Root/target/linux/lantiq/files/drivers/usb/dwc_otg/dwc_otg_hcd.h

1/* ==========================================================================
2 * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd.h $
3 * $Revision: 1.1.1.1 $
4 * $Date: 2009-04-17 06:15:34 $
5 * $Change: 537387 $
6 *
7 * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
8 * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
9 * otherwise expressly agreed to in writing between Synopsys and you.
10 *
11 * The Software IS NOT an item of Licensed Software or Licensed Product under
12 * any End User Software License Agreement or Agreement for Licensed Product
13 * with Synopsys or any supplement thereto. You are permitted to use and
14 * redistribute this Software in source and binary forms, with or without
15 * modification, provided that redistributions of source code must retain this
16 * notice. You may not view, use, disclose, copy or distribute this file or
17 * any information contained herein except pursuant to this license grant from
18 * Synopsys. If you do not agree with this notice, including the disclaimer
19 * below, then you are not authorized to use the Software.
20 *
21 * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
25 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
31 * DAMAGE.
32 * ========================================================================== */
33#ifndef DWC_DEVICE_ONLY
34#if !defined(__DWC_HCD_H__)
35#define __DWC_HCD_H__
36
37#include <linux/list.h>
38#include <linux/usb.h>
39#include <linux/usb/hcd.h>
40
41struct lm_device;
42struct dwc_otg_device;
43
44#include "dwc_otg_cil.h"
45//#include "dwc_otg_ifx.h" // winder
46
47
48/**
49 * @file
50 *
51 * This file contains the structures, constants, and interfaces for
52 * the Host Contoller Driver (HCD).
53 *
54 * The Host Controller Driver (HCD) is responsible for translating requests
55 * from the USB Driver into the appropriate actions on the DWC_otg controller.
56 * It isolates the USBD from the specifics of the controller by providing an
57 * API to the USBD.
58 */
59
60/**
61 * Phases for control transfers.
62 */
63typedef enum dwc_otg_control_phase {
64    DWC_OTG_CONTROL_SETUP,
65    DWC_OTG_CONTROL_DATA,
66    DWC_OTG_CONTROL_STATUS
67} dwc_otg_control_phase_e;
68
69/** Transaction types. */
70typedef enum dwc_otg_transaction_type {
71    DWC_OTG_TRANSACTION_NONE,
72    DWC_OTG_TRANSACTION_PERIODIC,
73    DWC_OTG_TRANSACTION_NON_PERIODIC,
74    DWC_OTG_TRANSACTION_ALL
75} dwc_otg_transaction_type_e;
76
77/**
78 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
79 * interrupt, or isochronous transfer. A single QTD is created for each URB
80 * (of one of these types) submitted to the HCD. The transfer associated with
81 * a QTD may require one or multiple transactions.
82 *
83 * A QTD is linked to a Queue Head, which is entered in either the
84 * non-periodic or periodic schedule for execution. When a QTD is chosen for
85 * execution, some or all of its transactions may be executed. After
86 * execution, the state of the QTD is updated. The QTD may be retired if all
87 * its transactions are complete or if an error occurred. Otherwise, it
88 * remains in the schedule so more transactions can be executed later.
89 */
90struct dwc_otg_qh;
91typedef struct dwc_otg_qtd {
92    /**
93     * Determines the PID of the next data packet for the data phase of
94     * control transfers. Ignored for other transfer types.<br>
95     * One of the following values:
96     * - DWC_OTG_HC_PID_DATA0
97     * - DWC_OTG_HC_PID_DATA1
98     */
99    uint8_t data_toggle;
100
101    /** Current phase for control transfers (Setup, Data, or Status). */
102    dwc_otg_control_phase_e control_phase;
103
104    /** Keep track of the current split type
105     * for FS/LS endpoints on a HS Hub */
106    uint8_t complete_split;
107
108    /** How many bytes transferred during SSPLIT OUT */
109    uint32_t ssplit_out_xfer_count;
110
111    /**
112     * Holds the number of bus errors that have occurred for a transaction
113     * within this transfer.
114     */
115    uint8_t error_count;
116
117    /**
118     * Index of the next frame descriptor for an isochronous transfer. A
119     * frame descriptor describes the buffer position and length of the
120     * data to be transferred in the next scheduled (micro)frame of an
121     * isochronous transfer. It also holds status for that transaction.
122     * The frame index starts at 0.
123     */
124    int isoc_frame_index;
125
126    /** Position of the ISOC split on full/low speed */
127    uint8_t isoc_split_pos;
128
129    /** Position of the ISOC split in the buffer for the current frame */
130    uint16_t isoc_split_offset;
131
132    /** URB for this transfer */
133    struct urb *urb;
134
135    /** This list of QTDs */
136    struct list_head qtd_list_entry;
137
138    /* Field to track the qh pointer */
139    struct dwc_otg_qh *qtd_qh_ptr;
140} dwc_otg_qtd_t;
141
142/**
143 * A Queue Head (QH) holds the static characteristics of an endpoint and
144 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
145 * be entered in either the non-periodic or periodic schedule.
146 */
147typedef struct dwc_otg_qh {
148    /**
149     * Endpoint type.
150     * One of the following values:
151     * - USB_ENDPOINT_XFER_CONTROL
152     * - USB_ENDPOINT_XFER_ISOC
153     * - USB_ENDPOINT_XFER_BULK
154     * - USB_ENDPOINT_XFER_INT
155     */
156    uint8_t ep_type;
157    uint8_t ep_is_in;
158
159    /** wMaxPacketSize Field of Endpoint Descriptor. */
160    uint16_t maxp;
161
162    /**
163     * Determines the PID of the next data packet for non-control
164     * transfers. Ignored for control transfers.<br>
165     * One of the following values:
166     * - DWC_OTG_HC_PID_DATA0
167     * - DWC_OTG_HC_PID_DATA1
168     */
169    uint8_t data_toggle;
170
171    /** Ping state if 1. */
172    uint8_t ping_state;
173
174    /**
175     * List of QTDs for this QH.
176     */
177    struct list_head qtd_list;
178
179    /** Host channel currently processing transfers for this QH. */
180    dwc_hc_t *channel;
181
182    /** QTD currently assigned to a host channel for this QH. */
183    dwc_otg_qtd_t *qtd_in_process;
184
185    /** Full/low speed endpoint on high-speed hub requires split. */
186    uint8_t do_split;
187
188    /** @name Periodic schedule information */
189    /** @{ */
190
191    /** Bandwidth in microseconds per (micro)frame. */
192    uint8_t usecs;
193
194    /** Interval between transfers in (micro)frames. */
195    uint16_t interval;
196
197    /**
198     * (micro)frame to initialize a periodic transfer. The transfer
199     * executes in the following (micro)frame.
200     */
201    uint16_t sched_frame;
202
203    /** (micro)frame at which last start split was initialized. */
204    uint16_t start_split_frame;
205
206    /** @} */
207
208    uint16_t speed;
209    uint16_t frame_usecs[8];
210    /** Entry for QH in either the periodic or non-periodic schedule. */
211    struct list_head qh_list_entry;
212} dwc_otg_qh_t;
213
214/**
215 * This structure holds the state of the HCD, including the non-periodic and
216 * periodic schedules.
217 */
218typedef struct dwc_otg_hcd {
219    spinlock_t lock;
220
221    /** DWC OTG Core Interface Layer */
222    dwc_otg_core_if_t *core_if;
223
224    /** Internal DWC HCD Flags */
225    volatile union dwc_otg_hcd_internal_flags {
226        uint32_t d32;
227        struct {
228            unsigned port_connect_status_change : 1;
229            unsigned port_connect_status : 1;
230            unsigned port_reset_change : 1;
231            unsigned port_enable_change : 1;
232            unsigned port_suspend_change : 1;
233            unsigned port_over_current_change : 1;
234            unsigned reserved : 27;
235        } b;
236    } flags;
237
238    /**
239     * Inactive items in the non-periodic schedule. This is a list of
240     * Queue Heads. Transfers associated with these Queue Heads are not
241     * currently assigned to a host channel.
242     */
243    struct list_head non_periodic_sched_inactive;
244
245    /**
246     * Deferred items in the non-periodic schedule. This is a list of
247     * Queue Heads. Transfers associated with these Queue Heads are not
248     * currently assigned to a host channel.
249     * When we get an NAK, the QH goes here.
250     */
251    struct list_head non_periodic_sched_deferred;
252
253    /**
254     * Active items in the non-periodic schedule. This is a list of
255     * Queue Heads. Transfers associated with these Queue Heads are
256     * currently assigned to a host channel.
257     */
258    struct list_head non_periodic_sched_active;
259
260    /**
261     * Pointer to the next Queue Head to process in the active
262     * non-periodic schedule.
263     */
264    struct list_head *non_periodic_qh_ptr;
265
266    /**
267     * Inactive items in the periodic schedule. This is a list of QHs for
268     * periodic transfers that are _not_ scheduled for the next frame.
269     * Each QH in the list has an interval counter that determines when it
270     * needs to be scheduled for execution. This scheduling mechanism
271     * allows only a simple calculation for periodic bandwidth used (i.e.
272     * must assume that all periodic transfers may need to execute in the
273     * same frame). However, it greatly simplifies scheduling and should
274     * be sufficient for the vast majority of OTG hosts, which need to
275     * connect to a small number of peripherals at one time.
276     *
277     * Items move from this list to periodic_sched_ready when the QH
278     * interval counter is 0 at SOF.
279     */
280    struct list_head periodic_sched_inactive;
281
282    /**
283     * List of periodic QHs that are ready for execution in the next
284     * frame, but have not yet been assigned to host channels.
285     *
286     * Items move from this list to periodic_sched_assigned as host
287     * channels become available during the current frame.
288     */
289    struct list_head periodic_sched_ready;
290
291    /**
292     * List of periodic QHs to be executed in the next frame that are
293     * assigned to host channels.
294     *
295     * Items move from this list to periodic_sched_queued as the
296     * transactions for the QH are queued to the DWC_otg controller.
297     */
298    struct list_head periodic_sched_assigned;
299
300    /**
301     * List of periodic QHs that have been queued for execution.
302     *
303     * Items move from this list to either periodic_sched_inactive or
304     * periodic_sched_ready when the channel associated with the transfer
305     * is released. If the interval for the QH is 1, the item moves to
306     * periodic_sched_ready because it must be rescheduled for the next
307     * frame. Otherwise, the item moves to periodic_sched_inactive.
308     */
309    struct list_head periodic_sched_queued;
310
311    /**
312     * Total bandwidth claimed so far for periodic transfers. This value
313     * is in microseconds per (micro)frame. The assumption is that all
314     * periodic transfers may occur in the same (micro)frame.
315     */
316    uint16_t periodic_usecs;
317
318    /**
319     * Total bandwidth claimed so far for all periodic transfers
320     * in a frame.
321     * This will include a mixture of HS and FS transfers.
322     * Units are microseconds per (micro)frame.
323     * We have a budget per frame and have to schedule
324     * transactions accordingly.
325     * Watch out for the fact that things are actually scheduled for the
326     * "next frame".
327     */
328    uint16_t frame_usecs[8];
329
330    /**
331     * Frame number read from the core at SOF. The value ranges from 0 to
332     * DWC_HFNUM_MAX_FRNUM.
333     */
334    uint16_t frame_number;
335
336    /**
337     * Free host channels in the controller. This is a list of
338     * dwc_hc_t items.
339     */
340    struct list_head free_hc_list;
341
342    /**
343     * Number of available host channels.
344     */
345    int available_host_channels;
346
347    /**
348     * Array of pointers to the host channel descriptors. Allows accessing
349     * a host channel descriptor given the host channel number. This is
350     * useful in interrupt handlers.
351     */
352    dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS];
353
354    /**
355     * Buffer to use for any data received during the status phase of a
356     * control transfer. Normally no data is transferred during the status
357     * phase. This buffer is used as a bit bucket.
358     */
359    uint8_t *status_buf;
360
361    /**
362     * DMA address for status_buf.
363     */
364    dma_addr_t status_buf_dma;
365#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
366
367    /**
368     * Structure to allow starting the HCD in a non-interrupt context
369     * during an OTG role change.
370     */
371    struct work_struct start_work;
372    struct usb_hcd *_p;
373
374    /**
375     * Connection timer. An OTG host must display a message if the device
376     * does not connect. Started when the VBus power is turned on via
377     * sysfs attribute "buspower".
378     */
379        struct timer_list conn_timer;
380
381    /* Tasket to do a reset */
382    struct tasklet_struct *reset_tasklet;
383
384#ifdef DEBUG
385    uint32_t frrem_samples;
386    uint64_t frrem_accum;
387
388    uint32_t hfnum_7_samples_a;
389    uint64_t hfnum_7_frrem_accum_a;
390    uint32_t hfnum_0_samples_a;
391    uint64_t hfnum_0_frrem_accum_a;
392    uint32_t hfnum_other_samples_a;
393    uint64_t hfnum_other_frrem_accum_a;
394
395    uint32_t hfnum_7_samples_b;
396    uint64_t hfnum_7_frrem_accum_b;
397    uint32_t hfnum_0_samples_b;
398    uint64_t hfnum_0_frrem_accum_b;
399    uint32_t hfnum_other_samples_b;
400    uint64_t hfnum_other_frrem_accum_b;
401#endif
402
403} dwc_otg_hcd_t;
404
405/** Gets the dwc_otg_hcd from a struct usb_hcd */
406static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
407{
408    return (dwc_otg_hcd_t *)(hcd->hcd_priv);
409}
410
411/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */
412static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd)
413{
414    return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv);
415}
416
417/** @name HCD Create/Destroy Functions */
418/** @{ */
419extern int __devinit dwc_otg_hcd_init(struct device *_dev, dwc_otg_device_t * dwc_otg_device);
420extern void dwc_otg_hcd_remove(struct device *_dev);
421/** @} */
422
423/** @name Linux HC Driver API Functions */
424/** @{ */
425
426extern int dwc_otg_hcd_start(struct usb_hcd *hcd);
427extern void dwc_otg_hcd_stop(struct usb_hcd *hcd);
428extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
429extern void dwc_otg_hcd_free(struct usb_hcd *hcd);
430
431extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
432                   struct urb *urb,
433                   gfp_t mem_flags);
434extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
435                   struct urb *urb,
436                   int status);
437extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd);
438
439extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
440                     struct usb_host_endpoint *ep);
441
442extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd,
443                       char *buf);
444extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
445                   u16 typeReq,
446                   u16 wValue,
447                   u16 wIndex,
448                   char *buf,
449                   u16 wLength);
450
451/** @} */
452
453/** @name Transaction Execution Functions */
454/** @{ */
455extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *_hcd);
456extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *_hcd,
457                       dwc_otg_transaction_type_e _tr_type);
458extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *_urb,
459                     int _status);
460/** @} */
461
462/** @name Interrupt Handler Functions */
463/** @{ */
464extern int32_t dwc_otg_hcd_handle_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
465extern int32_t dwc_otg_hcd_handle_sof_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
466extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
467extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
468extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
469extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *_dwc_otg_hcd);
470extern int32_t dwc_otg_hcd_handle_port_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
471extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
472extern int32_t dwc_otg_hcd_handle_disconnect_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
473extern int32_t dwc_otg_hcd_handle_hc_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
474extern int32_t dwc_otg_hcd_handle_hc_n_intr (dwc_otg_hcd_t *_dwc_otg_hcd, uint32_t _num);
475extern int32_t dwc_otg_hcd_handle_session_req_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
476extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
477/** @} */
478
479
480/** @name Schedule Queue Functions */
481/** @{ */
482
483/* Implemented in dwc_otg_hcd_queue.c */
484extern dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *_hcd, struct urb *_urb);
485extern void dwc_otg_hcd_qh_init (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, struct urb *_urb);
486extern void dwc_otg_hcd_qh_free (dwc_otg_qh_t *_qh);
487extern int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh);
488extern void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh);
489extern void dwc_otg_hcd_qh_deactivate (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int sched_csplit);
490extern int dwc_otg_hcd_qh_deferr (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int delay);
491
492/** Remove and free a QH */
493static inline void dwc_otg_hcd_qh_remove_and_free (dwc_otg_hcd_t *_hcd,
494                           dwc_otg_qh_t *_qh)
495{
496    dwc_otg_hcd_qh_remove (_hcd, _qh);
497    dwc_otg_hcd_qh_free (_qh);
498}
499
500/** Allocates memory for a QH structure.
501 * @return Returns the memory allocate or NULL on error. */
502static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc (void)
503{
504#ifdef _SC_BUILD_
505    return (dwc_otg_qh_t *) kmalloc (sizeof(dwc_otg_qh_t), GFP_ATOMIC);
506#else
507    return (dwc_otg_qh_t *) kmalloc (sizeof(dwc_otg_qh_t), GFP_KERNEL);
508#endif
509}
510
511extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb);
512extern void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb);
513extern int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd);
514
515/** Allocates memory for a QTD structure.
516 * @return Returns the memory allocate or NULL on error. */
517static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc (void)
518{
519#ifdef _SC_BUILD_
520    return (dwc_otg_qtd_t *) kmalloc (sizeof(dwc_otg_qtd_t), GFP_ATOMIC);
521#else
522    return (dwc_otg_qtd_t *) kmalloc (sizeof(dwc_otg_qtd_t), GFP_KERNEL);
523#endif
524}
525
526/** Frees the memory for a QTD structure. QTD should already be removed from
527 * list.
528 * @param[in] _qtd QTD to free.*/
529static inline void dwc_otg_hcd_qtd_free (dwc_otg_qtd_t *_qtd)
530{
531    kfree (_qtd);
532}
533
534/** Removes a QTD from list.
535 * @param[in] _qtd QTD to remove from list. */
536static inline void dwc_otg_hcd_qtd_remove (dwc_otg_qtd_t *_qtd)
537{
538    unsigned long flags;
539    local_irq_save (flags);
540    list_del (&_qtd->qtd_list_entry);
541    local_irq_restore (flags);
542}
543
544/** Remove and free a QTD */
545static inline void dwc_otg_hcd_qtd_remove_and_free (dwc_otg_qtd_t *_qtd)
546{
547    dwc_otg_hcd_qtd_remove (_qtd);
548    dwc_otg_hcd_qtd_free (_qtd);
549}
550
551/** @} */
552
553
554/** @name Internal Functions */
555/** @{ */
556dwc_otg_qh_t *dwc_urb_to_qh(struct urb *_urb);
557void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *_hcd);
558void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *_hcd);
559/** @} */
560
561
562/** Gets the usb_host_endpoint associated with an URB. */
563static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *_urb)
564{
565    struct usb_device *dev = _urb->dev;
566    int ep_num = usb_pipeendpoint(_urb->pipe);
567    if (usb_pipein(_urb->pipe))
568        return dev->ep_in[ep_num];
569    else
570        return dev->ep_out[ep_num];
571}
572
573/**
574 * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is
575 * qualified with its direction (possible 32 endpoints per device).
576 */
577#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) \
578    ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
579                                                     ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
580
581/** Gets the QH that contains the list_head */
582#define dwc_list_to_qh(_list_head_ptr_) (container_of(_list_head_ptr_,dwc_otg_qh_t,qh_list_entry))
583
584/** Gets the QTD that contains the list_head */
585#define dwc_list_to_qtd(_list_head_ptr_) (container_of(_list_head_ptr_,dwc_otg_qtd_t,qtd_list_entry))
586
587/** Check if QH is non-periodic */
588#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \
589                                     (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
590
591/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
592#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
593
594/** Packet size for any kind of endpoint descriptor */
595#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
596
597/**
598 * Returns true if _frame1 is less than or equal to _frame2. The comparison is
599 * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
600 * frame number when the max frame number is reached.
601 */
602static inline int dwc_frame_num_le(uint16_t _frame1, uint16_t _frame2)
603{
604    return ((_frame2 - _frame1) & DWC_HFNUM_MAX_FRNUM) <=
605        (DWC_HFNUM_MAX_FRNUM >> 1);
606}
607
608/**
609 * Returns true if _frame1 is greater than _frame2. The comparison is done
610 * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
611 * number when the max frame number is reached.
612 */
613static inline int dwc_frame_num_gt(uint16_t _frame1, uint16_t _frame2)
614{
615    return (_frame1 != _frame2) &&
616        (((_frame1 - _frame2) & DWC_HFNUM_MAX_FRNUM) <
617         (DWC_HFNUM_MAX_FRNUM >> 1));
618}
619
620/**
621 * Increments _frame by the amount specified by _inc. The addition is done
622 * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
623 */
624static inline uint16_t dwc_frame_num_inc(uint16_t _frame, uint16_t _inc)
625{
626    return (_frame + _inc) & DWC_HFNUM_MAX_FRNUM;
627}
628
629static inline uint16_t dwc_full_frame_num (uint16_t _frame)
630{
631    return ((_frame) & DWC_HFNUM_MAX_FRNUM) >> 3;
632}
633
634static inline uint16_t dwc_micro_frame_num (uint16_t _frame)
635{
636    return (_frame) & 0x7;
637}
638
639#ifdef DEBUG
640/**
641 * Macro to sample the remaining PHY clocks left in the current frame. This
642 * may be used during debugging to determine the average time it takes to
643 * execute sections of code. There are two possible sample points, "a" and
644 * "b", so the _letter argument must be one of these values.
645 *
646 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
647 * example, "cat /sys/devices/lm0/hcd_frrem".
648 */
649#define dwc_sample_frrem(_hcd, _qh, _letter) \
650{ \
651    hfnum_data_t hfnum; \
652    dwc_otg_qtd_t *qtd; \
653    qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \
654    if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \
655        hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
656        switch (hfnum.b.frnum & 0x7) { \
657        case 7: \
658            _hcd->hfnum_7_samples_##_letter++; \
659            _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
660            break; \
661        case 0: \
662            _hcd->hfnum_0_samples_##_letter++; \
663            _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
664            break; \
665        default: \
666            _hcd->hfnum_other_samples_##_letter++; \
667            _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \
668            break; \
669        } \
670    } \
671}
672#else // DEBUG
673#define dwc_sample_frrem(_hcd, _qh, _letter)
674#endif // DEBUG
675#endif // __DWC_HCD_H__
676#endif /* DWC_DEVICE_ONLY */
677

Archive Download this file



interactive