| 1 | /* ========================================================================== |
| 2 | * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil.c $ |
| 3 | * $Revision: 1.1.1.1 $ |
| 4 | * $Date: 2009-04-17 06:15:34 $ |
| 5 | * $Change: 631780 $ |
| 6 | * |
| 7 | * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, |
| 8 | * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless |
| 9 | * otherwise expressly agreed to in writing between Synopsys and you. |
| 10 | * |
| 11 | * The Software IS NOT an item of Licensed Software or Licensed Product under |
| 12 | * any End User Software License Agreement or Agreement for Licensed Product |
| 13 | * with Synopsys or any supplement thereto. You are permitted to use and |
| 14 | * redistribute this Software in source and binary forms, with or without |
| 15 | * modification, provided that redistributions of source code must retain this |
| 16 | * notice. You may not view, use, disclose, copy or distribute this file or |
| 17 | * any information contained herein except pursuant to this license grant from |
| 18 | * Synopsys. If you do not agree with this notice, including the disclaimer |
| 19 | * below, then you are not authorized to use the Software. |
| 20 | * |
| 21 | * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS |
| 22 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 24 | * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, |
| 25 | * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 26 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 27 | * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 28 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH |
| 31 | * DAMAGE. |
| 32 | * ========================================================================== */ |
| 33 | |
| 34 | /** @file |
| 35 | * |
| 36 | * The Core Interface Layer provides basic services for accessing and |
| 37 | * managing the DWC_otg hardware. These services are used by both the |
| 38 | * Host Controller Driver and the Peripheral Controller Driver. |
| 39 | * |
| 40 | * The CIL manages the memory map for the core so that the HCD and PCD |
| 41 | * don't have to do this separately. It also handles basic tasks like |
| 42 | * reading/writing the registers and data FIFOs in the controller. |
| 43 | * Some of the data access functions provide encapsulation of several |
| 44 | * operations required to perform a task, such as writing multiple |
| 45 | * registers to start a transfer. Finally, the CIL performs basic |
| 46 | * services that are not specific to either the host or device modes |
| 47 | * of operation. These services include management of the OTG Host |
| 48 | * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A |
| 49 | * Diagnostic API is also provided to allow testing of the controller |
| 50 | * hardware. |
| 51 | * |
| 52 | * The Core Interface Layer has the following requirements: |
| 53 | * - Provides basic controller operations. |
| 54 | * - Minimal use of OS services. |
| 55 | * - The OS services used will be abstracted by using inline functions |
| 56 | * or macros. |
| 57 | * |
| 58 | */ |
| 59 | #include <asm/unaligned.h> |
| 60 | |
| 61 | #ifdef DEBUG |
| 62 | #include <linux/jiffies.h> |
| 63 | #endif |
| 64 | |
| 65 | #include "dwc_otg_plat.h" |
| 66 | |
| 67 | #include "dwc_otg_regs.h" |
| 68 | #include "dwc_otg_cil.h" |
| 69 | |
| 70 | /** |
| 71 | * This function is called to initialize the DWC_otg CSR data |
| 72 | * structures. The register addresses in the device and host |
| 73 | * structures are initialized from the base address supplied by the |
| 74 | * caller. The calling function must make the OS calls to get the |
| 75 | * base address of the DWC_otg controller registers. The core_params |
| 76 | * argument holds the parameters that specify how the core should be |
| 77 | * configured. |
| 78 | * |
| 79 | * @param[in] _reg_base_addr Base address of DWC_otg core registers |
| 80 | * @param[in] _core_params Pointer to the core configuration parameters |
| 81 | * |
| 82 | */ |
| 83 | dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr, |
| 84 | dwc_otg_core_params_t *_core_params) |
| 85 | { |
| 86 | dwc_otg_core_if_t *core_if = 0; |
| 87 | dwc_otg_dev_if_t *dev_if = 0; |
| 88 | dwc_otg_host_if_t *host_if = 0; |
| 89 | uint8_t *reg_base = (uint8_t *)_reg_base_addr; |
| 90 | int i = 0; |
| 91 | |
| 92 | DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, _reg_base_addr, _core_params); |
| 93 | |
| 94 | core_if = kmalloc( sizeof(dwc_otg_core_if_t), GFP_KERNEL); |
| 95 | if (core_if == 0) { |
| 96 | DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_core_if_t failed\n"); |
| 97 | return 0; |
| 98 | } |
| 99 | memset(core_if, 0, sizeof(dwc_otg_core_if_t)); |
| 100 | |
| 101 | core_if->core_params = _core_params; |
| 102 | core_if->core_global_regs = (dwc_otg_core_global_regs_t *)reg_base; |
| 103 | /* |
| 104 | * Allocate the Device Mode structures. |
| 105 | */ |
| 106 | dev_if = kmalloc( sizeof(dwc_otg_dev_if_t), GFP_KERNEL); |
| 107 | if (dev_if == 0) { |
| 108 | DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n"); |
| 109 | kfree( core_if ); |
| 110 | return 0; |
| 111 | } |
| 112 | |
| 113 | dev_if->dev_global_regs = |
| 114 | (dwc_otg_device_global_regs_t *)(reg_base + DWC_DEV_GLOBAL_REG_OFFSET); |
| 115 | |
| 116 | for (i=0; i<MAX_EPS_CHANNELS; i++) { |
| 117 | dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *) |
| 118 | (reg_base + DWC_DEV_IN_EP_REG_OFFSET + |
| 119 | (i * DWC_EP_REG_OFFSET)); |
| 120 | |
| 121 | dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *) |
| 122 | (reg_base + DWC_DEV_OUT_EP_REG_OFFSET + |
| 123 | (i * DWC_EP_REG_OFFSET)); |
| 124 | DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n", |
| 125 | i, &dev_if->in_ep_regs[i]->diepctl); |
| 126 | DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n", |
| 127 | i, &dev_if->out_ep_regs[i]->doepctl); |
| 128 | } |
| 129 | dev_if->speed = 0; // unknown |
| 130 | //dev_if->num_eps = MAX_EPS_CHANNELS; |
| 131 | //dev_if->num_perio_eps = 0; |
| 132 | |
| 133 | core_if->dev_if = dev_if; |
| 134 | /* |
| 135 | * Allocate the Host Mode structures. |
| 136 | */ |
| 137 | host_if = kmalloc( sizeof(dwc_otg_host_if_t), GFP_KERNEL); |
| 138 | if (host_if == 0) { |
| 139 | DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_host_if_t failed\n"); |
| 140 | kfree( dev_if ); |
| 141 | kfree( core_if ); |
| 142 | return 0; |
| 143 | } |
| 144 | |
| 145 | host_if->host_global_regs = (dwc_otg_host_global_regs_t *) |
| 146 | (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET); |
| 147 | host_if->hprt0 = (uint32_t*)(reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET); |
| 148 | for (i=0; i<MAX_EPS_CHANNELS; i++) { |
| 149 | host_if->hc_regs[i] = (dwc_otg_hc_regs_t *) |
| 150 | (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET + |
| 151 | (i * DWC_OTG_CHAN_REGS_OFFSET)); |
| 152 | DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n", |
| 153 | i, &host_if->hc_regs[i]->hcchar); |
| 154 | } |
| 155 | host_if->num_host_channels = MAX_EPS_CHANNELS; |
| 156 | core_if->host_if = host_if; |
| 157 | |
| 158 | for (i=0; i<MAX_EPS_CHANNELS; i++) { |
| 159 | core_if->data_fifo[i] = |
| 160 | (uint32_t *)(reg_base + DWC_OTG_DATA_FIFO_OFFSET + |
| 161 | (i * DWC_OTG_DATA_FIFO_SIZE)); |
| 162 | DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n", |
| 163 | i, (unsigned)core_if->data_fifo[i]); |
| 164 | } // for loop. |
| 165 | |
| 166 | core_if->pcgcctl = (uint32_t*)(reg_base + DWC_OTG_PCGCCTL_OFFSET); |
| 167 | |
| 168 | /* |
| 169 | * Store the contents of the hardware configuration registers here for |
| 170 | * easy access later. |
| 171 | */ |
| 172 | core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1); |
| 173 | core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2); |
| 174 | core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3); |
| 175 | core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4); |
| 176 | |
| 177 | DWC_DEBUGPL(DBG_CILV,"hwcfg1=%08x\n",core_if->hwcfg1.d32); |
| 178 | DWC_DEBUGPL(DBG_CILV,"hwcfg2=%08x\n",core_if->hwcfg2.d32); |
| 179 | DWC_DEBUGPL(DBG_CILV,"hwcfg3=%08x\n",core_if->hwcfg3.d32); |
| 180 | DWC_DEBUGPL(DBG_CILV,"hwcfg4=%08x\n",core_if->hwcfg4.d32); |
| 181 | |
| 182 | |
| 183 | DWC_DEBUGPL(DBG_CILV,"op_mode=%0x\n",core_if->hwcfg2.b.op_mode); |
| 184 | DWC_DEBUGPL(DBG_CILV,"arch=%0x\n",core_if->hwcfg2.b.architecture); |
| 185 | DWC_DEBUGPL(DBG_CILV,"num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep); |
| 186 | DWC_DEBUGPL(DBG_CILV,"num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan); |
| 187 | DWC_DEBUGPL(DBG_CILV,"nonperio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.nonperio_tx_q_depth); |
| 188 | DWC_DEBUGPL(DBG_CILV,"host_perio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.host_perio_tx_q_depth); |
| 189 | DWC_DEBUGPL(DBG_CILV,"dev_token_q_depth=0x%0x\n",core_if->hwcfg2.b.dev_token_q_depth); |
| 190 | |
| 191 | DWC_DEBUGPL(DBG_CILV,"Total FIFO SZ=%d\n", core_if->hwcfg3.b.dfifo_depth); |
| 192 | DWC_DEBUGPL(DBG_CILV,"xfer_size_cntr_width=%0x\n", core_if->hwcfg3.b.xfer_size_cntr_width); |
| 193 | |
| 194 | /* |
| 195 | * Set the SRP sucess bit for FS-I2c |
| 196 | */ |
| 197 | core_if->srp_success = 0; |
| 198 | core_if->srp_timer_started = 0; |
| 199 | |
| 200 | return core_if; |
| 201 | } |
| 202 | /** |
| 203 | * This function frees the structures allocated by dwc_otg_cil_init(). |
| 204 | * |
| 205 | * @param[in] _core_if The core interface pointer returned from |
| 206 | * dwc_otg_cil_init(). |
| 207 | * |
| 208 | */ |
| 209 | void dwc_otg_cil_remove( dwc_otg_core_if_t *_core_if ) |
| 210 | { |
| 211 | /* Disable all interrupts */ |
| 212 | dwc_modify_reg32( &_core_if->core_global_regs->gahbcfg, 1, 0); |
| 213 | dwc_write_reg32( &_core_if->core_global_regs->gintmsk, 0); |
| 214 | |
| 215 | if ( _core_if->dev_if ) { |
| 216 | kfree( _core_if->dev_if ); |
| 217 | } |
| 218 | if ( _core_if->host_if ) { |
| 219 | kfree( _core_if->host_if ); |
| 220 | } |
| 221 | kfree( _core_if ); |
| 222 | } |
| 223 | |
| 224 | /** |
| 225 | * This function enables the controller's Global Interrupt in the AHB Config |
| 226 | * register. |
| 227 | * |
| 228 | * @param[in] _core_if Programming view of DWC_otg controller. |
| 229 | */ |
| 230 | extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if ) |
| 231 | { |
| 232 | gahbcfg_data_t ahbcfg = { .d32 = 0}; |
| 233 | ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ |
| 234 | dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32); |
| 235 | } |
| 236 | /** |
| 237 | * This function disables the controller's Global Interrupt in the AHB Config |
| 238 | * register. |
| 239 | * |
| 240 | * @param[in] _core_if Programming view of DWC_otg controller. |
| 241 | */ |
| 242 | extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if ) |
| 243 | { |
| 244 | gahbcfg_data_t ahbcfg = { .d32 = 0}; |
| 245 | ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ |
| 246 | dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0); |
| 247 | } |
| 248 | |
| 249 | /** |
| 250 | * This function initializes the commmon interrupts, used in both |
| 251 | * device and host modes. |
| 252 | * |
| 253 | * @param[in] _core_if Programming view of the DWC_otg controller |
| 254 | * |
| 255 | */ |
| 256 | static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t *_core_if) |
| 257 | { |
| 258 | dwc_otg_core_global_regs_t *global_regs = |
| 259 | _core_if->core_global_regs; |
| 260 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 261 | /* Clear any pending OTG Interrupts */ |
| 262 | dwc_write_reg32( &global_regs->gotgint, 0xFFFFFFFF); |
| 263 | /* Clear any pending interrupts */ |
| 264 | dwc_write_reg32( &global_regs->gintsts, 0xFFFFFFFF); |
| 265 | /* |
| 266 | * Enable the interrupts in the GINTMSK. |
| 267 | */ |
| 268 | intr_mask.b.modemismatch = 1; |
| 269 | intr_mask.b.otgintr = 1; |
| 270 | if (!_core_if->dma_enable) { |
| 271 | intr_mask.b.rxstsqlvl = 1; |
| 272 | } |
| 273 | intr_mask.b.conidstschng = 1; |
| 274 | intr_mask.b.wkupintr = 1; |
| 275 | intr_mask.b.disconnect = 1; |
| 276 | intr_mask.b.usbsuspend = 1; |
| 277 | intr_mask.b.sessreqintr = 1; |
| 278 | dwc_write_reg32( &global_regs->gintmsk, intr_mask.d32); |
| 279 | } |
| 280 | |
| 281 | /** |
| 282 | * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY |
| 283 | * type. |
| 284 | */ |
| 285 | static void init_fslspclksel(dwc_otg_core_if_t *_core_if) |
| 286 | { |
| 287 | uint32_t val; |
| 288 | hcfg_data_t hcfg; |
| 289 | |
| 290 | if (((_core_if->hwcfg2.b.hs_phy_type == 2) && |
| 291 | (_core_if->hwcfg2.b.fs_phy_type == 1) && |
| 292 | (_core_if->core_params->ulpi_fs_ls)) || |
| 293 | (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) |
| 294 | { |
| 295 | /* Full speed PHY */ |
| 296 | val = DWC_HCFG_48_MHZ; |
| 297 | } else { |
| 298 | /* High speed PHY running at full speed or high speed */ |
| 299 | val = DWC_HCFG_30_60_MHZ; |
| 300 | } |
| 301 | |
| 302 | DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val); |
| 303 | hcfg.d32 = dwc_read_reg32(&_core_if->host_if->host_global_regs->hcfg); |
| 304 | hcfg.b.fslspclksel = val; |
| 305 | dwc_write_reg32(&_core_if->host_if->host_global_regs->hcfg, hcfg.d32); |
| 306 | } |
| 307 | |
| 308 | /** |
| 309 | * Initializes the DevSpd field of the DCFG register depending on the PHY type |
| 310 | * and the enumeration speed of the device. |
| 311 | */ |
| 312 | static void init_devspd(dwc_otg_core_if_t *_core_if) |
| 313 | { |
| 314 | uint32_t val; |
| 315 | dcfg_data_t dcfg; |
| 316 | |
| 317 | if (((_core_if->hwcfg2.b.hs_phy_type == 2) && |
| 318 | (_core_if->hwcfg2.b.fs_phy_type == 1) && |
| 319 | (_core_if->core_params->ulpi_fs_ls)) || |
| 320 | (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) |
| 321 | { |
| 322 | /* Full speed PHY */ |
| 323 | val = 0x3; |
| 324 | } else if (_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) { |
| 325 | /* High speed PHY running at full speed */ |
| 326 | val = 0x1; |
| 327 | } else { |
| 328 | /* High speed PHY running at high speed */ |
| 329 | val = 0x0; |
| 330 | } |
| 331 | |
| 332 | DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val); |
| 333 | dcfg.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dcfg); |
| 334 | dcfg.b.devspd = val; |
| 335 | dwc_write_reg32(&_core_if->dev_if->dev_global_regs->dcfg, dcfg.d32); |
| 336 | } |
| 337 | |
| 338 | /** |
| 339 | * This function calculates the number of IN EPS |
| 340 | * using GHWCFG1 and GHWCFG2 registers values |
| 341 | * |
| 342 | * @param _pcd the pcd structure. |
| 343 | */ |
| 344 | static uint32_t calc_num_in_eps(dwc_otg_core_if_t * _core_if) |
| 345 | { |
| 346 | uint32_t num_in_eps = 0; |
| 347 | uint32_t num_eps = _core_if->hwcfg2.b.num_dev_ep; |
| 348 | uint32_t hwcfg1 = _core_if->hwcfg1.d32 >> 2; |
| 349 | uint32_t num_tx_fifos = _core_if->hwcfg4.b.num_in_eps; |
| 350 | int i; |
| 351 | for (i = 0; i < num_eps; ++i) { |
| 352 | if (!(hwcfg1 & 0x1)) |
| 353 | num_in_eps++; |
| 354 | hwcfg1 >>= 2; |
| 355 | } |
| 356 | if (_core_if->hwcfg4.b.ded_fifo_en) { |
| 357 | num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps; |
| 358 | } |
| 359 | return num_in_eps; |
| 360 | } |
| 361 | |
| 362 | |
| 363 | /** |
| 364 | * This function calculates the number of OUT EPS |
| 365 | * using GHWCFG1 and GHWCFG2 registers values |
| 366 | * |
| 367 | * @param _pcd the pcd structure. |
| 368 | */ |
| 369 | static uint32_t calc_num_out_eps(dwc_otg_core_if_t * _core_if) |
| 370 | { |
| 371 | uint32_t num_out_eps = 0; |
| 372 | uint32_t num_eps = _core_if->hwcfg2.b.num_dev_ep; |
| 373 | uint32_t hwcfg1 = _core_if->hwcfg1.d32 >> 2; |
| 374 | int i; |
| 375 | for (i = 0; i < num_eps; ++i) { |
| 376 | if (!(hwcfg1 & 0x2)) |
| 377 | num_out_eps++; |
| 378 | hwcfg1 >>= 2; |
| 379 | } |
| 380 | return num_out_eps; |
| 381 | } |
| 382 | /** |
| 383 | * This function initializes the DWC_otg controller registers and |
| 384 | * prepares the core for device mode or host mode operation. |
| 385 | * |
| 386 | * @param _core_if Programming view of the DWC_otg controller |
| 387 | * |
| 388 | */ |
| 389 | void dwc_otg_core_init(dwc_otg_core_if_t *_core_if) |
| 390 | { |
| 391 | dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; |
| 392 | dwc_otg_dev_if_t *dev_if = _core_if->dev_if; |
| 393 | int i = 0; |
| 394 | gahbcfg_data_t ahbcfg = { .d32 = 0}; |
| 395 | gusbcfg_data_t usbcfg = { .d32 = 0 }; |
| 396 | gi2cctl_data_t i2cctl = {.d32 = 0}; |
| 397 | |
| 398 | DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n",_core_if); |
| 399 | |
| 400 | /* Common Initialization */ |
| 401 | |
| 402 | usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); |
| 403 | DWC_DEBUGPL(DBG_CIL, "USB config register: 0x%08x\n", usbcfg.d32); |
| 404 | |
| 405 | /* Program the ULPI External VBUS bit if needed */ |
| 406 | //usbcfg.b.ulpi_ext_vbus_drv = 1; |
| 407 | //usbcfg.b.ulpi_ext_vbus_drv = 0; |
| 408 | usbcfg.b.ulpi_ext_vbus_drv = |
| 409 | (_core_if->core_params->phy_ulpi_ext_vbus == DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0; |
| 410 | |
| 411 | /* Set external TS Dline pulsing */ |
| 412 | usbcfg.b.term_sel_dl_pulse = (_core_if->core_params->ts_dline == 1) ? 1 : 0; |
| 413 | dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); |
| 414 | |
| 415 | /* Reset the Controller */ |
| 416 | dwc_otg_core_reset( _core_if ); |
| 417 | |
| 418 | /* Initialize parameters from Hardware configuration registers. */ |
| 419 | #if 0 |
| 420 | dev_if->num_eps = _core_if->hwcfg2.b.num_dev_ep; |
| 421 | dev_if->num_perio_eps = _core_if->hwcfg4.b.num_dev_perio_in_ep; |
| 422 | #else |
| 423 | dev_if->num_in_eps = calc_num_in_eps(_core_if); |
| 424 | dev_if->num_out_eps = calc_num_out_eps(_core_if); |
| 425 | #endif |
| 426 | DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n", |
| 427 | _core_if->hwcfg4.b.num_dev_perio_in_ep); |
| 428 | DWC_DEBUGPL(DBG_CIL, "Is power optimization enabled? %s\n", |
| 429 | _core_if->hwcfg4.b.power_optimiz ? "Yes" : "No"); |
| 430 | DWC_DEBUGPL(DBG_CIL, "vbus_valid filter enabled? %s\n", |
| 431 | _core_if->hwcfg4.b.vbus_valid_filt_en ? "Yes" : "No"); |
| 432 | DWC_DEBUGPL(DBG_CIL, "iddig filter enabled? %s\n", |
| 433 | _core_if->hwcfg4.b.iddig_filt_en ? "Yes" : "No"); |
| 434 | |
| 435 | DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n",_core_if->hwcfg4.b.num_dev_perio_in_ep); |
| 436 | for (i=0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep; i++) { |
| 437 | dev_if->perio_tx_fifo_size[i] = |
| 438 | dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16; |
| 439 | DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n", i, |
| 440 | dev_if->perio_tx_fifo_size[i]); |
| 441 | } |
| 442 | for (i = 0; i < _core_if->hwcfg4.b.num_in_eps; i++) { |
| 443 | dev_if->tx_fifo_size[i] = |
| 444 | dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16; |
| 445 | DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n", i, |
| 446 | dev_if->perio_tx_fifo_size[i]); |
| 447 | } |
| 448 | |
| 449 | _core_if->total_fifo_size = _core_if->hwcfg3.b.dfifo_depth; |
| 450 | _core_if->rx_fifo_size = dwc_read_reg32(&global_regs->grxfsiz); |
| 451 | _core_if->nperio_tx_fifo_size = dwc_read_reg32(&global_regs->gnptxfsiz) >> 16; |
| 452 | |
| 453 | DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", _core_if->total_fifo_size); |
| 454 | DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", _core_if->rx_fifo_size); |
| 455 | DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", _core_if->nperio_tx_fifo_size); |
| 456 | |
| 457 | /* This programming sequence needs to happen in FS mode before any other |
| 458 | * programming occurs */ |
| 459 | if ((_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) && |
| 460 | (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { |
| 461 | /* If FS mode with FS PHY */ |
| 462 | |
| 463 | /* core_init() is now called on every switch so only call the |
| 464 | * following for the first time through. */ |
| 465 | if (!_core_if->phy_init_done) { |
| 466 | _core_if->phy_init_done = 1; |
| 467 | DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n"); |
| 468 | usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); |
| 469 | usbcfg.b.physel = 1; |
| 470 | dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); |
| 471 | |
| 472 | /* Reset after a PHY select */ |
| 473 | dwc_otg_core_reset( _core_if ); |
| 474 | } |
| 475 | |
| 476 | /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also |
| 477 | * do this on HNP Dev/Host mode switches (done in dev_init and |
| 478 | * host_init). */ |
| 479 | if (dwc_otg_is_host_mode(_core_if)) { |
| 480 | DWC_DEBUGPL(DBG_CIL, "host mode\n"); |
| 481 | init_fslspclksel(_core_if); |
| 482 | } else { |
| 483 | DWC_DEBUGPL(DBG_CIL, "device mode\n"); |
| 484 | init_devspd(_core_if); |
| 485 | } |
| 486 | |
| 487 | if (_core_if->core_params->i2c_enable) { |
| 488 | DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n"); |
| 489 | /* Program GUSBCFG.OtgUtmifsSel to I2C */ |
| 490 | usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); |
| 491 | usbcfg.b.otgutmifssel = 1; |
| 492 | dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); |
| 493 | |
| 494 | /* Program GI2CCTL.I2CEn */ |
| 495 | i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl); |
| 496 | i2cctl.b.i2cdevaddr = 1; |
| 497 | i2cctl.b.i2cen = 0; |
| 498 | dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32); |
| 499 | i2cctl.b.i2cen = 1; |
| 500 | dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32); |
| 501 | } |
| 502 | |
| 503 | } /* endif speed == DWC_SPEED_PARAM_FULL */ |
| 504 | else { |
| 505 | /* High speed PHY. */ |
| 506 | if (!_core_if->phy_init_done) { |
| 507 | _core_if->phy_init_done = 1; |
| 508 | DWC_DEBUGPL(DBG_CIL, "High spped PHY\n"); |
| 509 | /* HS PHY parameters. These parameters are preserved |
| 510 | * during soft reset so only program the first time. Do |
| 511 | * a soft reset immediately after setting phyif. */ |
| 512 | usbcfg.b.ulpi_utmi_sel = _core_if->core_params->phy_type; |
| 513 | if (usbcfg.b.ulpi_utmi_sel == 2) { // winder |
| 514 | DWC_DEBUGPL(DBG_CIL, "ULPI\n"); |
| 515 | /* ULPI interface */ |
| 516 | usbcfg.b.phyif = 0; |
| 517 | usbcfg.b.ddrsel = _core_if->core_params->phy_ulpi_ddr; |
| 518 | } else { |
| 519 | /* UTMI+ interface */ |
| 520 | if (_core_if->core_params->phy_utmi_width == 16) { |
| 521 | usbcfg.b.phyif = 1; |
| 522 | DWC_DEBUGPL(DBG_CIL, "UTMI+ 16\n"); |
| 523 | } else { |
| 524 | DWC_DEBUGPL(DBG_CIL, "UTMI+ 8\n"); |
| 525 | usbcfg.b.phyif = 0; |
| 526 | } |
| 527 | } |
| 528 | dwc_write_reg32( &global_regs->gusbcfg, usbcfg.d32); |
| 529 | |
| 530 | /* Reset after setting the PHY parameters */ |
| 531 | dwc_otg_core_reset( _core_if ); |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | if ((_core_if->hwcfg2.b.hs_phy_type == 2) && |
| 536 | (_core_if->hwcfg2.b.fs_phy_type == 1) && |
| 537 | (_core_if->core_params->ulpi_fs_ls)) |
| 538 | { |
| 539 | DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n"); |
| 540 | usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); |
| 541 | usbcfg.b.ulpi_fsls = 1; |
| 542 | usbcfg.b.ulpi_clk_sus_m = 1; |
| 543 | dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); |
| 544 | } else { |
| 545 | DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS=0\n"); |
| 546 | usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); |
| 547 | usbcfg.b.ulpi_fsls = 0; |
| 548 | usbcfg.b.ulpi_clk_sus_m = 0; |
| 549 | dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); |
| 550 | } |
| 551 | |
| 552 | /* Program the GAHBCFG Register.*/ |
| 553 | switch (_core_if->hwcfg2.b.architecture){ |
| 554 | |
| 555 | case DWC_SLAVE_ONLY_ARCH: |
| 556 | DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n"); |
| 557 | ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; |
| 558 | ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; |
| 559 | _core_if->dma_enable = 0; |
| 560 | break; |
| 561 | |
| 562 | case DWC_EXT_DMA_ARCH: |
| 563 | DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n"); |
| 564 | ahbcfg.b.hburstlen = _core_if->core_params->dma_burst_size; |
| 565 | _core_if->dma_enable = (_core_if->core_params->dma_enable != 0); |
| 566 | break; |
| 567 | |
| 568 | case DWC_INT_DMA_ARCH: |
| 569 | DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n"); |
| 570 | //ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR; |
| 571 | ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR4; |
| 572 | _core_if->dma_enable = (_core_if->core_params->dma_enable != 0); |
| 573 | break; |
| 574 | } |
| 575 | ahbcfg.b.dmaenable = _core_if->dma_enable; |
| 576 | dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32); |
| 577 | _core_if->en_multiple_tx_fifo = _core_if->hwcfg4.b.ded_fifo_en; |
| 578 | |
| 579 | /* |
| 580 | * Program the GUSBCFG register. |
| 581 | */ |
| 582 | usbcfg.d32 = dwc_read_reg32( &global_regs->gusbcfg ); |
| 583 | |
| 584 | switch (_core_if->hwcfg2.b.op_mode) { |
| 585 | case DWC_MODE_HNP_SRP_CAPABLE: |
| 586 | usbcfg.b.hnpcap = (_core_if->core_params->otg_cap == |
| 587 | DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE); |
| 588 | usbcfg.b.srpcap = (_core_if->core_params->otg_cap != |
| 589 | DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); |
| 590 | break; |
| 591 | |
| 592 | case DWC_MODE_SRP_ONLY_CAPABLE: |
| 593 | usbcfg.b.hnpcap = 0; |
| 594 | usbcfg.b.srpcap = (_core_if->core_params->otg_cap != |
| 595 | DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); |
| 596 | break; |
| 597 | |
| 598 | case DWC_MODE_NO_HNP_SRP_CAPABLE: |
| 599 | usbcfg.b.hnpcap = 0; |
| 600 | usbcfg.b.srpcap = 0; |
| 601 | break; |
| 602 | |
| 603 | case DWC_MODE_SRP_CAPABLE_DEVICE: |
| 604 | usbcfg.b.hnpcap = 0; |
| 605 | usbcfg.b.srpcap = (_core_if->core_params->otg_cap != |
| 606 | DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); |
| 607 | break; |
| 608 | |
| 609 | case DWC_MODE_NO_SRP_CAPABLE_DEVICE: |
| 610 | usbcfg.b.hnpcap = 0; |
| 611 | usbcfg.b.srpcap = 0; |
| 612 | break; |
| 613 | |
| 614 | case DWC_MODE_SRP_CAPABLE_HOST: |
| 615 | usbcfg.b.hnpcap = 0; |
| 616 | usbcfg.b.srpcap = (_core_if->core_params->otg_cap != |
| 617 | DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); |
| 618 | break; |
| 619 | |
| 620 | case DWC_MODE_NO_SRP_CAPABLE_HOST: |
| 621 | usbcfg.b.hnpcap = 0; |
| 622 | usbcfg.b.srpcap = 0; |
| 623 | break; |
| 624 | } |
| 625 | |
| 626 | dwc_write_reg32( &global_regs->gusbcfg, usbcfg.d32); |
| 627 | |
| 628 | /* Enable common interrupts */ |
| 629 | dwc_otg_enable_common_interrupts( _core_if ); |
| 630 | |
| 631 | /* Do device or host intialization based on mode during PCD |
| 632 | * and HCD initialization */ |
| 633 | if (dwc_otg_is_host_mode( _core_if )) { |
| 634 | DWC_DEBUGPL(DBG_ANY, "Host Mode\n" ); |
| 635 | _core_if->op_state = A_HOST; |
| 636 | } else { |
| 637 | DWC_DEBUGPL(DBG_ANY, "Device Mode\n" ); |
| 638 | _core_if->op_state = B_PERIPHERAL; |
| 639 | #ifdef DWC_DEVICE_ONLY |
| 640 | dwc_otg_core_dev_init( _core_if ); |
| 641 | #endif |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | |
| 646 | /** |
| 647 | * This function enables the Device mode interrupts. |
| 648 | * |
| 649 | * @param _core_if Programming view of DWC_otg controller |
| 650 | */ |
| 651 | void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if) |
| 652 | { |
| 653 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 654 | dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; |
| 655 | |
| 656 | DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); |
| 657 | |
| 658 | /* Disable all interrupts. */ |
| 659 | dwc_write_reg32( &global_regs->gintmsk, 0); |
| 660 | |
| 661 | /* Clear any pending interrupts */ |
| 662 | dwc_write_reg32( &global_regs->gintsts, 0xFFFFFFFF); |
| 663 | |
| 664 | /* Enable the common interrupts */ |
| 665 | dwc_otg_enable_common_interrupts( _core_if ); |
| 666 | |
| 667 | /* Enable interrupts */ |
| 668 | intr_mask.b.usbreset = 1; |
| 669 | intr_mask.b.enumdone = 1; |
| 670 | //intr_mask.b.epmismatch = 1; |
| 671 | intr_mask.b.inepintr = 1; |
| 672 | intr_mask.b.outepintr = 1; |
| 673 | intr_mask.b.erlysuspend = 1; |
| 674 | if (_core_if->en_multiple_tx_fifo == 0) { |
| 675 | intr_mask.b.epmismatch = 1; |
| 676 | } |
| 677 | |
| 678 | /** @todo NGS: Should this be a module parameter? */ |
| 679 | intr_mask.b.isooutdrop = 1; |
| 680 | intr_mask.b.eopframe = 1; |
| 681 | intr_mask.b.incomplisoin = 1; |
| 682 | intr_mask.b.incomplisoout = 1; |
| 683 | |
| 684 | dwc_modify_reg32( &global_regs->gintmsk, intr_mask.d32, intr_mask.d32); |
| 685 | |
| 686 | DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__, |
| 687 | dwc_read_reg32( &global_regs->gintmsk)); |
| 688 | } |
| 689 | |
| 690 | /** |
| 691 | * This function initializes the DWC_otg controller registers for |
| 692 | * device mode. |
| 693 | * |
| 694 | * @param _core_if Programming view of DWC_otg controller |
| 695 | * |
| 696 | */ |
| 697 | void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if) |
| 698 | { |
| 699 | dwc_otg_core_global_regs_t *global_regs = |
| 700 | _core_if->core_global_regs; |
| 701 | dwc_otg_dev_if_t *dev_if = _core_if->dev_if; |
| 702 | dwc_otg_core_params_t *params = _core_if->core_params; |
| 703 | dcfg_data_t dcfg = {.d32 = 0}; |
| 704 | grstctl_t resetctl = { .d32=0 }; |
| 705 | int i; |
| 706 | uint32_t rx_fifo_size; |
| 707 | fifosize_data_t nptxfifosize; |
| 708 | fifosize_data_t txfifosize; |
| 709 | dthrctl_data_t dthrctl; |
| 710 | |
| 711 | fifosize_data_t ptxfifosize; |
| 712 | |
| 713 | /* Restart the Phy Clock */ |
| 714 | dwc_write_reg32(_core_if->pcgcctl, 0); |
| 715 | |
| 716 | /* Device configuration register */ |
| 717 | init_devspd(_core_if); |
| 718 | dcfg.d32 = dwc_read_reg32( &dev_if->dev_global_regs->dcfg); |
| 719 | dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80; |
| 720 | dwc_write_reg32( &dev_if->dev_global_regs->dcfg, dcfg.d32 ); |
| 721 | |
| 722 | /* Configure data FIFO sizes */ |
| 723 | if ( _core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo ) { |
| 724 | |
| 725 | DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", _core_if->total_fifo_size); |
| 726 | DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->dev_rx_fifo_size); |
| 727 | DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", params->dev_nperio_tx_fifo_size); |
| 728 | |
| 729 | /* Rx FIFO */ |
| 730 | DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n", |
| 731 | dwc_read_reg32(&global_regs->grxfsiz)); |
| 732 | rx_fifo_size = params->dev_rx_fifo_size; |
| 733 | dwc_write_reg32( &global_regs->grxfsiz, rx_fifo_size ); |
| 734 | DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n", |
| 735 | dwc_read_reg32(&global_regs->grxfsiz)); |
| 736 | |
| 737 | /** Set Periodic Tx FIFO Mask all bits 0 */ |
| 738 | _core_if->p_tx_msk = 0; |
| 739 | |
| 740 | /** Set Tx FIFO Mask all bits 0 */ |
| 741 | _core_if->tx_msk = 0; |
| 742 | if (_core_if->en_multiple_tx_fifo == 0) { |
| 743 | /* Non-periodic Tx FIFO */ |
| 744 | DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n", |
| 745 | dwc_read_reg32(&global_regs->gnptxfsiz)); |
| 746 | nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size; |
| 747 | nptxfifosize.b.startaddr = params->dev_rx_fifo_size; |
| 748 | dwc_write_reg32( &global_regs->gnptxfsiz, nptxfifosize.d32 ); |
| 749 | DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", |
| 750 | dwc_read_reg32(&global_regs->gnptxfsiz)); |
| 751 | |
| 752 | |
| 753 | /**@todo NGS: Fix Periodic FIFO Sizing! */ |
| 754 | /* |
| 755 | * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15. |
| 756 | * Indexes of the FIFO size module parameters in the |
| 757 | * dev_perio_tx_fifo_size array and the FIFO size registers in |
| 758 | * the dptxfsiz array run from 0 to 14. |
| 759 | */ |
| 760 | /** @todo Finish debug of this */ |
| 761 | ptxfifosize.b.startaddr = |
| 762 | nptxfifosize.b.startaddr + nptxfifosize.b.depth; |
| 763 | for (i = 0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep;i++) { |
| 764 | ptxfifosize.b.depth = params->dev_perio_tx_fifo_size[i]; |
| 765 | DWC_DEBUGPL(DBG_CIL,"initial dptxfsiz_dieptxf[%d]=%08x\n", |
| 766 | i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); |
| 767 | dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i],ptxfifosize.d32); |
| 768 | DWC_DEBUGPL(DBG_CIL,"new dptxfsiz_dieptxf[%d]=%08x\n", |
| 769 | i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); |
| 770 | ptxfifosize.b.startaddr += ptxfifosize.b.depth; |
| 771 | } |
| 772 | } else { |
| 773 | |
| 774 | /* |
| 775 | * Tx FIFOs These FIFOs are numbered from 1 to 15. |
| 776 | * Indexes of the FIFO size module parameters in the |
| 777 | * dev_tx_fifo_size array and the FIFO size registers in |
| 778 | * the dptxfsiz_dieptxf array run from 0 to 14. |
| 779 | */ |
| 780 | |
| 781 | /* Non-periodic Tx FIFO */ |
| 782 | DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n", |
| 783 | dwc_read_reg32(&global_regs->gnptxfsiz)); |
| 784 | nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size; |
| 785 | nptxfifosize.b.startaddr = params->dev_rx_fifo_size; |
| 786 | dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); |
| 787 | DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", |
| 788 | dwc_read_reg32(&global_regs->gnptxfsiz)); |
| 789 | txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth; |
| 790 | for (i = 1;i < _core_if->hwcfg4.b.num_dev_perio_in_ep;i++) { |
| 791 | txfifosize.b.depth = params->dev_tx_fifo_size[i]; |
| 792 | DWC_DEBUGPL(DBG_CIL,"initial dptxfsiz_dieptxf[%d]=%08x\n", |
| 793 | i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); |
| 794 | dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i - 1],txfifosize.d32); |
| 795 | DWC_DEBUGPL(DBG_CIL,"new dptxfsiz_dieptxf[%d]=%08x\n", |
| 796 | i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i-1])); |
| 797 | txfifosize.b.startaddr += txfifosize.b.depth; |
| 798 | } |
| 799 | } |
| 800 | } |
| 801 | /* Flush the FIFOs */ |
| 802 | dwc_otg_flush_tx_fifo(_core_if, 0x10); /* all Tx FIFOs */ |
| 803 | dwc_otg_flush_rx_fifo(_core_if); |
| 804 | |
| 805 | /* Flush the Learning Queue. */ |
| 806 | resetctl.b.intknqflsh = 1; |
| 807 | dwc_write_reg32( &_core_if->core_global_regs->grstctl, resetctl.d32); |
| 808 | |
| 809 | /* Clear all pending Device Interrupts */ |
| 810 | dwc_write_reg32( &dev_if->dev_global_regs->diepmsk, 0 ); |
| 811 | dwc_write_reg32( &dev_if->dev_global_regs->doepmsk, 0 ); |
| 812 | dwc_write_reg32( &dev_if->dev_global_regs->daint, 0xFFFFFFFF ); |
| 813 | dwc_write_reg32( &dev_if->dev_global_regs->daintmsk, 0 ); |
| 814 | |
| 815 | for (i = 0; i <= dev_if->num_in_eps; i++) { |
| 816 | depctl_data_t depctl; |
| 817 | depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl); |
| 818 | if (depctl.b.epena) { |
| 819 | depctl.d32 = 0; |
| 820 | depctl.b.epdis = 1; |
| 821 | depctl.b.snak = 1; |
| 822 | } else { |
| 823 | depctl.d32 = 0; |
| 824 | } |
| 825 | dwc_write_reg32( &dev_if->in_ep_regs[i]->diepctl, depctl.d32); |
| 826 | |
| 827 | dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0); |
| 828 | dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0); |
| 829 | dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF); |
| 830 | } |
| 831 | for (i = 0; i <= dev_if->num_out_eps; i++) { |
| 832 | depctl_data_t depctl; |
| 833 | depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl); |
| 834 | if (depctl.b.epena) { |
| 835 | depctl.d32 = 0; |
| 836 | depctl.b.epdis = 1; |
| 837 | depctl.b.snak = 1; |
| 838 | } else { |
| 839 | depctl.d32 = 0; |
| 840 | } |
| 841 | dwc_write_reg32( &dev_if->out_ep_regs[i]->doepctl, depctl.d32); |
| 842 | |
| 843 | //dwc_write_reg32( &dev_if->in_ep_regs[i]->dieptsiz, 0); |
| 844 | dwc_write_reg32( &dev_if->out_ep_regs[i]->doeptsiz, 0); |
| 845 | //dwc_write_reg32( &dev_if->in_ep_regs[i]->diepdma, 0); |
| 846 | dwc_write_reg32( &dev_if->out_ep_regs[i]->doepdma, 0); |
| 847 | //dwc_write_reg32( &dev_if->in_ep_regs[i]->diepint, 0xFF); |
| 848 | dwc_write_reg32( &dev_if->out_ep_regs[i]->doepint, 0xFF); |
| 849 | } |
| 850 | |
| 851 | if (_core_if->en_multiple_tx_fifo && _core_if->dma_enable) { |
| 852 | dev_if->non_iso_tx_thr_en = _core_if->core_params->thr_ctl & 0x1; |
| 853 | dev_if->iso_tx_thr_en = (_core_if->core_params->thr_ctl >> 1) & 0x1; |
| 854 | dev_if->rx_thr_en = (_core_if->core_params->thr_ctl >> 2) & 0x1; |
| 855 | dev_if->rx_thr_length = _core_if->core_params->rx_thr_length; |
| 856 | dev_if->tx_thr_length = _core_if->core_params->tx_thr_length; |
| 857 | dthrctl.d32 = 0; |
| 858 | dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en; |
| 859 | dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en; |
| 860 | dthrctl.b.tx_thr_len = dev_if->tx_thr_length; |
| 861 | dthrctl.b.rx_thr_en = dev_if->rx_thr_en; |
| 862 | dthrctl.b.rx_thr_len = dev_if->rx_thr_length; |
| 863 | dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl,dthrctl.d32); |
| 864 | DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\n" |
| 865 | "Rx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n", |
| 866 | dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en, |
| 867 | dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len, |
| 868 | dthrctl.b.rx_thr_len); |
| 869 | } |
| 870 | dwc_otg_enable_device_interrupts( _core_if ); |
| 871 | { |
| 872 | diepmsk_data_t msk = {.d32 = 0}; |
| 873 | msk.b.txfifoundrn = 1; |
| 874 | dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32,msk.d32); |
| 875 | } |
| 876 | } |
| 877 | |
| 878 | /** |
| 879 | * This function enables the Host mode interrupts. |
| 880 | * |
| 881 | * @param _core_if Programming view of DWC_otg controller |
| 882 | */ |
| 883 | void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if) |
| 884 | { |
| 885 | dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs; |
| 886 | gintmsk_data_t intr_mask = {.d32 = 0}; |
| 887 | |
| 888 | DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); |
| 889 | |
| 890 | /* Disable all interrupts. */ |
| 891 | dwc_write_reg32(&global_regs->gintmsk, 0); |
| 892 | |
| 893 | /* Clear any pending interrupts. */ |
| 894 | dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); |
| 895 | |
| 896 | /* Enable the common interrupts */ |
| 897 | dwc_otg_enable_common_interrupts(_core_if); |
| 898 | |
| 899 | /* |
| 900 | * Enable host mode interrupts without disturbing common |
| 901 | * interrupts. |
| 902 | */ |
| 903 | intr_mask.b.sofintr = 1; |
| 904 | intr_mask.b.portintr = 1; |
| 905 | intr_mask.b.hcintr = 1; |
| 906 | |
| 907 | //dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); |
| 908 | //dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32); |
| 909 | dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); |
| 910 | } |
| 911 | |
| 912 | /** |
| 913 | * This function disables the Host Mode interrupts. |
| 914 | * |
| 915 | * @param _core_if Programming view of DWC_otg controller |
| 916 | */ |
| 917 | void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if) |
| 918 | { |
| 919 | dwc_otg_core_global_regs_t *global_regs = |
| 920 | _core_if->core_global_regs; |
| 921 | gintmsk_data_t intr_mask = {.d32 = 0}; |
| 922 | |
| 923 | DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__); |
| 924 | |
| 925 | /* |
| 926 | * Disable host mode interrupts without disturbing common |
| 927 | * interrupts. |
| 928 | */ |
| 929 | intr_mask.b.sofintr = 1; |
| 930 | intr_mask.b.portintr = 1; |
| 931 | intr_mask.b.hcintr = 1; |
| 932 | intr_mask.b.ptxfempty = 1; |
| 933 | intr_mask.b.nptxfempty = 1; |
| 934 | |
| 935 | dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); |
| 936 | } |
| 937 | |
| 938 | #if 0 |
| 939 | /* currently not used, keep it here as if needed later */ |
| 940 | static int phy_read(dwc_otg_core_if_t * _core_if, int addr) |
| 941 | { |
| 942 | u32 val; |
| 943 | int timeout = 10; |
| 944 | |
| 945 | dwc_write_reg32(&_core_if->core_global_regs->gpvndctl, |
| 946 | 0x02000000 | (addr << 16)); |
| 947 | val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl); |
| 948 | while (((val & 0x08000000) == 0) && (timeout--)) { |
| 949 | udelay(1000); |
| 950 | val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl); |
| 951 | } |
| 952 | val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl); |
| 953 | printk("%s: addr=%02x regval=%02x\n", __func__, addr, val & 0x000000ff); |
| 954 | |
| 955 | return 0; |
| 956 | } |
| 957 | #endif |
| 958 | |
| 959 | /** |
| 960 | * This function initializes the DWC_otg controller registers for |
| 961 | * host mode. |
| 962 | * |
| 963 | * This function flushes the Tx and Rx FIFOs and it flushes any entries in the |
| 964 | * request queues. Host channels are reset to ensure that they are ready for |
| 965 | * performing transfers. |
| 966 | * |
| 967 | * @param _core_if Programming view of DWC_otg controller |
| 968 | * |
| 969 | */ |
| 970 | void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if) |
| 971 | { |
| 972 | dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs; |
| 973 | dwc_otg_host_if_t *host_if = _core_if->host_if; |
| 974 | dwc_otg_core_params_t *params = _core_if->core_params; |
| 975 | hprt0_data_t hprt0 = {.d32 = 0}; |
| 976 | fifosize_data_t nptxfifosize; |
| 977 | fifosize_data_t ptxfifosize; |
| 978 | int i; |
| 979 | hcchar_data_t hcchar; |
| 980 | hcfg_data_t hcfg; |
| 981 | dwc_otg_hc_regs_t *hc_regs; |
| 982 | int num_channels; |
| 983 | gotgctl_data_t gotgctl = {.d32 = 0}; |
| 984 | |
| 985 | DWC_DEBUGPL(DBG_CILV,"%s(%p)\n", __func__, _core_if); |
| 986 | |
| 987 | /* Restart the Phy Clock */ |
| 988 | dwc_write_reg32(_core_if->pcgcctl, 0); |
| 989 | |
| 990 | /* Initialize Host Configuration Register */ |
| 991 | init_fslspclksel(_core_if); |
| 992 | if (_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) { |
| 993 | hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg); |
| 994 | hcfg.b.fslssupp = 1; |
| 995 | dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32); |
| 996 | } |
| 997 | |
| 998 | /* Configure data FIFO sizes */ |
| 999 | if (_core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) { |
| 1000 | DWC_DEBUGPL(DBG_CIL,"Total FIFO Size=%d\n", _core_if->total_fifo_size); |
| 1001 | DWC_DEBUGPL(DBG_CIL,"Rx FIFO Size=%d\n", params->host_rx_fifo_size); |
| 1002 | DWC_DEBUGPL(DBG_CIL,"NP Tx FIFO Size=%d\n", params->host_nperio_tx_fifo_size); |
| 1003 | DWC_DEBUGPL(DBG_CIL,"P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size); |
| 1004 | |
| 1005 | /* Rx FIFO */ |
| 1006 | DWC_DEBUGPL(DBG_CIL,"initial grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz)); |
| 1007 | dwc_write_reg32(&global_regs->grxfsiz, params->host_rx_fifo_size); |
| 1008 | DWC_DEBUGPL(DBG_CIL,"new grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz)); |
| 1009 | |
| 1010 | /* Non-periodic Tx FIFO */ |
| 1011 | DWC_DEBUGPL(DBG_CIL,"initial gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz)); |
| 1012 | nptxfifosize.b.depth = params->host_nperio_tx_fifo_size; |
| 1013 | nptxfifosize.b.startaddr = params->host_rx_fifo_size; |
| 1014 | dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); |
| 1015 | DWC_DEBUGPL(DBG_CIL,"new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz)); |
| 1016 | |
| 1017 | /* Periodic Tx FIFO */ |
| 1018 | DWC_DEBUGPL(DBG_CIL,"initial hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz)); |
| 1019 | ptxfifosize.b.depth = params->host_perio_tx_fifo_size; |
| 1020 | ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth; |
| 1021 | dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32); |
| 1022 | DWC_DEBUGPL(DBG_CIL,"new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz)); |
| 1023 | } |
| 1024 | |
| 1025 | /* Clear Host Set HNP Enable in the OTG Control Register */ |
| 1026 | gotgctl.b.hstsethnpen = 1; |
| 1027 | dwc_modify_reg32( &global_regs->gotgctl, gotgctl.d32, 0); |
| 1028 | |
| 1029 | /* Make sure the FIFOs are flushed. */ |
| 1030 | dwc_otg_flush_tx_fifo(_core_if, 0x10 /* all Tx FIFOs */); |
| 1031 | dwc_otg_flush_rx_fifo(_core_if); |
| 1032 | |
| 1033 | /* Flush out any leftover queued requests. */ |
| 1034 | num_channels = _core_if->core_params->host_channels; |
| 1035 | for (i = 0; i < num_channels; i++) { |
| 1036 | hc_regs = _core_if->host_if->hc_regs[i]; |
| 1037 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1038 | hcchar.b.chen = 0; |
| 1039 | hcchar.b.chdis = 1; |
| 1040 | hcchar.b.epdir = 0; |
| 1041 | dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); |
| 1042 | } |
| 1043 | |
| 1044 | /* Halt all channels to put them into a known state. */ |
| 1045 | for (i = 0; i < num_channels; i++) { |
| 1046 | int count = 0; |
| 1047 | hc_regs = _core_if->host_if->hc_regs[i]; |
| 1048 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1049 | hcchar.b.chen = 1; |
| 1050 | hcchar.b.chdis = 1; |
| 1051 | hcchar.b.epdir = 0; |
| 1052 | dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); |
| 1053 | DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i); |
| 1054 | do { |
| 1055 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1056 | if (++count > 200) { |
| 1057 | DWC_ERROR("%s: Unable to clear halt on channel %d\n", |
| 1058 | __func__, i); |
| 1059 | break; |
| 1060 | } |
| 1061 | udelay(100); |
| 1062 | } while (hcchar.b.chen); |
| 1063 | } |
| 1064 | |
| 1065 | /* Turn on the vbus power. */ |
| 1066 | DWC_PRINT("Init: Port Power? op_state=%d\n", _core_if->op_state); |
| 1067 | if (_core_if->op_state == A_HOST){ |
| 1068 | hprt0.d32 = dwc_otg_read_hprt0(_core_if); |
| 1069 | DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr); |
| 1070 | if (hprt0.b.prtpwr == 0 ) { |
| 1071 | hprt0.b.prtpwr = 1; |
| 1072 | dwc_write_reg32(host_if->hprt0, hprt0.d32); |
| 1073 | } |
| 1074 | } |
| 1075 | |
| 1076 | dwc_otg_enable_host_interrupts( _core_if ); |
| 1077 | } |
| 1078 | |
| 1079 | /** |
| 1080 | * Prepares a host channel for transferring packets to/from a specific |
| 1081 | * endpoint. The HCCHARn register is set up with the characteristics specified |
| 1082 | * in _hc. Host channel interrupts that may need to be serviced while this |
| 1083 | * transfer is in progress are enabled. |
| 1084 | * |
| 1085 | * @param _core_if Programming view of DWC_otg controller |
| 1086 | * @param _hc Information needed to initialize the host channel |
| 1087 | */ |
| 1088 | void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) |
| 1089 | { |
| 1090 | uint32_t intr_enable; |
| 1091 | hcintmsk_data_t hc_intr_mask; |
| 1092 | gintmsk_data_t gintmsk = {.d32 = 0}; |
| 1093 | hcchar_data_t hcchar; |
| 1094 | hcsplt_data_t hcsplt; |
| 1095 | |
| 1096 | uint8_t hc_num = _hc->hc_num; |
| 1097 | dwc_otg_host_if_t *host_if = _core_if->host_if; |
| 1098 | dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num]; |
| 1099 | |
| 1100 | /* Clear old interrupt conditions for this host channel. */ |
| 1101 | hc_intr_mask.d32 = 0xFFFFFFFF; |
| 1102 | hc_intr_mask.b.reserved = 0; |
| 1103 | dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32); |
| 1104 | |
| 1105 | /* Enable channel interrupts required for this transfer. */ |
| 1106 | hc_intr_mask.d32 = 0; |
| 1107 | hc_intr_mask.b.chhltd = 1; |
| 1108 | if (_core_if->dma_enable) { |
| 1109 | hc_intr_mask.b.ahberr = 1; |
| 1110 | if (_hc->error_state && !_hc->do_split && |
| 1111 | _hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { |
| 1112 | hc_intr_mask.b.ack = 1; |
| 1113 | if (_hc->ep_is_in) { |
| 1114 | hc_intr_mask.b.datatglerr = 1; |
| 1115 | if (_hc->ep_type != DWC_OTG_EP_TYPE_INTR) { |
| 1116 | hc_intr_mask.b.nak = 1; |
| 1117 | } |
| 1118 | } |
| 1119 | } |
| 1120 | } else { |
| 1121 | switch (_hc->ep_type) { |
| 1122 | case DWC_OTG_EP_TYPE_CONTROL: |
| 1123 | case DWC_OTG_EP_TYPE_BULK: |
| 1124 | hc_intr_mask.b.xfercompl = 1; |
| 1125 | hc_intr_mask.b.stall = 1; |
| 1126 | hc_intr_mask.b.xacterr = 1; |
| 1127 | hc_intr_mask.b.datatglerr = 1; |
| 1128 | if (_hc->ep_is_in) { |
| 1129 | hc_intr_mask.b.bblerr = 1; |
| 1130 | } else { |
| 1131 | hc_intr_mask.b.nak = 1; |
| 1132 | hc_intr_mask.b.nyet = 1; |
| 1133 | if (_hc->do_ping) { |
| 1134 | hc_intr_mask.b.ack = 1; |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | if (_hc->do_split) { |
| 1139 | hc_intr_mask.b.nak = 1; |
| 1140 | if (_hc->complete_split) { |
| 1141 | hc_intr_mask.b.nyet = 1; |
| 1142 | } |
| 1143 | else { |
| 1144 | hc_intr_mask.b.ack = 1; |
| 1145 | } |
| 1146 | } |
| 1147 | |
| 1148 | if (_hc->error_state) { |
| 1149 | hc_intr_mask.b.ack = 1; |
| 1150 | } |
| 1151 | break; |
| 1152 | case DWC_OTG_EP_TYPE_INTR: |
| 1153 | hc_intr_mask.b.xfercompl = 1; |
| 1154 | hc_intr_mask.b.nak = 1; |
| 1155 | hc_intr_mask.b.stall = 1; |
| 1156 | hc_intr_mask.b.xacterr = 1; |
| 1157 | hc_intr_mask.b.datatglerr = 1; |
| 1158 | hc_intr_mask.b.frmovrun = 1; |
| 1159 | |
| 1160 | if (_hc->ep_is_in) { |
| 1161 | hc_intr_mask.b.bblerr = 1; |
| 1162 | } |
| 1163 | if (_hc->error_state) { |
| 1164 | hc_intr_mask.b.ack = 1; |
| 1165 | } |
| 1166 | if (_hc->do_split) { |
| 1167 | if (_hc->complete_split) { |
| 1168 | hc_intr_mask.b.nyet = 1; |
| 1169 | } |
| 1170 | else { |
| 1171 | hc_intr_mask.b.ack = 1; |
| 1172 | } |
| 1173 | } |
| 1174 | break; |
| 1175 | case DWC_OTG_EP_TYPE_ISOC: |
| 1176 | hc_intr_mask.b.xfercompl = 1; |
| 1177 | hc_intr_mask.b.frmovrun = 1; |
| 1178 | hc_intr_mask.b.ack = 1; |
| 1179 | |
| 1180 | if (_hc->ep_is_in) { |
| 1181 | hc_intr_mask.b.xacterr = 1; |
| 1182 | hc_intr_mask.b.bblerr = 1; |
| 1183 | } |
| 1184 | break; |
| 1185 | } |
| 1186 | } |
| 1187 | dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32); |
| 1188 | |
| 1189 | /* Enable the top level host channel interrupt. */ |
| 1190 | intr_enable = (1 << hc_num); |
| 1191 | dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable); |
| 1192 | |
| 1193 | /* Make sure host channel interrupts are enabled. */ |
| 1194 | gintmsk.b.hcintr = 1; |
| 1195 | dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, 0, gintmsk.d32); |
| 1196 | |
| 1197 | /* |
| 1198 | * Program the HCCHARn register with the endpoint characteristics for |
| 1199 | * the current transfer. |
| 1200 | */ |
| 1201 | hcchar.d32 = 0; |
| 1202 | hcchar.b.devaddr = _hc->dev_addr; |
| 1203 | hcchar.b.epnum = _hc->ep_num; |
| 1204 | hcchar.b.epdir = _hc->ep_is_in; |
| 1205 | hcchar.b.lspddev = (_hc->speed == DWC_OTG_EP_SPEED_LOW); |
| 1206 | hcchar.b.eptype = _hc->ep_type; |
| 1207 | hcchar.b.mps = _hc->max_packet; |
| 1208 | |
| 1209 | dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32); |
| 1210 | |
| 1211 | DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); |
| 1212 | DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr); |
| 1213 | DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum); |
| 1214 | DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir); |
| 1215 | DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev); |
| 1216 | DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype); |
| 1217 | DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); |
| 1218 | DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt); |
| 1219 | |
| 1220 | /* |
| 1221 | * Program the HCSPLIT register for SPLITs |
| 1222 | */ |
| 1223 | hcsplt.d32 = 0; |
| 1224 | if (_hc->do_split) { |
| 1225 | DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", _hc->hc_num, |
| 1226 | _hc->complete_split ? "CSPLIT" : "SSPLIT"); |
| 1227 | hcsplt.b.compsplt = _hc->complete_split; |
| 1228 | hcsplt.b.xactpos = _hc->xact_pos; |
| 1229 | hcsplt.b.hubaddr = _hc->hub_addr; |
| 1230 | hcsplt.b.prtaddr = _hc->port_addr; |
| 1231 | DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", _hc->complete_split); |
| 1232 | DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", _hc->xact_pos); |
| 1233 | DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", _hc->hub_addr); |
| 1234 | DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", _hc->port_addr); |
| 1235 | DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", _hc->ep_is_in); |
| 1236 | DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); |
| 1237 | DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", _hc->xfer_len); |
| 1238 | } |
| 1239 | dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32); |
| 1240 | |
| 1241 | } |
| 1242 | |
| 1243 | /** |
| 1244 | * Attempts to halt a host channel. This function should only be called in |
| 1245 | * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under |
| 1246 | * normal circumstances in DMA mode, the controller halts the channel when the |
| 1247 | * transfer is complete or a condition occurs that requires application |
| 1248 | * intervention. |
| 1249 | * |
| 1250 | * In slave mode, checks for a free request queue entry, then sets the Channel |
| 1251 | * Enable and Channel Disable bits of the Host Channel Characteristics |
| 1252 | * register of the specified channel to intiate the halt. If there is no free |
| 1253 | * request queue entry, sets only the Channel Disable bit of the HCCHARn |
| 1254 | * register to flush requests for this channel. In the latter case, sets a |
| 1255 | * flag to indicate that the host channel needs to be halted when a request |
| 1256 | * queue slot is open. |
| 1257 | * |
| 1258 | * In DMA mode, always sets the Channel Enable and Channel Disable bits of the |
| 1259 | * HCCHARn register. The controller ensures there is space in the request |
| 1260 | * queue before submitting the halt request. |
| 1261 | * |
| 1262 | * Some time may elapse before the core flushes any posted requests for this |
| 1263 | * host channel and halts. The Channel Halted interrupt handler completes the |
| 1264 | * deactivation of the host channel. |
| 1265 | * |
| 1266 | * @param _core_if Controller register interface. |
| 1267 | * @param _hc Host channel to halt. |
| 1268 | * @param _halt_status Reason for halting the channel. |
| 1269 | */ |
| 1270 | void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if, |
| 1271 | dwc_hc_t *_hc, |
| 1272 | dwc_otg_halt_status_e _halt_status) |
| 1273 | { |
| 1274 | gnptxsts_data_t nptxsts; |
| 1275 | hptxsts_data_t hptxsts; |
| 1276 | hcchar_data_t hcchar; |
| 1277 | dwc_otg_hc_regs_t *hc_regs; |
| 1278 | dwc_otg_core_global_regs_t *global_regs; |
| 1279 | dwc_otg_host_global_regs_t *host_global_regs; |
| 1280 | |
| 1281 | hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; |
| 1282 | global_regs = _core_if->core_global_regs; |
| 1283 | host_global_regs = _core_if->host_if->host_global_regs; |
| 1284 | |
| 1285 | WARN_ON(_halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS); |
| 1286 | |
| 1287 | if (_halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || |
| 1288 | _halt_status == DWC_OTG_HC_XFER_AHB_ERR) { |
| 1289 | /* |
| 1290 | * Disable all channel interrupts except Ch Halted. The QTD |
| 1291 | * and QH state associated with this transfer has been cleared |
| 1292 | * (in the case of URB_DEQUEUE), so the channel needs to be |
| 1293 | * shut down carefully to prevent crashes. |
| 1294 | */ |
| 1295 | hcintmsk_data_t hcintmsk; |
| 1296 | hcintmsk.d32 = 0; |
| 1297 | hcintmsk.b.chhltd = 1; |
| 1298 | dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32); |
| 1299 | |
| 1300 | /* |
| 1301 | * Make sure no other interrupts besides halt are currently |
| 1302 | * pending. Handling another interrupt could cause a crash due |
| 1303 | * to the QTD and QH state. |
| 1304 | */ |
| 1305 | dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32); |
| 1306 | |
| 1307 | /* |
| 1308 | * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR |
| 1309 | * even if the channel was already halted for some other |
| 1310 | * reason. |
| 1311 | */ |
| 1312 | _hc->halt_status = _halt_status; |
| 1313 | |
| 1314 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1315 | if (hcchar.b.chen == 0) { |
| 1316 | /* |
| 1317 | * The channel is either already halted or it hasn't |
| 1318 | * started yet. In DMA mode, the transfer may halt if |
| 1319 | * it finishes normally or a condition occurs that |
| 1320 | * requires driver intervention. Don't want to halt |
| 1321 | * the channel again. In either Slave or DMA mode, |
| 1322 | * it's possible that the transfer has been assigned |
| 1323 | * to a channel, but not started yet when an URB is |
| 1324 | * dequeued. Don't want to halt a channel that hasn't |
| 1325 | * started yet. |
| 1326 | */ |
| 1327 | return; |
| 1328 | } |
| 1329 | } |
| 1330 | |
| 1331 | if (_hc->halt_pending) { |
| 1332 | /* |
| 1333 | * A halt has already been issued for this channel. This might |
| 1334 | * happen when a transfer is aborted by a higher level in |
| 1335 | * the stack. |
| 1336 | */ |
| 1337 | #ifdef DEBUG |
| 1338 | DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n", |
| 1339 | __func__, _hc->hc_num); |
| 1340 | |
| 1341 | /* dwc_otg_dump_global_registers(_core_if); */ |
| 1342 | /* dwc_otg_dump_host_registers(_core_if); */ |
| 1343 | #endif |
| 1344 | return; |
| 1345 | } |
| 1346 | |
| 1347 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1348 | hcchar.b.chen = 1; |
| 1349 | hcchar.b.chdis = 1; |
| 1350 | |
| 1351 | if (!_core_if->dma_enable) { |
| 1352 | /* Check for space in the request queue to issue the halt. */ |
| 1353 | if (_hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || |
| 1354 | _hc->ep_type == DWC_OTG_EP_TYPE_BULK) { |
| 1355 | nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts); |
| 1356 | if (nptxsts.b.nptxqspcavail == 0) { |
| 1357 | hcchar.b.chen = 0; |
| 1358 | } |
| 1359 | } else { |
| 1360 | hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts); |
| 1361 | if ((hptxsts.b.ptxqspcavail == 0) || (_core_if->queuing_high_bandwidth)) { |
| 1362 | hcchar.b.chen = 0; |
| 1363 | } |
| 1364 | } |
| 1365 | } |
| 1366 | |
| 1367 | dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); |
| 1368 | |
| 1369 | _hc->halt_status = _halt_status; |
| 1370 | |
| 1371 | if (hcchar.b.chen) { |
| 1372 | _hc->halt_pending = 1; |
| 1373 | _hc->halt_on_queue = 0; |
| 1374 | } else { |
| 1375 | _hc->halt_on_queue = 1; |
| 1376 | } |
| 1377 | |
| 1378 | DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); |
| 1379 | DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32); |
| 1380 | DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", _hc->halt_pending); |
| 1381 | DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", _hc->halt_on_queue); |
| 1382 | DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", _hc->halt_status); |
| 1383 | |
| 1384 | return; |
| 1385 | } |
| 1386 | |
| 1387 | /** |
| 1388 | * Clears the transfer state for a host channel. This function is normally |
| 1389 | * called after a transfer is done and the host channel is being released. |
| 1390 | * |
| 1391 | * @param _core_if Programming view of DWC_otg controller. |
| 1392 | * @param _hc Identifies the host channel to clean up. |
| 1393 | */ |
| 1394 | void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) |
| 1395 | { |
| 1396 | dwc_otg_hc_regs_t *hc_regs; |
| 1397 | |
| 1398 | _hc->xfer_started = 0; |
| 1399 | |
| 1400 | /* |
| 1401 | * Clear channel interrupt enables and any unhandled channel interrupt |
| 1402 | * conditions. |
| 1403 | */ |
| 1404 | hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; |
| 1405 | dwc_write_reg32(&hc_regs->hcintmsk, 0); |
| 1406 | dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF); |
| 1407 | |
| 1408 | #ifdef DEBUG |
| 1409 | del_timer(&_core_if->hc_xfer_timer[_hc->hc_num]); |
| 1410 | { |
| 1411 | hcchar_data_t hcchar; |
| 1412 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1413 | if (hcchar.b.chdis) { |
| 1414 | DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", |
| 1415 | __func__, _hc->hc_num, hcchar.d32); |
| 1416 | } |
| 1417 | } |
| 1418 | #endif |
| 1419 | } |
| 1420 | |
| 1421 | /** |
| 1422 | * Sets the channel property that indicates in which frame a periodic transfer |
| 1423 | * should occur. This is always set to the _next_ frame. This function has no |
| 1424 | * effect on non-periodic transfers. |
| 1425 | * |
| 1426 | * @param _core_if Programming view of DWC_otg controller. |
| 1427 | * @param _hc Identifies the host channel to set up and its properties. |
| 1428 | * @param _hcchar Current value of the HCCHAR register for the specified host |
| 1429 | * channel. |
| 1430 | */ |
| 1431 | static inline void hc_set_even_odd_frame(dwc_otg_core_if_t *_core_if, |
| 1432 | dwc_hc_t *_hc, |
| 1433 | hcchar_data_t *_hcchar) |
| 1434 | { |
| 1435 | if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || |
| 1436 | _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { |
| 1437 | hfnum_data_t hfnum; |
| 1438 | hfnum.d32 = dwc_read_reg32(&_core_if->host_if->host_global_regs->hfnum); |
| 1439 | /* 1 if _next_ frame is odd, 0 if it's even */ |
| 1440 | _hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1; |
| 1441 | #ifdef DEBUG |
| 1442 | if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR && _hc->do_split && !_hc->complete_split) { |
| 1443 | switch (hfnum.b.frnum & 0x7) { |
| 1444 | case 7: |
| 1445 | _core_if->hfnum_7_samples++; |
| 1446 | _core_if->hfnum_7_frrem_accum += hfnum.b.frrem; |
| 1447 | break; |
| 1448 | case 0: |
| 1449 | _core_if->hfnum_0_samples++; |
| 1450 | _core_if->hfnum_0_frrem_accum += hfnum.b.frrem; |
| 1451 | break; |
| 1452 | default: |
| 1453 | _core_if->hfnum_other_samples++; |
| 1454 | _core_if->hfnum_other_frrem_accum += hfnum.b.frrem; |
| 1455 | break; |
| 1456 | } |
| 1457 | } |
| 1458 | #endif |
| 1459 | } |
| 1460 | } |
| 1461 | |
| 1462 | #ifdef DEBUG |
| 1463 | static void hc_xfer_timeout(unsigned long _ptr) |
| 1464 | { |
| 1465 | hc_xfer_info_t *xfer_info = (hc_xfer_info_t *)_ptr; |
| 1466 | int hc_num = xfer_info->hc->hc_num; |
| 1467 | DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num); |
| 1468 | DWC_WARN(" start_hcchar_val 0x%08x\n", xfer_info->core_if->start_hcchar_val[hc_num]); |
| 1469 | } |
| 1470 | #endif |
| 1471 | |
| 1472 | /* |
| 1473 | * This function does the setup for a data transfer for a host channel and |
| 1474 | * starts the transfer. May be called in either Slave mode or DMA mode. In |
| 1475 | * Slave mode, the caller must ensure that there is sufficient space in the |
| 1476 | * request queue and Tx Data FIFO. |
| 1477 | * |
| 1478 | * For an OUT transfer in Slave mode, it loads a data packet into the |
| 1479 | * appropriate FIFO. If necessary, additional data packets will be loaded in |
| 1480 | * the Host ISR. |
| 1481 | * |
| 1482 | * For an IN transfer in Slave mode, a data packet is requested. The data |
| 1483 | * packets are unloaded from the Rx FIFO in the Host ISR. If necessary, |
| 1484 | * additional data packets are requested in the Host ISR. |
| 1485 | * |
| 1486 | * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ |
| 1487 | * register along with a packet count of 1 and the channel is enabled. This |
| 1488 | * causes a single PING transaction to occur. Other fields in HCTSIZ are |
| 1489 | * simply set to 0 since no data transfer occurs in this case. |
| 1490 | * |
| 1491 | * For a PING transfer in DMA mode, the HCTSIZ register is initialized with |
| 1492 | * all the information required to perform the subsequent data transfer. In |
| 1493 | * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the |
| 1494 | * controller performs the entire PING protocol, then starts the data |
| 1495 | * transfer. |
| 1496 | * |
| 1497 | * @param _core_if Programming view of DWC_otg controller. |
| 1498 | * @param _hc Information needed to initialize the host channel. The xfer_len |
| 1499 | * value may be reduced to accommodate the max widths of the XferSize and |
| 1500 | * PktCnt fields in the HCTSIZn register. The multi_count value may be changed |
| 1501 | * to reflect the final xfer_len value. |
| 1502 | */ |
| 1503 | void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) |
| 1504 | { |
| 1505 | hcchar_data_t hcchar; |
| 1506 | hctsiz_data_t hctsiz; |
| 1507 | uint16_t num_packets; |
| 1508 | uint32_t max_hc_xfer_size = _core_if->core_params->max_transfer_size; |
| 1509 | uint16_t max_hc_pkt_count = _core_if->core_params->max_packet_count; |
| 1510 | dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; |
| 1511 | |
| 1512 | hctsiz.d32 = 0; |
| 1513 | |
| 1514 | if (_hc->do_ping) { |
| 1515 | if (!_core_if->dma_enable) { |
| 1516 | dwc_otg_hc_do_ping(_core_if, _hc); |
| 1517 | _hc->xfer_started = 1; |
| 1518 | return; |
| 1519 | } else { |
| 1520 | hctsiz.b.dopng = 1; |
| 1521 | } |
| 1522 | } |
| 1523 | |
| 1524 | if (_hc->do_split) { |
| 1525 | num_packets = 1; |
| 1526 | |
| 1527 | if (_hc->complete_split && !_hc->ep_is_in) { |
| 1528 | /* For CSPLIT OUT Transfer, set the size to 0 so the |
| 1529 | * core doesn't expect any data written to the FIFO */ |
| 1530 | _hc->xfer_len = 0; |
| 1531 | } else if (_hc->ep_is_in || (_hc->xfer_len > _hc->max_packet)) { |
| 1532 | _hc->xfer_len = _hc->max_packet; |
| 1533 | } else if (!_hc->ep_is_in && (_hc->xfer_len > 188)) { |
| 1534 | _hc->xfer_len = 188; |
| 1535 | } |
| 1536 | |
| 1537 | hctsiz.b.xfersize = _hc->xfer_len; |
| 1538 | } else { |
| 1539 | /* |
| 1540 | * Ensure that the transfer length and packet count will fit |
| 1541 | * in the widths allocated for them in the HCTSIZn register. |
| 1542 | */ |
| 1543 | if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || |
| 1544 | _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { |
| 1545 | /* |
| 1546 | * Make sure the transfer size is no larger than one |
| 1547 | * (micro)frame's worth of data. (A check was done |
| 1548 | * when the periodic transfer was accepted to ensure |
| 1549 | * that a (micro)frame's worth of data can be |
| 1550 | * programmed into a channel.) |
| 1551 | */ |
| 1552 | uint32_t max_periodic_len = _hc->multi_count * _hc->max_packet; |
| 1553 | if (_hc->xfer_len > max_periodic_len) { |
| 1554 | _hc->xfer_len = max_periodic_len; |
| 1555 | } else { |
| 1556 | } |
| 1557 | } else if (_hc->xfer_len > max_hc_xfer_size) { |
| 1558 | /* Make sure that xfer_len is a multiple of max packet size. */ |
| 1559 | _hc->xfer_len = max_hc_xfer_size - _hc->max_packet + 1; |
| 1560 | } |
| 1561 | |
| 1562 | if (_hc->xfer_len > 0) { |
| 1563 | num_packets = (_hc->xfer_len + _hc->max_packet - 1) / _hc->max_packet; |
| 1564 | if (num_packets > max_hc_pkt_count) { |
| 1565 | num_packets = max_hc_pkt_count; |
| 1566 | _hc->xfer_len = num_packets * _hc->max_packet; |
| 1567 | } |
| 1568 | } else { |
| 1569 | /* Need 1 packet for transfer length of 0. */ |
| 1570 | num_packets = 1; |
| 1571 | } |
| 1572 | |
| 1573 | if (_hc->ep_is_in) { |
| 1574 | /* Always program an integral # of max packets for IN transfers. */ |
| 1575 | _hc->xfer_len = num_packets * _hc->max_packet; |
| 1576 | } |
| 1577 | |
| 1578 | if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || |
| 1579 | _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { |
| 1580 | /* |
| 1581 | * Make sure that the multi_count field matches the |
| 1582 | * actual transfer length. |
| 1583 | */ |
| 1584 | _hc->multi_count = num_packets; |
| 1585 | |
| 1586 | } |
| 1587 | |
| 1588 | if (_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { |
| 1589 | /* Set up the initial PID for the transfer. */ |
| 1590 | if (_hc->speed == DWC_OTG_EP_SPEED_HIGH) { |
| 1591 | if (_hc->ep_is_in) { |
| 1592 | if (_hc->multi_count == 1) { |
| 1593 | _hc->data_pid_start = DWC_OTG_HC_PID_DATA0; |
| 1594 | } else if (_hc->multi_count == 2) { |
| 1595 | _hc->data_pid_start = DWC_OTG_HC_PID_DATA1; |
| 1596 | } else { |
| 1597 | _hc->data_pid_start = DWC_OTG_HC_PID_DATA2; |
| 1598 | } |
| 1599 | } else { |
| 1600 | if (_hc->multi_count == 1) { |
| 1601 | _hc->data_pid_start = DWC_OTG_HC_PID_DATA0; |
| 1602 | } else { |
| 1603 | _hc->data_pid_start = DWC_OTG_HC_PID_MDATA; |
| 1604 | } |
| 1605 | } |
| 1606 | } else { |
| 1607 | _hc->data_pid_start = DWC_OTG_HC_PID_DATA0; |
| 1608 | } |
| 1609 | } |
| 1610 | |
| 1611 | hctsiz.b.xfersize = _hc->xfer_len; |
| 1612 | } |
| 1613 | |
| 1614 | _hc->start_pkt_count = num_packets; |
| 1615 | hctsiz.b.pktcnt = num_packets; |
| 1616 | hctsiz.b.pid = _hc->data_pid_start; |
| 1617 | dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); |
| 1618 | |
| 1619 | DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); |
| 1620 | DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize); |
| 1621 | DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt); |
| 1622 | DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid); |
| 1623 | |
| 1624 | if (_core_if->dma_enable) { |
| 1625 | #ifdef DEBUG |
| 1626 | if(((uint32_t)_hc->xfer_buff)%4) |
| 1627 | printk("dwc_otg_hc_start_transfer _hc->xfer_buff not 4 byte alignment\n"); |
| 1628 | #endif |
| 1629 | dwc_write_reg32(&hc_regs->hcdma, (uint32_t)_hc->xfer_buff); |
| 1630 | } |
| 1631 | |
| 1632 | /* Start the split */ |
| 1633 | if (_hc->do_split) { |
| 1634 | hcsplt_data_t hcsplt; |
| 1635 | hcsplt.d32 = dwc_read_reg32 (&hc_regs->hcsplt); |
| 1636 | hcsplt.b.spltena = 1; |
| 1637 | dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32); |
| 1638 | } |
| 1639 | |
| 1640 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1641 | hcchar.b.multicnt = _hc->multi_count; |
| 1642 | hc_set_even_odd_frame(_core_if, _hc, &hcchar); |
| 1643 | #ifdef DEBUG |
| 1644 | _core_if->start_hcchar_val[_hc->hc_num] = hcchar.d32; |
| 1645 | if (hcchar.b.chdis) { |
| 1646 | DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", |
| 1647 | __func__, _hc->hc_num, hcchar.d32); |
| 1648 | } |
| 1649 | #endif |
| 1650 | |
| 1651 | /* Set host channel enable after all other setup is complete. */ |
| 1652 | hcchar.b.chen = 1; |
| 1653 | hcchar.b.chdis = 0; |
| 1654 | dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); |
| 1655 | |
| 1656 | _hc->xfer_started = 1; |
| 1657 | _hc->requests++; |
| 1658 | |
| 1659 | if (!_core_if->dma_enable && !_hc->ep_is_in && _hc->xfer_len > 0) { |
| 1660 | /* Load OUT packet into the appropriate Tx FIFO. */ |
| 1661 | dwc_otg_hc_write_packet(_core_if, _hc); |
| 1662 | } |
| 1663 | |
| 1664 | #ifdef DEBUG |
| 1665 | /* Start a timer for this transfer. */ |
| 1666 | _core_if->hc_xfer_timer[_hc->hc_num].function = hc_xfer_timeout; |
| 1667 | _core_if->hc_xfer_info[_hc->hc_num].core_if = _core_if; |
| 1668 | _core_if->hc_xfer_info[_hc->hc_num].hc = _hc; |
| 1669 | _core_if->hc_xfer_timer[_hc->hc_num].data = (unsigned long)(&_core_if->hc_xfer_info[_hc->hc_num]); |
| 1670 | _core_if->hc_xfer_timer[_hc->hc_num].expires = jiffies + (HZ*10); |
| 1671 | add_timer(&_core_if->hc_xfer_timer[_hc->hc_num]); |
| 1672 | #endif |
| 1673 | } |
| 1674 | |
| 1675 | /** |
| 1676 | * This function continues a data transfer that was started by previous call |
| 1677 | * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is |
| 1678 | * sufficient space in the request queue and Tx Data FIFO. This function |
| 1679 | * should only be called in Slave mode. In DMA mode, the controller acts |
| 1680 | * autonomously to complete transfers programmed to a host channel. |
| 1681 | * |
| 1682 | * For an OUT transfer, a new data packet is loaded into the appropriate FIFO |
| 1683 | * if there is any data remaining to be queued. For an IN transfer, another |
| 1684 | * data packet is always requested. For the SETUP phase of a control transfer, |
| 1685 | * this function does nothing. |
| 1686 | * |
| 1687 | * @return 1 if a new request is queued, 0 if no more requests are required |
| 1688 | * for this transfer. |
| 1689 | */ |
| 1690 | int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) |
| 1691 | { |
| 1692 | DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); |
| 1693 | |
| 1694 | if (_hc->do_split) { |
| 1695 | /* SPLITs always queue just once per channel */ |
| 1696 | return 0; |
| 1697 | } else if (_hc->data_pid_start == DWC_OTG_HC_PID_SETUP) { |
| 1698 | /* SETUPs are queued only once since they can't be NAKed. */ |
| 1699 | return 0; |
| 1700 | } else if (_hc->ep_is_in) { |
| 1701 | /* |
| 1702 | * Always queue another request for other IN transfers. If |
| 1703 | * back-to-back INs are issued and NAKs are received for both, |
| 1704 | * the driver may still be processing the first NAK when the |
| 1705 | * second NAK is received. When the interrupt handler clears |
| 1706 | * the NAK interrupt for the first NAK, the second NAK will |
| 1707 | * not be seen. So we can't depend on the NAK interrupt |
| 1708 | * handler to requeue a NAKed request. Instead, IN requests |
| 1709 | * are issued each time this function is called. When the |
| 1710 | * transfer completes, the extra requests for the channel will |
| 1711 | * be flushed. |
| 1712 | */ |
| 1713 | hcchar_data_t hcchar; |
| 1714 | dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; |
| 1715 | |
| 1716 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1717 | hc_set_even_odd_frame(_core_if, _hc, &hcchar); |
| 1718 | hcchar.b.chen = 1; |
| 1719 | hcchar.b.chdis = 0; |
| 1720 | DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32); |
| 1721 | dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); |
| 1722 | _hc->requests++; |
| 1723 | return 1; |
| 1724 | } else { |
| 1725 | /* OUT transfers. */ |
| 1726 | if (_hc->xfer_count < _hc->xfer_len) { |
| 1727 | if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || |
| 1728 | _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { |
| 1729 | hcchar_data_t hcchar; |
| 1730 | dwc_otg_hc_regs_t *hc_regs; |
| 1731 | hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; |
| 1732 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1733 | hc_set_even_odd_frame(_core_if, _hc, &hcchar); |
| 1734 | } |
| 1735 | |
| 1736 | /* Load OUT packet into the appropriate Tx FIFO. */ |
| 1737 | dwc_otg_hc_write_packet(_core_if, _hc); |
| 1738 | _hc->requests++; |
| 1739 | return 1; |
| 1740 | } else { |
| 1741 | return 0; |
| 1742 | } |
| 1743 | } |
| 1744 | } |
| 1745 | |
| 1746 | /** |
| 1747 | * Starts a PING transfer. This function should only be called in Slave mode. |
| 1748 | * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled. |
| 1749 | */ |
| 1750 | void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) |
| 1751 | { |
| 1752 | hcchar_data_t hcchar; |
| 1753 | hctsiz_data_t hctsiz; |
| 1754 | dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; |
| 1755 | |
| 1756 | DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); |
| 1757 | |
| 1758 | hctsiz.d32 = 0; |
| 1759 | hctsiz.b.dopng = 1; |
| 1760 | hctsiz.b.pktcnt = 1; |
| 1761 | dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); |
| 1762 | |
| 1763 | hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); |
| 1764 | hcchar.b.chen = 1; |
| 1765 | hcchar.b.chdis = 0; |
| 1766 | dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); |
| 1767 | } |
| 1768 | |
| 1769 | /* |
| 1770 | * This function writes a packet into the Tx FIFO associated with the Host |
| 1771 | * Channel. For a channel associated with a non-periodic EP, the non-periodic |
| 1772 | * Tx FIFO is written. For a channel associated with a periodic EP, the |
| 1773 | * periodic Tx FIFO is written. This function should only be called in Slave |
| 1774 | * mode. |
| 1775 | * |
| 1776 | * Upon return the xfer_buff and xfer_count fields in _hc are incremented by |
| 1777 | * then number of bytes written to the Tx FIFO. |
| 1778 | */ |
| 1779 | void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) |
| 1780 | { |
| 1781 | uint32_t i; |
| 1782 | uint32_t remaining_count; |
| 1783 | uint32_t byte_count; |
| 1784 | uint32_t dword_count; |
| 1785 | |
| 1786 | uint32_t *data_buff = (uint32_t *)(_hc->xfer_buff); |
| 1787 | uint32_t *data_fifo = _core_if->data_fifo[_hc->hc_num]; |
| 1788 | |
| 1789 | remaining_count = _hc->xfer_len - _hc->xfer_count; |
| 1790 | if (remaining_count > _hc->max_packet) { |
| 1791 | byte_count = _hc->max_packet; |
| 1792 | } else { |
| 1793 | byte_count = remaining_count; |
| 1794 | } |
| 1795 | |
| 1796 | dword_count = (byte_count + 3) / 4; |
| 1797 | |
| 1798 | if ((((unsigned long)data_buff) & 0x3) == 0) { |
| 1799 | /* xfer_buff is DWORD aligned. */ |
| 1800 | for (i = 0; i < dword_count; i++, data_buff++) { |
| 1801 | dwc_write_reg32(data_fifo, *data_buff); |
| 1802 | } |
| 1803 | } else { |
| 1804 | /* xfer_buff is not DWORD aligned. */ |
| 1805 | for (i = 0; i < dword_count; i++, data_buff++) { |
| 1806 | dwc_write_reg32(data_fifo, get_unaligned(data_buff)); |
| 1807 | } |
| 1808 | } |
| 1809 | |
| 1810 | _hc->xfer_count += byte_count; |
| 1811 | _hc->xfer_buff += byte_count; |
| 1812 | } |
| 1813 | |
| 1814 | /** |
| 1815 | * Gets the current USB frame number. This is the frame number from the last |
| 1816 | * SOF packet. |
| 1817 | */ |
| 1818 | uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if) |
| 1819 | { |
| 1820 | dsts_data_t dsts; |
| 1821 | dsts.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dsts); |
| 1822 | |
| 1823 | /* read current frame/microfreme number from DSTS register */ |
| 1824 | return dsts.b.soffn; |
| 1825 | } |
| 1826 | |
| 1827 | /** |
| 1828 | * This function reads a setup packet from the Rx FIFO into the destination |
| 1829 | * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl) |
| 1830 | * Interrupt routine when a SETUP packet has been received in Slave mode. |
| 1831 | * |
| 1832 | * @param _core_if Programming view of DWC_otg controller. |
| 1833 | * @param _dest Destination buffer for packet data. |
| 1834 | */ |
| 1835 | void dwc_otg_read_setup_packet(dwc_otg_core_if_t *_core_if, uint32_t *_dest) |
| 1836 | { |
| 1837 | /* Get the 8 bytes of a setup transaction data */ |
| 1838 | |
| 1839 | /* Pop 2 DWORDS off the receive data FIFO into memory */ |
| 1840 | _dest[0] = dwc_read_reg32(_core_if->data_fifo[0]); |
| 1841 | _dest[1] = dwc_read_reg32(_core_if->data_fifo[0]); |
| 1842 | //_dest[0] = dwc_read_datafifo32(_core_if->data_fifo[0]); |
| 1843 | //_dest[1] = dwc_read_datafifo32(_core_if->data_fifo[0]); |
| 1844 | } |
| 1845 | |
| 1846 | |
| 1847 | /** |
| 1848 | * This function enables EP0 OUT to receive SETUP packets and configures EP0 |
| 1849 | * IN for transmitting packets. It is normally called when the |
| 1850 | * "Enumeration Done" interrupt occurs. |
| 1851 | * |
| 1852 | * @param _core_if Programming view of DWC_otg controller. |
| 1853 | * @param _ep The EP0 data. |
| 1854 | */ |
| 1855 | void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) |
| 1856 | { |
| 1857 | dwc_otg_dev_if_t *dev_if = _core_if->dev_if; |
| 1858 | dsts_data_t dsts; |
| 1859 | depctl_data_t diepctl; |
| 1860 | depctl_data_t doepctl; |
| 1861 | dctl_data_t dctl ={.d32=0}; |
| 1862 | |
| 1863 | /* Read the Device Status and Endpoint 0 Control registers */ |
| 1864 | dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts); |
| 1865 | diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl); |
| 1866 | doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl); |
| 1867 | |
| 1868 | /* Set the MPS of the IN EP based on the enumeration speed */ |
| 1869 | switch (dsts.b.enumspd) { |
| 1870 | case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ: |
| 1871 | case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ: |
| 1872 | case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ: |
| 1873 | diepctl.b.mps = DWC_DEP0CTL_MPS_64; |
| 1874 | break; |
| 1875 | case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ: |
| 1876 | diepctl.b.mps = DWC_DEP0CTL_MPS_8; |
| 1877 | break; |
| 1878 | } |
| 1879 | |
| 1880 | dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32); |
| 1881 | |
| 1882 | /* Enable OUT EP for receive */ |
| 1883 | doepctl.b.epena = 1; |
| 1884 | dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32); |
| 1885 | |
| 1886 | #ifdef VERBOSE |
| 1887 | DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n", |
| 1888 | dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); |
| 1889 | DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n", |
| 1890 | dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl)); |
| 1891 | #endif |
| 1892 | dctl.b.cgnpinnak = 1; |
| 1893 | dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32); |
| 1894 | DWC_DEBUGPL(DBG_PCDV,"dctl=%0x\n", |
| 1895 | dwc_read_reg32(&dev_if->dev_global_regs->dctl)); |
| 1896 | } |
| 1897 | |
| 1898 | /** |
| 1899 | * This function activates an EP. The Device EP control register for |
| 1900 | * the EP is configured as defined in the ep structure. Note: This |
| 1901 | * function is not used for EP0. |
| 1902 | * |
| 1903 | * @param _core_if Programming view of DWC_otg controller. |
| 1904 | * @param _ep The EP to activate. |
| 1905 | */ |
| 1906 | void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) |
| 1907 | { |
| 1908 | dwc_otg_dev_if_t *dev_if = _core_if->dev_if; |
| 1909 | depctl_data_t depctl; |
| 1910 | volatile uint32_t *addr; |
| 1911 | daint_data_t daintmsk = {.d32=0}; |
| 1912 | |
| 1913 | DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, _ep->num, |
| 1914 | (_ep->is_in?"IN":"OUT")); |
| 1915 | |
| 1916 | /* Read DEPCTLn register */ |
| 1917 | if (_ep->is_in == 1) { |
| 1918 | addr = &dev_if->in_ep_regs[_ep->num]->diepctl; |
| 1919 | daintmsk.ep.in = 1<<_ep->num; |
| 1920 | } else { |
| 1921 | addr = &dev_if->out_ep_regs[_ep->num]->doepctl; |
| 1922 | daintmsk.ep.out = 1<<_ep->num; |
| 1923 | } |
| 1924 | |
| 1925 | /* If the EP is already active don't change the EP Control |
| 1926 | * register. */ |
| 1927 | depctl.d32 = dwc_read_reg32(addr); |
| 1928 | if (!depctl.b.usbactep) { |
| 1929 | depctl.b.mps = _ep->maxpacket; |
| 1930 | depctl.b.eptype = _ep->type; |
| 1931 | depctl.b.txfnum = _ep->tx_fifo_num; |
| 1932 | |
| 1933 | if (_ep->type == DWC_OTG_EP_TYPE_ISOC) { |
| 1934 | depctl.b.setd0pid = 1; // ??? |
| 1935 | } else { |
| 1936 | depctl.b.setd0pid = 1; |
| 1937 | } |
| 1938 | depctl.b.usbactep = 1; |
| 1939 | |
| 1940 | dwc_write_reg32(addr, depctl.d32); |
| 1941 | DWC_DEBUGPL(DBG_PCDV,"DEPCTL=%08x\n", dwc_read_reg32(addr)); |
| 1942 | } |
| 1943 | |
| 1944 | |
| 1945 | /* Enable the Interrupt for this EP */ |
| 1946 | dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk, |
| 1947 | 0, daintmsk.d32); |
| 1948 | DWC_DEBUGPL(DBG_PCDV,"DAINTMSK=%0x\n", |
| 1949 | dwc_read_reg32(&dev_if->dev_global_regs->daintmsk)); |
| 1950 | _ep->stall_clear_flag = 0; |
| 1951 | return; |
| 1952 | } |
| 1953 | |
| 1954 | /** |
| 1955 | * This function deactivates an EP. This is done by clearing the USB Active |
| 1956 | * EP bit in the Device EP control register. Note: This function is not used |
| 1957 | * for EP0. EP0 cannot be deactivated. |
| 1958 | * |
| 1959 | * @param _core_if Programming view of DWC_otg controller. |
| 1960 | * @param _ep The EP to deactivate. |
| 1961 | */ |
| 1962 | void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) |
| 1963 | { |
| 1964 | depctl_data_t depctl ={.d32 = 0}; |
| 1965 | volatile uint32_t *addr; |
| 1966 | daint_data_t daintmsk = {.d32=0}; |
| 1967 | |
| 1968 | /* Read DEPCTLn register */ |
| 1969 | if (_ep->is_in == 1) { |
| 1970 | addr = &_core_if->dev_if->in_ep_regs[_ep->num]->diepctl; |
| 1971 | daintmsk.ep.in = 1<<_ep->num; |
| 1972 | } else { |
| 1973 | addr = &_core_if->dev_if->out_ep_regs[_ep->num]->doepctl; |
| 1974 | daintmsk.ep.out = 1<<_ep->num; |
| 1975 | } |
| 1976 | |
| 1977 | depctl.b.usbactep = 0; |
| 1978 | dwc_write_reg32(addr, depctl.d32); |
| 1979 | |
| 1980 | /* Disable the Interrupt for this EP */ |
| 1981 | dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->daintmsk, |
| 1982 | daintmsk.d32, 0); |
| 1983 | |
| 1984 | return; |
| 1985 | } |
| 1986 | |
| 1987 | /** |
| 1988 | * This function does the setup for a data transfer for an EP and |
| 1989 | * starts the transfer. For an IN transfer, the packets will be |
| 1990 | * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers, |
| 1991 | * the packets are unloaded from the Rx FIFO in the ISR. the ISR. |
| 1992 | * |
| 1993 | * @param _core_if Programming view of DWC_otg controller. |
| 1994 | * @param _ep The EP to start the transfer on. |
| 1995 | */ |
| 1996 | void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) |
| 1997 | { |
| 1998 | /** @todo Refactor this funciton to check the transfer size |
| 1999 | * count value does not execed the number bits in the Transfer |
| 2000 | * count register. */ |
| 2001 | depctl_data_t depctl; |
| 2002 | deptsiz_data_t deptsiz; |
| 2003 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 2004 | |
| 2005 | #ifdef CHECK_PACKET_COUNTER_WIDTH |
| 2006 | const uint32_t MAX_XFER_SIZE = |
| 2007 | _core_if->core_params->max_transfer_size; |
| 2008 | const uint32_t MAX_PKT_COUNT = |
| 2009 | _core_if->core_params->max_packet_count; |
| 2010 | uint32_t num_packets; |
| 2011 | uint32_t transfer_len; |
| 2012 | dwc_otg_dev_out_ep_regs_t *out_regs = |
| 2013 | _core_if->dev_if->out_ep_regs[_ep->num]; |
| 2014 | dwc_otg_dev_in_ep_regs_t *in_regs = |
| 2015 | _core_if->dev_if->in_ep_regs[_ep->num]; |
| 2016 | gnptxsts_data_t txstatus; |
| 2017 | |
| 2018 | int lvl = SET_DEBUG_LEVEL(DBG_PCD); |
| 2019 | |
| 2020 | |
| 2021 | DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " |
| 2022 | "xfer_buff=%p start_xfer_buff=%p\n", |
| 2023 | _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len, |
| 2024 | _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff); |
| 2025 | |
| 2026 | transfer_len = _ep->xfer_len - _ep->xfer_count; |
| 2027 | if (transfer_len > MAX_XFER_SIZE) { |
| 2028 | transfer_len = MAX_XFER_SIZE; |
| 2029 | } |
| 2030 | if (transfer_len == 0) { |
| 2031 | num_packets = 1; |
| 2032 | /* OUT EP to recieve Zero-length packet set transfer |
| 2033 | * size to maxpacket size. */ |
| 2034 | if (!_ep->is_in) { |
| 2035 | transfer_len = _ep->maxpacket; |
| 2036 | } |
| 2037 | } else { |
| 2038 | num_packets = |
| 2039 | (transfer_len + _ep->maxpacket - 1) / _ep->maxpacket; |
| 2040 | if (num_packets > MAX_PKT_COUNT) { |
| 2041 | num_packets = MAX_PKT_COUNT; |
| 2042 | } |
| 2043 | } |
| 2044 | DWC_DEBUGPL(DBG_PCD, "transfer_len=%d #pckt=%d\n", transfer_len, |
| 2045 | num_packets); |
| 2046 | |
| 2047 | deptsiz.b.xfersize = transfer_len; |
| 2048 | deptsiz.b.pktcnt = num_packets; |
| 2049 | |
| 2050 | /* IN endpoint */ |
| 2051 | if (_ep->is_in == 1) { |
| 2052 | depctl.d32 = dwc_read_reg32(&in_regs->diepctl); |
| 2053 | } else {/* OUT endpoint */ |
| 2054 | depctl.d32 = dwc_read_reg32(&out_regs->doepctl); |
| 2055 | } |
| 2056 | |
| 2057 | /* EP enable, IN data in FIFO */ |
| 2058 | depctl.b.cnak = 1; |
| 2059 | depctl.b.epena = 1; |
| 2060 | /* IN endpoint */ |
| 2061 | if (_ep->is_in == 1) { |
| 2062 | txstatus.d32 = |
| 2063 | dwc_read_reg32(&_core_if->core_global_regs->gnptxsts); |
| 2064 | if (txstatus.b.nptxqspcavail == 0) { |
| 2065 | DWC_DEBUGPL(DBG_ANY, "TX Queue Full (0x%0x)\n", |
| 2066 | txstatus.d32); |
| 2067 | return; |
| 2068 | } |
| 2069 | dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); |
| 2070 | dwc_write_reg32(&in_regs->diepctl, depctl.d32); |
| 2071 | /** |
| 2072 | * Enable the Non-Periodic Tx FIFO empty interrupt, the |
| 2073 | * data will be written into the fifo by the ISR. |
| 2074 | */ |
| 2075 | if (_core_if->dma_enable) { |
| 2076 | dwc_write_reg32(&in_regs->diepdma, (uint32_t) _ep->xfer_buff); |
| 2077 | } else { |
| 2078 | if (_core_if->en_multiple_tx_fifo == 0) { |
| 2079 | intr_mask.b.nptxfempty = 1; |
| 2080 | dwc_modify_reg32( &_core_if->core_global_regs->gintsts, |
| 2081 | intr_mask.d32, 0); |
| 2082 | dwc_modify_reg32( &_core_if->core_global_regs->gintmsk, |
| 2083 | intr_mask.d32, intr_mask.d32); |
| 2084 | } else { |
| 2085 | /* Enable the Tx FIFO Empty Interrupt for this EP */ |
| 2086 | if (_ep->xfer_len > 0 && |
| 2087 | _ep->type != DWC_OTG_EP_TYPE_ISOC) { |
| 2088 | uint32_t fifoemptymsk = 0; |
| 2089 | fifoemptymsk = (0x1 << _ep->num); |
| 2090 | dwc_modify_reg32(&_core_if->dev_if->dev_global_regs-> |
| 2091 | dtknqr4_fifoemptymsk,0, fifoemptymsk); |
| 2092 | } |
| 2093 | } |
| 2094 | } |
| 2095 | } else { /* OUT endpoint */ |
| 2096 | dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); |
| 2097 | dwc_write_reg32(&out_regs->doepctl, depctl.d32); |
| 2098 | if (_core_if->dma_enable) { |
| 2099 | dwc_write_reg32(&out_regs->doepdma,(uint32_t) _ep->xfer_buff); |
| 2100 | } |
| 2101 | } |
| 2102 | DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n", |
| 2103 | dwc_read_reg32(&out_regs->doepctl), |
| 2104 | dwc_read_reg32(&out_regs->doeptsiz)); |
| 2105 | DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", |
| 2106 | dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk), |
| 2107 | dwc_read_reg32(&_core_if->core_global_regs->gintmsk)); |
| 2108 | |
| 2109 | SET_DEBUG_LEVEL(lvl); |
| 2110 | #endif |
| 2111 | DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__); |
| 2112 | |
| 2113 | DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " |
| 2114 | "xfer_buff=%p start_xfer_buff=%p\n", |
| 2115 | _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len, |
| 2116 | _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff); |
| 2117 | |
| 2118 | /* IN endpoint */ |
| 2119 | if (_ep->is_in == 1) { |
| 2120 | dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[_ep->num]; |
| 2121 | gnptxsts_data_t gtxstatus; |
| 2122 | gtxstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts); |
| 2123 | if (_core_if->en_multiple_tx_fifo == 0 && |
| 2124 | gtxstatus.b.nptxqspcavail == 0) { |
| 2125 | #ifdef DEBUG |
| 2126 | DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32); |
| 2127 | #endif |
| 2128 | //return; |
| 2129 | MDELAY(100); //james |
| 2130 | } |
| 2131 | |
| 2132 | depctl.d32 = dwc_read_reg32(&(in_regs->diepctl)); |
| 2133 | deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz)); |
| 2134 | |
| 2135 | /* Zero Length Packet? */ |
| 2136 | if (_ep->xfer_len == 0) { |
| 2137 | deptsiz.b.xfersize = 0; |
| 2138 | deptsiz.b.pktcnt = 1; |
| 2139 | } else { |
| 2140 | |
| 2141 | /* Program the transfer size and packet count |
| 2142 | * as follows: xfersize = N * maxpacket + |
| 2143 | * short_packet pktcnt = N + (short_packet |
| 2144 | * exist ? 1 : 0) |
| 2145 | */ |
| 2146 | deptsiz.b.xfersize = _ep->xfer_len; |
| 2147 | deptsiz.b.pktcnt = (_ep->xfer_len - 1 + _ep->maxpacket) / _ep->maxpacket; |
| 2148 | } |
| 2149 | |
| 2150 | dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); |
| 2151 | |
| 2152 | /* Write the DMA register */ |
| 2153 | if (_core_if->dma_enable) { |
| 2154 | #if 1 // winder |
| 2155 | dma_cache_wback_inv((unsigned long) _ep->xfer_buff, _ep->xfer_len); // winder |
| 2156 | dwc_write_reg32 (&(in_regs->diepdma), |
| 2157 | CPHYSADDR((uint32_t)_ep->xfer_buff)); // winder |
| 2158 | #else |
| 2159 | dwc_write_reg32 (&(in_regs->diepdma), |
| 2160 | (uint32_t)_ep->dma_addr); |
| 2161 | #endif |
| 2162 | } else { |
| 2163 | if (_ep->type != DWC_OTG_EP_TYPE_ISOC) { |
| 2164 | /** |
| 2165 | * Enable the Non-Periodic Tx FIFO empty interrupt, |
| 2166 | * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode, |
| 2167 | * the data will be written into the fifo by the ISR. |
| 2168 | */ |
| 2169 | if (_core_if->en_multiple_tx_fifo == 0) { |
| 2170 | intr_mask.b.nptxfempty = 1; |
| 2171 | dwc_modify_reg32( &_core_if->core_global_regs->gintsts, |
| 2172 | intr_mask.d32, 0); |
| 2173 | dwc_modify_reg32( &_core_if->core_global_regs->gintmsk, |
| 2174 | intr_mask.d32, intr_mask.d32); |
| 2175 | } else { |
| 2176 | /* Enable the Tx FIFO Empty Interrupt for this EP */ |
| 2177 | if (_ep->xfer_len > 0) { |
| 2178 | uint32_t fifoemptymsk = 0; |
| 2179 | fifoemptymsk = 1 << _ep->num; |
| 2180 | dwc_modify_reg32(&_core_if->dev_if->dev_global_regs-> |
| 2181 | dtknqr4_fifoemptymsk,0,fifoemptymsk); |
| 2182 | } |
| 2183 | } |
| 2184 | } |
| 2185 | } |
| 2186 | |
| 2187 | /* EP enable, IN data in FIFO */ |
| 2188 | depctl.b.cnak = 1; |
| 2189 | depctl.b.epena = 1; |
| 2190 | dwc_write_reg32(&in_regs->diepctl, depctl.d32); |
| 2191 | |
| 2192 | if (_core_if->dma_enable) { |
| 2193 | depctl.d32 = dwc_read_reg32 (&_core_if->dev_if->in_ep_regs[0]->diepctl); |
| 2194 | depctl.b.nextep = _ep->num; |
| 2195 | dwc_write_reg32 (&_core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32); |
| 2196 | |
| 2197 | } |
| 2198 | } else { |
| 2199 | /* OUT endpoint */ |
| 2200 | dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num]; |
| 2201 | |
| 2202 | depctl.d32 = dwc_read_reg32(&(out_regs->doepctl)); |
| 2203 | deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz)); |
| 2204 | |
| 2205 | /* Program the transfer size and packet count as follows: |
| 2206 | * |
| 2207 | * pktcnt = N |
| 2208 | * xfersize = N * maxpacket |
| 2209 | */ |
| 2210 | if (_ep->xfer_len == 0) { |
| 2211 | /* Zero Length Packet */ |
| 2212 | deptsiz.b.xfersize = _ep->maxpacket; |
| 2213 | deptsiz.b.pktcnt = 1; |
| 2214 | } else { |
| 2215 | deptsiz.b.pktcnt = (_ep->xfer_len + (_ep->maxpacket - 1)) / _ep->maxpacket; |
| 2216 | deptsiz.b.xfersize = deptsiz.b.pktcnt * _ep->maxpacket; |
| 2217 | } |
| 2218 | dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); |
| 2219 | |
| 2220 | DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n", |
| 2221 | _ep->num, deptsiz.b.xfersize, deptsiz.b.pktcnt); |
| 2222 | |
| 2223 | if (_core_if->dma_enable) { |
| 2224 | #if 1 // winder |
| 2225 | dwc_write_reg32 (&(out_regs->doepdma), |
| 2226 | CPHYSADDR((uint32_t)_ep->xfer_buff)); // winder |
| 2227 | #else |
| 2228 | dwc_write_reg32 (&(out_regs->doepdma), |
| 2229 | (uint32_t)_ep->dma_addr); |
| 2230 | #endif |
| 2231 | } |
| 2232 | |
| 2233 | if (_ep->type == DWC_OTG_EP_TYPE_ISOC) { |
| 2234 | /** @todo NGS: dpid is read-only. Use setd0pid |
| 2235 | * or setd1pid. */ |
| 2236 | if (_ep->even_odd_frame) { |
| 2237 | depctl.b.setd1pid = 1; |
| 2238 | } else { |
| 2239 | depctl.b.setd0pid = 1; |
| 2240 | } |
| 2241 | } |
| 2242 | |
| 2243 | /* EP enable */ |
| 2244 | depctl.b.cnak = 1; |
| 2245 | depctl.b.epena = 1; |
| 2246 | |
| 2247 | dwc_write_reg32(&out_regs->doepctl, depctl.d32); |
| 2248 | |
| 2249 | DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n", |
| 2250 | dwc_read_reg32(&out_regs->doepctl), |
| 2251 | dwc_read_reg32(&out_regs->doeptsiz)); |
| 2252 | DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", |
| 2253 | dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk), |
| 2254 | dwc_read_reg32(&_core_if->core_global_regs->gintmsk)); |
| 2255 | } |
| 2256 | } |
| 2257 | |
| 2258 | |
| 2259 | /** |
| 2260 | * This function does the setup for a data transfer for EP0 and starts |
| 2261 | * the transfer. For an IN transfer, the packets will be loaded into |
| 2262 | * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are |
| 2263 | * unloaded from the Rx FIFO in the ISR. |
| 2264 | * |
| 2265 | * @param _core_if Programming view of DWC_otg controller. |
| 2266 | * @param _ep The EP0 data. |
| 2267 | */ |
| 2268 | void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) |
| 2269 | { |
| 2270 | volatile depctl_data_t depctl; |
| 2271 | volatile deptsiz0_data_t deptsiz; |
| 2272 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 2273 | |
| 2274 | DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " |
| 2275 | "xfer_buff=%p start_xfer_buff=%p total_len=%d\n", |
| 2276 | _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len, |
| 2277 | _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff, |
| 2278 | _ep->total_len); |
| 2279 | _ep->total_len = _ep->xfer_len; |
| 2280 | |
| 2281 | /* IN endpoint */ |
| 2282 | if (_ep->is_in == 1) { |
| 2283 | dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[0]; |
| 2284 | gnptxsts_data_t gtxstatus; |
| 2285 | gtxstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts); |
| 2286 | if (_core_if->en_multiple_tx_fifo == 0 && |
| 2287 | gtxstatus.b.nptxqspcavail == 0) { |
| 2288 | #ifdef DEBUG |
| 2289 | deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); |
| 2290 | DWC_DEBUGPL(DBG_PCD,"DIEPCTL0=%0x\n", |
| 2291 | dwc_read_reg32(&in_regs->diepctl)); |
| 2292 | DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n", |
| 2293 | deptsiz.d32, deptsiz.b.xfersize,deptsiz.b.pktcnt); |
| 2294 | DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n", gtxstatus.d32); |
| 2295 | #endif /* */ |
| 2296 | printk("TX Queue or FIFO Full!!!!\n"); // test-only |
| 2297 | //return; |
| 2298 | MDELAY(100); //james |
| 2299 | } |
| 2300 | |
| 2301 | depctl.d32 = dwc_read_reg32(&in_regs->diepctl); |
| 2302 | deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); |
| 2303 | |
| 2304 | /* Zero Length Packet? */ |
| 2305 | if (_ep->xfer_len == 0) { |
| 2306 | deptsiz.b.xfersize = 0; |
| 2307 | deptsiz.b.pktcnt = 1; |
| 2308 | } else { |
| 2309 | /* Program the transfer size and packet count |
| 2310 | * as follows: xfersize = N * maxpacket + |
| 2311 | * short_packet pktcnt = N + (short_packet |
| 2312 | * exist ? 1 : 0) |
| 2313 | */ |
| 2314 | if (_ep->xfer_len > _ep->maxpacket) { |
| 2315 | _ep->xfer_len = _ep->maxpacket; |
| 2316 | deptsiz.b.xfersize = _ep->maxpacket; |
| 2317 | } |
| 2318 | else { |
| 2319 | deptsiz.b.xfersize = _ep->xfer_len; |
| 2320 | } |
| 2321 | deptsiz.b.pktcnt = 1; |
| 2322 | |
| 2323 | } |
| 2324 | dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); |
| 2325 | DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", |
| 2326 | _ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt, deptsiz.d32); |
| 2327 | |
| 2328 | /* Write the DMA register */ |
| 2329 | if (_core_if->dma_enable) { |
| 2330 | dwc_write_reg32(&(in_regs->diepdma), (uint32_t) _ep->dma_addr); |
| 2331 | } |
| 2332 | |
| 2333 | /* EP enable, IN data in FIFO */ |
| 2334 | depctl.b.cnak = 1; |
| 2335 | depctl.b.epena = 1; |
| 2336 | dwc_write_reg32(&in_regs->diepctl, depctl.d32); |
| 2337 | |
| 2338 | /** |
| 2339 | * Enable the Non-Periodic Tx FIFO empty interrupt, the |
| 2340 | * data will be written into the fifo by the ISR. |
| 2341 | */ |
| 2342 | if (!_core_if->dma_enable) { |
| 2343 | if (_core_if->en_multiple_tx_fifo == 0) { |
| 2344 | intr_mask.b.nptxfempty = 1; |
| 2345 | dwc_modify_reg32(&_core_if->core_global_regs->gintsts, intr_mask.d32, 0); |
| 2346 | dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, intr_mask.d32, |
| 2347 | intr_mask.d32); |
| 2348 | } else { |
| 2349 | /* Enable the Tx FIFO Empty Interrupt for this EP */ |
| 2350 | if (_ep->xfer_len > 0) { |
| 2351 | uint32_t fifoemptymsk = 0; |
| 2352 | fifoemptymsk |= 1 << _ep->num; |
| 2353 | dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, |
| 2354 | 0, fifoemptymsk); |
| 2355 | } |
| 2356 | |
| 2357 | } |
| 2358 | } |
| 2359 | } else { |
| 2360 | /* OUT endpoint */ |
| 2361 | dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num]; |
| 2362 | |
| 2363 | depctl.d32 = dwc_read_reg32(&out_regs->doepctl); |
| 2364 | deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz); |
| 2365 | |
| 2366 | /* Program the transfer size and packet count as follows: |
| 2367 | * xfersize = N * (maxpacket + 4 - (maxpacket % 4)) |
| 2368 | * pktcnt = N */ |
| 2369 | if (_ep->xfer_len == 0) { |
| 2370 | /* Zero Length Packet */ |
| 2371 | deptsiz.b.xfersize = _ep->maxpacket; |
| 2372 | deptsiz.b.pktcnt = 1; |
| 2373 | } else { |
| 2374 | deptsiz.b.pktcnt = (_ep->xfer_len + (_ep->maxpacket - 1)) / _ep->maxpacket; |
| 2375 | deptsiz.b.xfersize = deptsiz.b.pktcnt * _ep->maxpacket; |
| 2376 | } |
| 2377 | |
| 2378 | dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); |
| 2379 | DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n", |
| 2380 | _ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt); |
| 2381 | |
| 2382 | if (_core_if->dma_enable) { |
| 2383 | dwc_write_reg32(&(out_regs->doepdma), (uint32_t) _ep->dma_addr); |
| 2384 | } |
| 2385 | |
| 2386 | /* EP enable */ |
| 2387 | depctl.b.cnak = 1; |
| 2388 | depctl.b.epena = 1; |
| 2389 | dwc_write_reg32 (&(out_regs->doepctl), depctl.d32); |
| 2390 | } |
| 2391 | } |
| 2392 | |
| 2393 | /** |
| 2394 | * This function continues control IN transfers started by |
| 2395 | * dwc_otg_ep0_start_transfer, when the transfer does not fit in a |
| 2396 | * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one |
| 2397 | * bit for the packet count. |
| 2398 | * |
| 2399 | * @param _core_if Programming view of DWC_otg controller. |
| 2400 | * @param _ep The EP0 data. |
| 2401 | */ |
| 2402 | void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) |
| 2403 | { |
| 2404 | depctl_data_t depctl; |
| 2405 | deptsiz0_data_t deptsiz; |
| 2406 | gintmsk_data_t intr_mask = { .d32 = 0}; |
| 2407 | |
| 2408 | if (_ep->is_in == 1) { |
| 2409 | dwc_otg_dev_in_ep_regs_t *in_regs = |
| 2410 | _core_if->dev_if->in_ep_regs[0]; |
| 2411 | gnptxsts_data_t tx_status = {.d32 = 0}; |
| 2412 | |
| 2413 | tx_status.d32 = dwc_read_reg32( &_core_if->core_global_regs->gnptxsts ); |
| 2414 | /** @todo Should there be check for room in the Tx |
| 2415 | * Status Queue. If not remove the code above this comment. */ |
| 2416 | |
| 2417 | depctl.d32 = dwc_read_reg32(&in_regs->diepctl); |
| 2418 | deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); |
| 2419 | |
| 2420 | /* Program the transfer size and packet count |
| 2421 | * as follows: xfersize = N * maxpacket + |
| 2422 | * short_packet pktcnt = N + (short_packet |
| 2423 | * exist ? 1 : 0) |
| 2424 | */ |
| 2425 | deptsiz.b.xfersize = (_ep->total_len - _ep->xfer_count) > _ep->maxpacket ? _ep->maxpacket : |
| 2426 | (_ep->total_len - _ep->xfer_count); |
| 2427 | deptsiz.b.pktcnt = 1; |
| 2428 | _ep->xfer_len += deptsiz.b.xfersize; |
| 2429 | |
| 2430 | dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); |
| 2431 | DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", |
| 2432 | _ep->xfer_len, |
| 2433 | deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32); |
| 2434 | |
| 2435 | /* Write the DMA register */ |
| 2436 | if (_core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) { |
| 2437 | dwc_write_reg32 (&(in_regs->diepdma), |
| 2438 | CPHYSADDR((uint32_t)_ep->dma_addr)); // winder |
| 2439 | } |
| 2440 | |
| 2441 | /* EP enable, IN data in FIFO */ |
| 2442 | depctl.b.cnak = 1; |
| 2443 | depctl.b.epena = 1; |
| 2444 | dwc_write_reg32(&in_regs->diepctl, depctl.d32); |
| 2445 | |
| 2446 | /** |
| 2447 | * Enable the Non-Periodic Tx FIFO empty interrupt, the |
| 2448 | * data will be written into the fifo by the ISR. |
| 2449 | */ |
| 2450 | if (!_core_if->dma_enable) { |
| 2451 | /* First clear it from GINTSTS */ |
| 2452 | intr_mask.b.nptxfempty = 1; |
| 2453 | dwc_write_reg32( &_core_if->core_global_regs->gintsts, |
| 2454 | intr_mask.d32 ); |
| 2455 | |
| 2456 | dwc_modify_reg32( &_core_if->core_global_regs->gintmsk, |
| 2457 | intr_mask.d32, intr_mask.d32); |
| 2458 | } |
| 2459 | |
| 2460 | } |
| 2461 | |
| 2462 | } |
| 2463 | |
| 2464 | #ifdef DEBUG |
| 2465 | void dump_msg(const u8 *buf, unsigned int length) |
| 2466 | { |
| 2467 | unsigned int start, num, i; |
| 2468 | char line[52], *p; |
| 2469 | |
| 2470 | if (length >= 512) |
| 2471 | return; |
| 2472 | start = 0; |
| 2473 | while (length > 0) { |
| 2474 | num = min(length, 16u); |
| 2475 | p = line; |
| 2476 | for (i = 0; i < num; ++i) { |
| 2477 | if (i == 8) |
| 2478 | *p++ = ' '; |
| 2479 | sprintf(p, " %02x", buf[i]); |
| 2480 | p += 3; |
| 2481 | } |
| 2482 | *p = 0; |
| 2483 | DWC_PRINT( "%6x: %s\n", start, line); |
| 2484 | buf += num; |
| 2485 | start += num; |
| 2486 | length -= num; |
| 2487 | } |
| 2488 | } |
| 2489 | #else |
| 2490 | static inline void dump_msg(const u8 *buf, unsigned int length) |
| 2491 | { |
| 2492 | } |
| 2493 | #endif |
| 2494 | |
| 2495 | /** |
| 2496 | * This function writes a packet into the Tx FIFO associated with the |
| 2497 | * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For |
| 2498 | * periodic EPs the periodic Tx FIFO associated with the EP is written |
| 2499 | * with all packets for the next micro-frame. |
| 2500 | * |
| 2501 | * @param _core_if Programming view of DWC_otg controller. |
| 2502 | * @param _ep The EP to write packet for. |
| 2503 | * @param _dma Indicates if DMA is being used. |
| 2504 | */ |
| 2505 | void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma) |
| 2506 | { |
| 2507 | /** |
| 2508 | * The buffer is padded to DWORD on a per packet basis in |
| 2509 | * slave/dma mode if the MPS is not DWORD aligned. The last |
| 2510 | * packet, if short, is also padded to a multiple of DWORD. |
| 2511 | * |
| 2512 | * ep->xfer_buff always starts DWORD aligned in memory and is a |
| 2513 | * multiple of DWORD in length |
| 2514 | * |
| 2515 | * ep->xfer_len can be any number of bytes |
| 2516 | * |
| 2517 | * ep->xfer_count is a multiple of ep->maxpacket until the last |
| 2518 | * packet |
| 2519 | * |
| 2520 | * FIFO access is DWORD */ |
| 2521 | |
| 2522 | uint32_t i; |
| 2523 | uint32_t byte_count; |
| 2524 | uint32_t dword_count; |
| 2525 | uint32_t *fifo; |
| 2526 | uint32_t *data_buff = (uint32_t *)_ep->xfer_buff; |
| 2527 | |
| 2528 | //DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, _core_if, _ep); |
| 2529 | if (_ep->xfer_count >= _ep->xfer_len) { |
| 2530 | DWC_WARN("%s() No data for EP%d!!!\n", __func__, _ep->num); |
| 2531 | return; |
| 2532 | } |
| 2533 | |
| 2534 | /* Find the byte length of the packet either short packet or MPS */ |
| 2535 | if ((_ep->xfer_len - _ep->xfer_count) < _ep->maxpacket) { |
| 2536 | byte_count = _ep->xfer_len - _ep->xfer_count; |
| 2537 | } |
| 2538 | else { |
| 2539 | byte_count = _ep->maxpacket; |
| 2540 | } |
| 2541 | |
| 2542 | /* Find the DWORD length, padded by extra bytes as neccessary if MPS |
| 2543 | * is not a multiple of DWORD */ |
| 2544 | dword_count = (byte_count + 3) / 4; |
| 2545 | |
| 2546 | #ifdef VERBOSE |
| 2547 | dump_msg(_ep->xfer_buff, byte_count); |
| 2548 | #endif |
| 2549 | if (_ep->type == DWC_OTG_EP_TYPE_ISOC) { |
| 2550 | /**@todo NGS Where are the Periodic Tx FIFO addresses |
| 2551 | * intialized? What should this be? */ |
| 2552 | fifo = _core_if->data_fifo[_ep->tx_fifo_num]; |
| 2553 | } else { |
| 2554 | fifo = _core_if->data_fifo[_ep->num]; |
| 2555 | } |
| 2556 | |
| 2557 | DWC_DEBUGPL((DBG_PCDV|DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n", |
| 2558 | fifo, data_buff, *data_buff, byte_count); |
| 2559 | |
| 2560 | |
| 2561 | if (!_dma) { |
| 2562 | for (i=0; i<dword_count; i++, data_buff++) { |
| 2563 | dwc_write_reg32( fifo, *data_buff ); |
| 2564 | } |
| 2565 | } |
| 2566 | |
| 2567 | _ep->xfer_count += byte_count; |
| 2568 | _ep->xfer_buff += byte_count; |
| 2569 | #if 1 // winder, why do we need this?? |
| 2570 | _ep->dma_addr += byte_count; |
| 2571 | #endif |
| 2572 | } |
| 2573 | |
| 2574 | /** |
| 2575 | * Set the EP STALL. |
| 2576 | * |
| 2577 | * @param _core_if Programming view of DWC_otg controller. |
| 2578 | * @param _ep The EP to set the stall on. |
| 2579 | */ |
| 2580 | void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) |
| 2581 | { |
| 2582 | depctl_data_t depctl; |
| 2583 | volatile uint32_t *depctl_addr; |
| 2584 | |
| 2585 | DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, _ep->num, |
| 2586 | (_ep->is_in?"IN":"OUT")); |
| 2587 | |
| 2588 | if (_ep->is_in == 1) { |
| 2589 | depctl_addr = &(_core_if->dev_if->in_ep_regs[_ep->num]->diepctl); |
| 2590 | depctl.d32 = dwc_read_reg32(depctl_addr); |
| 2591 | |
| 2592 | /* set the disable and stall bits */ |
| 2593 | if (depctl.b.epena) { |
| 2594 | depctl.b.epdis = 1; |
| 2595 | } |
| 2596 | depctl.b.stall = 1; |
| 2597 | dwc_write_reg32(depctl_addr, depctl.d32); |
| 2598 | |
| 2599 | } else { |
| 2600 | depctl_addr = &(_core_if->dev_if->out_ep_regs[_ep->num]->doepctl); |
| 2601 | depctl.d32 = dwc_read_reg32(depctl_addr); |
| 2602 | |
| 2603 | /* set the stall bit */ |
| 2604 | depctl.b.stall = 1; |
| 2605 | dwc_write_reg32(depctl_addr, depctl.d32); |
| 2606 | } |
| 2607 | DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr)); |
| 2608 | return; |
| 2609 | } |
| 2610 | |
| 2611 | /** |
| 2612 | * Clear the EP STALL. |
| 2613 | * |
| 2614 | * @param _core_if Programming view of DWC_otg controller. |
| 2615 | * @param _ep The EP to clear stall from. |
| 2616 | */ |
| 2617 | void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) |
| 2618 | { |
| 2619 | depctl_data_t depctl; |
| 2620 | volatile uint32_t *depctl_addr; |
| 2621 | |
| 2622 | DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, _ep->num, |
| 2623 | (_ep->is_in?"IN":"OUT")); |
| 2624 | |
| 2625 | if (_ep->is_in == 1) { |
| 2626 | depctl_addr = &(_core_if->dev_if->in_ep_regs[_ep->num]->diepctl); |
| 2627 | } else { |
| 2628 | depctl_addr = &(_core_if->dev_if->out_ep_regs[_ep->num]->doepctl); |
| 2629 | } |
| 2630 | |
| 2631 | depctl.d32 = dwc_read_reg32(depctl_addr); |
| 2632 | |
| 2633 | /* clear the stall bits */ |
| 2634 | depctl.b.stall = 0; |
| 2635 | |
| 2636 | /* |
| 2637 | * USB Spec 9.4.5: For endpoints using data toggle, regardless |
| 2638 | * of whether an endpoint has the Halt feature set, a |
| 2639 | * ClearFeature(ENDPOINT_HALT) request always results in the |
| 2640 | * data toggle being reinitialized to DATA0. |
| 2641 | */ |
| 2642 | if (_ep->type == DWC_OTG_EP_TYPE_INTR || |
| 2643 | _ep->type == DWC_OTG_EP_TYPE_BULK) { |
| 2644 | depctl.b.setd0pid = 1; /* DATA0 */ |
| 2645 | } |
| 2646 | |
| 2647 | dwc_write_reg32(depctl_addr, depctl.d32); |
| 2648 | DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr)); |
| 2649 | return; |
| 2650 | } |
| 2651 | |
| 2652 | /** |
| 2653 | * This function reads a packet from the Rx FIFO into the destination |
| 2654 | * buffer. To read SETUP data use dwc_otg_read_setup_packet. |
| 2655 | * |
| 2656 | * @param _core_if Programming view of DWC_otg controller. |
| 2657 | * @param _dest Destination buffer for the packet. |
| 2658 | * @param _bytes Number of bytes to copy to the destination. |
| 2659 | */ |
| 2660 | void dwc_otg_read_packet(dwc_otg_core_if_t *_core_if, |
| 2661 | uint8_t *_dest, |
| 2662 | uint16_t _bytes) |
| 2663 | { |
| 2664 | int i; |
| 2665 | int word_count = (_bytes + 3) / 4; |
| 2666 | |
| 2667 | volatile uint32_t *fifo = _core_if->data_fifo[0]; |
| 2668 | uint32_t *data_buff = (uint32_t *)_dest; |
| 2669 | |
| 2670 | /** |
| 2671 | * @todo Account for the case where _dest is not dword aligned. This |
| 2672 | * requires reading data from the FIFO into a uint32_t temp buffer, |
| 2673 | * then moving it into the data buffer. |
| 2674 | */ |
| 2675 | |
| 2676 | DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__, |
| 2677 | _core_if, _dest, _bytes); |
| 2678 | |
| 2679 | for (i=0; i<word_count; i++, data_buff++) { |
| 2680 | *data_buff = dwc_read_reg32(fifo); |
| 2681 | } |
| 2682 | |
| 2683 | return; |
| 2684 | } |
| 2685 | |
| 2686 | |
| 2687 | #ifdef DEBUG |
| 2688 | /** |
| 2689 | * This functions reads the device registers and prints them |
| 2690 | * |
| 2691 | * @param _core_if Programming view of DWC_otg controller. |
| 2692 | */ |
| 2693 | void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if) |
| 2694 | { |
| 2695 | int i; |
| 2696 | volatile uint32_t *addr; |
| 2697 | |
| 2698 | DWC_PRINT("Device Global Registers\n"); |
| 2699 | addr=&_core_if->dev_if->dev_global_regs->dcfg; |
| 2700 | DWC_PRINT("DCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2701 | addr=&_core_if->dev_if->dev_global_regs->dctl; |
| 2702 | DWC_PRINT("DCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2703 | addr=&_core_if->dev_if->dev_global_regs->dsts; |
| 2704 | DWC_PRINT("DSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2705 | addr=&_core_if->dev_if->dev_global_regs->diepmsk; |
| 2706 | DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2707 | addr=&_core_if->dev_if->dev_global_regs->doepmsk; |
| 2708 | DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2709 | addr=&_core_if->dev_if->dev_global_regs->daint; |
| 2710 | DWC_PRINT("DAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2711 | addr=&_core_if->dev_if->dev_global_regs->dtknqr1; |
| 2712 | DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2713 | if (_core_if->hwcfg2.b.dev_token_q_depth > 6) { |
| 2714 | addr=&_core_if->dev_if->dev_global_regs->dtknqr2; |
| 2715 | DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n", |
| 2716 | (uint32_t)addr,dwc_read_reg32(addr)); |
| 2717 | } |
| 2718 | |
| 2719 | addr=&_core_if->dev_if->dev_global_regs->dvbusdis; |
| 2720 | DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2721 | |
| 2722 | addr=&_core_if->dev_if->dev_global_regs->dvbuspulse; |
| 2723 | DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n", |
| 2724 | (uint32_t)addr,dwc_read_reg32(addr)); |
| 2725 | |
| 2726 | if (_core_if->hwcfg2.b.dev_token_q_depth > 14) { |
| 2727 | addr = &_core_if->dev_if->dev_global_regs->dtknqr3_dthrctl; |
| 2728 | DWC_PRINT("DTKNQR3 @0x%08X : 0x%08X\n", |
| 2729 | (uint32_t)addr, dwc_read_reg32(addr)); |
| 2730 | } |
| 2731 | |
| 2732 | if (_core_if->hwcfg2.b.dev_token_q_depth > 22) { |
| 2733 | addr = &_core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk; |
| 2734 | DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n", (uint32_t) addr, |
| 2735 | dwc_read_reg32(addr)); |
| 2736 | } |
| 2737 | for (i = 0; i <= _core_if->dev_if->num_in_eps; i++) { |
| 2738 | DWC_PRINT("Device IN EP %d Registers\n", i); |
| 2739 | addr=&_core_if->dev_if->in_ep_regs[i]->diepctl; |
| 2740 | DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2741 | addr=&_core_if->dev_if->in_ep_regs[i]->diepint; |
| 2742 | DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2743 | addr=&_core_if->dev_if->in_ep_regs[i]->dieptsiz; |
| 2744 | DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2745 | addr=&_core_if->dev_if->in_ep_regs[i]->diepdma; |
| 2746 | DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2747 | |
| 2748 | addr = &_core_if->dev_if->in_ep_regs[i]->dtxfsts; |
| 2749 | DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n", (uint32_t) addr, |
| 2750 | dwc_read_reg32(addr)); |
| 2751 | } |
| 2752 | for (i = 0; i <= _core_if->dev_if->num_out_eps; i++) { |
| 2753 | DWC_PRINT("Device OUT EP %d Registers\n", i); |
| 2754 | addr=&_core_if->dev_if->out_ep_regs[i]->doepctl; |
| 2755 | DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2756 | addr=&_core_if->dev_if->out_ep_regs[i]->doepfn; |
| 2757 | DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2758 | addr=&_core_if->dev_if->out_ep_regs[i]->doepint; |
| 2759 | DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2760 | addr=&_core_if->dev_if->out_ep_regs[i]->doeptsiz; |
| 2761 | DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2762 | addr=&_core_if->dev_if->out_ep_regs[i]->doepdma; |
| 2763 | DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2764 | } |
| 2765 | return; |
| 2766 | } |
| 2767 | |
| 2768 | /** |
| 2769 | * This function reads the host registers and prints them |
| 2770 | * |
| 2771 | * @param _core_if Programming view of DWC_otg controller. |
| 2772 | */ |
| 2773 | void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if) |
| 2774 | { |
| 2775 | int i; |
| 2776 | volatile uint32_t *addr; |
| 2777 | |
| 2778 | DWC_PRINT("Host Global Registers\n"); |
| 2779 | addr=&_core_if->host_if->host_global_regs->hcfg; |
| 2780 | DWC_PRINT("HCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2781 | addr=&_core_if->host_if->host_global_regs->hfir; |
| 2782 | DWC_PRINT("HFIR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2783 | addr=&_core_if->host_if->host_global_regs->hfnum; |
| 2784 | DWC_PRINT("HFNUM @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2785 | addr=&_core_if->host_if->host_global_regs->hptxsts; |
| 2786 | DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2787 | addr=&_core_if->host_if->host_global_regs->haint; |
| 2788 | DWC_PRINT("HAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2789 | addr=&_core_if->host_if->host_global_regs->haintmsk; |
| 2790 | DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2791 | addr=_core_if->host_if->hprt0; |
| 2792 | DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2793 | |
| 2794 | for (i=0; i<_core_if->core_params->host_channels; i++) { |
| 2795 | DWC_PRINT("Host Channel %d Specific Registers\n", i); |
| 2796 | addr=&_core_if->host_if->hc_regs[i]->hcchar; |
| 2797 | DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2798 | addr=&_core_if->host_if->hc_regs[i]->hcsplt; |
| 2799 | DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2800 | addr=&_core_if->host_if->hc_regs[i]->hcint; |
| 2801 | DWC_PRINT("HCINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2802 | addr=&_core_if->host_if->hc_regs[i]->hcintmsk; |
| 2803 | DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2804 | addr=&_core_if->host_if->hc_regs[i]->hctsiz; |
| 2805 | DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2806 | addr=&_core_if->host_if->hc_regs[i]->hcdma; |
| 2807 | DWC_PRINT("HCDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2808 | |
| 2809 | } |
| 2810 | return; |
| 2811 | } |
| 2812 | |
| 2813 | /** |
| 2814 | * This function reads the core global registers and prints them |
| 2815 | * |
| 2816 | * @param _core_if Programming view of DWC_otg controller. |
| 2817 | */ |
| 2818 | void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if) |
| 2819 | { |
| 2820 | int i; |
| 2821 | volatile uint32_t *addr; |
| 2822 | |
| 2823 | DWC_PRINT("Core Global Registers\n"); |
| 2824 | addr=&_core_if->core_global_regs->gotgctl; |
| 2825 | DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2826 | addr=&_core_if->core_global_regs->gotgint; |
| 2827 | DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2828 | addr=&_core_if->core_global_regs->gahbcfg; |
| 2829 | DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2830 | addr=&_core_if->core_global_regs->gusbcfg; |
| 2831 | DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2832 | addr=&_core_if->core_global_regs->grstctl; |
| 2833 | DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2834 | addr=&_core_if->core_global_regs->gintsts; |
| 2835 | DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2836 | addr=&_core_if->core_global_regs->gintmsk; |
| 2837 | DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2838 | addr=&_core_if->core_global_regs->grxstsr; |
| 2839 | DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2840 | //addr=&_core_if->core_global_regs->grxstsp; |
| 2841 | //DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2842 | addr=&_core_if->core_global_regs->grxfsiz; |
| 2843 | DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2844 | addr=&_core_if->core_global_regs->gnptxfsiz; |
| 2845 | DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2846 | addr=&_core_if->core_global_regs->gnptxsts; |
| 2847 | DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2848 | addr=&_core_if->core_global_regs->gi2cctl; |
| 2849 | DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2850 | addr=&_core_if->core_global_regs->gpvndctl; |
| 2851 | DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2852 | addr=&_core_if->core_global_regs->ggpio; |
| 2853 | DWC_PRINT("GGPIO @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2854 | addr=&_core_if->core_global_regs->guid; |
| 2855 | DWC_PRINT("GUID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2856 | addr=&_core_if->core_global_regs->gsnpsid; |
| 2857 | DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2858 | addr=&_core_if->core_global_regs->ghwcfg1; |
| 2859 | DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2860 | addr=&_core_if->core_global_regs->ghwcfg2; |
| 2861 | DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2862 | addr=&_core_if->core_global_regs->ghwcfg3; |
| 2863 | DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2864 | addr=&_core_if->core_global_regs->ghwcfg4; |
| 2865 | DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2866 | addr=&_core_if->core_global_regs->hptxfsiz; |
| 2867 | DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); |
| 2868 | |
| 2869 | for (i=0; i<_core_if->hwcfg4.b.num_dev_perio_in_ep; i++) { |
| 2870 | addr=&_core_if->core_global_regs->dptxfsiz_dieptxf[i]; |
| 2871 | DWC_PRINT("DPTXFSIZ[%d] @0x%08X : 0x%08X\n",i,(uint32_t)addr,dwc_read_reg32(addr)); |
| 2872 | } |
| 2873 | |
| 2874 | } |
| 2875 | #endif |
| 2876 | |
| 2877 | /** |
| 2878 | * Flush a Tx FIFO. |
| 2879 | * |
| 2880 | * @param _core_if Programming view of DWC_otg controller. |
| 2881 | * @param _num Tx FIFO to flush. |
| 2882 | */ |
| 2883 | extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if, |
| 2884 | const int _num ) |
| 2885 | { |
| 2886 | dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs; |
| 2887 | volatile grstctl_t greset = { .d32 = 0}; |
| 2888 | int count = 0; |
| 2889 | |
| 2890 | DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "Flush Tx FIFO %d\n", _num); |
| 2891 | |
| 2892 | greset.b.txfflsh = 1; |
| 2893 | greset.b.txfnum = _num; |
| 2894 | dwc_write_reg32( &global_regs->grstctl, greset.d32 ); |
| 2895 | |
| 2896 | do { |
| 2897 | greset.d32 = dwc_read_reg32( &global_regs->grstctl); |
| 2898 | if (++count > 10000){ |
| 2899 | DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n", |
| 2900 | __func__, greset.d32, |
| 2901 | dwc_read_reg32( &global_regs->gnptxsts)); |
| 2902 | break; |
| 2903 | } |
| 2904 | |
| 2905 | udelay(1); |
| 2906 | } while (greset.b.txfflsh == 1); |
| 2907 | /* Wait for 3 PHY Clocks*/ |
| 2908 | UDELAY(1); |
| 2909 | } |
| 2910 | |
| 2911 | /** |
| 2912 | * Flush Rx FIFO. |
| 2913 | * |
| 2914 | * @param _core_if Programming view of DWC_otg controller. |
| 2915 | */ |
| 2916 | extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if ) |
| 2917 | { |
| 2918 | dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs; |
| 2919 | volatile grstctl_t greset = { .d32 = 0}; |
| 2920 | int count = 0; |
| 2921 | |
| 2922 | DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "%s\n", __func__); |
| 2923 | /* |
| 2924 | * |
| 2925 | */ |
| 2926 | greset.b.rxfflsh = 1; |
| 2927 | dwc_write_reg32( &global_regs->grstctl, greset.d32 ); |
| 2928 | |
| 2929 | do { |
| 2930 | greset.d32 = dwc_read_reg32( &global_regs->grstctl); |
| 2931 | if (++count > 10000){ |
| 2932 | DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__, |
| 2933 | greset.d32); |
| 2934 | break; |
| 2935 | } |
| 2936 | } while (greset.b.rxfflsh == 1); |
| 2937 | /* Wait for 3 PHY Clocks*/ |
| 2938 | UDELAY(1); |
| 2939 | } |
| 2940 | |
| 2941 | /** |
| 2942 | * Do core a soft reset of the core. Be careful with this because it |
| 2943 | * resets all the internal state machines of the core. |
| 2944 | */ |
| 2945 | |
| 2946 | void dwc_otg_core_reset(dwc_otg_core_if_t *_core_if) |
| 2947 | { |
| 2948 | dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs; |
| 2949 | volatile grstctl_t greset = { .d32 = 0}; |
| 2950 | int count = 0; |
| 2951 | |
| 2952 | DWC_DEBUGPL(DBG_CILV, "%s\n", __func__); |
| 2953 | /* Wait for AHB master IDLE state. */ |
| 2954 | do { |
| 2955 | UDELAY(10); |
| 2956 | greset.d32 = dwc_read_reg32( &global_regs->grstctl); |
| 2957 | if (++count > 100000){ |
| 2958 | DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x %x\n", __func__, |
| 2959 | greset.d32, greset.b.ahbidle); |
| 2960 | return; |
| 2961 | } |
| 2962 | } while (greset.b.ahbidle == 0); |
| 2963 | |
| 2964 | // winder add. |
| 2965 | #if 1 |
| 2966 | /* Note: Actually, I don't exactly why we need to put delay here. */ |
| 2967 | MDELAY(100); |
| 2968 | #endif |
| 2969 | /* Core Soft Reset */ |
| 2970 | count = 0; |
| 2971 | greset.b.csftrst = 1; |
| 2972 | dwc_write_reg32( &global_regs->grstctl, greset.d32 ); |
| 2973 | // winder add. |
| 2974 | #if 1 |
| 2975 | /* Note: Actually, I don't exactly why we need to put delay here. */ |
| 2976 | MDELAY(100); |
| 2977 | #endif |
| 2978 | do { |
| 2979 | greset.d32 = dwc_read_reg32( &global_regs->grstctl); |
| 2980 | if (++count > 10000){ |
| 2981 | DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__, |
| 2982 | greset.d32); |
| 2983 | break; |
| 2984 | } |
| 2985 | udelay(1); |
| 2986 | } while (greset.b.csftrst == 1); |
| 2987 | /* Wait for 3 PHY Clocks*/ |
| 2988 | //DWC_PRINT("100ms\n"); |
| 2989 | MDELAY(100); |
| 2990 | } |
| 2991 | |
| 2992 | |
| 2993 | |
| 2994 | /** |
| 2995 | * Register HCD callbacks. The callbacks are used to start and stop |
| 2996 | * the HCD for interrupt processing. |
| 2997 | * |
| 2998 | * @param _core_if Programming view of DWC_otg controller. |
| 2999 | * @param _cb the HCD callback structure. |
| 3000 | * @param _p pointer to be passed to callback function (usb_hcd*). |
| 3001 | */ |
| 3002 | extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if, |
| 3003 | dwc_otg_cil_callbacks_t *_cb, |
| 3004 | void *_p) |
| 3005 | { |
| 3006 | _core_if->hcd_cb = _cb; |
| 3007 | _cb->p = _p; |
| 3008 | } |
| 3009 | |
| 3010 | /** |
| 3011 | * Register PCD callbacks. The callbacks are used to start and stop |
| 3012 | * the PCD for interrupt processing. |
| 3013 | * |
| 3014 | * @param _core_if Programming view of DWC_otg controller. |
| 3015 | * @param _cb the PCD callback structure. |
| 3016 | * @param _p pointer to be passed to callback function (pcd*). |
| 3017 | */ |
| 3018 | extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if, |
| 3019 | dwc_otg_cil_callbacks_t *_cb, |
| 3020 | void *_p) |
| 3021 | { |
| 3022 | _core_if->pcd_cb = _cb; |
| 3023 | _cb->p = _p; |
| 3024 | } |
| 3025 | |
| 3026 | |