Root/crypto/vmac.c

1/*
2 * Modified to interface to the Linux kernel
3 * Copyright (c) 2009, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 */
18
19/* --------------------------------------------------------------------------
20 * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
21 * This implementation is herby placed in the public domain.
22 * The authors offers no warranty. Use at your own risk.
23 * Please send bug reports to the authors.
24 * Last modified: 17 APR 08, 1700 PDT
25 * ----------------------------------------------------------------------- */
26
27#include <linux/init.h>
28#include <linux/types.h>
29#include <linux/crypto.h>
30#include <linux/scatterlist.h>
31#include <asm/byteorder.h>
32#include <crypto/scatterwalk.h>
33#include <crypto/vmac.h>
34#include <crypto/internal/hash.h>
35
36/*
37 * Constants and masks
38 */
39#define UINT64_C(x) x##ULL
40const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */
41const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */
42const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */
43const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */
44const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */
45
46#define pe64_to_cpup le64_to_cpup /* Prefer little endian */
47
48#ifdef __LITTLE_ENDIAN
49#define INDEX_HIGH 1
50#define INDEX_LOW 0
51#else
52#define INDEX_HIGH 0
53#define INDEX_LOW 1
54#endif
55
56/*
57 * The following routines are used in this implementation. They are
58 * written via macros to simulate zero-overhead call-by-reference.
59 *
60 * MUL64: 64x64->128-bit multiplication
61 * PMUL64: assumes top bits cleared on inputs
62 * ADD128: 128x128->128-bit addition
63 */
64
65#define ADD128(rh, rl, ih, il) \
66    do { \
67        u64 _il = (il); \
68        (rl) += (_il); \
69        if ((rl) < (_il)) \
70            (rh)++; \
71        (rh) += (ih); \
72    } while (0)
73
74#define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2))
75
76#define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \
77    do { \
78        u64 _i1 = (i1), _i2 = (i2); \
79        u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \
80        rh = MUL32(_i1>>32, _i2>>32); \
81        rl = MUL32(_i1, _i2); \
82        ADD128(rh, rl, (m >> 32), (m << 32)); \
83    } while (0)
84
85#define MUL64(rh, rl, i1, i2) \
86    do { \
87        u64 _i1 = (i1), _i2 = (i2); \
88        u64 m1 = MUL32(_i1, _i2>>32); \
89        u64 m2 = MUL32(_i1>>32, _i2); \
90        rh = MUL32(_i1>>32, _i2>>32); \
91        rl = MUL32(_i1, _i2); \
92        ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \
93        ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \
94    } while (0)
95
96/*
97 * For highest performance the L1 NH and L2 polynomial hashes should be
98 * carefully implemented to take advantage of one's target architechture.
99 * Here these two hash functions are defined multiple time; once for
100 * 64-bit architectures, once for 32-bit SSE2 architectures, and once
101 * for the rest (32-bit) architectures.
102 * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
103 * Optionally, nh_vmac_nhbytes can be defined (for multiples of
104 * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
105 * NH computations at once).
106 */
107
108#ifdef CONFIG_64BIT
109
110#define nh_16(mp, kp, nw, rh, rl) \
111    do { \
112        int i; u64 th, tl; \
113        rh = rl = 0; \
114        for (i = 0; i < nw; i += 2) { \
115            MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
116                pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
117            ADD128(rh, rl, th, tl); \
118        } \
119    } while (0)
120
121#define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \
122    do { \
123        int i; u64 th, tl; \
124        rh1 = rl1 = rh = rl = 0; \
125        for (i = 0; i < nw; i += 2) { \
126            MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
127                pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
128            ADD128(rh, rl, th, tl); \
129            MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \
130                pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \
131            ADD128(rh1, rl1, th, tl); \
132        } \
133    } while (0)
134
135#if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
136#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
137    do { \
138        int i; u64 th, tl; \
139        rh = rl = 0; \
140        for (i = 0; i < nw; i += 8) { \
141            MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
142                pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
143            ADD128(rh, rl, th, tl); \
144            MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
145                pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \
146            ADD128(rh, rl, th, tl); \
147            MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
148                pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \
149            ADD128(rh, rl, th, tl); \
150            MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
151                pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \
152            ADD128(rh, rl, th, tl); \
153        } \
154    } while (0)
155
156#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \
157    do { \
158        int i; u64 th, tl; \
159        rh1 = rl1 = rh = rl = 0; \
160        for (i = 0; i < nw; i += 8) { \
161            MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
162                pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
163            ADD128(rh, rl, th, tl); \
164            MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \
165                pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \
166            ADD128(rh1, rl1, th, tl); \
167            MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
168                pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \
169            ADD128(rh, rl, th, tl); \
170            MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \
171                pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \
172            ADD128(rh1, rl1, th, tl); \
173            MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
174                pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \
175            ADD128(rh, rl, th, tl); \
176            MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \
177                pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \
178            ADD128(rh1, rl1, th, tl); \
179            MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
180                pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \
181            ADD128(rh, rl, th, tl); \
182            MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \
183                pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \
184            ADD128(rh1, rl1, th, tl); \
185        } \
186    } while (0)
187#endif
188
189#define poly_step(ah, al, kh, kl, mh, ml) \
190    do { \
191        u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \
192        /* compute ab*cd, put bd into result registers */ \
193        PMUL64(t3h, t3l, al, kh); \
194        PMUL64(t2h, t2l, ah, kl); \
195        PMUL64(t1h, t1l, ah, 2*kh); \
196        PMUL64(ah, al, al, kl); \
197        /* add 2 * ac to result */ \
198        ADD128(ah, al, t1h, t1l); \
199        /* add together ad + bc */ \
200        ADD128(t2h, t2l, t3h, t3l); \
201        /* now (ah,al), (t2l,2*t2h) need summing */ \
202        /* first add the high registers, carrying into t2h */ \
203        ADD128(t2h, ah, z, t2l); \
204        /* double t2h and add top bit of ah */ \
205        t2h = 2 * t2h + (ah >> 63); \
206        ah &= m63; \
207        /* now add the low registers */ \
208        ADD128(ah, al, mh, ml); \
209        ADD128(ah, al, z, t2h); \
210    } while (0)
211
212#else /* ! CONFIG_64BIT */
213
214#ifndef nh_16
215#define nh_16(mp, kp, nw, rh, rl) \
216    do { \
217        u64 t1, t2, m1, m2, t; \
218        int i; \
219        rh = rl = t = 0; \
220        for (i = 0; i < nw; i += 2) { \
221            t1 = pe64_to_cpup(mp+i) + kp[i]; \
222            t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \
223            m2 = MUL32(t1 >> 32, t2); \
224            m1 = MUL32(t1, t2 >> 32); \
225            ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \
226                MUL32(t1, t2)); \
227            rh += (u64)(u32)(m1 >> 32) \
228                + (u32)(m2 >> 32); \
229            t += (u64)(u32)m1 + (u32)m2; \
230        } \
231        ADD128(rh, rl, (t >> 32), (t << 32)); \
232    } while (0)
233#endif
234
235static void poly_step_func(u64 *ahi, u64 *alo,
236            const u64 *kh, const u64 *kl,
237            const u64 *mh, const u64 *ml)
238{
239#define a0 (*(((u32 *)alo)+INDEX_LOW))
240#define a1 (*(((u32 *)alo)+INDEX_HIGH))
241#define a2 (*(((u32 *)ahi)+INDEX_LOW))
242#define a3 (*(((u32 *)ahi)+INDEX_HIGH))
243#define k0 (*(((u32 *)kl)+INDEX_LOW))
244#define k1 (*(((u32 *)kl)+INDEX_HIGH))
245#define k2 (*(((u32 *)kh)+INDEX_LOW))
246#define k3 (*(((u32 *)kh)+INDEX_HIGH))
247
248    u64 p, q, t;
249    u32 t2;
250
251    p = MUL32(a3, k3);
252    p += p;
253    p += *(u64 *)mh;
254    p += MUL32(a0, k2);
255    p += MUL32(a1, k1);
256    p += MUL32(a2, k0);
257    t = (u32)(p);
258    p >>= 32;
259    p += MUL32(a0, k3);
260    p += MUL32(a1, k2);
261    p += MUL32(a2, k1);
262    p += MUL32(a3, k0);
263    t |= ((u64)((u32)p & 0x7fffffff)) << 32;
264    p >>= 31;
265    p += (u64)(((u32 *)ml)[INDEX_LOW]);
266    p += MUL32(a0, k0);
267    q = MUL32(a1, k3);
268    q += MUL32(a2, k2);
269    q += MUL32(a3, k1);
270    q += q;
271    p += q;
272    t2 = (u32)(p);
273    p >>= 32;
274    p += (u64)(((u32 *)ml)[INDEX_HIGH]);
275    p += MUL32(a0, k1);
276    p += MUL32(a1, k0);
277    q = MUL32(a2, k3);
278    q += MUL32(a3, k2);
279    q += q;
280    p += q;
281    *(u64 *)(alo) = (p << 32) | t2;
282    p >>= 32;
283    *(u64 *)(ahi) = p + t;
284
285#undef a0
286#undef a1
287#undef a2
288#undef a3
289#undef k0
290#undef k1
291#undef k2
292#undef k3
293}
294
295#define poly_step(ah, al, kh, kl, mh, ml) \
296    poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
297
298#endif /* end of specialized NH and poly definitions */
299
300/* At least nh_16 is defined. Defined others as needed here */
301#ifndef nh_16_2
302#define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \
303    do { \
304        nh_16(mp, kp, nw, rh, rl); \
305        nh_16(mp, ((kp)+2), nw, rh2, rl2); \
306    } while (0)
307#endif
308#ifndef nh_vmac_nhbytes
309#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
310    nh_16(mp, kp, nw, rh, rl)
311#endif
312#ifndef nh_vmac_nhbytes_2
313#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \
314    do { \
315        nh_vmac_nhbytes(mp, kp, nw, rh, rl); \
316        nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \
317    } while (0)
318#endif
319
320static void vhash_abort(struct vmac_ctx *ctx)
321{
322    ctx->polytmp[0] = ctx->polykey[0] ;
323    ctx->polytmp[1] = ctx->polykey[1] ;
324    ctx->first_block_processed = 0;
325}
326
327static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
328{
329    u64 rh, rl, t, z = 0;
330
331    /* fully reduce (p1,p2)+(len,0) mod p127 */
332    t = p1 >> 63;
333    p1 &= m63;
334    ADD128(p1, p2, len, t);
335    /* At this point, (p1,p2) is at most 2^127+(len<<64) */
336    t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
337    ADD128(p1, p2, z, t);
338    p1 &= m63;
339
340    /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
341    t = p1 + (p2 >> 32);
342    t += (t >> 32);
343    t += (u32)t > 0xfffffffeu;
344    p1 += (t >> 32);
345    p2 += (p1 << 32);
346
347    /* compute (p1+k1)%p64 and (p2+k2)%p64 */
348    p1 += k1;
349    p1 += (0 - (p1 < k1)) & 257;
350    p2 += k2;
351    p2 += (0 - (p2 < k2)) & 257;
352
353    /* compute (p1+k1)*(p2+k2)%p64 */
354    MUL64(rh, rl, p1, p2);
355    t = rh >> 56;
356    ADD128(t, rl, z, rh);
357    rh <<= 8;
358    ADD128(t, rl, z, rh);
359    t += t << 8;
360    rl += t;
361    rl += (0 - (rl < t)) & 257;
362    rl += (0 - (rl > p64-1)) & 257;
363    return rl;
364}
365
366static void vhash_update(const unsigned char *m,
367            unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */
368            struct vmac_ctx *ctx)
369{
370    u64 rh, rl, *mptr;
371    const u64 *kptr = (u64 *)ctx->nhkey;
372    int i;
373    u64 ch, cl;
374    u64 pkh = ctx->polykey[0];
375    u64 pkl = ctx->polykey[1];
376
377    mptr = (u64 *)m;
378    i = mbytes / VMAC_NHBYTES; /* Must be non-zero */
379
380    ch = ctx->polytmp[0];
381    cl = ctx->polytmp[1];
382
383    if (!ctx->first_block_processed) {
384        ctx->first_block_processed = 1;
385        nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
386        rh &= m62;
387        ADD128(ch, cl, rh, rl);
388        mptr += (VMAC_NHBYTES/sizeof(u64));
389        i--;
390    }
391
392    while (i--) {
393        nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
394        rh &= m62;
395        poly_step(ch, cl, pkh, pkl, rh, rl);
396        mptr += (VMAC_NHBYTES/sizeof(u64));
397    }
398
399    ctx->polytmp[0] = ch;
400    ctx->polytmp[1] = cl;
401}
402
403static u64 vhash(unsigned char m[], unsigned int mbytes,
404            u64 *tagl, struct vmac_ctx *ctx)
405{
406    u64 rh, rl, *mptr;
407    const u64 *kptr = (u64 *)ctx->nhkey;
408    int i, remaining;
409    u64 ch, cl;
410    u64 pkh = ctx->polykey[0];
411    u64 pkl = ctx->polykey[1];
412
413    mptr = (u64 *)m;
414    i = mbytes / VMAC_NHBYTES;
415    remaining = mbytes % VMAC_NHBYTES;
416
417    if (ctx->first_block_processed) {
418        ch = ctx->polytmp[0];
419        cl = ctx->polytmp[1];
420    } else if (i) {
421        nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl);
422        ch &= m62;
423        ADD128(ch, cl, pkh, pkl);
424        mptr += (VMAC_NHBYTES/sizeof(u64));
425        i--;
426    } else if (remaining) {
427        nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl);
428        ch &= m62;
429        ADD128(ch, cl, pkh, pkl);
430        mptr += (VMAC_NHBYTES/sizeof(u64));
431        goto do_l3;
432    } else {/* Empty String */
433        ch = pkh; cl = pkl;
434        goto do_l3;
435    }
436
437    while (i--) {
438        nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
439        rh &= m62;
440        poly_step(ch, cl, pkh, pkl, rh, rl);
441        mptr += (VMAC_NHBYTES/sizeof(u64));
442    }
443    if (remaining) {
444        nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl);
445        rh &= m62;
446        poly_step(ch, cl, pkh, pkl, rh, rl);
447    }
448
449do_l3:
450    vhash_abort(ctx);
451    remaining *= 8;
452    return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining);
453}
454
455static u64 vmac(unsigned char m[], unsigned int mbytes,
456            unsigned char n[16], u64 *tagl,
457            struct vmac_ctx_t *ctx)
458{
459    u64 *in_n, *out_p;
460    u64 p, h;
461    int i;
462
463    in_n = ctx->__vmac_ctx.cached_nonce;
464    out_p = ctx->__vmac_ctx.cached_aes;
465
466    i = n[15] & 1;
467    if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) {
468        in_n[0] = *(u64 *)(n);
469        in_n[1] = *(u64 *)(n+8);
470        ((unsigned char *)in_n)[15] &= 0xFE;
471        crypto_cipher_encrypt_one(ctx->child,
472            (unsigned char *)out_p, (unsigned char *)in_n);
473
474        ((unsigned char *)in_n)[15] |= (unsigned char)(1-i);
475    }
476    p = be64_to_cpup(out_p + i);
477    h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx);
478    return le64_to_cpu(p + h);
479}
480
481static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx)
482{
483    u64 in[2] = {0}, out[2];
484    unsigned i;
485    int err = 0;
486
487    err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN);
488    if (err)
489        return err;
490
491    /* Fill nh key */
492    ((unsigned char *)in)[0] = 0x80;
493    for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) {
494        crypto_cipher_encrypt_one(ctx->child,
495            (unsigned char *)out, (unsigned char *)in);
496        ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out);
497        ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1);
498        ((unsigned char *)in)[15] += 1;
499    }
500
501    /* Fill poly key */
502    ((unsigned char *)in)[0] = 0xC0;
503    in[1] = 0;
504    for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) {
505        crypto_cipher_encrypt_one(ctx->child,
506            (unsigned char *)out, (unsigned char *)in);
507        ctx->__vmac_ctx.polytmp[i] =
508            ctx->__vmac_ctx.polykey[i] =
509                be64_to_cpup(out) & mpoly;
510        ctx->__vmac_ctx.polytmp[i+1] =
511            ctx->__vmac_ctx.polykey[i+1] =
512                be64_to_cpup(out+1) & mpoly;
513        ((unsigned char *)in)[15] += 1;
514    }
515
516    /* Fill ip key */
517    ((unsigned char *)in)[0] = 0xE0;
518    in[1] = 0;
519    for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) {
520        do {
521            crypto_cipher_encrypt_one(ctx->child,
522                (unsigned char *)out, (unsigned char *)in);
523            ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out);
524            ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1);
525            ((unsigned char *)in)[15] += 1;
526        } while (ctx->__vmac_ctx.l3key[i] >= p64
527            || ctx->__vmac_ctx.l3key[i+1] >= p64);
528    }
529
530    /* Invalidate nonce/aes cache and reset other elements */
531    ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */
532    ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */
533    ctx->__vmac_ctx.first_block_processed = 0;
534
535    return err;
536}
537
538static int vmac_setkey(struct crypto_shash *parent,
539        const u8 *key, unsigned int keylen)
540{
541    struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
542
543    if (keylen != VMAC_KEY_LEN) {
544        crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN);
545        return -EINVAL;
546    }
547
548    return vmac_set_key((u8 *)key, ctx);
549}
550
551static int vmac_init(struct shash_desc *pdesc)
552{
553    return 0;
554}
555
556static int vmac_update(struct shash_desc *pdesc, const u8 *p,
557        unsigned int len)
558{
559    struct crypto_shash *parent = pdesc->tfm;
560    struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
561
562    vhash_update(p, len, &ctx->__vmac_ctx);
563
564    return 0;
565}
566
567static int vmac_final(struct shash_desc *pdesc, u8 *out)
568{
569    struct crypto_shash *parent = pdesc->tfm;
570    struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
571    vmac_t mac;
572    u8 nonce[16] = {};
573
574    mac = vmac(NULL, 0, nonce, NULL, ctx);
575    memcpy(out, &mac, sizeof(vmac_t));
576    memset(&mac, 0, sizeof(vmac_t));
577    memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx));
578    return 0;
579}
580
581static int vmac_init_tfm(struct crypto_tfm *tfm)
582{
583    struct crypto_cipher *cipher;
584    struct crypto_instance *inst = (void *)tfm->__crt_alg;
585    struct crypto_spawn *spawn = crypto_instance_ctx(inst);
586    struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
587
588    cipher = crypto_spawn_cipher(spawn);
589    if (IS_ERR(cipher))
590        return PTR_ERR(cipher);
591
592    ctx->child = cipher;
593    return 0;
594}
595
596static void vmac_exit_tfm(struct crypto_tfm *tfm)
597{
598    struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
599    crypto_free_cipher(ctx->child);
600}
601
602static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
603{
604    struct shash_instance *inst;
605    struct crypto_alg *alg;
606    int err;
607
608    err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH);
609    if (err)
610        return err;
611
612    alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
613            CRYPTO_ALG_TYPE_MASK);
614    if (IS_ERR(alg))
615        return PTR_ERR(alg);
616
617    inst = shash_alloc_instance("vmac", alg);
618    err = PTR_ERR(inst);
619    if (IS_ERR(inst))
620        goto out_put_alg;
621
622    err = crypto_init_spawn(shash_instance_ctx(inst), alg,
623            shash_crypto_instance(inst),
624            CRYPTO_ALG_TYPE_MASK);
625    if (err)
626        goto out_free_inst;
627
628    inst->alg.base.cra_priority = alg->cra_priority;
629    inst->alg.base.cra_blocksize = alg->cra_blocksize;
630    inst->alg.base.cra_alignmask = alg->cra_alignmask;
631
632    inst->alg.digestsize = sizeof(vmac_t);
633    inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t);
634    inst->alg.base.cra_init = vmac_init_tfm;
635    inst->alg.base.cra_exit = vmac_exit_tfm;
636
637    inst->alg.init = vmac_init;
638    inst->alg.update = vmac_update;
639    inst->alg.final = vmac_final;
640    inst->alg.setkey = vmac_setkey;
641
642    err = shash_register_instance(tmpl, inst);
643    if (err) {
644out_free_inst:
645        shash_free_instance(shash_crypto_instance(inst));
646    }
647
648out_put_alg:
649    crypto_mod_put(alg);
650    return err;
651}
652
653static struct crypto_template vmac_tmpl = {
654    .name = "vmac",
655    .create = vmac_create,
656    .free = shash_free_instance,
657    .module = THIS_MODULE,
658};
659
660static int __init vmac_module_init(void)
661{
662    return crypto_register_template(&vmac_tmpl);
663}
664
665static void __exit vmac_module_exit(void)
666{
667    crypto_unregister_template(&vmac_tmpl);
668}
669
670module_init(vmac_module_init);
671module_exit(vmac_module_exit);
672
673MODULE_LICENSE("GPL");
674MODULE_DESCRIPTION("VMAC hash algorithm");
675
676

Archive Download this file



interactive