+ dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444);
6804+MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768");
6805+module_param_named(dev_tx_fifo_size_11,
6806+ dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444);
6807+MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768");
6808+module_param_named(dev_tx_fifo_size_12,
6809+ dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444);
6810+MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768");
6811+module_param_named(dev_tx_fifo_size_13,
6812+ dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444);
6813+MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768");
6814+module_param_named(dev_tx_fifo_size_14,
6815+ dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444);
6816+MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768");
6817+module_param_named(dev_tx_fifo_size_15,
6818+ dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444);
6819+MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768");
6820+module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444);
6821+MODULE_PARM_DESC(thr_ctl, "Thresholding enable flag bit"
6822+ "0 - non ISO Tx thr., 1 - ISO Tx thr., 2 - Rx thr.- bit 0=disabled 1=enabled");
6823+module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length, int, 0444);
6824+MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs");
6825+module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length, int, 0444);
6826+MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs");
6827+module_param_named (iomem_base, dwc_iomem_base, ulong, 0444);
6828+MODULE_PARM_DESC (dwc_iomem_base, "The base address of the DWC_OTG register.");
6829+module_param_named (irq, dwc_irq, int, 0444);
6830+MODULE_PARM_DESC (dwc_irq, "The interrupt number");
6831+
6832+/** @page "Module Parameters"
6833+ *
6834+ * The following parameters may be specified when starting the module.
6835+ * These parameters define how the DWC_otg controller should be
6836+ * configured. Parameter values are passed to the CIL initialization
6837+ * function dwc_otg_cil_init
6838+ *
6839+ * Example: <code>modprobe dwc_otg speed=1 otg_cap=1</code>
6840+ *
6841+
6842+ <table>
6843+ <tr><td>Parameter Name</td><td>Meaning</td></tr>
6844+
6845+ <tr>
6846+ <td>otg_cap</td>
6847+ <td>Specifies the OTG capabilities. The driver will automatically detect the
6848+ value for this parameter if none is specified.
6849+ - 0: HNP and SRP capable (default, if available)
6850+ - 1: SRP Only capable
6851+ - 2: No HNP/SRP capable
6852+ </td></tr>
6853+
6854+ <tr>
6855+ <td>dma_enable</td>
6856+ <td>Specifies whether to use slave or DMA mode for accessing the data FIFOs.
6857+ The driver will automatically detect the value for this parameter if none is
6858+ specified.
6859+ - 0: Slave
6860+ - 1: DMA (default, if available)
6861+ </td></tr>
6862+
6863+ <tr>
6864+ <td>dma_burst_size</td>
6865+ <td>The DMA Burst size (applicable only for External DMA Mode).
6866+ - Values: 1, 4, 8 16, 32, 64, 128, 256 (default 32)
6867+ </td></tr>
6868+
6869+ <tr>
6870+ <td>speed</td>
6871+ <td>Specifies the maximum speed of operation in host and device mode. The
6872+ actual speed depends on the speed of the attached device and the value of
6873+ phy_type.
6874+ - 0: High Speed (default)
6875+ - 1: Full Speed
6876+ </td></tr>
6877+
6878+ <tr>
6879+ <td>host_support_fs_ls_low_power</td>
6880+ <td>Specifies whether low power mode is supported when attached to a Full
6881+ Speed or Low Speed device in host mode.
6882+ - 0: Don't support low power mode (default)
6883+ - 1: Support low power mode
6884+ </td></tr>
6885+
6886+ <tr>
6887+ <td>host_ls_low_power_phy_clk</td>
6888+ <td>Specifies the PHY clock rate in low power mode when connected to a Low
6889+ Speed device in host mode. This parameter is applicable only if
6890+ HOST_SUPPORT_FS_LS_LOW_POWER is enabled.
6891+ - 0: 48 MHz (default)
6892+ - 1: 6 MHz
6893+ </td></tr>
6894+
6895+ <tr>
6896+ <td>enable_dynamic_fifo</td>
6897+ <td> Specifies whether FIFOs may be resized by the driver software.
6898+ - 0: Use cC FIFO size parameters
6899+ - 1: Allow dynamic FIFO sizing (default)
6900+ </td></tr>
6901+
6902+ <tr>
6903+ <td>data_fifo_size</td>
6904+ <td>Total number of 4-byte words in the data FIFO memory. This memory
6905+ includes the Rx FIFO, non-periodic Tx FIFO, and periodic Tx FIFOs.
6906+ - Values: 32 to 32768 (default 8192)
6907+
6908+ Note: The total FIFO memory depth in the FPGA configuration is 8192.
6909+ </td></tr>
6910+
6911+ <tr>
6912+ <td>dev_rx_fifo_size</td>
6913+ <td>Number of 4-byte words in the Rx FIFO in device mode when dynamic
6914+ FIFO sizing is enabled.
6915+ - Values: 16 to 32768 (default 1064)
6916+ </td></tr>
6917+
6918+ <tr>
6919+ <td>dev_nperio_tx_fifo_size</td>
6920+ <td>Number of 4-byte words in the non-periodic Tx FIFO in device mode when
6921+ dynamic FIFO sizing is enabled.
6922+ - Values: 16 to 32768 (default 1024)
6923+ </td></tr>
6924+
6925+ <tr>
6926+ <td>dev_perio_tx_fifo_size_n (n = 1 to 15)</td>
6927+ <td>Number of 4-byte words in each of the periodic Tx FIFOs in device mode
6928+ when dynamic FIFO sizing is enabled.
6929+ - Values: 4 to 768 (default 256)
6930+ </td></tr>
6931+
6932+ <tr>
6933+ <td>host_rx_fifo_size</td>
6934+ <td>Number of 4-byte words in the Rx FIFO in host mode when dynamic FIFO
6935+ sizing is enabled.
6936+ - Values: 16 to 32768 (default 1024)
6937+ </td></tr>
6938+
6939+ <tr>
6940+ <td>host_nperio_tx_fifo_size</td>
6941+ <td>Number of 4-byte words in the non-periodic Tx FIFO in host mode when
6942+ dynamic FIFO sizing is enabled in the core.
6943+ - Values: 16 to 32768 (default 1024)
6944+ </td></tr>
6945+
6946+ <tr>
6947+ <td>host_perio_tx_fifo_size</td>
6948+ <td>Number of 4-byte words in the host periodic Tx FIFO when dynamic FIFO
6949+ sizing is enabled.
6950+ - Values: 16 to 32768 (default 1024)
6951+ </td></tr>
6952+
6953+ <tr>
6954+ <td>max_transfer_size</td>
6955+ <td>The maximum transfer size supported in bytes.
6956+ - Values: 2047 to 65,535 (default 65,535)
6957+ </td></tr>
6958+
6959+ <tr>
6960+ <td>max_packet_count</td>
6961+ <td>The maximum number of packets in a transfer.
6962+ - Values: 15 to 511 (default 511)
6963+ </td></tr>
6964+
6965+ <tr>
6966+ <td>host_channels</td>
6967+ <td>The number of host channel registers to use.
6968+ - Values: 1 to 16 (default 12)
6969+
6970+ Note: The FPGA configuration supports a maximum of 12 host channels.
6971+ </td></tr>
6972+
6973+ <tr>
6974+ <td>dev_endpoints</td>
6975+ <td>The number of endpoints in addition to EP0 available for device mode
6976+ operations.
6977+ - Values: 1 to 15 (default 6 IN and OUT)
6978+
6979+ Note: The FPGA configuration supports a maximum of 6 IN and OUT endpoints in
6980+ addition to EP0.
6981+ </td></tr>
6982+
6983+ <tr>
6984+ <td>phy_type</td>
6985+ <td>Specifies the type of PHY interface to use. By default, the driver will
6986+ automatically detect the phy_type.
6987+ - 0: Full Speed
6988+ - 1: UTMI+ (default, if available)
6989+ - 2: ULPI
6990+ </td></tr>
6991+
6992+ <tr>
6993+ <td>phy_utmi_width</td>
6994+ <td>Specifies the UTMI+ Data Width. This parameter is applicable for a
6995+ phy_type of UTMI+. Also, this parameter is applicable only if the
6996+ OTG_HSPHY_WIDTH cC parameter was set to "8 and 16 bits", meaning that the
6997+ core has been configured to work at either data path width.
6998+ - Values: 8 or 16 bits (default 16)
6999+ </td></tr>
7000+
7001+ <tr>
7002+ <td>phy_ulpi_ddr</td>
7003+ <td>Specifies whether the ULPI operates at double or single data rate. This
7004+ parameter is only applicable if phy_type is ULPI.
7005+ - 0: single data rate ULPI interface with 8 bit wide data bus (default)
7006+ - 1: double data rate ULPI interface with 4 bit wide data bus
7007+ </td></tr>
7008+
7009+ <tr>
7010+ <td>i2c_enable</td>
7011+ <td>Specifies whether to use the I2C interface for full speed PHY. This
7012+ parameter is only applicable if PHY_TYPE is FS.
7013+ - 0: Disabled (default)
7014+ - 1: Enabled
7015+ </td></tr>
7016+
7017+ <tr>
7018+ <td>otg_en_multiple_tx_fifo</td>
7019+ <td>Specifies whether dedicatedto tx fifos are enabled for non periodic IN EPs.
7020+ The driver will automatically detect the value for this parameter if none is
7021+ specified.
7022+ - 0: Disabled
7023+ - 1: Enabled (default, if available)
7024+ </td></tr>
7025+
7026+ <tr>
7027+ <td>dev_tx_fifo_size_n (n = 1 to 15)</td>
7028+ <td>Number of 4-byte words in each of the Tx FIFOs in device mode
7029+ when dynamic FIFO sizing is enabled.
7030+ - Values: 4 to 768 (default 256)
7031+ </td></tr>
7032+
7033+*/
7034--- /dev/null
7035+++ b/drivers/usb/dwc_otg/dwc_otg_driver.h
7036@@ -0,0 +1,84 @@
7037+/* ==========================================================================
7038+ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_driver.h $
7039+ * $Revision: 1.1.1.1 $
7040+ * $Date: 2009-04-17 06:15:34 $
7041+ * $Change: 510275 $
7042+ *
7043+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
7044+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
7045+ * otherwise expressly agreed to in writing between Synopsys and you.
7046+ *
7047+ * The Software IS NOT an item of Licensed Software or Licensed Product under
7048+ * any End User Software License Agreement or Agreement for Licensed Product
7049+ * with Synopsys or any supplement thereto. You are permitted to use and
7050+ * redistribute this Software in source and binary forms, with or without
7051+ * modification, provided that redistributions of source code must retain this
7052+ * notice. You may not view, use, disclose, copy or distribute this file or
7053+ * any information contained herein except pursuant to this license grant from
7054+ * Synopsys. If you do not agree with this notice, including the disclaimer
7055+ * below, then you are not authorized to use the Software.
7056+ *
7057+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
7058+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
7059+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
7060+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
7061+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
7062+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
7063+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
7064+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
7065+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
7066+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
7067+ * DAMAGE.
7068+ * ========================================================================== */
7069+
7070+#if !defined(__DWC_OTG_DRIVER_H__)
7071+#define __DWC_OTG_DRIVER_H__
7072+
7073+/** @file
7074+ * This file contains the interface to the Linux driver.
7075+ */
7076+#include "dwc_otg_cil.h"
7077+
7078+/* Type declarations */
7079+struct dwc_otg_pcd;
7080+struct dwc_otg_hcd;
7081+
7082+/**
7083+ * This structure is a wrapper that encapsulates the driver components used to
7084+ * manage a single DWC_otg controller.
7085+ */
7086+typedef struct dwc_otg_device
7087+{
7088+ /** Base address returned from ioremap() */
7089+ void *base;
7090+
7091+ /** Pointer to the core interface structure. */
7092+ dwc_otg_core_if_t *core_if;
7093+
7094+ /** Register offset for Diagnostic API.*/
7095+ uint32_t reg_offset;
7096+
7097+ /** Pointer to the PCD structure. */
7098+ struct dwc_otg_pcd *pcd;
7099+
7100+ /** Pointer to the HCD structure. */
7101+ struct dwc_otg_hcd *hcd;
7102+
7103+ /** Flag to indicate whether the common IRQ handler is installed. */
7104+ uint8_t common_irq_installed;
7105+
7106+ /** Interrupt request number. */
7107+ unsigned int irq;
7108+
7109+ /** Physical address of Control and Status registers, used by
7110+ * release_mem_region().
7111+ */
7112+ resource_size_t phys_addr;
7113+
7114+ /** Length of memory region, used by release_mem_region(). */
7115+ unsigned long base_len;
7116+} dwc_otg_device_t;
7117+
7118+//#define dev_dbg(fake, format, arg...) printk(KERN_CRIT __FILE__ ":%d: " format "\n" , __LINE__, ## arg)
7119+
7120+#endif
7121--- /dev/null
7122+++ b/drivers/usb/dwc_otg/dwc_otg_hcd.c
7123@@ -0,0 +1,2870 @@
7124+/* ==========================================================================
7125+ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd.c $
7126+ * $Revision: 1.1.1.1 $
7127+ * $Date: 2009-04-17 06:15:34 $
7128+ * $Change: 631780 $
7129+ *
7130+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
7131+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
7132+ * otherwise expressly agreed to in writing between Synopsys and you.
7133+ *
7134+ * The Software IS NOT an item of Licensed Software or Licensed Product under
7135+ * any End User Software License Agreement or Agreement for Licensed Product
7136+ * with Synopsys or any supplement thereto. You are permitted to use and
7137+ * redistribute this Software in source and binary forms, with or without
7138+ * modification, provided that redistributions of source code must retain this
7139+ * notice. You may not view, use, disclose, copy or distribute this file or
7140+ * any information contained herein except pursuant to this license grant from
7141+ * Synopsys. If you do not agree with this notice, including the disclaimer
7142+ * below, then you are not authorized to use the Software.
7143+ *
7144+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
7145+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
7146+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
7147+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
7148+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
7149+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
7150+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
7151+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
7152+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
7153+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
7154+ * DAMAGE.
7155+ * ========================================================================== */
7156+#ifndef DWC_DEVICE_ONLY
7157+
7158+/**
7159+ * @file
7160+ *
7161+ * This file contains the implementation of the HCD. In Linux, the HCD
7162+ * implements the hc_driver API.
7163+ */
7164+#include <linux/kernel.h>
7165+#include <linux/module.h>
7166+#include <linux/moduleparam.h>
7167+#include <linux/init.h>
7168+
7169+#include <linux/device.h>
7170+
7171+#include <linux/errno.h>
7172+#include <linux/list.h>
7173+#include <linux/interrupt.h>
7174+#include <linux/string.h>
7175+
7176+#include <linux/dma-mapping.h>
7177+
7178+#include "dwc_otg_driver.h"
7179+#include "dwc_otg_hcd.h"
7180+#include "dwc_otg_regs.h"
7181+
7182+#include <asm/irq.h>
7183+#include "dwc_otg_ifx.h" // for Infineon platform specific.
7184+extern atomic_t release_later;
7185+
7186+static u64 dma_mask = DMA_BIT_MASK(32);
7187+
7188+static const char dwc_otg_hcd_name [] = "dwc_otg_hcd";
7189+static const struct hc_driver dwc_otg_hc_driver =
7190+{
7191+ .description = dwc_otg_hcd_name,
7192+ .product_desc = "DWC OTG Controller",
7193+ .hcd_priv_size = sizeof(dwc_otg_hcd_t),
7194+ .irq = dwc_otg_hcd_irq,
7195+ .flags = HCD_MEMORY | HCD_USB2,
7196+ //.reset =
7197+ .start = dwc_otg_hcd_start,
7198+ //.suspend =
7199+ //.resume =
7200+ .stop = dwc_otg_hcd_stop,
7201+ .urb_enqueue = dwc_otg_hcd_urb_enqueue,
7202+ .urb_dequeue = dwc_otg_hcd_urb_dequeue,
7203+ .endpoint_disable = dwc_otg_hcd_endpoint_disable,
7204+ .get_frame_number = dwc_otg_hcd_get_frame_number,
7205+ .hub_status_data = dwc_otg_hcd_hub_status_data,
7206+ .hub_control = dwc_otg_hcd_hub_control,
7207+ //.hub_suspend =
7208+ //.hub_resume =
7209+};
7210+
7211+
7212+/**
7213+ * Work queue function for starting the HCD when A-Cable is connected.
7214+ * The dwc_otg_hcd_start() must be called in a process context.
7215+ */
7216+static void hcd_start_func(struct work_struct *work)
7217+{
7218+ struct dwc_otg_hcd *priv =
7219+ container_of(work, struct dwc_otg_hcd, start_work);
7220+ struct usb_hcd *usb_hcd = (struct usb_hcd *)priv->_p;
7221+ DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd);
7222+ if (usb_hcd) {
7223+ dwc_otg_hcd_start(usb_hcd);
7224+ }
7225+}
7226+
7227+
7228+/**
7229+ * HCD Callback function for starting the HCD when A-Cable is
7230+ * connected.
7231+ *
7232+ * @param _p void pointer to the <code>struct usb_hcd</code>
7233+ */
7234+static int32_t dwc_otg_hcd_start_cb(void *_p)
7235+{
7236+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p);
7237+ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
7238+ hprt0_data_t hprt0;
7239+ if (core_if->op_state == B_HOST) {
7240+ /*
7241+ * Reset the port. During a HNP mode switch the reset
7242+ * needs to occur within 1ms and have a duration of at
7243+ * least 50ms.
7244+ */
7245+ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
7246+ hprt0.b.prtrst = 1;
7247+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
7248+ ((struct usb_hcd *)_p)->self.is_b_host = 1;
7249+ } else {
7250+ ((struct usb_hcd *)_p)->self.is_b_host = 0;
7251+ }
7252+ /* Need to start the HCD in a non-interrupt context. */
7253+ INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
7254+ dwc_otg_hcd->_p = _p;
7255+ schedule_work(&dwc_otg_hcd->start_work);
7256+ return 1;
7257+}
7258+
7259+
7260+/**
7261+ * HCD Callback function for stopping the HCD.
7262+ *
7263+ * @param _p void pointer to the <code>struct usb_hcd</code>
7264+ */
7265+static int32_t dwc_otg_hcd_stop_cb( void *_p )
7266+{
7267+ struct usb_hcd *usb_hcd = (struct usb_hcd *)_p;
7268+ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p);
7269+ dwc_otg_hcd_stop( usb_hcd );
7270+ return 1;
7271+}
7272+static void del_xfer_timers(dwc_otg_hcd_t *_hcd)
7273+{
7274+#ifdef DEBUG
7275+ int i;
7276+ int num_channels = _hcd->core_if->core_params->host_channels;
7277+ for (i = 0; i < num_channels; i++) {
7278+ del_timer(&_hcd->core_if->hc_xfer_timer[i]);
7279+ }
7280+#endif /* */
7281+}
7282+
7283+static void del_timers(dwc_otg_hcd_t *_hcd)
7284+{
7285+ del_xfer_timers(_hcd);
7286+ del_timer(&_hcd->conn_timer);
7287+}
7288+
7289+/**
7290+ * Processes all the URBs in a single list of QHs. Completes them with
7291+ * -ETIMEDOUT and frees the QTD.
7292+ */
7293+static void kill_urbs_in_qh_list(dwc_otg_hcd_t * _hcd,
7294+ struct list_head *_qh_list)
7295+{
7296+ struct list_head *qh_item;
7297+ dwc_otg_qh_t *qh;
7298+ struct list_head *qtd_item;
7299+ dwc_otg_qtd_t *qtd;
7300+
7301+ list_for_each(qh_item, _qh_list) {
7302+ qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry);
7303+ for (qtd_item = qh->qtd_list.next; qtd_item != &qh->qtd_list;
7304+ qtd_item = qh->qtd_list.next) {
7305+ qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry);
7306+ if (qtd->urb != NULL) {
7307+ dwc_otg_hcd_complete_urb(_hcd, qtd->urb,-ETIMEDOUT);
7308+ }
7309+ dwc_otg_hcd_qtd_remove_and_free(qtd);
7310+ }
7311+ }
7312+}
7313+
7314+/**
7315+ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
7316+ * and periodic schedules. The QTD associated with each URB is removed from
7317+ * the schedule and freed. This function may be called when a disconnect is
7318+ * detected or when the HCD is being stopped.
7319+ */
7320+static void kill_all_urbs(dwc_otg_hcd_t *_hcd)
7321+{
7322+ kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_deferred);
7323+ kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_inactive);
7324+ kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_active);
7325+ kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_inactive);
7326+ kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_ready);
7327+ kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_assigned);
7328+ kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_queued);
7329+}
7330+
7331+/**
7332+ * HCD Callback function for disconnect of the HCD.
7333+ *
7334+ * @param _p void pointer to the <code>struct usb_hcd</code>
7335+ */
7336+static int32_t dwc_otg_hcd_disconnect_cb( void *_p )
7337+{
7338+ gintsts_data_t intr;
7339+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_p);
7340+
7341+ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p);
7342+
7343+ /*
7344+ * Set status flags for the hub driver.
7345+ */
7346+ dwc_otg_hcd->flags.b.port_connect_status_change = 1;
7347+ dwc_otg_hcd->flags.b.port_connect_status = 0;
7348+
7349+ /*
7350+ * Shutdown any transfers in process by clearing the Tx FIFO Empty
7351+ * interrupt mask and status bits and disabling subsequent host
7352+ * channel interrupts.
7353+ */
7354+ intr.d32 = 0;
7355+ intr.b.nptxfempty = 1;
7356+ intr.b.ptxfempty = 1;
7357+ intr.b.hcintr = 1;
7358+ dwc_modify_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gintmsk, intr.d32, 0);
7359+ dwc_modify_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gintsts, intr.d32, 0);
7360+
7361+ del_timers(dwc_otg_hcd);
7362+
7363+ /*
7364+ * Turn off the vbus power only if the core has transitioned to device
7365+ * mode. If still in host mode, need to keep power on to detect a
7366+ * reconnection.
7367+ */
7368+ if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) {
7369+ if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) {
7370+ hprt0_data_t hprt0 = { .d32=0 };
7371+ DWC_PRINT("Disconnect: PortPower off\n");
7372+ hprt0.b.prtpwr = 0;
7373+ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
7374+ }
7375+
7376+ dwc_otg_disable_host_interrupts( dwc_otg_hcd->core_if );
7377+ }
7378+
7379+ /* Respond with an error status to all URBs in the schedule. */
7380+ kill_all_urbs(dwc_otg_hcd);
7381+
7382+ if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) {
7383+ /* Clean up any host channels that were in use. */
7384+ int num_channels;
7385+ int i;
7386+ dwc_hc_t *channel;
7387+ dwc_otg_hc_regs_t *hc_regs;
7388+ hcchar_data_t hcchar;
7389+
7390+ num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
7391+
7392+ if (!dwc_otg_hcd->core_if->dma_enable) {
7393+ /* Flush out any channel requests in slave mode. */
7394+ for (i = 0; i < num_channels; i++) {
7395+ channel = dwc_otg_hcd->hc_ptr_array[i];
7396+ if (list_empty(&channel->hc_list_entry)) {
7397+ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
7398+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
7399+ if (hcchar.b.chen) {
7400+ hcchar.b.chen = 0;
7401+ hcchar.b.chdis = 1;
7402+ hcchar.b.epdir = 0;
7403+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
7404+ }
7405+ }
7406+ }
7407+ }
7408+
7409+ for (i = 0; i < num_channels; i++) {
7410+ channel = dwc_otg_hcd->hc_ptr_array[i];
7411+ if (list_empty(&channel->hc_list_entry)) {
7412+ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
7413+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
7414+ if (hcchar.b.chen) {
7415+ /* Halt the channel. */
7416+ hcchar.b.chdis = 1;
7417+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
7418+ }
7419+
7420+ dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, channel);
7421+ list_add_tail(&channel->hc_list_entry,
7422+ &dwc_otg_hcd->free_hc_list);
7423+ }
7424+ }
7425+ }
7426+
7427+ /* A disconnect will end the session so the B-Device is no
7428+ * longer a B-host. */
7429+ ((struct usb_hcd *)_p)->self.is_b_host = 0;
7430+
7431+ return 1;
7432+}
7433+
7434+/**
7435+ * Connection timeout function. An OTG host is required to display a
7436+ * message if the device does not connect within 10 seconds.
7437+ */
7438+void dwc_otg_hcd_connect_timeout( unsigned long _ptr )
7439+{
7440+ DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)_ptr);
7441+ DWC_PRINT( "Connect Timeout\n");
7442+ DWC_ERROR( "Device Not Connected/Responding\n" );
7443+}
7444+
7445+/**
7446+ * Start the connection timer. An OTG host is required to display a
7447+ * message if the device does not connect within 10 seconds. The
7448+ * timer is deleted if a port connect interrupt occurs before the
7449+ * timer expires.
7450+ */
7451+static void dwc_otg_hcd_start_connect_timer( dwc_otg_hcd_t *_hcd)
7452+{
7453+ init_timer( &_hcd->conn_timer );
7454+ _hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
7455+ _hcd->conn_timer.data = (unsigned long)0;
7456+ _hcd->conn_timer.expires = jiffies + (HZ*10);
7457+ add_timer( &_hcd->conn_timer );
7458+}
7459+
7460+/**
7461+ * HCD Callback function for disconnect of the HCD.
7462+ *
7463+ * @param _p void pointer to the <code>struct usb_hcd</code>
7464+ */
7465+static int32_t dwc_otg_hcd_session_start_cb( void *_p )
7466+{
7467+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_p);
7468+ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p);
7469+ dwc_otg_hcd_start_connect_timer( dwc_otg_hcd );
7470+ return 1;
7471+}
7472+
7473+/**
7474+ * HCD Callback structure for handling mode switching.
7475+ */
7476+static dwc_otg_cil_callbacks_t hcd_cil_callbacks = {
7477+ .start = dwc_otg_hcd_start_cb,
7478+ .stop = dwc_otg_hcd_stop_cb,
7479+ .disconnect = dwc_otg_hcd_disconnect_cb,
7480+ .session_start = dwc_otg_hcd_session_start_cb,
7481+ .p = 0,
7482+};
7483+
7484+
7485+/**
7486+ * Reset tasklet function
7487+ */
7488+static void reset_tasklet_func (unsigned long data)
7489+{
7490+ dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t*)data;
7491+ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
7492+ hprt0_data_t hprt0;
7493+
7494+ DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n");
7495+
7496+ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
7497+ hprt0.b.prtrst = 1;
7498+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
7499+ mdelay (60);
7500+
7501+ hprt0.b.prtrst = 0;
7502+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
7503+ dwc_otg_hcd->flags.b.port_reset_change = 1;
7504+
7505+ return;
7506+}
7507+
7508+static struct tasklet_struct reset_tasklet = {
7509+ .next = NULL,
7510+ .state = 0,
7511+ .count = ATOMIC_INIT(0),
7512+ .func = reset_tasklet_func,
7513+ .data = 0,
7514+};
7515+
7516+/**
7517+ * Initializes the HCD. This function allocates memory for and initializes the
7518+ * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the
7519+ * USB bus with the core and calls the hc_driver->start() function. It returns
7520+ * a negative error on failure.
7521+ */
7522+int init_hcd_usecs(dwc_otg_hcd_t *_hcd);
7523+
7524+int __devinit dwc_otg_hcd_init(struct device *_dev, dwc_otg_device_t * dwc_otg_device)
7525+{
7526+ struct usb_hcd *hcd = NULL;
7527+ dwc_otg_hcd_t *dwc_otg_hcd = NULL;
7528+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
7529+
7530+ int num_channels;
7531+ int i;
7532+ dwc_hc_t *channel;
7533+
7534+ int retval = 0;
7535+
7536+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n");
7537+
7538+ /*
7539+ * Allocate memory for the base HCD plus the DWC OTG HCD.
7540+ * Initialize the base HCD.
7541+ */
7542+ hcd = usb_create_hcd(&dwc_otg_hc_driver, _dev, dev_name(_dev));
7543+ if (hcd == NULL) {
7544+ retval = -ENOMEM;
7545+ goto error1;
7546+ }
7547+ dev_set_drvdata(_dev, dwc_otg_device); /* fscz restore */
7548+ hcd->regs = otg_dev->base;
7549+ hcd->rsrc_start = (int)otg_dev->base;
7550+
7551+ hcd->self.otg_port = 1;
7552+
7553+ /* Initialize the DWC OTG HCD. */
7554+ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
7555+ dwc_otg_hcd->core_if = otg_dev->core_if;
7556+ otg_dev->hcd = dwc_otg_hcd;
7557+
7558+ /* Register the HCD CIL Callbacks */
7559+ dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if,
7560+ &hcd_cil_callbacks, hcd);
7561+
7562+ /* Initialize the non-periodic schedule. */
7563+ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive);
7564+ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active);
7565+ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_deferred);
7566+
7567+ /* Initialize the periodic schedule. */
7568+ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive);
7569+ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready);
7570+ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned);
7571+ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued);
7572+
7573+ /*
7574+ * Create a host channel descriptor for each host channel implemented
7575+ * in the controller. Initialize the channel descriptor array.
7576+ */
7577+ INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list);
7578+ num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
7579+ for (i = 0; i < num_channels; i++) {
7580+ channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL);
7581+ if (channel == NULL) {
7582+ retval = -ENOMEM;
7583+ DWC_ERROR("%s: host channel allocation failed\n", __func__);
7584+ goto error2;
7585+ }
7586+ memset(channel, 0, sizeof(dwc_hc_t));
7587+ channel->hc_num = i;
7588+ dwc_otg_hcd->hc_ptr_array[i] = channel;
7589+#ifdef DEBUG
7590+ init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]);
7591+#endif
7592+
7593+ DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, channel);
7594+ }
7595+
7596+ /* Initialize the Connection timeout timer. */
7597+ init_timer( &dwc_otg_hcd->conn_timer );
7598+
7599+ /* Initialize reset tasklet. */
7600+ reset_tasklet.data = (unsigned long) dwc_otg_hcd;
7601+ dwc_otg_hcd->reset_tasklet = &reset_tasklet;
7602+
7603+ /* Set device flags indicating whether the HCD supports DMA. */
7604+ if (otg_dev->core_if->dma_enable) {
7605+ DWC_PRINT("Using DMA mode\n");
7606+ //_dev->dma_mask = (void *)~0;
7607+ //_dev->coherent_dma_mask = ~0;
7608+ _dev->dma_mask = &dma_mask;
7609+ _dev->coherent_dma_mask = DMA_BIT_MASK(32);
7610+ } else {
7611+ DWC_PRINT("Using Slave mode\n");
7612+ _dev->dma_mask = (void *)0;
7613+ _dev->coherent_dma_mask = 0;
7614+ }
7615+
7616+ init_hcd_usecs(dwc_otg_hcd);
7617+ /*
7618+ * Finish generic HCD initialization and start the HCD. This function
7619+ * allocates the DMA buffer pool, registers the USB bus, requests the
7620+ * IRQ line, and calls dwc_otg_hcd_start method.
7621+ */
7622+ retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED);
7623+ if (retval < 0) {
7624+ goto error2;
7625+ }
7626+
7627+ /*
7628+ * Allocate space for storing data on status transactions. Normally no
7629+ * data is sent, but this space acts as a bit bucket. This must be
7630+ * done after usb_add_hcd since that function allocates the DMA buffer
7631+ * pool.
7632+ */
7633+ if (otg_dev->core_if->dma_enable) {
7634+ dwc_otg_hcd->status_buf =
7635+ dma_alloc_coherent(_dev,
7636+ DWC_OTG_HCD_STATUS_BUF_SIZE,
7637+ &dwc_otg_hcd->status_buf_dma,
7638+ GFP_KERNEL | GFP_DMA);
7639+ } else {
7640+ dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
7641+ GFP_KERNEL);
7642+ }
7643+ if (dwc_otg_hcd->status_buf == NULL) {
7644+ retval = -ENOMEM;
7645+ DWC_ERROR("%s: status_buf allocation failed\n", __func__);
7646+ goto error3;
7647+ }
7648+
7649+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, bus=%s, usbbus=%d\n",
7650+ dev_name(_dev), hcd->self.busnum);
7651+
7652+ return 0;
7653+
7654+ /* Error conditions */
7655+error3:
7656+ usb_remove_hcd(hcd);
7657+error2:
7658+ dwc_otg_hcd_free(hcd);
7659+ usb_put_hcd(hcd);
7660+error1:
7661+ return retval;
7662+}
7663+
7664+/**
7665+ * Removes the HCD.
7666+ * Frees memory and resources associated with the HCD and deregisters the bus.
7667+ */
7668+void dwc_otg_hcd_remove(struct device *_dev)
7669+{
7670+ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
7671+ dwc_otg_hcd_t *dwc_otg_hcd = otg_dev->hcd;
7672+ struct usb_hcd *hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd);
7673+
7674+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n");
7675+
7676+ /* Turn off all interrupts */
7677+ dwc_write_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0);
7678+ dwc_modify_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, 0);
7679+
7680+ usb_remove_hcd(hcd);
7681+
7682+ dwc_otg_hcd_free(hcd);
7683+
7684+ usb_put_hcd(hcd);
7685+
7686+ return;
7687+}
7688+
7689+
7690+/* =========================================================================
7691+ * Linux HC Driver Functions
7692+ * ========================================================================= */
7693+
7694+/**
7695+ * Initializes dynamic portions of the DWC_otg HCD state.
7696+ */
7697+static void hcd_reinit(dwc_otg_hcd_t *_hcd)
7698+{
7699+ struct list_head *item;
7700+ int num_channels;
7701+ int i;
7702+ dwc_hc_t *channel;
7703+
7704+ _hcd->flags.d32 = 0;
7705+
7706+ _hcd->non_periodic_qh_ptr = &_hcd->non_periodic_sched_active;
7707+ _hcd->available_host_channels = _hcd->core_if->core_params->host_channels;
7708+
7709+ /*
7710+ * Put all channels in the free channel list and clean up channel
7711+ * states.
7712+ */
7713+ item = _hcd->free_hc_list.next;
7714+ while (item != &_hcd->free_hc_list) {
7715+ list_del(item);
7716+ item = _hcd->free_hc_list.next;
7717+ }
7718+ num_channels = _hcd->core_if->core_params->host_channels;
7719+ for (i = 0; i < num_channels; i++) {
7720+ channel = _hcd->hc_ptr_array[i];
7721+ list_add_tail(&channel->hc_list_entry, &_hcd->free_hc_list);
7722+ dwc_otg_hc_cleanup(_hcd->core_if, channel);
7723+ }
7724+
7725+ /* Initialize the DWC core for host mode operation. */
7726+ dwc_otg_core_host_init(_hcd->core_if);
7727+}
7728+
7729+/** Initializes the DWC_otg controller and its root hub and prepares it for host
7730+ * mode operation. Activates the root port. Returns 0 on success and a negative
7731+ * error code on failure. */
7732+int dwc_otg_hcd_start(struct usb_hcd *_hcd)
7733+{
7734+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
7735+ dwc_otg_core_if_t * core_if = dwc_otg_hcd->core_if;
7736+ struct usb_bus *bus;
7737+
7738+ // int retval;
7739+
7740+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n");
7741+
7742+ bus = hcd_to_bus(_hcd);
7743+
7744+ /* Initialize the bus state. If the core is in Device Mode
7745+ * HALT the USB bus and return. */
7746+ if (dwc_otg_is_device_mode (core_if)) {
7747+ _hcd->state = HC_STATE_HALT;
7748+ return 0;
7749+ }
7750+ _hcd->state = HC_STATE_RUNNING;
7751+
7752+ /* Initialize and connect root hub if one is not already attached */
7753+ if (bus->root_hub) {
7754+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n");
7755+ /* Inform the HUB driver to resume. */
7756+ usb_hcd_resume_root_hub(_hcd);
7757+ }
7758+ else {
7759+#if 0
7760+ struct usb_device *udev;
7761+ udev = usb_alloc_dev(NULL, bus, 0);
7762+ if (!udev) {
7763+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error udev alloc\n");
7764+ return -ENODEV;
7765+ }
7766+ udev->speed = USB_SPEED_HIGH;
7767+ /* Not needed - VJ
7768+ if ((retval = usb_hcd_register_root_hub(udev, _hcd)) != 0) {
7769+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error registering %d\n", retval);
7770+ return -ENODEV;
7771+ }
7772+ */
7773+#else
7774+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error udev alloc\n");
7775+#endif
7776+ }
7777+
7778+ hcd_reinit(dwc_otg_hcd);
7779+
7780+ return 0;
7781+}
7782+
7783+static void qh_list_free(dwc_otg_hcd_t *_hcd, struct list_head *_qh_list)
7784+{
7785+ struct list_head *item;
7786+ dwc_otg_qh_t *qh;
7787+
7788+ if (_qh_list->next == NULL) {
7789+ /* The list hasn't been initialized yet. */
7790+ return;
7791+ }
7792+
7793+ /* Ensure there are no QTDs or URBs left. */
7794+ kill_urbs_in_qh_list(_hcd, _qh_list);
7795+
7796+ for (item = _qh_list->next; item != _qh_list; item = _qh_list->next) {
7797+ qh = list_entry(item, dwc_otg_qh_t, qh_list_entry);
7798+ dwc_otg_hcd_qh_remove_and_free(_hcd, qh);
7799+ }
7800+}
7801+
7802+/**
7803+ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
7804+ * stopped.
7805+ */
7806+void dwc_otg_hcd_stop(struct usb_hcd *_hcd)
7807+{
7808+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
7809+ hprt0_data_t hprt0 = { .d32=0 };
7810+
7811+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n");
7812+
7813+ /* Turn off all host-specific interrupts. */
7814+ dwc_otg_disable_host_interrupts( dwc_otg_hcd->core_if );
7815+
7816+ /*
7817+ * The root hub should be disconnected before this function is called.
7818+ * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
7819+ * and the QH lists (via ..._hcd_endpoint_disable).
7820+ */
7821+
7822+ /* Turn off the vbus power */
7823+ DWC_PRINT("PortPower off\n");
7824+ hprt0.b.prtpwr = 0;
7825+ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
7826+
7827+ return;
7828+}
7829+
7830+
7831+/** Returns the current frame number. */
7832+int dwc_otg_hcd_get_frame_number(struct usb_hcd *_hcd)
7833+{
7834+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd);
7835+ hfnum_data_t hfnum;
7836+
7837+ hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->
7838+ host_if->host_global_regs->hfnum);
7839+
7840+#ifdef DEBUG_SOF
7841+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", hfnum.b.frnum);
7842+#endif
7843+ return hfnum.b.frnum;
7844+}
7845+
7846+/**
7847+ * Frees secondary storage associated with the dwc_otg_hcd structure contained
7848+ * in the struct usb_hcd field.
7849+ */
7850+void dwc_otg_hcd_free(struct usb_hcd *_hcd)
7851+{
7852+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd);
7853+ int i;
7854+
7855+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n");
7856+
7857+ del_timers(dwc_otg_hcd);
7858+
7859+ /* Free memory for QH/QTD lists */
7860+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive);
7861+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_deferred);
7862+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active);
7863+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive);
7864+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready);
7865+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned);
7866+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued);
7867+
7868+ /* Free memory for the host channels. */
7869+ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
7870+ dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i];
7871+ if (hc != NULL) {
7872+ DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", i, hc);
7873+ kfree(hc);
7874+ }
7875+ }
7876+
7877+ if (dwc_otg_hcd->core_if->dma_enable) {
7878+ if (dwc_otg_hcd->status_buf_dma) {
7879+ dma_free_coherent(_hcd->self.controller,
7880+ DWC_OTG_HCD_STATUS_BUF_SIZE,
7881+ dwc_otg_hcd->status_buf,
7882+ dwc_otg_hcd->status_buf_dma);
7883+ }
7884+ } else if (dwc_otg_hcd->status_buf != NULL) {
7885+ kfree(dwc_otg_hcd->status_buf);
7886+ }
7887+
7888+ return;
7889+}
7890+
7891+
7892+#ifdef DEBUG
7893+static void dump_urb_info(struct urb *_urb, char* _fn_name)
7894+{
7895+ DWC_PRINT("%s, urb %p\n", _fn_name, _urb);
7896+ DWC_PRINT(" Device address: %d\n", usb_pipedevice(_urb->pipe));
7897+ DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(_urb->pipe),
7898+ (usb_pipein(_urb->pipe) ? "IN" : "OUT"));
7899+ DWC_PRINT(" Endpoint type: %s\n",
7900+ ({char *pipetype;
7901+ switch (usb_pipetype(_urb->pipe)) {
7902+ case PIPE_CONTROL: pipetype = "CONTROL"; break;
7903+ case PIPE_BULK: pipetype = "BULK"; break;
7904+ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
7905+ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
7906+ default: pipetype = "UNKNOWN"; break;
7907+ }; pipetype;}));
7908+ DWC_PRINT(" Speed: %s\n",
7909+ ({char *speed;
7910+ switch (_urb->dev->speed) {
7911+ case USB_SPEED_HIGH: speed = "HIGH"; break;
7912+ case USB_SPEED_FULL: speed = "FULL"; break;
7913+ case USB_SPEED_LOW: speed = "LOW"; break;
7914+ default: speed = "UNKNOWN"; break;
7915+ }; speed;}));
7916+ DWC_PRINT(" Max packet size: %d\n",
7917+ usb_maxpacket(_urb->dev, _urb->pipe, usb_pipeout(_urb->pipe)));
7918+ DWC_PRINT(" Data buffer length: %d\n", _urb->transfer_buffer_length);
7919+ DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n",
7920+ _urb->transfer_buffer, (void *)_urb->transfer_dma);
7921+ DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n",
7922+ _urb->setup_packet, (void *)_urb->setup_dma);
7923+ DWC_PRINT(" Interval: %d\n", _urb->interval);
7924+ if (usb_pipetype(_urb->pipe) == PIPE_ISOCHRONOUS) {
7925+ int i;
7926+ for (i = 0; i < _urb->number_of_packets; i++) {
7927+ DWC_PRINT(" ISO Desc %d:\n", i);
7928+ DWC_PRINT(" offset: %d, length %d\n",
7929+ _urb->iso_frame_desc[i].offset,
7930+ _urb->iso_frame_desc[i].length);
7931+ }
7932+ }
7933+}
7934+
7935+static void dump_channel_info(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *qh)
7936+{
7937+ if (qh->channel != NULL) {
7938+ dwc_hc_t *hc = qh->channel;
7939+ struct list_head *item;
7940+ dwc_otg_qh_t *qh_item;
7941+ int num_channels = _hcd->core_if->core_params->host_channels;
7942+ int i;
7943+
7944+ dwc_otg_hc_regs_t *hc_regs;
7945+ hcchar_data_t hcchar;
7946+ hcsplt_data_t hcsplt;
7947+ hctsiz_data_t hctsiz;
7948+ uint32_t hcdma;
7949+
7950+ hc_regs = _hcd->core_if->host_if->hc_regs[hc->hc_num];
7951+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
7952+ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
7953+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
7954+ hcdma = dwc_read_reg32(&hc_regs->hcdma);
7955+
7956+ DWC_PRINT(" Assigned to channel %p:\n", hc);
7957+ DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
7958+ DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
7959+ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
7960+ hc->dev_addr, hc->ep_num, hc->ep_is_in);
7961+ DWC_PRINT(" ep_type: %d\n", hc->ep_type);
7962+ DWC_PRINT(" max_packet: %d\n", hc->max_packet);
7963+ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
7964+ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
7965+ DWC_PRINT(" halt_status: %d\n", hc->halt_status);
7966+ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
7967+ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
7968+ DWC_PRINT(" qh: %p\n", hc->qh);
7969+ DWC_PRINT(" NP inactive sched:\n");
7970+ list_for_each(item, &_hcd->non_periodic_sched_inactive) {
7971+ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
7972+ DWC_PRINT(" %p\n", qh_item);
7973+ } DWC_PRINT(" NP active sched:\n");
7974+ list_for_each(item, &_hcd->non_periodic_sched_deferred) {
7975+ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
7976+ DWC_PRINT(" %p\n", qh_item);
7977+ } DWC_PRINT(" NP deferred sched:\n");
7978+ list_for_each(item, &_hcd->non_periodic_sched_active) {
7979+ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
7980+ DWC_PRINT(" %p\n", qh_item);
7981+ } DWC_PRINT(" Channels: \n");
7982+ for (i = 0; i < num_channels; i++) {
7983+ dwc_hc_t *hc = _hcd->hc_ptr_array[i];
7984+ DWC_PRINT(" %2d: %p\n", i, hc);
7985+ }
7986+ }
7987+}
7988+#endif // DEBUG
7989+
7990+/** Starts processing a USB transfer request specified by a USB Request Block
7991+ * (URB). mem_flags indicates the type of memory allocation to use while
7992+ * processing this URB. */
7993+int dwc_otg_hcd_urb_enqueue(struct usb_hcd *_hcd,
7994+ struct urb *_urb,
7995+ gfp_t _mem_flags)
7996+{
7997+ unsigned long flags;
7998+ int retval;
7999+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
8000+ dwc_otg_qtd_t *qtd;
8001+
8002+ local_irq_save(flags);
8003+ retval = usb_hcd_link_urb_to_ep(_hcd, _urb);
8004+ if (retval) {
8005+ local_irq_restore(flags);
8006+ return retval;
8007+ }
8008+#ifdef DEBUG
8009+ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
8010+ dump_urb_info(_urb, "dwc_otg_hcd_urb_enqueue");
8011+ }
8012+#endif // DEBUG
8013+ if (!dwc_otg_hcd->flags.b.port_connect_status) {
8014+ /* No longer connected. */
8015+ local_irq_restore(flags);
8016+ return -ENODEV;
8017+ }
8018+
8019+ qtd = dwc_otg_hcd_qtd_create (_urb);
8020+ if (qtd == NULL) {
8021+ local_irq_restore(flags);
8022+ DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n");
8023+ return -ENOMEM;
8024+ }
8025+
8026+ retval = dwc_otg_hcd_qtd_add (qtd, dwc_otg_hcd);
8027+ if (retval < 0) {
8028+ DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. "
8029+ "Error status %d\n", retval);
8030+ dwc_otg_hcd_qtd_free(qtd);
8031+ }
8032+
8033+ local_irq_restore (flags);
8034+ return retval;
8035+}
8036+
8037+/** Aborts/cancels a USB transfer request. Always returns 0 to indicate
8038+ * success. */
8039+int dwc_otg_hcd_urb_dequeue(struct usb_hcd *_hcd, struct urb *_urb, int _status)
8040+{
8041+ unsigned long flags;
8042+ dwc_otg_hcd_t *dwc_otg_hcd;
8043+ dwc_otg_qtd_t *urb_qtd;
8044+ dwc_otg_qh_t *qh;
8045+ int retval;
8046+ //struct usb_host_endpoint *_ep = NULL;
8047+
8048+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n");
8049+
8050+ local_irq_save(flags);
8051+
8052+ retval = usb_hcd_check_unlink_urb(_hcd, _urb, _status);
8053+ if (retval) {
8054+ local_irq_restore(flags);
8055+ return retval;
8056+ }
8057+
8058+ dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd);
8059+ urb_qtd = (dwc_otg_qtd_t *)_urb->hcpriv;
8060+ if (urb_qtd == NULL) {
8061+ printk("urb_qtd is NULL for _urb %08x\n",(unsigned)_urb);
8062+ goto done;
8063+ }
8064+ qh = (dwc_otg_qh_t *) urb_qtd->qtd_qh_ptr;
8065+ if (qh == NULL) {
8066+ goto done;
8067+ }
8068+
8069+#ifdef DEBUG
8070+ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
8071+ dump_urb_info(_urb, "dwc_otg_hcd_urb_dequeue");
8072+ if (urb_qtd == qh->qtd_in_process) {
8073+ dump_channel_info(dwc_otg_hcd, qh);
8074+ }
8075+ }
8076+#endif // DEBUG
8077+
8078+ if (urb_qtd == qh->qtd_in_process) {
8079+ /* The QTD is in process (it has been assigned to a channel). */
8080+
8081+ if (dwc_otg_hcd->flags.b.port_connect_status) {
8082+ /*
8083+ * If still connected (i.e. in host mode), halt the
8084+ * channel so it can be used for other transfers. If
8085+ * no longer connected, the host registers can't be
8086+ * written to halt the channel since the core is in
8087+ * device mode.
8088+ */
8089+ dwc_otg_hc_halt(dwc_otg_hcd->core_if, qh->channel,
8090+ DWC_OTG_HC_XFER_URB_DEQUEUE);
8091+ }
8092+ }
8093+
8094+ /*
8095+ * Free the QTD and clean up the associated QH. Leave the QH in the
8096+ * schedule if it has any remaining QTDs.
8097+ */
8098+ dwc_otg_hcd_qtd_remove_and_free(urb_qtd);
8099+ if (urb_qtd == qh->qtd_in_process) {
8100+ dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0);
8101+ qh->channel = NULL;
8102+ qh->qtd_in_process = NULL;
8103+ } else if (list_empty(&qh->qtd_list)) {
8104+ dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh);
8105+ }
8106+
8107+done:
8108+ local_irq_restore(flags);
8109+ _urb->hcpriv = NULL;
8110+
8111+ /* Higher layer software sets URB status. */
8112+ usb_hcd_unlink_urb_from_ep(_hcd, _urb);
8113+ usb_hcd_giveback_urb(_hcd, _urb, _status);
8114+ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
8115+ DWC_PRINT("Called usb_hcd_giveback_urb()\n");
8116+ DWC_PRINT(" urb->status = %d\n", _urb->status);
8117+ }
8118+
8119+ return 0;
8120+}
8121+
8122+
8123+/** Frees resources in the DWC_otg controller related to a given endpoint. Also
8124+ * clears state in the HCD related to the endpoint. Any URBs for the endpoint
8125+ * must already be dequeued. */
8126+void dwc_otg_hcd_endpoint_disable(struct usb_hcd *_hcd,
8127+ struct usb_host_endpoint *_ep)
8128+
8129+{
8130+ dwc_otg_qh_t *qh;
8131+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd);
8132+
8133+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, "
8134+ "endpoint=%d\n", _ep->desc.bEndpointAddress,
8135+ dwc_ep_addr_to_endpoint(_ep->desc.bEndpointAddress));
8136+
8137+ qh = (dwc_otg_qh_t *)(_ep->hcpriv);
8138+ if (qh != NULL) {
8139+#ifdef DEBUG
8140+ /** Check that the QTD list is really empty */
8141+ if (!list_empty(&qh->qtd_list)) {
8142+ DWC_WARN("DWC OTG HCD EP DISABLE:"
8143+ " QTD List for this endpoint is not empty\n");
8144+ }
8145+#endif // DEBUG
8146+
8147+ dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh);
8148+ _ep->hcpriv = NULL;
8149+ }
8150+
8151+ return;
8152+}
8153+extern int dwc_irq;
8154+/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
8155+ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
8156+ * interrupt.
8157+ *
8158+ * This function is called by the USB core when an interrupt occurs */
8159+irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *_hcd)
8160+{
8161+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
8162+
8163+ mask_and_ack_ifx_irq (dwc_irq);
8164+ return IRQ_RETVAL(dwc_otg_hcd_handle_intr(dwc_otg_hcd));
8165+}
8166+
8167+/** Creates Status Change bitmap for the root hub and root port. The bitmap is
8168+ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
8169+ * is the status change indicator for the single root port. Returns 1 if either
8170+ * change indicator is 1, otherwise returns 0. */
8171+int dwc_otg_hcd_hub_status_data(struct usb_hcd *_hcd, char *_buf)
8172+{
8173+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
8174+
8175+ _buf[0] = 0;
8176+ _buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change ||
8177+ dwc_otg_hcd->flags.b.port_reset_change ||
8178+ dwc_otg_hcd->flags.b.port_enable_change ||
8179+ dwc_otg_hcd->flags.b.port_suspend_change ||
8180+ dwc_otg_hcd->flags.b.port_over_current_change) << 1;
8181+
8182+#ifdef DEBUG
8183+ if (_buf[0]) {
8184+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:"
8185+ " Root port status changed\n");
8186+ DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n",
8187+ dwc_otg_hcd->flags.b.port_connect_status_change);
8188+ DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n",
8189+ dwc_otg_hcd->flags.b.port_reset_change);
8190+ DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n",
8191+ dwc_otg_hcd->flags.b.port_enable_change);
8192+ DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n",
8193+ dwc_otg_hcd->flags.b.port_suspend_change);
8194+ DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n",
8195+ dwc_otg_hcd->flags.b.port_over_current_change);
8196+ }
8197+#endif // DEBUG
8198+ return (_buf[0] != 0);
8199+}
8200+
8201+#ifdef DWC_HS_ELECT_TST
8202+/*
8203+ * Quick and dirty hack to implement the HS Electrical Test
8204+ * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature.
8205+ *
8206+ * This code was copied from our userspace app "hset". It sends a
8207+ * Get Device Descriptor control sequence in two parts, first the
8208+ * Setup packet by itself, followed some time later by the In and
8209+ * Ack packets. Rather than trying to figure out how to add this
8210+ * functionality to the normal driver code, we just hijack the
8211+ * hardware, using these two function to drive the hardware
8212+ * directly.
8213+ */
8214+
8215+dwc_otg_core_global_regs_t *global_regs;
8216+dwc_otg_host_global_regs_t *hc_global_regs;
8217+dwc_otg_hc_regs_t *hc_regs;
8218+uint32_t *data_fifo;
8219+
8220+static void do_setup(void)
8221+{
8222+ gintsts_data_t gintsts;
8223+ hctsiz_data_t hctsiz;
8224+ hcchar_data_t hcchar;
8225+ haint_data_t haint;
8226+ hcint_data_t hcint;
8227+
8228+ /* Enable HAINTs */
8229+ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
8230+
8231+ /* Enable HCINTs */
8232+ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
8233+
8234+ /* Read GINTSTS */
8235+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8236+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8237+
8238+ /* Read HAINT */
8239+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8240+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8241+
8242+ /* Read HCINT */
8243+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8244+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8245+
8246+ /* Read HCCHAR */
8247+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8248+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8249+
8250+ /* Clear HCINT */
8251+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8252+
8253+ /* Clear HAINT */
8254+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8255+
8256+ /* Clear GINTSTS */
8257+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8258+
8259+ /* Read GINTSTS */
8260+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8261+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8262+
8263+ /*
8264+ * Send Setup packet (Get Device Descriptor)
8265+ */
8266+
8267+ /* Make sure channel is disabled */
8268+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8269+ if (hcchar.b.chen) {
8270+ //fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32);
8271+ hcchar.b.chdis = 1;
8272+ // hcchar.b.chen = 1;
8273+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8274+ //sleep(1);
8275+ MDELAY(1000);
8276+
8277+ /* Read GINTSTS */
8278+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8279+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8280+
8281+ /* Read HAINT */
8282+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8283+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8284+
8285+ /* Read HCINT */
8286+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8287+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8288+
8289+ /* Read HCCHAR */
8290+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8291+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8292+
8293+ /* Clear HCINT */
8294+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8295+
8296+ /* Clear HAINT */
8297+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8298+
8299+ /* Clear GINTSTS */
8300+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8301+
8302+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8303+ //if (hcchar.b.chen) {
8304+ // fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32);
8305+ //}
8306+ }
8307+
8308+ /* Set HCTSIZ */
8309+ hctsiz.d32 = 0;
8310+ hctsiz.b.xfersize = 8;
8311+ hctsiz.b.pktcnt = 1;
8312+ hctsiz.b.pid = DWC_OTG_HC_PID_SETUP;
8313+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
8314+
8315+ /* Set HCCHAR */
8316+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8317+ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
8318+ hcchar.b.epdir = 0;
8319+ hcchar.b.epnum = 0;
8320+ hcchar.b.mps = 8;
8321+ hcchar.b.chen = 1;
8322+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8323+
8324+ /* Fill FIFO with Setup data for Get Device Descriptor */
8325+ data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
8326+ dwc_write_reg32(data_fifo++, 0x01000680);
8327+ dwc_write_reg32(data_fifo++, 0x00080000);
8328+
8329+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8330+ //fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
8331+
8332+ /* Wait for host channel interrupt */
8333+ do {
8334+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8335+ } while (gintsts.b.hcintr == 0);
8336+
8337+ //fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
8338+
8339+ /* Disable HCINTs */
8340+ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
8341+
8342+ /* Disable HAINTs */
8343+ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
8344+
8345+ /* Read HAINT */
8346+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8347+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8348+
8349+ /* Read HCINT */
8350+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8351+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8352+
8353+ /* Read HCCHAR */
8354+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8355+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8356+
8357+ /* Clear HCINT */
8358+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8359+
8360+ /* Clear HAINT */
8361+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8362+
8363+ /* Clear GINTSTS */
8364+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8365+
8366+ /* Read GINTSTS */
8367+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8368+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8369+}
8370+
8371+static void do_in_ack(void)
8372+{
8373+ gintsts_data_t gintsts;
8374+ hctsiz_data_t hctsiz;
8375+ hcchar_data_t hcchar;
8376+ haint_data_t haint;
8377+ hcint_data_t hcint;
8378+ host_grxsts_data_t grxsts;
8379+
8380+ /* Enable HAINTs */
8381+ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
8382+
8383+ /* Enable HCINTs */
8384+ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
8385+
8386+ /* Read GINTSTS */
8387+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8388+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8389+
8390+ /* Read HAINT */
8391+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8392+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8393+
8394+ /* Read HCINT */
8395+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8396+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8397+
8398+ /* Read HCCHAR */
8399+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8400+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8401+
8402+ /* Clear HCINT */
8403+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8404+
8405+ /* Clear HAINT */
8406+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8407+
8408+ /* Clear GINTSTS */
8409+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8410+
8411+ /* Read GINTSTS */
8412+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8413+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8414+
8415+ /*
8416+ * Receive Control In packet
8417+ */
8418+
8419+ /* Make sure channel is disabled */
8420+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8421+ if (hcchar.b.chen) {
8422+ //fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32);
8423+ hcchar.b.chdis = 1;
8424+ hcchar.b.chen = 1;
8425+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8426+ //sleep(1);
8427+ MDELAY(1000);
8428+
8429+ /* Read GINTSTS */
8430+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8431+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8432+
8433+ /* Read HAINT */
8434+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8435+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8436+
8437+ /* Read HCINT */
8438+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8439+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8440+
8441+ /* Read HCCHAR */
8442+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8443+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8444+
8445+ /* Clear HCINT */
8446+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8447+
8448+ /* Clear HAINT */
8449+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8450+
8451+ /* Clear GINTSTS */
8452+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8453+
8454+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8455+ //if (hcchar.b.chen) {
8456+ // fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32);
8457+ //}
8458+ }
8459+
8460+ /* Set HCTSIZ */
8461+ hctsiz.d32 = 0;
8462+ hctsiz.b.xfersize = 8;
8463+ hctsiz.b.pktcnt = 1;
8464+ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
8465+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
8466+
8467+ /* Set HCCHAR */
8468+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8469+ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
8470+ hcchar.b.epdir = 1;
8471+ hcchar.b.epnum = 0;
8472+ hcchar.b.mps = 8;
8473+ hcchar.b.chen = 1;
8474+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8475+
8476+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8477+ //fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
8478+
8479+ /* Wait for receive status queue interrupt */
8480+ do {
8481+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8482+ } while (gintsts.b.rxstsqlvl == 0);
8483+
8484+ //fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
8485+
8486+ /* Read RXSTS */
8487+ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
8488+ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
8489+
8490+ /* Clear RXSTSQLVL in GINTSTS */
8491+ gintsts.d32 = 0;
8492+ gintsts.b.rxstsqlvl = 1;
8493+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8494+
8495+ switch (grxsts.b.pktsts) {
8496+ case DWC_GRXSTS_PKTSTS_IN:
8497+ /* Read the data into the host buffer */
8498+ if (grxsts.b.bcnt > 0) {
8499+ int i;
8500+ int word_count = (grxsts.b.bcnt + 3) / 4;
8501+
8502+ data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
8503+
8504+ for (i = 0; i < word_count; i++) {
8505+ (void)dwc_read_reg32(data_fifo++);
8506+ }
8507+ }
8508+
8509+ //fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt);
8510+ break;
8511+
8512+ default:
8513+ //fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n");
8514+ break;
8515+ }
8516+
8517+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8518+ //fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
8519+
8520+ /* Wait for receive status queue interrupt */
8521+ do {
8522+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8523+ } while (gintsts.b.rxstsqlvl == 0);
8524+
8525+ //fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
8526+
8527+ /* Read RXSTS */
8528+ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
8529+ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
8530+
8531+ /* Clear RXSTSQLVL in GINTSTS */
8532+ gintsts.d32 = 0;
8533+ gintsts.b.rxstsqlvl = 1;
8534+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8535+
8536+ switch (grxsts.b.pktsts) {
8537+ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
8538+ break;
8539+
8540+ default:
8541+ //fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n");
8542+ break;
8543+ }
8544+
8545+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8546+ //fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
8547+
8548+ /* Wait for host channel interrupt */
8549+ do {
8550+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8551+ } while (gintsts.b.hcintr == 0);
8552+
8553+ //fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
8554+
8555+ /* Read HAINT */
8556+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8557+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8558+
8559+ /* Read HCINT */
8560+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8561+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8562+
8563+ /* Read HCCHAR */
8564+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8565+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8566+
8567+ /* Clear HCINT */
8568+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8569+
8570+ /* Clear HAINT */
8571+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8572+
8573+ /* Clear GINTSTS */
8574+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8575+
8576+ /* Read GINTSTS */
8577+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8578+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8579+
8580+ // usleep(100000);
8581+ // mdelay(100);
8582+ MDELAY(1);
8583+
8584+ /*
8585+ * Send handshake packet
8586+ */
8587+
8588+ /* Read HAINT */
8589+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8590+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8591+
8592+ /* Read HCINT */
8593+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8594+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8595+
8596+ /* Read HCCHAR */
8597+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8598+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8599+
8600+ /* Clear HCINT */
8601+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8602+
8603+ /* Clear HAINT */
8604+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8605+
8606+ /* Clear GINTSTS */
8607+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8608+
8609+ /* Read GINTSTS */
8610+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8611+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8612+
8613+ /* Make sure channel is disabled */
8614+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8615+ if (hcchar.b.chen) {
8616+ //fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32);
8617+ hcchar.b.chdis = 1;
8618+ hcchar.b.chen = 1;
8619+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8620+ //sleep(1);
8621+ MDELAY(1000);
8622+
8623+ /* Read GINTSTS */
8624+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8625+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8626+
8627+ /* Read HAINT */
8628+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8629+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8630+
8631+ /* Read HCINT */
8632+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8633+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8634+
8635+ /* Read HCCHAR */
8636+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8637+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8638+
8639+ /* Clear HCINT */
8640+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8641+
8642+ /* Clear HAINT */
8643+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8644+
8645+ /* Clear GINTSTS */
8646+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8647+
8648+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8649+ //if (hcchar.b.chen) {
8650+ // fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32);
8651+ //}
8652+ }
8653+
8654+ /* Set HCTSIZ */
8655+ hctsiz.d32 = 0;
8656+ hctsiz.b.xfersize = 0;
8657+ hctsiz.b.pktcnt = 1;
8658+ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
8659+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
8660+
8661+ /* Set HCCHAR */
8662+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8663+ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
8664+ hcchar.b.epdir = 0;
8665+ hcchar.b.epnum = 0;
8666+ hcchar.b.mps = 8;
8667+ hcchar.b.chen = 1;
8668+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8669+
8670+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8671+ //fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
8672+
8673+ /* Wait for host channel interrupt */
8674+ do {
8675+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8676+ } while (gintsts.b.hcintr == 0);
8677+
8678+ //fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
8679+
8680+ /* Disable HCINTs */
8681+ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
8682+
8683+ /* Disable HAINTs */
8684+ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
8685+
8686+ /* Read HAINT */
8687+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8688+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8689+
8690+ /* Read HCINT */
8691+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8692+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8693+
8694+ /* Read HCCHAR */
8695+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8696+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8697+
8698+ /* Clear HCINT */
8699+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8700+
8701+ /* Clear HAINT */
8702+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8703+
8704+ /* Clear GINTSTS */
8705+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8706+
8707+ /* Read GINTSTS */
8708+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8709+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8710+}
8711+#endif /* DWC_HS_ELECT_TST */
8712+
8713+/** Handles hub class-specific requests.*/
8714+int dwc_otg_hcd_hub_control(struct usb_hcd *_hcd,
8715+ u16 _typeReq,
8716+ u16 _wValue,
8717+ u16 _wIndex,
8718+ char *_buf,
8719+ u16 _wLength)
8720+{
8721+ int retval = 0;
8722+
8723+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
8724+ dwc_otg_core_if_t *core_if = hcd_to_dwc_otg_hcd (_hcd)->core_if;
8725+ struct usb_hub_descriptor *desc;
8726+ hprt0_data_t hprt0 = {.d32 = 0};
8727+
8728+ uint32_t port_status;
8729+
8730+ switch (_typeReq) {
8731+ case ClearHubFeature:
8732+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8733+ "ClearHubFeature 0x%x\n", _wValue);
8734+ switch (_wValue) {
8735+ case C_HUB_LOCAL_POWER:
8736+ case C_HUB_OVER_CURRENT:
8737+ /* Nothing required here */
8738+ break;
8739+ default:
8740+ retval = -EINVAL;
8741+ DWC_ERROR ("DWC OTG HCD - "
8742+ "ClearHubFeature request %xh unknown\n", _wValue);
8743+ }
8744+ break;
8745+ case ClearPortFeature:
8746+ if (!_wIndex || _wIndex > 1)
8747+ goto error;
8748+
8749+ switch (_wValue) {
8750+ case USB_PORT_FEAT_ENABLE:
8751+ DWC_DEBUGPL (DBG_ANY, "DWC OTG HCD HUB CONTROL - "
8752+ "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
8753+ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
8754+ hprt0.b.prtena = 1;
8755+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8756+ break;
8757+ case USB_PORT_FEAT_SUSPEND:
8758+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8759+ "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
8760+ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
8761+ hprt0.b.prtres = 1;
8762+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8763+ /* Clear Resume bit */
8764+ mdelay (100);
8765+ hprt0.b.prtres = 0;
8766+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8767+ break;
8768+ case USB_PORT_FEAT_POWER:
8769+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8770+ "ClearPortFeature USB_PORT_FEAT_POWER\n");
8771+ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
8772+ hprt0.b.prtpwr = 0;
8773+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8774+ break;
8775+ case USB_PORT_FEAT_INDICATOR:
8776+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8777+ "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
8778+ /* Port inidicator not supported */
8779+ break;
8780+ case USB_PORT_FEAT_C_CONNECTION:
8781+ /* Clears drivers internal connect status change
8782+ * flag */
8783+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8784+ "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
8785+ dwc_otg_hcd->flags.b.port_connect_status_change = 0;
8786+ break;
8787+ case USB_PORT_FEAT_C_RESET:
8788+ /* Clears the driver's internal Port Reset Change
8789+ * flag */
8790+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8791+ "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
8792+ dwc_otg_hcd->flags.b.port_reset_change = 0;
8793+ break;
8794+ case USB_PORT_FEAT_C_ENABLE:
8795+ /* Clears the driver's internal Port
8796+ * Enable/Disable Change flag */
8797+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8798+ "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
8799+ dwc_otg_hcd->flags.b.port_enable_change = 0;
8800+ break;
8801+ case USB_PORT_FEAT_C_SUSPEND:
8802+ /* Clears the driver's internal Port Suspend
8803+ * Change flag, which is set when resume signaling on
8804+ * the host port is complete */
8805+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8806+ "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
8807+ dwc_otg_hcd->flags.b.port_suspend_change = 0;
8808+ break;
8809+ case USB_PORT_FEAT_C_OVER_CURRENT:
8810+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8811+ "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
8812+ dwc_otg_hcd->flags.b.port_over_current_change = 0;
8813+ break;
8814+ default:
8815+ retval = -EINVAL;
8816+ DWC_ERROR ("DWC OTG HCD - "
8817+ "ClearPortFeature request %xh "
8818+ "unknown or unsupported\n", _wValue);
8819+ }
8820+ break;
8821+ case GetHubDescriptor:
8822+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8823+ "GetHubDescriptor\n");
8824+ desc = (struct usb_hub_descriptor *)_buf;
8825+ desc->bDescLength = 9;
8826+ desc->bDescriptorType = 0x29;
8827+ desc->bNbrPorts = 1;
8828+ desc->wHubCharacteristics = 0x08;
8829+ desc->bPwrOn2PwrGood = 1;
8830+ desc->bHubContrCurrent = 0;
8831+ desc->u.hs.DeviceRemovable[0] = 0;
8832+ desc->u.hs.DeviceRemovable[1] = 0xff;
8833+ break;
8834+ case GetHubStatus:
8835+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8836+ "GetHubStatus\n");
8837+ memset (_buf, 0, 4);
8838+ break;
8839+ case GetPortStatus:
8840+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8841+ "GetPortStatus\n");
8842+
8843+ if (!_wIndex || _wIndex > 1)
8844+ goto error;
8845+
8846+ port_status = 0;
8847+
8848+ if (dwc_otg_hcd->flags.b.port_connect_status_change)
8849+ port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
8850+
8851+ if (dwc_otg_hcd->flags.b.port_enable_change)
8852+ port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
8853+
8854+ if (dwc_otg_hcd->flags.b.port_suspend_change)
8855+ port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
8856+
8857+ if (dwc_otg_hcd->flags.b.port_reset_change)
8858+ port_status |= (1 << USB_PORT_FEAT_C_RESET);
8859+
8860+ if (dwc_otg_hcd->flags.b.port_over_current_change) {
8861+ DWC_ERROR("Device Not Supported\n");
8862+ port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
8863+ }
8864+
8865+ if (!dwc_otg_hcd->flags.b.port_connect_status) {
8866+ printk("DISCONNECTED PORT\n");
8867+ /*
8868+ * The port is disconnected, which means the core is
8869+ * either in device mode or it soon will be. Just
8870+ * return 0's for the remainder of the port status
8871+ * since the port register can't be read if the core
8872+ * is in device mode.
8873+ */
8874+#if 1 // winder.
8875+ *((u32 *) _buf) = cpu_to_le32(port_status);
8876+#else
8877+ *((__le32 *) _buf) = cpu_to_le32(port_status);
8878+#endif
8879+ break;
8880+ }
8881+
8882+ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
8883+ DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32);
8884+
8885+ if (hprt0.b.prtconnsts)
8886+ port_status |= (1 << USB_PORT_FEAT_CONNECTION);
8887+
8888+ if (hprt0.b.prtena)
8889+ port_status |= (1 << USB_PORT_FEAT_ENABLE);
8890+
8891+ if (hprt0.b.prtsusp)
8892+ port_status |= (1 << USB_PORT_FEAT_SUSPEND);
8893+
8894+ if (hprt0.b.prtovrcurract)
8895+ port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
8896+
8897+ if (hprt0.b.prtrst)
8898+ port_status |= (1 << USB_PORT_FEAT_RESET);
8899+
8900+ if (hprt0.b.prtpwr)
8901+ port_status |= (1 << USB_PORT_FEAT_POWER);
8902+
8903+ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
8904+ port_status |= USB_PORT_STAT_HIGH_SPEED;
8905+
8906+ else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
8907+ port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
8908+
8909+ if (hprt0.b.prttstctl)
8910+ port_status |= (1 << USB_PORT_FEAT_TEST);
8911+
8912+ /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
8913+#if 1 // winder.
8914+ *((u32 *) _buf) = cpu_to_le32(port_status);
8915+#else
8916+ *((__le32 *) _buf) = cpu_to_le32(port_status);
8917+#endif
8918+
8919+ break;
8920+ case SetHubFeature:
8921+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8922+ "SetHubFeature\n");
8923+ /* No HUB features supported */
8924+ break;
8925+ case SetPortFeature:
8926+ if (_wValue != USB_PORT_FEAT_TEST && (!_wIndex || _wIndex > 1))
8927+ goto error;
8928+
8929+ if (!dwc_otg_hcd->flags.b.port_connect_status) {
8930+ /*
8931+ * The port is disconnected, which means the core is
8932+ * either in device mode or it soon will be. Just
8933+ * return without doing anything since the port
8934+ * register can't be written if the core is in device
8935+ * mode.
8936+ */
8937+ break;
8938+ }
8939+
8940+ switch (_wValue) {
8941+ case USB_PORT_FEAT_SUSPEND:
8942+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8943+ "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
8944+ if (_hcd->self.otg_port == _wIndex
8945+ && _hcd->self.b_hnp_enable) {
8946+ gotgctl_data_t gotgctl = {.d32=0};
8947+ gotgctl.b.hstsethnpen = 1;
8948+ dwc_modify_reg32(&core_if->core_global_regs->
8949+ gotgctl, 0, gotgctl.d32);
8950+ core_if->op_state = A_SUSPEND;
8951+ }
8952+ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
8953+ hprt0.b.prtsusp = 1;
8954+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8955+ //DWC_PRINT( "SUSPEND: HPRT0=%0x\n", hprt0.d32);
8956+ /* Suspend the Phy Clock */
8957+ {
8958+ pcgcctl_data_t pcgcctl = {.d32=0};
8959+ pcgcctl.b.stoppclk = 1;
8960+ dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
8961+ }
8962+
8963+ /* For HNP the bus must be suspended for at least 200ms.*/
8964+ if (_hcd->self.b_hnp_enable) {
8965+ mdelay(200);
8966+ //DWC_PRINT( "SUSPEND: wait complete! (%d)\n", _hcd->state);
8967+ }
8968+ break;
8969+ case USB_PORT_FEAT_POWER:
8970+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8971+ "SetPortFeature - USB_PORT_FEAT_POWER\n");
8972+ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
8973+ hprt0.b.prtpwr = 1;
8974+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8975+ break;
8976+ case USB_PORT_FEAT_RESET:
8977+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8978+ "SetPortFeature - USB_PORT_FEAT_RESET\n");
8979+ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
8980+ /* TODO: Is this for OTG protocol??
8981+ * We shoudl remove OTG totally for Danube system.
8982+ * But, in the future, maybe we need this.
8983+ */
8984+#if 1 // winder
8985+ hprt0.b.prtrst = 1;
8986+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8987+#else
8988+ /* When B-Host the Port reset bit is set in
8989+ * the Start HCD Callback function, so that
8990+ * the reset is started within 1ms of the HNP
8991+ * success interrupt. */
8992+ if (!_hcd->self.is_b_host) {
8993+ hprt0.b.prtrst = 1;
8994+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8995+ }
8996+#endif
8997+ /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
8998+ MDELAY (60);
8999+ hprt0.b.prtrst = 0;
9000+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9001+ break;
9002+
9003+#ifdef DWC_HS_ELECT_TST
9004+ case USB_PORT_FEAT_TEST:
9005+ {
9006+ uint32_t t;
9007+ gintmsk_data_t gintmsk;
9008+
9009+ t = (_wIndex >> 8); /* MSB wIndex USB */
9010+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9011+ "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t);
9012+ printk("USB_PORT_FEAT_TEST %d\n", t);
9013+ if (t < 6) {
9014+ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
9015+ hprt0.b.prttstctl = t;
9016+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9017+ } else {
9018+ /* Setup global vars with reg addresses (quick and
9019+ * dirty hack, should be cleaned up)
9020+ */
9021+ global_regs = core_if->core_global_regs;
9022+ hc_global_regs = core_if->host_if->host_global_regs;
9023+ hc_regs = (dwc_otg_hc_regs_t *)((char *)global_regs + 0x500);
9024+ data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
9025+
9026+ if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */
9027+ /* Save current interrupt mask */
9028+ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
9029+
9030+ /* Disable all interrupts while we muck with
9031+ * the hardware directly
9032+ */
9033+ dwc_write_reg32(&global_regs->gintmsk, 0);
9034+
9035+ /* 15 second delay per the test spec */
9036+ mdelay(15000);
9037+
9038+ /* Drive suspend on the root port */
9039+ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
9040+ hprt0.b.prtsusp = 1;
9041+ hprt0.b.prtres = 0;
9042+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9043+
9044+ /* 15 second delay per the test spec */
9045+ mdelay(15000);
9046+
9047+ /* Drive resume on the root port */
9048+ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
9049+ hprt0.b.prtsusp = 0;
9050+ hprt0.b.prtres = 1;
9051+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9052+ mdelay(100);
9053+
9054+ /* Clear the resume bit */
9055+ hprt0.b.prtres = 0;
9056+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9057+
9058+ /* Restore interrupts */
9059+ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
9060+ } else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
9061+ /* Save current interrupt mask */
9062+ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
9063+
9064+ /* Disable all interrupts while we muck with
9065+ * the hardware directly
9066+ */
9067+ dwc_write_reg32(&global_regs->gintmsk, 0);
9068+
9069+ /* 15 second delay per the test spec */
9070+ mdelay(15000);
9071+
9072+ /* Send the Setup packet */
9073+ do_setup();
9074+
9075+ /* 15 second delay so nothing else happens for awhile */
9076+ mdelay(15000);
9077+
9078+ /* Restore interrupts */
9079+ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
9080+ } else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
9081+ /* Save current interrupt mask */
9082+ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
9083+
9084+ /* Disable all interrupts while we muck with
9085+ * the hardware directly
9086+ */
9087+ dwc_write_reg32(&global_regs->gintmsk, 0);
9088+
9089+ /* Send the Setup packet */
9090+ do_setup();
9091+
9092+ /* 15 second delay so nothing else happens for awhile */
9093+ mdelay(15000);
9094+
9095+ /* Send the In and Ack packets */
9096+ do_in_ack();
9097+
9098+ /* 15 second delay so nothing else happens for awhile */
9099+ mdelay(15000);
9100+
9101+ /* Restore interrupts */
9102+ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
9103+ }
9104+ }
9105+ break;
9106+ }
9107+#endif /* DWC_HS_ELECT_TST */
9108+
9109+ case USB_PORT_FEAT_INDICATOR:
9110+ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9111+ "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
9112+ /* Not supported */
9113+ break;
9114+ default:
9115+ retval = -EINVAL;
9116+ DWC_ERROR ("DWC OTG HCD - "
9117+ "SetPortFeature request %xh "
9118+ "unknown or unsupported\n", _wValue);
9119+ break;
9120+ }
9121+ break;
9122+ default:
9123+error:
9124+ retval = -EINVAL;
9125+ DWC_WARN ("DWC OTG HCD - "
9126+ "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n",
9127+ _typeReq, _wIndex, _wValue);
9128+ break;
9129+ }
9130+
9131+ return retval;
9132+}
9133+
9134+
9135+/**
9136+ * Assigns transactions from a QTD to a free host channel and initializes the
9137+ * host channel to perform the transactions. The host channel is removed from
9138+ * the free list.
9139+ *
9140+ * @param _hcd The HCD state structure.
9141+ * @param _qh Transactions from the first QTD for this QH are selected and
9142+ * assigned to a free host channel.
9143+ */
9144+static void assign_and_init_hc(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
9145+{
9146+ dwc_hc_t *hc;
9147+ dwc_otg_qtd_t *qtd;
9148+ struct urb *urb;
9149+
9150+ DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, _hcd, _qh);
9151+
9152+ hc = list_entry(_hcd->free_hc_list.next, dwc_hc_t, hc_list_entry);
9153+
9154+ /* Remove the host channel from the free list. */
9155+ list_del_init(&hc->hc_list_entry);
9156+
9157+ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
9158+ urb = qtd->urb;
9159+ _qh->channel = hc;
9160+ _qh->qtd_in_process = qtd;
9161+
9162+ /*
9163+ * Use usb_pipedevice to determine device address. This address is
9164+ * 0 before the SET_ADDRESS command and the correct address afterward.
9165+ */
9166+ hc->dev_addr = usb_pipedevice(urb->pipe);
9167+ hc->ep_num = usb_pipeendpoint(urb->pipe);
9168+
9169+ if (urb->dev->speed == USB_SPEED_LOW) {
9170+ hc->speed = DWC_OTG_EP_SPEED_LOW;
9171+ } else if (urb->dev->speed == USB_SPEED_FULL) {
9172+ hc->speed = DWC_OTG_EP_SPEED_FULL;
9173+ } else {
9174+ hc->speed = DWC_OTG_EP_SPEED_HIGH;
9175+ }
9176+ hc->max_packet = dwc_max_packet(_qh->maxp);
9177+
9178+ hc->xfer_started = 0;
9179+ hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
9180+ hc->error_state = (qtd->error_count > 0);
9181+ hc->halt_on_queue = 0;
9182+ hc->halt_pending = 0;
9183+ hc->requests = 0;
9184+
9185+ /*
9186+ * The following values may be modified in the transfer type section
9187+ * below. The xfer_len value may be reduced when the transfer is
9188+ * started to accommodate the max widths of the XferSize and PktCnt
9189+ * fields in the HCTSIZn register.
9190+ */
9191+ hc->do_ping = _qh->ping_state;
9192+ hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
9193+ hc->data_pid_start = _qh->data_toggle;
9194+ hc->multi_count = 1;
9195+
9196+ if (_hcd->core_if->dma_enable) {
9197+ hc->xfer_buff = (uint8_t *)(u32)urb->transfer_dma + urb->actual_length;
9198+ } else {
9199+ hc->xfer_buff = (uint8_t *)urb->transfer_buffer + urb->actual_length;
9200+ }
9201+ hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
9202+ hc->xfer_count = 0;
9203+
9204+ /*
9205+ * Set the split attributes
9206+ */
9207+ hc->do_split = 0;
9208+ if (_qh->do_split) {
9209+ hc->do_split = 1;
9210+ hc->xact_pos = qtd->isoc_split_pos;
9211+ hc->complete_split = qtd->complete_split;
9212+ hc->hub_addr = urb->dev->tt->hub->devnum;
9213+ hc->port_addr = urb->dev->ttport;
9214+ }
9215+
9216+ switch (usb_pipetype(urb->pipe)) {
9217+ case PIPE_CONTROL:
9218+ hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
9219+ switch (qtd->control_phase) {
9220+ case DWC_OTG_CONTROL_SETUP:
9221+ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n");
9222+ hc->do_ping = 0;
9223+ hc->ep_is_in = 0;
9224+ hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
9225+ if (_hcd->core_if->dma_enable) {
9226+ hc->xfer_buff = (uint8_t *)(u32)urb->setup_dma;
9227+ } else {
9228+ hc->xfer_buff = (uint8_t *)urb->setup_packet;
9229+ }
9230+ hc->xfer_len = 8;
9231+ break;
9232+ case DWC_OTG_CONTROL_DATA:
9233+ DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n");
9234+ hc->data_pid_start = qtd->data_toggle;
9235+ break;
9236+ case DWC_OTG_CONTROL_STATUS:
9237+ /*
9238+ * Direction is opposite of data direction or IN if no
9239+ * data.
9240+ */
9241+ DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n");
9242+ if (urb->transfer_buffer_length == 0) {
9243+ hc->ep_is_in = 1;
9244+ } else {
9245+ hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN);
9246+ }
9247+ if (hc->ep_is_in) {
9248+ hc->do_ping = 0;
9249+ }
9250+ hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
9251+ hc->xfer_len = 0;
9252+ if (_hcd->core_if->dma_enable) {
9253+ hc->xfer_buff = (uint8_t *)_hcd->status_buf_dma;
9254+ } else {
9255+ hc->xfer_buff = (uint8_t *)_hcd->status_buf;
9256+ }
9257+ break;
9258+ }
9259+ break;
9260+ case PIPE_BULK:
9261+ hc->ep_type = DWC_OTG_EP_TYPE_BULK;
9262+ break;
9263+ case PIPE_INTERRUPT:
9264+ hc->ep_type = DWC_OTG_EP_TYPE_INTR;
9265+ break;
9266+ case PIPE_ISOCHRONOUS:
9267+ {
9268+ struct usb_iso_packet_descriptor *frame_desc;
9269+ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
9270+ hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
9271+ if (_hcd->core_if->dma_enable) {
9272+ hc->xfer_buff = (uint8_t *)(u32)urb->transfer_dma;
9273+ } else {
9274+ hc->xfer_buff = (uint8_t *)urb->transfer_buffer;
9275+ }
9276+ hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset;
9277+ hc->xfer_len = frame_desc->length - qtd->isoc_split_offset;
9278+
9279+ if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
9280+ if (hc->xfer_len <= 188) {
9281+ hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
9282+ }
9283+ else {
9284+ hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN;
9285+ }
9286+ }
9287+ }
9288+ break;
9289+ }
9290+
9291+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
9292+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
9293+ /*
9294+ * This value may be modified when the transfer is started to
9295+ * reflect the actual transfer length.
9296+ */
9297+ hc->multi_count = dwc_hb_mult(_qh->maxp);
9298+ }
9299+
9300+ dwc_otg_hc_init(_hcd->core_if, hc);
9301+ hc->qh = _qh;
9302+}
9303+#define DEBUG_HOST_CHANNELS
9304+#ifdef DEBUG_HOST_CHANNELS
9305+static int last_sel_trans_num_per_scheduled = 0;
9306+module_param(last_sel_trans_num_per_scheduled, int, 0444);
9307+
9308+static int last_sel_trans_num_nonper_scheduled = 0;
9309+module_param(last_sel_trans_num_nonper_scheduled, int, 0444);
9310+
9311+static int last_sel_trans_num_avail_hc_at_start = 0;
9312+module_param(last_sel_trans_num_avail_hc_at_start, int, 0444);
9313+
9314+static int last_sel_trans_num_avail_hc_at_end = 0;
9315+module_param(last_sel_trans_num_avail_hc_at_end, int, 0444);
9316+#endif /* DEBUG_HOST_CHANNELS */
9317+
9318+/**
9319+ * This function selects transactions from the HCD transfer schedule and
9320+ * assigns them to available host channels. It is called from HCD interrupt
9321+ * handler functions.
9322+ *
9323+ * @param _hcd The HCD state structure.
9324+ *
9325+ * @return The types of new transactions that were assigned to host channels.
9326+ */
9327+dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *_hcd)
9328+{
9329+ struct list_head *qh_ptr;
9330+ dwc_otg_qh_t *qh;
9331+ int num_channels;
9332+ unsigned long flags;
9333+ dwc_otg_transaction_type_e ret_val = DWC_OTG_TRANSACTION_NONE;
9334+
9335+#ifdef DEBUG_SOF
9336+ DWC_DEBUGPL(DBG_HCD, " Select Transactions\n");
9337+#endif /* */
9338+
9339+#ifdef DEBUG_HOST_CHANNELS
9340+ last_sel_trans_num_per_scheduled = 0;
9341+ last_sel_trans_num_nonper_scheduled = 0;
9342+ last_sel_trans_num_avail_hc_at_start = _hcd->available_host_channels;
9343+#endif /* DEBUG_HOST_CHANNELS */
9344+
9345+ /* Process entries in the periodic ready list. */
9346+ num_channels = _hcd->core_if->core_params->host_channels;
9347+ qh_ptr = _hcd->periodic_sched_ready.next;
9348+ while (qh_ptr != &_hcd->periodic_sched_ready
9349+ && !list_empty(&_hcd->free_hc_list)) {
9350+
9351+ // Make sure we leave one channel for non periodic transactions.
9352+ local_irq_save(flags);
9353+ if (_hcd->available_host_channels <= 1) {
9354+ local_irq_restore(flags);
9355+ break;
9356+ }
9357+ _hcd->available_host_channels--;
9358+ local_irq_restore(flags);
9359+#ifdef DEBUG_HOST_CHANNELS
9360+ last_sel_trans_num_per_scheduled++;
9361+#endif /* DEBUG_HOST_CHANNELS */
9362+
9363+ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
9364+ assign_and_init_hc(_hcd, qh);
9365+
9366+ /*
9367+ * Move the QH from the periodic ready schedule to the
9368+ * periodic assigned schedule.
9369+ */
9370+ qh_ptr = qh_ptr->next;
9371+ local_irq_save(flags);
9372+ list_move(&qh->qh_list_entry, &_hcd->periodic_sched_assigned);
9373+ local_irq_restore(flags);
9374+ ret_val = DWC_OTG_TRANSACTION_PERIODIC;
9375+ }
9376+
9377+ /*
9378+ * Process entries in the deferred portion of the non-periodic list.
9379+ * A NAK put them here and, at the right time, they need to be
9380+ * placed on the sched_inactive list.
9381+ */
9382+ qh_ptr = _hcd->non_periodic_sched_deferred.next;
9383+ while (qh_ptr != &_hcd->non_periodic_sched_deferred) {
9384+ uint16_t frame_number =
9385+ dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd));
9386+ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
9387+ qh_ptr = qh_ptr->next;
9388+
9389+ if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
9390+ // NAK did this
9391+ /*
9392+ * Move the QH from the non periodic deferred schedule to
9393+ * the non periodic inactive schedule.
9394+ */
9395+ local_irq_save(flags);
9396+ list_move(&qh->qh_list_entry,
9397+ &_hcd->non_periodic_sched_inactive);
9398+ local_irq_restore(flags);
9399+ }
9400+ }
9401+
9402+ /*
9403+ * Process entries in the inactive portion of the non-periodic
9404+ * schedule. Some free host channels may not be used if they are
9405+ * reserved for periodic transfers.
9406+ */
9407+ qh_ptr = _hcd->non_periodic_sched_inactive.next;
9408+ num_channels = _hcd->core_if->core_params->host_channels;
9409+ while (qh_ptr != &_hcd->non_periodic_sched_inactive
9410+ && !list_empty(&_hcd->free_hc_list)) {
9411+
9412+ local_irq_save(flags);
9413+ if (_hcd->available_host_channels < 1) {
9414+ local_irq_restore(flags);
9415+ break;
9416+ }
9417+ _hcd->available_host_channels--;
9418+ local_irq_restore(flags);
9419+#ifdef DEBUG_HOST_CHANNELS
9420+ last_sel_trans_num_nonper_scheduled++;
9421+#endif /* DEBUG_HOST_CHANNELS */
9422+
9423+ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
9424+ assign_and_init_hc(_hcd, qh);
9425+
9426+ /*
9427+ * Move the QH from the non-periodic inactive schedule to the
9428+ * non-periodic active schedule.
9429+ */
9430+ qh_ptr = qh_ptr->next;
9431+ local_irq_save(flags);
9432+ list_move(&qh->qh_list_entry, &_hcd->non_periodic_sched_active);
9433+ local_irq_restore(flags);
9434+
9435+ if (ret_val == DWC_OTG_TRANSACTION_NONE) {
9436+ ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
9437+ } else {
9438+ ret_val = DWC_OTG_TRANSACTION_ALL;
9439+ }
9440+
9441+ }
9442+#ifdef DEBUG_HOST_CHANNELS
9443+ last_sel_trans_num_avail_hc_at_end = _hcd->available_host_channels;
9444+#endif /* DEBUG_HOST_CHANNELS */
9445+
9446+ return ret_val;
9447+}
9448+
9449+/**
9450+ * Attempts to queue a single transaction request for a host channel
9451+ * associated with either a periodic or non-periodic transfer. This function
9452+ * assumes that there is space available in the appropriate request queue. For
9453+ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
9454+ * is available in the appropriate Tx FIFO.
9455+ *
9456+ * @param _hcd The HCD state structure.
9457+ * @param _hc Host channel descriptor associated with either a periodic or
9458+ * non-periodic transfer.
9459+ * @param _fifo_dwords_avail Number of DWORDs available in the periodic Tx
9460+ * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic
9461+ * transfers.
9462+ *
9463+ * @return 1 if a request is queued and more requests may be needed to
9464+ * complete the transfer, 0 if no more requests are required for this
9465+ * transfer, -1 if there is insufficient space in the Tx FIFO.
9466+ */
9467+static int queue_transaction(dwc_otg_hcd_t *_hcd,
9468+ dwc_hc_t *_hc,
9469+ uint16_t _fifo_dwords_avail)
9470+{
9471+ int retval;
9472+
9473+ if (_hcd->core_if->dma_enable) {
9474+ if (!_hc->xfer_started) {
9475+ dwc_otg_hc_start_transfer(_hcd->core_if, _hc);
9476+ _hc->qh->ping_state = 0;
9477+ }
9478+ retval = 0;
9479+ } else if (_hc->halt_pending) {
9480+ /* Don't queue a request if the channel has been halted. */
9481+ retval = 0;
9482+ } else if (_hc->halt_on_queue) {
9483+ dwc_otg_hc_halt(_hcd->core_if, _hc, _hc->halt_status);
9484+ retval = 0;
9485+ } else if (_hc->do_ping) {
9486+ if (!_hc->xfer_started) {
9487+ dwc_otg_hc_start_transfer(_hcd->core_if, _hc);
9488+ }
9489+ retval = 0;
9490+ } else if (!_hc->ep_is_in ||
9491+ _hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
9492+ if ((_fifo_dwords_avail * 4) >= _hc->max_packet) {
9493+ if (!_hc->xfer_started) {
9494+ dwc_otg_hc_start_transfer(_hcd->core_if, _hc);
9495+ retval = 1;
9496+ } else {
9497+ retval = dwc_otg_hc_continue_transfer(_hcd->core_if, _hc);
9498+ }
9499+ } else {
9500+ retval = -1;
9501+ }
9502+ } else {
9503+ if (!_hc->xfer_started) {
9504+ dwc_otg_hc_start_transfer(_hcd->core_if, _hc);
9505+ retval = 1;
9506+ } else {
9507+ retval = dwc_otg_hc_continue_transfer(_hcd->core_if, _hc);
9508+ }
9509+ }
9510+
9511+ return retval;
9512+}
9513+
9514+/**
9515+ * Processes active non-periodic channels and queues transactions for these
9516+ * channels to the DWC_otg controller. After queueing transactions, the NP Tx
9517+ * FIFO Empty interrupt is enabled if there are more transactions to queue as
9518+ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
9519+ * FIFO Empty interrupt is disabled.
9520+ */
9521+static void process_non_periodic_channels(dwc_otg_hcd_t *_hcd)
9522+{
9523+ gnptxsts_data_t tx_status;
9524+ struct list_head *orig_qh_ptr;
9525+ dwc_otg_qh_t *qh;
9526+ int status;
9527+ int no_queue_space = 0;
9528+ int no_fifo_space = 0;
9529+ int more_to_do = 0;
9530+
9531+ dwc_otg_core_global_regs_t *global_regs = _hcd->core_if->core_global_regs;
9532+
9533+ DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n");
9534+#ifdef DEBUG
9535+ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
9536+ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (before queue): %d\n",
9537+ tx_status.b.nptxqspcavail);
9538+ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n",
9539+ tx_status.b.nptxfspcavail);
9540+#endif
9541+ /*
9542+ * Keep track of the starting point. Skip over the start-of-list
9543+ * entry.
9544+ */
9545+ if (_hcd->non_periodic_qh_ptr == &_hcd->non_periodic_sched_active) {
9546+ _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next;
9547+ }
9548+ orig_qh_ptr = _hcd->non_periodic_qh_ptr;
9549+
9550+ /*
9551+ * Process once through the active list or until no more space is
9552+ * available in the request queue or the Tx FIFO.
9553+ */
9554+ do {
9555+ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
9556+ if (!_hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) {
9557+ no_queue_space = 1;
9558+ break;
9559+ }
9560+
9561+ qh = list_entry(_hcd->non_periodic_qh_ptr, dwc_otg_qh_t, qh_list_entry);
9562+ status = queue_transaction(_hcd, qh->channel, tx_status.b.nptxfspcavail);
9563+
9564+ if (status > 0) {
9565+ more_to_do = 1;
9566+ } else if (status < 0) {
9567+ no_fifo_space = 1;
9568+ break;
9569+ }
9570+
9571+ /* Advance to next QH, skipping start-of-list entry. */
9572+ _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next;
9573+ if (_hcd->non_periodic_qh_ptr == &_hcd->non_periodic_sched_active) {
9574+ _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next;
9575+ }
9576+
9577+ } while (_hcd->non_periodic_qh_ptr != orig_qh_ptr);
9578+
9579+ if (!_hcd->core_if->dma_enable) {
9580+ gintmsk_data_t intr_mask = {.d32 = 0};
9581+ intr_mask.b.nptxfempty = 1;
9582+
9583+#ifdef DEBUG
9584+ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
9585+ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (after queue): %d\n",
9586+ tx_status.b.nptxqspcavail);
9587+ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (after queue): %d\n",
9588+ tx_status.b.nptxfspcavail);
9589+#endif
9590+ if (more_to_do || no_queue_space || no_fifo_space) {
9591+ /*
9592+ * May need to queue more transactions as the request
9593+ * queue or Tx FIFO empties. Enable the non-periodic
9594+ * Tx FIFO empty interrupt. (Always use the half-empty
9595+ * level to ensure that new requests are loaded as
9596+ * soon as possible.)
9597+ */
9598+ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
9599+ } else {
9600+ /*
9601+ * Disable the Tx FIFO empty interrupt since there are
9602+ * no more transactions that need to be queued right
9603+ * now. This function is called from interrupt
9604+ * handlers to queue more transactions as transfer
9605+ * states change.
9606+ */
9607+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
9608+ }
9609+ }
9610+}
9611+
9612+/**
9613+ * Processes periodic channels for the next frame and queues transactions for
9614+ * these channels to the DWC_otg controller. After queueing transactions, the
9615+ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
9616+ * to queue as Periodic Tx FIFO or request queue space becomes available.
9617+ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
9618+ */
9619+static void process_periodic_channels(dwc_otg_hcd_t *_hcd)
9620+{
9621+ hptxsts_data_t tx_status;
9622+ struct list_head *qh_ptr;
9623+ dwc_otg_qh_t *qh;
9624+ int status;
9625+ int no_queue_space = 0;
9626+ int no_fifo_space = 0;
9627+
9628+ dwc_otg_host_global_regs_t *host_regs;
9629+ host_regs = _hcd->core_if->host_if->host_global_regs;
9630+
9631+ DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n");
9632+#ifdef DEBUG
9633+ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
9634+ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (before queue): %d\n",
9635+ tx_status.b.ptxqspcavail);
9636+ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n",
9637+ tx_status.b.ptxfspcavail);
9638+#endif
9639+
9640+ qh_ptr = _hcd->periodic_sched_assigned.next;
9641+ while (qh_ptr != &_hcd->periodic_sched_assigned) {
9642+ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
9643+ if (tx_status.b.ptxqspcavail == 0) {
9644+ no_queue_space = 1;
9645+ break;
9646+ }
9647+
9648+ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
9649+
9650+ /*
9651+ * Set a flag if we're queuing high-bandwidth in slave mode.
9652+ * The flag prevents any halts to get into the request queue in
9653+ * the middle of multiple high-bandwidth packets getting queued.
9654+ */
9655+ if ((!_hcd->core_if->dma_enable) &&
9656+ (qh->channel->multi_count > 1))
9657+ {
9658+ _hcd->core_if->queuing_high_bandwidth = 1;
9659+ }
9660+
9661+ status = queue_transaction(_hcd, qh->channel, tx_status.b.ptxfspcavail);
9662+ if (status < 0) {
9663+ no_fifo_space = 1;
9664+ break;
9665+ }
9666+
9667+ /*
9668+ * In Slave mode, stay on the current transfer until there is
9669+ * nothing more to do or the high-bandwidth request count is
9670+ * reached. In DMA mode, only need to queue one request. The
9671+ * controller automatically handles multiple packets for
9672+ * high-bandwidth transfers.
9673+ */
9674+ if (_hcd->core_if->dma_enable ||
9675+ (status == 0 ||
9676+ qh->channel->requests == qh->channel->multi_count)) {
9677+ qh_ptr = qh_ptr->next;
9678+ /*
9679+ * Move the QH from the periodic assigned schedule to
9680+ * the periodic queued schedule.
9681+ */
9682+ list_move(&qh->qh_list_entry, &_hcd->periodic_sched_queued);
9683+
9684+ /* done queuing high bandwidth */
9685+ _hcd->core_if->queuing_high_bandwidth = 0;
9686+ }
9687+ }
9688+
9689+ if (!_hcd->core_if->dma_enable) {
9690+ dwc_otg_core_global_regs_t *global_regs;
9691+ gintmsk_data_t intr_mask = {.d32 = 0};
9692+
9693+ global_regs = _hcd->core_if->core_global_regs;
9694+ intr_mask.b.ptxfempty = 1;
9695+#ifdef DEBUG
9696+ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
9697+ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (after queue): %d\n",
9698+ tx_status.b.ptxqspcavail);
9699+ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (after queue): %d\n",
9700+ tx_status.b.ptxfspcavail);
9701+#endif
9702+ if (!(list_empty(&_hcd->periodic_sched_assigned)) ||
9703+ no_queue_space || no_fifo_space) {
9704+ /*
9705+ * May need to queue more transactions as the request
9706+ * queue or Tx FIFO empties. Enable the periodic Tx
9707+ * FIFO empty interrupt. (Always use the half-empty
9708+ * level to ensure that new requests are loaded as
9709+ * soon as possible.)
9710+ */
9711+ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
9712+ } else {
9713+ /*
9714+ * Disable the Tx FIFO empty interrupt since there are
9715+ * no more transactions that need to be queued right
9716+ * now. This function is called from interrupt
9717+ * handlers to queue more transactions as transfer
9718+ * states change.
9719+ */
9720+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
9721+ }
9722+ }
9723+}
9724+
9725+/**
9726+ * This function processes the currently active host channels and queues
9727+ * transactions for these channels to the DWC_otg controller. It is called
9728+ * from HCD interrupt handler functions.
9729+ *
9730+ * @param _hcd The HCD state structure.
9731+ * @param _tr_type The type(s) of transactions to queue (non-periodic,
9732+ * periodic, or both).
9733+ */
9734+void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *_hcd,
9735+ dwc_otg_transaction_type_e _tr_type)
9736+{
9737+#ifdef DEBUG_SOF
9738+ DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n");
9739+#endif
9740+ /* Process host channels associated with periodic transfers. */
9741+ if ((_tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
9742+ _tr_type == DWC_OTG_TRANSACTION_ALL) &&
9743+ !list_empty(&_hcd->periodic_sched_assigned)) {
9744+
9745+ process_periodic_channels(_hcd);
9746+ }
9747+
9748+ /* Process host channels associated with non-periodic transfers. */
9749+ if ((_tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
9750+ _tr_type == DWC_OTG_TRANSACTION_ALL)) {
9751+ if (!list_empty(&_hcd->non_periodic_sched_active)) {
9752+ process_non_periodic_channels(_hcd);
9753+ } else {
9754+ /*
9755+ * Ensure NP Tx FIFO empty interrupt is disabled when
9756+ * there are no non-periodic transfers to process.
9757+ */
9758+ gintmsk_data_t gintmsk = {.d32 = 0};
9759+ gintmsk.b.nptxfempty = 1;
9760+ dwc_modify_reg32(&_hcd->core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
9761+ }
9762+ }
9763+}
9764+
9765+/**
9766+ * Sets the final status of an URB and returns it to the device driver. Any
9767+ * required cleanup of the URB is performed.
9768+ */
9769+void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t * _hcd, struct urb *_urb,
9770+ int _status)
9771+ __releases(_hcd->lock)
9772+__acquires(_hcd->lock)
9773+{
9774+#ifdef DEBUG
9775+ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
9776+ DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n",
9777+ __func__, _urb, usb_pipedevice(_urb->pipe),
9778+ usb_pipeendpoint(_urb->pipe),
9779+ usb_pipein(_urb->pipe) ? "IN" : "OUT", _status);
9780+ if (usb_pipetype(_urb->pipe) == PIPE_ISOCHRONOUS) {
9781+ int i;
9782+ for (i = 0; i < _urb->number_of_packets; i++) {
9783+ DWC_PRINT(" ISO Desc %d status: %d\n",
9784+ i, _urb->iso_frame_desc[i].status);
9785+ }
9786+ }
9787+ }
9788+#endif
9789+
9790+ _urb->status = _status;
9791+ _urb->hcpriv = NULL;
9792+ usb_hcd_unlink_urb_from_ep(dwc_otg_hcd_to_hcd(_hcd), _urb);
9793+ spin_unlock(&_hcd->lock);
9794+ usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(_hcd), _urb, _status);
9795+ spin_lock(&_hcd->lock);
9796+}
9797+
9798+/*
9799+ * Returns the Queue Head for an URB.
9800+ */
9801+dwc_otg_qh_t *dwc_urb_to_qh(struct urb *_urb)
9802+{
9803+ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(_urb);
9804+ return (dwc_otg_qh_t *)ep->hcpriv;
9805+}
9806+
9807+#ifdef DEBUG
9808+void dwc_print_setup_data (uint8_t *setup)
9809+{
9810+ int i;
9811+ if (CHK_DEBUG_LEVEL(DBG_HCD)){
9812+ DWC_PRINT("Setup Data = MSB ");
9813+ for (i=7; i>=0; i--) DWC_PRINT ("%02x ", setup[i]);
9814+ DWC_PRINT("\n");
9815+ DWC_PRINT(" bmRequestType Tranfer = %s\n", (setup[0]&0x80) ? "Device-to-Host" : "Host-to-Device");
9816+ DWC_PRINT(" bmRequestType Type = ");
9817+ switch ((setup[0]&0x60) >> 5) {
9818+ case 0: DWC_PRINT("Standard\n"); break;
9819+ case 1: DWC_PRINT("Class\n"); break;
9820+ case 2: DWC_PRINT("Vendor\n"); break;
9821+ case 3: DWC_PRINT("Reserved\n"); break;
9822+ }
9823+ DWC_PRINT(" bmRequestType Recipient = ");
9824+ switch (setup[0]&0x1f) {
9825+ case 0: DWC_PRINT("Device\n"); break;
9826+ case 1: DWC_PRINT("Interface\n"); break;
9827+ case 2: DWC_PRINT("Endpoint\n"); break;
9828+ case 3: DWC_PRINT("Other\n"); break;
9829+ default: DWC_PRINT("Reserved\n"); break;
9830+ }
9831+ DWC_PRINT(" bRequest = 0x%0x\n", setup[1]);
9832+ DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *)&setup[2]));
9833+ DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *)&setup[4]));
9834+ DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *)&setup[6]));
9835+ }
9836+}
9837+#endif
9838+
9839+void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *_hcd) {
9840+#ifdef DEBUG
9841+#if 0
9842+ DWC_PRINT("Frame remaining at SOF:\n");
9843+ DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
9844+ _hcd->frrem_samples, _hcd->frrem_accum,
9845+ (_hcd->frrem_samples > 0) ?
9846+ _hcd->frrem_accum/_hcd->frrem_samples : 0);
9847+
9848+ DWC_PRINT("\n");
9849+ DWC_PRINT("Frame remaining at start_transfer (uframe 7):\n");
9850+ DWC_PRINT(" samples %u, accum %u, avg %u\n",
9851+ _hcd->core_if->hfnum_7_samples, _hcd->core_if->hfnum_7_frrem_accum,
9852+ (_hcd->core_if->hfnum_7_samples > 0) ?
9853+ _hcd->core_if->hfnum_7_frrem_accum/_hcd->core_if->hfnum_7_samples : 0);
9854+ DWC_PRINT("Frame remaining at start_transfer (uframe 0):\n");
9855+ DWC_PRINT(" samples %u, accum %u, avg %u\n",
9856+ _hcd->core_if->hfnum_0_samples, _hcd->core_if->hfnum_0_frrem_accum,
9857+ (_hcd->core_if->hfnum_0_samples > 0) ?
9858+ _hcd->core_if->hfnum_0_frrem_accum/_hcd->core_if->hfnum_0_samples : 0);
9859+ DWC_PRINT("Frame remaining at start_transfer (uframe 1-6):\n");
9860+ DWC_PRINT(" samples %u, accum %u, avg %u\n",
9861+ _hcd->core_if->hfnum_other_samples, _hcd->core_if->hfnum_other_frrem_accum,
9862+ (_hcd->core_if->hfnum_other_samples > 0) ?
9863+ _hcd->core_if->hfnum_other_frrem_accum/_hcd->core_if->hfnum_other_samples : 0);
9864+
9865+ DWC_PRINT("\n");
9866+ DWC_PRINT("Frame remaining at sample point A (uframe 7):\n");
9867+ DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
9868+ _hcd->hfnum_7_samples_a, _hcd->hfnum_7_frrem_accum_a,
9869+ (_hcd->hfnum_7_samples_a > 0) ?
9870+ _hcd->hfnum_7_frrem_accum_a/_hcd->hfnum_7_samples_a : 0);
9871+ DWC_PRINT("Frame remaining at sample point A (uframe 0):\n");
9872+ DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
9873+ _hcd->hfnum_0_samples_a, _hcd->hfnum_0_frrem_accum_a,
9874+ (_hcd->hfnum_0_samples_a > 0) ?
9875+ _hcd->hfnum_0_frrem_accum_a/_hcd->hfnum_0_samples_a : 0);
9876+ DWC_PRINT("Frame remaining at sample point A (uframe 1-6):\n");
9877+ DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
9878+ _hcd->hfnum_other_samples_a, _hcd->hfnum_other_frrem_accum_a,
9879+ (_hcd->hfnum_other_samples_a > 0) ?
9880+ _hcd->hfnum_other_frrem_accum_a/_hcd->hfnum_other_samples_a : 0);
9881+
9882+ DWC_PRINT("\n");
9883+ DWC_PRINT("Frame remaining at sample point B (uframe 7):\n");
9884+ DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
9885+ _hcd->hfnum_7_samples_b, _hcd->hfnum_7_frrem_accum_b,
9886+ (_hcd->hfnum_7_samples_b > 0) ?
9887+ _hcd->hfnum_7_frrem_accum_b/_hcd->hfnum_7_samples_b : 0);
9888+ DWC_PRINT("Frame remaining at sample point B (uframe 0):\n");
9889+ DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
9890+ _hcd->hfnum_0_samples_b, _hcd->hfnum_0_frrem_accum_b,
9891+ (_hcd->hfnum_0_samples_b > 0) ?
9892+ _hcd->hfnum_0_frrem_accum_b/_hcd->hfnum_0_samples_b : 0);
9893+ DWC_PRINT("Frame remaining at sample point B (uframe 1-6):\n");
9894+ DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
9895+ _hcd->hfnum_other_samples_b, _hcd->hfnum_other_frrem_accum_b,
9896+ (_hcd->hfnum_other_samples_b > 0) ?
9897+ _hcd->hfnum_other_frrem_accum_b/_hcd->hfnum_other_samples_b : 0);
9898+#endif
9899+#endif
9900+}
9901+
9902+void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *_hcd)
9903+{
9904+#ifdef DEBUG
9905+ int num_channels;
9906+ int i;
9907+ gnptxsts_data_t np_tx_status;
9908+ hptxsts_data_t p_tx_status;
9909+
9910+ num_channels = _hcd->core_if->core_params->host_channels;
9911+ DWC_PRINT("\n");
9912+ DWC_PRINT("************************************************************\n");
9913+ DWC_PRINT("HCD State:\n");
9914+ DWC_PRINT(" Num channels: %d\n", num_channels);
9915+ for (i = 0; i < num_channels; i++) {
9916+ dwc_hc_t *hc = _hcd->hc_ptr_array[i];
9917+ DWC_PRINT(" Channel %d:\n", i);
9918+ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
9919+ hc->dev_addr, hc->ep_num, hc->ep_is_in);
9920+ DWC_PRINT(" speed: %d\n", hc->speed);
9921+ DWC_PRINT(" ep_type: %d\n", hc->ep_type);
9922+ DWC_PRINT(" max_packet: %d\n", hc->max_packet);
9923+ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
9924+ DWC_PRINT(" multi_count: %d\n", hc->multi_count);
9925+ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
9926+ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
9927+ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
9928+ DWC_PRINT(" xfer_count: %d\n", hc->xfer_count);
9929+ DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue);
9930+ DWC_PRINT(" halt_pending: %d\n", hc->halt_pending);
9931+ DWC_PRINT(" halt_status: %d\n", hc->halt_status);
9932+ DWC_PRINT(" do_split: %d\n", hc->do_split);
9933+ DWC_PRINT(" complete_split: %d\n", hc->complete_split);
9934+ DWC_PRINT(" hub_addr: %d\n", hc->hub_addr);
9935+ DWC_PRINT(" port_addr: %d\n", hc->port_addr);
9936+ DWC_PRINT(" xact_pos: %d\n", hc->xact_pos);
9937+ DWC_PRINT(" requests: %d\n", hc->requests);
9938+ DWC_PRINT(" qh: %p\n", hc->qh);
9939+ if (hc->xfer_started) {
9940+ hfnum_data_t hfnum;
9941+ hcchar_data_t hcchar;
9942+ hctsiz_data_t hctsiz;
9943+ hcint_data_t hcint;
9944+ hcintmsk_data_t hcintmsk;
9945+ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum);
9946+ hcchar.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hcchar);
9947+ hctsiz.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hctsiz);
9948+ hcint.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hcint);
9949+ hcintmsk.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hcintmsk);
9950+ DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32);
9951+ DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32);
9952+ DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32);
9953+ DWC_PRINT(" hcint: 0x%08x\n", hcint.d32);
9954+ DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32);
9955+ }
9956+ if (hc->xfer_started && (hc->qh != NULL) && (hc->qh->qtd_in_process != NULL)) {
9957+ dwc_otg_qtd_t *qtd;
9958+ struct urb *urb;
9959+ qtd = hc->qh->qtd_in_process;
9960+ urb = qtd->urb;
9961+ DWC_PRINT(" URB Info:\n");
9962+ DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb);
9963+ if (urb != NULL) {
9964+ DWC_PRINT(" Dev: %d, EP: %d %s\n",
9965+ usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe),
9966+ usb_pipein(urb->pipe) ? "IN" : "OUT");
9967+ DWC_PRINT(" Max packet size: %d\n",
9968+ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
9969+ DWC_PRINT(" transfer_buffer: %p\n", urb->transfer_buffer);
9970+ DWC_PRINT(" transfer_dma: %p\n", (void *)urb->transfer_dma);
9971+ DWC_PRINT(" transfer_buffer_length: %d\n", urb->transfer_buffer_length);
9972+ DWC_PRINT(" actual_length: %d\n", urb->actual_length);
9973+ }
9974+ }
9975+ }
9976+ //DWC_PRINT(" non_periodic_channels: %d\n", _hcd->non_periodic_channels);
9977+ //DWC_PRINT(" periodic_channels: %d\n", _hcd->periodic_channels);
9978+ DWC_PRINT(" available_channels: %d\n", _hcd->available_host_channels);
9979+ DWC_PRINT(" periodic_usecs: %d\n", _hcd->periodic_usecs);
9980+ np_tx_status.d32 = dwc_read_reg32(&_hcd->core_if->core_global_regs->gnptxsts);
9981+ DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", np_tx_status.b.nptxqspcavail);
9982+ DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", np_tx_status.b.nptxfspcavail);
9983+ p_tx_status.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hptxsts);
9984+ DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", p_tx_status.b.ptxqspcavail);
9985+ DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail);
9986+ dwc_otg_hcd_dump_frrem(_hcd);
9987+ dwc_otg_dump_global_registers(_hcd->core_if);
9988+ dwc_otg_dump_host_registers(_hcd->core_if);
9989+ DWC_PRINT("************************************************************\n");
9990+ DWC_PRINT("\n");
9991+#endif
9992+}
9993+#endif /* DWC_DEVICE_ONLY */
9994--- /dev/null
9995+++ b/drivers/usb/dwc_otg/dwc_otg_hcd.h
9996@@ -0,0 +1,676 @@
9997+/* ==========================================================================
9998+ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd.h $
9999+ * $Revision: 1.1.1.1 $
10000+ * $Date: 2009-04-17 06:15:34 $
10001+ * $Change: 537387 $
10002+ *
10003+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
10004+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
10005+ * otherwise expressly agreed to in writing between Synopsys and you.
10006+ *
10007+ * The Software IS NOT an item of Licensed Software or Licensed Product under
10008+ * any End User Software License Agreement or Agreement for Licensed Product
10009+ * with Synopsys or any supplement thereto. You are permitted to use and
10010+ * redistribute this Software in source and binary forms, with or without
10011+ * modification, provided that redistributions of source code must retain this
10012+ * notice. You may not view, use, disclose, copy or distribute this file or
10013+ * any information contained herein except pursuant to this license grant from
10014+ * Synopsys. If you do not agree with this notice, including the disclaimer
10015+ * below, then you are not authorized to use the Software.
10016+ *
10017+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
10018+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
10019+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
10020+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
10021+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
10022+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
10023+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
10024+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
10025+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
10026+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
10027+ * DAMAGE.
10028+ * ========================================================================== */
10029+#ifndef DWC_DEVICE_ONLY
10030+#if !defined(__DWC_HCD_H__)
10031+#define __DWC_HCD_H__
10032+
10033+#include <linux/list.h>
10034+#include <linux/usb.h>
10035+#include <linux/usb/hcd.h>
10036+
10037+struct lm_device;
10038+struct dwc_otg_device;
10039+
10040+#include "dwc_otg_cil.h"
10041+//#include "dwc_otg_ifx.h" // winder
10042+
10043+
10044+/**
10045+ * @file
10046+ *
10047+ * This file contains the structures, constants, and interfaces for
10048+ * the Host Contoller Driver (HCD).
10049+ *
10050+ * The Host Controller Driver (HCD) is responsible for translating requests
10051+ * from the USB Driver into the appropriate actions on the DWC_otg controller.
10052+ * It isolates the USBD from the specifics of the controller by providing an
10053+ * API to the USBD.
10054+ */
10055+
10056+/**
10057+ * Phases for control transfers.
10058+ */
10059+typedef enum dwc_otg_control_phase {
10060+ DWC_OTG_CONTROL_SETUP,
10061+ DWC_OTG_CONTROL_DATA,
10062+ DWC_OTG_CONTROL_STATUS
10063+} dwc_otg_control_phase_e;
10064+
10065+/** Transaction types. */
10066+typedef enum dwc_otg_transaction_type {
10067+ DWC_OTG_TRANSACTION_NONE,
10068+ DWC_OTG_TRANSACTION_PERIODIC,
10069+ DWC_OTG_TRANSACTION_NON_PERIODIC,
10070+ DWC_OTG_TRANSACTION_ALL
10071+} dwc_otg_transaction_type_e;
10072+
10073+/**
10074+ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
10075+ * interrupt, or isochronous transfer. A single QTD is created for each URB
10076+ * (of one of these types) submitted to the HCD. The transfer associated with
10077+ * a QTD may require one or multiple transactions.
10078+ *
10079+ * A QTD is linked to a Queue Head, which is entered in either the
10080+ * non-periodic or periodic schedule for execution. When a QTD is chosen for
10081+ * execution, some or all of its transactions may be executed. After
10082+ * execution, the state of the QTD is updated. The QTD may be retired if all
10083+ * its transactions are complete or if an error occurred. Otherwise, it
10084+ * remains in the schedule so more transactions can be executed later.
10085+ */
10086+struct dwc_otg_qh;
10087+typedef struct dwc_otg_qtd {
10088+ /**
10089+ * Determines the PID of the next data packet for the data phase of
10090+ * control transfers. Ignored for other transfer types.<br>
10091+ * One of the following values:
10092+ * - DWC_OTG_HC_PID_DATA0
10093+ * - DWC_OTG_HC_PID_DATA1
10094+ */
10095+ uint8_t data_toggle;
10096+
10097+ /** Current phase for control transfers (Setup, Data, or Status). */
10098+ dwc_otg_control_phase_e control_phase;
10099+
10100+ /** Keep track of the current split type
10101+ * for FS/LS endpoints on a HS Hub */
10102+ uint8_t complete_split;
10103+
10104+ /** How many bytes transferred during SSPLIT OUT */
10105+ uint32_t ssplit_out_xfer_count;
10106+
10107+ /**
10108+ * Holds the number of bus errors that have occurred for a transaction
10109+ * within this transfer.
10110+ */
10111+ uint8_t error_count;
10112+
10113+ /**
10114+ * Index of the next frame descriptor for an isochronous transfer. A
10115+ * frame descriptor describes the buffer position and length of the
10116+ * data to be transferred in the next scheduled (micro)frame of an
10117+ * isochronous transfer. It also holds status for that transaction.
10118+ * The frame index starts at 0.
10119+ */
10120+ int isoc_frame_index;
10121+
10122+ /** Position of the ISOC split on full/low speed */
10123+ uint8_t isoc_split_pos;
10124+
10125+ /** Position of the ISOC split in the buffer for the current frame */
10126+ uint16_t isoc_split_offset;
10127+
10128+ /** URB for this transfer */
10129+ struct urb *urb;
10130+
10131+ /** This list of QTDs */
10132+ struct list_head qtd_list_entry;
10133+
10134+ /* Field to track the qh pointer */
10135+ struct dwc_otg_qh *qtd_qh_ptr;
10136+} dwc_otg_qtd_t;
10137+
10138+/**
10139+ * A Queue Head (QH) holds the static characteristics of an endpoint and
10140+ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
10141+ * be entered in either the non-periodic or periodic schedule.
10142+ */
10143+typedef struct dwc_otg_qh {
10144+ /**
10145+ * Endpoint type.
10146+ * One of the following values:
10147+ * - USB_ENDPOINT_XFER_CONTROL
10148+ * - USB_ENDPOINT_XFER_ISOC
10149+ * - USB_ENDPOINT_XFER_BULK
10150+ * - USB_ENDPOINT_XFER_INT
10151+ */
10152+ uint8_t ep_type;
10153+ uint8_t ep_is_in;
10154+
10155+ /** wMaxPacketSize Field of Endpoint Descriptor. */
10156+ uint16_t maxp;
10157+
10158+ /**
10159+ * Determines the PID of the next data packet for non-control
10160+ * transfers. Ignored for control transfers.<br>
10161+ * One of the following values:
10162+ * - DWC_OTG_HC_PID_DATA0
10163+ * - DWC_OTG_HC_PID_DATA1
10164+ */
10165+ uint8_t data_toggle;
10166+
10167+ /** Ping state if 1. */
10168+ uint8_t ping_state;
10169+
10170+ /**
10171+ * List of QTDs for this QH.
10172+ */
10173+ struct list_head qtd_list;
10174+
10175+ /** Host channel currently processing transfers for this QH. */
10176+ dwc_hc_t *channel;
10177+
10178+ /** QTD currently assigned to a host channel for this QH. */
10179+ dwc_otg_qtd_t *qtd_in_process;
10180+
10181+ /** Full/low speed endpoint on high-speed hub requires split. */
10182+ uint8_t do_split;
10183+
10184+ /** @name Periodic schedule information */
10185+ /** @{ */
10186+
10187+ /** Bandwidth in microseconds per (micro)frame. */
10188+ uint8_t usecs;
10189+
10190+ /** Interval between transfers in (micro)frames. */
10191+ uint16_t interval;
10192+
10193+ /**
10194+ * (micro)frame to initialize a periodic transfer. The transfer
10195+ * executes in the following (micro)frame.
10196+ */
10197+ uint16_t sched_frame;
10198+
10199+ /** (micro)frame at which last start split was initialized. */
10200+ uint16_t start_split_frame;
10201+
10202+ /** @} */
10203+
10204+ uint16_t speed;
10205+ uint16_t frame_usecs[8];
10206+ /** Entry for QH in either the periodic or non-periodic schedule. */
10207+ struct list_head qh_list_entry;
10208+} dwc_otg_qh_t;
10209+
10210+/**
10211+ * This structure holds the state of the HCD, including the non-periodic and
10212+ * periodic schedules.
10213+ */
10214+typedef struct dwc_otg_hcd {
10215+ spinlock_t lock;
10216+
10217+ /** DWC OTG Core Interface Layer */
10218+ dwc_otg_core_if_t *core_if;
10219+
10220+ /** Internal DWC HCD Flags */
10221+ volatile union dwc_otg_hcd_internal_flags {
10222+ uint32_t d32;
10223+ struct {
10224+ unsigned port_connect_status_change : 1;
10225+ unsigned port_connect_status : 1;
10226+ unsigned port_reset_change : 1;
10227+ unsigned port_enable_change : 1;
10228+ unsigned port_suspend_change : 1;
10229+ unsigned port_over_current_change : 1;
10230+ unsigned reserved : 27;
10231+ } b;
10232+ } flags;
10233+
10234+ /**
10235+ * Inactive items in the non-periodic schedule. This is a list of
10236+ * Queue Heads. Transfers associated with these Queue Heads are not
10237+ * currently assigned to a host channel.
10238+ */
10239+ struct list_head non_periodic_sched_inactive;
10240+
10241+ /**
10242+ * Deferred items in the non-periodic schedule. This is a list of
10243+ * Queue Heads. Transfers associated with these Queue Heads are not
10244+ * currently assigned to a host channel.
10245+ * When we get an NAK, the QH goes here.
10246+ */
10247+ struct list_head non_periodic_sched_deferred;
10248+
10249+ /**
10250+ * Active items in the non-periodic schedule. This is a list of
10251+ * Queue Heads. Transfers associated with these Queue Heads are
10252+ * currently assigned to a host channel.
10253+ */
10254+ struct list_head non_periodic_sched_active;
10255+
10256+ /**
10257+ * Pointer to the next Queue Head to process in the active
10258+ * non-periodic schedule.
10259+ */
10260+ struct list_head *non_periodic_qh_ptr;
10261+
10262+ /**
10263+ * Inactive items in the periodic schedule. This is a list of QHs for
10264+ * periodic transfers that are _not_ scheduled for the next frame.
10265+ * Each QH in the list has an interval counter that determines when it
10266+ * needs to be scheduled for execution. This scheduling mechanism
10267+ * allows only a simple calculation for periodic bandwidth used (i.e.
10268+ * must assume that all periodic transfers may need to execute in the
10269+ * same frame). However, it greatly simplifies scheduling and should
10270+ * be sufficient for the vast majority of OTG hosts, which need to
10271+ * connect to a small number of peripherals at one time.
10272+ *
10273+ * Items move from this list to periodic_sched_ready when the QH
10274+ * interval counter is 0 at SOF.
10275+ */
10276+ struct list_head periodic_sched_inactive;
10277+
10278+ /**
10279+ * List of periodic QHs that are ready for execution in the next
10280+ * frame, but have not yet been assigned to host channels.
10281+ *
10282+ * Items move from this list to periodic_sched_assigned as host
10283+ * channels become available during the current frame.
10284+ */
10285+ struct list_head periodic_sched_ready;
10286+
10287+ /**
10288+ * List of periodic QHs to be executed in the next frame that are
10289+ * assigned to host channels.
10290+ *
10291+ * Items move from this list to periodic_sched_queued as the
10292+ * transactions for the QH are queued to the DWC_otg controller.
10293+ */
10294+ struct list_head periodic_sched_assigned;
10295+
10296+ /**
10297+ * List of periodic QHs that have been queued for execution.
10298+ *
10299+ * Items move from this list to either periodic_sched_inactive or
10300+ * periodic_sched_ready when the channel associated with the transfer
10301+ * is released. If the interval for the QH is 1, the item moves to
10302+ * periodic_sched_ready because it must be rescheduled for the next
10303+ * frame. Otherwise, the item moves to periodic_sched_inactive.
10304+ */
10305+ struct list_head periodic_sched_queued;
10306+
10307+ /**
10308+ * Total bandwidth claimed so far for periodic transfers. This value
10309+ * is in microseconds per (micro)frame. The assumption is that all
10310+ * periodic transfers may occur in the same (micro)frame.
10311+ */
10312+ uint16_t periodic_usecs;
10313+
10314+ /**
10315+ * Total bandwidth claimed so far for all periodic transfers
10316+ * in a frame.
10317+ * This will include a mixture of HS and FS transfers.
10318+ * Units are microseconds per (micro)frame.
10319+ * We have a budget per frame and have to schedule
10320+ * transactions accordingly.
10321+ * Watch out for the fact that things are actually scheduled for the
10322+ * "next frame".
10323+ */
10324+ uint16_t frame_usecs[8];
10325+
10326+ /**
10327+ * Frame number read from the core at SOF. The value ranges from 0 to
10328+ * DWC_HFNUM_MAX_FRNUM.
10329+ */
10330+ uint16_t frame_number;
10331+
10332+ /**
10333+ * Free host channels in the controller. This is a list of
10334+ * dwc_hc_t items.
10335+ */
10336+ struct list_head free_hc_list;
10337+
10338+ /**
10339+ * Number of available host channels.
10340+ */
10341+ int available_host_channels;
10342+
10343+ /**
10344+ * Array of pointers to the host channel descriptors. Allows accessing
10345+ * a host channel descriptor given the host channel number. This is
10346+ * useful in interrupt handlers.
10347+ */
10348+ dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS];
10349+
10350+ /**
10351+ * Buffer to use for any data received during the status phase of a
10352+ * control transfer. Normally no data is transferred during the status
10353+ * phase. This buffer is used as a bit bucket.
10354+ */
10355+ uint8_t *status_buf;
10356+
10357+ /**
10358+ * DMA address for status_buf.
10359+ */
10360+ dma_addr_t status_buf_dma;
10361+#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
10362+
10363+ /**
10364+ * Structure to allow starting the HCD in a non-interrupt context
10365+ * during an OTG role change.
10366+ */
10367+ struct work_struct start_work;
10368+ struct usb_hcd *_p;
10369+
10370+ /**
10371+ * Connection timer. An OTG host must display a message if the device
10372+ * does not connect. Started when the VBus power is turned on via
10373+ * sysfs attribute "buspower".
10374+ */
10375+ struct timer_list conn_timer;
10376+
10377+ /* Tasket to do a reset */
10378+ struct tasklet_struct *reset_tasklet;
10379+
10380+#ifdef DEBUG
10381+ uint32_t frrem_samples;
10382+ uint64_t frrem_accum;
10383+
10384+ uint32_t hfnum_7_samples_a;
10385+ uint64_t hfnum_7_frrem_accum_a;
10386+ uint32_t hfnum_0_samples_a;
10387+ uint64_t hfnum_0_frrem_accum_a;
10388+ uint32_t hfnum_other_samples_a;
10389+ uint64_t hfnum_other_frrem_accum_a;
10390+
10391+ uint32_t hfnum_7_samples_b;
10392+ uint64_t hfnum_7_frrem_accum_b;
10393+ uint32_t hfnum_0_samples_b;
10394+ uint64_t hfnum_0_frrem_accum_b;
10395+ uint32_t hfnum_other_samples_b;
10396+ uint64_t hfnum_other_frrem_accum_b;
10397+#endif
10398+
10399+} dwc_otg_hcd_t;
10400+
10401+/** Gets the dwc_otg_hcd from a struct usb_hcd */
10402+static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
10403+{
10404+ return (dwc_otg_hcd_t *)(hcd->hcd_priv);
10405+}
10406+
10407+/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */
10408+static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd)
10409+{
10410+ return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv);
10411+}
10412+
10413+/** @name HCD Create/Destroy Functions */
10414+/** @{ */
10415+extern int __devinit dwc_otg_hcd_init(struct device *_dev, dwc_otg_device_t * dwc_otg_device);
10416+extern void dwc_otg_hcd_remove(struct device *_dev);
10417+/** @} */
10418+
10419+/** @name Linux HC Driver API Functions */
10420+/** @{ */
10421+
10422+extern int dwc_otg_hcd_start(struct usb_hcd *hcd);
10423+extern void dwc_otg_hcd_stop(struct usb_hcd *hcd);
10424+extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
10425+extern void dwc_otg_hcd_free(struct usb_hcd *hcd);
10426+
10427+extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
10428+ struct urb *urb,
10429+ gfp_t mem_flags);
10430+extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
10431+ struct urb *urb,
10432+ int status);
10433+extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd);
10434+
10435+extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
10436+ struct usb_host_endpoint *ep);
10437+
10438+extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd,
10439+ char *buf);
10440+extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
10441+ u16 typeReq,
10442+ u16 wValue,
10443+ u16 wIndex,
10444+ char *buf,
10445+ u16 wLength);
10446+
10447+/** @} */
10448+
10449+/** @name Transaction Execution Functions */
10450+/** @{ */
10451+extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *_hcd);
10452+extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *_hcd,
10453+ dwc_otg_transaction_type_e _tr_type);
10454+extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *_urb,
10455+ int _status);
10456+/** @} */
10457+
10458+/** @name Interrupt Handler Functions */
10459+/** @{ */
10460+extern int32_t dwc_otg_hcd_handle_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10461+extern int32_t dwc_otg_hcd_handle_sof_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10462+extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10463+extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10464+extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10465+extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *_dwc_otg_hcd);
10466+extern int32_t dwc_otg_hcd_handle_port_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10467+extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10468+extern int32_t dwc_otg_hcd_handle_disconnect_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10469+extern int32_t dwc_otg_hcd_handle_hc_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10470+extern int32_t dwc_otg_hcd_handle_hc_n_intr (dwc_otg_hcd_t *_dwc_otg_hcd, uint32_t _num);
10471+extern int32_t dwc_otg_hcd_handle_session_req_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10472+extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10473+/** @} */
10474+
10475+
10476+/** @name Schedule Queue Functions */
10477+/** @{ */
10478+
10479+/* Implemented in dwc_otg_hcd_queue.c */
10480+extern dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *_hcd, struct urb *_urb);
10481+extern void dwc_otg_hcd_qh_init (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, struct urb *_urb);
10482+extern void dwc_otg_hcd_qh_free (dwc_otg_qh_t *_qh);
10483+extern int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh);
10484+extern void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh);
10485+extern void dwc_otg_hcd_qh_deactivate (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int sched_csplit);
10486+extern int dwc_otg_hcd_qh_deferr (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int delay);
10487+
10488+/** Remove and free a QH */
10489+static inline void dwc_otg_hcd_qh_remove_and_free (dwc_otg_hcd_t *_hcd,
10490+ dwc_otg_qh_t *_qh)
10491+{
10492+ dwc_otg_hcd_qh_remove (_hcd, _qh);
10493+ dwc_otg_hcd_qh_free (_qh);
10494+}
10495+
10496+/** Allocates memory for a QH structure.
10497+ * @return Returns the memory allocate or NULL on error. */
10498+static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc (void)
10499+{
10500+#ifdef _SC_BUILD_
10501+ return (dwc_otg_qh_t *) kmalloc (sizeof(dwc_otg_qh_t), GFP_ATOMIC);
10502+#else
10503+ return (dwc_otg_qh_t *) kmalloc (sizeof(dwc_otg_qh_t), GFP_KERNEL);
10504+#endif
10505+}
10506+
10507+extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb);
10508+extern void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb);
10509+extern int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd);
10510+
10511+/** Allocates memory for a QTD structure.
10512+ * @return Returns the memory allocate or NULL on error. */
10513+static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc (void)
10514+{
10515+#ifdef _SC_BUILD_
10516+ return (dwc_otg_qtd_t *) kmalloc (sizeof(dwc_otg_qtd_t), GFP_ATOMIC);
10517+#else
10518+ return (dwc_otg_qtd_t *) kmalloc (sizeof(dwc_otg_qtd_t), GFP_KERNEL);
10519+#endif
10520+}
10521+
10522+/** Frees the memory for a QTD structure. QTD should already be removed from
10523+ * list.
10524+ * @param[in] _qtd QTD to free.*/
10525+static inline void dwc_otg_hcd_qtd_free (dwc_otg_qtd_t *_qtd)
10526+{
10527+ kfree (_qtd);
10528+}
10529+
10530+/** Removes a QTD from list.
10531+ * @param[in] _qtd QTD to remove from list. */
10532+static inline void dwc_otg_hcd_qtd_remove (dwc_otg_qtd_t *_qtd)
10533+{
10534+ unsigned long flags;
10535+ local_irq_save (flags);
10536+ list_del (&_qtd->qtd_list_entry);
10537+ local_irq_restore (flags);
10538+}
10539+
10540+/** Remove and free a QTD */
10541+static inline void dwc_otg_hcd_qtd_remove_and_free (dwc_otg_qtd_t *_qtd)
10542+{
10543+ dwc_otg_hcd_qtd_remove (_qtd);
10544+ dwc_otg_hcd_qtd_free (_qtd);
10545+}
10546+
10547+/** @} */
10548+
10549+
10550+/** @name Internal Functions */
10551+/** @{ */
10552+dwc_otg_qh_t *dwc_urb_to_qh(struct urb *_urb);
10553+void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *_hcd);
10554+void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *_hcd);
10555+/** @} */
10556+
10557+
10558+/** Gets the usb_host_endpoint associated with an URB. */
10559+static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *_urb)
10560+{
10561+ struct usb_device *dev = _urb->dev;
10562+ int ep_num = usb_pipeendpoint(_urb->pipe);
10563+ if (usb_pipein(_urb->pipe))
10564+ return dev->ep_in[ep_num];
10565+ else
10566+ return dev->ep_out[ep_num];
10567+}
10568+
10569+/**
10570+ * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is
10571+ * qualified with its direction (possible 32 endpoints per device).
10572+ */
10573+#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) \
10574+ ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
10575+ ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
10576+
10577+/** Gets the QH that contains the list_head */
10578+#define dwc_list_to_qh(_list_head_ptr_) (container_of(_list_head_ptr_,dwc_otg_qh_t,qh_list_entry))
10579+
10580+/** Gets the QTD that contains the list_head */
10581+#define dwc_list_to_qtd(_list_head_ptr_) (container_of(_list_head_ptr_,dwc_otg_qtd_t,qtd_list_entry))
10582+
10583+/** Check if QH is non-periodic */
10584+#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \
10585+ (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
10586+
10587+/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
10588+#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
10589+
10590+/** Packet size for any kind of endpoint descriptor */
10591+#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
10592+
10593+/**
10594+ * Returns true if _frame1 is less than or equal to _frame2. The comparison is
10595+ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
10596+ * frame number when the max frame number is reached.
10597+ */
10598+static inline int dwc_frame_num_le(uint16_t _frame1, uint16_t _frame2)
10599+{
10600+ return ((_frame2 - _frame1) & DWC_HFNUM_MAX_FRNUM) <=
10601+ (DWC_HFNUM_MAX_FRNUM >> 1);
10602+}
10603+
10604+/**
10605+ * Returns true if _frame1 is greater than _frame2. The comparison is done
10606+ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
10607+ * number when the max frame number is reached.
10608+ */
10609+static inline int dwc_frame_num_gt(uint16_t _frame1, uint16_t _frame2)
10610+{
10611+ return (_frame1 != _frame2) &&
10612+ (((_frame1 - _frame2) & DWC_HFNUM_MAX_FRNUM) <
10613+ (DWC_HFNUM_MAX_FRNUM >> 1));
10614+}
10615+
10616+/**
10617+ * Increments _frame by the amount specified by _inc. The addition is done
10618+ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
10619+ */
10620+static inline uint16_t dwc_frame_num_inc(uint16_t _frame, uint16_t _inc)
10621+{
10622+ return (_frame + _inc) & DWC_HFNUM_MAX_FRNUM;
10623+}
10624+
10625+static inline uint16_t dwc_full_frame_num (uint16_t _frame)
10626+{
10627+ return ((_frame) & DWC_HFNUM_MAX_FRNUM) >> 3;
10628+}
10629+
10630+static inline uint16_t dwc_micro_frame_num (uint16_t _frame)
10631+{
10632+ return (_frame) & 0x7;
10633+}
10634+
10635+#ifdef DEBUG
10636+/**
10637+ * Macro to sample the remaining PHY clocks left in the current frame. This
10638+ * may be used during debugging to determine the average time it takes to
10639+ * execute sections of code. There are two possible sample points, "a" and
10640+ * "b", so the _letter argument must be one of these values.
10641+ *
10642+ * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
10643+ * example, "cat /sys/devices/lm0/hcd_frrem".
10644+ */
10645+#define dwc_sample_frrem(_hcd, _qh, _letter) \
10646+{ \
10647+ hfnum_data_t hfnum; \
10648+ dwc_otg_qtd_t *qtd; \
10649+ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \
10650+ if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \
10651+ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
10652+ switch (hfnum.b.frnum & 0x7) { \
10653+ case 7: \
10654+ _hcd->hfnum_7_samples_##_letter++; \
10655+ _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
10656+ break; \
10657+ case 0: \
10658+ _hcd->hfnum_0_samples_##_letter++; \
10659+ _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
10660+ break; \
10661+ default: \
10662+ _hcd->hfnum_other_samples_##_letter++; \
10663+ _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \
10664+ break; \
10665+ } \
10666+ } \
10667+}
10668+#else // DEBUG
10669+#define dwc_sample_frrem(_hcd, _qh, _letter)
10670+#endif // DEBUG
10671+#endif // __DWC_HCD_H__
10672+#endif /* DWC_DEVICE_ONLY */
10673--- /dev/null
10674+++ b/drivers/usb/dwc_otg/dwc_otg_hcd_intr.c
10675@@ -0,0 +1,1841 @@
10676+/* ==========================================================================
10677+ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd_intr.c $
10678+ * $Revision: 1.1.1.1 $
10679+ * $Date: 2009-04-17 06:15:34 $
10680+ * $Change: 553126 $
10681+ *
10682+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
10683+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
10684+ * otherwise expressly agreed to in writing between Synopsys and you.
10685+ *
10686+ * The Software IS NOT an item of Licensed Software or Licensed Product under
10687+ * any End User Software License Agreement or Agreement for Licensed Product
10688+ * with Synopsys or any supplement thereto. You are permitted to use and
10689+ * redistribute this Software in source and binary forms, with or without
10690+ * modification, provided that redistributions of source code must retain this
10691+ * notice. You may not view, use, disclose, copy or distribute this file or
10692+ * any information contained herein except pursuant to this license grant from
10693+ * Synopsys. If you do not agree with this notice, including the disclaimer
10694+ * below, then you are not authorized to use the Software.
10695+ *
10696+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
10697+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
10698+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
10699+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
10700+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
10701+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
10702+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
10703+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
10704+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
10705+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
10706+ * DAMAGE.
10707+ * ========================================================================== */
10708+#ifndef DWC_DEVICE_ONLY
10709+
10710+#include "dwc_otg_driver.h"
10711+#include "dwc_otg_hcd.h"
10712+#include "dwc_otg_regs.h"
10713+
10714+const int erratum_usb09_patched = 0;
10715+const int deferral_on = 1;
10716+const int nak_deferral_delay = 8;
10717+const int nyet_deferral_delay = 1;
10718+/** @file
10719+ * This file contains the implementation of the HCD Interrupt handlers.
10720+ */
10721+
10722+/** This function handles interrupts for the HCD. */
10723+int32_t dwc_otg_hcd_handle_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
10724+{
10725+ int retval = 0;
10726+
10727+ dwc_otg_core_if_t *core_if = _dwc_otg_hcd->core_if;
10728+ gintsts_data_t gintsts;
10729+#ifdef DEBUG
10730+ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
10731+#endif
10732+
10733+ /* Check if HOST Mode */
10734+ if (dwc_otg_is_host_mode(core_if)) {
10735+ gintsts.d32 = dwc_otg_read_core_intr(core_if);
10736+ if (!gintsts.d32) {
10737+ return 0;
10738+ }
10739+
10740+#ifdef DEBUG
10741+ /* Don't print debug message in the interrupt handler on SOF */
10742+# ifndef DEBUG_SOF
10743+ if (gintsts.d32 != DWC_SOF_INTR_MASK)
10744+# endif
10745+ DWC_DEBUGPL (DBG_HCD, "\n");
10746+#endif
10747+
10748+#ifdef DEBUG
10749+# ifndef DEBUG_SOF
10750+ if (gintsts.d32 != DWC_SOF_INTR_MASK)
10751+# endif
10752+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32);
10753+#endif
10754+
10755+ if (gintsts.b.sofintr) {
10756+ retval |= dwc_otg_hcd_handle_sof_intr (_dwc_otg_hcd);
10757+ }
10758+ if (gintsts.b.rxstsqlvl) {
10759+ retval |= dwc_otg_hcd_handle_rx_status_q_level_intr (_dwc_otg_hcd);
10760+ }
10761+ if (gintsts.b.nptxfempty) {
10762+ retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr (_dwc_otg_hcd);
10763+ }
10764+ if (gintsts.b.i2cintr) {
10765+ /** @todo Implement i2cintr handler. */
10766+ }
10767+ if (gintsts.b.portintr) {
10768+ retval |= dwc_otg_hcd_handle_port_intr (_dwc_otg_hcd);
10769+ }
10770+ if (gintsts.b.hcintr) {
10771+ retval |= dwc_otg_hcd_handle_hc_intr (_dwc_otg_hcd);
10772+ }
10773+ if (gintsts.b.ptxfempty) {
10774+ retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (_dwc_otg_hcd);
10775+ }
10776+#ifdef DEBUG
10777+# ifndef DEBUG_SOF
10778+ if (gintsts.d32 != DWC_SOF_INTR_MASK)
10779+# endif
10780+ {
10781+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n");
10782+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n",
10783+ dwc_read_reg32(&global_regs->gintsts));
10784+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n",
10785+ dwc_read_reg32(&global_regs->gintmsk));
10786+ }
10787+#endif
10788+
10789+#ifdef DEBUG
10790+# ifndef DEBUG_SOF
10791+ if (gintsts.d32 != DWC_SOF_INTR_MASK)
10792+# endif
10793+ DWC_DEBUGPL (DBG_HCD, "\n");
10794+#endif
10795+
10796+ }
10797+
10798+ return retval;
10799+}
10800+
10801+#ifdef DWC_TRACK_MISSED_SOFS
10802+#warning Compiling code to track missed SOFs
10803+#define FRAME_NUM_ARRAY_SIZE 1000
10804+/**
10805+ * This function is for debug only.
10806+ */
10807+static inline void track_missed_sofs(uint16_t _curr_frame_number) {
10808+ static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE];
10809+ static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE];
10810+ static int frame_num_idx = 0;
10811+ static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM;
10812+ static int dumped_frame_num_array = 0;
10813+
10814+ if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) {
10815+ if ((((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != _curr_frame_number)) {
10816+ frame_num_array[frame_num_idx] = _curr_frame_number;
10817+ last_frame_num_array[frame_num_idx++] = last_frame_num;
10818+ }
10819+ } else if (!dumped_frame_num_array) {
10820+ int i;
10821+ printk(KERN_EMERG USB_DWC "Frame Last Frame\n");
10822+ printk(KERN_EMERG USB_DWC "----- ----------\n");
10823+ for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) {
10824+ printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n",
10825+ frame_num_array[i], last_frame_num_array[i]);
10826+ }
10827+ dumped_frame_num_array = 1;
10828+ }
10829+ last_frame_num = _curr_frame_number;
10830+}
10831+#endif
10832+
10833+/**
10834+ * Handles the start-of-frame interrupt in host mode. Non-periodic
10835+ * transactions may be queued to the DWC_otg controller for the current
10836+ * (micro)frame. Periodic transactions may be queued to the controller for the
10837+ * next (micro)frame.
10838+ */
10839+int32_t dwc_otg_hcd_handle_sof_intr (dwc_otg_hcd_t *_hcd)
10840+{
10841+ hfnum_data_t hfnum;
10842+ struct list_head *qh_entry;
10843+ dwc_otg_qh_t *qh;
10844+ dwc_otg_transaction_type_e tr_type;
10845+ gintsts_data_t gintsts = {.d32 = 0};
10846+
10847+ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum);
10848+
10849+#ifdef DEBUG_SOF
10850+ DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n");
10851+#endif
10852+
10853+ _hcd->frame_number = hfnum.b.frnum;
10854+
10855+#ifdef DEBUG
10856+ _hcd->frrem_accum += hfnum.b.frrem;
10857+ _hcd->frrem_samples++;
10858+#endif
10859+
10860+#ifdef DWC_TRACK_MISSED_SOFS
10861+ track_missed_sofs(_hcd->frame_number);
10862+#endif
10863+
10864+ /* Determine whether any periodic QHs should be executed. */
10865+ qh_entry = _hcd->periodic_sched_inactive.next;
10866+ while (qh_entry != &_hcd->periodic_sched_inactive) {
10867+ qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry);
10868+ qh_entry = qh_entry->next;
10869+ if (dwc_frame_num_le(qh->sched_frame, _hcd->frame_number)) {
10870+ /*
10871+ * Move QH to the ready list to be executed next
10872+ * (micro)frame.
10873+ */
10874+ list_move(&qh->qh_list_entry, &_hcd->periodic_sched_ready);
10875+ }
10876+ }
10877+
10878+ tr_type = dwc_otg_hcd_select_transactions(_hcd);
10879+ if (tr_type != DWC_OTG_TRANSACTION_NONE) {
10880+ dwc_otg_hcd_queue_transactions(_hcd, tr_type);
10881+ }
10882+
10883+ /* Clear interrupt */
10884+ gintsts.b.sofintr = 1;
10885+ dwc_write_reg32(&_hcd->core_if->core_global_regs->gintsts, gintsts.d32);
10886+
10887+ return 1;
10888+}
10889+
10890+/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at
10891+ * least one packet in the Rx FIFO. The packets are moved from the FIFO to
10892+ * memory if the DWC_otg controller is operating in Slave mode. */
10893+int32_t dwc_otg_hcd_handle_rx_status_q_level_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
10894+{
10895+ host_grxsts_data_t grxsts;
10896+ dwc_hc_t *hc = NULL;
10897+
10898+ DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n");
10899+
10900+ grxsts.d32 = dwc_read_reg32(&_dwc_otg_hcd->core_if->core_global_regs->grxstsp);
10901+
10902+ hc = _dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum];
10903+
10904+ /* Packet Status */
10905+ DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum);
10906+ DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt);
10907+ DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start);
10908+ DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts);
10909+
10910+ switch (grxsts.b.pktsts) {
10911+ case DWC_GRXSTS_PKTSTS_IN:
10912+ /* Read the data into the host buffer. */
10913+ if (grxsts.b.bcnt > 0) {
10914+ dwc_otg_read_packet(_dwc_otg_hcd->core_if,
10915+ hc->xfer_buff,
10916+ grxsts.b.bcnt);
10917+
10918+ /* Update the HC fields for the next packet received. */
10919+ hc->xfer_count += grxsts.b.bcnt;
10920+ hc->xfer_buff += grxsts.b.bcnt;
10921+ }
10922+
10923+ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
10924+ case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
10925+ case DWC_GRXSTS_PKTSTS_CH_HALTED:
10926+ /* Handled in interrupt, just ignore data */
10927+ break;
10928+ default:
10929+ DWC_ERROR ("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts);
10930+ break;
10931+ }
10932+
10933+ return 1;
10934+}
10935+
10936+/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More
10937+ * data packets may be written to the FIFO for OUT transfers. More requests
10938+ * may be written to the non-periodic request queue for IN transfers. This
10939+ * interrupt is enabled only in Slave mode. */
10940+int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
10941+{
10942+ DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n");
10943+ dwc_otg_hcd_queue_transactions(_dwc_otg_hcd,
10944+ DWC_OTG_TRANSACTION_NON_PERIODIC);
10945+ return 1;
10946+}
10947+
10948+/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data
10949+ * packets may be written to the FIFO for OUT transfers. More requests may be
10950+ * written to the periodic request queue for IN transfers. This interrupt is
10951+ * enabled only in Slave mode. */
10952+int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
10953+{
10954+ DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n");
10955+ dwc_otg_hcd_queue_transactions(_dwc_otg_hcd,
10956+ DWC_OTG_TRANSACTION_PERIODIC);
10957+ return 1;
10958+}
10959+
10960+/** There are multiple conditions that can cause a port interrupt. This function
10961+ * determines which interrupt conditions have occurred and handles them
10962+ * appropriately. */
10963+int32_t dwc_otg_hcd_handle_port_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
10964+{
10965+ int retval = 0;
10966+ hprt0_data_t hprt0;
10967+ hprt0_data_t hprt0_modify;
10968+
10969+ hprt0.d32 = dwc_read_reg32(_dwc_otg_hcd->core_if->host_if->hprt0);
10970+ hprt0_modify.d32 = dwc_read_reg32(_dwc_otg_hcd->core_if->host_if->hprt0);
10971+
10972+ /* Clear appropriate bits in HPRT0 to clear the interrupt bit in
10973+ * GINTSTS */
10974+
10975+ hprt0_modify.b.prtena = 0;
10976+ hprt0_modify.b.prtconndet = 0;
10977+ hprt0_modify.b.prtenchng = 0;
10978+ hprt0_modify.b.prtovrcurrchng = 0;
10979+
10980+ /* Port Connect Detected
10981+ * Set flag and clear if detected */
10982+ if (hprt0.b.prtconndet) {
10983+ DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x "
10984+ "Port Connect Detected--\n", hprt0.d32);
10985+ _dwc_otg_hcd->flags.b.port_connect_status_change = 1;
10986+ _dwc_otg_hcd->flags.b.port_connect_status = 1;
10987+ hprt0_modify.b.prtconndet = 1;
10988+
10989+ /* B-Device has connected, Delete the connection timer. */
10990+ del_timer( &_dwc_otg_hcd->conn_timer );
10991+
10992+ /* The Hub driver asserts a reset when it sees port connect
10993+ * status change flag */
10994+ retval |= 1;
10995+ }
10996+
10997+ /* Port Enable Changed
10998+ * Clear if detected - Set internal flag if disabled */
10999+ if (hprt0.b.prtenchng) {
11000+ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
11001+ "Port Enable Changed--\n", hprt0.d32);
11002+ hprt0_modify.b.prtenchng = 1;
11003+ if (hprt0.b.prtena == 1) {
11004+ int do_reset = 0;
11005+ dwc_otg_core_params_t *params = _dwc_otg_hcd->core_if->core_params;
11006+ dwc_otg_core_global_regs_t *global_regs = _dwc_otg_hcd->core_if->core_global_regs;
11007+ dwc_otg_host_if_t *host_if = _dwc_otg_hcd->core_if->host_if;
11008+
11009+ /* Check if we need to adjust the PHY clock speed for
11010+ * low power and adjust it */
11011+ if (params->host_support_fs_ls_low_power)
11012+ {
11013+ gusbcfg_data_t usbcfg;
11014+
11015+ usbcfg.d32 = dwc_read_reg32 (&global_regs->gusbcfg);
11016+
11017+ if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) ||
11018+ (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED))
11019+ {
11020+ /*
11021+ * Low power
11022+ */
11023+ hcfg_data_t hcfg;
11024+ if (usbcfg.b.phylpwrclksel == 0) {
11025+ /* Set PHY low power clock select for FS/LS devices */
11026+ usbcfg.b.phylpwrclksel = 1;
11027+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
11028+ do_reset = 1;
11029+ }
11030+
11031+ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
11032+
11033+ if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) &&
11034+ (params->host_ls_low_power_phy_clk ==
11035+ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ))
11036+ {
11037+ /* 6 MHZ */
11038+ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n");
11039+ if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) {
11040+ hcfg.b.fslspclksel = DWC_HCFG_6_MHZ;
11041+ dwc_write_reg32(&host_if->host_global_regs->hcfg,
11042+ hcfg.d32);
11043+ do_reset = 1;
11044+ }
11045+ }
11046+ else {
11047+ /* 48 MHZ */
11048+ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n");
11049+ if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) {
11050+ hcfg.b.fslspclksel = DWC_HCFG_48_MHZ;
11051+ dwc_write_reg32(&host_if->host_global_regs->hcfg,
11052+ hcfg.d32);
11053+ do_reset = 1;
11054+ }
11055+ }
11056+ }
11057+ else {
11058+ /*
11059+ * Not low power
11060+ */
11061+ if (usbcfg.b.phylpwrclksel == 1) {
11062+ usbcfg.b.phylpwrclksel = 0;
11063+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
11064+ do_reset = 1;
11065+ }
11066+ }
11067+
11068+ if (do_reset) {
11069+ tasklet_schedule(_dwc_otg_hcd->reset_tasklet);
11070+ }
11071+ }
11072+
11073+ if (!do_reset) {
11074+ /* Port has been enabled set the reset change flag */
11075+ _dwc_otg_hcd->flags.b.port_reset_change = 1;
11076+ }
11077+
11078+ } else {
11079+ _dwc_otg_hcd->flags.b.port_enable_change = 1;
11080+ }
11081+ retval |= 1;
11082+ }
11083+
11084+ /** Overcurrent Change Interrupt */
11085+ if (hprt0.b.prtovrcurrchng) {
11086+ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
11087+ "Port Overcurrent Changed--\n", hprt0.d32);
11088+ _dwc_otg_hcd->flags.b.port_over_current_change = 1;
11089+ hprt0_modify.b.prtovrcurrchng = 1;
11090+ retval |= 1;
11091+ }
11092+
11093+ /* Clear Port Interrupts */
11094+ dwc_write_reg32(_dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32);
11095+
11096+ return retval;
11097+}
11098+
11099+
11100+/** This interrupt indicates that one or more host channels has a pending
11101+ * interrupt. There are multiple conditions that can cause each host channel
11102+ * interrupt. This function determines which conditions have occurred for each
11103+ * host channel interrupt and handles them appropriately. */
11104+int32_t dwc_otg_hcd_handle_hc_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
11105+{
11106+ int i;
11107+ int retval = 0;
11108+ haint_data_t haint;
11109+
11110+ /* Clear appropriate bits in HCINTn to clear the interrupt bit in
11111+ * GINTSTS */
11112+
11113+ haint.d32 = dwc_otg_read_host_all_channels_intr(_dwc_otg_hcd->core_if);
11114+
11115+ for (i=0; i<_dwc_otg_hcd->core_if->core_params->host_channels; i++) {
11116+ if (haint.b2.chint & (1 << i)) {
11117+ retval |= dwc_otg_hcd_handle_hc_n_intr (_dwc_otg_hcd, i);
11118+ }
11119+ }
11120+
11121+ return retval;
11122+}
11123+
11124+/* Macro used to clear one channel interrupt */
11125+#define clear_hc_int(_hc_regs_,_intr_) \
11126+do { \
11127+ hcint_data_t hcint_clear = {.d32 = 0}; \
11128+ hcint_clear.b._intr_ = 1; \
11129+ dwc_write_reg32(&((_hc_regs_)->hcint), hcint_clear.d32); \
11130+} while (0)
11131+
11132+/*
11133+ * Macro used to disable one channel interrupt. Channel interrupts are
11134+ * disabled when the channel is halted or released by the interrupt handler.
11135+ * There is no need to handle further interrupts of that type until the
11136+ * channel is re-assigned. In fact, subsequent handling may cause crashes
11137+ * because the channel structures are cleaned up when the channel is released.
11138+ */
11139+#define disable_hc_int(_hc_regs_,_intr_) \
11140+do { \
11141+ hcintmsk_data_t hcintmsk = {.d32 = 0}; \
11142+ hcintmsk.b._intr_ = 1; \
11143+ dwc_modify_reg32(&((_hc_regs_)->hcintmsk), hcintmsk.d32, 0); \
11144+} while (0)
11145+
11146+/**
11147+ * Gets the actual length of a transfer after the transfer halts. _halt_status
11148+ * holds the reason for the halt.
11149+ *
11150+ * For IN transfers where _halt_status is DWC_OTG_HC_XFER_COMPLETE,
11151+ * *_short_read is set to 1 upon return if less than the requested
11152+ * number of bytes were transferred. Otherwise, *_short_read is set to 0 upon
11153+ * return. _short_read may also be NULL on entry, in which case it remains
11154+ * unchanged.
11155+ */
11156+static uint32_t get_actual_xfer_length(dwc_hc_t *_hc,
11157+ dwc_otg_hc_regs_t *_hc_regs,
11158+ dwc_otg_qtd_t *_qtd,
11159+ dwc_otg_halt_status_e _halt_status,
11160+ int *_short_read)
11161+{
11162+ hctsiz_data_t hctsiz;
11163+ uint32_t length;
11164+
11165+ if (_short_read != NULL) {
11166+ *_short_read = 0;
11167+ }
11168+ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
11169+
11170+ if (_halt_status == DWC_OTG_HC_XFER_COMPLETE) {
11171+ if (_hc->ep_is_in) {
11172+ length = _hc->xfer_len - hctsiz.b.xfersize;
11173+ if (_short_read != NULL) {
11174+ *_short_read = (hctsiz.b.xfersize != 0);
11175+ }
11176+ } else if (_hc->qh->do_split) {
11177+ length = _qtd->ssplit_out_xfer_count;
11178+ } else {
11179+ length = _hc->xfer_len;
11180+ }
11181+ } else {
11182+ /*
11183+ * Must use the hctsiz.pktcnt field to determine how much data
11184+ * has been transferred. This field reflects the number of
11185+ * packets that have been transferred via the USB. This is
11186+ * always an integral number of packets if the transfer was
11187+ * halted before its normal completion. (Can't use the
11188+ * hctsiz.xfersize field because that reflects the number of
11189+ * bytes transferred via the AHB, not the USB).
11190+ */
11191+ length = (_hc->start_pkt_count - hctsiz.b.pktcnt) * _hc->max_packet;
11192+ }
11193+
11194+ return length;
11195+}
11196+
11197+/**
11198+ * Updates the state of the URB after a Transfer Complete interrupt on the
11199+ * host channel. Updates the actual_length field of the URB based on the
11200+ * number of bytes transferred via the host channel. Sets the URB status
11201+ * if the data transfer is finished.
11202+ *
11203+ * @return 1 if the data transfer specified by the URB is completely finished,
11204+ * 0 otherwise.
11205+ */
11206+static int update_urb_state_xfer_comp(dwc_hc_t *_hc,
11207+ dwc_otg_hc_regs_t * _hc_regs, struct urb *_urb,
11208+ dwc_otg_qtd_t * _qtd, int *status)
11209+{
11210+ int xfer_done = 0;
11211+ int short_read = 0;
11212+
11213+ _urb->actual_length += get_actual_xfer_length(_hc, _hc_regs, _qtd,
11214+ DWC_OTG_HC_XFER_COMPLETE,
11215+ &short_read);
11216+
11217+ if (short_read || (_urb->actual_length == _urb->transfer_buffer_length)) {
11218+ xfer_done = 1;
11219+ if (short_read && (_urb->transfer_flags & URB_SHORT_NOT_OK)) {
11220+ *status = -EREMOTEIO;
11221+ } else {
11222+ *status = 0;
11223+ }
11224+ }
11225+
11226+#ifdef DEBUG
11227+ {
11228+ hctsiz_data_t hctsiz;
11229+ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
11230+ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
11231+ __func__, (_hc->ep_is_in ? "IN" : "OUT"), _hc->hc_num);
11232+ DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", _hc->xfer_len);
11233+ DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", hctsiz.b.xfersize);
11234+ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
11235+ _urb->transfer_buffer_length);
11236+ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", _urb->actual_length);
11237+ DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n",
11238+ short_read, xfer_done);
11239+ }
11240+#endif
11241+
11242+ return xfer_done;
11243+}
11244+
11245+/*
11246+ * Save the starting data toggle for the next transfer. The data toggle is
11247+ * saved in the QH for non-control transfers and it's saved in the QTD for
11248+ * control transfers.
11249+ */
11250+static void save_data_toggle(dwc_hc_t *_hc,
11251+ dwc_otg_hc_regs_t *_hc_regs,
11252+ dwc_otg_qtd_t *_qtd)
11253+{
11254+ hctsiz_data_t hctsiz;
11255+ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
11256+
11257+ if (_hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) {
11258+ dwc_otg_qh_t *qh = _hc->qh;
11259+ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
11260+ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
11261+ } else {
11262+ qh->data_toggle = DWC_OTG_HC_PID_DATA1;
11263+ }
11264+ } else {
11265+ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
11266+ _qtd->data_toggle = DWC_OTG_HC_PID_DATA0;
11267+ } else {
11268+ _qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
11269+ }
11270+ }
11271+}
11272+
11273+/**
11274+ * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic
11275+ * QHs, removes the QH from the active non-periodic schedule. If any QTDs are
11276+ * still linked to the QH, the QH is added to the end of the inactive
11277+ * non-periodic schedule. For periodic QHs, removes the QH from the periodic
11278+ * schedule if no more QTDs are linked to the QH.
11279+ */
11280+static void deactivate_qh(dwc_otg_hcd_t *_hcd,
11281+ dwc_otg_qh_t *_qh,
11282+ int free_qtd)
11283+{
11284+ int continue_split = 0;
11285+ dwc_otg_qtd_t *qtd;
11286+
11287+ DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, _hcd, _qh, free_qtd);
11288+
11289+ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
11290+
11291+ if (qtd->complete_split) {
11292+ continue_split = 1;
11293+ }
11294+ else if ((qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID) ||
11295+ (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END))
11296+ {
11297+ continue_split = 1;
11298+ }
11299+
11300+ if (free_qtd) {
11301+ /*
11302+ * Note that this was previously a call to
11303+ * dwc_otg_hcd_qtd_remove_and_free(qtd), which frees the qtd.
11304+ * However, that call frees the qtd memory, and we continue in the
11305+ * interrupt logic to access it many more times, including writing
11306+ * to it. With slub debugging on, it is clear that we were writing
11307+ * to memory we had freed.
11308+ * Call this instead, and now I have moved the freeing of the memory to
11309+ * the end of processing this interrupt.
11310+ */
11311+ //dwc_otg_hcd_qtd_remove_and_free(qtd);
11312+ dwc_otg_hcd_qtd_remove(qtd);
11313+
11314+ continue_split = 0;
11315+ }
11316+
11317+ _qh->channel = NULL;
11318+ _qh->qtd_in_process = NULL;
11319+ dwc_otg_hcd_qh_deactivate(_hcd, _qh, continue_split);
11320+}
11321+
11322+/**
11323+ * Updates the state of an Isochronous URB when the transfer is stopped for
11324+ * any reason. The fields of the current entry in the frame descriptor array
11325+ * are set based on the transfer state and the input _halt_status. Completes
11326+ * the Isochronous URB if all the URB frames have been completed.
11327+ *
11328+ * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be
11329+ * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE.
11330+ */
11331+static dwc_otg_halt_status_e
11332+update_isoc_urb_state(dwc_otg_hcd_t *_hcd,
11333+ dwc_hc_t *_hc,
11334+ dwc_otg_hc_regs_t *_hc_regs,
11335+ dwc_otg_qtd_t *_qtd,
11336+ dwc_otg_halt_status_e _halt_status)
11337+{
11338+ struct urb *urb = _qtd->urb;
11339+ dwc_otg_halt_status_e ret_val = _halt_status;
11340+ struct usb_iso_packet_descriptor *frame_desc;
11341+
11342+ frame_desc = &urb->iso_frame_desc[_qtd->isoc_frame_index];
11343+ switch (_halt_status) {
11344+ case DWC_OTG_HC_XFER_COMPLETE:
11345+ frame_desc->status = 0;
11346+ frame_desc->actual_length =
11347+ get_actual_xfer_length(_hc, _hc_regs, _qtd,
11348+ _halt_status, NULL);
11349+ break;
11350+ case DWC_OTG_HC_XFER_FRAME_OVERRUN:
11351+ urb->error_count++;
11352+ if (_hc->ep_is_in) {
11353+ frame_desc->status = -ENOSR;
11354+ } else {
11355+ frame_desc->status = -ECOMM;
11356+ }
11357+ frame_desc->actual_length = 0;
11358+ break;
11359+ case DWC_OTG_HC_XFER_BABBLE_ERR:
11360+ urb->error_count++;
11361+ frame_desc->status = -EOVERFLOW;
11362+ /* Don't need to update actual_length in this case. */
11363+ break;
11364+ case DWC_OTG_HC_XFER_XACT_ERR:
11365+ urb->error_count++;
11366+ frame_desc->status = -EPROTO;
11367+ frame_desc->actual_length =
11368+ get_actual_xfer_length(_hc, _hc_regs, _qtd,
11369+ _halt_status, NULL);
11370+ default:
11371+ DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__,
11372+ _halt_status);
11373+ BUG();
11374+ break;
11375+ }
11376+
11377+ if (++_qtd->isoc_frame_index == urb->number_of_packets) {
11378+ /*
11379+ * urb->status is not used for isoc transfers.
11380+ * The individual frame_desc statuses are used instead.
11381+ */
11382+ dwc_otg_hcd_complete_urb(_hcd, urb, 0);
11383+ ret_val = DWC_OTG_HC_XFER_URB_COMPLETE;
11384+ } else {
11385+ ret_val = DWC_OTG_HC_XFER_COMPLETE;
11386+ }
11387+
11388+ return ret_val;
11389+}
11390+
11391+/**
11392+ * Releases a host channel for use by other transfers. Attempts to select and
11393+ * queue more transactions since at least one host channel is available.
11394+ *
11395+ * @param _hcd The HCD state structure.
11396+ * @param _hc The host channel to release.
11397+ * @param _qtd The QTD associated with the host channel. This QTD may be freed
11398+ * if the transfer is complete or an error has occurred.
11399+ * @param _halt_status Reason the channel is being released. This status
11400+ * determines the actions taken by this function.
11401+ */
11402+static void release_channel(dwc_otg_hcd_t *_hcd,
11403+ dwc_hc_t *_hc,
11404+ dwc_otg_qtd_t *_qtd,
11405+ dwc_otg_halt_status_e _halt_status,
11406+ int *must_free)
11407+{
11408+ dwc_otg_transaction_type_e tr_type;
11409+ int free_qtd;
11410+ dwc_otg_qh_t * _qh;
11411+ int deact = 1;
11412+ int retry_delay = 1;
11413+ unsigned long flags;
11414+
11415+ DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n", __func__,
11416+ _hc->hc_num, _halt_status);
11417+
11418+ switch (_halt_status) {
11419+ case DWC_OTG_HC_XFER_NYET:
11420+ case DWC_OTG_HC_XFER_NAK:
11421+ if (_halt_status == DWC_OTG_HC_XFER_NYET) {
11422+ retry_delay = nyet_deferral_delay;
11423+ } else {
11424+ retry_delay = nak_deferral_delay;
11425+ }
11426+ free_qtd = 0;
11427+ if (deferral_on && _hc->do_split) {
11428+ _qh = _hc->qh;
11429+ if (_qh) {
11430+ deact = dwc_otg_hcd_qh_deferr(_hcd, _qh , retry_delay);
11431+ }
11432+ }
11433+ break;
11434+ case DWC_OTG_HC_XFER_URB_COMPLETE:
11435+ free_qtd = 1;
11436+ break;
11437+ case DWC_OTG_HC_XFER_AHB_ERR:
11438+ case DWC_OTG_HC_XFER_STALL:
11439+ case DWC_OTG_HC_XFER_BABBLE_ERR:
11440+ free_qtd = 1;
11441+ break;
11442+ case DWC_OTG_HC_XFER_XACT_ERR:
11443+ if (_qtd->error_count >= 3) {
11444+ DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n");
11445+ free_qtd = 1;
11446+ //_qtd->urb->status = -EPROTO;
11447+ dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPROTO);
11448+ } else {
11449+ free_qtd = 0;
11450+ }
11451+ break;
11452+ case DWC_OTG_HC_XFER_URB_DEQUEUE:
11453+ /*
11454+ * The QTD has already been removed and the QH has been
11455+ * deactivated. Don't want to do anything except release the
11456+ * host channel and try to queue more transfers.
11457+ */
11458+ goto cleanup;
11459+ case DWC_OTG_HC_XFER_NO_HALT_STATUS:
11460+ DWC_ERROR("%s: No halt_status, channel %d\n", __func__, _hc->hc_num);
11461+ free_qtd = 0;
11462+ break;
11463+ default:
11464+ free_qtd = 0;
11465+ break;
11466+ }
11467+ if (free_qtd) {
11468+ /* Only change must_free to true (do not set to zero here -- it is
11469+ * pre-initialized to zero).
11470+ */
11471+ *must_free = 1;
11472+ }
11473+ if (deact) {
11474+ deactivate_qh(_hcd, _hc->qh, free_qtd);
11475+ }
11476+ cleanup:
11477+ /*
11478+ * Release the host channel for use by other transfers. The cleanup
11479+ * function clears the channel interrupt enables and conditions, so
11480+ * there's no need to clear the Channel Halted interrupt separately.
11481+ */
11482+ dwc_otg_hc_cleanup(_hcd->core_if, _hc);
11483+ list_add_tail(&_hc->hc_list_entry, &_hcd->free_hc_list);
11484+
11485+ local_irq_save(flags);
11486+ _hcd->available_host_channels++;
11487+ local_irq_restore(flags);
11488+ /* Try to queue more transfers now that there's a free channel, */
11489+ /* unless erratum_usb09_patched is set */
11490+ if (!erratum_usb09_patched) {
11491+ tr_type = dwc_otg_hcd_select_transactions(_hcd);
11492+ if (tr_type != DWC_OTG_TRANSACTION_NONE) {
11493+ dwc_otg_hcd_queue_transactions(_hcd, tr_type);
11494+ }
11495+ }
11496+}
11497+
11498+/**
11499+ * Halts a host channel. If the channel cannot be halted immediately because
11500+ * the request queue is full, this function ensures that the FIFO empty
11501+ * interrupt for the appropriate queue is enabled so that the halt request can
11502+ * be queued when there is space in the request queue.
11503+ *
11504+ * This function may also be called in DMA mode. In that case, the channel is
11505+ * simply released since the core always halts the channel automatically in
11506+ * DMA mode.
11507+ */
11508+static void halt_channel(dwc_otg_hcd_t *_hcd,
11509+ dwc_hc_t *_hc,
11510+ dwc_otg_qtd_t *_qtd,
11511+ dwc_otg_halt_status_e _halt_status, int *must_free)
11512+{
11513+ if (_hcd->core_if->dma_enable) {
11514+ release_channel(_hcd, _hc, _qtd, _halt_status, must_free);
11515+ return;
11516+ }
11517+
11518+ /* Slave mode processing... */
11519+ dwc_otg_hc_halt(_hcd->core_if, _hc, _halt_status);
11520+
11521+ if (_hc->halt_on_queue) {
11522+ gintmsk_data_t gintmsk = {.d32 = 0};
11523+ dwc_otg_core_global_regs_t *global_regs;
11524+ global_regs = _hcd->core_if->core_global_regs;
11525+
11526+ if (_hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
11527+ _hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
11528+ /*
11529+ * Make sure the Non-periodic Tx FIFO empty interrupt
11530+ * is enabled so that the non-periodic schedule will
11531+ * be processed.
11532+ */
11533+ gintmsk.b.nptxfempty = 1;
11534+ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
11535+ } else {
11536+ /*
11537+ * Move the QH from the periodic queued schedule to
11538+ * the periodic assigned schedule. This allows the
11539+ * halt to be queued when the periodic schedule is
11540+ * processed.
11541+ */
11542+ list_move(&_hc->qh->qh_list_entry,
11543+ &_hcd->periodic_sched_assigned);
11544+
11545+ /*
11546+ * Make sure the Periodic Tx FIFO Empty interrupt is
11547+ * enabled so that the periodic schedule will be
11548+ * processed.
11549+ */
11550+ gintmsk.b.ptxfempty = 1;
11551+ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
11552+ }
11553+ }
11554+}
11555+
11556+/**
11557+ * Performs common cleanup for non-periodic transfers after a Transfer
11558+ * Complete interrupt. This function should be called after any endpoint type
11559+ * specific handling is finished to release the host channel.
11560+ */
11561+static void complete_non_periodic_xfer(dwc_otg_hcd_t *_hcd,
11562+ dwc_hc_t *_hc,
11563+ dwc_otg_hc_regs_t *_hc_regs,
11564+ dwc_otg_qtd_t *_qtd,
11565+ dwc_otg_halt_status_e _halt_status, int *must_free)
11566+{
11567+ hcint_data_t hcint;
11568+
11569+ _qtd->error_count = 0;
11570+
11571+ hcint.d32 = dwc_read_reg32(&_hc_regs->hcint);
11572+ if (hcint.b.nyet) {
11573+ /*
11574+ * Got a NYET on the last transaction of the transfer. This
11575+ * means that the endpoint should be in the PING state at the
11576+ * beginning of the next transfer.
11577+ */
11578+ _hc->qh->ping_state = 1;
11579+ clear_hc_int(_hc_regs,nyet);
11580+ }
11581+
11582+ /*
11583+ * Always halt and release the host channel to make it available for
11584+ * more transfers. There may still be more phases for a control
11585+ * transfer or more data packets for a bulk transfer at this point,
11586+ * but the host channel is still halted. A channel will be reassigned
11587+ * to the transfer when the non-periodic schedule is processed after
11588+ * the channel is released. This allows transactions to be queued
11589+ * properly via dwc_otg_hcd_queue_transactions, which also enables the
11590+ * Tx FIFO Empty interrupt if necessary.
11591+ */
11592+ if (_hc->ep_is_in) {
11593+ /*
11594+ * IN transfers in Slave mode require an explicit disable to
11595+ * halt the channel. (In DMA mode, this call simply releases
11596+ * the channel.)
11597+ */
11598+ halt_channel(_hcd, _hc, _qtd, _halt_status, must_free);
11599+ } else {
11600+ /*
11601+ * The channel is automatically disabled by the core for OUT
11602+ * transfers in Slave mode.
11603+ */
11604+ release_channel(_hcd, _hc, _qtd, _halt_status, must_free);
11605+ }
11606+}
11607+
11608+/**
11609+ * Performs common cleanup for periodic transfers after a Transfer Complete
11610+ * interrupt. This function should be called after any endpoint type specific
11611+ * handling is finished to release the host channel.
11612+ */
11613+static void complete_periodic_xfer(dwc_otg_hcd_t *_hcd,
11614+ dwc_hc_t *_hc,
11615+ dwc_otg_hc_regs_t *_hc_regs,
11616+ dwc_otg_qtd_t *_qtd,
11617+ dwc_otg_halt_status_e _halt_status, int *must_free)
11618+{
11619+ hctsiz_data_t hctsiz;
11620+ _qtd->error_count = 0;
11621+
11622+ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
11623+ if (!_hc->ep_is_in || hctsiz.b.pktcnt == 0) {
11624+ /* Core halts channel in these cases. */
11625+ release_channel(_hcd, _hc, _qtd, _halt_status, must_free);
11626+ } else {
11627+ /* Flush any outstanding requests from the Tx queue. */
11628+ halt_channel(_hcd, _hc, _qtd, _halt_status, must_free);
11629+ }
11630+}
11631+
11632+/**
11633+ * Handles a host channel Transfer Complete interrupt. This handler may be
11634+ * called in either DMA mode or Slave mode.
11635+ */
11636+static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *_hcd,
11637+ dwc_hc_t *_hc,
11638+ dwc_otg_hc_regs_t *_hc_regs,
11639+ dwc_otg_qtd_t *_qtd, int *must_free)
11640+{
11641+ int urb_xfer_done;
11642+ dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE;
11643+ struct urb *urb = _qtd->urb;
11644+ int pipe_type = usb_pipetype(urb->pipe);
11645+ int status = -EINPROGRESS;
11646+
11647+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
11648+ "Transfer Complete--\n", _hc->hc_num);
11649+
11650+ /*
11651+ * Handle xfer complete on CSPLIT.
11652+ */
11653+ if (_hc->qh->do_split) {
11654+ _qtd->complete_split = 0;
11655+ }
11656+
11657+ /* Update the QTD and URB states. */
11658+ switch (pipe_type) {
11659+ case PIPE_CONTROL:
11660+ switch (_qtd->control_phase) {
11661+ case DWC_OTG_CONTROL_SETUP:
11662+ if (urb->transfer_buffer_length > 0) {
11663+ _qtd->control_phase = DWC_OTG_CONTROL_DATA;
11664+ } else {
11665+ _qtd->control_phase = DWC_OTG_CONTROL_STATUS;
11666+ }
11667+ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n");
11668+ halt_status = DWC_OTG_HC_XFER_COMPLETE;
11669+ break;
11670+ case DWC_OTG_CONTROL_DATA: {
11671+ urb_xfer_done = update_urb_state_xfer_comp(_hc, _hc_regs,urb, _qtd, &status);
11672+ if (urb_xfer_done) {
11673+ _qtd->control_phase = DWC_OTG_CONTROL_STATUS;
11674+ DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n");
11675+ } else {
11676+ save_data_toggle(_hc, _hc_regs, _qtd);
11677+ }
11678+ halt_status = DWC_OTG_HC_XFER_COMPLETE;
11679+ break;
11680+ }
11681+ case DWC_OTG_CONTROL_STATUS:
11682+ DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n");
11683+ if (status == -EINPROGRESS) {
11684+ status = 0;
11685+ }
11686+ dwc_otg_hcd_complete_urb(_hcd, urb, status);
11687+ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
11688+ break;
11689+ }
11690+
11691+ complete_non_periodic_xfer(_hcd, _hc, _hc_regs, _qtd,
11692+ halt_status, must_free);
11693+ break;
11694+ case PIPE_BULK:
11695+ DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n");
11696+ urb_xfer_done = update_urb_state_xfer_comp(_hc, _hc_regs, urb, _qtd, &status);
11697+ if (urb_xfer_done) {
11698+ dwc_otg_hcd_complete_urb(_hcd, urb, status);
11699+ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
11700+ } else {
11701+ halt_status = DWC_OTG_HC_XFER_COMPLETE;
11702+ }
11703+
11704+ save_data_toggle(_hc, _hc_regs, _qtd);
11705+ complete_non_periodic_xfer(_hcd, _hc, _hc_regs, _qtd,halt_status, must_free);
11706+ break;
11707+ case PIPE_INTERRUPT:
11708+ DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n");
11709+ update_urb_state_xfer_comp(_hc, _hc_regs, urb, _qtd, &status);
11710+
11711+ /*
11712+ * Interrupt URB is done on the first transfer complete
11713+ * interrupt.
11714+ */
11715+ dwc_otg_hcd_complete_urb(_hcd, urb, status);
11716+ save_data_toggle(_hc, _hc_regs, _qtd);
11717+ complete_periodic_xfer(_hcd, _hc, _hc_regs, _qtd,
11718+ DWC_OTG_HC_XFER_URB_COMPLETE, must_free);
11719+ break;
11720+ case PIPE_ISOCHRONOUS:
11721+ DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n");
11722+ if (_qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL)
11723+ {
11724+ halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd,
11725+ DWC_OTG_HC_XFER_COMPLETE);
11726+ }
11727+ complete_periodic_xfer(_hcd, _hc, _hc_regs, _qtd, halt_status, must_free);
11728+ break;
11729+ }
11730+
11731+ disable_hc_int(_hc_regs,xfercompl);
11732+
11733+ return 1;
11734+}
11735+
11736+/**
11737+ * Handles a host channel STALL interrupt. This handler may be called in
11738+ * either DMA mode or Slave mode.
11739+ */
11740+static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *_hcd,
11741+ dwc_hc_t *_hc,
11742+ dwc_otg_hc_regs_t *_hc_regs,
11743+ dwc_otg_qtd_t *_qtd, int *must_free)
11744+{
11745+ struct urb *urb = _qtd->urb;
11746+ int pipe_type = usb_pipetype(urb->pipe);
11747+
11748+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
11749+ "STALL Received--\n", _hc->hc_num);
11750+
11751+ if (pipe_type == PIPE_CONTROL) {
11752+ dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPIPE);
11753+ }
11754+
11755+ if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) {
11756+ dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPIPE);
11757+ /*
11758+ * USB protocol requires resetting the data toggle for bulk
11759+ * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT)
11760+ * setup command is issued to the endpoint. Anticipate the
11761+ * CLEAR_FEATURE command since a STALL has occurred and reset
11762+ * the data toggle now.
11763+ */
11764+ _hc->qh->data_toggle = 0;
11765+ }
11766+
11767+ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_STALL, must_free);
11768+ disable_hc_int(_hc_regs,stall);
11769+
11770+ return 1;
11771+}
11772+
11773+/*
11774+ * Updates the state of the URB when a transfer has been stopped due to an
11775+ * abnormal condition before the transfer completes. Modifies the
11776+ * actual_length field of the URB to reflect the number of bytes that have
11777+ * actually been transferred via the host channel.
11778+ */
11779+static void update_urb_state_xfer_intr(dwc_hc_t *_hc,
11780+ dwc_otg_hc_regs_t *_hc_regs,
11781+ struct urb *_urb,
11782+ dwc_otg_qtd_t *_qtd,
11783+ dwc_otg_halt_status_e _halt_status)
11784+{
11785+ uint32_t bytes_transferred = get_actual_xfer_length(_hc, _hc_regs, _qtd,
11786+ _halt_status, NULL);
11787+ _urb->actual_length += bytes_transferred;
11788+
11789+#ifdef DEBUG
11790+ {
11791+ hctsiz_data_t hctsiz;
11792+ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
11793+ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
11794+ __func__, (_hc->ep_is_in ? "IN" : "OUT"), _hc->hc_num);
11795+ DWC_DEBUGPL(DBG_HCDV, " _hc->start_pkt_count %d\n", _hc->start_pkt_count);
11796+ DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt);
11797+ DWC_DEBUGPL(DBG_HCDV, " _hc->max_packet %d\n", _hc->max_packet);
11798+ DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", bytes_transferred);
11799+ DWC_DEBUGPL(DBG_HCDV, " _urb->actual_length %d\n", _urb->actual_length);
11800+ DWC_DEBUGPL(DBG_HCDV, " _urb->transfer_buffer_length %d\n",
11801+ _urb->transfer_buffer_length);
11802+ }
11803+#endif
11804+}
11805+
11806+/**
11807+ * Handles a host channel NAK interrupt. This handler may be called in either
11808+ * DMA mode or Slave mode.
11809+ */
11810+static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *_hcd,
11811+ dwc_hc_t *_hc,
11812+ dwc_otg_hc_regs_t *_hc_regs,
11813+ dwc_otg_qtd_t *_qtd, int *must_free)
11814+{
11815+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
11816+ "NAK Received--\n", _hc->hc_num);
11817+
11818+ /*
11819+ * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and
11820+ * interrupt. Re-start the SSPLIT transfer.
11821+ */
11822+ if (_hc->do_split) {
11823+ if (_hc->complete_split) {
11824+ _qtd->error_count = 0;
11825+ }
11826+ _qtd->complete_split = 0;
11827+ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free);
11828+ goto handle_nak_done;
11829+ }
11830+
11831+ switch (usb_pipetype(_qtd->urb->pipe)) {
11832+ case PIPE_CONTROL:
11833+ case PIPE_BULK:
11834+ if (_hcd->core_if->dma_enable && _hc->ep_is_in) {
11835+ /*
11836+ * NAK interrupts are enabled on bulk/control IN
11837+ * transfers in DMA mode for the sole purpose of
11838+ * resetting the error count after a transaction error
11839+ * occurs. The core will continue transferring data.
11840+ */
11841+ _qtd->error_count = 0;
11842+ goto handle_nak_done;
11843+ }
11844+
11845+ /*
11846+ * NAK interrupts normally occur during OUT transfers in DMA
11847+ * or Slave mode. For IN transfers, more requests will be
11848+ * queued as request queue space is available.
11849+ */
11850+ _qtd->error_count = 0;
11851+
11852+ if (!_hc->qh->ping_state) {
11853+ update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb,
11854+ _qtd, DWC_OTG_HC_XFER_NAK);
11855+ save_data_toggle(_hc, _hc_regs, _qtd);
11856+ if (_qtd->urb->dev->speed == USB_SPEED_HIGH) {
11857+ _hc->qh->ping_state = 1;
11858+ }
11859+ }
11860+
11861+ /*
11862+ * Halt the channel so the transfer can be re-started from
11863+ * the appropriate point or the PING protocol will
11864+ * start/continue.
11865+ */
11866+ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free);
11867+ break;
11868+ case PIPE_INTERRUPT:
11869+ _qtd->error_count = 0;
11870+ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free);
11871+ break;
11872+ case PIPE_ISOCHRONOUS:
11873+ /* Should never get called for isochronous transfers. */
11874+ BUG();
11875+ break;
11876+ }
11877+
11878+ handle_nak_done:
11879+ disable_hc_int(_hc_regs,nak);
11880+
11881+ return 1;
11882+}
11883+
11884+/**
11885+ * Handles a host channel ACK interrupt. This interrupt is enabled when
11886+ * performing the PING protocol in Slave mode, when errors occur during
11887+ * either Slave mode or DMA mode, and during Start Split transactions.
11888+ */
11889+static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *_hcd,
11890+ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
11891+{
11892+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
11893+ "ACK Received--\n", _hc->hc_num);
11894+
11895+ if (_hc->do_split) {
11896+ /*
11897+ * Handle ACK on SSPLIT.
11898+ * ACK should not occur in CSPLIT.
11899+ */
11900+ if ((!_hc->ep_is_in) && (_hc->data_pid_start != DWC_OTG_HC_PID_SETUP)) {
11901+ _qtd->ssplit_out_xfer_count = _hc->xfer_len;
11902+ }
11903+ if (!(_hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !_hc->ep_is_in)) {
11904+ /* Don't need complete for isochronous out transfers. */
11905+ _qtd->complete_split = 1;
11906+ }
11907+
11908+ /* ISOC OUT */
11909+ if ((_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && !_hc->ep_is_in) {
11910+ switch (_hc->xact_pos) {
11911+ case DWC_HCSPLIT_XACTPOS_ALL:
11912+ break;
11913+ case DWC_HCSPLIT_XACTPOS_END:
11914+ _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
11915+ _qtd->isoc_split_offset = 0;
11916+ break;
11917+ case DWC_HCSPLIT_XACTPOS_BEGIN:
11918+ case DWC_HCSPLIT_XACTPOS_MID:
11919+ /*
11920+ * For BEGIN or MID, calculate the length for
11921+ * the next microframe to determine the correct
11922+ * SSPLIT token, either MID or END.
11923+ */
11924+ do {
11925+ struct usb_iso_packet_descriptor *frame_desc;
11926+
11927+ frame_desc = &_qtd->urb->iso_frame_desc[_qtd->isoc_frame_index];
11928+ _qtd->isoc_split_offset += 188;
11929+
11930+ if ((frame_desc->length - _qtd->isoc_split_offset) <= 188) {
11931+ _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END;
11932+ }
11933+ else {
11934+ _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID;
11935+ }
11936+
11937+ } while(0);
11938+ break;
11939+ }
11940+ } else {
11941+ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_ACK, must_free);
11942+ }
11943+ } else {
11944+ _qtd->error_count = 0;
11945+
11946+ if (_hc->qh->ping_state) {
11947+ _hc->qh->ping_state = 0;
11948+ /*
11949+ * Halt the channel so the transfer can be re-started
11950+ * from the appropriate point. This only happens in
11951+ * Slave mode. In DMA mode, the ping_state is cleared
11952+ * when the transfer is started because the core
11953+ * automatically executes the PING, then the transfer.
11954+ */
11955+ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_ACK, must_free);
11956+ } else {
11957+ halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
11958+ }
11959+ }
11960+
11961+ /*
11962+ * If the ACK occurred when _not_ in the PING state, let the channel
11963+ * continue transferring data after clearing the error count.
11964+ */
11965+
11966+ disable_hc_int(_hc_regs,ack);
11967+
11968+ return 1;
11969+}
11970+
11971+/**
11972+ * Handles a host channel NYET interrupt. This interrupt should only occur on
11973+ * Bulk and Control OUT endpoints and for complete split transactions. If a
11974+ * NYET occurs at the same time as a Transfer Complete interrupt, it is
11975+ * handled in the xfercomp interrupt handler, not here. This handler may be
11976+ * called in either DMA mode or Slave mode.
11977+ */
11978+static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *_hcd,
11979+ dwc_hc_t *_hc,
11980+ dwc_otg_hc_regs_t *_hc_regs,
11981+ dwc_otg_qtd_t *_qtd, int *must_free)
11982+{
11983+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
11984+ "NYET Received--\n", _hc->hc_num);
11985+
11986+ /*
11987+ * NYET on CSPLIT
11988+ * re-do the CSPLIT immediately on non-periodic
11989+ */
11990+ if ((_hc->do_split) && (_hc->complete_split)) {
11991+ if ((_hc->ep_type == DWC_OTG_EP_TYPE_INTR) ||
11992+ (_hc->ep_type == DWC_OTG_EP_TYPE_ISOC)) {
11993+ int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd));
11994+
11995+ if (dwc_full_frame_num(frnum) !=
11996+ dwc_full_frame_num(_hc->qh->sched_frame)) {
11997+ /*
11998+ * No longer in the same full speed frame.
11999+ * Treat this as a transaction error.
12000+ */
12001+#if 0
12002+ /** @todo Fix system performance so this can
12003+ * be treated as an error. Right now complete
12004+ * splits cannot be scheduled precisely enough
12005+ * due to other system activity, so this error
12006+ * occurs regularly in Slave mode.
12007+ */
12008+ _qtd->error_count++;
12009+#endif
12010+ _qtd->complete_split = 0;
12011+ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free);
12012+ /** @todo add support for isoc release */
12013+ goto handle_nyet_done;
12014+ }
12015+ }
12016+
12017+ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NYET, must_free);
12018+ goto handle_nyet_done;
12019+ }
12020+
12021+ _hc->qh->ping_state = 1;
12022+ _qtd->error_count = 0;
12023+
12024+ update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb, _qtd,
12025+ DWC_OTG_HC_XFER_NYET);
12026+ save_data_toggle(_hc, _hc_regs, _qtd);
12027+
12028+ /*
12029+ * Halt the channel and re-start the transfer so the PING
12030+ * protocol will start.
12031+ */
12032+ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NYET, must_free);
12033+
12034+handle_nyet_done:
12035+ disable_hc_int(_hc_regs,nyet);
12036+ clear_hc_int(_hc_regs, nyet);
12037+ return 1;
12038+}
12039+
12040+/**
12041+ * Handles a host channel babble interrupt. This handler may be called in
12042+ * either DMA mode or Slave mode.
12043+ */
12044+static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *_hcd,
12045+ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
12046+{
12047+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12048+ "Babble Error--\n", _hc->hc_num);
12049+ if (_hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
12050+ dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EOVERFLOW);
12051+ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_BABBLE_ERR, must_free);
12052+ } else {
12053+ dwc_otg_halt_status_e halt_status;
12054+ halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd,
12055+ DWC_OTG_HC_XFER_BABBLE_ERR);
12056+ halt_channel(_hcd, _hc, _qtd, halt_status, must_free);
12057+ }
12058+ disable_hc_int(_hc_regs,bblerr);
12059+ return 1;
12060+}
12061+
12062+/**
12063+ * Handles a host channel AHB error interrupt. This handler is only called in
12064+ * DMA mode.
12065+ */
12066+static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *_hcd,
12067+ dwc_hc_t *_hc,
12068+ dwc_otg_hc_regs_t *_hc_regs,
12069+ dwc_otg_qtd_t *_qtd)
12070+{
12071+ hcchar_data_t hcchar;
12072+ hcsplt_data_t hcsplt;
12073+ hctsiz_data_t hctsiz;
12074+ uint32_t hcdma;
12075+ struct urb *urb = _qtd->urb;
12076+
12077+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12078+ "AHB Error--\n", _hc->hc_num);
12079+
12080+ hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar);
12081+ hcsplt.d32 = dwc_read_reg32(&_hc_regs->hcsplt);
12082+ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
12083+ hcdma = dwc_read_reg32(&_hc_regs->hcdma);
12084+
12085+ DWC_ERROR("AHB ERROR, Channel %d\n", _hc->hc_num);
12086+ DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
12087+ DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
12088+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n");
12089+ DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe));
12090+ DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
12091+ (usb_pipein(urb->pipe) ? "IN" : "OUT"));
12092+ DWC_ERROR(" Endpoint type: %s\n",
12093+ ({char *pipetype;
12094+ switch (usb_pipetype(urb->pipe)) {
12095+ case PIPE_CONTROL: pipetype = "CONTROL"; break;
12096+ case PIPE_BULK: pipetype = "BULK"; break;
12097+ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
12098+ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
12099+ default: pipetype = "UNKNOWN"; break;
12100+ }; pipetype;}));
12101+ DWC_ERROR(" Speed: %s\n",
12102+ ({char *speed;
12103+ switch (urb->dev->speed) {
12104+ case USB_SPEED_HIGH: speed = "HIGH"; break;
12105+ case USB_SPEED_FULL: speed = "FULL"; break;
12106+ case USB_SPEED_LOW: speed = "LOW"; break;
12107+ default: speed = "UNKNOWN"; break;
12108+ }; speed;}));
12109+ DWC_ERROR(" Max packet size: %d\n",
12110+ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
12111+ DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length);
12112+ DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n",
12113+ urb->transfer_buffer, (void *)(u32)urb->transfer_dma);
12114+ DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n",
12115+ urb->setup_packet, (void *)(u32)urb->setup_dma);
12116+ DWC_ERROR(" Interval: %d\n", urb->interval);
12117+
12118+ dwc_otg_hcd_complete_urb(_hcd, urb, -EIO);
12119+
12120+ /*
12121+ * Force a channel halt. Don't call halt_channel because that won't
12122+ * write to the HCCHARn register in DMA mode to force the halt.
12123+ */
12124+ dwc_otg_hc_halt(_hcd->core_if, _hc, DWC_OTG_HC_XFER_AHB_ERR);
12125+
12126+ disable_hc_int(_hc_regs,ahberr);
12127+ return 1;
12128+}
12129+
12130+/**
12131+ * Handles a host channel transaction error interrupt. This handler may be
12132+ * called in either DMA mode or Slave mode.
12133+ */
12134+static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *_hcd,
12135+ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
12136+{
12137+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12138+ "Transaction Error--\n", _hc->hc_num);
12139+
12140+ switch (usb_pipetype(_qtd->urb->pipe)) {
12141+ case PIPE_CONTROL:
12142+ case PIPE_BULK:
12143+ _qtd->error_count++;
12144+ if (!_hc->qh->ping_state) {
12145+ update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb,
12146+ _qtd, DWC_OTG_HC_XFER_XACT_ERR);
12147+ save_data_toggle(_hc, _hc_regs, _qtd);
12148+ if (!_hc->ep_is_in && _qtd->urb->dev->speed == USB_SPEED_HIGH) {
12149+ _hc->qh->ping_state = 1;
12150+ }
12151+ }
12152+
12153+ /*
12154+ * Halt the channel so the transfer can be re-started from
12155+ * the appropriate point or the PING protocol will start.
12156+ */
12157+ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free);
12158+ break;
12159+ case PIPE_INTERRUPT:
12160+ _qtd->error_count++;
12161+ if ((_hc->do_split) && (_hc->complete_split)) {
12162+ _qtd->complete_split = 0;
12163+ }
12164+ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free);
12165+ break;
12166+ case PIPE_ISOCHRONOUS:
12167+ {
12168+ dwc_otg_halt_status_e halt_status;
12169+ halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd,
12170+ DWC_OTG_HC_XFER_XACT_ERR);
12171+
12172+ halt_channel(_hcd, _hc, _qtd, halt_status, must_free);
12173+ }
12174+ break;
12175+ }
12176+
12177+
12178+ disable_hc_int(_hc_regs,xacterr);
12179+
12180+ return 1;
12181+}
12182+
12183+/**
12184+ * Handles a host channel frame overrun interrupt. This handler may be called
12185+ * in either DMA mode or Slave mode.
12186+ */
12187+static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *_hcd,
12188+ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
12189+{
12190+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12191+ "Frame Overrun--\n", _hc->hc_num);
12192+
12193+ switch (usb_pipetype(_qtd->urb->pipe)) {
12194+ case PIPE_CONTROL:
12195+ case PIPE_BULK:
12196+ break;
12197+ case PIPE_INTERRUPT:
12198+ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN, must_free);
12199+ break;
12200+ case PIPE_ISOCHRONOUS:
12201+ {
12202+ dwc_otg_halt_status_e halt_status;
12203+ halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd,
12204+ DWC_OTG_HC_XFER_FRAME_OVERRUN);
12205+
12206+ halt_channel(_hcd, _hc, _qtd, halt_status, must_free);
12207+ }
12208+ break;
12209+ }
12210+
12211+ disable_hc_int(_hc_regs,frmovrun);
12212+
12213+ return 1;
12214+}
12215+
12216+/**
12217+ * Handles a host channel data toggle error interrupt. This handler may be
12218+ * called in either DMA mode or Slave mode.
12219+ */
12220+static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *_hcd,
12221+ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
12222+{
12223+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12224+ "Data Toggle Error--\n", _hc->hc_num);
12225+
12226+ if (_hc->ep_is_in) {
12227+ _qtd->error_count = 0;
12228+ } else {
12229+ DWC_ERROR("Data Toggle Error on OUT transfer,"
12230+ "channel %d\n", _hc->hc_num);
12231+ }
12232+
12233+ disable_hc_int(_hc_regs,datatglerr);
12234+
12235+ return 1;
12236+}
12237+
12238+#ifdef DEBUG
12239+/**
12240+ * This function is for debug only. It checks that a valid halt status is set
12241+ * and that HCCHARn.chdis is clear. If there's a problem, corrective action is
12242+ * taken and a warning is issued.
12243+ * @return 1 if halt status is ok, 0 otherwise.
12244+ */
12245+static inline int halt_status_ok(dwc_otg_hcd_t *_hcd,
12246+ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
12247+{
12248+ hcchar_data_t hcchar;
12249+ hctsiz_data_t hctsiz;
12250+ hcint_data_t hcint;
12251+ hcintmsk_data_t hcintmsk;
12252+ hcsplt_data_t hcsplt;
12253+
12254+ if (_hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) {
12255+ /*
12256+ * This code is here only as a check. This condition should
12257+ * never happen. Ignore the halt if it does occur.
12258+ */
12259+ hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar);
12260+ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
12261+ hcint.d32 = dwc_read_reg32(&_hc_regs->hcint);
12262+ hcintmsk.d32 = dwc_read_reg32(&_hc_regs->hcintmsk);
12263+ hcsplt.d32 = dwc_read_reg32(&_hc_regs->hcsplt);
12264+ DWC_WARN("%s: _hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, "
12265+ "channel %d, hcchar 0x%08x, hctsiz 0x%08x, "
12266+ "hcint 0x%08x, hcintmsk 0x%08x, "
12267+ "hcsplt 0x%08x, qtd->complete_split %d\n",
12268+ __func__, _hc->hc_num, hcchar.d32, hctsiz.d32,
12269+ hcint.d32, hcintmsk.d32,
12270+ hcsplt.d32, _qtd->complete_split);
12271+
12272+ DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n",
12273+ __func__, _hc->hc_num);
12274+ DWC_WARN("\n");
12275+ clear_hc_int(_hc_regs,chhltd);
12276+ return 0;
12277+ }
12278+
12279+ /*
12280+ * This code is here only as a check. hcchar.chdis should
12281+ * never be set when the halt interrupt occurs. Halt the
12282+ * channel again if it does occur.
12283+ */
12284+ hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar);
12285+ if (hcchar.b.chdis) {
12286+ DWC_WARN("%s: hcchar.chdis set unexpectedly, "
12287+ "hcchar 0x%08x, trying to halt again\n",
12288+ __func__, hcchar.d32);
12289+ clear_hc_int(_hc_regs,chhltd);
12290+ _hc->halt_pending = 0;
12291+ halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
12292+ return 0;
12293+ }
12294+
12295+ return 1;
12296+}
12297+#endif
12298+
12299+/**
12300+ * Handles a host Channel Halted interrupt in DMA mode. This handler
12301+ * determines the reason the channel halted and proceeds accordingly.
12302+ */
12303+static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *_hcd,
12304+ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
12305+{
12306+ hcint_data_t hcint;
12307+ hcintmsk_data_t hcintmsk;
12308+
12309+ if (_hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
12310+ _hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
12311+ /*
12312+ * Just release the channel. A dequeue can happen on a
12313+ * transfer timeout. In the case of an AHB Error, the channel
12314+ * was forced to halt because there's no way to gracefully
12315+ * recover.
12316+ */
12317+ release_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
12318+ return;
12319+ }
12320+
12321+ /* Read the HCINTn register to determine the cause for the halt. */
12322+ hcint.d32 = dwc_read_reg32(&_hc_regs->hcint);
12323+ hcintmsk.d32 = dwc_read_reg32(&_hc_regs->hcintmsk);
12324+
12325+ if (hcint.b.xfercomp) {
12326+ /** @todo This is here because of a possible hardware bug. Spec
12327+ * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT
12328+ * interrupt w/ACK bit set should occur, but I only see the
12329+ * XFERCOMP bit, even with it masked out. This is a workaround
12330+ * for that behavior. Should fix this when hardware is fixed.
12331+ */
12332+ if ((_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && (!_hc->ep_is_in)) {
12333+ handle_hc_ack_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12334+ }
12335+ handle_hc_xfercomp_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12336+ } else if (hcint.b.stall) {
12337+ handle_hc_stall_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12338+ } else if (hcint.b.xacterr) {
12339+ /*
12340+ * Must handle xacterr before nak or ack. Could get a xacterr
12341+ * at the same time as either of these on a BULK/CONTROL OUT
12342+ * that started with a PING. The xacterr takes precedence.
12343+ */
12344+ handle_hc_xacterr_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12345+ } else if (hcint.b.nyet) {
12346+ /*
12347+ * Must handle nyet before nak or ack. Could get a nyet at the
12348+ * same time as either of those on a BULK/CONTROL OUT that
12349+ * started with a PING. The nyet takes precedence.
12350+ */
12351+ handle_hc_nyet_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12352+ } else if (hcint.b.bblerr) {
12353+ handle_hc_babble_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12354+ } else if (hcint.b.frmovrun) {
12355+ handle_hc_frmovrun_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12356+ } else if (hcint.b.datatglerr) {
12357+ handle_hc_datatglerr_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12358+ _hc->qh->data_toggle = 0;
12359+ halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
12360+ } else if (hcint.b.nak && !hcintmsk.b.nak) {
12361+ /*
12362+ * If nak is not masked, it's because a non-split IN transfer
12363+ * is in an error state. In that case, the nak is handled by
12364+ * the nak interrupt handler, not here. Handle nak here for
12365+ * BULK/CONTROL OUT transfers, which halt on a NAK to allow
12366+ * rewinding the buffer pointer.
12367+ */
12368+ handle_hc_nak_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12369+ } else if (hcint.b.ack && !hcintmsk.b.ack) {
12370+ /*
12371+ * If ack is not masked, it's because a non-split IN transfer
12372+ * is in an error state. In that case, the ack is handled by
12373+ * the ack interrupt handler, not here. Handle ack here for
12374+ * split transfers. Start splits halt on ACK.
12375+ */
12376+ handle_hc_ack_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12377+ } else {
12378+ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
12379+ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
12380+ /*
12381+ * A periodic transfer halted with no other channel
12382+ * interrupts set. Assume it was halted by the core
12383+ * because it could not be completed in its scheduled
12384+ * (micro)frame.
12385+ */
12386+#ifdef DEBUG
12387+ DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n",
12388+ __func__, _hc->hc_num);
12389+#endif /* */
12390+ halt_channel(_hcd, _hc, _qtd,
12391+ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE, must_free);
12392+ } else {
12393+#ifdef DEBUG
12394+ DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason "
12395+ "for halting is unknown, nyet %d, hcint 0x%08x, intsts 0x%08x\n",
12396+ __func__, _hc->hc_num, hcint.b.nyet, hcint.d32,
12397+ dwc_read_reg32(&_hcd->core_if->core_global_regs->gintsts));
12398+#endif
12399+ halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
12400+ }
12401+ }
12402+}
12403+
12404+/**
12405+ * Handles a host channel Channel Halted interrupt.
12406+ *
12407+ * In slave mode, this handler is called only when the driver specifically
12408+ * requests a halt. This occurs during handling other host channel interrupts
12409+ * (e.g. nak, xacterr, stall, nyet, etc.).
12410+ *
12411+ * In DMA mode, this is the interrupt that occurs when the core has finished
12412+ * processing a transfer on a channel. Other host channel interrupts (except
12413+ * ahberr) are disabled in DMA mode.
12414+ */
12415+static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *_hcd,
12416+ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
12417+{
12418+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12419+ "Channel Halted--\n", _hc->hc_num);
12420+
12421+ if (_hcd->core_if->dma_enable) {
12422+ handle_hc_chhltd_intr_dma(_hcd, _hc, _hc_regs, _qtd, must_free);
12423+ } else {
12424+#ifdef DEBUG
12425+ if (!halt_status_ok(_hcd, _hc, _hc_regs, _qtd, must_free)) {
12426+ return 1;
12427+ }
12428+#endif /* */
12429+ release_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
12430+ }
12431+
12432+ return 1;
12433+}
12434+
12435+/** Handles interrupt for a specific Host Channel */
12436+int32_t dwc_otg_hcd_handle_hc_n_intr (dwc_otg_hcd_t *_dwc_otg_hcd, uint32_t _num)
12437+{
12438+ int must_free = 0;
12439+ int retval = 0;
12440+ hcint_data_t hcint;
12441+ hcintmsk_data_t hcintmsk;
12442+ dwc_hc_t *hc;
12443+ dwc_otg_hc_regs_t *hc_regs;
12444+ dwc_otg_qtd_t *qtd;
12445+
12446+ DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", _num);
12447+
12448+ hc = _dwc_otg_hcd->hc_ptr_array[_num];
12449+ hc_regs = _dwc_otg_hcd->core_if->host_if->hc_regs[_num];
12450+ qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
12451+
12452+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
12453+ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
12454+ DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n",
12455+ hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32));
12456+ hcint.d32 = hcint.d32 & hcintmsk.d32;
12457+
12458+ if (!_dwc_otg_hcd->core_if->dma_enable) {
12459+ if ((hcint.b.chhltd) && (hcint.d32 != 0x2)) {
12460+ hcint.b.chhltd = 0;
12461+ }
12462+ }
12463+
12464+ if (hcint.b.xfercomp) {
12465+ retval |= handle_hc_xfercomp_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12466+ /*
12467+ * If NYET occurred at same time as Xfer Complete, the NYET is
12468+ * handled by the Xfer Complete interrupt handler. Don't want
12469+ * to call the NYET interrupt handler in this case.
12470+ */
12471+ hcint.b.nyet = 0;
12472+ }
12473+ if (hcint.b.chhltd) {
12474+ retval |= handle_hc_chhltd_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12475+ }
12476+ if (hcint.b.ahberr) {
12477+ retval |= handle_hc_ahberr_intr(_dwc_otg_hcd, hc, hc_regs, qtd);
12478+ }
12479+ if (hcint.b.stall) {
12480+ retval |= handle_hc_stall_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12481+ }
12482+ if (hcint.b.nak) {
12483+ retval |= handle_hc_nak_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12484+ }
12485+ if (hcint.b.ack) {
12486+ retval |= handle_hc_ack_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12487+ }
12488+ if (hcint.b.nyet) {
12489+ retval |= handle_hc_nyet_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12490+ }
12491+ if (hcint.b.xacterr) {
12492+ retval |= handle_hc_xacterr_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12493+ }
12494+ if (hcint.b.bblerr) {
12495+ retval |= handle_hc_babble_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12496+ }
12497+ if (hcint.b.frmovrun) {
12498+ retval |= handle_hc_frmovrun_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12499+ }
12500+ if (hcint.b.datatglerr) {
12501+ retval |= handle_hc_datatglerr_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12502+ }
12503+
12504+ /*
12505+ * Logic to free the qtd here, at the end of the hc intr
12506+ * processing, if the handling of this interrupt determined
12507+ * that it needs to be freed.
12508+ */
12509+ if (must_free) {
12510+ /* Free the qtd here now that we are done using it. */
12511+ dwc_otg_hcd_qtd_free(qtd);
12512+ }
12513+ return retval;
12514+}
12515+
12516+#endif /* DWC_DEVICE_ONLY */
12517--- /dev/null
12518+++ b/drivers/usb/dwc_otg/dwc_otg_hcd_queue.c
12519@@ -0,0 +1,794 @@
12520+/* ==========================================================================
12521+ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd_queue.c $
12522+ * $Revision: 1.1.1.1 $
12523+ * $Date: 2009-04-17 06:15:34 $
12524+ * $Change: 537387 $
12525+ *
12526+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
12527+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
12528+ * otherwise expressly agreed to in writing between Synopsys and you.
12529+ *
12530+ * The Software IS NOT an item of Licensed Software or Licensed Product under
12531+ * any End User Software License Agreement or Agreement for Licensed Product
12532+ * with Synopsys or any supplement thereto. You are permitted to use and
12533+ * redistribute this Software in source and binary forms, with or without
12534+ * modification, provided that redistributions of source code must retain this
12535+ * notice. You may not view, use, disclose, copy or distribute this file or
12536+ * any information contained herein except pursuant to this license grant from
12537+ * Synopsys. If you do not agree with this notice, including the disclaimer
12538+ * below, then you are not authorized to use the Software.
12539+ *
12540+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
12541+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
12542+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
12543+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
12544+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
12545+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
12546+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
12547+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
12548+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
12549+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
12550+ * DAMAGE.
12551+ * ========================================================================== */
12552+#ifndef DWC_DEVICE_ONLY
12553+
12554+/**
12555+ * @file
12556+ *
12557+ * This file contains the functions to manage Queue Heads and Queue
12558+ * Transfer Descriptors.
12559+ */
12560+#include <linux/kernel.h>
12561+#include <linux/module.h>
12562+#include <linux/moduleparam.h>
12563+#include <linux/init.h>
12564+#include <linux/device.h>
12565+#include <linux/errno.h>
12566+#include <linux/list.h>
12567+#include <linux/interrupt.h>
12568+#include <linux/string.h>
12569+
12570+#include "dwc_otg_driver.h"
12571+#include "dwc_otg_hcd.h"
12572+#include "dwc_otg_regs.h"
12573+
12574+/**
12575+ * This function allocates and initializes a QH.
12576+ *
12577+ * @param _hcd The HCD state structure for the DWC OTG controller.
12578+ * @param[in] _urb Holds the information about the device/endpoint that we need
12579+ * to initialize the QH.
12580+ *
12581+ * @return Returns pointer to the newly allocated QH, or NULL on error. */
12582+dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *_hcd, struct urb *_urb)
12583+{
12584+ dwc_otg_qh_t *qh;
12585+
12586+ /* Allocate memory */
12587+ /** @todo add memflags argument */
12588+ qh = dwc_otg_hcd_qh_alloc ();
12589+ if (qh == NULL) {
12590+ return NULL;
12591+ }
12592+
12593+ dwc_otg_hcd_qh_init (_hcd, qh, _urb);
12594+ return qh;
12595+}
12596+
12597+/** Free each QTD in the QH's QTD-list then free the QH. QH should already be
12598+ * removed from a list. QTD list should already be empty if called from URB
12599+ * Dequeue.
12600+ *
12601+ * @param[in] _qh The QH to free.
12602+ */
12603+void dwc_otg_hcd_qh_free (dwc_otg_qh_t *_qh)
12604+{
12605+ dwc_otg_qtd_t *qtd;
12606+ struct list_head *pos;
12607+ unsigned long flags;
12608+
12609+ /* Free each QTD in the QTD list */
12610+ local_irq_save (flags);
12611+ for (pos = _qh->qtd_list.next;
12612+ pos != &_qh->qtd_list;
12613+ pos = _qh->qtd_list.next)
12614+ {
12615+ list_del (pos);
12616+ qtd = dwc_list_to_qtd (pos);
12617+ dwc_otg_hcd_qtd_free (qtd);
12618+ }
12619+ local_irq_restore (flags);
12620+
12621+ kfree (_qh);
12622+ return;
12623+}
12624+
12625+/** Initializes a QH structure.
12626+ *
12627+ * @param[in] _hcd The HCD state structure for the DWC OTG controller.
12628+ * @param[in] _qh The QH to init.
12629+ * @param[in] _urb Holds the information about the device/endpoint that we need
12630+ * to initialize the QH. */
12631+#define SCHEDULE_SLOP 10
12632+void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, struct urb *_urb)
12633+{
12634+ memset (_qh, 0, sizeof (dwc_otg_qh_t));
12635+
12636+ /* Initialize QH */
12637+ switch (usb_pipetype(_urb->pipe)) {
12638+ case PIPE_CONTROL:
12639+ _qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
12640+ break;
12641+ case PIPE_BULK:
12642+ _qh->ep_type = USB_ENDPOINT_XFER_BULK;
12643+ break;
12644+ case PIPE_ISOCHRONOUS:
12645+ _qh->ep_type = USB_ENDPOINT_XFER_ISOC;
12646+ break;
12647+ case PIPE_INTERRUPT:
12648+ _qh->ep_type = USB_ENDPOINT_XFER_INT;
12649+ break;
12650+ }
12651+
12652+ _qh->ep_is_in = usb_pipein(_urb->pipe) ? 1 : 0;
12653+
12654+ _qh->data_toggle = DWC_OTG_HC_PID_DATA0;
12655+ _qh->maxp = usb_maxpacket(_urb->dev, _urb->pipe, !(usb_pipein(_urb->pipe)));
12656+ INIT_LIST_HEAD(&_qh->qtd_list);
12657+ INIT_LIST_HEAD(&_qh->qh_list_entry);
12658+ _qh->channel = NULL;
12659+
12660+ /* FS/LS Enpoint on HS Hub
12661+ * NOT virtual root hub */
12662+ _qh->do_split = 0;
12663+ _qh->speed = _urb->dev->speed;
12664+ if (((_urb->dev->speed == USB_SPEED_LOW) ||
12665+ (_urb->dev->speed == USB_SPEED_FULL)) &&
12666+ (_urb->dev->tt) && (_urb->dev->tt->hub) && (_urb->dev->tt->hub->devnum != 1)) {
12667+ DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n",
12668+ usb_pipeendpoint(_urb->pipe), _urb->dev->tt->hub->devnum,
12669+ _urb->dev->ttport);
12670+ _qh->do_split = 1;
12671+ }
12672+
12673+ if (_qh->ep_type == USB_ENDPOINT_XFER_INT ||
12674+ _qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
12675+ /* Compute scheduling parameters once and save them. */
12676+ hprt0_data_t hprt;
12677+
12678+ /** @todo Account for split transfers in the bus time. */
12679+ int bytecount = dwc_hb_mult(_qh->maxp) * dwc_max_packet(_qh->maxp);
12680+ _qh->usecs = NS_TO_US(usb_calc_bus_time(_urb->dev->speed,
12681+ usb_pipein(_urb->pipe),
12682+ (_qh->ep_type == USB_ENDPOINT_XFER_ISOC),bytecount));
12683+
12684+ /* Start in a slightly future (micro)frame. */
12685+ _qh->sched_frame = dwc_frame_num_inc(_hcd->frame_number, SCHEDULE_SLOP);
12686+ _qh->interval = _urb->interval;
12687+#if 0
12688+ /* Increase interrupt polling rate for debugging. */
12689+ if (_qh->ep_type == USB_ENDPOINT_XFER_INT) {
12690+ _qh->interval = 8;
12691+ }
12692+#endif
12693+ hprt.d32 = dwc_read_reg32(_hcd->core_if->host_if->hprt0);
12694+ if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) &&
12695+ ((_urb->dev->speed == USB_SPEED_LOW) ||
12696+ (_urb->dev->speed == USB_SPEED_FULL)))
12697+ {
12698+ _qh->interval *= 8;
12699+ _qh->sched_frame |= 0x7;
12700+ _qh->start_split_frame = _qh->sched_frame;
12701+ }
12702+ }
12703+
12704+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
12705+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", _qh);
12706+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n",
12707+ _urb->dev->devnum);
12708+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n",
12709+ usb_pipeendpoint(_urb->pipe),
12710+ usb_pipein(_urb->pipe) == USB_DIR_IN ? "IN" : "OUT");
12711+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n",
12712+ ({ char *speed; switch (_urb->dev->speed) {
12713+ case USB_SPEED_LOW: speed = "low"; break;
12714+ case USB_SPEED_FULL: speed = "full"; break;
12715+ case USB_SPEED_HIGH: speed = "high"; break;
12716+ default: speed = "?"; break;
12717+ }; speed;}));
12718+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n",
12719+ ({ char *type; switch (_qh->ep_type) {
12720+ case USB_ENDPOINT_XFER_ISOC: type = "isochronous"; break;
12721+ case USB_ENDPOINT_XFER_INT: type = "interrupt"; break;
12722+ case USB_ENDPOINT_XFER_CONTROL: type = "control"; break;
12723+ case USB_ENDPOINT_XFER_BULK: type = "bulk"; break;
12724+ default: type = "?"; break;
12725+ }; type;}));
12726+#ifdef DEBUG
12727+ if (_qh->ep_type == USB_ENDPOINT_XFER_INT) {
12728+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
12729+ _qh->usecs);
12730+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
12731+ _qh->interval);
12732+ }
12733+#endif
12734+
12735+ return;
12736+}
12737+
12738+/**
12739+ * Microframe scheduler
12740+ * track the total use in hcd->frame_usecs
12741+ * keep each qh use in qh->frame_usecs
12742+ * when surrendering the qh then donate the time back
12743+ */
12744+const unsigned short max_uframe_usecs[]={ 100, 100, 100, 100, 100, 100, 30, 0 };
12745+
12746+/*
12747+ * called from dwc_otg_hcd.c:dwc_otg_hcd_init
12748+ */
12749+int init_hcd_usecs(dwc_otg_hcd_t *_hcd)
12750+{
12751+ int i;
12752+ for (i=0; i<8; i++) {
12753+ _hcd->frame_usecs[i] = max_uframe_usecs[i];
12754+ }
12755+ return 0;
12756+}
12757+
12758+static int find_single_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh)
12759+{
12760+ int i;
12761+ unsigned short utime;
12762+ int t_left;
12763+ int ret;
12764+ int done;
12765+
12766+ ret = -1;
12767+ utime = _qh->usecs;
12768+ t_left = utime;
12769+ i = 0;
12770+ done = 0;
12771+ while (done == 0) {
12772+ /* At the start _hcd->frame_usecs[i] = max_uframe_usecs[i]; */
12773+ if (utime <= _hcd->frame_usecs[i]) {
12774+ _hcd->frame_usecs[i] -= utime;
12775+ _qh->frame_usecs[i] += utime;
12776+ t_left -= utime;
12777+ ret = i;
12778+ done = 1;
12779+ return ret;
12780+ } else {
12781+ i++;
12782+ if (i == 8) {
12783+ done = 1;
12784+ ret = -1;
12785+ }
12786+ }
12787+ }
12788+ return ret;
12789+}
12790+
12791+/*
12792+ * use this for FS apps that can span multiple uframes
12793+ */
12794+static int find_multi_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh)
12795+{
12796+ int i;
12797+ int j;
12798+ unsigned short utime;
12799+ int t_left;
12800+ int ret;
12801+ int done;
12802+ unsigned short xtime;
12803+
12804+ ret = -1;
12805+ utime = _qh->usecs;
12806+ t_left = utime;
12807+ i = 0;
12808+ done = 0;
12809+loop:
12810+ while (done == 0) {
12811+ if(_hcd->frame_usecs[i] <= 0) {
12812+ i++;
12813+ if (i == 8) {
12814+ done = 1;
12815+ ret = -1;
12816+ }
12817+ goto loop;
12818+ }
12819+
12820+ /*
12821+ * we need n consequtive slots
12822+ * so use j as a start slot j plus j+1 must be enough time (for now)
12823+ */
12824+ xtime= _hcd->frame_usecs[i];
12825+ for (j = i+1 ; j < 8 ; j++ ) {
12826+ /*
12827+ * if we add this frame remaining time to xtime we may
12828+ * be OK, if not we need to test j for a complete frame
12829+ */
12830+ if ((xtime+_hcd->frame_usecs[j]) < utime) {
12831+ if (_hcd->frame_usecs[j] < max_uframe_usecs[j]) {
12832+ j = 8;
12833+ ret = -1;
12834+ continue;
12835+ }
12836+ }
12837+ if (xtime >= utime) {
12838+ ret = i;
12839+ j = 8; /* stop loop with a good value ret */
12840+ continue;
12841+ }
12842+ /* add the frame time to x time */
12843+ xtime += _hcd->frame_usecs[j];
12844+ /* we must have a fully available next frame or break */
12845+ if ((xtime < utime)
12846+ && (_hcd->frame_usecs[j] == max_uframe_usecs[j])) {
12847+ ret = -1;
12848+ j = 8; /* stop loop with a bad value ret */
12849+ continue;
12850+ }
12851+ }
12852+ if (ret >= 0) {
12853+ t_left = utime;
12854+ for (j = i; (t_left>0) && (j < 8); j++ ) {
12855+ t_left -= _hcd->frame_usecs[j];
12856+ if ( t_left <= 0 ) {
12857+ _qh->frame_usecs[j] += _hcd->frame_usecs[j] + t_left;
12858+ _hcd->frame_usecs[j]= -t_left;
12859+ ret = i;
12860+ done = 1;
12861+ } else {
12862+ _qh->frame_usecs[j] += _hcd->frame_usecs[j];
12863+ _hcd->frame_usecs[j] = 0;
12864+ }
12865+ }
12866+ } else {
12867+ i++;
12868+ if (i == 8) {
12869+ done = 1;
12870+ ret = -1;
12871+ }
12872+ }
12873+ }
12874+ return ret;
12875+}
12876+
12877+static int find_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh)
12878+{
12879+ int ret;
12880+ ret = -1;
12881+
12882+ if (_qh->speed == USB_SPEED_HIGH) {
12883+ /* if this is a hs transaction we need a full frame */
12884+ ret = find_single_uframe(_hcd, _qh);
12885+ } else {
12886+ /* if this is a fs transaction we may need a sequence of frames */
12887+ ret = find_multi_uframe(_hcd, _qh);
12888+ }
12889+ return ret;
12890+}
12891+
12892+/**
12893+ * Checks that the max transfer size allowed in a host channel is large enough
12894+ * to handle the maximum data transfer in a single (micro)frame for a periodic
12895+ * transfer.
12896+ *
12897+ * @param _hcd The HCD state structure for the DWC OTG controller.
12898+ * @param _qh QH for a periodic endpoint.
12899+ *
12900+ * @return 0 if successful, negative error code otherwise.
12901+ */
12902+static int check_max_xfer_size(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
12903+{
12904+ int status;
12905+ uint32_t max_xfer_size;
12906+ uint32_t max_channel_xfer_size;
12907+
12908+ status = 0;
12909+
12910+ max_xfer_size = dwc_max_packet(_qh->maxp) * dwc_hb_mult(_qh->maxp);
12911+ max_channel_xfer_size = _hcd->core_if->core_params->max_transfer_size;
12912+
12913+ if (max_xfer_size > max_channel_xfer_size) {
12914+ DWC_NOTICE("%s: Periodic xfer length %d > "
12915+ "max xfer length for channel %d\n",
12916+ __func__, max_xfer_size, max_channel_xfer_size);
12917+ status = -ENOSPC;
12918+ }
12919+
12920+ return status;
12921+}
12922+
12923+/**
12924+ * Schedules an interrupt or isochronous transfer in the periodic schedule.
12925+ *
12926+ * @param _hcd The HCD state structure for the DWC OTG controller.
12927+ * @param _qh QH for the periodic transfer. The QH should already contain the
12928+ * scheduling information.
12929+ *
12930+ * @return 0 if successful, negative error code otherwise.
12931+ */
12932+static int schedule_periodic(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
12933+{
12934+ int status = 0;
12935+
12936+ int frame;
12937+ status = find_uframe(_hcd, _qh);
12938+ frame = -1;
12939+ if (status == 0) {
12940+ frame = 7;
12941+ } else {
12942+ if (status > 0 )
12943+ frame = status-1;
12944+ }
12945+
12946+ /* Set the new frame up */
12947+ if (frame > -1) {
12948+ _qh->sched_frame &= ~0x7;
12949+ _qh->sched_frame |= (frame & 7);
12950+ }
12951+
12952+ if (status != -1 )
12953+ status = 0;
12954+ if (status) {
12955+ DWC_NOTICE("%s: Insufficient periodic bandwidth for "
12956+ "periodic transfer.\n", __func__);
12957+ return status;
12958+ }
12959+
12960+ status = check_max_xfer_size(_hcd, _qh);
12961+ if (status) {
12962+ DWC_NOTICE("%s: Channel max transfer size too small "
12963+ "for periodic transfer.\n", __func__);
12964+ return status;
12965+ }
12966+
12967+ /* Always start in the inactive schedule. */
12968+ list_add_tail(&_qh->qh_list_entry, &_hcd->periodic_sched_inactive);
12969+
12970+
12971+ /* Update claimed usecs per (micro)frame. */
12972+ _hcd->periodic_usecs += _qh->usecs;
12973+
12974+ /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */
12975+ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_allocated += _qh->usecs / _qh->interval;
12976+ if (_qh->ep_type == USB_ENDPOINT_XFER_INT) {
12977+ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_int_reqs++;
12978+ DWC_DEBUGPL(DBG_HCD, "Scheduled intr: qh %p, usecs %d, period %d\n",
12979+ _qh, _qh->usecs, _qh->interval);
12980+ } else {
12981+ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_isoc_reqs++;
12982+ DWC_DEBUGPL(DBG_HCD, "Scheduled isoc: qh %p, usecs %d, period %d\n",
12983+ _qh, _qh->usecs, _qh->interval);
12984+ }
12985+
12986+ return status;
12987+}
12988+
12989+/**
12990+ * This function adds a QH to either the non periodic or periodic schedule if
12991+ * it is not already in the schedule. If the QH is already in the schedule, no
12992+ * action is taken.
12993+ *
12994+ * @return 0 if successful, negative error code otherwise.
12995+ */
12996+int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
12997+{
12998+ unsigned long flags;
12999+ int status = 0;
13000+
13001+ local_irq_save(flags);
13002+
13003+ if (!list_empty(&_qh->qh_list_entry)) {
13004+ /* QH already in a schedule. */
13005+ goto done;
13006+ }
13007+
13008+ /* Add the new QH to the appropriate schedule */
13009+ if (dwc_qh_is_non_per(_qh)) {
13010+ /* Always start in the inactive schedule. */
13011+ list_add_tail(&_qh->qh_list_entry, &_hcd->non_periodic_sched_inactive);
13012+ } else {
13013+ status = schedule_periodic(_hcd, _qh);
13014+ }
13015+
13016+ done:
13017+ local_irq_restore(flags);
13018+
13019+ return status;
13020+}
13021+
13022+/**
13023+ * This function adds a QH to the non periodic deferred schedule.
13024+ *
13025+ * @return 0 if successful, negative error code otherwise.
13026+ */
13027+int dwc_otg_hcd_qh_add_deferred(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh)
13028+{
13029+ unsigned long flags;
13030+ local_irq_save(flags);
13031+ if (!list_empty(&_qh->qh_list_entry)) {
13032+ /* QH already in a schedule. */
13033+ goto done;
13034+ }
13035+
13036+ /* Add the new QH to the non periodic deferred schedule */
13037+ if (dwc_qh_is_non_per(_qh)) {
13038+ list_add_tail(&_qh->qh_list_entry,
13039+ &_hcd->non_periodic_sched_deferred);
13040+ }
13041+done:
13042+ local_irq_restore(flags);
13043+ return 0;
13044+}
13045+
13046+/**
13047+ * Removes an interrupt or isochronous transfer from the periodic schedule.
13048+ *
13049+ * @param _hcd The HCD state structure for the DWC OTG controller.
13050+ * @param _qh QH for the periodic transfer.
13051+ */
13052+static void deschedule_periodic(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
13053+{
13054+ int i;
13055+ list_del_init(&_qh->qh_list_entry);
13056+
13057+
13058+ /* Update claimed usecs per (micro)frame. */
13059+ _hcd->periodic_usecs -= _qh->usecs;
13060+
13061+ for (i = 0; i < 8; i++) {
13062+ _hcd->frame_usecs[i] += _qh->frame_usecs[i];
13063+ _qh->frame_usecs[i] = 0;
13064+ }
13065+ /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */
13066+ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_allocated -= _qh->usecs / _qh->interval;
13067+
13068+ if (_qh->ep_type == USB_ENDPOINT_XFER_INT) {
13069+ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_int_reqs--;
13070+ DWC_DEBUGPL(DBG_HCD, "Descheduled intr: qh %p, usecs %d, period %d\n",
13071+ _qh, _qh->usecs, _qh->interval);
13072+ } else {
13073+ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_isoc_reqs--;
13074+ DWC_DEBUGPL(DBG_HCD, "Descheduled isoc: qh %p, usecs %d, period %d\n",
13075+ _qh, _qh->usecs, _qh->interval);
13076+ }
13077+}
13078+
13079+/**
13080+ * Removes a QH from either the non-periodic or periodic schedule. Memory is
13081+ * not freed.
13082+ *
13083+ * @param[in] _hcd The HCD state structure.
13084+ * @param[in] _qh QH to remove from schedule. */
13085+void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
13086+{
13087+ unsigned long flags;
13088+
13089+ local_irq_save(flags);
13090+
13091+ if (list_empty(&_qh->qh_list_entry)) {
13092+ /* QH is not in a schedule. */
13093+ goto done;
13094+ }
13095+
13096+ if (dwc_qh_is_non_per(_qh)) {
13097+ if (_hcd->non_periodic_qh_ptr == &_qh->qh_list_entry) {
13098+ _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next;
13099+ }
13100+ list_del_init(&_qh->qh_list_entry);
13101+ } else {
13102+ deschedule_periodic(_hcd, _qh);
13103+ }
13104+
13105+ done:
13106+ local_irq_restore(flags);
13107+}
13108+
13109+/**
13110+ * Defers a QH. For non-periodic QHs, removes the QH from the active
13111+ * non-periodic schedule. The QH is added to the deferred non-periodic
13112+ * schedule if any QTDs are still attached to the QH.
13113+ */
13114+int dwc_otg_hcd_qh_deferr(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh, int delay)
13115+{
13116+ int deact = 1;
13117+ unsigned long flags;
13118+ local_irq_save(flags);
13119+ if (dwc_qh_is_non_per(_qh)) {
13120+ _qh->sched_frame =
13121+ dwc_frame_num_inc(_hcd->frame_number,
13122+ delay);
13123+ _qh->channel = NULL;
13124+ _qh->qtd_in_process = NULL;
13125+ deact = 0;
13126+ dwc_otg_hcd_qh_remove(_hcd, _qh);
13127+ if (!list_empty(&_qh->qtd_list)) {
13128+ /* Add back to deferred non-periodic schedule. */
13129+ dwc_otg_hcd_qh_add_deferred(_hcd, _qh);
13130+ }
13131+ }
13132+ local_irq_restore(flags);
13133+ return deact;
13134+}
13135+
13136+/**
13137+ * Deactivates a QH. For non-periodic QHs, removes the QH from the active
13138+ * non-periodic schedule. The QH is added to the inactive non-periodic
13139+ * schedule if any QTDs are still attached to the QH.
13140+ *
13141+ * For periodic QHs, the QH is removed from the periodic queued schedule. If
13142+ * there are any QTDs still attached to the QH, the QH is added to either the
13143+ * periodic inactive schedule or the periodic ready schedule and its next
13144+ * scheduled frame is calculated. The QH is placed in the ready schedule if
13145+ * the scheduled frame has been reached already. Otherwise it's placed in the
13146+ * inactive schedule. If there are no QTDs attached to the QH, the QH is
13147+ * completely removed from the periodic schedule.
13148+ */
13149+void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int sched_next_periodic_split)
13150+{
13151+ unsigned long flags;
13152+ local_irq_save(flags);
13153+
13154+ if (dwc_qh_is_non_per(_qh)) {
13155+ dwc_otg_hcd_qh_remove(_hcd, _qh);
13156+ if (!list_empty(&_qh->qtd_list)) {
13157+ /* Add back to inactive non-periodic schedule. */
13158+ dwc_otg_hcd_qh_add(_hcd, _qh);
13159+ }
13160+ } else {
13161+ uint16_t frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd));
13162+
13163+ if (_qh->do_split) {
13164+ /* Schedule the next continuing periodic split transfer */
13165+ if (sched_next_periodic_split) {
13166+
13167+ _qh->sched_frame = frame_number;
13168+ if (dwc_frame_num_le(frame_number,
13169+ dwc_frame_num_inc(_qh->start_split_frame, 1))) {
13170+ /*
13171+ * Allow one frame to elapse after start
13172+ * split microframe before scheduling
13173+ * complete split, but DONT if we are
13174+ * doing the next start split in the
13175+ * same frame for an ISOC out.
13176+ */
13177+ if ((_qh->ep_type != USB_ENDPOINT_XFER_ISOC) || (_qh->ep_is_in != 0)) {
13178+ _qh->sched_frame = dwc_frame_num_inc(_qh->sched_frame, 1);
13179+ }
13180+ }
13181+ } else {
13182+ _qh->sched_frame = dwc_frame_num_inc(_qh->start_split_frame,
13183+ _qh->interval);
13184+ if (dwc_frame_num_le(_qh->sched_frame, frame_number)) {
13185+ _qh->sched_frame = frame_number;
13186+ }
13187+ _qh->sched_frame |= 0x7;
13188+ _qh->start_split_frame = _qh->sched_frame;
13189+ }
13190+ } else {
13191+ _qh->sched_frame = dwc_frame_num_inc(_qh->sched_frame, _qh->interval);
13192+ if (dwc_frame_num_le(_qh->sched_frame, frame_number)) {
13193+ _qh->sched_frame = frame_number;
13194+ }
13195+ }
13196+
13197+ if (list_empty(&_qh->qtd_list)) {
13198+ dwc_otg_hcd_qh_remove(_hcd, _qh);
13199+ } else {
13200+ /*
13201+ * Remove from periodic_sched_queued and move to
13202+ * appropriate queue.
13203+ */
13204+ if (dwc_frame_num_le(_qh->sched_frame, frame_number)) {
13205+ list_move(&_qh->qh_list_entry,
13206+ &_hcd->periodic_sched_ready);
13207+ } else {
13208+ list_move(&_qh->qh_list_entry,
13209+ &_hcd->periodic_sched_inactive);
13210+ }
13211+ }
13212+ }
13213+
13214+ local_irq_restore(flags);
13215+}
13216+
13217+/**
13218+ * This function allocates and initializes a QTD.
13219+ *
13220+ * @param[in] _urb The URB to create a QTD from. Each URB-QTD pair will end up
13221+ * pointing to each other so each pair should have a unique correlation.
13222+ *
13223+ * @return Returns pointer to the newly allocated QTD, or NULL on error. */
13224+dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *_urb)
13225+{
13226+ dwc_otg_qtd_t *qtd;
13227+
13228+ qtd = dwc_otg_hcd_qtd_alloc ();
13229+ if (qtd == NULL) {
13230+ return NULL;
13231+ }
13232+
13233+ dwc_otg_hcd_qtd_init (qtd, _urb);
13234+ return qtd;
13235+}
13236+
13237+/**
13238+ * Initializes a QTD structure.
13239+ *
13240+ * @param[in] _qtd The QTD to initialize.
13241+ * @param[in] _urb The URB to use for initialization. */
13242+void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *_qtd, struct urb *_urb)
13243+{
13244+ memset (_qtd, 0, sizeof (dwc_otg_qtd_t));
13245+ _qtd->urb = _urb;
13246+ if (usb_pipecontrol(_urb->pipe)) {
13247+ /*
13248+ * The only time the QTD data toggle is used is on the data
13249+ * phase of control transfers. This phase always starts with
13250+ * DATA1.
13251+ */
13252+ _qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
13253+ _qtd->control_phase = DWC_OTG_CONTROL_SETUP;
13254+ }
13255+
13256+ /* start split */
13257+ _qtd->complete_split = 0;
13258+ _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
13259+ _qtd->isoc_split_offset = 0;
13260+
13261+ /* Store the qtd ptr in the urb to reference what QTD. */
13262+ _urb->hcpriv = _qtd;
13263+ return;
13264+}
13265+
13266+/**
13267+ * This function adds a QTD to the QTD-list of a QH. It will find the correct
13268+ * QH to place the QTD into. If it does not find a QH, then it will create a
13269+ * new QH. If the QH to which the QTD is added is not currently scheduled, it
13270+ * is placed into the proper schedule based on its EP type.
13271+ *
13272+ * @param[in] _qtd The QTD to add
13273+ * @param[in] _dwc_otg_hcd The DWC HCD structure
13274+ *
13275+ * @return 0 if successful, negative error code otherwise.
13276+ */
13277+int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t * _qtd, dwc_otg_hcd_t * _dwc_otg_hcd)
13278+{
13279+ struct usb_host_endpoint *ep;
13280+ dwc_otg_qh_t *qh;
13281+ unsigned long flags;
13282+ int retval = 0;
13283+ struct urb *urb = _qtd->urb;
13284+
13285+ local_irq_save(flags);
13286+
13287+ /*
13288+ * Get the QH which holds the QTD-list to insert to. Create QH if it
13289+ * doesn't exist.
13290+ */
13291+ ep = dwc_urb_to_endpoint(urb);
13292+ qh = (dwc_otg_qh_t *)ep->hcpriv;
13293+ if (qh == NULL) {
13294+ qh = dwc_otg_hcd_qh_create (_dwc_otg_hcd, urb);
13295+ if (qh == NULL) {
13296+ retval = -1;
13297+ goto done;
13298+ }
13299+ ep->hcpriv = qh;
13300+ }
13301+
13302+ _qtd->qtd_qh_ptr = qh;
13303+ retval = dwc_otg_hcd_qh_add(_dwc_otg_hcd, qh);
13304+ if (retval == 0) {
13305+ list_add_tail(&_qtd->qtd_list_entry, &qh->qtd_list);
13306+ }
13307+
13308+ done:
13309+ local_irq_restore(flags);
13310+ return retval;
13311+}
13312+
13313+#endif /* DWC_DEVICE_ONLY */
13314--- /dev/null
13315+++ b/drivers/usb/dwc_otg/dwc_otg_ifx.c
13316@@ -0,0 +1,100 @@
13317+/******************************************************************************
13318+**
13319+** FILE NAME : dwc_otg_ifx.c
13320+** PROJECT : Twinpass/Danube
13321+** MODULES : DWC OTG USB
13322+**
13323+** DATE : 12 Auguest 2007
13324+** AUTHOR : Sung Winder
13325+** DESCRIPTION : Platform specific initialization.
13326+** COPYRIGHT : Copyright (c) 2007
13327+** Infineon Technologies AG
13328+** 2F, No.2, Li-Hsin Rd., Hsinchu Science Park,
13329+** Hsin-chu City, 300 Taiwan.
13330+**
13331+** This program is free software; you can redistribute it and/or modify
13332+** it under the terms of the GNU General Public License as published by
13333+** the Free Software Foundation; either version 2 of the License, or
13334+** (at your option) any later version.
13335+**
13336+** HISTORY
13337+** $Date $Author $Comment
13338+** 12 Auguest 2007 Sung Winder Initiate Version
13339+*******************************************************************************/
13340+#include "dwc_otg_ifx.h"
13341+
13342+#include <linux/platform_device.h>
13343+#include <linux/kernel.h>
13344+#include <linux/ioport.h>
13345+#include <linux/gpio.h>
13346+
13347+#include <asm/io.h>
13348+//#include <asm/mach-ifxmips/ifxmips.h>
13349+#include <lantiq_soc.h>
13350+
13351+#define IFXMIPS_GPIO_BASE_ADDR (0xBE100B00)
13352+
13353+#define IFXMIPS_GPIO_P0_OUT ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0010))
13354+#define IFXMIPS_GPIO_P1_OUT ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0040))
13355+#define IFXMIPS_GPIO_P0_IN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0014))
13356+#define IFXMIPS_GPIO_P1_IN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0044))
13357+#define IFXMIPS_GPIO_P0_DIR ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0018))
13358+#define IFXMIPS_GPIO_P1_DIR ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0048))
13359+#define IFXMIPS_GPIO_P0_ALTSEL0 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x001C))
13360+#define IFXMIPS_GPIO_P1_ALTSEL0 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x004C))
13361+#define IFXMIPS_GPIO_P0_ALTSEL1 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0020))
13362+#define IFXMIPS_GPIO_P1_ALTSEL1 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0050))
13363+#define IFXMIPS_GPIO_P0_OD ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0024))
13364+#define IFXMIPS_GPIO_P1_OD ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0054))
13365+#define IFXMIPS_GPIO_P0_STOFF ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0028))
13366+#define IFXMIPS_GPIO_P1_STOFF ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0058))
13367+#define IFXMIPS_GPIO_P0_PUDSEL ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x002C))
13368+#define IFXMIPS_GPIO_P1_PUDSEL ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x005C))
13369+#define IFXMIPS_GPIO_P0_PUDEN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0030))
13370+#define IFXMIPS_GPIO_P1_PUDEN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0060))
13371+
13372+
13373+#define writel ltq_w32
13374+#define readl ltq_r32
13375+void dwc_otg_power_on (void)
13376+{
13377+ // clear power
13378+ writel(readl(DANUBE_PMU_PWDCR) | 0x41, DANUBE_PMU_PWDCR);
13379+ // set clock gating
13380+ writel(readl(DANUBE_CGU_IFCCR) | 0x30, DANUBE_CGU_IFCCR);
13381+ // set power
13382+ writel(readl(DANUBE_PMU_PWDCR) & ~0x1, DANUBE_PMU_PWDCR);
13383+ writel(readl(DANUBE_PMU_PWDCR) & ~0x40, DANUBE_PMU_PWDCR);
13384+ writel(readl(DANUBE_PMU_PWDCR) & ~0x8000, DANUBE_PMU_PWDCR);
13385+
13386+#if 1//defined (DWC_HOST_ONLY)
13387+ // make the hardware be a host controller (default)
13388+ //clear_bit (DANUBE_USBCFG_HDSEL_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG);
13389+ writel(readl(DANUBE_RCU_UBSCFG) & ~(1<<DANUBE_USBCFG_HDSEL_BIT), DANUBE_RCU_UBSCFG);
13390+
13391+ //#elif defined (DWC_DEVICE_ONLY)
13392+ /* set the controller to the device mode */
13393+ // set_bit (DANUBE_USBCFG_HDSEL_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG);
13394+#else
13395+#error "For Danube/Twinpass, it should be HOST or Device Only."
13396+#endif
13397+
13398+ // set the HC's byte-order to big-endian
13399+ //set_bit (DANUBE_USBCFG_HOST_END_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG);
13400+ writel(readl(DANUBE_RCU_UBSCFG) | (1<<DANUBE_USBCFG_HOST_END_BIT), DANUBE_RCU_UBSCFG);
13401+ //clear_bit (DANUBE_USBCFG_SLV_END_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG);
13402+ writel(readl(DANUBE_RCU_UBSCFG) & ~(1<<DANUBE_USBCFG_SLV_END_BIT), DANUBE_RCU_UBSCFG);
13403+ //writel(0x400, DANUBE_RCU_UBSCFG);
13404+
13405+ // PHY configurations.
13406+ writel (0x14014, (volatile unsigned long *)0xbe10103c);
13407+}
13408+
13409+int ifx_usb_hc_init(unsigned long base_addr, int irq)
13410+{
13411+ return 0;
13412+}
13413+
13414+void ifx_usb_hc_remove(void)
13415+{
13416+}
13417--- /dev/null
13418+++ b/drivers/usb/dwc_otg/dwc_otg_ifx.h
13419@@ -0,0 +1,85 @@
13420+/******************************************************************************
13421+**
13422+** FILE NAME : dwc_otg_ifx.h
13423+** PROJECT : Twinpass/Danube
13424+** MODULES : DWC OTG USB
13425+**
13426+** DATE : 12 April 2007
13427+** AUTHOR : Sung Winder
13428+** DESCRIPTION : Platform specific initialization.
13429+** COPYRIGHT : Copyright (c) 2007
13430+** Infineon Technologies AG
13431+** 2F, No.2, Li-Hsin Rd., Hsinchu Science Park,
13432+** Hsin-chu City, 300 Taiwan.
13433+**
13434+** This program is free software; you can redistribute it and/or modify
13435+** it under the terms of the GNU General Public License as published by
13436+** the Free Software Foundation; either version 2 of the License, or
13437+** (at your option) any later version.
13438+**
13439+** HISTORY
13440+** $Date $Author $Comment
13441+** 12 April 2007 Sung Winder Initiate Version
13442+*******************************************************************************/
13443+#if !defined(__DWC_OTG_IFX_H__)
13444+#define __DWC_OTG_IFX_H__
13445+
13446+#include <linux/irq.h>
13447+#include <irq.h>
13448+
13449+// 20070316, winder added.
13450+#ifndef SZ_256K
13451+#define SZ_256K 0x00040000
13452+#endif
13453+
13454+extern void dwc_otg_power_on (void);
13455+
13456+/* FIXME: The current Linux-2.6 do not have these header files, but anyway, we need these. */
13457+// #include <asm/danube/danube.h>
13458+// #include <asm/ifx/irq.h>
13459+
13460+/* winder, I used the Danube parameter as default. *
13461+ * We could change this through module param. */
13462+#define IFX_USB_IOMEM_BASE 0x1e101000
13463+#define IFX_USB_IOMEM_SIZE SZ_256K
13464+#define IFX_USB_IRQ LTQ_USB_INT
13465+
13466+/**
13467+ * This function is called to set correct clock gating and power.
13468+ * For Twinpass/Danube board.
13469+ */
13470+#ifndef DANUBE_RCU_BASE_ADDR
13471+#define DANUBE_RCU_BASE_ADDR (0xBF203000)
13472+#endif
13473+
13474+#ifndef DANUBE_CGU
13475+#define DANUBE_CGU (0xBF103000)
13476+#endif
13477+#ifndef DANUBE_CGU_IFCCR
13478+/***CGU Interface Clock Control Register***/
13479+#define DANUBE_CGU_IFCCR ((volatile u32*)(DANUBE_CGU+ 0x0018))
13480+#endif
13481+
13482+#ifndef DANUBE_PMU
13483+#define DANUBE_PMU (KSEG1+0x1F102000)
13484+#endif
13485+#ifndef DANUBE_PMU_PWDCR
13486+/* PMU Power down Control Register */
13487+#define DANUBE_PMU_PWDCR ((volatile u32*)(DANUBE_PMU+0x001C))
13488+#endif
13489+
13490+
13491+#define DANUBE_RCU_UBSCFG ((volatile u32*)(DANUBE_RCU_BASE_ADDR + 0x18))
13492+#define DANUBE_USBCFG_HDSEL_BIT 11 // 0:host, 1:device
13493+#define DANUBE_USBCFG_HOST_END_BIT 10 // 0:little_end, 1:big_end
13494+#define DANUBE_USBCFG_SLV_END_BIT 9 // 0:little_end, 1:big_end
13495+
13496+extern void ltq_mask_and_ack_irq(struct irq_data *d);
13497+
13498+static void inline mask_and_ack_ifx_irq(int x)
13499+{
13500+ struct irq_data d;
13501+ d.irq = x;
13502+ ltq_mask_and_ack_irq(&d);
13503+}
13504+#endif //__DWC_OTG_IFX_H__
13505--- /dev/null
13506+++ b/drivers/usb/dwc_otg/dwc_otg_plat.h
13507@@ -0,0 +1,269 @@
13508+/* ==========================================================================
13509+ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/platform/dwc_otg_plat.h $
13510+ * $Revision: 1.1.1.1 $
13511+ * $Date: 2009-04-17 06:15:34 $
13512+ * $Change: 510301 $
13513+ *
13514+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
13515+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
13516+ * otherwise expressly agreed to in writing between Synopsys and you.
13517+ *
13518+ * The Software IS NOT an item of Licensed Software or Licensed Product under
13519+ * any End User Software License Agreement or Agreement for Licensed Product
13520+ * with Synopsys or any supplement thereto. You are permitted to use and
13521+ * redistribute this Software in source and binary forms, with or without
13522+ * modification, provided that redistributions of source code must retain this
13523+ * notice. You may not view, use, disclose, copy or distribute this file or
13524+ * any information contained herein except pursuant to this license grant from
13525+ * Synopsys. If you do not agree with this notice, including the disclaimer
13526+ * below, then you are not authorized to use the Software.
13527+ *
13528+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
13529+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
13530+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13531+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
13532+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
13533+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
13534+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
13535+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
13536+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
13537+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
13538+ * DAMAGE.
13539+ * ========================================================================== */
13540+
13541+#if !defined(__DWC_OTG_PLAT_H__)
13542+#define __DWC_OTG_PLAT_H__
13543+
13544+#include <linux/types.h>
13545+#include <linux/slab.h>
13546+#include <linux/list.h>
13547+#include <linux/delay.h>
13548+#include <asm/io.h>
13549+
13550+/**
13551+ * @file
13552+ *
13553+ * This file contains the Platform Specific constants, interfaces
13554+ * (functions and macros) for Linux.
13555+ *
13556+ */
13557+/*#if !defined(__LINUX__)
13558+#error "The contents of this file is Linux specific!!!"
13559+#endif
13560+*/
13561+#include <lantiq_soc.h>
13562+#define writel ltq_w32
13563+#define readl ltq_r32
13564+
13565+/**
13566+ * Reads the content of a register.
13567+ *
13568+ * @param _reg address of register to read.
13569+ * @return contents of the register.
13570+ *
13571+
13572+ * Usage:<br>
13573+ * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code>
13574+ */
13575+static __inline__ uint32_t dwc_read_reg32( volatile uint32_t *_reg)
13576+{
13577+ return readl(_reg);
13578+};
13579+
13580+/**
13581+ * Writes a register with a 32 bit value.
13582+ *
13583+ * @param _reg address of register to read.
13584+ * @param _value to write to _reg.
13585+ *
13586+ * Usage:<br>
13587+ * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code>
13588+ */
13589+static __inline__ void dwc_write_reg32( volatile uint32_t *_reg, const uint32_t _value)
13590+{
13591+ writel( _value, _reg );
13592+};
13593+
13594+/**
13595+ * This function modifies bit values in a register. Using the
13596+ * algorithm: (reg_contents & ~clear_mask) | set_mask.
13597+ *
13598+ * @param _reg address of register to read.
13599+ * @param _clear_mask bit mask to be cleared.
13600+ * @param _set_mask bit mask to be set.
13601+ *
13602+ * Usage:<br>
13603+ * <code> // Clear the SOF Interrupt Mask bit and <br>
13604+ * // set the OTG Interrupt mask bit, leaving all others as they were.
13605+ * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code>
13606+ */
13607+static __inline__
13608+ void dwc_modify_reg32( volatile uint32_t *_reg, const uint32_t _clear_mask, const uint32_t _set_mask)
13609+{
13610+ writel( (readl(_reg) & ~_clear_mask) | _set_mask, _reg );
13611+};
13612+
13613+
13614+/**
13615+ * Wrapper for the OS micro-second delay function.
13616+ * @param[in] _usecs Microseconds of delay
13617+ */
13618+static __inline__ void UDELAY( const uint32_t _usecs )
13619+{
13620+ udelay( _usecs );
13621+}
13622+
13623+/**
13624+ * Wrapper for the OS milli-second delay function.
13625+ * @param[in] _msecs milliseconds of delay
13626+ */
13627+static __inline__ void MDELAY( const uint32_t _msecs )
13628+{
13629+ mdelay( _msecs );
13630+}
13631+
13632+/**
13633+ * Wrapper for the Linux spin_lock. On the ARM (Integrator)
13634+ * spin_lock() is a nop.
13635+ *
13636+ * @param _lock Pointer to the spinlock.
13637+ */
13638+static __inline__ void SPIN_LOCK( spinlock_t *_lock )
13639+{
13640+ spin_lock(_lock);
13641+}
13642+
13643+/**
13644+ * Wrapper for the Linux spin_unlock. On the ARM (Integrator)
13645+ * spin_lock() is a nop.
13646+ *
13647+ * @param _lock Pointer to the spinlock.
13648+ */
13649+static __inline__ void SPIN_UNLOCK( spinlock_t *_lock )
13650+{
13651+ spin_unlock(_lock);
13652+}
13653+
13654+/**
13655+ * Wrapper (macro) for the Linux spin_lock_irqsave. On the ARM
13656+ * (Integrator) spin_lock() is a nop.
13657+ *
13658+ * @param _l Pointer to the spinlock.
13659+ * @param _f unsigned long for irq flags storage.
13660+ */
13661+#define SPIN_LOCK_IRQSAVE( _l, _f ) { \
13662+ spin_lock_irqsave(_l,_f); \
13663+ }
13664+
13665+/**
13666+ * Wrapper (macro) for the Linux spin_unlock_irqrestore. On the ARM
13667+ * (Integrator) spin_lock() is a nop.
13668+ *
13669+ * @param _l Pointer to the spinlock.
13670+ * @param _f unsigned long for irq flags storage.
13671+ */
13672+#define SPIN_UNLOCK_IRQRESTORE( _l,_f ) {\
13673+ spin_unlock_irqrestore(_l,_f); \
13674+ }
13675+
13676+
13677+/*
13678+ * Debugging support vanishes in non-debug builds.
13679+ */
13680+
13681+
13682+/**
13683+ * The Debug Level bit-mask variable.
13684+ */
13685+extern uint32_t g_dbg_lvl;
13686+/**
13687+ * Set the Debug Level variable.
13688+ */
13689+static inline uint32_t SET_DEBUG_LEVEL( const uint32_t _new )
13690+{
13691+ uint32_t old = g_dbg_lvl;
13692+ g_dbg_lvl = _new;
13693+ return old;
13694+}
13695+
13696+/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */
13697+#define DBG_CIL (0x2)
13698+/** When debug level has the DBG_CILV bit set, display CIL Verbose debug
13699+ * messages */
13700+#define DBG_CILV (0x20)
13701+/** When debug level has the DBG_PCD bit set, display PCD (Device) debug
13702+ * messages */
13703+#define DBG_PCD (0x4)
13704+/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug
13705+ * messages */
13706+#define DBG_PCDV (0x40)
13707+/** When debug level has the DBG_HCD bit set, display Host debug messages */
13708+#define DBG_HCD (0x8)
13709+/** When debug level has the DBG_HCDV bit set, display Verbose Host debug
13710+ * messages */
13711+#define DBG_HCDV (0x80)
13712+/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host
13713+ * mode. */
13714+#define DBG_HCD_URB (0x800)
13715+
13716+/** When debug level has any bit set, display debug messages */
13717+#define DBG_ANY (0xFF)
13718+
13719+/** All debug messages off */
13720+#define DBG_OFF 0
13721+
13722+/** Prefix string for DWC_DEBUG print macros. */
13723+#define USB_DWC "DWC_otg: "
13724+
13725+/**
13726+ * Print a debug message when the Global debug level variable contains
13727+ * the bit defined in <code>lvl</code>.
13728+ *
13729+ * @param[in] lvl - Debug level, use one of the DBG_ constants above.
13730+ * @param[in] x - like printf
13731+ *
13732+ * Example:<p>
13733+ * <code>
13734+ * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr);
13735+ * </code>
13736+ * <br>
13737+ * results in:<br>
13738+ * <code>
13739+ * usb-DWC_otg: dwc_otg_cil_init(ca867000)
13740+ * </code>
13741+ */
13742+#ifdef DEBUG
13743+
13744+# define DWC_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)printk( KERN_DEBUG USB_DWC x ); }while(0)
13745+# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x )
13746+
13747+# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl)
13748+
13749+#else
13750+
13751+# define DWC_DEBUGPL(lvl, x...) do{}while(0)
13752+# define DWC_DEBUGP(x...)
13753+
13754+# define CHK_DEBUG_LEVEL(level) (0)
13755+
13756+#endif /*DEBUG*/
13757+
13758+/**
13759+ * Print an Error message.
13760+ */
13761+#define DWC_ERROR(x...) printk( KERN_ERR USB_DWC x )
13762+/**
13763+ * Print a Warning message.
13764+ */
13765+#define DWC_WARN(x...) printk( KERN_WARNING USB_DWC x )
13766+/**
13767+ * Print a notice (normal but significant message).
13768+ */
13769+#define DWC_NOTICE(x...) printk( KERN_NOTICE USB_DWC x )
13770+/**
13771+ * Basic message printing.
13772+ */
13773+#define DWC_PRINT(x...) printk( KERN_INFO USB_DWC x )
13774+
13775+#endif
13776+
13777--- /dev/null
13778+++ b/drivers/usb/dwc_otg/dwc_otg_regs.h
13779@@ -0,0 +1,1797 @@
13780+/* ==========================================================================
13781+ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_regs.h $
13782+ * $Revision: 1.1.1.1 $
13783+ * $Date: 2009-04-17 06:15:34 $
13784+ * $Change: 631780 $
13785+ *
13786+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
13787+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
13788+ * otherwise expressly agreed to in writing between Synopsys and you.
13789+ *
13790+ * The Software IS NOT an item of Licensed Software or Licensed Product under
13791+ * any End User Software License Agreement or Agreement for Licensed Product
13792+ * with Synopsys or any supplement thereto. You are permitted to use and
13793+ * redistribute this Software in source and binary forms, with or without
13794+ * modification, provided that redistributions of source code must retain this
13795+ * notice. You may not view, use, disclose, copy or distribute this file or
13796+ * any information contained herein except pursuant to this license grant from
13797+ * Synopsys. If you do not agree with this notice, including the disclaimer
13798+ * below, then you are not authorized to use the Software.
13799+ *
13800+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
13801+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
13802+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13803+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
13804+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
13805+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
13806+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
13807+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
13808+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
13809+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
13810+ * DAMAGE.
13811+ * ========================================================================== */
13812+
13813+#ifndef __DWC_OTG_REGS_H__
13814+#define __DWC_OTG_REGS_H__
13815+
13816+/**
13817+ * @file
13818+ *
13819+ * This file contains the data structures for accessing the DWC_otg core registers.
13820+ *
13821+ * The application interfaces with the HS OTG core by reading from and
13822+ * writing to the Control and Status Register (CSR) space through the
13823+ * AHB Slave interface. These registers are 32 bits wide, and the
13824+ * addresses are 32-bit-block aligned.
13825+ * CSRs are classified as follows:
13826+ * - Core Global Registers
13827+ * - Device Mode Registers
13828+ * - Device Global Registers
13829+ * - Device Endpoint Specific Registers
13830+ * - Host Mode Registers
13831+ * - Host Global Registers
13832+ * - Host Port CSRs
13833+ * - Host Channel Specific Registers
13834+ *
13835+ * Only the Core Global registers can be accessed in both Device and
13836+ * Host modes. When the HS OTG core is operating in one mode, either
13837+ * Device or Host, the application must not access registers from the
13838+ * other mode. When the core switches from one mode to another, the
13839+ * registers in the new mode of operation must be reprogrammed as they
13840+ * would be after a power-on reset.
13841+ */
13842+
13843+/****************************************************************************/
13844+/** DWC_otg Core registers .
13845+ * The dwc_otg_core_global_regs structure defines the size
13846+ * and relative field offsets for the Core Global registers.
13847+ */
13848+typedef struct dwc_otg_core_global_regs
13849+{
13850+ /** OTG Control and Status Register. <i>Offset: 000h</i> */
13851+ volatile uint32_t gotgctl;
13852+ /** OTG Interrupt Register. <i>Offset: 004h</i> */
13853+ volatile uint32_t gotgint;
13854+ /**Core AHB Configuration Register. <i>Offset: 008h</i> */
13855+ volatile uint32_t gahbcfg;
13856+#define DWC_GLBINTRMASK 0x0001
13857+#define DWC_DMAENABLE 0x0020
13858+#define DWC_NPTXEMPTYLVL_EMPTY 0x0080
13859+#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000
13860+#define DWC_PTXEMPTYLVL_EMPTY 0x0100
13861+#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000
13862+
13863+
13864+ /**Core USB Configuration Register. <i>Offset: 00Ch</i> */
13865+ volatile uint32_t gusbcfg;
13866+ /**Core Reset Register. <i>Offset: 010h</i> */
13867+ volatile uint32_t grstctl;
13868+ /**Core Interrupt Register. <i>Offset: 014h</i> */
13869+ volatile uint32_t gintsts;
13870+ /**Core Interrupt Mask Register. <i>Offset: 018h</i> */
13871+ volatile uint32_t gintmsk;
13872+ /**Receive Status Queue Read Register (Read Only). <i>Offset: 01Ch</i> */
13873+ volatile uint32_t grxstsr;
13874+ /**Receive Status Queue Read & POP Register (Read Only). <i>Offset: 020h</i>*/
13875+ volatile uint32_t grxstsp;
13876+ /**Receive FIFO Size Register. <i>Offset: 024h</i> */
13877+ volatile uint32_t grxfsiz;
13878+ /**Non Periodic Transmit FIFO Size Register. <i>Offset: 028h</i> */
13879+ volatile uint32_t gnptxfsiz;
13880+ /**Non Periodic Transmit FIFO/Queue Status Register (Read
13881+ * Only). <i>Offset: 02Ch</i> */
13882+ volatile uint32_t gnptxsts;
13883+ /**I2C Access Register. <i>Offset: 030h</i> */
13884+ volatile uint32_t gi2cctl;
13885+ /**PHY Vendor Control Register. <i>Offset: 034h</i> */
13886+ volatile uint32_t gpvndctl;
13887+ /**General Purpose Input/Output Register. <i>Offset: 038h</i> */
13888+ volatile uint32_t ggpio;
13889+ /**User ID Register. <i>Offset: 03Ch</i> */
13890+ volatile uint32_t guid;
13891+ /**Synopsys ID Register (Read Only). <i>Offset: 040h</i> */
13892+ volatile uint32_t gsnpsid;
13893+ /**User HW Config1 Register (Read Only). <i>Offset: 044h</i> */
13894+ volatile uint32_t ghwcfg1;
13895+ /**User HW Config2 Register (Read Only). <i>Offset: 048h</i> */
13896+ volatile uint32_t ghwcfg2;
13897+#define DWC_SLAVE_ONLY_ARCH 0
13898+#define DWC_EXT_DMA_ARCH 1
13899+#define DWC_INT_DMA_ARCH 2
13900+
13901+#define DWC_MODE_HNP_SRP_CAPABLE 0
13902+#define DWC_MODE_SRP_ONLY_CAPABLE 1
13903+#define DWC_MODE_NO_HNP_SRP_CAPABLE 2
13904+#define DWC_MODE_SRP_CAPABLE_DEVICE 3
13905+#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4
13906+#define DWC_MODE_SRP_CAPABLE_HOST 5
13907+#define DWC_MODE_NO_SRP_CAPABLE_HOST 6
13908+
13909+ /**User HW Config3 Register (Read Only). <i>Offset: 04Ch</i> */
13910+ volatile uint32_t ghwcfg3;
13911+ /**User HW Config4 Register (Read Only). <i>Offset: 050h</i>*/
13912+ volatile uint32_t ghwcfg4;
13913+ /** Reserved <i>Offset: 054h-0FFh</i> */
13914+ uint32_t reserved[43];
13915+ /** Host Periodic Transmit FIFO Size Register. <i>Offset: 100h</i> */
13916+ volatile uint32_t hptxfsiz;
13917+ /** Device Periodic Transmit FIFO#n Register if dedicated fifos are disabled,
13918+ otherwise Device Transmit FIFO#n Register.
13919+ * <i>Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15).</i> */
13920+ //volatile uint32_t dptxfsiz[15];
13921+ volatile uint32_t dptxfsiz_dieptxf[15];
13922+} dwc_otg_core_global_regs_t;
13923+
13924+/**
13925+ * This union represents the bit fields of the Core OTG Control
13926+ * and Status Register (GOTGCTL). Set the bits using the bit
13927+ * fields then write the <i>d32</i> value to the register.
13928+ */
13929+typedef union gotgctl_data
13930+{
13931+ /** raw register data */
13932+ uint32_t d32;
13933+ /** register bits */
13934+ struct
13935+ {
13936+ unsigned reserved31_21 : 11;
13937+ unsigned currmod : 1;
13938+ unsigned bsesvld : 1;
13939+ unsigned asesvld : 1;
13940+ unsigned reserved17 : 1;
13941+ unsigned conidsts : 1;
13942+ unsigned reserved15_12 : 4;
13943+ unsigned devhnpen : 1;
13944+ unsigned hstsethnpen : 1;
13945+ unsigned hnpreq : 1;
13946+ unsigned hstnegscs : 1;
13947+ unsigned reserved7_2 : 6;
13948+ unsigned sesreq : 1;
13949+ unsigned sesreqscs : 1;
13950+ } b;
13951+} gotgctl_data_t;
13952+
13953+/**
13954+ * This union represents the bit fields of the Core OTG Interrupt Register
13955+ * (GOTGINT). Set/clear the bits using the bit fields then write the <i>d32</i>
13956+ * value to the register.
13957+ */
13958+typedef union gotgint_data
13959+{
13960+ /** raw register data */
13961+ uint32_t d32;
13962+ /** register bits */
13963+ struct
13964+ {
13965+ /** Current Mode */
13966+ unsigned reserved31_20 : 12;
13967+ /** Debounce Done */
13968+ unsigned debdone : 1;
13969+ /** A-Device Timeout Change */
13970+ unsigned adevtoutchng : 1;
13971+ /** Host Negotiation Detected */
13972+ unsigned hstnegdet : 1;
13973+ unsigned reserver16_10 : 7;
13974+ /** Host Negotiation Success Status Change */
13975+ unsigned hstnegsucstschng : 1;
13976+ /** Session Request Success Status Change */
13977+ unsigned sesreqsucstschng : 1;
13978+ unsigned reserved3_7 : 5;
13979+ /** Session End Detected */
13980+ unsigned sesenddet : 1;
13981+ /** Current Mode */
13982+ unsigned reserved1_0 : 2;
13983+ } b;
13984+} gotgint_data_t;
13985+
13986+
13987+/**
13988+ * This union represents the bit fields of the Core AHB Configuration
13989+ * Register (GAHBCFG). Set/clear the bits using the bit fields then
13990+ * write the <i>d32</i> value to the register.
13991+ */
13992+typedef union gahbcfg_data
13993+{
13994+ /** raw register data */
13995+ uint32_t d32;
13996+ /** register bits */
13997+ struct
13998+ {
13999+#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1
14000+#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0
14001+ unsigned reserved9_31 : 23;
14002+ unsigned ptxfemplvl : 1;
14003+ unsigned nptxfemplvl_txfemplvl : 1;
14004+#define DWC_GAHBCFG_DMAENABLE 1
14005+ unsigned reserved : 1;
14006+ unsigned dmaenable : 1;
14007+#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0
14008+#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1
14009+#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3
14010+#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5
14011+#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7
14012+ unsigned hburstlen : 4;
14013+ unsigned glblintrmsk : 1;
14014+#define DWC_GAHBCFG_GLBINT_ENABLE 1
14015+
14016+ } b;
14017+} gahbcfg_data_t;
14018+
14019+/**
14020+ * This union represents the bit fields of the Core USB Configuration
14021+ * Register (GUSBCFG). Set the bits using the bit fields then write
14022+ * the <i>d32</i> value to the register.
14023+ */
14024+typedef union gusbcfg_data
14025+{
14026+ /** raw register data */
14027+ uint32_t d32;
14028+ /** register bits */
14029+ struct
14030+ {
14031+ unsigned corrupt_tx_packet: 1; /*fscz*/
14032+ unsigned force_device_mode: 1;
14033+ unsigned force_host_mode: 1;
14034+ unsigned reserved23_28 : 6;
14035+ unsigned term_sel_dl_pulse : 1;
14036+ unsigned ulpi_int_vbus_indicator : 1;
14037+ unsigned ulpi_ext_vbus_drv : 1;
14038+ unsigned ulpi_clk_sus_m : 1;
14039+ unsigned ulpi_auto_res : 1;
14040+ unsigned ulpi_fsls : 1;
14041+ unsigned otgutmifssel : 1;
14042+ unsigned phylpwrclksel : 1;
14043+ unsigned nptxfrwnden : 1;
14044+ unsigned usbtrdtim : 4;
14045+ unsigned hnpcap : 1;
14046+ unsigned srpcap : 1;
14047+ unsigned ddrsel : 1;
14048+ unsigned physel : 1;
14049+ unsigned fsintf : 1;
14050+ unsigned ulpi_utmi_sel : 1;
14051+ unsigned phyif : 1;
14052+ unsigned toutcal : 3;
14053+ } b;
14054+} gusbcfg_data_t;
14055+
14056+/**
14057+ * This union represents the bit fields of the Core Reset Register
14058+ * (GRSTCTL). Set/clear the bits using the bit fields then write the
14059+ * <i>d32</i> value to the register.
14060+ */
14061+typedef union grstctl_data
14062+{
14063+ /** raw register data */
14064+ uint32_t d32;
14065+ /** register bits */
14066+ struct
14067+ {
14068+ /** AHB Master Idle. Indicates the AHB Master State
14069+ * Machine is in IDLE condition. */
14070+ unsigned ahbidle : 1;
14071+ /** DMA Request Signal. Indicated DMA request is in
14072+ * probress. Used for debug purpose. */
14073+ unsigned dmareq : 1;
14074+ /** Reserved */
14075+ unsigned reserved29_11 : 19;
14076+ /** TxFIFO Number (TxFNum) (Device and Host).
14077+ *
14078+ * This is the FIFO number which needs to be flushed,
14079+ * using the TxFIFO Flush bit. This field should not
14080+ * be changed until the TxFIFO Flush bit is cleared by
14081+ * the core.
14082+ * - 0x0 : Non Periodic TxFIFO Flush
14083+ * - 0x1 : Periodic TxFIFO #1 Flush in device mode
14084+ * or Periodic TxFIFO in host mode
14085+ * - 0x2 : Periodic TxFIFO #2 Flush in device mode.
14086+ * - ...
14087+ * - 0xF : Periodic TxFIFO #15 Flush in device mode
14088+ * - 0x10: Flush all the Transmit NonPeriodic and
14089+ * Transmit Periodic FIFOs in the core
14090+ */
14091+ unsigned txfnum : 5;
14092+ /** TxFIFO Flush (TxFFlsh) (Device and Host).
14093+ *
14094+ * This bit is used to selectively flush a single or
14095+ * all transmit FIFOs. The application must first
14096+ * ensure that the core is not in the middle of a
14097+ * transaction. <p>The application should write into
14098+ * this bit, only after making sure that neither the
14099+ * DMA engine is writing into the TxFIFO nor the MAC
14100+ * is reading the data out of the FIFO. <p>The
14101+ * application should wait until the core clears this
14102+ * bit, before performing any operations. This bit
14103+ * will takes 8 clocks (slowest of PHY or AHB clock)
14104+ * to clear.
14105+ */
14106+ unsigned txfflsh : 1;
14107+ /** RxFIFO Flush (RxFFlsh) (Device and Host)
14108+ *
14109+ * The application can flush the entire Receive FIFO
14110+ * using this bit. <p>The application must first
14111+ * ensure that the core is not in the middle of a
14112+ * transaction. <p>The application should write into
14113+ * this bit, only after making sure that neither the
14114+ * DMA engine is reading from the RxFIFO nor the MAC
14115+ * is writing the data in to the FIFO. <p>The
14116+ * application should wait until the bit is cleared
14117+ * before performing any other operations. This bit
14118+ * will takes 8 clocks (slowest of PHY or AHB clock)
14119+ * to clear.
14120+ */
14121+ unsigned rxfflsh : 1;
14122+ /** In Token Sequence Learning Queue Flush
14123+ * (INTknQFlsh) (Device Only)
14124+ */
14125+ unsigned intknqflsh : 1;
14126+ /** Host Frame Counter Reset (Host Only)<br>
14127+ *
14128+ * The application can reset the (micro)frame number
14129+ * counter inside the core, using this bit. When the
14130+ * (micro)frame counter is reset, the subsequent SOF
14131+ * sent out by the core, will have a (micro)frame
14132+ * number of 0.
14133+ */
14134+ unsigned hstfrm : 1;
14135+ /** Hclk Soft Reset
14136+ *
14137+ * The application uses this bit to reset the control logic in
14138+ * the AHB clock domain. Only AHB clock domain pipelines are
14139+ * reset.
14140+ */
14141+ unsigned hsftrst : 1;
14142+ /** Core Soft Reset (CSftRst) (Device and Host)
14143+ *
14144+ * The application can flush the control logic in the
14145+ * entire core using this bit. This bit resets the
14146+ * pipelines in the AHB Clock domain as well as the
14147+ * PHY Clock domain.
14148+ *
14149+ * The state machines are reset to an IDLE state, the
14150+ * control bits in the CSRs are cleared, all the
14151+ * transmit FIFOs and the receive FIFO are flushed.
14152+ *
14153+ * The status mask bits that control the generation of
14154+ * the interrupt, are cleared, to clear the
14155+ * interrupt. The interrupt status bits are not
14156+ * cleared, so the application can get the status of
14157+ * any events that occurred in the core after it has
14158+ * set this bit.
14159+ *
14160+ * Any transactions on the AHB are terminated as soon
14161+ * as possible following the protocol. Any
14162+ * transactions on the USB are terminated immediately.
14163+ *
14164+ * The configuration settings in the CSRs are
14165+ * unchanged, so the software doesn't have to
14166+ * reprogram these registers (Device
14167+ * Configuration/Host Configuration/Core System
14168+ * Configuration/Core PHY Configuration).
14169+ *
14170+ * The application can write to this bit, any time it
14171+ * wants to reset the core. This is a self clearing
14172+ * bit and the core clears this bit after all the
14173+ * necessary logic is reset in the core, which may
14174+ * take several clocks, depending on the current state
14175+ * of the core.
14176+ */
14177+ unsigned csftrst : 1;
14178+ } b;
14179+} grstctl_t;
14180+
14181+
14182+/**
14183+ * This union represents the bit fields of the Core Interrupt Mask
14184+ * Register (GINTMSK). Set/clear the bits using the bit fields then
14185+ * write the <i>d32</i> value to the register.
14186+ */
14187+typedef union gintmsk_data
14188+{
14189+ /** raw register data */
14190+ uint32_t d32;
14191+ /** register bits */
14192+ struct
14193+ {
14194+ unsigned wkupintr : 1;
14195+ unsigned sessreqintr : 1;
14196+ unsigned disconnect : 1;
14197+ unsigned conidstschng : 1;
14198+ unsigned reserved27 : 1;
14199+ unsigned ptxfempty : 1;
14200+ unsigned hcintr : 1;
14201+ unsigned portintr : 1;
14202+ unsigned reserved22_23 : 2;
14203+ unsigned incomplisoout : 1;
14204+ unsigned incomplisoin : 1;
14205+ unsigned outepintr : 1;
14206+ unsigned inepintr : 1;
14207+ unsigned epmismatch : 1;
14208+ unsigned reserved16 : 1;
14209+ unsigned eopframe : 1;
14210+ unsigned isooutdrop : 1;
14211+ unsigned enumdone : 1;
14212+ unsigned usbreset : 1;
14213+ unsigned usbsuspend : 1;
14214+ unsigned erlysuspend : 1;
14215+ unsigned i2cintr : 1;
14216+ unsigned reserved8 : 1;
14217+ unsigned goutnakeff : 1;
14218+ unsigned ginnakeff : 1;
14219+ unsigned nptxfempty : 1;
14220+ unsigned rxstsqlvl : 1;
14221+ unsigned sofintr : 1;
14222+ unsigned otgintr : 1;
14223+ unsigned modemismatch : 1;
14224+ unsigned reserved0 : 1;
14225+ } b;
14226+} gintmsk_data_t;
14227+/**
14228+ * This union represents the bit fields of the Core Interrupt Register
14229+ * (GINTSTS). Set/clear the bits using the bit fields then write the
14230+ * <i>d32</i> value to the register.
14231+ */
14232+typedef union gintsts_data
14233+{
14234+ /** raw register data */
14235+ uint32_t d32;
14236+#define DWC_SOF_INTR_MASK 0x0008
14237+ /** register bits */
14238+ struct
14239+ {
14240+#define DWC_HOST_MODE 1
14241+ unsigned wkupintr : 1;
14242+ unsigned sessreqintr : 1;
14243+ unsigned disconnect : 1;
14244+ unsigned conidstschng : 1;
14245+ unsigned reserved27 : 1;
14246+ unsigned ptxfempty : 1;
14247+ unsigned hcintr : 1;
14248+ unsigned portintr : 1;
14249+ unsigned reserved22_23 : 2;
14250+ unsigned incomplisoout : 1;
14251+ unsigned incomplisoin : 1;
14252+ unsigned outepintr : 1;
14253+ unsigned inepint: 1;
14254+ unsigned epmismatch : 1;
14255+ unsigned intokenrx : 1;
14256+ unsigned eopframe : 1;
14257+ unsigned isooutdrop : 1;
14258+ unsigned enumdone : 1;
14259+ unsigned usbreset : 1;
14260+ unsigned usbsuspend : 1;
14261+ unsigned erlysuspend : 1;
14262+ unsigned i2cintr : 1;
14263+ unsigned reserved8 : 1;
14264+ unsigned goutnakeff : 1;
14265+ unsigned ginnakeff : 1;
14266+ unsigned nptxfempty : 1;
14267+ unsigned rxstsqlvl : 1;
14268+ unsigned sofintr : 1;
14269+ unsigned otgintr : 1;
14270+ unsigned modemismatch : 1;
14271+ unsigned curmode : 1;
14272+ } b;
14273+} gintsts_data_t;
14274+
14275+
14276+/**
14277+ * This union represents the bit fields in the Device Receive Status Read and
14278+ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
14279+ * element then read out the bits using the <i>b</i>it elements.
14280+ */
14281+typedef union device_grxsts_data {
14282+ /** raw register data */
14283+ uint32_t d32;
14284+ /** register bits */
14285+ struct {
14286+ unsigned reserved : 7;
14287+ unsigned fn : 4;
14288+#define DWC_STS_DATA_UPDT 0x2 // OUT Data Packet
14289+#define DWC_STS_XFER_COMP 0x3 // OUT Data Transfer Complete
14290+
14291+#define DWC_DSTS_GOUT_NAK 0x1 // Global OUT NAK
14292+#define DWC_DSTS_SETUP_COMP 0x4 // Setup Phase Complete
14293+#define DWC_DSTS_SETUP_UPDT 0x6 // SETUP Packet
14294+ unsigned pktsts : 4;
14295+ unsigned dpid : 2;
14296+ unsigned bcnt : 11;
14297+ unsigned epnum : 4;
14298+ } b;
14299+} device_grxsts_data_t;
14300+
14301+/**
14302+ * This union represents the bit fields in the Host Receive Status Read and
14303+ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
14304+ * element then read out the bits using the <i>b</i>it elements.
14305+ */
14306+typedef union host_grxsts_data {
14307+ /** raw register data */
14308+ uint32_t d32;
14309+ /** register bits */
14310+ struct {
14311+ unsigned reserved31_21 : 11;
14312+#define DWC_GRXSTS_PKTSTS_IN 0x2
14313+#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3
14314+#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5
14315+#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7
14316+ unsigned pktsts : 4;
14317+ unsigned dpid : 2;
14318+ unsigned bcnt : 11;
14319+ unsigned chnum : 4;
14320+ } b;
14321+} host_grxsts_data_t;
14322+
14323+/**
14324+ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ,
14325+ * GNPTXFSIZ, DPTXFSIZn). Read the register into the <i>d32</i> element then
14326+ * read out the bits using the <i>b</i>it elements.
14327+ */
14328+typedef union fifosize_data {
14329+ /** raw register data */
14330+ uint32_t d32;
14331+ /** register bits */
14332+ struct {
14333+ unsigned depth : 16;
14334+ unsigned startaddr : 16;
14335+ } b;
14336+} fifosize_data_t;
14337+
14338+/**
14339+ * This union represents the bit fields in the Non-Periodic Transmit
14340+ * FIFO/Queue Status Register (GNPTXSTS). Read the register into the
14341+ * <i>d32</i> element then read out the bits using the <i>b</i>it
14342+ * elements.
14343+ */
14344+typedef union gnptxsts_data {
14345+ /** raw register data */
14346+ uint32_t d32;
14347+ /** register bits */
14348+ struct {
14349+ unsigned reserved : 1;
14350+ /** Top of the Non-Periodic Transmit Request Queue
14351+ * - bits 30:27 - Channel/EP Number
14352+ * - bits 26:25 - Token Type
14353+ * - bit 24 - Terminate (Last entry for the selected
14354+ * channel/EP)
14355+ * - 2'b00 - IN/OUT
14356+ * - 2'b01 - Zero Length OUT
14357+ * - 2'b10 - PING/Complete Split
14358+ * - 2'b11 - Channel Halt
14359+
14360+ */
14361+ unsigned nptxqtop_chnep : 4;
14362+ unsigned nptxqtop_token : 2;
14363+ unsigned nptxqtop_terminate : 1;
14364+ unsigned nptxqspcavail : 8;
14365+ unsigned nptxfspcavail : 16;
14366+ } b;
14367+} gnptxsts_data_t;
14368+
14369+/**
14370+ * This union represents the bit fields in the Transmit
14371+ * FIFO Status Register (DTXFSTS). Read the register into the
14372+ * <i>d32</i> element then read out the bits using the <i>b</i>it
14373+ * elements.
14374+ */
14375+typedef union dtxfsts_data /* fscz */ //*
14376+{
14377+ /** raw register data */
14378+ uint32_t d32;
14379+ /** register bits */
14380+ struct {
14381+ unsigned reserved : 16;
14382+ unsigned txfspcavail : 16;
14383+ } b;
14384+} dtxfsts_data_t;
14385+
14386+/**
14387+ * This union represents the bit fields in the I2C Control Register
14388+ * (I2CCTL). Read the register into the <i>d32</i> element then read out the
14389+ * bits using the <i>b</i>it elements.
14390+ */
14391+typedef union gi2cctl_data {
14392+ /** raw register data */
14393+ uint32_t d32;
14394+ /** register bits */
14395+ struct {
14396+ unsigned bsydne : 1;
14397+ unsigned rw : 1;
14398+ unsigned reserved : 2;
14399+ unsigned i2cdevaddr : 2;
14400+ unsigned i2csuspctl : 1;
14401+ unsigned ack : 1;
14402+ unsigned i2cen : 1;
14403+ unsigned addr : 7;
14404+ unsigned regaddr : 8;
14405+ unsigned rwdata : 8;
14406+ } b;
14407+} gi2cctl_data_t;
14408+
14409+/**
14410+ * This union represents the bit fields in the User HW Config1
14411+ * Register. Read the register into the <i>d32</i> element then read
14412+ * out the bits using the <i>b</i>it elements.
14413+ */
14414+typedef union hwcfg1_data {
14415+ /** raw register data */
14416+ uint32_t d32;
14417+ /** register bits */
14418+ struct {
14419+ unsigned ep_dir15 : 2;
14420+ unsigned ep_dir14 : 2;
14421+ unsigned ep_dir13 : 2;
14422+ unsigned ep_dir12 : 2;
14423+ unsigned ep_dir11 : 2;
14424+ unsigned ep_dir10 : 2;
14425+ unsigned ep_dir9 : 2;
14426+ unsigned ep_dir8 : 2;
14427+ unsigned ep_dir7 : 2;
14428+ unsigned ep_dir6 : 2;
14429+ unsigned ep_dir5 : 2;
14430+ unsigned ep_dir4 : 2;
14431+ unsigned ep_dir3 : 2;
14432+ unsigned ep_dir2 : 2;
14433+ unsigned ep_dir1 : 2;
14434+ unsigned ep_dir0 : 2;
14435+ } b;
14436+} hwcfg1_data_t;
14437+
14438+/**
14439+ * This union represents the bit fields in the User HW Config2
14440+ * Register. Read the register into the <i>d32</i> element then read
14441+ * out the bits using the <i>b</i>it elements.
14442+ */
14443+typedef union hwcfg2_data
14444+{
14445+ /** raw register data */
14446+ uint32_t d32;
14447+ /** register bits */
14448+ struct {
14449+ /* GHWCFG2 */
14450+ unsigned reserved31 : 1;
14451+ unsigned dev_token_q_depth : 5;
14452+ unsigned host_perio_tx_q_depth : 2;
14453+ unsigned nonperio_tx_q_depth : 2;
14454+ unsigned rx_status_q_depth : 2;
14455+ unsigned dynamic_fifo : 1;
14456+ unsigned perio_ep_supported : 1;
14457+ unsigned num_host_chan : 4;
14458+ unsigned num_dev_ep : 4;
14459+ unsigned fs_phy_type : 2;
14460+#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0
14461+#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1
14462+#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2
14463+#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3
14464+ unsigned hs_phy_type : 2;
14465+ unsigned point2point : 1;
14466+ unsigned architecture : 2;
14467+#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0
14468+#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1
14469+#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2
14470+#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3
14471+#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4
14472+#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5
14473+#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6
14474+ unsigned op_mode : 3;
14475+ } b;
14476+} hwcfg2_data_t;
14477+
14478+/**
14479+ * This union represents the bit fields in the User HW Config3
14480+ * Register. Read the register into the <i>d32</i> element then read
14481+ * out the bits using the <i>b</i>it elements.
14482+ */
14483+typedef union hwcfg3_data
14484+{
14485+ /** raw register data */
14486+ uint32_t d32;
14487+ /** register bits */
14488+ struct {
14489+ /* GHWCFG3 */
14490+ unsigned dfifo_depth : 16;
14491+ unsigned reserved15_13 : 3;
14492+ unsigned ahb_phy_clock_synch : 1;
14493+ unsigned synch_reset_type : 1;
14494+ unsigned optional_features : 1;
14495+ unsigned vendor_ctrl_if : 1;
14496+ unsigned i2c : 1;
14497+ unsigned otg_func : 1;
14498+ unsigned packet_size_cntr_width : 3;
14499+ unsigned xfer_size_cntr_width : 4;
14500+ } b;
14501+} hwcfg3_data_t;
14502+
14503+/**
14504+ * This union represents the bit fields in the User HW Config4
14505+ * Register. Read the register into the <i>d32</i> element then read
14506+ * out the bits using the <i>b</i>it elements.
14507+ */
14508+typedef union hwcfg4_data
14509+{
14510+ /** raw register data */
14511+ uint32_t d32;
14512+ /** register bits */
14513+ struct {
14514+unsigned reserved31_30 : 2; /* fscz */
14515+ unsigned num_in_eps : 4;
14516+ unsigned ded_fifo_en : 1;
14517+
14518+ unsigned session_end_filt_en : 1;
14519+ unsigned b_valid_filt_en : 1;
14520+ unsigned a_valid_filt_en : 1;
14521+ unsigned vbus_valid_filt_en : 1;
14522+ unsigned iddig_filt_en : 1;
14523+ unsigned num_dev_mode_ctrl_ep : 4;
14524+ unsigned utmi_phy_data_width : 2;
14525+ unsigned min_ahb_freq : 9;
14526+ unsigned power_optimiz : 1;
14527+ unsigned num_dev_perio_in_ep : 4;
14528+ } b;
14529+} hwcfg4_data_t;
14530+
14531+////////////////////////////////////////////
14532+// Device Registers
14533+/**
14534+ * Device Global Registers. <i>Offsets 800h-BFFh</i>
14535+ *
14536+ * The following structures define the size and relative field offsets
14537+ * for the Device Mode Registers.
14538+ *
14539+ * <i>These registers are visible only in Device mode and must not be
14540+ * accessed in Host mode, as the results are unknown.</i>
14541+ */
14542+typedef struct dwc_otg_dev_global_regs
14543+{
14544+ /** Device Configuration Register. <i>Offset 800h</i> */
14545+ volatile uint32_t dcfg;
14546+ /** Device Control Register. <i>Offset: 804h</i> */
14547+ volatile uint32_t dctl;
14548+ /** Device Status Register (Read Only). <i>Offset: 808h</i> */
14549+ volatile uint32_t dsts;
14550+ /** Reserved. <i>Offset: 80Ch</i> */
14551+ uint32_t unused;
14552+ /** Device IN Endpoint Common Interrupt Mask
14553+ * Register. <i>Offset: 810h</i> */
14554+ volatile uint32_t diepmsk;
14555+ /** Device OUT Endpoint Common Interrupt Mask
14556+ * Register. <i>Offset: 814h</i> */
14557+ volatile uint32_t doepmsk;
14558+ /** Device All Endpoints Interrupt Register. <i>Offset: 818h</i> */
14559+ volatile uint32_t daint;
14560+ /** Device All Endpoints Interrupt Mask Register. <i>Offset:
14561+ * 81Ch</i> */
14562+ volatile uint32_t daintmsk;
14563+ /** Device IN Token Queue Read Register-1 (Read Only).
14564+ * <i>Offset: 820h</i> */
14565+ volatile uint32_t dtknqr1;
14566+ /** Device IN Token Queue Read Register-2 (Read Only).
14567+ * <i>Offset: 824h</i> */
14568+ volatile uint32_t dtknqr2;
14569+ /** Device VBUS discharge Register. <i>Offset: 828h</i> */
14570+ volatile uint32_t dvbusdis;
14571+ /** Device VBUS Pulse Register. <i>Offset: 82Ch</i> */
14572+ volatile uint32_t dvbuspulse;
14573+ /** Device IN Token Queue Read Register-3 (Read Only).
14574+ * Device Thresholding control register (Read/Write)
14575+ * <i>Offset: 830h</i> */
14576+ volatile uint32_t dtknqr3_dthrctl;
14577+ /** Device IN Token Queue Read Register-4 (Read Only). /
14578+ * Device IN EPs empty Inr. Mask Register (Read/Write)
14579+ * <i>Offset: 834h</i> */
14580+ volatile uint32_t dtknqr4_fifoemptymsk;
14581+} dwc_otg_device_global_regs_t;
14582+
14583+/**
14584+ * This union represents the bit fields in the Device Configuration
14585+ * Register. Read the register into the <i>d32</i> member then
14586+ * set/clear the bits using the <i>b</i>it elements. Write the
14587+ * <i>d32</i> member to the dcfg register.
14588+ */
14589+typedef union dcfg_data
14590+{
14591+ /** raw register data */
14592+ uint32_t d32;
14593+ /** register bits */
14594+ struct {
14595+ unsigned reserved31_23 : 9;
14596+ /** In Endpoint Mis-match count */
14597+ unsigned epmscnt : 5;
14598+ unsigned reserved13_17 : 5;
14599+ /** Periodic Frame Interval */
14600+#define DWC_DCFG_FRAME_INTERVAL_80 0
14601+#define DWC_DCFG_FRAME_INTERVAL_85 1
14602+#define DWC_DCFG_FRAME_INTERVAL_90 2
14603+#define DWC_DCFG_FRAME_INTERVAL_95 3
14604+ unsigned perfrint : 2;
14605+ /** Device Addresses */
14606+ unsigned devaddr : 7;
14607+ unsigned reserved3 : 1;
14608+ /** Non Zero Length Status OUT Handshake */
14609+#define DWC_DCFG_SEND_STALL 1
14610+ unsigned nzstsouthshk : 1;
14611+ /** Device Speed */
14612+ unsigned devspd : 2;
14613+ } b;
14614+} dcfg_data_t;
14615+
14616+/**
14617+ * This union represents the bit fields in the Device Control
14618+ * Register. Read the register into the <i>d32</i> member then
14619+ * set/clear the bits using the <i>b</i>it elements.
14620+ */
14621+typedef union dctl_data
14622+{
14623+ /** raw register data */
14624+ uint32_t d32;
14625+ /** register bits */
14626+ struct {
14627+ unsigned reserved : 20;
14628+ /** Power-On Programming Done */
14629+ unsigned pwronprgdone : 1;
14630+ /** Clear Global OUT NAK */
14631+ unsigned cgoutnak : 1;
14632+ /** Set Global OUT NAK */
14633+ unsigned sgoutnak : 1;
14634+ /** Clear Global Non-Periodic IN NAK */
14635+ unsigned cgnpinnak : 1;
14636+ /** Set Global Non-Periodic IN NAK */
14637+ unsigned sgnpinnak : 1;
14638+ /** Test Control */
14639+ unsigned tstctl : 3;
14640+ /** Global OUT NAK Status */
14641+ unsigned goutnaksts : 1;
14642+ /** Global Non-Periodic IN NAK Status */
14643+ unsigned gnpinnaksts : 1;
14644+ /** Soft Disconnect */
14645+ unsigned sftdiscon : 1;
14646+ /** Remote Wakeup */
14647+ unsigned rmtwkupsig : 1;
14648+ } b;
14649+} dctl_data_t;
14650+
14651+/**
14652+ * This union represents the bit fields in the Device Status
14653+ * Register. Read the register into the <i>d32</i> member then
14654+ * set/clear the bits using the <i>b</i>it elements.
14655+ */
14656+typedef union dsts_data
14657+{
14658+ /** raw register data */
14659+ uint32_t d32;
14660+ /** register bits */
14661+ struct {
14662+ unsigned reserved22_31 : 10;
14663+ /** Frame or Microframe Number of the received SOF */
14664+ unsigned soffn : 14;
14665+ unsigned reserved4_7: 4;
14666+ /** Erratic Error */
14667+ unsigned errticerr : 1;
14668+ /** Enumerated Speed */
14669+#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0
14670+#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1
14671+#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2
14672+#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3
14673+ unsigned enumspd : 2;
14674+ /** Suspend Status */
14675+ unsigned suspsts : 1;
14676+ } b;
14677+} dsts_data_t;
14678+
14679+
14680+/**
14681+ * This union represents the bit fields in the Device IN EP Interrupt
14682+ * Register and the Device IN EP Common Mask Register.
14683+ *
14684+ * - Read the register into the <i>d32</i> member then set/clear the
14685+ * bits using the <i>b</i>it elements.
14686+ */
14687+typedef union diepint_data
14688+{
14689+ /** raw register data */
14690+ uint32_t d32;
14691+ /** register bits */
14692+ struct {
14693+ unsigned reserved07_31 : 23;
14694+ unsigned txfifoundrn : 1;
14695+ /** IN Endpoint HAK Effective mask */
14696+ unsigned emptyintr : 1;
14697+ /** IN Endpoint NAK Effective mask */
14698+ unsigned inepnakeff : 1;
14699+ /** IN Token Received with EP mismatch mask */
14700+ unsigned intknepmis : 1;
14701+ /** IN Token received with TxF Empty mask */
14702+ unsigned intktxfemp : 1;
14703+ /** TimeOUT Handshake mask (non-ISOC EPs) */
14704+ unsigned timeout : 1;
14705+ /** AHB Error mask */
14706+ unsigned ahberr : 1;
14707+ /** Endpoint disable mask */
14708+ unsigned epdisabled : 1;
14709+ /** Transfer complete mask */
14710+ unsigned xfercompl : 1;
14711+ } b;
14712+} diepint_data_t;
14713+/**
14714+ * This union represents the bit fields in the Device IN EP Common
14715+ * Interrupt Mask Register.
14716+ */
14717+typedef union diepint_data diepmsk_data_t;
14718+
14719+/**
14720+ * This union represents the bit fields in the Device OUT EP Interrupt
14721+ * Registerand Device OUT EP Common Interrupt Mask Register.
14722+ *
14723+ * - Read the register into the <i>d32</i> member then set/clear the
14724+ * bits using the <i>b</i>it elements.
14725+ */
14726+typedef union doepint_data
14727+{
14728+ /** raw register data */
14729+ uint32_t d32;
14730+ /** register bits */
14731+ struct {
14732+ unsigned reserved04_31 : 27;
14733+ /** OUT Token Received when Endpoint Disabled */
14734+ unsigned outtknepdis : 1;
14735+ /** Setup Phase Done (contorl EPs) */
14736+ unsigned setup : 1;
14737+ /** AHB Error */
14738+ unsigned ahberr : 1;
14739+ /** Endpoint disable */
14740+ unsigned epdisabled : 1;
14741+ /** Transfer complete */
14742+ unsigned xfercompl : 1;
14743+ } b;
14744+} doepint_data_t;
14745+/**
14746+ * This union represents the bit fields in the Device OUT EP Common
14747+ * Interrupt Mask Register.
14748+ */
14749+typedef union doepint_data doepmsk_data_t;
14750+
14751+
14752+/**
14753+ * This union represents the bit fields in the Device All EP Interrupt
14754+ * and Mask Registers.
14755+ * - Read the register into the <i>d32</i> member then set/clear the
14756+ * bits using the <i>b</i>it elements.
14757+ */
14758+typedef union daint_data
14759+{
14760+ /** raw register data */
14761+ uint32_t d32;
14762+ /** register bits */
14763+ struct {
14764+ /** OUT Endpoint bits */
14765+ unsigned out : 16;
14766+ /** IN Endpoint bits */
14767+ unsigned in : 16;
14768+ } ep;
14769+ struct {
14770+ /** OUT Endpoint bits */
14771+ unsigned outep15 : 1;
14772+ unsigned outep14 : 1;
14773+ unsigned outep13 : 1;
14774+ unsigned outep12 : 1;
14775+ unsigned outep11 : 1;
14776+ unsigned outep10 : 1;
14777+ unsigned outep9 : 1;
14778+ unsigned outep8 : 1;
14779+ unsigned outep7 : 1;
14780+ unsigned outep6 : 1;
14781+ unsigned outep5 : 1;
14782+ unsigned outep4 : 1;
14783+ unsigned outep3 : 1;
14784+ unsigned outep2 : 1;
14785+ unsigned outep1 : 1;
14786+ unsigned outep0 : 1;
14787+ /** IN Endpoint bits */
14788+ unsigned inep15 : 1;
14789+ unsigned inep14 : 1;
14790+ unsigned inep13 : 1;
14791+ unsigned inep12 : 1;
14792+ unsigned inep11 : 1;
14793+ unsigned inep10 : 1;
14794+ unsigned inep9 : 1;
14795+ unsigned inep8 : 1;
14796+ unsigned inep7 : 1;
14797+ unsigned inep6 : 1;
14798+ unsigned inep5 : 1;
14799+ unsigned inep4 : 1;
14800+ unsigned inep3 : 1;
14801+ unsigned inep2 : 1;
14802+ unsigned inep1 : 1;
14803+ unsigned inep0 : 1;
14804+ } b;
14805+} daint_data_t;
14806+
14807+/**
14808+ * This union represents the bit fields in the Device IN Token Queue
14809+ * Read Registers.
14810+ * - Read the register into the <i>d32</i> member.
14811+ * - READ-ONLY Register
14812+ */
14813+typedef union dtknq1_data
14814+{
14815+ /** raw register data */
14816+ uint32_t d32;
14817+ /** register bits */
14818+ struct {
14819+ /** EP Numbers of IN Tokens 0 ... 4 */
14820+ unsigned epnums0_5 : 24;
14821+ /** write pointer has wrapped. */
14822+ unsigned wrap_bit : 1;
14823+ /** Reserved */
14824+ unsigned reserved05_06 : 2;
14825+ /** In Token Queue Write Pointer */
14826+ unsigned intknwptr : 5;
14827+ }b;
14828+} dtknq1_data_t;
14829+
14830+/**
14831+ * This union represents Threshold control Register
14832+ * - Read and write the register into the <i>d32</i> member.
14833+ * - READ-WRITABLE Register
14834+ */
14835+typedef union dthrctl_data //* /*fscz */
14836+{
14837+ /** raw register data */
14838+ uint32_t d32;
14839+ /** register bits */
14840+ struct {
14841+ /** Reserved */
14842+ unsigned reserved26_31 : 6;
14843+ /** Rx Thr. Length */
14844+ unsigned rx_thr_len : 9;
14845+ /** Rx Thr. Enable */
14846+ unsigned rx_thr_en : 1;
14847+ /** Reserved */
14848+ unsigned reserved11_15 : 5;
14849+ /** Tx Thr. Length */
14850+ unsigned tx_thr_len : 9;
14851+ /** ISO Tx Thr. Enable */
14852+ unsigned iso_thr_en : 1;
14853+ /** non ISO Tx Thr. Enable */
14854+ unsigned non_iso_thr_en : 1;
14855+
14856+ }b;
14857+} dthrctl_data_t;
14858+
14859+/**
14860+ * Device Logical IN Endpoint-Specific Registers. <i>Offsets
14861+ * 900h-AFCh</i>
14862+ *
14863+ * There will be one set of endpoint registers per logical endpoint
14864+ * implemented.
14865+ *
14866+ * <i>These registers are visible only in Device mode and must not be
14867+ * accessed in Host mode, as the results are unknown.</i>
14868+ */
14869+typedef struct dwc_otg_dev_in_ep_regs
14870+{
14871+ /** Device IN Endpoint Control Register. <i>Offset:900h +
14872+ * (ep_num * 20h) + 00h</i> */
14873+ volatile uint32_t diepctl;
14874+ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 04h</i> */
14875+ uint32_t reserved04;
14876+ /** Device IN Endpoint Interrupt Register. <i>Offset:900h +
14877+ * (ep_num * 20h) + 08h</i> */
14878+ volatile uint32_t diepint;
14879+ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 0Ch</i> */
14880+ uint32_t reserved0C;
14881+ /** Device IN Endpoint Transfer Size
14882+ * Register. <i>Offset:900h + (ep_num * 20h) + 10h</i> */
14883+ volatile uint32_t dieptsiz;
14884+ /** Device IN Endpoint DMA Address Register. <i>Offset:900h +
14885+ * (ep_num * 20h) + 14h</i> */
14886+ volatile uint32_t diepdma;
14887+ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 18h - 900h +
14888+ * (ep_num * 20h) + 1Ch</i>*/
14889+ volatile uint32_t dtxfsts;
14890+ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 1Ch - 900h +
14891+ * (ep_num * 20h) + 1Ch</i>*/
14892+ uint32_t reserved18;
14893+} dwc_otg_dev_in_ep_regs_t;
14894+
14895+/**
14896+ * Device Logical OUT Endpoint-Specific Registers. <i>Offsets:
14897+ * B00h-CFCh</i>
14898+ *
14899+ * There will be one set of endpoint registers per logical endpoint
14900+ * implemented.
14901+ *
14902+ * <i>These registers are visible only in Device mode and must not be
14903+ * accessed in Host mode, as the results are unknown.</i>
14904+ */
14905+typedef struct dwc_otg_dev_out_ep_regs
14906+{
14907+ /** Device OUT Endpoint Control Register. <i>Offset:B00h +
14908+ * (ep_num * 20h) + 00h</i> */
14909+ volatile uint32_t doepctl;
14910+ /** Device OUT Endpoint Frame number Register. <i>Offset:
14911+ * B00h + (ep_num * 20h) + 04h</i> */
14912+ volatile uint32_t doepfn;
14913+ /** Device OUT Endpoint Interrupt Register. <i>Offset:B00h +
14914+ * (ep_num * 20h) + 08h</i> */
14915+ volatile uint32_t doepint;
14916+ /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 0Ch</i> */
14917+ uint32_t reserved0C;
14918+ /** Device OUT Endpoint Transfer Size Register. <i>Offset:
14919+ * B00h + (ep_num * 20h) + 10h</i> */
14920+ volatile uint32_t doeptsiz;
14921+ /** Device OUT Endpoint DMA Address Register. <i>Offset:B00h
14922+ * + (ep_num * 20h) + 14h</i> */
14923+ volatile uint32_t doepdma;
14924+ /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 18h - B00h +
14925+ * (ep_num * 20h) + 1Ch</i> */
14926+ uint32_t unused[2];
14927+} dwc_otg_dev_out_ep_regs_t;
14928+
14929+/**
14930+ * This union represents the bit fields in the Device EP Control
14931+ * Register. Read the register into the <i>d32</i> member then
14932+ * set/clear the bits using the <i>b</i>it elements.
14933+ */
14934+typedef union depctl_data
14935+{
14936+ /** raw register data */
14937+ uint32_t d32;
14938+ /** register bits */
14939+ struct {
14940+ /** Endpoint Enable */
14941+ unsigned epena : 1;
14942+ /** Endpoint Disable */
14943+ unsigned epdis : 1;
14944+ /** Set DATA1 PID (INTR/Bulk IN and OUT endpoints)
14945+ * Writing to this field sets the Endpoint DPID (DPID)
14946+ * field in this register to DATA1 Set Odd
14947+ * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints)
14948+ * Writing to this field sets the Even/Odd
14949+ * (micro)frame (EO_FrNum) field to odd (micro) frame.
14950+ */
14951+ unsigned setd1pid : 1;
14952+ /** Set DATA0 PID (INTR/Bulk IN and OUT endpoints)
14953+ * Writing to this field sets the Endpoint DPID (DPID)
14954+ * field in this register to DATA0. Set Even
14955+ * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints)
14956+ * Writing to this field sets the Even/Odd
14957+ * (micro)frame (EO_FrNum) field to even (micro)
14958+ * frame.
14959+ */
14960+ unsigned setd0pid : 1;
14961+ /** Set NAK */
14962+ unsigned snak : 1;
14963+ /** Clear NAK */
14964+ unsigned cnak : 1;
14965+ /** Tx Fifo Number
14966+ * IN EPn/IN EP0
14967+ * OUT EPn/OUT EP0 - reserved */
14968+ unsigned txfnum : 4;
14969+ /** Stall Handshake */
14970+ unsigned stall : 1;
14971+ /** Snoop Mode
14972+ * OUT EPn/OUT EP0
14973+ * IN EPn/IN EP0 - reserved */
14974+ unsigned snp : 1;
14975+ /** Endpoint Type
14976+ * 2'b00: Control
14977+ * 2'b01: Isochronous
14978+ * 2'b10: Bulk
14979+ * 2'b11: Interrupt */
14980+ unsigned eptype : 2;
14981+ /** NAK Status */
14982+ unsigned naksts : 1;
14983+ /** Endpoint DPID (INTR/Bulk IN and OUT endpoints)
14984+ * This field contains the PID of the packet going to
14985+ * be received or transmitted on this endpoint. The
14986+ * application should program the PID of the first
14987+ * packet going to be received or transmitted on this
14988+ * endpoint , after the endpoint is
14989+ * activated. Application use the SetD1PID and
14990+ * SetD0PID fields of this register to program either
14991+ * D0 or D1 PID.
14992+ *
14993+ * The encoding for this field is
14994+ * - 0: D0
14995+ * - 1: D1
14996+ */
14997+ unsigned dpid : 1;
14998+ /** USB Active Endpoint */
14999+ unsigned usbactep : 1;
15000+ /** Next Endpoint
15001+ * IN EPn/IN EP0
15002+ * OUT EPn/OUT EP0 - reserved */
15003+ unsigned nextep : 4;
15004+ /** Maximum Packet Size
15005+ * IN/OUT EPn
15006+ * IN/OUT EP0 - 2 bits
15007+ * 2'b00: 64 Bytes
15008+ * 2'b01: 32
15009+ * 2'b10: 16
15010+ * 2'b11: 8 */
15011+#define DWC_DEP0CTL_MPS_64 0
15012+#define DWC_DEP0CTL_MPS_32 1
15013+#define DWC_DEP0CTL_MPS_16 2
15014+#define DWC_DEP0CTL_MPS_8 3
15015+ unsigned mps : 11;
15016+ } b;
15017+} depctl_data_t;
15018+
15019+/**
15020+ * This union represents the bit fields in the Device EP Transfer
15021+ * Size Register. Read the register into the <i>d32</i> member then
15022+ * set/clear the bits using the <i>b</i>it elements.
15023+ */
15024+typedef union deptsiz_data
15025+{
15026+ /** raw register data */
15027+ uint32_t d32;
15028+ /** register bits */
15029+ struct {
15030+ unsigned reserved : 1;
15031+ /** Multi Count - Periodic IN endpoints */
15032+ unsigned mc : 2;
15033+ /** Packet Count */
15034+ unsigned pktcnt : 10;
15035+ /** Transfer size */
15036+ unsigned xfersize : 19;
15037+ } b;
15038+} deptsiz_data_t;
15039+
15040+/**
15041+ * This union represents the bit fields in the Device EP 0 Transfer
15042+ * Size Register. Read the register into the <i>d32</i> member then
15043+ * set/clear the bits using the <i>b</i>it elements.
15044+ */
15045+typedef union deptsiz0_data
15046+{
15047+ /** raw register data */
15048+ uint32_t d32;
15049+ /** register bits */
15050+ struct {
15051+ unsigned reserved31 : 1;
15052+ /**Setup Packet Count (DOEPTSIZ0 Only) */
15053+ unsigned supcnt : 2;
15054+ /** Reserved */
15055+ unsigned reserved28_20 : 9;
15056+ /** Packet Count */
15057+ unsigned pktcnt : 1;
15058+ /** Reserved */
15059+ unsigned reserved18_7 : 12;
15060+ /** Transfer size */
15061+ unsigned xfersize : 7;
15062+ } b;
15063+} deptsiz0_data_t;
15064+
15065+
15066+/** Maximum number of Periodic FIFOs */
15067+#define MAX_PERIO_FIFOS 15
15068+/** Maximum number of TX FIFOs */
15069+#define MAX_TX_FIFOS 15
15070+/** Maximum number of Endpoints/HostChannels */
15071+#define MAX_EPS_CHANNELS 16
15072+//#define MAX_EPS_CHANNELS 4
15073+
15074+/**
15075+ * The dwc_otg_dev_if structure contains information needed to manage
15076+ * the DWC_otg controller acting in device mode. It represents the
15077+ * programming view of the device-specific aspects of the controller.
15078+ */
15079+typedef struct dwc_otg_dev_if {
15080+ /** Pointer to device Global registers.
15081+ * Device Global Registers starting at offset 800h
15082+ */
15083+ dwc_otg_device_global_regs_t *dev_global_regs;
15084+#define DWC_DEV_GLOBAL_REG_OFFSET 0x800
15085+
15086+ /**
15087+ * Device Logical IN Endpoint-Specific Registers 900h-AFCh
15088+ */
15089+ dwc_otg_dev_in_ep_regs_t *in_ep_regs[MAX_EPS_CHANNELS];
15090+#define DWC_DEV_IN_EP_REG_OFFSET 0x900
15091+#define DWC_EP_REG_OFFSET 0x20
15092+
15093+ /** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */
15094+ dwc_otg_dev_out_ep_regs_t *out_ep_regs[MAX_EPS_CHANNELS];
15095+#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00
15096+
15097+ /* Device configuration information*/
15098+ uint8_t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */
15099+ //uint8_t num_eps; /**< Number of EPs range: 0-16 (includes EP0) */
15100+ //uint8_t num_perio_eps; /**< # of Periodic EP range: 0-15 */
15101+ /*fscz */
15102+ uint8_t num_in_eps; /**< Number # of Tx EP range: 0-15 exept ep0 */
15103+ uint8_t num_out_eps; /**< Number # of Rx EP range: 0-15 exept ep 0*/
15104+
15105+ /** Size of periodic FIFOs (Bytes) */
15106+ uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS];
15107+
15108+ /** Size of Tx FIFOs (Bytes) */
15109+ uint16_t tx_fifo_size[MAX_TX_FIFOS];
15110+
15111+ /** Thresholding enable flags and length varaiables **/
15112+ uint16_t rx_thr_en;
15113+ uint16_t iso_tx_thr_en;
15114+ uint16_t non_iso_tx_thr_en;
15115+
15116+ uint16_t rx_thr_length;
15117+ uint16_t tx_thr_length;
15118+} dwc_otg_dev_if_t;
15119+
15120+/**
15121+ * This union represents the bit fields in the Power and Clock Gating Control
15122+ * Register. Read the register into the <i>d32</i> member then set/clear the
15123+ * bits using the <i>b</i>it elements.
15124+ */
15125+typedef union pcgcctl_data
15126+{
15127+ /** raw register data */
15128+ uint32_t d32;
15129+
15130+ /** register bits */
15131+ struct {
15132+ unsigned reserved31_05 : 27;
15133+ /** PHY Suspended */
15134+ unsigned physuspended : 1;
15135+ /** Reset Power Down Modules */
15136+ unsigned rstpdwnmodule : 1;
15137+ /** Power Clamp */
15138+ unsigned pwrclmp : 1;
15139+ /** Gate Hclk */
15140+ unsigned gatehclk : 1;
15141+ /** Stop Pclk */
15142+ unsigned stoppclk : 1;
15143+ } b;
15144+} pcgcctl_data_t;
15145+
15146+/////////////////////////////////////////////////
15147+// Host Mode Register Structures
15148+//
15149+/**
15150+ * The Host Global Registers structure defines the size and relative
15151+ * field offsets for the Host Mode Global Registers. Host Global
15152+ * Registers offsets 400h-7FFh.
15153+*/
15154+typedef struct dwc_otg_host_global_regs
15155+{
15156+ /** Host Configuration Register. <i>Offset: 400h</i> */
15157+ volatile uint32_t hcfg;
15158+ /** Host Frame Interval Register. <i>Offset: 404h</i> */
15159+ volatile uint32_t hfir;
15160+ /** Host Frame Number / Frame Remaining Register. <i>Offset: 408h</i> */
15161+ volatile uint32_t hfnum;
15162+ /** Reserved. <i>Offset: 40Ch</i> */
15163+ uint32_t reserved40C;
15164+ /** Host Periodic Transmit FIFO/ Queue Status Register. <i>Offset: 410h</i> */
15165+ volatile uint32_t hptxsts;
15166+ /** Host All Channels Interrupt Register. <i>Offset: 414h</i> */
15167+ volatile uint32_t haint;
15168+ /** Host All Channels Interrupt Mask Register. <i>Offset: 418h</i> */
15169+ volatile uint32_t haintmsk;
15170+} dwc_otg_host_global_regs_t;
15171+
15172+/**
15173+ * This union represents the bit fields in the Host Configuration Register.
15174+ * Read the register into the <i>d32</i> member then set/clear the bits using
15175+ * the <i>b</i>it elements. Write the <i>d32</i> member to the hcfg register.
15176+ */
15177+typedef union hcfg_data
15178+{
15179+ /** raw register data */
15180+ uint32_t d32;
15181+
15182+ /** register bits */
15183+ struct {
15184+ /** Reserved */
15185+ //unsigned reserved31_03 : 29;
15186+ /** FS/LS Only Support */
15187+ unsigned fslssupp : 1;
15188+ /** FS/LS Phy Clock Select */
15189+#define DWC_HCFG_30_60_MHZ 0
15190+#define DWC_HCFG_48_MHZ 1
15191+#define DWC_HCFG_6_MHZ 2
15192+ unsigned fslspclksel : 2;
15193+ } b;
15194+} hcfg_data_t;
15195+
15196+/**
15197+ * This union represents the bit fields in the Host Frame Remaing/Number
15198+ * Register.
15199+ */
15200+typedef union hfir_data
15201+{
15202+ /** raw register data */
15203+ uint32_t d32;
15204+
15205+ /** register bits */
15206+ struct {
15207+ unsigned reserved : 16;
15208+ unsigned frint : 16;
15209+ } b;
15210+} hfir_data_t;
15211+
15212+/**
15213+ * This union represents the bit fields in the Host Frame Remaing/Number
15214+ * Register.
15215+ */
15216+typedef union hfnum_data
15217+{
15218+ /** raw register data */
15219+ uint32_t d32;
15220+
15221+ /** register bits */
15222+ struct {
15223+ unsigned frrem : 16;
15224+#define DWC_HFNUM_MAX_FRNUM 0x3FFF
15225+ unsigned frnum : 16;
15226+ } b;
15227+} hfnum_data_t;
15228+
15229+typedef union hptxsts_data
15230+{
15231+ /** raw register data */
15232+ uint32_t d32;
15233+
15234+ /** register bits */
15235+ struct {
15236+ /** Top of the Periodic Transmit Request Queue
15237+ * - bit 24 - Terminate (last entry for the selected channel)
15238+ * - bits 26:25 - Token Type
15239+ * - 2'b00 - Zero length
15240+ * - 2'b01 - Ping
15241+ * - 2'b10 - Disable
15242+ * - bits 30:27 - Channel Number
15243+ * - bit 31 - Odd/even microframe
15244+ */
15245+ unsigned ptxqtop_odd : 1;
15246+ unsigned ptxqtop_chnum : 4;
15247+ unsigned ptxqtop_token : 2;
15248+ unsigned ptxqtop_terminate : 1;
15249+ unsigned ptxqspcavail : 8;
15250+ unsigned ptxfspcavail : 16;
15251+ } b;
15252+} hptxsts_data_t;
15253+
15254+/**
15255+ * This union represents the bit fields in the Host Port Control and Status
15256+ * Register. Read the register into the <i>d32</i> member then set/clear the
15257+ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
15258+ * hprt0 register.
15259+ */
15260+typedef union hprt0_data
15261+{
15262+ /** raw register data */
15263+ uint32_t d32;
15264+ /** register bits */
15265+ struct {
15266+ unsigned reserved19_31 : 13;
15267+#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0
15268+#define DWC_HPRT0_PRTSPD_FULL_SPEED 1
15269+#define DWC_HPRT0_PRTSPD_LOW_SPEED 2
15270+ unsigned prtspd : 2;
15271+ unsigned prttstctl : 4;
15272+ unsigned prtpwr : 1;
15273+ unsigned prtlnsts : 2;
15274+ unsigned reserved9 : 1;
15275+ unsigned prtrst : 1;
15276+ unsigned prtsusp : 1;
15277+ unsigned prtres : 1;
15278+ unsigned prtovrcurrchng : 1;
15279+ unsigned prtovrcurract : 1;
15280+ unsigned prtenchng : 1;
15281+ unsigned prtena : 1;
15282+ unsigned prtconndet : 1;
15283+ unsigned prtconnsts : 1;
15284+ } b;
15285+} hprt0_data_t;
15286+
15287+/**
15288+ * This union represents the bit fields in the Host All Interrupt
15289+ * Register.
15290+ */
15291+typedef union haint_data
15292+{
15293+ /** raw register data */
15294+ uint32_t d32;
15295+ /** register bits */
15296+ struct {
15297+ unsigned reserved : 16;
15298+ unsigned ch15 : 1;
15299+ unsigned ch14 : 1;
15300+ unsigned ch13 : 1;
15301+ unsigned ch12 : 1;
15302+ unsigned ch11 : 1;
15303+ unsigned ch10 : 1;
15304+ unsigned ch9 : 1;
15305+ unsigned ch8 : 1;
15306+ unsigned ch7 : 1;
15307+ unsigned ch6 : 1;
15308+ unsigned ch5 : 1;
15309+ unsigned ch4 : 1;
15310+ unsigned ch3 : 1;
15311+ unsigned ch2 : 1;
15312+ unsigned ch1 : 1;
15313+ unsigned ch0 : 1;
15314+ } b;
15315+ struct {
15316+ unsigned reserved : 16;
15317+ unsigned chint : 16;
15318+ } b2;
15319+} haint_data_t;
15320+
15321+/**
15322+ * This union represents the bit fields in the Host All Interrupt
15323+ * Register.
15324+ */
15325+typedef union haintmsk_data
15326+{
15327+ /** raw register data */
15328+ uint32_t d32;
15329+ /** register bits */
15330+ struct {
15331+ unsigned reserved : 16;
15332+ unsigned ch15 : 1;
15333+ unsigned ch14 : 1;
15334+ unsigned ch13 : 1;
15335+ unsigned ch12 : 1;
15336+ unsigned ch11 : 1;
15337+ unsigned ch10 : 1;
15338+ unsigned ch9 : 1;
15339+ unsigned ch8 : 1;
15340+ unsigned ch7 : 1;
15341+ unsigned ch6 : 1;
15342+ unsigned ch5 : 1;
15343+ unsigned ch4 : 1;
15344+ unsigned ch3 : 1;
15345+ unsigned ch2 : 1;
15346+ unsigned ch1 : 1;
15347+ unsigned ch0 : 1;
15348+ } b;
15349+ struct {
15350+ unsigned reserved : 16;
15351+ unsigned chint : 16;
15352+ } b2;
15353+} haintmsk_data_t;
15354+
15355+/**
15356+ * Host Channel Specific Registers. <i>500h-5FCh</i>
15357+ */
15358+typedef struct dwc_otg_hc_regs
15359+{
15360+ /** Host Channel 0 Characteristic Register. <i>Offset: 500h + (chan_num * 20h) + 00h</i> */
15361+ volatile uint32_t hcchar;
15362+ /** Host Channel 0 Split Control Register. <i>Offset: 500h + (chan_num * 20h) + 04h</i> */
15363+ volatile uint32_t hcsplt;
15364+ /** Host Channel 0 Interrupt Register. <i>Offset: 500h + (chan_num * 20h) + 08h</i> */
15365+ volatile uint32_t hcint;
15366+ /** Host Channel 0 Interrupt Mask Register. <i>Offset: 500h + (chan_num * 20h) + 0Ch</i> */
15367+ volatile uint32_t hcintmsk;
15368+ /** Host Channel 0 Transfer Size Register. <i>Offset: 500h + (chan_num * 20h) + 10h</i> */
15369+ volatile uint32_t hctsiz;
15370+ /** Host Channel 0 DMA Address Register. <i>Offset: 500h + (chan_num * 20h) + 14h</i> */
15371+ volatile uint32_t hcdma;
15372+ /** Reserved. <i>Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch</i> */
15373+ uint32_t reserved[2];
15374+} dwc_otg_hc_regs_t;
15375+
15376+/**
15377+ * This union represents the bit fields in the Host Channel Characteristics
15378+ * Register. Read the register into the <i>d32</i> member then set/clear the
15379+ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
15380+ * hcchar register.
15381+ */
15382+typedef union hcchar_data
15383+{
15384+ /** raw register data */
15385+ uint32_t d32;
15386+
15387+ /** register bits */
15388+ struct {
15389+ /** Channel enable */
15390+ unsigned chen : 1;
15391+ /** Channel disable */
15392+ unsigned chdis : 1;
15393+ /**
15394+ * Frame to transmit periodic transaction.
15395+ * 0: even, 1: odd
15396+ */
15397+ unsigned oddfrm : 1;
15398+ /** Device address */
15399+ unsigned devaddr : 7;
15400+ /** Packets per frame for periodic transfers. 0 is reserved. */
15401+ unsigned multicnt : 2;
15402+ /** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
15403+ unsigned eptype : 2;
15404+ /** 0: Full/high speed device, 1: Low speed device */
15405+ unsigned lspddev : 1;
15406+ unsigned reserved : 1;
15407+ /** 0: OUT, 1: IN */
15408+ unsigned epdir : 1;
15409+ /** Endpoint number */
15410+ unsigned epnum : 4;
15411+ /** Maximum packet size in bytes */
15412+ unsigned mps : 11;
15413+ } b;
15414+} hcchar_data_t;
15415+
15416+typedef union hcsplt_data
15417+{
15418+ /** raw register data */
15419+ uint32_t d32;
15420+
15421+ /** register bits */
15422+ struct {
15423+ /** Split Enble */
15424+ unsigned spltena : 1;
15425+ /** Reserved */
15426+ unsigned reserved : 14;
15427+ /** Do Complete Split */
15428+ unsigned compsplt : 1;
15429+ /** Transaction Position */
15430+#define DWC_HCSPLIT_XACTPOS_MID 0
15431+#define DWC_HCSPLIT_XACTPOS_END 1
15432+#define DWC_HCSPLIT_XACTPOS_BEGIN 2
15433+#define DWC_HCSPLIT_XACTPOS_ALL 3
15434+ unsigned xactpos : 2;
15435+ /** Hub Address */
15436+ unsigned hubaddr : 7;
15437+ /** Port Address */
15438+ unsigned prtaddr : 7;
15439+ } b;
15440+} hcsplt_data_t;
15441+
15442+
15443+/**
15444+ * This union represents the bit fields in the Host All Interrupt
15445+ * Register.
15446+ */
15447+typedef union hcint_data
15448+{
15449+ /** raw register data */
15450+ uint32_t d32;
15451+ /** register bits */
15452+ struct {
15453+ /** Reserved */
15454+ unsigned reserved : 21;
15455+ /** Data Toggle Error */
15456+ unsigned datatglerr : 1;
15457+ /** Frame Overrun */
15458+ unsigned frmovrun : 1;
15459+ /** Babble Error */
15460+ unsigned bblerr : 1;
15461+ /** Transaction Err */
15462+ unsigned xacterr : 1;
15463+ /** NYET Response Received */
15464+ unsigned nyet : 1;
15465+ /** ACK Response Received */
15466+ unsigned ack : 1;
15467+ /** NAK Response Received */
15468+ unsigned nak : 1;
15469+ /** STALL Response Received */
15470+ unsigned stall : 1;
15471+ /** AHB Error */
15472+ unsigned ahberr : 1;
15473+ /** Channel Halted */
15474+ unsigned chhltd : 1;
15475+ /** Transfer Complete */
15476+ unsigned xfercomp : 1;
15477+ } b;
15478+} hcint_data_t;
15479+
15480+/**
15481+ * This union represents the bit fields in the Host Channel Transfer Size
15482+ * Register. Read the register into the <i>d32</i> member then set/clear the
15483+ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
15484+ * hcchar register.
15485+ */
15486+typedef union hctsiz_data
15487+{
15488+ /** raw register data */
15489+ uint32_t d32;
15490+
15491+ /** register bits */
15492+ struct {
15493+ /** Do PING protocol when 1 */
15494+ unsigned dopng : 1;
15495+ /**
15496+ * Packet ID for next data packet
15497+ * 0: DATA0
15498+ * 1: DATA2
15499+ * 2: DATA1
15500+ * 3: MDATA (non-Control), SETUP (Control)
15501+ */
15502+#define DWC_HCTSIZ_DATA0 0
15503+#define DWC_HCTSIZ_DATA1 2
15504+#define DWC_HCTSIZ_DATA2 1
15505+#define DWC_HCTSIZ_MDATA 3
15506+#define DWC_HCTSIZ_SETUP 3
15507+ unsigned pid : 2;
15508+ /** Data packets to transfer */
15509+ unsigned pktcnt : 10;
15510+ /** Total transfer size in bytes */
15511+ unsigned xfersize : 19;
15512+ } b;
15513+} hctsiz_data_t;
15514+
15515+/**
15516+ * This union represents the bit fields in the Host Channel Interrupt Mask
15517+ * Register. Read the register into the <i>d32</i> member then set/clear the
15518+ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
15519+ * hcintmsk register.
15520+ */
15521+typedef union hcintmsk_data
15522+{
15523+ /** raw register data */
15524+ uint32_t d32;
15525+
15526+ /** register bits */
15527+ struct {
15528+ unsigned reserved : 21;
15529+ unsigned datatglerr : 1;
15530+ unsigned frmovrun : 1;
15531+ unsigned bblerr : 1;
15532+ unsigned xacterr : 1;
15533+ unsigned nyet : 1;
15534+ unsigned ack : 1;
15535+ unsigned nak : 1;
15536+ unsigned stall : 1;
15537+ unsigned ahberr : 1;
15538+ unsigned chhltd : 1;
15539+ unsigned xfercompl : 1;
15540+ } b;
15541+} hcintmsk_data_t;
15542+
15543+/** OTG Host Interface Structure.
15544+ *
15545+ * The OTG Host Interface Structure structure contains information
15546+ * needed to manage the DWC_otg controller acting in host mode. It
15547+ * represents the programming view of the host-specific aspects of the
15548+ * controller.
15549+ */
15550+typedef struct dwc_otg_host_if {
15551+ /** Host Global Registers starting at offset 400h.*/
15552+ dwc_otg_host_global_regs_t *host_global_regs;
15553+#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400
15554+
15555+ /** Host Port 0 Control and Status Register */
15556+ volatile uint32_t *hprt0;
15557+#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440
15558+
15559+
15560+ /** Host Channel Specific Registers at offsets 500h-5FCh. */
15561+ dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS];
15562+#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500
15563+#define DWC_OTG_CHAN_REGS_OFFSET 0x20
15564+
15565+
15566+ /* Host configuration information */
15567+ /** Number of Host Channels (range: 1-16) */
15568+ uint8_t num_host_channels;
15569+ /** Periodic EPs supported (0: no, 1: yes) */
15570+ uint8_t perio_eps_supported;
15571+ /** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */
15572+ uint16_t perio_tx_fifo_size;
15573+
15574+} dwc_otg_host_if_t;
15575+
15576+#endif
15577

Archive Download this file



interactive