| 1 | #include <linux/init.h> |
| 2 | #include <linux/module.h> |
| 3 | #include <linux/types.h> |
| 4 | #include <linux/string.h> |
| 5 | #include <linux/mtd/physmap.h> |
| 6 | #include <linux/kernel.h> |
| 7 | #include <linux/reboot.h> |
| 8 | #include <linux/platform_device.h> |
| 9 | #include <linux/leds.h> |
| 10 | #include <linux/etherdevice.h> |
| 11 | #include <linux/reboot.h> |
| 12 | #include <linux/time.h> |
| 13 | #include <linux/io.h> |
| 14 | #include <linux/gpio.h> |
| 15 | #include <linux/leds.h> |
| 16 | #include <linux/spi/spi.h> |
| 17 | #include <linux/mtd/nand.h> |
| 18 | |
| 19 | #include <asm/bootinfo.h> |
| 20 | #include <asm/irq.h> |
| 21 | |
| 22 | #include <lantiq.h> |
| 23 | |
| 24 | #include <base_reg.h> |
| 25 | #include <sys1_reg.h> |
| 26 | #include <sys2_reg.h> |
| 27 | #include <ebu_reg.h> |
| 28 | |
| 29 | #include "devices.h" |
| 30 | |
| 31 | #include <lantiq_soc.h> |
| 32 | #include <svip_mux.h> |
| 33 | #include <svip_pms.h> |
| 34 | |
| 35 | /* ASC */ |
| 36 | void __init svip_register_asc(int port) |
| 37 | { |
| 38 | switch (port) { |
| 39 | case 0: |
| 40 | ltq_register_asc(0); |
| 41 | svip_sys1_clk_enable(SYS1_CLKENR_ASC0); |
| 42 | break; |
| 43 | case 1: |
| 44 | ltq_register_asc(1); |
| 45 | svip_sys1_clk_enable(SYS1_CLKENR_ASC1); |
| 46 | break; |
| 47 | default: |
| 48 | break; |
| 49 | }; |
| 50 | } |
| 51 | |
| 52 | /* Ethernet */ |
| 53 | static unsigned char svip_ethaddr[6] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; |
| 54 | |
| 55 | static struct platform_device ltq_mii = { |
| 56 | .name = "ifxmips_mii0", |
| 57 | .dev = { |
| 58 | .platform_data = svip_ethaddr, |
| 59 | }, |
| 60 | }; |
| 61 | |
| 62 | static int __init svip_set_ethaddr(char *str) |
| 63 | { |
| 64 | sscanf(str, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx", |
| 65 | &svip_ethaddr[0], &svip_ethaddr[1], &svip_ethaddr[2], |
| 66 | &svip_ethaddr[3], &svip_ethaddr[4], &svip_ethaddr[5]); |
| 67 | return 0; |
| 68 | } |
| 69 | __setup("ethaddr=", svip_set_ethaddr); |
| 70 | |
| 71 | void __init svip_register_eth(void) |
| 72 | { |
| 73 | if (!is_valid_ether_addr(svip_ethaddr)) |
| 74 | random_ether_addr(svip_ethaddr); |
| 75 | |
| 76 | platform_device_register(<q_mii); |
| 77 | svip_sys1_clk_enable(SYS1_CLKENR_ETHSW); |
| 78 | } |
| 79 | |
| 80 | /* Virtual Ethernet */ |
| 81 | static struct platform_device ltq_ve = { |
| 82 | .name = "ifxmips_svip_ve", |
| 83 | }; |
| 84 | |
| 85 | void __init svip_register_virtual_eth(void) |
| 86 | { |
| 87 | platform_device_register(<q_ve); |
| 88 | } |
| 89 | |
| 90 | /* SPI */ |
| 91 | static void __init ltq_register_ssc(int bus_num, unsigned long base, int irq_rx, |
| 92 | int irq_tx, int irq_err, int irq_frm) |
| 93 | { |
| 94 | struct resource res[] = { |
| 95 | { |
| 96 | .name = "regs", |
| 97 | .start = base, |
| 98 | .end = base + 0x20 - 1, |
| 99 | .flags = IORESOURCE_MEM, |
| 100 | }, { |
| 101 | .name = "rx", |
| 102 | .start = irq_rx, |
| 103 | .flags = IORESOURCE_IRQ, |
| 104 | }, { |
| 105 | .name = "tx", |
| 106 | .start = irq_tx, |
| 107 | .flags = IORESOURCE_IRQ, |
| 108 | }, { |
| 109 | .name = "err", |
| 110 | .start = irq_err, |
| 111 | .flags = IORESOURCE_IRQ, |
| 112 | }, { |
| 113 | .name = "frm", |
| 114 | .start = irq_frm, |
| 115 | .flags = IORESOURCE_IRQ, |
| 116 | }, |
| 117 | }; |
| 118 | |
| 119 | platform_device_register_simple("ifx_ssc", bus_num, res, |
| 120 | ARRAY_SIZE(res)); |
| 121 | } |
| 122 | |
| 123 | static struct spi_board_info bdinfo[] __initdata = { |
| 124 | { |
| 125 | .modalias = "xt16", |
| 126 | .mode = SPI_MODE_3, |
| 127 | .irq = INT_NUM_IM5_IRL0 + 28, |
| 128 | .max_speed_hz = 1000000, |
| 129 | .bus_num = 0, |
| 130 | .chip_select = 1, |
| 131 | }, |
| 132 | { |
| 133 | .modalias = "xt16", |
| 134 | .mode = SPI_MODE_3, |
| 135 | .irq = INT_NUM_IM5_IRL0 + 19, |
| 136 | .max_speed_hz = 1000000, |
| 137 | .bus_num = 0, |
| 138 | .chip_select = 2, |
| 139 | }, |
| 140 | { |
| 141 | .modalias = "loop", |
| 142 | .mode = SPI_MODE_0 | SPI_LOOP, |
| 143 | .irq = -1, |
| 144 | .max_speed_hz = 10000000, |
| 145 | .bus_num = 0, |
| 146 | .chip_select = 3, |
| 147 | }, |
| 148 | }; |
| 149 | |
| 150 | void __init svip_register_spi(void) |
| 151 | { |
| 152 | |
| 153 | ltq_register_ssc(0, LTQ_SSC0_BASE, INT_NUM_IM1_IRL0 + 6, |
| 154 | INT_NUM_IM1_IRL0 + 7, INT_NUM_IM1_IRL0 + 8, |
| 155 | INT_NUM_IM1_IRL0 + 9); |
| 156 | |
| 157 | ltq_register_ssc(1, LTQ_SSC1_BASE, INT_NUM_IM1_IRL0 + 10, |
| 158 | INT_NUM_IM1_IRL0 + 11, INT_NUM_IM1_IRL0 + 12, |
| 159 | INT_NUM_IM1_IRL0 + 13); |
| 160 | |
| 161 | spi_register_board_info(bdinfo, ARRAY_SIZE(bdinfo)); |
| 162 | |
| 163 | svip_sys1_clk_enable(SYS1_CLKENR_SSC0 | SYS1_CLKENR_SSC1); |
| 164 | } |
| 165 | |
| 166 | void __init svip_register_spi_flash(struct spi_board_info *bdinfo) |
| 167 | { |
| 168 | spi_register_board_info(bdinfo, 1); |
| 169 | } |
| 170 | |
| 171 | /* GPIO */ |
| 172 | static struct platform_device ltq_gpio = { |
| 173 | .name = "ifxmips_gpio", |
| 174 | }; |
| 175 | |
| 176 | static struct platform_device ltq_gpiodev = { |
| 177 | .name = "GPIODEV", |
| 178 | }; |
| 179 | |
| 180 | void __init svip_register_gpio(void) |
| 181 | { |
| 182 | platform_device_register(<q_gpio); |
| 183 | platform_device_register(<q_gpiodev); |
| 184 | } |
| 185 | |
| 186 | /* MUX */ |
| 187 | static struct ltq_mux_settings ltq_mux_settings; |
| 188 | |
| 189 | static struct platform_device ltq_mux = { |
| 190 | .name = "ltq_mux", |
| 191 | .dev = { |
| 192 | .platform_data = <q_mux_settings, |
| 193 | } |
| 194 | }; |
| 195 | |
| 196 | void __init svip_register_mux(const struct ltq_mux_pin mux_p0[LTQ_MUX_P0_PINS], |
| 197 | const struct ltq_mux_pin mux_p1[LTQ_MUX_P1_PINS], |
| 198 | const struct ltq_mux_pin mux_p2[LTQ_MUX_P2_PINS], |
| 199 | const struct ltq_mux_pin mux_p3[LTQ_MUX_P3_PINS], |
| 200 | const struct ltq_mux_pin mux_p4[LTQ_MUX_P4_PINS]) |
| 201 | { |
| 202 | ltq_mux_settings.mux_p0 = mux_p0; |
| 203 | ltq_mux_settings.mux_p1 = mux_p1; |
| 204 | ltq_mux_settings.mux_p2 = mux_p2; |
| 205 | ltq_mux_settings.mux_p3 = mux_p3; |
| 206 | ltq_mux_settings.mux_p4 = mux_p4; |
| 207 | |
| 208 | if (mux_p0) |
| 209 | svip_sys1_clk_enable(SYS1_CLKENR_PORT0); |
| 210 | |
| 211 | if (mux_p1) |
| 212 | svip_sys1_clk_enable(SYS1_CLKENR_PORT1); |
| 213 | |
| 214 | if (mux_p2) |
| 215 | svip_sys1_clk_enable(SYS1_CLKENR_PORT2); |
| 216 | |
| 217 | if (mux_p3) |
| 218 | svip_sys1_clk_enable(SYS1_CLKENR_PORT3); |
| 219 | |
| 220 | if (mux_p4) |
| 221 | svip_sys2_clk_enable(SYS2_CLKENR_PORT4); |
| 222 | |
| 223 | platform_device_register(<q_mux); |
| 224 | } |
| 225 | |
| 226 | /* NAND */ |
| 227 | #define NAND_ADDR_REGION_BASE (LTQ_EBU_SEG1_BASE) |
| 228 | #define NAND_CLE_BIT (1 << 3) |
| 229 | #define NAND_ALE_BIT (1 << 2) |
| 230 | |
| 231 | static struct svip_reg_ebu *const ebu = (struct svip_reg_ebu *)LTQ_EBU_BASE; |
| 232 | |
| 233 | static int svip_nand_probe(struct platform_device *pdev) |
| 234 | { |
| 235 | ebu_w32(LTQ_EBU_ADDR_SEL_0_BASE_VAL(CPHYSADDR(NAND_ADDR_REGION_BASE) |
| 236 | >> 12) |
| 237 | | LTQ_EBU_ADDR_SEL_0_MASK_VAL(15) |
| 238 | | LTQ_EBU_ADDR_SEL_0_MRME_VAL(0) |
| 239 | | LTQ_EBU_ADDR_SEL_0_REGEN_VAL(1), |
| 240 | addr_sel_0); |
| 241 | |
| 242 | ebu_w32(LTQ_EBU_CON_0_WRDIS_VAL(0) |
| 243 | | LTQ_EBU_CON_0_ADSWP_VAL(1) |
| 244 | | LTQ_EBU_CON_0_AGEN_VAL(0x00) |
| 245 | | LTQ_EBU_CON_0_SETUP_VAL(1) |
| 246 | | LTQ_EBU_CON_0_WAIT_VAL(0x00) |
| 247 | | LTQ_EBU_CON_0_WINV_VAL(0) |
| 248 | | LTQ_EBU_CON_0_PW_VAL(0x00) |
| 249 | | LTQ_EBU_CON_0_ALEC_VAL(0) |
| 250 | | LTQ_EBU_CON_0_BCGEN_VAL(0x01) |
| 251 | | LTQ_EBU_CON_0_WAITWRC_VAL(1) |
| 252 | | LTQ_EBU_CON_0_WAITRDC_VAL(1) |
| 253 | | LTQ_EBU_CON_0_HOLDC_VAL(1) |
| 254 | | LTQ_EBU_CON_0_RECOVC_VAL(0) |
| 255 | | LTQ_EBU_CON_0_CMULT_VAL(0x01), |
| 256 | con_0); |
| 257 | |
| 258 | /* |
| 259 | * ECC disabled |
| 260 | * CLE, ALE and CS are pulse, all other signal are latches based |
| 261 | * CLE and ALE are active high, PRE, WP, SE and CS/CE are active low |
| 262 | * OUT_CS_S is disabled |
| 263 | * NAND mode is disabled |
| 264 | */ |
| 265 | ebu_w32(LTQ_EBU_NAND_CON_ECC_ON_VAL(0) |
| 266 | | LTQ_EBU_NAND_CON_LAT_EN_VAL(0x38) |
| 267 | | LTQ_EBU_NAND_CON_OUT_CS_S_VAL(0) |
| 268 | | LTQ_EBU_NAND_CON_IN_CS_S_VAL(0) |
| 269 | | LTQ_EBU_NAND_CON_PRE_P_VAL(1) |
| 270 | | LTQ_EBU_NAND_CON_WP_P_VAL(1) |
| 271 | | LTQ_EBU_NAND_CON_SE_P_VAL(1) |
| 272 | | LTQ_EBU_NAND_CON_CS_P_VAL(1) |
| 273 | | LTQ_EBU_NAND_CON_CLE_P_VAL(0) |
| 274 | | LTQ_EBU_NAND_CON_ALE_P_VAL(0) |
| 275 | | LTQ_EBU_NAND_CON_CSMUX_E_VAL(0) |
| 276 | | LTQ_EBU_NAND_CON_NANDMODE_VAL(0), |
| 277 | nand_con); |
| 278 | |
| 279 | return 0; |
| 280 | } |
| 281 | |
| 282 | static void svip_nand_hwcontrol(struct mtd_info *mtd, int cmd, |
| 283 | unsigned int ctrl) |
| 284 | { |
| 285 | struct nand_chip *this = mtd->priv; |
| 286 | |
| 287 | if (ctrl & NAND_CTRL_CHANGE) { |
| 288 | unsigned long adr; |
| 289 | /* Coming here means to change either the enable state or |
| 290 | * the address for controlling ALE or CLE */ |
| 291 | |
| 292 | /* NAND_NCE: Select the chip by setting nCE to low. |
| 293 | * This is done in CON register */ |
| 294 | if (ctrl & NAND_NCE) |
| 295 | ebu_w32_mask(0, LTQ_EBU_NAND_CON_NANDMODE_VAL(1), |
| 296 | nand_con); |
| 297 | else |
| 298 | ebu_w32_mask(LTQ_EBU_NAND_CON_NANDMODE_VAL(1), |
| 299 | 0, nand_con); |
| 300 | |
| 301 | /* The addressing of CLE or ALE is done via different addresses. |
| 302 | We are now changing the address depending on the given action |
| 303 | SVIPs NAND_CLE_BIT = (1 << 3), NAND_CLE = 0x02 |
| 304 | NAND_ALE_BIT = (1 << 2) = NAND_ALE (0x04) */ |
| 305 | adr = (unsigned long)this->IO_ADDR_W; |
| 306 | adr &= ~(NAND_CLE_BIT | NAND_ALE_BIT); |
| 307 | adr |= (ctrl & NAND_CLE) << 2 | (ctrl & NAND_ALE); |
| 308 | this->IO_ADDR_W = (void __iomem *)adr; |
| 309 | } |
| 310 | |
| 311 | if (cmd != NAND_CMD_NONE) |
| 312 | writeb(cmd, this->IO_ADDR_W); |
| 313 | } |
| 314 | |
| 315 | static int svip_nand_ready(struct mtd_info *mtd) |
| 316 | { |
| 317 | return (ebu_r32(nand_wait) & 0x01) == 0x01; |
| 318 | } |
| 319 | |
| 320 | static inline void svip_nand_wait(void) |
| 321 | { |
| 322 | static const int nops = 150; |
| 323 | int i; |
| 324 | |
| 325 | for (i = 0; i < nops; i++) |
| 326 | asm("nop"); |
| 327 | } |
| 328 | |
| 329 | static void svip_nand_write_buf(struct mtd_info *mtd, |
| 330 | const u_char *buf, int len) |
| 331 | { |
| 332 | int i; |
| 333 | struct nand_chip *this = mtd->priv; |
| 334 | |
| 335 | for (i = 0; i < len; i++) { |
| 336 | writeb(buf[i], this->IO_ADDR_W); |
| 337 | svip_nand_wait(); |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | static void svip_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) |
| 342 | { |
| 343 | int i; |
| 344 | struct nand_chip *this = mtd->priv; |
| 345 | |
| 346 | for (i = 0; i < len; i++) { |
| 347 | buf[i] = readb(this->IO_ADDR_R); |
| 348 | svip_nand_wait(); |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | static const char *part_probes[] = { "cmdlinepart", NULL }; |
| 353 | |
| 354 | static struct platform_nand_data svip_flash_nand_data = { |
| 355 | .chip = { |
| 356 | .nr_chips = 1, |
| 357 | .part_probe_types = part_probes, |
| 358 | }, |
| 359 | .ctrl = { |
| 360 | .probe = svip_nand_probe, |
| 361 | .cmd_ctrl = svip_nand_hwcontrol, |
| 362 | .dev_ready = svip_nand_ready, |
| 363 | .write_buf = svip_nand_write_buf, |
| 364 | .read_buf = svip_nand_read_buf, |
| 365 | } |
| 366 | }; |
| 367 | |
| 368 | static struct resource svip_nand_resources[] = { |
| 369 | MEM_RES("nand", LTQ_FLASH_START, LTQ_FLASH_MAX), |
| 370 | }; |
| 371 | |
| 372 | static struct platform_device svip_flash_nand = { |
| 373 | .name = "gen_nand", |
| 374 | .id = -1, |
| 375 | .num_resources = ARRAY_SIZE(svip_nand_resources), |
| 376 | .resource = svip_nand_resources, |
| 377 | .dev = { |
| 378 | .platform_data = &svip_flash_nand_data, |
| 379 | }, |
| 380 | }; |
| 381 | |
| 382 | void __init svip_register_nand(void) |
| 383 | { |
| 384 | platform_device_register(&svip_flash_nand); |
| 385 | } |
| 386 | |