| 1 | /* ========================================================================== |
| 2 | * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd_intr.c $ |
| 3 | * $Revision: 1.1.1.1 $ |
| 4 | * $Date: 2009-04-17 06:15:34 $ |
| 5 | * $Change: 553126 $ |
| 6 | * |
| 7 | * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, |
| 8 | * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless |
| 9 | * otherwise expressly agreed to in writing between Synopsys and you. |
| 10 | * |
| 11 | * The Software IS NOT an item of Licensed Software or Licensed Product under |
| 12 | * any End User Software License Agreement or Agreement for Licensed Product |
| 13 | * with Synopsys or any supplement thereto. You are permitted to use and |
| 14 | * redistribute this Software in source and binary forms, with or without |
| 15 | * modification, provided that redistributions of source code must retain this |
| 16 | * notice. You may not view, use, disclose, copy or distribute this file or |
| 17 | * any information contained herein except pursuant to this license grant from |
| 18 | * Synopsys. If you do not agree with this notice, including the disclaimer |
| 19 | * below, then you are not authorized to use the Software. |
| 20 | * |
| 21 | * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS |
| 22 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 24 | * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, |
| 25 | * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 26 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 27 | * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 28 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH |
| 31 | * DAMAGE. |
| 32 | * ========================================================================== */ |
| 33 | #ifndef DWC_DEVICE_ONLY |
| 34 | |
| 35 | #include "dwc_otg_driver.h" |
| 36 | #include "dwc_otg_hcd.h" |
| 37 | #include "dwc_otg_regs.h" |
| 38 | |
| 39 | const int erratum_usb09_patched = 0; |
| 40 | const int deferral_on = 1; |
| 41 | const int nak_deferral_delay = 8; |
| 42 | const int nyet_deferral_delay = 1; |
| 43 | /** @file |
| 44 | * This file contains the implementation of the HCD Interrupt handlers. |
| 45 | */ |
| 46 | |
| 47 | /** This function handles interrupts for the HCD. */ |
| 48 | int32_t dwc_otg_hcd_handle_intr (dwc_otg_hcd_t *_dwc_otg_hcd) |
| 49 | { |
| 50 | int retval = 0; |
| 51 | |
| 52 | dwc_otg_core_if_t *core_if = _dwc_otg_hcd->core_if; |
| 53 | gintsts_data_t gintsts; |
| 54 | #ifdef DEBUG |
| 55 | dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; |
| 56 | #endif |
| 57 | |
| 58 | /* Check if HOST Mode */ |
| 59 | if (dwc_otg_is_host_mode(core_if)) { |
| 60 | gintsts.d32 = dwc_otg_read_core_intr(core_if); |
| 61 | if (!gintsts.d32) { |
| 62 | return 0; |
| 63 | } |
| 64 | |
| 65 | #ifdef DEBUG |
| 66 | /* Don't print debug message in the interrupt handler on SOF */ |
| 67 | # ifndef DEBUG_SOF |
| 68 | if (gintsts.d32 != DWC_SOF_INTR_MASK) |
| 69 | # endif |
| 70 | DWC_DEBUGPL (DBG_HCD, "\n"); |
| 71 | #endif |
| 72 | |
| 73 | #ifdef DEBUG |
| 74 | # ifndef DEBUG_SOF |
| 75 | if (gintsts.d32 != DWC_SOF_INTR_MASK) |
| 76 | # endif |
| 77 | DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32); |
| 78 | #endif |
| 79 | |
| 80 | if (gintsts.b.sofintr) { |
| 81 | retval |= dwc_otg_hcd_handle_sof_intr (_dwc_otg_hcd); |
| 82 | } |
| 83 | if (gintsts.b.rxstsqlvl) { |
| 84 | retval |= dwc_otg_hcd_handle_rx_status_q_level_intr (_dwc_otg_hcd); |
| 85 | } |
| 86 | if (gintsts.b.nptxfempty) { |
| 87 | retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr (_dwc_otg_hcd); |
| 88 | } |
| 89 | if (gintsts.b.i2cintr) { |
| 90 | /** @todo Implement i2cintr handler. */ |
| 91 | } |
| 92 | if (gintsts.b.portintr) { |
| 93 | retval |= dwc_otg_hcd_handle_port_intr (_dwc_otg_hcd); |
| 94 | } |
| 95 | if (gintsts.b.hcintr) { |
| 96 | retval |= dwc_otg_hcd_handle_hc_intr (_dwc_otg_hcd); |
| 97 | } |
| 98 | if (gintsts.b.ptxfempty) { |
| 99 | retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (_dwc_otg_hcd); |
| 100 | } |
| 101 | #ifdef DEBUG |
| 102 | # ifndef DEBUG_SOF |
| 103 | if (gintsts.d32 != DWC_SOF_INTR_MASK) |
| 104 | # endif |
| 105 | { |
| 106 | DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n"); |
| 107 | DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n", |
| 108 | dwc_read_reg32(&global_regs->gintsts)); |
| 109 | DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n", |
| 110 | dwc_read_reg32(&global_regs->gintmsk)); |
| 111 | } |
| 112 | #endif |
| 113 | |
| 114 | #ifdef DEBUG |
| 115 | # ifndef DEBUG_SOF |
| 116 | if (gintsts.d32 != DWC_SOF_INTR_MASK) |
| 117 | # endif |
| 118 | DWC_DEBUGPL (DBG_HCD, "\n"); |
| 119 | #endif |
| 120 | |
| 121 | } |
| 122 | |
| 123 | return retval; |
| 124 | } |
| 125 | |
| 126 | #ifdef DWC_TRACK_MISSED_SOFS |
| 127 | #warning Compiling code to track missed SOFs |
| 128 | #define FRAME_NUM_ARRAY_SIZE 1000 |
| 129 | /** |
| 130 | * This function is for debug only. |
| 131 | */ |
| 132 | static inline void track_missed_sofs(uint16_t _curr_frame_number) { |
| 133 | static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE]; |
| 134 | static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE]; |
| 135 | static int frame_num_idx = 0; |
| 136 | static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM; |
| 137 | static int dumped_frame_num_array = 0; |
| 138 | |
| 139 | if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) { |
| 140 | if ((((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != _curr_frame_number)) { |
| 141 | frame_num_array[frame_num_idx] = _curr_frame_number; |
| 142 | last_frame_num_array[frame_num_idx++] = last_frame_num; |
| 143 | } |
| 144 | } else if (!dumped_frame_num_array) { |
| 145 | int i; |
| 146 | printk(KERN_EMERG USB_DWC "Frame Last Frame\n"); |
| 147 | printk(KERN_EMERG USB_DWC "----- ----------\n"); |
| 148 | for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) { |
| 149 | printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n", |
| 150 | frame_num_array[i], last_frame_num_array[i]); |
| 151 | } |
| 152 | dumped_frame_num_array = 1; |
| 153 | } |
| 154 | last_frame_num = _curr_frame_number; |
| 155 | } |
| 156 | #endif |
| 157 | |
| 158 | /** |
| 159 | * Handles the start-of-frame interrupt in host mode. Non-periodic |
| 160 | * transactions may be queued to the DWC_otg controller for the current |
| 161 | * (micro)frame. Periodic transactions may be queued to the controller for the |
| 162 | * next (micro)frame. |
| 163 | */ |
| 164 | int32_t dwc_otg_hcd_handle_sof_intr (dwc_otg_hcd_t *_hcd) |
| 165 | { |
| 166 | hfnum_data_t hfnum; |
| 167 | struct list_head *qh_entry; |
| 168 | dwc_otg_qh_t *qh; |
| 169 | dwc_otg_transaction_type_e tr_type; |
| 170 | gintsts_data_t gintsts = {.d32 = 0}; |
| 171 | |
| 172 | hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); |
| 173 | |
| 174 | #ifdef DEBUG_SOF |
| 175 | DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n"); |
| 176 | #endif |
| 177 | |
| 178 | _hcd->frame_number = hfnum.b.frnum; |
| 179 | |
| 180 | #ifdef DEBUG |
| 181 | _hcd->frrem_accum += hfnum.b.frrem; |
| 182 | _hcd->frrem_samples++; |
| 183 | #endif |
| 184 | |
| 185 | #ifdef DWC_TRACK_MISSED_SOFS |
| 186 | track_missed_sofs(_hcd->frame_number); |
| 187 | #endif |
| 188 | |
| 189 | /* Determine whether any periodic QHs should be executed. */ |
| 190 | qh_entry = _hcd->periodic_sched_inactive.next; |
| 191 | while (qh_entry != &_hcd->periodic_sched_inactive) { |
| 192 | qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry); |
| 193 | qh_entry = qh_entry->next; |
| 194 | if (dwc_frame_num_le(qh->sched_frame, _hcd->frame_number)) { |
| 195 | /* |
| 196 | * Move QH to the ready list to be executed next |
| 197 | * (micro)frame. |
| 198 | */ |
| 199 | list_move(&qh->qh_list_entry, &_hcd->periodic_sched_ready); |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | tr_type = dwc_otg_hcd_select_transactions(_hcd); |
| 204 | if (tr_type != DWC_OTG_TRANSACTION_NONE) { |
| 205 | dwc_otg_hcd_queue_transactions(_hcd, tr_type); |
| 206 | } |
| 207 | |
| 208 | /* Clear interrupt */ |
| 209 | gintsts.b.sofintr = 1; |
| 210 | dwc_write_reg32(&_hcd->core_if->core_global_regs->gintsts, gintsts.d32); |
| 211 | |
| 212 | return 1; |
| 213 | } |
| 214 | |
| 215 | /** Handles the Rx Status Queue Level Interrupt, which indicates that there is at |
| 216 | * least one packet in the Rx FIFO. The packets are moved from the FIFO to |
| 217 | * memory if the DWC_otg controller is operating in Slave mode. */ |
| 218 | int32_t dwc_otg_hcd_handle_rx_status_q_level_intr (dwc_otg_hcd_t *_dwc_otg_hcd) |
| 219 | { |
| 220 | host_grxsts_data_t grxsts; |
| 221 | dwc_hc_t *hc = NULL; |
| 222 | |
| 223 | DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n"); |
| 224 | |
| 225 | grxsts.d32 = dwc_read_reg32(&_dwc_otg_hcd->core_if->core_global_regs->grxstsp); |
| 226 | |
| 227 | hc = _dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum]; |
| 228 | |
| 229 | /* Packet Status */ |
| 230 | DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum); |
| 231 | DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt); |
| 232 | DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start); |
| 233 | DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts); |
| 234 | |
| 235 | switch (grxsts.b.pktsts) { |
| 236 | case DWC_GRXSTS_PKTSTS_IN: |
| 237 | /* Read the data into the host buffer. */ |
| 238 | if (grxsts.b.bcnt > 0) { |
| 239 | dwc_otg_read_packet(_dwc_otg_hcd->core_if, |
| 240 | hc->xfer_buff, |
| 241 | grxsts.b.bcnt); |
| 242 | |
| 243 | /* Update the HC fields for the next packet received. */ |
| 244 | hc->xfer_count += grxsts.b.bcnt; |
| 245 | hc->xfer_buff += grxsts.b.bcnt; |
| 246 | } |
| 247 | |
| 248 | case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: |
| 249 | case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR: |
| 250 | case DWC_GRXSTS_PKTSTS_CH_HALTED: |
| 251 | /* Handled in interrupt, just ignore data */ |
| 252 | break; |
| 253 | default: |
| 254 | DWC_ERROR ("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts); |
| 255 | break; |
| 256 | } |
| 257 | |
| 258 | return 1; |
| 259 | } |
| 260 | |
| 261 | /** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More |
| 262 | * data packets may be written to the FIFO for OUT transfers. More requests |
| 263 | * may be written to the non-periodic request queue for IN transfers. This |
| 264 | * interrupt is enabled only in Slave mode. */ |
| 265 | int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd) |
| 266 | { |
| 267 | DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n"); |
| 268 | dwc_otg_hcd_queue_transactions(_dwc_otg_hcd, |
| 269 | DWC_OTG_TRANSACTION_NON_PERIODIC); |
| 270 | return 1; |
| 271 | } |
| 272 | |
| 273 | /** This interrupt occurs when the periodic Tx FIFO is half-empty. More data |
| 274 | * packets may be written to the FIFO for OUT transfers. More requests may be |
| 275 | * written to the periodic request queue for IN transfers. This interrupt is |
| 276 | * enabled only in Slave mode. */ |
| 277 | int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd) |
| 278 | { |
| 279 | DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n"); |
| 280 | dwc_otg_hcd_queue_transactions(_dwc_otg_hcd, |
| 281 | DWC_OTG_TRANSACTION_PERIODIC); |
| 282 | return 1; |
| 283 | } |
| 284 | |
| 285 | /** There are multiple conditions that can cause a port interrupt. This function |
| 286 | * determines which interrupt conditions have occurred and handles them |
| 287 | * appropriately. */ |
| 288 | int32_t dwc_otg_hcd_handle_port_intr (dwc_otg_hcd_t *_dwc_otg_hcd) |
| 289 | { |
| 290 | int retval = 0; |
| 291 | hprt0_data_t hprt0; |
| 292 | hprt0_data_t hprt0_modify; |
| 293 | |
| 294 | hprt0.d32 = dwc_read_reg32(_dwc_otg_hcd->core_if->host_if->hprt0); |
| 295 | hprt0_modify.d32 = dwc_read_reg32(_dwc_otg_hcd->core_if->host_if->hprt0); |
| 296 | |
| 297 | /* Clear appropriate bits in HPRT0 to clear the interrupt bit in |
| 298 | * GINTSTS */ |
| 299 | |
| 300 | hprt0_modify.b.prtena = 0; |
| 301 | hprt0_modify.b.prtconndet = 0; |
| 302 | hprt0_modify.b.prtenchng = 0; |
| 303 | hprt0_modify.b.prtovrcurrchng = 0; |
| 304 | |
| 305 | /* Port Connect Detected |
| 306 | * Set flag and clear if detected */ |
| 307 | if (hprt0.b.prtconndet) { |
| 308 | DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x " |
| 309 | "Port Connect Detected--\n", hprt0.d32); |
| 310 | _dwc_otg_hcd->flags.b.port_connect_status_change = 1; |
| 311 | _dwc_otg_hcd->flags.b.port_connect_status = 1; |
| 312 | hprt0_modify.b.prtconndet = 1; |
| 313 | |
| 314 | /* B-Device has connected, Delete the connection timer. */ |
| 315 | del_timer( &_dwc_otg_hcd->conn_timer ); |
| 316 | |
| 317 | /* The Hub driver asserts a reset when it sees port connect |
| 318 | * status change flag */ |
| 319 | retval |= 1; |
| 320 | } |
| 321 | |
| 322 | /* Port Enable Changed |
| 323 | * Clear if detected - Set internal flag if disabled */ |
| 324 | if (hprt0.b.prtenchng) { |
| 325 | DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " |
| 326 | "Port Enable Changed--\n", hprt0.d32); |
| 327 | hprt0_modify.b.prtenchng = 1; |
| 328 | if (hprt0.b.prtena == 1) { |
| 329 | int do_reset = 0; |
| 330 | dwc_otg_core_params_t *params = _dwc_otg_hcd->core_if->core_params; |
| 331 | dwc_otg_core_global_regs_t *global_regs = _dwc_otg_hcd->core_if->core_global_regs; |
| 332 | dwc_otg_host_if_t *host_if = _dwc_otg_hcd->core_if->host_if; |
| 333 | |
| 334 | /* Check if we need to adjust the PHY clock speed for |
| 335 | * low power and adjust it */ |
| 336 | if (params->host_support_fs_ls_low_power) |
| 337 | { |
| 338 | gusbcfg_data_t usbcfg; |
| 339 | |
| 340 | usbcfg.d32 = dwc_read_reg32 (&global_regs->gusbcfg); |
| 341 | |
| 342 | if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) || |
| 343 | (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED)) |
| 344 | { |
| 345 | /* |
| 346 | * Low power |
| 347 | */ |
| 348 | hcfg_data_t hcfg; |
| 349 | if (usbcfg.b.phylpwrclksel == 0) { |
| 350 | /* Set PHY low power clock select for FS/LS devices */ |
| 351 | usbcfg.b.phylpwrclksel = 1; |
| 352 | dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); |
| 353 | do_reset = 1; |
| 354 | } |
| 355 | |
| 356 | hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg); |
| 357 | |
| 358 | if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) && |
| 359 | (params->host_ls_low_power_phy_clk == |
| 360 | DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) |
| 361 | { |
| 362 | /* 6 MHZ */ |
| 363 | DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n"); |
| 364 | if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) { |
| 365 | hcfg.b.fslspclksel = DWC_HCFG_6_MHZ; |
| 366 | dwc_write_reg32(&host_if->host_global_regs->hcfg, |
| 367 | hcfg.d32); |
| 368 | do_reset = 1; |
| 369 | } |
| 370 | } |
| 371 | else { |
| 372 | /* 48 MHZ */ |
| 373 | DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n"); |
| 374 | if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) { |
| 375 | hcfg.b.fslspclksel = DWC_HCFG_48_MHZ; |
| 376 | dwc_write_reg32(&host_if->host_global_regs->hcfg, |
| 377 | hcfg.d32); |
| 378 | do_reset = 1; |
| 379 | } |
| 380 | } |
| 381 | } |
| 382 | else { |
| 383 | /* |
| 384 | * Not low power |
| 385 | */ |
| 386 | if (usbcfg.b.phylpwrclksel == 1) { |
| 387 | usbcfg.b.phylpwrclksel = 0; |
| 388 | dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); |
| 389 | do_reset = 1; |
| 390 | } |
| 391 | } |
| 392 | |
| 393 | if (do_reset) { |
| 394 | tasklet_schedule(_dwc_otg_hcd->reset_tasklet); |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | if (!do_reset) { |
| 399 | /* Port has been enabled set the reset change flag */ |
| 400 | _dwc_otg_hcd->flags.b.port_reset_change = 1; |
| 401 | } |
| 402 | |
| 403 | } else { |
| 404 | _dwc_otg_hcd->flags.b.port_enable_change = 1; |
| 405 | } |
| 406 | retval |= 1; |
| 407 | } |
| 408 | |
| 409 | /** Overcurrent Change Interrupt */ |
| 410 | if (hprt0.b.prtovrcurrchng) { |
| 411 | DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " |
| 412 | "Port Overcurrent Changed--\n", hprt0.d32); |
| 413 | _dwc_otg_hcd->flags.b.port_over_current_change = 1; |
| 414 | hprt0_modify.b.prtovrcurrchng = 1; |
| 415 | retval |= 1; |
| 416 | } |
| 417 | |
| 418 | /* Clear Port Interrupts */ |
| 419 | dwc_write_reg32(_dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32); |
| 420 | |
| 421 | return retval; |
| 422 | } |
| 423 | |
| 424 | |
| 425 | /** This interrupt indicates that one or more host channels has a pending |
| 426 | * interrupt. There are multiple conditions that can cause each host channel |
| 427 | * interrupt. This function determines which conditions have occurred for each |
| 428 | * host channel interrupt and handles them appropriately. */ |
| 429 | int32_t dwc_otg_hcd_handle_hc_intr (dwc_otg_hcd_t *_dwc_otg_hcd) |
| 430 | { |
| 431 | int i; |
| 432 | int retval = 0; |
| 433 | haint_data_t haint; |
| 434 | |
| 435 | /* Clear appropriate bits in HCINTn to clear the interrupt bit in |
| 436 | * GINTSTS */ |
| 437 | |
| 438 | haint.d32 = dwc_otg_read_host_all_channels_intr(_dwc_otg_hcd->core_if); |
| 439 | |
| 440 | for (i=0; i<_dwc_otg_hcd->core_if->core_params->host_channels; i++) { |
| 441 | if (haint.b2.chint & (1 << i)) { |
| 442 | retval |= dwc_otg_hcd_handle_hc_n_intr (_dwc_otg_hcd, i); |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | return retval; |
| 447 | } |
| 448 | |
| 449 | /* Macro used to clear one channel interrupt */ |
| 450 | #define clear_hc_int(_hc_regs_,_intr_) \ |
| 451 | do { \ |
| 452 | hcint_data_t hcint_clear = {.d32 = 0}; \ |
| 453 | hcint_clear.b._intr_ = 1; \ |
| 454 | dwc_write_reg32(&((_hc_regs_)->hcint), hcint_clear.d32); \ |
| 455 | } while (0) |
| 456 | |
| 457 | /* |
| 458 | * Macro used to disable one channel interrupt. Channel interrupts are |
| 459 | * disabled when the channel is halted or released by the interrupt handler. |
| 460 | * There is no need to handle further interrupts of that type until the |
| 461 | * channel is re-assigned. In fact, subsequent handling may cause crashes |
| 462 | * because the channel structures are cleaned up when the channel is released. |
| 463 | */ |
| 464 | #define disable_hc_int(_hc_regs_,_intr_) \ |
| 465 | do { \ |
| 466 | hcintmsk_data_t hcintmsk = {.d32 = 0}; \ |
| 467 | hcintmsk.b._intr_ = 1; \ |
| 468 | dwc_modify_reg32(&((_hc_regs_)->hcintmsk), hcintmsk.d32, 0); \ |
| 469 | } while (0) |
| 470 | |
| 471 | /** |
| 472 | * Gets the actual length of a transfer after the transfer halts. _halt_status |
| 473 | * holds the reason for the halt. |
| 474 | * |
| 475 | * For IN transfers where _halt_status is DWC_OTG_HC_XFER_COMPLETE, |
| 476 | * *_short_read is set to 1 upon return if less than the requested |
| 477 | * number of bytes were transferred. Otherwise, *_short_read is set to 0 upon |
| 478 | * return. _short_read may also be NULL on entry, in which case it remains |
| 479 | * unchanged. |
| 480 | */ |
| 481 | static uint32_t get_actual_xfer_length(dwc_hc_t *_hc, |
| 482 | dwc_otg_hc_regs_t *_hc_regs, |
| 483 | dwc_otg_qtd_t *_qtd, |
| 484 | dwc_otg_halt_status_e _halt_status, |
| 485 | int *_short_read) |
| 486 | { |
| 487 | hctsiz_data_t hctsiz; |
| 488 | uint32_t length; |
| 489 | |
| 490 | if (_short_read != NULL) { |
| 491 | *_short_read = 0; |
| 492 | } |
| 493 | hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); |
| 494 | |
| 495 | if (_halt_status == DWC_OTG_HC_XFER_COMPLETE) { |
| 496 | if (_hc->ep_is_in) { |
| 497 | length = _hc->xfer_len - hctsiz.b.xfersize; |
| 498 | if (_short_read != NULL) { |
| 499 | *_short_read = (hctsiz.b.xfersize != 0); |
| 500 | } |
| 501 | } else if (_hc->qh->do_split) { |
| 502 | length = _qtd->ssplit_out_xfer_count; |
| 503 | } else { |
| 504 | length = _hc->xfer_len; |
| 505 | } |
| 506 | } else { |
| 507 | /* |
| 508 | * Must use the hctsiz.pktcnt field to determine how much data |
| 509 | * has been transferred. This field reflects the number of |
| 510 | * packets that have been transferred via the USB. This is |
| 511 | * always an integral number of packets if the transfer was |
| 512 | * halted before its normal completion. (Can't use the |
| 513 | * hctsiz.xfersize field because that reflects the number of |
| 514 | * bytes transferred via the AHB, not the USB). |
| 515 | */ |
| 516 | length = (_hc->start_pkt_count - hctsiz.b.pktcnt) * _hc->max_packet; |
| 517 | } |
| 518 | |
| 519 | return length; |
| 520 | } |
| 521 | |
| 522 | /** |
| 523 | * Updates the state of the URB after a Transfer Complete interrupt on the |
| 524 | * host channel. Updates the actual_length field of the URB based on the |
| 525 | * number of bytes transferred via the host channel. Sets the URB status |
| 526 | * if the data transfer is finished. |
| 527 | * |
| 528 | * @return 1 if the data transfer specified by the URB is completely finished, |
| 529 | * 0 otherwise. |
| 530 | */ |
| 531 | static int update_urb_state_xfer_comp(dwc_hc_t *_hc, |
| 532 | dwc_otg_hc_regs_t * _hc_regs, struct urb *_urb, |
| 533 | dwc_otg_qtd_t * _qtd, int *status) |
| 534 | { |
| 535 | int xfer_done = 0; |
| 536 | int short_read = 0; |
| 537 | |
| 538 | _urb->actual_length += get_actual_xfer_length(_hc, _hc_regs, _qtd, |
| 539 | DWC_OTG_HC_XFER_COMPLETE, |
| 540 | &short_read); |
| 541 | |
| 542 | if (short_read || (_urb->actual_length == _urb->transfer_buffer_length)) { |
| 543 | xfer_done = 1; |
| 544 | if (short_read && (_urb->transfer_flags & URB_SHORT_NOT_OK)) { |
| 545 | *status = -EREMOTEIO; |
| 546 | } else { |
| 547 | *status = 0; |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | #ifdef DEBUG |
| 552 | { |
| 553 | hctsiz_data_t hctsiz; |
| 554 | hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); |
| 555 | DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", |
| 556 | __func__, (_hc->ep_is_in ? "IN" : "OUT"), _hc->hc_num); |
| 557 | DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", _hc->xfer_len); |
| 558 | DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", hctsiz.b.xfersize); |
| 559 | DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n", |
| 560 | _urb->transfer_buffer_length); |
| 561 | DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", _urb->actual_length); |
| 562 | DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n", |
| 563 | short_read, xfer_done); |
| 564 | } |
| 565 | #endif |
| 566 | |
| 567 | return xfer_done; |
| 568 | } |
| 569 | |
| 570 | /* |
| 571 | * Save the starting data toggle for the next transfer. The data toggle is |
| 572 | * saved in the QH for non-control transfers and it's saved in the QTD for |
| 573 | * control transfers. |
| 574 | */ |
| 575 | static void save_data_toggle(dwc_hc_t *_hc, |
| 576 | dwc_otg_hc_regs_t *_hc_regs, |
| 577 | dwc_otg_qtd_t *_qtd) |
| 578 | { |
| 579 | hctsiz_data_t hctsiz; |
| 580 | hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); |
| 581 | |
| 582 | if (_hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) { |
| 583 | dwc_otg_qh_t *qh = _hc->qh; |
| 584 | if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) { |
| 585 | qh->data_toggle = DWC_OTG_HC_PID_DATA0; |
| 586 | } else { |
| 587 | qh->data_toggle = DWC_OTG_HC_PID_DATA1; |
| 588 | } |
| 589 | } else { |
| 590 | if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) { |
| 591 | _qtd->data_toggle = DWC_OTG_HC_PID_DATA0; |
| 592 | } else { |
| 593 | _qtd->data_toggle = DWC_OTG_HC_PID_DATA1; |
| 594 | } |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | /** |
| 599 | * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic |
| 600 | * QHs, removes the QH from the active non-periodic schedule. If any QTDs are |
| 601 | * still linked to the QH, the QH is added to the end of the inactive |
| 602 | * non-periodic schedule. For periodic QHs, removes the QH from the periodic |
| 603 | * schedule if no more QTDs are linked to the QH. |
| 604 | */ |
| 605 | static void deactivate_qh(dwc_otg_hcd_t *_hcd, |
| 606 | dwc_otg_qh_t *_qh, |
| 607 | int free_qtd) |
| 608 | { |
| 609 | int continue_split = 0; |
| 610 | dwc_otg_qtd_t *qtd; |
| 611 | |
| 612 | DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, _hcd, _qh, free_qtd); |
| 613 | |
| 614 | qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); |
| 615 | |
| 616 | if (qtd->complete_split) { |
| 617 | continue_split = 1; |
| 618 | } |
| 619 | else if ((qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID) || |
| 620 | (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END)) |
| 621 | { |
| 622 | continue_split = 1; |
| 623 | } |
| 624 | |
| 625 | if (free_qtd) { |
| 626 | /* |
| 627 | * Note that this was previously a call to |
| 628 | * dwc_otg_hcd_qtd_remove_and_free(qtd), which frees the qtd. |
| 629 | * However, that call frees the qtd memory, and we continue in the |
| 630 | * interrupt logic to access it many more times, including writing |
| 631 | * to it. With slub debugging on, it is clear that we were writing |
| 632 | * to memory we had freed. |
| 633 | * Call this instead, and now I have moved the freeing of the memory to |
| 634 | * the end of processing this interrupt. |
| 635 | */ |
| 636 | //dwc_otg_hcd_qtd_remove_and_free(qtd); |
| 637 | dwc_otg_hcd_qtd_remove(qtd); |
| 638 | |
| 639 | continue_split = 0; |
| 640 | } |
| 641 | |
| 642 | _qh->channel = NULL; |
| 643 | _qh->qtd_in_process = NULL; |
| 644 | dwc_otg_hcd_qh_deactivate(_hcd, _qh, continue_split); |
| 645 | } |
| 646 | |
| 647 | /** |
| 648 | * Updates the state of an Isochronous URB when the transfer is stopped for |
| 649 | * any reason. The fields of the current entry in the frame descriptor array |
| 650 | * are set based on the transfer state and the input _halt_status. Completes |
| 651 | * the Isochronous URB if all the URB frames have been completed. |
| 652 | * |
| 653 | * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be |
| 654 | * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE. |
| 655 | */ |
| 656 | static dwc_otg_halt_status_e |
| 657 | update_isoc_urb_state(dwc_otg_hcd_t *_hcd, |
| 658 | dwc_hc_t *_hc, |
| 659 | dwc_otg_hc_regs_t *_hc_regs, |
| 660 | dwc_otg_qtd_t *_qtd, |
| 661 | dwc_otg_halt_status_e _halt_status) |
| 662 | { |
| 663 | struct urb *urb = _qtd->urb; |
| 664 | dwc_otg_halt_status_e ret_val = _halt_status; |
| 665 | struct usb_iso_packet_descriptor *frame_desc; |
| 666 | |
| 667 | frame_desc = &urb->iso_frame_desc[_qtd->isoc_frame_index]; |
| 668 | switch (_halt_status) { |
| 669 | case DWC_OTG_HC_XFER_COMPLETE: |
| 670 | frame_desc->status = 0; |
| 671 | frame_desc->actual_length = |
| 672 | get_actual_xfer_length(_hc, _hc_regs, _qtd, |
| 673 | _halt_status, NULL); |
| 674 | break; |
| 675 | case DWC_OTG_HC_XFER_FRAME_OVERRUN: |
| 676 | urb->error_count++; |
| 677 | if (_hc->ep_is_in) { |
| 678 | frame_desc->status = -ENOSR; |
| 679 | } else { |
| 680 | frame_desc->status = -ECOMM; |
| 681 | } |
| 682 | frame_desc->actual_length = 0; |
| 683 | break; |
| 684 | case DWC_OTG_HC_XFER_BABBLE_ERR: |
| 685 | urb->error_count++; |
| 686 | frame_desc->status = -EOVERFLOW; |
| 687 | /* Don't need to update actual_length in this case. */ |
| 688 | break; |
| 689 | case DWC_OTG_HC_XFER_XACT_ERR: |
| 690 | urb->error_count++; |
| 691 | frame_desc->status = -EPROTO; |
| 692 | frame_desc->actual_length = |
| 693 | get_actual_xfer_length(_hc, _hc_regs, _qtd, |
| 694 | _halt_status, NULL); |
| 695 | default: |
| 696 | DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__, |
| 697 | _halt_status); |
| 698 | BUG(); |
| 699 | break; |
| 700 | } |
| 701 | |
| 702 | if (++_qtd->isoc_frame_index == urb->number_of_packets) { |
| 703 | /* |
| 704 | * urb->status is not used for isoc transfers. |
| 705 | * The individual frame_desc statuses are used instead. |
| 706 | */ |
| 707 | dwc_otg_hcd_complete_urb(_hcd, urb, 0); |
| 708 | ret_val = DWC_OTG_HC_XFER_URB_COMPLETE; |
| 709 | } else { |
| 710 | ret_val = DWC_OTG_HC_XFER_COMPLETE; |
| 711 | } |
| 712 | |
| 713 | return ret_val; |
| 714 | } |
| 715 | |
| 716 | /** |
| 717 | * Releases a host channel for use by other transfers. Attempts to select and |
| 718 | * queue more transactions since at least one host channel is available. |
| 719 | * |
| 720 | * @param _hcd The HCD state structure. |
| 721 | * @param _hc The host channel to release. |
| 722 | * @param _qtd The QTD associated with the host channel. This QTD may be freed |
| 723 | * if the transfer is complete or an error has occurred. |
| 724 | * @param _halt_status Reason the channel is being released. This status |
| 725 | * determines the actions taken by this function. |
| 726 | */ |
| 727 | static void release_channel(dwc_otg_hcd_t *_hcd, |
| 728 | dwc_hc_t *_hc, |
| 729 | dwc_otg_qtd_t *_qtd, |
| 730 | dwc_otg_halt_status_e _halt_status, |
| 731 | int *must_free) |
| 732 | { |
| 733 | dwc_otg_transaction_type_e tr_type; |
| 734 | int free_qtd; |
| 735 | dwc_otg_qh_t * _qh; |
| 736 | int deact = 1; |
| 737 | int retry_delay = 1; |
| 738 | unsigned long flags; |
| 739 | |
| 740 | DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n", __func__, |
| 741 | _hc->hc_num, _halt_status); |
| 742 | |
| 743 | switch (_halt_status) { |
| 744 | case DWC_OTG_HC_XFER_NYET: |
| 745 | case DWC_OTG_HC_XFER_NAK: |
| 746 | if (_halt_status == DWC_OTG_HC_XFER_NYET) { |
| 747 | retry_delay = nyet_deferral_delay; |
| 748 | } else { |
| 749 | retry_delay = nak_deferral_delay; |
| 750 | } |
| 751 | free_qtd = 0; |
| 752 | if (deferral_on && _hc->do_split) { |
| 753 | _qh = _hc->qh; |
| 754 | if (_qh) { |
| 755 | deact = dwc_otg_hcd_qh_deferr(_hcd, _qh , retry_delay); |
| 756 | } |
| 757 | } |
| 758 | break; |
| 759 | case DWC_OTG_HC_XFER_URB_COMPLETE: |
| 760 | free_qtd = 1; |
| 761 | break; |
| 762 | case DWC_OTG_HC_XFER_AHB_ERR: |
| 763 | case DWC_OTG_HC_XFER_STALL: |
| 764 | case DWC_OTG_HC_XFER_BABBLE_ERR: |
| 765 | free_qtd = 1; |
| 766 | break; |
| 767 | case DWC_OTG_HC_XFER_XACT_ERR: |
| 768 | if (_qtd->error_count >= 3) { |
| 769 | DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n"); |
| 770 | free_qtd = 1; |
| 771 | //_qtd->urb->status = -EPROTO; |
| 772 | dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPROTO); |
| 773 | } else { |
| 774 | free_qtd = 0; |
| 775 | } |
| 776 | break; |
| 777 | case DWC_OTG_HC_XFER_URB_DEQUEUE: |
| 778 | /* |
| 779 | * The QTD has already been removed and the QH has been |
| 780 | * deactivated. Don't want to do anything except release the |
| 781 | * host channel and try to queue more transfers. |
| 782 | */ |
| 783 | goto cleanup; |
| 784 | case DWC_OTG_HC_XFER_NO_HALT_STATUS: |
| 785 | DWC_ERROR("%s: No halt_status, channel %d\n", __func__, _hc->hc_num); |
| 786 | free_qtd = 0; |
| 787 | break; |
| 788 | default: |
| 789 | free_qtd = 0; |
| 790 | break; |
| 791 | } |
| 792 | if (free_qtd) { |
| 793 | /* Only change must_free to true (do not set to zero here -- it is |
| 794 | * pre-initialized to zero). |
| 795 | */ |
| 796 | *must_free = 1; |
| 797 | } |
| 798 | if (deact) { |
| 799 | deactivate_qh(_hcd, _hc->qh, free_qtd); |
| 800 | } |
| 801 | cleanup: |
| 802 | /* |
| 803 | * Release the host channel for use by other transfers. The cleanup |
| 804 | * function clears the channel interrupt enables and conditions, so |
| 805 | * there's no need to clear the Channel Halted interrupt separately. |
| 806 | */ |
| 807 | dwc_otg_hc_cleanup(_hcd->core_if, _hc); |
| 808 | list_add_tail(&_hc->hc_list_entry, &_hcd->free_hc_list); |
| 809 | |
| 810 | local_irq_save(flags); |
| 811 | _hcd->available_host_channels++; |
| 812 | local_irq_restore(flags); |
| 813 | /* Try to queue more transfers now that there's a free channel, */ |
| 814 | /* unless erratum_usb09_patched is set */ |
| 815 | if (!erratum_usb09_patched) { |
| 816 | tr_type = dwc_otg_hcd_select_transactions(_hcd); |
| 817 | if (tr_type != DWC_OTG_TRANSACTION_NONE) { |
| 818 | dwc_otg_hcd_queue_transactions(_hcd, tr_type); |
| 819 | } |
| 820 | } |
| 821 | } |
| 822 | |
| 823 | /** |
| 824 | * Halts a host channel. If the channel cannot be halted immediately because |
| 825 | * the request queue is full, this function ensures that the FIFO empty |
| 826 | * interrupt for the appropriate queue is enabled so that the halt request can |
| 827 | * be queued when there is space in the request queue. |
| 828 | * |
| 829 | * This function may also be called in DMA mode. In that case, the channel is |
| 830 | * simply released since the core always halts the channel automatically in |
| 831 | * DMA mode. |
| 832 | */ |
| 833 | static void halt_channel(dwc_otg_hcd_t *_hcd, |
| 834 | dwc_hc_t *_hc, |
| 835 | dwc_otg_qtd_t *_qtd, |
| 836 | dwc_otg_halt_status_e _halt_status, int *must_free) |
| 837 | { |
| 838 | if (_hcd->core_if->dma_enable) { |
| 839 | release_channel(_hcd, _hc, _qtd, _halt_status, must_free); |
| 840 | return; |
| 841 | } |
| 842 | |
| 843 | /* Slave mode processing... */ |
| 844 | dwc_otg_hc_halt(_hcd->core_if, _hc, _halt_status); |
| 845 | |
| 846 | if (_hc->halt_on_queue) { |
| 847 | gintmsk_data_t gintmsk = {.d32 = 0}; |
| 848 | dwc_otg_core_global_regs_t *global_regs; |
| 849 | global_regs = _hcd->core_if->core_global_regs; |
| 850 | |
| 851 | if (_hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || |
| 852 | _hc->ep_type == DWC_OTG_EP_TYPE_BULK) { |
| 853 | /* |
| 854 | * Make sure the Non-periodic Tx FIFO empty interrupt |
| 855 | * is enabled so that the non-periodic schedule will |
| 856 | * be processed. |
| 857 | */ |
| 858 | gintmsk.b.nptxfempty = 1; |
| 859 | dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); |
| 860 | } else { |
| 861 | /* |
| 862 | * Move the QH from the periodic queued schedule to |
| 863 | * the periodic assigned schedule. This allows the |
| 864 | * halt to be queued when the periodic schedule is |
| 865 | * processed. |
| 866 | */ |
| 867 | list_move(&_hc->qh->qh_list_entry, |
| 868 | &_hcd->periodic_sched_assigned); |
| 869 | |
| 870 | /* |
| 871 | * Make sure the Periodic Tx FIFO Empty interrupt is |
| 872 | * enabled so that the periodic schedule will be |
| 873 | * processed. |
| 874 | */ |
| 875 | gintmsk.b.ptxfempty = 1; |
| 876 | dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); |
| 877 | } |
| 878 | } |
| 879 | } |
| 880 | |
| 881 | /** |
| 882 | * Performs common cleanup for non-periodic transfers after a Transfer |
| 883 | * Complete interrupt. This function should be called after any endpoint type |
| 884 | * specific handling is finished to release the host channel. |
| 885 | */ |
| 886 | static void complete_non_periodic_xfer(dwc_otg_hcd_t *_hcd, |
| 887 | dwc_hc_t *_hc, |
| 888 | dwc_otg_hc_regs_t *_hc_regs, |
| 889 | dwc_otg_qtd_t *_qtd, |
| 890 | dwc_otg_halt_status_e _halt_status, int *must_free) |
| 891 | { |
| 892 | hcint_data_t hcint; |
| 893 | |
| 894 | _qtd->error_count = 0; |
| 895 | |
| 896 | hcint.d32 = dwc_read_reg32(&_hc_regs->hcint); |
| 897 | if (hcint.b.nyet) { |
| 898 | /* |
| 899 | * Got a NYET on the last transaction of the transfer. This |
| 900 | * means that the endpoint should be in the PING state at the |
| 901 | * beginning of the next transfer. |
| 902 | */ |
| 903 | _hc->qh->ping_state = 1; |
| 904 | clear_hc_int(_hc_regs,nyet); |
| 905 | } |
| 906 | |
| 907 | /* |
| 908 | * Always halt and release the host channel to make it available for |
| 909 | * more transfers. There may still be more phases for a control |
| 910 | * transfer or more data packets for a bulk transfer at this point, |
| 911 | * but the host channel is still halted. A channel will be reassigned |
| 912 | * to the transfer when the non-periodic schedule is processed after |
| 913 | * the channel is released. This allows transactions to be queued |
| 914 | * properly via dwc_otg_hcd_queue_transactions, which also enables the |
| 915 | * Tx FIFO Empty interrupt if necessary. |
| 916 | */ |
| 917 | if (_hc->ep_is_in) { |
| 918 | /* |
| 919 | * IN transfers in Slave mode require an explicit disable to |
| 920 | * halt the channel. (In DMA mode, this call simply releases |
| 921 | * the channel.) |
| 922 | */ |
| 923 | halt_channel(_hcd, _hc, _qtd, _halt_status, must_free); |
| 924 | } else { |
| 925 | /* |
| 926 | * The channel is automatically disabled by the core for OUT |
| 927 | * transfers in Slave mode. |
| 928 | */ |
| 929 | release_channel(_hcd, _hc, _qtd, _halt_status, must_free); |
| 930 | } |
| 931 | } |
| 932 | |
| 933 | /** |
| 934 | * Performs common cleanup for periodic transfers after a Transfer Complete |
| 935 | * interrupt. This function should be called after any endpoint type specific |
| 936 | * handling is finished to release the host channel. |
| 937 | */ |
| 938 | static void complete_periodic_xfer(dwc_otg_hcd_t *_hcd, |
| 939 | dwc_hc_t *_hc, |
| 940 | dwc_otg_hc_regs_t *_hc_regs, |
| 941 | dwc_otg_qtd_t *_qtd, |
| 942 | dwc_otg_halt_status_e _halt_status, int *must_free) |
| 943 | { |
| 944 | hctsiz_data_t hctsiz; |
| 945 | _qtd->error_count = 0; |
| 946 | |
| 947 | hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); |
| 948 | if (!_hc->ep_is_in || hctsiz.b.pktcnt == 0) { |
| 949 | /* Core halts channel in these cases. */ |
| 950 | release_channel(_hcd, _hc, _qtd, _halt_status, must_free); |
| 951 | } else { |
| 952 | /* Flush any outstanding requests from the Tx queue. */ |
| 953 | halt_channel(_hcd, _hc, _qtd, _halt_status, must_free); |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | /** |
| 958 | * Handles a host channel Transfer Complete interrupt. This handler may be |
| 959 | * called in either DMA mode or Slave mode. |
| 960 | */ |
| 961 | static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *_hcd, |
| 962 | dwc_hc_t *_hc, |
| 963 | dwc_otg_hc_regs_t *_hc_regs, |
| 964 | dwc_otg_qtd_t *_qtd, int *must_free) |
| 965 | { |
| 966 | int urb_xfer_done; |
| 967 | dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE; |
| 968 | struct urb *urb = _qtd->urb; |
| 969 | int pipe_type = usb_pipetype(urb->pipe); |
| 970 | int status = -EINPROGRESS; |
| 971 | |
| 972 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 973 | "Transfer Complete--\n", _hc->hc_num); |
| 974 | |
| 975 | /* |
| 976 | * Handle xfer complete on CSPLIT. |
| 977 | */ |
| 978 | if (_hc->qh->do_split) { |
| 979 | _qtd->complete_split = 0; |
| 980 | } |
| 981 | |
| 982 | /* Update the QTD and URB states. */ |
| 983 | switch (pipe_type) { |
| 984 | case PIPE_CONTROL: |
| 985 | switch (_qtd->control_phase) { |
| 986 | case DWC_OTG_CONTROL_SETUP: |
| 987 | if (urb->transfer_buffer_length > 0) { |
| 988 | _qtd->control_phase = DWC_OTG_CONTROL_DATA; |
| 989 | } else { |
| 990 | _qtd->control_phase = DWC_OTG_CONTROL_STATUS; |
| 991 | } |
| 992 | DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n"); |
| 993 | halt_status = DWC_OTG_HC_XFER_COMPLETE; |
| 994 | break; |
| 995 | case DWC_OTG_CONTROL_DATA: { |
| 996 | urb_xfer_done = update_urb_state_xfer_comp(_hc, _hc_regs,urb, _qtd, &status); |
| 997 | if (urb_xfer_done) { |
| 998 | _qtd->control_phase = DWC_OTG_CONTROL_STATUS; |
| 999 | DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n"); |
| 1000 | } else { |
| 1001 | save_data_toggle(_hc, _hc_regs, _qtd); |
| 1002 | } |
| 1003 | halt_status = DWC_OTG_HC_XFER_COMPLETE; |
| 1004 | break; |
| 1005 | } |
| 1006 | case DWC_OTG_CONTROL_STATUS: |
| 1007 | DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n"); |
| 1008 | if (status == -EINPROGRESS) { |
| 1009 | status = 0; |
| 1010 | } |
| 1011 | dwc_otg_hcd_complete_urb(_hcd, urb, status); |
| 1012 | halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; |
| 1013 | break; |
| 1014 | } |
| 1015 | |
| 1016 | complete_non_periodic_xfer(_hcd, _hc, _hc_regs, _qtd, |
| 1017 | halt_status, must_free); |
| 1018 | break; |
| 1019 | case PIPE_BULK: |
| 1020 | DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n"); |
| 1021 | urb_xfer_done = update_urb_state_xfer_comp(_hc, _hc_regs, urb, _qtd, &status); |
| 1022 | if (urb_xfer_done) { |
| 1023 | dwc_otg_hcd_complete_urb(_hcd, urb, status); |
| 1024 | halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; |
| 1025 | } else { |
| 1026 | halt_status = DWC_OTG_HC_XFER_COMPLETE; |
| 1027 | } |
| 1028 | |
| 1029 | save_data_toggle(_hc, _hc_regs, _qtd); |
| 1030 | complete_non_periodic_xfer(_hcd, _hc, _hc_regs, _qtd,halt_status, must_free); |
| 1031 | break; |
| 1032 | case PIPE_INTERRUPT: |
| 1033 | DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n"); |
| 1034 | update_urb_state_xfer_comp(_hc, _hc_regs, urb, _qtd, &status); |
| 1035 | |
| 1036 | /* |
| 1037 | * Interrupt URB is done on the first transfer complete |
| 1038 | * interrupt. |
| 1039 | */ |
| 1040 | dwc_otg_hcd_complete_urb(_hcd, urb, status); |
| 1041 | save_data_toggle(_hc, _hc_regs, _qtd); |
| 1042 | complete_periodic_xfer(_hcd, _hc, _hc_regs, _qtd, |
| 1043 | DWC_OTG_HC_XFER_URB_COMPLETE, must_free); |
| 1044 | break; |
| 1045 | case PIPE_ISOCHRONOUS: |
| 1046 | DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n"); |
| 1047 | if (_qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) |
| 1048 | { |
| 1049 | halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd, |
| 1050 | DWC_OTG_HC_XFER_COMPLETE); |
| 1051 | } |
| 1052 | complete_periodic_xfer(_hcd, _hc, _hc_regs, _qtd, halt_status, must_free); |
| 1053 | break; |
| 1054 | } |
| 1055 | |
| 1056 | disable_hc_int(_hc_regs,xfercompl); |
| 1057 | |
| 1058 | return 1; |
| 1059 | } |
| 1060 | |
| 1061 | /** |
| 1062 | * Handles a host channel STALL interrupt. This handler may be called in |
| 1063 | * either DMA mode or Slave mode. |
| 1064 | */ |
| 1065 | static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *_hcd, |
| 1066 | dwc_hc_t *_hc, |
| 1067 | dwc_otg_hc_regs_t *_hc_regs, |
| 1068 | dwc_otg_qtd_t *_qtd, int *must_free) |
| 1069 | { |
| 1070 | struct urb *urb = _qtd->urb; |
| 1071 | int pipe_type = usb_pipetype(urb->pipe); |
| 1072 | |
| 1073 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1074 | "STALL Received--\n", _hc->hc_num); |
| 1075 | |
| 1076 | if (pipe_type == PIPE_CONTROL) { |
| 1077 | dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPIPE); |
| 1078 | } |
| 1079 | |
| 1080 | if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) { |
| 1081 | dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPIPE); |
| 1082 | /* |
| 1083 | * USB protocol requires resetting the data toggle for bulk |
| 1084 | * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT) |
| 1085 | * setup command is issued to the endpoint. Anticipate the |
| 1086 | * CLEAR_FEATURE command since a STALL has occurred and reset |
| 1087 | * the data toggle now. |
| 1088 | */ |
| 1089 | _hc->qh->data_toggle = 0; |
| 1090 | } |
| 1091 | |
| 1092 | halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_STALL, must_free); |
| 1093 | disable_hc_int(_hc_regs,stall); |
| 1094 | |
| 1095 | return 1; |
| 1096 | } |
| 1097 | |
| 1098 | /* |
| 1099 | * Updates the state of the URB when a transfer has been stopped due to an |
| 1100 | * abnormal condition before the transfer completes. Modifies the |
| 1101 | * actual_length field of the URB to reflect the number of bytes that have |
| 1102 | * actually been transferred via the host channel. |
| 1103 | */ |
| 1104 | static void update_urb_state_xfer_intr(dwc_hc_t *_hc, |
| 1105 | dwc_otg_hc_regs_t *_hc_regs, |
| 1106 | struct urb *_urb, |
| 1107 | dwc_otg_qtd_t *_qtd, |
| 1108 | dwc_otg_halt_status_e _halt_status) |
| 1109 | { |
| 1110 | uint32_t bytes_transferred = get_actual_xfer_length(_hc, _hc_regs, _qtd, |
| 1111 | _halt_status, NULL); |
| 1112 | _urb->actual_length += bytes_transferred; |
| 1113 | |
| 1114 | #ifdef DEBUG |
| 1115 | { |
| 1116 | hctsiz_data_t hctsiz; |
| 1117 | hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); |
| 1118 | DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", |
| 1119 | __func__, (_hc->ep_is_in ? "IN" : "OUT"), _hc->hc_num); |
| 1120 | DWC_DEBUGPL(DBG_HCDV, " _hc->start_pkt_count %d\n", _hc->start_pkt_count); |
| 1121 | DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt); |
| 1122 | DWC_DEBUGPL(DBG_HCDV, " _hc->max_packet %d\n", _hc->max_packet); |
| 1123 | DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", bytes_transferred); |
| 1124 | DWC_DEBUGPL(DBG_HCDV, " _urb->actual_length %d\n", _urb->actual_length); |
| 1125 | DWC_DEBUGPL(DBG_HCDV, " _urb->transfer_buffer_length %d\n", |
| 1126 | _urb->transfer_buffer_length); |
| 1127 | } |
| 1128 | #endif |
| 1129 | } |
| 1130 | |
| 1131 | /** |
| 1132 | * Handles a host channel NAK interrupt. This handler may be called in either |
| 1133 | * DMA mode or Slave mode. |
| 1134 | */ |
| 1135 | static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *_hcd, |
| 1136 | dwc_hc_t *_hc, |
| 1137 | dwc_otg_hc_regs_t *_hc_regs, |
| 1138 | dwc_otg_qtd_t *_qtd, int *must_free) |
| 1139 | { |
| 1140 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1141 | "NAK Received--\n", _hc->hc_num); |
| 1142 | |
| 1143 | /* |
| 1144 | * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and |
| 1145 | * interrupt. Re-start the SSPLIT transfer. |
| 1146 | */ |
| 1147 | if (_hc->do_split) { |
| 1148 | if (_hc->complete_split) { |
| 1149 | _qtd->error_count = 0; |
| 1150 | } |
| 1151 | _qtd->complete_split = 0; |
| 1152 | halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free); |
| 1153 | goto handle_nak_done; |
| 1154 | } |
| 1155 | |
| 1156 | switch (usb_pipetype(_qtd->urb->pipe)) { |
| 1157 | case PIPE_CONTROL: |
| 1158 | case PIPE_BULK: |
| 1159 | if (_hcd->core_if->dma_enable && _hc->ep_is_in) { |
| 1160 | /* |
| 1161 | * NAK interrupts are enabled on bulk/control IN |
| 1162 | * transfers in DMA mode for the sole purpose of |
| 1163 | * resetting the error count after a transaction error |
| 1164 | * occurs. The core will continue transferring data. |
| 1165 | */ |
| 1166 | _qtd->error_count = 0; |
| 1167 | goto handle_nak_done; |
| 1168 | } |
| 1169 | |
| 1170 | /* |
| 1171 | * NAK interrupts normally occur during OUT transfers in DMA |
| 1172 | * or Slave mode. For IN transfers, more requests will be |
| 1173 | * queued as request queue space is available. |
| 1174 | */ |
| 1175 | _qtd->error_count = 0; |
| 1176 | |
| 1177 | if (!_hc->qh->ping_state) { |
| 1178 | update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb, |
| 1179 | _qtd, DWC_OTG_HC_XFER_NAK); |
| 1180 | save_data_toggle(_hc, _hc_regs, _qtd); |
| 1181 | if (_qtd->urb->dev->speed == USB_SPEED_HIGH) { |
| 1182 | _hc->qh->ping_state = 1; |
| 1183 | } |
| 1184 | } |
| 1185 | |
| 1186 | /* |
| 1187 | * Halt the channel so the transfer can be re-started from |
| 1188 | * the appropriate point or the PING protocol will |
| 1189 | * start/continue. |
| 1190 | */ |
| 1191 | halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free); |
| 1192 | break; |
| 1193 | case PIPE_INTERRUPT: |
| 1194 | _qtd->error_count = 0; |
| 1195 | halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free); |
| 1196 | break; |
| 1197 | case PIPE_ISOCHRONOUS: |
| 1198 | /* Should never get called for isochronous transfers. */ |
| 1199 | BUG(); |
| 1200 | break; |
| 1201 | } |
| 1202 | |
| 1203 | handle_nak_done: |
| 1204 | disable_hc_int(_hc_regs,nak); |
| 1205 | |
| 1206 | return 1; |
| 1207 | } |
| 1208 | |
| 1209 | /** |
| 1210 | * Handles a host channel ACK interrupt. This interrupt is enabled when |
| 1211 | * performing the PING protocol in Slave mode, when errors occur during |
| 1212 | * either Slave mode or DMA mode, and during Start Split transactions. |
| 1213 | */ |
| 1214 | static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *_hcd, |
| 1215 | dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) |
| 1216 | { |
| 1217 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1218 | "ACK Received--\n", _hc->hc_num); |
| 1219 | |
| 1220 | if (_hc->do_split) { |
| 1221 | /* |
| 1222 | * Handle ACK on SSPLIT. |
| 1223 | * ACK should not occur in CSPLIT. |
| 1224 | */ |
| 1225 | if ((!_hc->ep_is_in) && (_hc->data_pid_start != DWC_OTG_HC_PID_SETUP)) { |
| 1226 | _qtd->ssplit_out_xfer_count = _hc->xfer_len; |
| 1227 | } |
| 1228 | if (!(_hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !_hc->ep_is_in)) { |
| 1229 | /* Don't need complete for isochronous out transfers. */ |
| 1230 | _qtd->complete_split = 1; |
| 1231 | } |
| 1232 | |
| 1233 | /* ISOC OUT */ |
| 1234 | if ((_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && !_hc->ep_is_in) { |
| 1235 | switch (_hc->xact_pos) { |
| 1236 | case DWC_HCSPLIT_XACTPOS_ALL: |
| 1237 | break; |
| 1238 | case DWC_HCSPLIT_XACTPOS_END: |
| 1239 | _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; |
| 1240 | _qtd->isoc_split_offset = 0; |
| 1241 | break; |
| 1242 | case DWC_HCSPLIT_XACTPOS_BEGIN: |
| 1243 | case DWC_HCSPLIT_XACTPOS_MID: |
| 1244 | /* |
| 1245 | * For BEGIN or MID, calculate the length for |
| 1246 | * the next microframe to determine the correct |
| 1247 | * SSPLIT token, either MID or END. |
| 1248 | */ |
| 1249 | do { |
| 1250 | struct usb_iso_packet_descriptor *frame_desc; |
| 1251 | |
| 1252 | frame_desc = &_qtd->urb->iso_frame_desc[_qtd->isoc_frame_index]; |
| 1253 | _qtd->isoc_split_offset += 188; |
| 1254 | |
| 1255 | if ((frame_desc->length - _qtd->isoc_split_offset) <= 188) { |
| 1256 | _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END; |
| 1257 | } |
| 1258 | else { |
| 1259 | _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID; |
| 1260 | } |
| 1261 | |
| 1262 | } while(0); |
| 1263 | break; |
| 1264 | } |
| 1265 | } else { |
| 1266 | halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_ACK, must_free); |
| 1267 | } |
| 1268 | } else { |
| 1269 | _qtd->error_count = 0; |
| 1270 | |
| 1271 | if (_hc->qh->ping_state) { |
| 1272 | _hc->qh->ping_state = 0; |
| 1273 | /* |
| 1274 | * Halt the channel so the transfer can be re-started |
| 1275 | * from the appropriate point. This only happens in |
| 1276 | * Slave mode. In DMA mode, the ping_state is cleared |
| 1277 | * when the transfer is started because the core |
| 1278 | * automatically executes the PING, then the transfer. |
| 1279 | */ |
| 1280 | halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_ACK, must_free); |
| 1281 | } |
| 1282 | } |
| 1283 | |
| 1284 | /* |
| 1285 | * If the ACK occurred when _not_ in the PING state, let the channel |
| 1286 | * continue transferring data after clearing the error count. |
| 1287 | */ |
| 1288 | |
| 1289 | disable_hc_int(_hc_regs,ack); |
| 1290 | |
| 1291 | return 1; |
| 1292 | } |
| 1293 | |
| 1294 | /** |
| 1295 | * Handles a host channel NYET interrupt. This interrupt should only occur on |
| 1296 | * Bulk and Control OUT endpoints and for complete split transactions. If a |
| 1297 | * NYET occurs at the same time as a Transfer Complete interrupt, it is |
| 1298 | * handled in the xfercomp interrupt handler, not here. This handler may be |
| 1299 | * called in either DMA mode or Slave mode. |
| 1300 | */ |
| 1301 | static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *_hcd, |
| 1302 | dwc_hc_t *_hc, |
| 1303 | dwc_otg_hc_regs_t *_hc_regs, |
| 1304 | dwc_otg_qtd_t *_qtd, int *must_free) |
| 1305 | { |
| 1306 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1307 | "NYET Received--\n", _hc->hc_num); |
| 1308 | |
| 1309 | /* |
| 1310 | * NYET on CSPLIT |
| 1311 | * re-do the CSPLIT immediately on non-periodic |
| 1312 | */ |
| 1313 | if ((_hc->do_split) && (_hc->complete_split)) { |
| 1314 | if ((_hc->ep_type == DWC_OTG_EP_TYPE_INTR) || |
| 1315 | (_hc->ep_type == DWC_OTG_EP_TYPE_ISOC)) { |
| 1316 | int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd)); |
| 1317 | |
| 1318 | if (dwc_full_frame_num(frnum) != |
| 1319 | dwc_full_frame_num(_hc->qh->sched_frame)) { |
| 1320 | /* |
| 1321 | * No longer in the same full speed frame. |
| 1322 | * Treat this as a transaction error. |
| 1323 | */ |
| 1324 | #if 0 |
| 1325 | /** @todo Fix system performance so this can |
| 1326 | * be treated as an error. Right now complete |
| 1327 | * splits cannot be scheduled precisely enough |
| 1328 | * due to other system activity, so this error |
| 1329 | * occurs regularly in Slave mode. |
| 1330 | */ |
| 1331 | _qtd->error_count++; |
| 1332 | #endif |
| 1333 | _qtd->complete_split = 0; |
| 1334 | halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free); |
| 1335 | /** @todo add support for isoc release */ |
| 1336 | goto handle_nyet_done; |
| 1337 | } |
| 1338 | } |
| 1339 | |
| 1340 | halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NYET, must_free); |
| 1341 | goto handle_nyet_done; |
| 1342 | } |
| 1343 | |
| 1344 | _hc->qh->ping_state = 1; |
| 1345 | _qtd->error_count = 0; |
| 1346 | |
| 1347 | update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb, _qtd, |
| 1348 | DWC_OTG_HC_XFER_NYET); |
| 1349 | save_data_toggle(_hc, _hc_regs, _qtd); |
| 1350 | |
| 1351 | /* |
| 1352 | * Halt the channel and re-start the transfer so the PING |
| 1353 | * protocol will start. |
| 1354 | */ |
| 1355 | halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NYET, must_free); |
| 1356 | |
| 1357 | handle_nyet_done: |
| 1358 | disable_hc_int(_hc_regs,nyet); |
| 1359 | clear_hc_int(_hc_regs, nyet); |
| 1360 | return 1; |
| 1361 | } |
| 1362 | |
| 1363 | /** |
| 1364 | * Handles a host channel babble interrupt. This handler may be called in |
| 1365 | * either DMA mode or Slave mode. |
| 1366 | */ |
| 1367 | static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *_hcd, |
| 1368 | dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) |
| 1369 | { |
| 1370 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1371 | "Babble Error--\n", _hc->hc_num); |
| 1372 | if (_hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { |
| 1373 | dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EOVERFLOW); |
| 1374 | halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_BABBLE_ERR, must_free); |
| 1375 | } else { |
| 1376 | dwc_otg_halt_status_e halt_status; |
| 1377 | halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd, |
| 1378 | DWC_OTG_HC_XFER_BABBLE_ERR); |
| 1379 | halt_channel(_hcd, _hc, _qtd, halt_status, must_free); |
| 1380 | } |
| 1381 | disable_hc_int(_hc_regs,bblerr); |
| 1382 | return 1; |
| 1383 | } |
| 1384 | |
| 1385 | /** |
| 1386 | * Handles a host channel AHB error interrupt. This handler is only called in |
| 1387 | * DMA mode. |
| 1388 | */ |
| 1389 | static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *_hcd, |
| 1390 | dwc_hc_t *_hc, |
| 1391 | dwc_otg_hc_regs_t *_hc_regs, |
| 1392 | dwc_otg_qtd_t *_qtd) |
| 1393 | { |
| 1394 | hcchar_data_t hcchar; |
| 1395 | hcsplt_data_t hcsplt; |
| 1396 | hctsiz_data_t hctsiz; |
| 1397 | uint32_t hcdma; |
| 1398 | struct urb *urb = _qtd->urb; |
| 1399 | |
| 1400 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1401 | "AHB Error--\n", _hc->hc_num); |
| 1402 | |
| 1403 | hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar); |
| 1404 | hcsplt.d32 = dwc_read_reg32(&_hc_regs->hcsplt); |
| 1405 | hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); |
| 1406 | hcdma = dwc_read_reg32(&_hc_regs->hcdma); |
| 1407 | |
| 1408 | DWC_ERROR("AHB ERROR, Channel %d\n", _hc->hc_num); |
| 1409 | DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32); |
| 1410 | DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma); |
| 1411 | DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n"); |
| 1412 | DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe)); |
| 1413 | DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), |
| 1414 | (usb_pipein(urb->pipe) ? "IN" : "OUT")); |
| 1415 | DWC_ERROR(" Endpoint type: %s\n", |
| 1416 | ({char *pipetype; |
| 1417 | switch (usb_pipetype(urb->pipe)) { |
| 1418 | case PIPE_CONTROL: pipetype = "CONTROL"; break; |
| 1419 | case PIPE_BULK: pipetype = "BULK"; break; |
| 1420 | case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break; |
| 1421 | case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break; |
| 1422 | default: pipetype = "UNKNOWN"; break; |
| 1423 | }; pipetype;})); |
| 1424 | DWC_ERROR(" Speed: %s\n", |
| 1425 | ({char *speed; |
| 1426 | switch (urb->dev->speed) { |
| 1427 | case USB_SPEED_HIGH: speed = "HIGH"; break; |
| 1428 | case USB_SPEED_FULL: speed = "FULL"; break; |
| 1429 | case USB_SPEED_LOW: speed = "LOW"; break; |
| 1430 | default: speed = "UNKNOWN"; break; |
| 1431 | }; speed;})); |
| 1432 | DWC_ERROR(" Max packet size: %d\n", |
| 1433 | usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); |
| 1434 | DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length); |
| 1435 | DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n", |
| 1436 | urb->transfer_buffer, (void *)(u32)urb->transfer_dma); |
| 1437 | DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n", |
| 1438 | urb->setup_packet, (void *)(u32)urb->setup_dma); |
| 1439 | DWC_ERROR(" Interval: %d\n", urb->interval); |
| 1440 | |
| 1441 | dwc_otg_hcd_complete_urb(_hcd, urb, -EIO); |
| 1442 | |
| 1443 | /* |
| 1444 | * Force a channel halt. Don't call halt_channel because that won't |
| 1445 | * write to the HCCHARn register in DMA mode to force the halt. |
| 1446 | */ |
| 1447 | dwc_otg_hc_halt(_hcd->core_if, _hc, DWC_OTG_HC_XFER_AHB_ERR); |
| 1448 | |
| 1449 | disable_hc_int(_hc_regs,ahberr); |
| 1450 | return 1; |
| 1451 | } |
| 1452 | |
| 1453 | /** |
| 1454 | * Handles a host channel transaction error interrupt. This handler may be |
| 1455 | * called in either DMA mode or Slave mode. |
| 1456 | */ |
| 1457 | static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *_hcd, |
| 1458 | dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) |
| 1459 | { |
| 1460 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1461 | "Transaction Error--\n", _hc->hc_num); |
| 1462 | |
| 1463 | switch (usb_pipetype(_qtd->urb->pipe)) { |
| 1464 | case PIPE_CONTROL: |
| 1465 | case PIPE_BULK: |
| 1466 | _qtd->error_count++; |
| 1467 | if (!_hc->qh->ping_state) { |
| 1468 | update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb, |
| 1469 | _qtd, DWC_OTG_HC_XFER_XACT_ERR); |
| 1470 | save_data_toggle(_hc, _hc_regs, _qtd); |
| 1471 | if (!_hc->ep_is_in && _qtd->urb->dev->speed == USB_SPEED_HIGH) { |
| 1472 | _hc->qh->ping_state = 1; |
| 1473 | } |
| 1474 | } |
| 1475 | |
| 1476 | /* |
| 1477 | * Halt the channel so the transfer can be re-started from |
| 1478 | * the appropriate point or the PING protocol will start. |
| 1479 | */ |
| 1480 | halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free); |
| 1481 | break; |
| 1482 | case PIPE_INTERRUPT: |
| 1483 | _qtd->error_count++; |
| 1484 | if ((_hc->do_split) && (_hc->complete_split)) { |
| 1485 | _qtd->complete_split = 0; |
| 1486 | } |
| 1487 | halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free); |
| 1488 | break; |
| 1489 | case PIPE_ISOCHRONOUS: |
| 1490 | { |
| 1491 | dwc_otg_halt_status_e halt_status; |
| 1492 | halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd, |
| 1493 | DWC_OTG_HC_XFER_XACT_ERR); |
| 1494 | |
| 1495 | halt_channel(_hcd, _hc, _qtd, halt_status, must_free); |
| 1496 | } |
| 1497 | break; |
| 1498 | } |
| 1499 | |
| 1500 | |
| 1501 | disable_hc_int(_hc_regs,xacterr); |
| 1502 | |
| 1503 | return 1; |
| 1504 | } |
| 1505 | |
| 1506 | /** |
| 1507 | * Handles a host channel frame overrun interrupt. This handler may be called |
| 1508 | * in either DMA mode or Slave mode. |
| 1509 | */ |
| 1510 | static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *_hcd, |
| 1511 | dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) |
| 1512 | { |
| 1513 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1514 | "Frame Overrun--\n", _hc->hc_num); |
| 1515 | |
| 1516 | switch (usb_pipetype(_qtd->urb->pipe)) { |
| 1517 | case PIPE_CONTROL: |
| 1518 | case PIPE_BULK: |
| 1519 | break; |
| 1520 | case PIPE_INTERRUPT: |
| 1521 | halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN, must_free); |
| 1522 | break; |
| 1523 | case PIPE_ISOCHRONOUS: |
| 1524 | { |
| 1525 | dwc_otg_halt_status_e halt_status; |
| 1526 | halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd, |
| 1527 | DWC_OTG_HC_XFER_FRAME_OVERRUN); |
| 1528 | |
| 1529 | halt_channel(_hcd, _hc, _qtd, halt_status, must_free); |
| 1530 | } |
| 1531 | break; |
| 1532 | } |
| 1533 | |
| 1534 | disable_hc_int(_hc_regs,frmovrun); |
| 1535 | |
| 1536 | return 1; |
| 1537 | } |
| 1538 | |
| 1539 | /** |
| 1540 | * Handles a host channel data toggle error interrupt. This handler may be |
| 1541 | * called in either DMA mode or Slave mode. |
| 1542 | */ |
| 1543 | static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *_hcd, |
| 1544 | dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) |
| 1545 | { |
| 1546 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1547 | "Data Toggle Error--\n", _hc->hc_num); |
| 1548 | |
| 1549 | if (_hc->ep_is_in) { |
| 1550 | _qtd->error_count = 0; |
| 1551 | } else { |
| 1552 | DWC_ERROR("Data Toggle Error on OUT transfer," |
| 1553 | "channel %d\n", _hc->hc_num); |
| 1554 | } |
| 1555 | |
| 1556 | disable_hc_int(_hc_regs,datatglerr); |
| 1557 | |
| 1558 | return 1; |
| 1559 | } |
| 1560 | |
| 1561 | #ifdef DEBUG |
| 1562 | /** |
| 1563 | * This function is for debug only. It checks that a valid halt status is set |
| 1564 | * and that HCCHARn.chdis is clear. If there's a problem, corrective action is |
| 1565 | * taken and a warning is issued. |
| 1566 | * @return 1 if halt status is ok, 0 otherwise. |
| 1567 | */ |
| 1568 | static inline int halt_status_ok(dwc_otg_hcd_t *_hcd, |
| 1569 | dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) |
| 1570 | { |
| 1571 | hcchar_data_t hcchar; |
| 1572 | hctsiz_data_t hctsiz; |
| 1573 | hcint_data_t hcint; |
| 1574 | hcintmsk_data_t hcintmsk; |
| 1575 | hcsplt_data_t hcsplt; |
| 1576 | |
| 1577 | if (_hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) { |
| 1578 | /* |
| 1579 | * This code is here only as a check. This condition should |
| 1580 | * never happen. Ignore the halt if it does occur. |
| 1581 | */ |
| 1582 | hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar); |
| 1583 | hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); |
| 1584 | hcint.d32 = dwc_read_reg32(&_hc_regs->hcint); |
| 1585 | hcintmsk.d32 = dwc_read_reg32(&_hc_regs->hcintmsk); |
| 1586 | hcsplt.d32 = dwc_read_reg32(&_hc_regs->hcsplt); |
| 1587 | DWC_WARN("%s: _hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, " |
| 1588 | "channel %d, hcchar 0x%08x, hctsiz 0x%08x, " |
| 1589 | "hcint 0x%08x, hcintmsk 0x%08x, " |
| 1590 | "hcsplt 0x%08x, qtd->complete_split %d\n", |
| 1591 | __func__, _hc->hc_num, hcchar.d32, hctsiz.d32, |
| 1592 | hcint.d32, hcintmsk.d32, |
| 1593 | hcsplt.d32, _qtd->complete_split); |
| 1594 | |
| 1595 | DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n", |
| 1596 | __func__, _hc->hc_num); |
| 1597 | DWC_WARN("\n"); |
| 1598 | clear_hc_int(_hc_regs,chhltd); |
| 1599 | return 0; |
| 1600 | } |
| 1601 | |
| 1602 | /* |
| 1603 | * This code is here only as a check. hcchar.chdis should |
| 1604 | * never be set when the halt interrupt occurs. Halt the |
| 1605 | * channel again if it does occur. |
| 1606 | */ |
| 1607 | hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar); |
| 1608 | if (hcchar.b.chdis) { |
| 1609 | DWC_WARN("%s: hcchar.chdis set unexpectedly, " |
| 1610 | "hcchar 0x%08x, trying to halt again\n", |
| 1611 | __func__, hcchar.d32); |
| 1612 | clear_hc_int(_hc_regs,chhltd); |
| 1613 | _hc->halt_pending = 0; |
| 1614 | halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); |
| 1615 | return 0; |
| 1616 | } |
| 1617 | |
| 1618 | return 1; |
| 1619 | } |
| 1620 | #endif |
| 1621 | |
| 1622 | /** |
| 1623 | * Handles a host Channel Halted interrupt in DMA mode. This handler |
| 1624 | * determines the reason the channel halted and proceeds accordingly. |
| 1625 | */ |
| 1626 | static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *_hcd, |
| 1627 | dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) |
| 1628 | { |
| 1629 | hcint_data_t hcint; |
| 1630 | hcintmsk_data_t hcintmsk; |
| 1631 | |
| 1632 | if (_hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || |
| 1633 | _hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) { |
| 1634 | /* |
| 1635 | * Just release the channel. A dequeue can happen on a |
| 1636 | * transfer timeout. In the case of an AHB Error, the channel |
| 1637 | * was forced to halt because there's no way to gracefully |
| 1638 | * recover. |
| 1639 | */ |
| 1640 | release_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); |
| 1641 | return; |
| 1642 | } |
| 1643 | |
| 1644 | /* Read the HCINTn register to determine the cause for the halt. */ |
| 1645 | hcint.d32 = dwc_read_reg32(&_hc_regs->hcint); |
| 1646 | hcintmsk.d32 = dwc_read_reg32(&_hc_regs->hcintmsk); |
| 1647 | |
| 1648 | if (hcint.b.xfercomp) { |
| 1649 | /** @todo This is here because of a possible hardware bug. Spec |
| 1650 | * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT |
| 1651 | * interrupt w/ACK bit set should occur, but I only see the |
| 1652 | * XFERCOMP bit, even with it masked out. This is a workaround |
| 1653 | * for that behavior. Should fix this when hardware is fixed. |
| 1654 | */ |
| 1655 | if ((_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && (!_hc->ep_is_in)) { |
| 1656 | handle_hc_ack_intr(_hcd, _hc, _hc_regs, _qtd, must_free); |
| 1657 | } |
| 1658 | handle_hc_xfercomp_intr(_hcd, _hc, _hc_regs, _qtd, must_free); |
| 1659 | } else if (hcint.b.stall) { |
| 1660 | handle_hc_stall_intr(_hcd, _hc, _hc_regs, _qtd, must_free); |
| 1661 | } else if (hcint.b.xacterr) { |
| 1662 | /* |
| 1663 | * Must handle xacterr before nak or ack. Could get a xacterr |
| 1664 | * at the same time as either of these on a BULK/CONTROL OUT |
| 1665 | * that started with a PING. The xacterr takes precedence. |
| 1666 | */ |
| 1667 | handle_hc_xacterr_intr(_hcd, _hc, _hc_regs, _qtd, must_free); |
| 1668 | } else if (hcint.b.nyet) { |
| 1669 | /* |
| 1670 | * Must handle nyet before nak or ack. Could get a nyet at the |
| 1671 | * same time as either of those on a BULK/CONTROL OUT that |
| 1672 | * started with a PING. The nyet takes precedence. |
| 1673 | */ |
| 1674 | handle_hc_nyet_intr(_hcd, _hc, _hc_regs, _qtd, must_free); |
| 1675 | } else if (hcint.b.bblerr) { |
| 1676 | handle_hc_babble_intr(_hcd, _hc, _hc_regs, _qtd, must_free); |
| 1677 | } else if (hcint.b.frmovrun) { |
| 1678 | handle_hc_frmovrun_intr(_hcd, _hc, _hc_regs, _qtd, must_free); |
| 1679 | } else if (hcint.b.datatglerr) { |
| 1680 | handle_hc_datatglerr_intr(_hcd, _hc, _hc_regs, _qtd, must_free); |
| 1681 | _hc->qh->data_toggle = 0; |
| 1682 | halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); |
| 1683 | } else if (hcint.b.nak && !hcintmsk.b.nak) { |
| 1684 | /* |
| 1685 | * If nak is not masked, it's because a non-split IN transfer |
| 1686 | * is in an error state. In that case, the nak is handled by |
| 1687 | * the nak interrupt handler, not here. Handle nak here for |
| 1688 | * BULK/CONTROL OUT transfers, which halt on a NAK to allow |
| 1689 | * rewinding the buffer pointer. |
| 1690 | */ |
| 1691 | handle_hc_nak_intr(_hcd, _hc, _hc_regs, _qtd, must_free); |
| 1692 | } else if (hcint.b.ack && !hcintmsk.b.ack) { |
| 1693 | /* |
| 1694 | * If ack is not masked, it's because a non-split IN transfer |
| 1695 | * is in an error state. In that case, the ack is handled by |
| 1696 | * the ack interrupt handler, not here. Handle ack here for |
| 1697 | * split transfers. Start splits halt on ACK. |
| 1698 | */ |
| 1699 | handle_hc_ack_intr(_hcd, _hc, _hc_regs, _qtd, must_free); |
| 1700 | } else { |
| 1701 | if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || |
| 1702 | _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { |
| 1703 | /* |
| 1704 | * A periodic transfer halted with no other channel |
| 1705 | * interrupts set. Assume it was halted by the core |
| 1706 | * because it could not be completed in its scheduled |
| 1707 | * (micro)frame. |
| 1708 | */ |
| 1709 | #ifdef DEBUG |
| 1710 | DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n", |
| 1711 | __func__, _hc->hc_num); |
| 1712 | #endif /* */ |
| 1713 | halt_channel(_hcd, _hc, _qtd, |
| 1714 | DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE, must_free); |
| 1715 | } else { |
| 1716 | #ifdef DEBUG |
| 1717 | DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason " |
| 1718 | "for halting is unknown, nyet %d, hcint 0x%08x, intsts 0x%08x\n", |
| 1719 | __func__, _hc->hc_num, hcint.b.nyet, hcint.d32, |
| 1720 | dwc_read_reg32(&_hcd->core_if->core_global_regs->gintsts)); |
| 1721 | #endif |
| 1722 | halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); |
| 1723 | } |
| 1724 | } |
| 1725 | } |
| 1726 | |
| 1727 | /** |
| 1728 | * Handles a host channel Channel Halted interrupt. |
| 1729 | * |
| 1730 | * In slave mode, this handler is called only when the driver specifically |
| 1731 | * requests a halt. This occurs during handling other host channel interrupts |
| 1732 | * (e.g. nak, xacterr, stall, nyet, etc.). |
| 1733 | * |
| 1734 | * In DMA mode, this is the interrupt that occurs when the core has finished |
| 1735 | * processing a transfer on a channel. Other host channel interrupts (except |
| 1736 | * ahberr) are disabled in DMA mode. |
| 1737 | */ |
| 1738 | static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *_hcd, |
| 1739 | dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) |
| 1740 | { |
| 1741 | DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " |
| 1742 | "Channel Halted--\n", _hc->hc_num); |
| 1743 | |
| 1744 | if (_hcd->core_if->dma_enable) { |
| 1745 | handle_hc_chhltd_intr_dma(_hcd, _hc, _hc_regs, _qtd, must_free); |
| 1746 | } else { |
| 1747 | #ifdef DEBUG |
| 1748 | if (!halt_status_ok(_hcd, _hc, _hc_regs, _qtd, must_free)) { |
| 1749 | return 1; |
| 1750 | } |
| 1751 | #endif /* */ |
| 1752 | release_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); |
| 1753 | } |
| 1754 | |
| 1755 | return 1; |
| 1756 | } |
| 1757 | |
| 1758 | /** Handles interrupt for a specific Host Channel */ |
| 1759 | int32_t dwc_otg_hcd_handle_hc_n_intr (dwc_otg_hcd_t *_dwc_otg_hcd, uint32_t _num) |
| 1760 | { |
| 1761 | int must_free = 0; |
| 1762 | int retval = 0; |
| 1763 | hcint_data_t hcint; |
| 1764 | hcintmsk_data_t hcintmsk; |
| 1765 | dwc_hc_t *hc; |
| 1766 | dwc_otg_hc_regs_t *hc_regs; |
| 1767 | dwc_otg_qtd_t *qtd; |
| 1768 | |
| 1769 | DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", _num); |
| 1770 | |
| 1771 | hc = _dwc_otg_hcd->hc_ptr_array[_num]; |
| 1772 | hc_regs = _dwc_otg_hcd->core_if->host_if->hc_regs[_num]; |
| 1773 | qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); |
| 1774 | |
| 1775 | hcint.d32 = dwc_read_reg32(&hc_regs->hcint); |
| 1776 | hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); |
| 1777 | DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n", |
| 1778 | hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32)); |
| 1779 | hcint.d32 = hcint.d32 & hcintmsk.d32; |
| 1780 | |
| 1781 | if (!_dwc_otg_hcd->core_if->dma_enable) { |
| 1782 | if ((hcint.b.chhltd) && (hcint.d32 != 0x2)) { |
| 1783 | hcint.b.chhltd = 0; |
| 1784 | } |
| 1785 | } |
| 1786 | |
| 1787 | if (hcint.b.xfercomp) { |
| 1788 | retval |= handle_hc_xfercomp_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); |
| 1789 | /* |
| 1790 | * If NYET occurred at same time as Xfer Complete, the NYET is |
| 1791 | * handled by the Xfer Complete interrupt handler. Don't want |
| 1792 | * to call the NYET interrupt handler in this case. |
| 1793 | */ |
| 1794 | hcint.b.nyet = 0; |
| 1795 | } |
| 1796 | if (hcint.b.chhltd) { |
| 1797 | retval |= handle_hc_chhltd_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); |
| 1798 | } |
| 1799 | if (hcint.b.ahberr) { |
| 1800 | retval |= handle_hc_ahberr_intr(_dwc_otg_hcd, hc, hc_regs, qtd); |
| 1801 | } |
| 1802 | if (hcint.b.stall) { |
| 1803 | retval |= handle_hc_stall_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); |
| 1804 | } |
| 1805 | if (hcint.b.nak) { |
| 1806 | retval |= handle_hc_nak_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); |
| 1807 | } |
| 1808 | if (hcint.b.ack) { |
| 1809 | retval |= handle_hc_ack_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); |
| 1810 | } |
| 1811 | if (hcint.b.nyet) { |
| 1812 | retval |= handle_hc_nyet_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); |
| 1813 | } |
| 1814 | if (hcint.b.xacterr) { |
| 1815 | retval |= handle_hc_xacterr_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); |
| 1816 | } |
| 1817 | if (hcint.b.bblerr) { |
| 1818 | retval |= handle_hc_babble_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); |
| 1819 | } |
| 1820 | if (hcint.b.frmovrun) { |
| 1821 | retval |= handle_hc_frmovrun_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); |
| 1822 | } |
| 1823 | if (hcint.b.datatglerr) { |
| 1824 | retval |= handle_hc_datatglerr_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); |
| 1825 | } |
| 1826 | |
| 1827 | /* |
| 1828 | * Logic to free the qtd here, at the end of the hc intr |
| 1829 | * processing, if the handling of this interrupt determined |
| 1830 | * that it needs to be freed. |
| 1831 | */ |
| 1832 | if (must_free) { |
| 1833 | /* Free the qtd here now that we are done using it. */ |
| 1834 | dwc_otg_hcd_qtd_free(qtd); |
| 1835 | } |
| 1836 | return retval; |
| 1837 | } |
| 1838 | |
| 1839 | #endif /* DWC_DEVICE_ONLY */ |
| 1840 | |