| 1 | /* |
| 2 | ** Copyright (C) 2005 Wu Qi Ming <Qi-Ming.Wu@infineon.com> |
| 3 | ** |
| 4 | ** This program is free software; you can redistribute it and/or modify |
| 5 | ** it under the terms of the GNU General Public License as published by |
| 6 | ** the Free Software Foundation; either version 2 of the License, or |
| 7 | ** (at your option) any later version. |
| 8 | ** |
| 9 | ** This program is distributed in the hope that it will be useful, |
| 10 | ** but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | ** GNU General Public License for more details. |
| 13 | ** |
| 14 | ** You should have received a copy of the GNU General Public License |
| 15 | ** along with this program; if not, write to the Free Software |
| 16 | ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 17 | */ |
| 18 | /* |
| 19 | * Description: |
| 20 | * Driver for SVIP DMA |
| 21 | * Author: Wu Qi Ming[Qi-Ming.Wu@infineon.com] |
| 22 | * Created: 26-September-2005 |
| 23 | */ |
| 24 | |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/init.h> |
| 27 | #include <linux/sched.h> |
| 28 | #include <linux/kernel.h> |
| 29 | #include <linux/slab.h> |
| 30 | #include <linux/string.h> |
| 31 | #include <linux/timer.h> |
| 32 | #include <linux/fs.h> |
| 33 | #include <linux/errno.h> |
| 34 | #include <linux/proc_fs.h> |
| 35 | #include <linux/stat.h> |
| 36 | #include <linux/mm.h> |
| 37 | #include <linux/tty.h> |
| 38 | #include <linux/selection.h> |
| 39 | #include <linux/kmod.h> |
| 40 | #include <linux/vmalloc.h> |
| 41 | #include <linux/interrupt.h> |
| 42 | #include <linux/delay.h> |
| 43 | #include <linux/errno.h> |
| 44 | #include <linux/uaccess.h> |
| 45 | #include <linux/io.h> |
| 46 | #include <linux/semaphore.h> |
| 47 | |
| 48 | #include <base_reg.h> |
| 49 | #include <mps_reg.h> |
| 50 | #include <dma_reg.h> |
| 51 | #include <svip_dma.h> |
| 52 | #include <lantiq_soc.h> |
| 53 | #include <irq.h> |
| 54 | #include <sys1_reg.h> |
| 55 | |
| 56 | static struct svip_reg_sys1 *const sys1 = (struct svip_reg_sys1 *)LTQ_SYS1_BASE; |
| 57 | static struct svip_reg_dma *const dma = (struct svip_reg_dma *)LTQ_DMA_BASE; |
| 58 | static struct svip_reg_mbs *const mbs = (struct svip_reg_mbs *)LTQ_MBS_BASE; |
| 59 | |
| 60 | #define DRV_NAME "ltq_dma" |
| 61 | extern void ltq_mask_and_ack_irq(struct irq_data *data); |
| 62 | extern void ltq_enable_irq(struct irq_data *data); |
| 63 | |
| 64 | static inline void mask_and_ack_irq(unsigned int irq_nr) |
| 65 | { |
| 66 | static int i = 0; |
| 67 | struct irq_data data; |
| 68 | data.irq = irq_nr; |
| 69 | if ((i < 2) && (irq_nr == 137)) { |
| 70 | printk("eth delay hack\n"); |
| 71 | i++; |
| 72 | } |
| 73 | ltq_mask_and_ack_irq(&data); |
| 74 | } |
| 75 | |
| 76 | static inline void svip_enable_irq(unsigned int irq_nr) |
| 77 | { |
| 78 | struct irq_data data; |
| 79 | data.irq = irq_nr; |
| 80 | ltq_enable_irq(&data); |
| 81 | } |
| 82 | |
| 83 | #define DMA_EMSG(fmt, args...) \ |
| 84 | printk(KERN_ERR "%s: " fmt, __func__, ## args) |
| 85 | |
| 86 | static inline void mbs_grab(void) |
| 87 | { |
| 88 | while (mbs_r32(mbsr0) != 0); |
| 89 | } |
| 90 | |
| 91 | static inline void mbs_release(void) |
| 92 | { |
| 93 | mbs_w32(0, mbsr0); |
| 94 | asm("sync"); |
| 95 | } |
| 96 | |
| 97 | /* max ports connecting to dma */ |
| 98 | #define LTQ_MAX_DMA_DEVICE_NUM ARRAY_SIZE(dma_devices) |
| 99 | /* max dma channels */ |
| 100 | #define LTQ_MAX_DMA_CHANNEL_NUM ARRAY_SIZE(dma_chan) |
| 101 | |
| 102 | /* bytes per descriptor */ |
| 103 | #define DMA_DESCR_SIZE 8 |
| 104 | |
| 105 | #define DMA_DESCR_CH_SIZE (DMA_DESCR_NUM * DMA_DESCR_SIZE) |
| 106 | #define DMA_DESCR_TOTAL_SIZE (LTQ_MAX_DMA_CHANNEL_NUM * DMA_DESCR_CH_SIZE) |
| 107 | #define DMA_DESCR_MEM_PAGES ((DMA_DESCR_TOTAL_SIZE / PAGE_SIZE) + \ |
| 108 | (((DMA_DESCR_TOTAL_SIZE % PAGE_SIZE) > 0))) |
| 109 | |
| 110 | /* budget for interrupt handling */ |
| 111 | #define DMA_INT_BUDGET 100 |
| 112 | /* set the correct counter value here! */ |
| 113 | #define DMA_POLL_COUNTER 32 |
| 114 | |
| 115 | struct proc_dir_entry *g_dma_dir; |
| 116 | |
| 117 | /* device_name | max_rx_chan_num | max_tx_chan_num | drop_enable */ |
| 118 | struct dma_device_info dma_devices[] = { |
| 119 | { "SW", 4, 4, 0 }, |
| 120 | { "DEU", 1, 1, 0 }, |
| 121 | { "SSC0", 1, 1, 0 }, |
| 122 | { "SSC1", 1, 1, 0 }, |
| 123 | { "MCTRL", 1, 1, 0 }, |
| 124 | { "PCM0", 1, 1, 0 }, |
| 125 | { "PCM1", 1, 1, 0 }, |
| 126 | { "PCM2", 1, 1, 0 }, |
| 127 | { "PCM3", 1, 1, 0 } |
| 128 | }; |
| 129 | |
| 130 | /* *dma_dev | dir | pri | irq | rel_chan_no */ |
| 131 | struct dma_channel_info dma_chan[] = { |
| 132 | { &dma_devices[0], DIR_RX, 0, INT_NUM_IM4_IRL0 + 0, 0 }, |
| 133 | { &dma_devices[0], DIR_TX, 0, INT_NUM_IM4_IRL0 + 1, 0 }, |
| 134 | { &dma_devices[0], DIR_RX, 1, INT_NUM_IM4_IRL0 + 2, 1 }, |
| 135 | { &dma_devices[0], DIR_TX, 1, INT_NUM_IM4_IRL0 + 3, 1 }, |
| 136 | { &dma_devices[0], DIR_RX, 2, INT_NUM_IM4_IRL0 + 4, 2 }, |
| 137 | { &dma_devices[0], DIR_TX, 2, INT_NUM_IM4_IRL0 + 5, 2 }, |
| 138 | { &dma_devices[0], DIR_RX, 3, INT_NUM_IM4_IRL0 + 6, 3 }, |
| 139 | { &dma_devices[0], DIR_TX, 3, INT_NUM_IM4_IRL0 + 7, 3 }, |
| 140 | { &dma_devices[1], DIR_RX, 0, INT_NUM_IM4_IRL0 + 8, 0 }, |
| 141 | { &dma_devices[1], DIR_TX, 0, INT_NUM_IM4_IRL0 + 9, 0 }, |
| 142 | { &dma_devices[2], DIR_RX, 0, INT_NUM_IM4_IRL0 + 10, 0 }, |
| 143 | { &dma_devices[2], DIR_TX, 0, INT_NUM_IM4_IRL0 + 11, 0 }, |
| 144 | { &dma_devices[3], DIR_RX, 0, INT_NUM_IM4_IRL0 + 12, 0 }, |
| 145 | { &dma_devices[3], DIR_TX, 0, INT_NUM_IM4_IRL0 + 13, 0 }, |
| 146 | { &dma_devices[4], DIR_RX, 0, INT_NUM_IM4_IRL0 + 14, 0 }, |
| 147 | { &dma_devices[4], DIR_TX, 0, INT_NUM_IM4_IRL0 + 15, 0 }, |
| 148 | { &dma_devices[5], DIR_RX, 0, INT_NUM_IM4_IRL0 + 16, 0 }, |
| 149 | { &dma_devices[5], DIR_TX, 0, INT_NUM_IM4_IRL0 + 17, 0 }, |
| 150 | { &dma_devices[6], DIR_RX, 1, INT_NUM_IM3_IRL0 + 18, 0 }, |
| 151 | { &dma_devices[6], DIR_TX, 1, INT_NUM_IM3_IRL0 + 19, 0 }, |
| 152 | { &dma_devices[7], DIR_RX, 2, INT_NUM_IM4_IRL0 + 20, 0 }, |
| 153 | { &dma_devices[7], DIR_TX, 2, INT_NUM_IM4_IRL0 + 21, 0 }, |
| 154 | { &dma_devices[8], DIR_RX, 3, INT_NUM_IM4_IRL0 + 22, 0 }, |
| 155 | { &dma_devices[8], DIR_TX, 3, INT_NUM_IM4_IRL0 + 23, 0 } |
| 156 | }; |
| 157 | |
| 158 | u64 *g_desc_list[DMA_DESCR_MEM_PAGES]; |
| 159 | |
| 160 | volatile u32 g_dma_int_status = 0; |
| 161 | |
| 162 | /* 0 - not in process, 1 - in process */ |
| 163 | volatile int g_dma_in_process; |
| 164 | |
| 165 | int ltq_dma_init(void); |
| 166 | void do_dma_tasklet(unsigned long); |
| 167 | DECLARE_TASKLET(dma_tasklet, do_dma_tasklet, 0); |
| 168 | irqreturn_t dma_interrupt(int irq, void *dev_id); |
| 169 | |
| 170 | u8 *common_buffer_alloc(int len, int *byte_offset, void **opt) |
| 171 | { |
| 172 | u8 *buffer = kmalloc(len * sizeof(u8), GFP_KERNEL); |
| 173 | *byte_offset = 0; |
| 174 | return buffer; |
| 175 | } |
| 176 | |
| 177 | void common_buffer_free(u8 *dataptr, void *opt) |
| 178 | { |
| 179 | kfree(dataptr); |
| 180 | } |
| 181 | |
| 182 | void enable_ch_irq(struct dma_channel_info *ch) |
| 183 | { |
| 184 | int chan_no = (int)(ch - dma_chan); |
| 185 | unsigned long flag; |
| 186 | u32 val; |
| 187 | |
| 188 | if (ch->dir == DIR_RX) |
| 189 | val = DMA_CIE_DESCPT | DMA_CIE_DUR; |
| 190 | else |
| 191 | val = DMA_CIE_DESCPT; |
| 192 | |
| 193 | local_irq_save(flag); |
| 194 | mbs_grab(); |
| 195 | dma_w32(chan_no, cs); |
| 196 | dma_w32(val, cie); |
| 197 | dma_w32_mask(0, 1 << chan_no, irnen); |
| 198 | mbs_release(); |
| 199 | local_irq_restore(flag); |
| 200 | |
| 201 | svip_enable_irq(ch->irq); |
| 202 | } |
| 203 | |
| 204 | void disable_ch_irq(struct dma_channel_info *ch) |
| 205 | { |
| 206 | unsigned long flag; |
| 207 | int chan_no = (int)(ch - dma_chan); |
| 208 | |
| 209 | local_irq_save(flag); |
| 210 | g_dma_int_status &= ~(1 << chan_no); |
| 211 | mbs_grab(); |
| 212 | dma_w32(chan_no, cs); |
| 213 | dma_w32(0, cie); |
| 214 | mbs_release(); |
| 215 | dma_w32_mask(1 << chan_no, 0, irnen); |
| 216 | local_irq_restore(flag); |
| 217 | |
| 218 | mask_and_ack_irq(ch->irq); |
| 219 | } |
| 220 | |
| 221 | int open_chan(struct dma_channel_info *ch) |
| 222 | { |
| 223 | unsigned long flag; |
| 224 | int j; |
| 225 | int chan_no = (int)(ch - dma_chan); |
| 226 | u8 *buffer; |
| 227 | int byte_offset; |
| 228 | struct rx_desc *rx_desc_p; |
| 229 | struct tx_desc *tx_desc_p; |
| 230 | |
| 231 | if (ch->control == LTQ_DMA_CH_ON) |
| 232 | return -1; |
| 233 | |
| 234 | if (ch->dir == DIR_RX) { |
| 235 | for (j = 0; j < ch->desc_len; j++) { |
| 236 | rx_desc_p = (struct rx_desc *)ch->desc_base+j; |
| 237 | buffer = ch->dma_dev->buffer_alloc(ch->packet_size, |
| 238 | &byte_offset, |
| 239 | (void *)&ch->opt[j]); |
| 240 | if (!buffer) |
| 241 | return -ENOBUFS; |
| 242 | |
| 243 | rx_desc_p->data_pointer = (u32)CPHYSADDR((u32)buffer); |
| 244 | rx_desc_p->status.word = 0; |
| 245 | rx_desc_p->status.field.byte_offset = byte_offset; |
| 246 | rx_desc_p->status.field.data_length = ch->packet_size; |
| 247 | rx_desc_p->status.field.own = DMA_OWN; |
| 248 | } |
| 249 | } else { |
| 250 | for (j = 0; j < ch->desc_len; j++) { |
| 251 | tx_desc_p = (struct tx_desc *)ch->desc_base + j; |
| 252 | tx_desc_p->data_pointer = 0; |
| 253 | tx_desc_p->status.word = 0; |
| 254 | } |
| 255 | } |
| 256 | ch->xfer_cnt = 0; |
| 257 | |
| 258 | local_irq_save(flag); |
| 259 | mbs_grab(); |
| 260 | dma_w32(chan_no, cs); |
| 261 | dma_w32(ch->desc_len, cdlen); |
| 262 | dma_w32(0x7e, cis); |
| 263 | dma_w32(DMA_CCTRL_TXWGT_VAL(ch->tx_weight) |
| 264 | | DMA_CCTRL_CLASS_VAL(ch->pri) |
| 265 | | (ch->dir == DIR_RX ? DMA_CCTRL_ON_OFF : 0), cctrl); |
| 266 | mbs_release(); |
| 267 | ch->control = LTQ_DMA_CH_ON; |
| 268 | local_irq_restore(flag); |
| 269 | |
| 270 | if (request_irq(ch->irq, dma_interrupt, |
| 271 | IRQF_DISABLED, "dma-core", (void *)ch) != 0) { |
| 272 | printk(KERN_ERR "error, cannot get dma_irq!\n"); |
| 273 | return -EFAULT; |
| 274 | } |
| 275 | |
| 276 | enable_ch_irq(ch); |
| 277 | return 0; |
| 278 | } |
| 279 | |
| 280 | int close_chan(struct dma_channel_info *ch) |
| 281 | { |
| 282 | unsigned long flag; |
| 283 | int j; |
| 284 | int chan_no = (int)(ch - dma_chan); |
| 285 | struct rx_desc *desc_p; |
| 286 | |
| 287 | if (ch->control == LTQ_DMA_CH_OFF) |
| 288 | return -1; |
| 289 | |
| 290 | local_irq_save(flag); |
| 291 | mbs_grab(); |
| 292 | dma_w32(chan_no, cs); |
| 293 | dma_w32_mask(DMA_CCTRL_ON_OFF, 0, cctrl); |
| 294 | mbs_release(); |
| 295 | disable_ch_irq(ch); |
| 296 | free_irq(ch->irq, (void *)ch); |
| 297 | ch->control = LTQ_DMA_CH_OFF; |
| 298 | local_irq_restore(flag); |
| 299 | |
| 300 | /* free descriptors in use */ |
| 301 | for (j = 0; j < ch->desc_len; j++) { |
| 302 | desc_p = (struct rx_desc *)ch->desc_base+j; |
| 303 | if ((desc_p->status.field.own == CPU_OWN && |
| 304 | desc_p->status.field.c) || |
| 305 | (desc_p->status.field.own == DMA_OWN)) { |
| 306 | if (desc_p->data_pointer) { |
| 307 | ch->dma_dev->buffer_free((u8 *)__va(desc_p->data_pointer), |
| 308 | (void *)ch->opt[j]); |
| 309 | desc_p->data_pointer = (u32)NULL; |
| 310 | } |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | return 0; |
| 315 | } |
| 316 | |
| 317 | int reset_chan(struct dma_channel_info *ch) |
| 318 | { |
| 319 | unsigned long flag; |
| 320 | int val; |
| 321 | int chan_no = (int)(ch - dma_chan); |
| 322 | |
| 323 | close_chan(ch); |
| 324 | |
| 325 | local_irq_save(flag); |
| 326 | mbs_grab(); |
| 327 | dma_w32(chan_no, cs); |
| 328 | dma_w32_mask(0, DMA_CCTRL_RST, cctrl); |
| 329 | mbs_release(); |
| 330 | local_irq_restore(flag); |
| 331 | |
| 332 | do { |
| 333 | local_irq_save(flag); |
| 334 | mbs_grab(); |
| 335 | dma_w32(chan_no, cs); |
| 336 | val = dma_r32(cctrl); |
| 337 | mbs_release(); |
| 338 | local_irq_restore(flag); |
| 339 | } while (val & DMA_CCTRL_RST); |
| 340 | |
| 341 | return 0; |
| 342 | } |
| 343 | |
| 344 | static inline void rx_chan_intr_handler(int chan_no) |
| 345 | { |
| 346 | struct dma_device_info *dma_dev = (struct dma_device_info *) |
| 347 | dma_chan[chan_no].dma_dev; |
| 348 | struct dma_channel_info *ch = &dma_chan[chan_no]; |
| 349 | struct rx_desc *rx_desc_p; |
| 350 | unsigned long flag; |
| 351 | u32 val; |
| 352 | |
| 353 | local_irq_save(flag); |
| 354 | mbs_grab(); |
| 355 | dma_w32(chan_no, cs); |
| 356 | val = dma_r32(cis); |
| 357 | dma_w32(DMA_CIS_DESCPT, cis); |
| 358 | mbs_release(); |
| 359 | |
| 360 | /* handle command complete interrupt */ |
| 361 | rx_desc_p = (struct rx_desc *)ch->desc_base + ch->curr_desc; |
| 362 | if ((rx_desc_p->status.word & (DMA_DESC_OWN_DMA | DMA_DESC_CPT_SET)) == |
| 363 | DMA_DESC_CPT_SET) { |
| 364 | local_irq_restore(flag); |
| 365 | /* Every thing is correct, then we inform the upper layer */ |
| 366 | dma_dev->current_rx_chan = ch->rel_chan_no; |
| 367 | if (dma_dev->intr_handler) |
| 368 | dma_dev->intr_handler(dma_dev, RCV_INT); |
| 369 | ch->weight--; |
| 370 | } else { |
| 371 | g_dma_int_status &= ~(1 << chan_no); |
| 372 | local_irq_restore(flag); |
| 373 | svip_enable_irq(dma_chan[chan_no].irq); |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | static inline void tx_chan_intr_handler(int chan_no) |
| 378 | { |
| 379 | struct dma_device_info *dma_dev = (struct dma_device_info *) |
| 380 | dma_chan[chan_no].dma_dev; |
| 381 | struct dma_channel_info *ch = &dma_chan[chan_no]; |
| 382 | struct tx_desc *tx_desc_p; |
| 383 | unsigned long flag; |
| 384 | |
| 385 | local_irq_save(flag); |
| 386 | mbs_grab(); |
| 387 | dma_w32(chan_no, cs); |
| 388 | dma_w32(DMA_CIS_DESCPT, cis); |
| 389 | mbs_release(); |
| 390 | |
| 391 | tx_desc_p = (struct tx_desc *)ch->desc_base+ch->prev_desc; |
| 392 | if ((tx_desc_p->status.word & (DMA_DESC_OWN_DMA | DMA_DESC_CPT_SET)) == |
| 393 | DMA_DESC_CPT_SET) { |
| 394 | local_irq_restore(flag); |
| 395 | |
| 396 | dma_dev->buffer_free((u8 *)__va(tx_desc_p->data_pointer), |
| 397 | ch->opt[ch->prev_desc]); |
| 398 | memset(tx_desc_p, 0, sizeof(struct tx_desc)); |
| 399 | dma_dev->current_tx_chan = ch->rel_chan_no; |
| 400 | if (dma_dev->intr_handler) |
| 401 | dma_dev->intr_handler(dma_dev, TRANSMIT_CPT_INT); |
| 402 | ch->weight--; |
| 403 | |
| 404 | ch->prev_desc = (ch->prev_desc + 1) % (ch->desc_len); |
| 405 | } else { |
| 406 | g_dma_int_status &= ~(1 << chan_no); |
| 407 | local_irq_restore(flag); |
| 408 | svip_enable_irq(dma_chan[chan_no].irq); |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | void do_dma_tasklet(unsigned long unused) |
| 413 | { |
| 414 | int i; |
| 415 | int chan_no = 0; |
| 416 | int budget = DMA_INT_BUDGET; |
| 417 | int weight = 0; |
| 418 | unsigned long flag; |
| 419 | |
| 420 | while (g_dma_int_status) { |
| 421 | if (budget-- < 0) { |
| 422 | tasklet_schedule(&dma_tasklet); |
| 423 | return; |
| 424 | } |
| 425 | chan_no = -1; |
| 426 | weight = 0; |
| 427 | /* WFQ algorithm to select the channel */ |
| 428 | for (i = 0; i < LTQ_MAX_DMA_CHANNEL_NUM; i++) { |
| 429 | if (g_dma_int_status & (1 << i) && |
| 430 | dma_chan[i].weight > 0) { |
| 431 | if (dma_chan[i].weight > weight) { |
| 432 | chan_no = i; |
| 433 | weight = dma_chan[chan_no].weight; |
| 434 | } |
| 435 | } |
| 436 | } |
| 437 | if (chan_no >= 0) { |
| 438 | if (dma_chan[chan_no].dir == DIR_RX) |
| 439 | rx_chan_intr_handler(chan_no); |
| 440 | else |
| 441 | tx_chan_intr_handler(chan_no); |
| 442 | } else { |
| 443 | /* reset all the channels */ |
| 444 | for (i = 0; i < LTQ_MAX_DMA_CHANNEL_NUM; i++) |
| 445 | dma_chan[i].weight = dma_chan[i].default_weight; |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | local_irq_save(flag); |
| 450 | g_dma_in_process = 0; |
| 451 | if (g_dma_int_status) { |
| 452 | g_dma_in_process = 1; |
| 453 | tasklet_schedule(&dma_tasklet); |
| 454 | } |
| 455 | local_irq_restore(flag); |
| 456 | } |
| 457 | |
| 458 | irqreturn_t dma_interrupt(int irq, void *dev_id) |
| 459 | { |
| 460 | struct dma_channel_info *ch; |
| 461 | int chan_no = 0; |
| 462 | |
| 463 | ch = (struct dma_channel_info *)dev_id; |
| 464 | chan_no = (int)(ch - dma_chan); |
| 465 | |
| 466 | if ((unsigned)chan_no >= LTQ_MAX_DMA_CHANNEL_NUM) { |
| 467 | printk(KERN_ERR "error: dma_interrupt irq=%d chan_no=%d\n", |
| 468 | irq, chan_no); |
| 469 | } |
| 470 | |
| 471 | g_dma_int_status |= 1 << chan_no; |
| 472 | dma_w32(1 << chan_no, irncr); |
| 473 | mask_and_ack_irq(irq); |
| 474 | |
| 475 | if (!g_dma_in_process) { |
| 476 | g_dma_in_process = 1; |
| 477 | tasklet_schedule(&dma_tasklet); |
| 478 | } |
| 479 | |
| 480 | return IRQ_RETVAL(1); |
| 481 | } |
| 482 | |
| 483 | struct dma_device_info *dma_device_reserve(char *dev_name) |
| 484 | { |
| 485 | int i; |
| 486 | |
| 487 | ltq_dma_init(); |
| 488 | for (i = 0; i < LTQ_MAX_DMA_DEVICE_NUM; i++) { |
| 489 | if (strcmp(dev_name, dma_devices[i].device_name) == 0) { |
| 490 | if (dma_devices[i].reserved) |
| 491 | return NULL; |
| 492 | dma_devices[i].reserved = 1; |
| 493 | break; |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | if (i == LTQ_MAX_DMA_DEVICE_NUM) |
| 498 | return NULL; |
| 499 | |
| 500 | return &dma_devices[i]; |
| 501 | } |
| 502 | EXPORT_SYMBOL(dma_device_reserve); |
| 503 | |
| 504 | int dma_device_release(struct dma_device_info *dma_dev) |
| 505 | { |
| 506 | dma_dev->reserved = 0; |
| 507 | |
| 508 | return 0; |
| 509 | } |
| 510 | EXPORT_SYMBOL(dma_device_release); |
| 511 | |
| 512 | int dma_device_register(struct dma_device_info *dma_dev) |
| 513 | { |
| 514 | int port_no = (int)(dma_dev - dma_devices); |
| 515 | int txbl, rxbl; |
| 516 | unsigned long flag; |
| 517 | |
| 518 | switch (dma_dev->tx_burst_len) { |
| 519 | case 8: |
| 520 | txbl = 3; |
| 521 | break; |
| 522 | case 4: |
| 523 | txbl = 2; |
| 524 | break; |
| 525 | default: |
| 526 | txbl = 1; |
| 527 | break; |
| 528 | } |
| 529 | |
| 530 | switch (dma_dev->rx_burst_len) { |
| 531 | case 8: |
| 532 | rxbl = 3; |
| 533 | break; |
| 534 | case 4: |
| 535 | rxbl = 2; |
| 536 | break; |
| 537 | default: |
| 538 | rxbl = 1; |
| 539 | } |
| 540 | |
| 541 | local_irq_save(flag); |
| 542 | mbs_grab(); |
| 543 | dma_w32(port_no, ps); |
| 544 | dma_w32(DMA_PCTRL_TXWGT_VAL(dma_dev->tx_weight) |
| 545 | | DMA_PCTRL_TXENDI_VAL(dma_dev->tx_endianness_mode) |
| 546 | | DMA_PCTRL_RXENDI_VAL(dma_dev->rx_endianness_mode) |
| 547 | | DMA_PCTRL_PDEN_VAL(dma_dev->drop_enable) |
| 548 | | DMA_PCTRL_TXBL_VAL(txbl) |
| 549 | | DMA_PCTRL_RXBL_VAL(rxbl), pctrl); |
| 550 | mbs_release(); |
| 551 | local_irq_restore(flag); |
| 552 | |
| 553 | return 0; |
| 554 | } |
| 555 | EXPORT_SYMBOL(dma_device_register); |
| 556 | |
| 557 | int dma_device_unregister(struct dma_device_info *dma_dev) |
| 558 | { |
| 559 | int i; |
| 560 | int port_no = (int)(dma_dev - dma_devices); |
| 561 | unsigned long flag; |
| 562 | |
| 563 | /* flush memcopy module; has no effect for other ports */ |
| 564 | local_irq_save(flag); |
| 565 | mbs_grab(); |
| 566 | dma_w32(port_no, ps); |
| 567 | dma_w32_mask(0, DMA_PCTRL_GPC, pctrl); |
| 568 | mbs_release(); |
| 569 | local_irq_restore(flag); |
| 570 | |
| 571 | for (i = 0; i < dma_dev->max_tx_chan_num; i++) |
| 572 | reset_chan(dma_dev->tx_chan[i]); |
| 573 | |
| 574 | for (i = 0; i < dma_dev->max_rx_chan_num; i++) |
| 575 | reset_chan(dma_dev->rx_chan[i]); |
| 576 | |
| 577 | return 0; |
| 578 | } |
| 579 | EXPORT_SYMBOL(dma_device_unregister); |
| 580 | |
| 581 | /** |
| 582 | * Read Packet from DMA Rx channel. |
| 583 | * The function gets the data from the current rx descriptor assigned |
| 584 | * to the passed DMA device and passes it back to the caller. |
| 585 | * The function is called in the context of DMA interrupt. |
| 586 | * In detail the following actions are done: |
| 587 | * - get current receive descriptor |
| 588 | * - allocate memory via allocation callback function |
| 589 | * - pass data from descriptor to allocated memory |
| 590 | * - update channel weight |
| 591 | * - release descriptor |
| 592 | * - update current descriptor position |
| 593 | * |
| 594 | * \param *dma_dev - pointer to DMA device structure |
| 595 | * \param **dataptr - pointer to received data |
| 596 | * \param **opt |
| 597 | * \return packet length - length of received data |
| 598 | * \ingroup Internal |
| 599 | */ |
| 600 | int dma_device_read(struct dma_device_info *dma_dev, u8 **dataptr, void **opt) |
| 601 | { |
| 602 | u8 *buf; |
| 603 | int len; |
| 604 | int byte_offset = 0; |
| 605 | void *p = NULL; |
| 606 | |
| 607 | struct dma_channel_info *ch = |
| 608 | dma_dev->rx_chan[dma_dev->current_rx_chan]; |
| 609 | |
| 610 | struct rx_desc *rx_desc_p; |
| 611 | |
| 612 | /* get the rx data first */ |
| 613 | rx_desc_p = (struct rx_desc *)ch->desc_base+ch->curr_desc; |
| 614 | buf = (u8 *)__va(rx_desc_p->data_pointer); |
| 615 | *(u32 *)dataptr = (u32)buf; |
| 616 | len = rx_desc_p->status.field.data_length; |
| 617 | #ifndef CONFIG_MIPS_UNCACHED |
| 618 | dma_cache_inv((unsigned long)buf, len); |
| 619 | #endif |
| 620 | if (opt) |
| 621 | *(int *)opt = (int)ch->opt[ch->curr_desc]; |
| 622 | |
| 623 | /* replace with a new allocated buffer */ |
| 624 | buf = dma_dev->buffer_alloc(ch->packet_size, &byte_offset, &p); |
| 625 | if (buf) { |
| 626 | ch->opt[ch->curr_desc] = p; |
| 627 | |
| 628 | wmb(); |
| 629 | rx_desc_p->data_pointer = (u32)CPHYSADDR((u32)buf); |
| 630 | rx_desc_p->status.word = (DMA_OWN << 31) \ |
| 631 | |(byte_offset << 23) \ |
| 632 | | ch->packet_size; |
| 633 | |
| 634 | wmb(); |
| 635 | } else { |
| 636 | *(u32 *)dataptr = 0; |
| 637 | if (opt) |
| 638 | *(int *)opt = 0; |
| 639 | } |
| 640 | |
| 641 | ch->xfer_cnt++; |
| 642 | /* increase the curr_desc pointer */ |
| 643 | ch->curr_desc++; |
| 644 | if (ch->curr_desc == ch->desc_len) |
| 645 | ch->curr_desc = 0; |
| 646 | /* return the length of the received packet */ |
| 647 | return len; |
| 648 | } |
| 649 | EXPORT_SYMBOL(dma_device_read); |
| 650 | |
| 651 | /** |
| 652 | * Write Packet through DMA Tx channel to peripheral. |
| 653 | * |
| 654 | * \param *dma_dev - pointer to DMA device structure |
| 655 | * \param *dataptr - pointer to data to be sent |
| 656 | * \param len - amount of data bytes to be sent |
| 657 | * \param *opt |
| 658 | * \return len - length of transmitted data |
| 659 | * \ingroup Internal |
| 660 | */ |
| 661 | int dma_device_write(struct dma_device_info *dma_dev, u8 *dataptr, int len, |
| 662 | void *opt) |
| 663 | { |
| 664 | unsigned long flag; |
| 665 | u32 byte_offset; |
| 666 | struct dma_channel_info *ch; |
| 667 | int chan_no; |
| 668 | struct tx_desc *tx_desc_p; |
| 669 | local_irq_save(flag); |
| 670 | |
| 671 | ch = dma_dev->tx_chan[dma_dev->current_tx_chan]; |
| 672 | chan_no = (int)(ch - dma_chan); |
| 673 | |
| 674 | if (ch->control == LTQ_DMA_CH_OFF) { |
| 675 | local_irq_restore(flag); |
| 676 | printk(KERN_ERR "%s: dma channel %d not enabled!\n", |
| 677 | __func__, chan_no); |
| 678 | return 0; |
| 679 | } |
| 680 | |
| 681 | tx_desc_p = (struct tx_desc *)ch->desc_base+ch->curr_desc; |
| 682 | /* Check whether this descriptor is available */ |
| 683 | if (tx_desc_p->status.word & (DMA_DESC_OWN_DMA | DMA_DESC_CPT_SET)) { |
| 684 | /* if not , the tell the upper layer device */ |
| 685 | dma_dev->intr_handler(dma_dev, TX_BUF_FULL_INT); |
| 686 | local_irq_restore(flag); |
| 687 | return 0; |
| 688 | } |
| 689 | ch->opt[ch->curr_desc] = opt; |
| 690 | /* byte offset----to adjust the starting address of the data buffer, |
| 691 | * should be multiple of the burst length.*/ |
| 692 | byte_offset = ((u32)CPHYSADDR((u32)dataptr)) % |
| 693 | (dma_dev->tx_burst_len * 4); |
| 694 | #ifndef CONFIG_MIPS_UNCACHED |
| 695 | dma_cache_wback((unsigned long)dataptr, len); |
| 696 | wmb(); |
| 697 | #endif |
| 698 | tx_desc_p->data_pointer = (u32)CPHYSADDR((u32)dataptr) - byte_offset; |
| 699 | wmb(); |
| 700 | tx_desc_p->status.word = (DMA_OWN << 31) |
| 701 | | DMA_DESC_SOP_SET |
| 702 | | DMA_DESC_EOP_SET |
| 703 | | (byte_offset << 23) |
| 704 | | len; |
| 705 | wmb(); |
| 706 | |
| 707 | if (ch->xfer_cnt == 0) { |
| 708 | mbs_grab(); |
| 709 | dma_w32(chan_no, cs); |
| 710 | dma_w32_mask(0, DMA_CCTRL_ON_OFF, cctrl); |
| 711 | mbs_release(); |
| 712 | } |
| 713 | |
| 714 | ch->xfer_cnt++; |
| 715 | ch->curr_desc++; |
| 716 | if (ch->curr_desc == ch->desc_len) |
| 717 | ch->curr_desc = 0; |
| 718 | |
| 719 | local_irq_restore(flag); |
| 720 | return len; |
| 721 | } |
| 722 | EXPORT_SYMBOL(dma_device_write); |
| 723 | |
| 724 | /** |
| 725 | * Display descriptor list via proc file |
| 726 | * |
| 727 | * \param chan_no - logical channel number |
| 728 | * \ingroup Internal |
| 729 | */ |
| 730 | int desc_list_proc_read(char *buf, char **start, off_t offset, |
| 731 | int count, int *eof, void *data) |
| 732 | { |
| 733 | int len = 0; |
| 734 | int i; |
| 735 | static int chan_no; |
| 736 | u32 *p; |
| 737 | |
| 738 | if ((chan_no == 0) && (offset > count)) { |
| 739 | *eof = 1; |
| 740 | return 0; |
| 741 | } |
| 742 | |
| 743 | if (chan_no != 0) { |
| 744 | *start = buf; |
| 745 | } else { |
| 746 | buf = buf + offset; |
| 747 | *start = buf; |
| 748 | } |
| 749 | |
| 750 | p = (u32 *)dma_chan[chan_no].desc_base; |
| 751 | |
| 752 | if (dma_chan[chan_no].dir == DIR_RX) |
| 753 | len += sprintf(buf + len, |
| 754 | "channel %d %s Rx descriptor list:\n", |
| 755 | chan_no, dma_chan[chan_no].dma_dev->device_name); |
| 756 | else |
| 757 | len += sprintf(buf + len, |
| 758 | "channel %d %s Tx descriptor list:\n", |
| 759 | chan_no, dma_chan[chan_no].dma_dev->device_name); |
| 760 | len += sprintf(buf + len, |
| 761 | " no address data pointer command bits " |
| 762 | "(Own, Complete, SoP, EoP, Offset) \n"); |
| 763 | len += sprintf(buf + len, |
| 764 | "----------------------------------------------" |
| 765 | "-----------------------------------\n"); |
| 766 | for (i = 0; i < dma_chan[chan_no].desc_len; i++) { |
| 767 | len += sprintf(buf + len, "%3d ", i); |
| 768 | len += sprintf(buf + len, "0x%08x ", (u32)(p + (i * 2))); |
| 769 | len += sprintf(buf + len, "%08x ", *(p + (i * 2 + 1))); |
| 770 | len += sprintf(buf + len, "%08x ", *(p + (i * 2))); |
| 771 | |
| 772 | if (*(p + (i * 2)) & 0x80000000) |
| 773 | len += sprintf(buf + len, "D "); |
| 774 | else |
| 775 | len += sprintf(buf + len, "C "); |
| 776 | if (*(p + (i * 2)) & 0x40000000) |
| 777 | len += sprintf(buf + len, "C "); |
| 778 | else |
| 779 | len += sprintf(buf + len, "c "); |
| 780 | if (*(p + (i * 2)) & 0x20000000) |
| 781 | len += sprintf(buf + len, "S "); |
| 782 | else |
| 783 | len += sprintf(buf + len, "s "); |
| 784 | if (*(p + (i * 2)) & 0x10000000) |
| 785 | len += sprintf(buf + len, "E "); |
| 786 | else |
| 787 | len += sprintf(buf + len, "e "); |
| 788 | |
| 789 | /* byte offset is different for rx and tx descriptors*/ |
| 790 | if (dma_chan[chan_no].dir == DIR_RX) { |
| 791 | len += sprintf(buf + len, "%01x ", |
| 792 | (*(p + (i * 2)) & 0x01800000) >> 23); |
| 793 | } else { |
| 794 | len += sprintf(buf + len, "%02x ", |
| 795 | (*(p + (i * 2)) & 0x0F800000) >> 23); |
| 796 | } |
| 797 | |
| 798 | if (dma_chan[chan_no].curr_desc == i) |
| 799 | len += sprintf(buf + len, "<- CURR"); |
| 800 | |
| 801 | if (dma_chan[chan_no].prev_desc == i) |
| 802 | len += sprintf(buf + len, "<- PREV"); |
| 803 | |
| 804 | len += sprintf(buf + len, "\n"); |
| 805 | |
| 806 | } |
| 807 | |
| 808 | len += sprintf(buf + len, "\n"); |
| 809 | chan_no++; |
| 810 | if (chan_no > LTQ_MAX_DMA_CHANNEL_NUM - 1) |
| 811 | chan_no = 0; |
| 812 | |
| 813 | *eof = 1; |
| 814 | return len; |
| 815 | } |
| 816 | |
| 817 | /** |
| 818 | * Displays the weight of all DMA channels via proc file |
| 819 | * |
| 820 | * |
| 821 | * |
| 822 | * \param *buf |
| 823 | * \param **start |
| 824 | * \param offset |
| 825 | * \param count |
| 826 | * \param *eof |
| 827 | * \param *data |
| 828 | * \return len - amount of bytes written to file |
| 829 | */ |
| 830 | int channel_weight_proc_read(char *buf, char **start, off_t offset, |
| 831 | int count, int *eof, void *data) |
| 832 | { |
| 833 | int i; |
| 834 | int len = 0; |
| 835 | len += sprintf(buf + len, "Qos dma channel weight list\n"); |
| 836 | len += sprintf(buf + len, "channel_num default_weight " |
| 837 | "current_weight device Tx/Rx\n"); |
| 838 | len += sprintf(buf + len, "---------------------------" |
| 839 | "---------------------------------\n"); |
| 840 | for (i = 0; i < LTQ_MAX_DMA_CHANNEL_NUM; i++) { |
| 841 | struct dma_channel_info *ch = &dma_chan[i]; |
| 842 | |
| 843 | if (ch->dir == DIR_RX) { |
| 844 | len += sprintf(buf + len, |
| 845 | " %2d %08x " |
| 846 | "%08x %10s Rx\n", |
| 847 | i, ch->default_weight, ch->weight, |
| 848 | ch->dma_dev->device_name); |
| 849 | } else { |
| 850 | len += sprintf(buf + len, |
| 851 | " %2d %08x " |
| 852 | "%08x %10s Tx\n", |
| 853 | i, ch->default_weight, ch->weight, |
| 854 | ch->dma_dev->device_name); |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | return len; |
| 859 | } |
| 860 | |
| 861 | /** |
| 862 | * Provides DMA Register Content to proc file |
| 863 | * This function reads the content of general DMA Registers, DMA Channel |
| 864 | * Registers and DMA Port Registers and performs a structures output to the |
| 865 | * DMA proc file |
| 866 | * |
| 867 | * \param *buf |
| 868 | * \param **start |
| 869 | * \param offset |
| 870 | * \param count |
| 871 | * \param *eof |
| 872 | * \param *data |
| 873 | * \return len - amount of bytes written to file |
| 874 | */ |
| 875 | int dma_register_proc_read(char *buf, char **start, off_t offset, |
| 876 | int count, int *eof, void *data) |
| 877 | { |
| 878 | int len = 0; |
| 879 | int i; |
| 880 | int limit = count; |
| 881 | unsigned long flags; |
| 882 | static int blockcount; |
| 883 | static int channel_no; |
| 884 | |
| 885 | if ((blockcount == 0) && (offset > count)) { |
| 886 | *eof = 1; |
| 887 | return 0; |
| 888 | } |
| 889 | |
| 890 | switch (blockcount) { |
| 891 | case 0: |
| 892 | len += sprintf(buf + len, "\nGeneral DMA Registers\n"); |
| 893 | len += sprintf(buf + len, "-------------------------" |
| 894 | "----------------\n"); |
| 895 | len += sprintf(buf + len, "CLC= %08x\n", dma_r32(clc)); |
| 896 | len += sprintf(buf + len, "ID= %08x\n", dma_r32(id)); |
| 897 | len += sprintf(buf + len, "DMA_CPOLL= %08x\n", dma_r32(cpoll)); |
| 898 | len += sprintf(buf + len, "DMA_CS= %08x\n", dma_r32(cs)); |
| 899 | len += sprintf(buf + len, "DMA_PS= %08x\n", dma_r32(ps)); |
| 900 | len += sprintf(buf + len, "DMA_IRNEN= %08x\n", dma_r32(irnen)); |
| 901 | len += sprintf(buf + len, "DMA_IRNCR= %08x\n", dma_r32(irncr)); |
| 902 | len += sprintf(buf + len, "DMA_IRNICR= %08x\n", |
| 903 | dma_r32(irnicr)); |
| 904 | len += sprintf(buf + len, "\nDMA Channel Registers\n"); |
| 905 | blockcount = 1; |
| 906 | return len; |
| 907 | break; |
| 908 | case 1: |
| 909 | /* If we had an overflow start at beginning of buffer |
| 910 | * otherwise use offset */ |
| 911 | if (channel_no != 0) { |
| 912 | *start = buf; |
| 913 | } else { |
| 914 | buf = buf + offset; |
| 915 | *start = buf; |
| 916 | } |
| 917 | |
| 918 | local_irq_save(flags); |
| 919 | for (i = channel_no; i < LTQ_MAX_DMA_CHANNEL_NUM; i++) { |
| 920 | struct dma_channel_info *ch = &dma_chan[i]; |
| 921 | |
| 922 | if (len + 300 > limit) { |
| 923 | local_irq_restore(flags); |
| 924 | channel_no = i; |
| 925 | blockcount = 1; |
| 926 | return len; |
| 927 | } |
| 928 | len += sprintf(buf + len, "----------------------" |
| 929 | "-------------------\n"); |
| 930 | if (ch->dir == DIR_RX) { |
| 931 | len += sprintf(buf + len, |
| 932 | "Channel %d - Device %s Rx\n", |
| 933 | i, ch->dma_dev->device_name); |
| 934 | } else { |
| 935 | len += sprintf(buf + len, |
| 936 | "Channel %d - Device %s Tx\n", |
| 937 | i, ch->dma_dev->device_name); |
| 938 | } |
| 939 | dma_w32(i, cs); |
| 940 | len += sprintf(buf + len, "DMA_CCTRL= %08x\n", |
| 941 | dma_r32(cctrl)); |
| 942 | len += sprintf(buf + len, "DMA_CDBA= %08x\n", |
| 943 | dma_r32(cdba)); |
| 944 | len += sprintf(buf + len, "DMA_CIE= %08x\n", |
| 945 | dma_r32(cie)); |
| 946 | len += sprintf(buf + len, "DMA_CIS= %08x\n", |
| 947 | dma_r32(cis)); |
| 948 | len += sprintf(buf + len, "DMA_CDLEN= %08x\n", |
| 949 | dma_r32(cdlen)); |
| 950 | } |
| 951 | local_irq_restore(flags); |
| 952 | blockcount = 2; |
| 953 | channel_no = 0; |
| 954 | return len; |
| 955 | break; |
| 956 | case 2: |
| 957 | *start = buf; |
| 958 | /* |
| 959 | * display port dependent registers |
| 960 | */ |
| 961 | len += sprintf(buf + len, "\nDMA Port Registers\n"); |
| 962 | len += sprintf(buf + len, |
| 963 | "-----------------------------------------\n"); |
| 964 | local_irq_save(flags); |
| 965 | for (i = 0; i < LTQ_MAX_DMA_DEVICE_NUM; i++) { |
| 966 | dma_w32(i, ps); |
| 967 | len += sprintf(buf + len, |
| 968 | "Port %d DMA_PCTRL= %08x\n", |
| 969 | i, dma_r32(pctrl)); |
| 970 | } |
| 971 | local_irq_restore(flags); |
| 972 | blockcount = 0; |
| 973 | *eof = 1; |
| 974 | return len; |
| 975 | break; |
| 976 | } |
| 977 | |
| 978 | blockcount = 0; |
| 979 | *eof = 1; |
| 980 | return 0; |
| 981 | } |
| 982 | |
| 983 | /** |
| 984 | * Open Method of DMA Device Driver |
| 985 | * This function increments the device driver's use counter. |
| 986 | * |
| 987 | * |
| 988 | * \param |
| 989 | * \return |
| 990 | */ |
| 991 | static int dma_open(struct inode *inode, struct file *file) |
| 992 | { |
| 993 | return 0; |
| 994 | } |
| 995 | |
| 996 | /** |
| 997 | * Release Method of DMA Device driver. |
| 998 | * This function decrements the device driver's use counter. |
| 999 | * |
| 1000 | * |
| 1001 | * \param |
| 1002 | * \return |
| 1003 | */ |
| 1004 | static int dma_release(struct inode *inode, struct file *file) |
| 1005 | { |
| 1006 | /* release the resources */ |
| 1007 | return 0; |
| 1008 | } |
| 1009 | |
| 1010 | /** |
| 1011 | * Ioctl Interface to DMA Module |
| 1012 | * |
| 1013 | * \param None |
| 1014 | * \return 0 - initialization successful |
| 1015 | * <0 - failed initialization |
| 1016 | */ |
| 1017 | static long dma_ioctl(struct file *file, |
| 1018 | unsigned int cmd, unsigned long arg) |
| 1019 | { |
| 1020 | int result = 0; |
| 1021 | /* TODO: add some user controled functions here */ |
| 1022 | return result; |
| 1023 | } |
| 1024 | |
| 1025 | const static struct file_operations dma_fops = { |
| 1026 | .owner = THIS_MODULE, |
| 1027 | .open = dma_open, |
| 1028 | .release = dma_release, |
| 1029 | .unlocked_ioctl = dma_ioctl, |
| 1030 | }; |
| 1031 | |
| 1032 | void map_dma_chan(struct dma_channel_info *map) |
| 1033 | { |
| 1034 | int i; |
| 1035 | |
| 1036 | /* assign default values for channel settings */ |
| 1037 | for (i = 0; i < LTQ_MAX_DMA_CHANNEL_NUM; i++) { |
| 1038 | dma_chan[i].byte_offset = 0; |
| 1039 | dma_chan[i].open = &open_chan; |
| 1040 | dma_chan[i].close = &close_chan; |
| 1041 | dma_chan[i].reset = &reset_chan; |
| 1042 | dma_chan[i].enable_irq = enable_ch_irq; |
| 1043 | dma_chan[i].disable_irq = disable_ch_irq; |
| 1044 | dma_chan[i].tx_weight = 1; |
| 1045 | dma_chan[i].control = 0; |
| 1046 | dma_chan[i].default_weight = LTQ_DMA_CH_DEFAULT_WEIGHT; |
| 1047 | dma_chan[i].weight = dma_chan[i].default_weight; |
| 1048 | dma_chan[i].curr_desc = 0; |
| 1049 | dma_chan[i].prev_desc = 0; |
| 1050 | } |
| 1051 | |
| 1052 | /* assign default values for port settings */ |
| 1053 | for (i = 0; i < LTQ_MAX_DMA_DEVICE_NUM; i++) { |
| 1054 | /*set default tx channel number to be one*/ |
| 1055 | dma_devices[i].num_tx_chan = 1; |
| 1056 | /*set default rx channel number to be one*/ |
| 1057 | dma_devices[i].num_rx_chan = 1; |
| 1058 | dma_devices[i].buffer_alloc = common_buffer_alloc; |
| 1059 | dma_devices[i].buffer_free = common_buffer_free; |
| 1060 | dma_devices[i].intr_handler = NULL; |
| 1061 | dma_devices[i].tx_burst_len = 4; |
| 1062 | dma_devices[i].rx_burst_len = 4; |
| 1063 | #ifdef CONFIG_CPU_LITTLE_ENDIAN |
| 1064 | dma_devices[i].tx_endianness_mode = 0; |
| 1065 | dma_devices[i].rx_endianness_mode = 0; |
| 1066 | #else |
| 1067 | dma_devices[i].tx_endianness_mode = 3; |
| 1068 | dma_devices[i].rx_endianness_mode = 3; |
| 1069 | #endif |
| 1070 | } |
| 1071 | } |
| 1072 | |
| 1073 | void dma_chip_init(void) |
| 1074 | { |
| 1075 | int i; |
| 1076 | |
| 1077 | sys1_w32(SYS1_CLKENR_DMA, clkenr); |
| 1078 | wmb(); |
| 1079 | /* reset DMA */ |
| 1080 | dma_w32(DMA_CTRL_RST, ctrl); |
| 1081 | wmb(); |
| 1082 | /* disable all the interrupts first */ |
| 1083 | dma_w32(0, irnen); |
| 1084 | |
| 1085 | /* enable polling for all channels */ |
| 1086 | dma_w32(DMA_CPOLL_EN | DMA_CPOLL_CNT_VAL(DMA_POLL_COUNTER), cpoll); |
| 1087 | |
| 1088 | /****************************************************/ |
| 1089 | for (i = 0; i < LTQ_MAX_DMA_CHANNEL_NUM; i++) |
| 1090 | disable_ch_irq(&dma_chan[i]); |
| 1091 | } |
| 1092 | |
| 1093 | int ltq_dma_init(void) |
| 1094 | { |
| 1095 | int result = 0; |
| 1096 | int i; |
| 1097 | unsigned long flag; |
| 1098 | static int dma_initialized; |
| 1099 | |
| 1100 | if (dma_initialized == 1) |
| 1101 | return 0; |
| 1102 | dma_initialized = 1; |
| 1103 | |
| 1104 | result = register_chrdev(DMA_MAJOR, "dma-core", &dma_fops); |
| 1105 | if (result) { |
| 1106 | DMA_EMSG("cannot register device dma-core!\n"); |
| 1107 | return result; |
| 1108 | } |
| 1109 | |
| 1110 | dma_chip_init(); |
| 1111 | map_dma_chan(dma_chan); |
| 1112 | |
| 1113 | /* allocate DMA memory for buffer descriptors */ |
| 1114 | for (i = 0; i < DMA_DESCR_MEM_PAGES; i++) { |
| 1115 | g_desc_list[i] = (u64 *)__get_free_page(GFP_DMA); |
| 1116 | if (g_desc_list[i] == NULL) { |
| 1117 | DMA_EMSG("no memory for desriptor\n"); |
| 1118 | return -ENOMEM; |
| 1119 | } |
| 1120 | g_desc_list[i] = (u64 *)KSEG1ADDR(g_desc_list[i]); |
| 1121 | memset(g_desc_list[i], 0, PAGE_SIZE); |
| 1122 | } |
| 1123 | |
| 1124 | for (i = 0; i < LTQ_MAX_DMA_CHANNEL_NUM; i++) { |
| 1125 | int page_index, ch_per_page; |
| 1126 | /* cross-link relative channels of a port to |
| 1127 | * corresponding absolute channels */ |
| 1128 | if (dma_chan[i].dir == DIR_RX) { |
| 1129 | ((struct dma_device_info *)(dma_chan[i].dma_dev))-> |
| 1130 | rx_chan[dma_chan[i].rel_chan_no] = &dma_chan[i]; |
| 1131 | } else { |
| 1132 | ((struct dma_device_info *)(dma_chan[i].dma_dev))-> |
| 1133 | tx_chan[dma_chan[i].rel_chan_no] = &dma_chan[i]; |
| 1134 | } |
| 1135 | dma_chan[i].abs_chan_no = i; |
| 1136 | |
| 1137 | page_index = i * DMA_DESCR_CH_SIZE / PAGE_SIZE; |
| 1138 | ch_per_page = PAGE_SIZE / DMA_DESCR_CH_SIZE + |
| 1139 | ((PAGE_SIZE % DMA_DESCR_CH_SIZE) > 0); |
| 1140 | dma_chan[i].desc_base = |
| 1141 | (u32)g_desc_list[page_index] + |
| 1142 | (i - page_index*ch_per_page) * DMA_DESCR_NUM*8; |
| 1143 | dma_chan[i].curr_desc = 0; |
| 1144 | dma_chan[i].desc_len = DMA_DESCR_NUM; |
| 1145 | |
| 1146 | local_irq_save(flag); |
| 1147 | mbs_grab(); |
| 1148 | dma_w32(i, cs); |
| 1149 | dma_w32((u32)CPHYSADDR(dma_chan[i].desc_base), cdba); |
| 1150 | mbs_release(); |
| 1151 | local_irq_restore(flag); |
| 1152 | } |
| 1153 | |
| 1154 | g_dma_dir = proc_mkdir("driver/" DRV_NAME, NULL); |
| 1155 | |
| 1156 | create_proc_read_entry("dma_register", |
| 1157 | 0, |
| 1158 | g_dma_dir, |
| 1159 | dma_register_proc_read, |
| 1160 | NULL); |
| 1161 | |
| 1162 | create_proc_read_entry("g_desc_list", |
| 1163 | 0, |
| 1164 | g_dma_dir, |
| 1165 | desc_list_proc_read, |
| 1166 | NULL); |
| 1167 | |
| 1168 | create_proc_read_entry("channel_weight", |
| 1169 | 0, |
| 1170 | g_dma_dir, |
| 1171 | channel_weight_proc_read, |
| 1172 | NULL); |
| 1173 | |
| 1174 | printk(KERN_NOTICE "SVIP DMA engine initialized\n"); |
| 1175 | |
| 1176 | return 0; |
| 1177 | } |
| 1178 | |
| 1179 | /** |
| 1180 | * Cleanup DMA device |
| 1181 | * This function releases all resources used by the DMA device driver on |
| 1182 | * module removal. |
| 1183 | * |
| 1184 | * |
| 1185 | * \param None |
| 1186 | * \return Nothing |
| 1187 | */ |
| 1188 | void dma_cleanup(void) |
| 1189 | { |
| 1190 | int i; |
| 1191 | unregister_chrdev(DMA_MAJOR, "dma-core"); |
| 1192 | |
| 1193 | for (i = 0; i < DMA_DESCR_MEM_PAGES; i++) |
| 1194 | free_page(KSEG0ADDR((unsigned long)g_desc_list[i])); |
| 1195 | remove_proc_entry("channel_weight", g_dma_dir); |
| 1196 | remove_proc_entry("g_desc_list", g_dma_dir); |
| 1197 | remove_proc_entry("dma_register", g_dma_dir); |
| 1198 | remove_proc_entry("driver/" DRV_NAME, NULL); |
| 1199 | /* release the resources */ |
| 1200 | for (i = 0; i < LTQ_MAX_DMA_CHANNEL_NUM; i++) |
| 1201 | free_irq(dma_chan[i].irq, (void *)&dma_chan[i]); |
| 1202 | } |
| 1203 | |
| 1204 | arch_initcall(ltq_dma_init); |
| 1205 | |
| 1206 | MODULE_LICENSE("GPL"); |
| 1207 | |