Root/
1 | /* |
2 | * linux/ipc/sem.c |
3 | * Copyright (C) 1992 Krishna Balasubramanian |
4 | * Copyright (C) 1995 Eric Schenk, Bruno Haible |
5 | * |
6 | * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> |
7 | * |
8 | * SMP-threaded, sysctl's added |
9 | * (c) 1999 Manfred Spraul <manfred@colorfullife.com> |
10 | * Enforced range limit on SEM_UNDO |
11 | * (c) 2001 Red Hat Inc |
12 | * Lockless wakeup |
13 | * (c) 2003 Manfred Spraul <manfred@colorfullife.com> |
14 | * Further wakeup optimizations, documentation |
15 | * (c) 2010 Manfred Spraul <manfred@colorfullife.com> |
16 | * |
17 | * support for audit of ipc object properties and permission changes |
18 | * Dustin Kirkland <dustin.kirkland@us.ibm.com> |
19 | * |
20 | * namespaces support |
21 | * OpenVZ, SWsoft Inc. |
22 | * Pavel Emelianov <xemul@openvz.org> |
23 | * |
24 | * Implementation notes: (May 2010) |
25 | * This file implements System V semaphores. |
26 | * |
27 | * User space visible behavior: |
28 | * - FIFO ordering for semop() operations (just FIFO, not starvation |
29 | * protection) |
30 | * - multiple semaphore operations that alter the same semaphore in |
31 | * one semop() are handled. |
32 | * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and |
33 | * SETALL calls. |
34 | * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. |
35 | * - undo adjustments at process exit are limited to 0..SEMVMX. |
36 | * - namespace are supported. |
37 | * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing |
38 | * to /proc/sys/kernel/sem. |
39 | * - statistics about the usage are reported in /proc/sysvipc/sem. |
40 | * |
41 | * Internals: |
42 | * - scalability: |
43 | * - all global variables are read-mostly. |
44 | * - semop() calls and semctl(RMID) are synchronized by RCU. |
45 | * - most operations do write operations (actually: spin_lock calls) to |
46 | * the per-semaphore array structure. |
47 | * Thus: Perfect SMP scaling between independent semaphore arrays. |
48 | * If multiple semaphores in one array are used, then cache line |
49 | * trashing on the semaphore array spinlock will limit the scaling. |
50 | * - semncnt and semzcnt are calculated on demand in count_semncnt() and |
51 | * count_semzcnt() |
52 | * - the task that performs a successful semop() scans the list of all |
53 | * sleeping tasks and completes any pending operations that can be fulfilled. |
54 | * Semaphores are actively given to waiting tasks (necessary for FIFO). |
55 | * (see update_queue()) |
56 | * - To improve the scalability, the actual wake-up calls are performed after |
57 | * dropping all locks. (see wake_up_sem_queue_prepare(), |
58 | * wake_up_sem_queue_do()) |
59 | * - All work is done by the waker, the woken up task does not have to do |
60 | * anything - not even acquiring a lock or dropping a refcount. |
61 | * - A woken up task may not even touch the semaphore array anymore, it may |
62 | * have been destroyed already by a semctl(RMID). |
63 | * - The synchronizations between wake-ups due to a timeout/signal and a |
64 | * wake-up due to a completed semaphore operation is achieved by using an |
65 | * intermediate state (IN_WAKEUP). |
66 | * - UNDO values are stored in an array (one per process and per |
67 | * semaphore array, lazily allocated). For backwards compatibility, multiple |
68 | * modes for the UNDO variables are supported (per process, per thread) |
69 | * (see copy_semundo, CLONE_SYSVSEM) |
70 | * - There are two lists of the pending operations: a per-array list |
71 | * and per-semaphore list (stored in the array). This allows to achieve FIFO |
72 | * ordering without always scanning all pending operations. |
73 | * The worst-case behavior is nevertheless O(N^2) for N wakeups. |
74 | */ |
75 | |
76 | #include <linux/slab.h> |
77 | #include <linux/spinlock.h> |
78 | #include <linux/init.h> |
79 | #include <linux/proc_fs.h> |
80 | #include <linux/time.h> |
81 | #include <linux/security.h> |
82 | #include <linux/syscalls.h> |
83 | #include <linux/audit.h> |
84 | #include <linux/capability.h> |
85 | #include <linux/seq_file.h> |
86 | #include <linux/rwsem.h> |
87 | #include <linux/nsproxy.h> |
88 | #include <linux/ipc_namespace.h> |
89 | |
90 | #include <asm/uaccess.h> |
91 | #include "util.h" |
92 | |
93 | #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) |
94 | |
95 | #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm) |
96 | #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) |
97 | |
98 | static int newary(struct ipc_namespace *, struct ipc_params *); |
99 | static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); |
100 | #ifdef CONFIG_PROC_FS |
101 | static int sysvipc_sem_proc_show(struct seq_file *s, void *it); |
102 | #endif |
103 | |
104 | #define SEMMSL_FAST 256 /* 512 bytes on stack */ |
105 | #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ |
106 | |
107 | /* |
108 | * linked list protection: |
109 | * sem_undo.id_next, |
110 | * sem_array.sem_pending{,last}, |
111 | * sem_array.sem_undo: sem_lock() for read/write |
112 | * sem_undo.proc_next: only "current" is allowed to read/write that field. |
113 | * |
114 | */ |
115 | |
116 | #define sc_semmsl sem_ctls[0] |
117 | #define sc_semmns sem_ctls[1] |
118 | #define sc_semopm sem_ctls[2] |
119 | #define sc_semmni sem_ctls[3] |
120 | |
121 | void sem_init_ns(struct ipc_namespace *ns) |
122 | { |
123 | ns->sc_semmsl = SEMMSL; |
124 | ns->sc_semmns = SEMMNS; |
125 | ns->sc_semopm = SEMOPM; |
126 | ns->sc_semmni = SEMMNI; |
127 | ns->used_sems = 0; |
128 | ipc_init_ids(&ns->ids[IPC_SEM_IDS]); |
129 | } |
130 | |
131 | #ifdef CONFIG_IPC_NS |
132 | void sem_exit_ns(struct ipc_namespace *ns) |
133 | { |
134 | free_ipcs(ns, &sem_ids(ns), freeary); |
135 | idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); |
136 | } |
137 | #endif |
138 | |
139 | void __init sem_init (void) |
140 | { |
141 | sem_init_ns(&init_ipc_ns); |
142 | ipc_init_proc_interface("sysvipc/sem", |
143 | " key semid perms nsems uid gid cuid cgid otime ctime\n", |
144 | IPC_SEM_IDS, sysvipc_sem_proc_show); |
145 | } |
146 | |
147 | /* |
148 | * sem_lock_(check_) routines are called in the paths where the rw_mutex |
149 | * is not held. |
150 | */ |
151 | static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id) |
152 | { |
153 | struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id); |
154 | |
155 | if (IS_ERR(ipcp)) |
156 | return (struct sem_array *)ipcp; |
157 | |
158 | return container_of(ipcp, struct sem_array, sem_perm); |
159 | } |
160 | |
161 | static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns, |
162 | int id) |
163 | { |
164 | struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id); |
165 | |
166 | if (IS_ERR(ipcp)) |
167 | return (struct sem_array *)ipcp; |
168 | |
169 | return container_of(ipcp, struct sem_array, sem_perm); |
170 | } |
171 | |
172 | static inline void sem_lock_and_putref(struct sem_array *sma) |
173 | { |
174 | ipc_lock_by_ptr(&sma->sem_perm); |
175 | ipc_rcu_putref(sma); |
176 | } |
177 | |
178 | static inline void sem_getref_and_unlock(struct sem_array *sma) |
179 | { |
180 | ipc_rcu_getref(sma); |
181 | ipc_unlock(&(sma)->sem_perm); |
182 | } |
183 | |
184 | static inline void sem_putref(struct sem_array *sma) |
185 | { |
186 | ipc_lock_by_ptr(&sma->sem_perm); |
187 | ipc_rcu_putref(sma); |
188 | ipc_unlock(&(sma)->sem_perm); |
189 | } |
190 | |
191 | static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) |
192 | { |
193 | ipc_rmid(&sem_ids(ns), &s->sem_perm); |
194 | } |
195 | |
196 | /* |
197 | * Lockless wakeup algorithm: |
198 | * Without the check/retry algorithm a lockless wakeup is possible: |
199 | * - queue.status is initialized to -EINTR before blocking. |
200 | * - wakeup is performed by |
201 | * * unlinking the queue entry from sma->sem_pending |
202 | * * setting queue.status to IN_WAKEUP |
203 | * This is the notification for the blocked thread that a |
204 | * result value is imminent. |
205 | * * call wake_up_process |
206 | * * set queue.status to the final value. |
207 | * - the previously blocked thread checks queue.status: |
208 | * * if it's IN_WAKEUP, then it must wait until the value changes |
209 | * * if it's not -EINTR, then the operation was completed by |
210 | * update_queue. semtimedop can return queue.status without |
211 | * performing any operation on the sem array. |
212 | * * otherwise it must acquire the spinlock and check what's up. |
213 | * |
214 | * The two-stage algorithm is necessary to protect against the following |
215 | * races: |
216 | * - if queue.status is set after wake_up_process, then the woken up idle |
217 | * thread could race forward and try (and fail) to acquire sma->lock |
218 | * before update_queue had a chance to set queue.status |
219 | * - if queue.status is written before wake_up_process and if the |
220 | * blocked process is woken up by a signal between writing |
221 | * queue.status and the wake_up_process, then the woken up |
222 | * process could return from semtimedop and die by calling |
223 | * sys_exit before wake_up_process is called. Then wake_up_process |
224 | * will oops, because the task structure is already invalid. |
225 | * (yes, this happened on s390 with sysv msg). |
226 | * |
227 | */ |
228 | #define IN_WAKEUP 1 |
229 | |
230 | /** |
231 | * newary - Create a new semaphore set |
232 | * @ns: namespace |
233 | * @params: ptr to the structure that contains key, semflg and nsems |
234 | * |
235 | * Called with sem_ids.rw_mutex held (as a writer) |
236 | */ |
237 | |
238 | static int newary(struct ipc_namespace *ns, struct ipc_params *params) |
239 | { |
240 | int id; |
241 | int retval; |
242 | struct sem_array *sma; |
243 | int size; |
244 | key_t key = params->key; |
245 | int nsems = params->u.nsems; |
246 | int semflg = params->flg; |
247 | int i; |
248 | |
249 | if (!nsems) |
250 | return -EINVAL; |
251 | if (ns->used_sems + nsems > ns->sc_semmns) |
252 | return -ENOSPC; |
253 | |
254 | size = sizeof (*sma) + nsems * sizeof (struct sem); |
255 | sma = ipc_rcu_alloc(size); |
256 | if (!sma) { |
257 | return -ENOMEM; |
258 | } |
259 | memset (sma, 0, size); |
260 | |
261 | sma->sem_perm.mode = (semflg & S_IRWXUGO); |
262 | sma->sem_perm.key = key; |
263 | |
264 | sma->sem_perm.security = NULL; |
265 | retval = security_sem_alloc(sma); |
266 | if (retval) { |
267 | ipc_rcu_putref(sma); |
268 | return retval; |
269 | } |
270 | |
271 | id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); |
272 | if (id < 0) { |
273 | security_sem_free(sma); |
274 | ipc_rcu_putref(sma); |
275 | return id; |
276 | } |
277 | ns->used_sems += nsems; |
278 | |
279 | sma->sem_base = (struct sem *) &sma[1]; |
280 | |
281 | for (i = 0; i < nsems; i++) |
282 | INIT_LIST_HEAD(&sma->sem_base[i].sem_pending); |
283 | |
284 | sma->complex_count = 0; |
285 | INIT_LIST_HEAD(&sma->sem_pending); |
286 | INIT_LIST_HEAD(&sma->list_id); |
287 | sma->sem_nsems = nsems; |
288 | sma->sem_ctime = get_seconds(); |
289 | sem_unlock(sma); |
290 | |
291 | return sma->sem_perm.id; |
292 | } |
293 | |
294 | |
295 | /* |
296 | * Called with sem_ids.rw_mutex and ipcp locked. |
297 | */ |
298 | static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) |
299 | { |
300 | struct sem_array *sma; |
301 | |
302 | sma = container_of(ipcp, struct sem_array, sem_perm); |
303 | return security_sem_associate(sma, semflg); |
304 | } |
305 | |
306 | /* |
307 | * Called with sem_ids.rw_mutex and ipcp locked. |
308 | */ |
309 | static inline int sem_more_checks(struct kern_ipc_perm *ipcp, |
310 | struct ipc_params *params) |
311 | { |
312 | struct sem_array *sma; |
313 | |
314 | sma = container_of(ipcp, struct sem_array, sem_perm); |
315 | if (params->u.nsems > sma->sem_nsems) |
316 | return -EINVAL; |
317 | |
318 | return 0; |
319 | } |
320 | |
321 | SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) |
322 | { |
323 | struct ipc_namespace *ns; |
324 | struct ipc_ops sem_ops; |
325 | struct ipc_params sem_params; |
326 | |
327 | ns = current->nsproxy->ipc_ns; |
328 | |
329 | if (nsems < 0 || nsems > ns->sc_semmsl) |
330 | return -EINVAL; |
331 | |
332 | sem_ops.getnew = newary; |
333 | sem_ops.associate = sem_security; |
334 | sem_ops.more_checks = sem_more_checks; |
335 | |
336 | sem_params.key = key; |
337 | sem_params.flg = semflg; |
338 | sem_params.u.nsems = nsems; |
339 | |
340 | return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); |
341 | } |
342 | |
343 | /* |
344 | * Determine whether a sequence of semaphore operations would succeed |
345 | * all at once. Return 0 if yes, 1 if need to sleep, else return error code. |
346 | */ |
347 | |
348 | static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops, |
349 | int nsops, struct sem_undo *un, int pid) |
350 | { |
351 | int result, sem_op; |
352 | struct sembuf *sop; |
353 | struct sem * curr; |
354 | |
355 | for (sop = sops; sop < sops + nsops; sop++) { |
356 | curr = sma->sem_base + sop->sem_num; |
357 | sem_op = sop->sem_op; |
358 | result = curr->semval; |
359 | |
360 | if (!sem_op && result) |
361 | goto would_block; |
362 | |
363 | result += sem_op; |
364 | if (result < 0) |
365 | goto would_block; |
366 | if (result > SEMVMX) |
367 | goto out_of_range; |
368 | if (sop->sem_flg & SEM_UNDO) { |
369 | int undo = un->semadj[sop->sem_num] - sem_op; |
370 | /* |
371 | * Exceeding the undo range is an error. |
372 | */ |
373 | if (undo < (-SEMAEM - 1) || undo > SEMAEM) |
374 | goto out_of_range; |
375 | } |
376 | curr->semval = result; |
377 | } |
378 | |
379 | sop--; |
380 | while (sop >= sops) { |
381 | sma->sem_base[sop->sem_num].sempid = pid; |
382 | if (sop->sem_flg & SEM_UNDO) |
383 | un->semadj[sop->sem_num] -= sop->sem_op; |
384 | sop--; |
385 | } |
386 | |
387 | return 0; |
388 | |
389 | out_of_range: |
390 | result = -ERANGE; |
391 | goto undo; |
392 | |
393 | would_block: |
394 | if (sop->sem_flg & IPC_NOWAIT) |
395 | result = -EAGAIN; |
396 | else |
397 | result = 1; |
398 | |
399 | undo: |
400 | sop--; |
401 | while (sop >= sops) { |
402 | sma->sem_base[sop->sem_num].semval -= sop->sem_op; |
403 | sop--; |
404 | } |
405 | |
406 | return result; |
407 | } |
408 | |
409 | /** wake_up_sem_queue_prepare(q, error): Prepare wake-up |
410 | * @q: queue entry that must be signaled |
411 | * @error: Error value for the signal |
412 | * |
413 | * Prepare the wake-up of the queue entry q. |
414 | */ |
415 | static void wake_up_sem_queue_prepare(struct list_head *pt, |
416 | struct sem_queue *q, int error) |
417 | { |
418 | if (list_empty(pt)) { |
419 | /* |
420 | * Hold preempt off so that we don't get preempted and have the |
421 | * wakee busy-wait until we're scheduled back on. |
422 | */ |
423 | preempt_disable(); |
424 | } |
425 | q->status = IN_WAKEUP; |
426 | q->pid = error; |
427 | |
428 | list_add_tail(&q->simple_list, pt); |
429 | } |
430 | |
431 | /** |
432 | * wake_up_sem_queue_do(pt) - do the actual wake-up |
433 | * @pt: list of tasks to be woken up |
434 | * |
435 | * Do the actual wake-up. |
436 | * The function is called without any locks held, thus the semaphore array |
437 | * could be destroyed already and the tasks can disappear as soon as the |
438 | * status is set to the actual return code. |
439 | */ |
440 | static void wake_up_sem_queue_do(struct list_head *pt) |
441 | { |
442 | struct sem_queue *q, *t; |
443 | int did_something; |
444 | |
445 | did_something = !list_empty(pt); |
446 | list_for_each_entry_safe(q, t, pt, simple_list) { |
447 | wake_up_process(q->sleeper); |
448 | /* q can disappear immediately after writing q->status. */ |
449 | smp_wmb(); |
450 | q->status = q->pid; |
451 | } |
452 | if (did_something) |
453 | preempt_enable(); |
454 | } |
455 | |
456 | static void unlink_queue(struct sem_array *sma, struct sem_queue *q) |
457 | { |
458 | list_del(&q->list); |
459 | if (q->nsops == 1) |
460 | list_del(&q->simple_list); |
461 | else |
462 | sma->complex_count--; |
463 | } |
464 | |
465 | /** check_restart(sma, q) |
466 | * @sma: semaphore array |
467 | * @q: the operation that just completed |
468 | * |
469 | * update_queue is O(N^2) when it restarts scanning the whole queue of |
470 | * waiting operations. Therefore this function checks if the restart is |
471 | * really necessary. It is called after a previously waiting operation |
472 | * was completed. |
473 | */ |
474 | static int check_restart(struct sem_array *sma, struct sem_queue *q) |
475 | { |
476 | struct sem *curr; |
477 | struct sem_queue *h; |
478 | |
479 | /* if the operation didn't modify the array, then no restart */ |
480 | if (q->alter == 0) |
481 | return 0; |
482 | |
483 | /* pending complex operations are too difficult to analyse */ |
484 | if (sma->complex_count) |
485 | return 1; |
486 | |
487 | /* we were a sleeping complex operation. Too difficult */ |
488 | if (q->nsops > 1) |
489 | return 1; |
490 | |
491 | curr = sma->sem_base + q->sops[0].sem_num; |
492 | |
493 | /* No-one waits on this queue */ |
494 | if (list_empty(&curr->sem_pending)) |
495 | return 0; |
496 | |
497 | /* the new semaphore value */ |
498 | if (curr->semval) { |
499 | /* It is impossible that someone waits for the new value: |
500 | * - q is a previously sleeping simple operation that |
501 | * altered the array. It must be a decrement, because |
502 | * simple increments never sleep. |
503 | * - The value is not 0, thus wait-for-zero won't proceed. |
504 | * - If there are older (higher priority) decrements |
505 | * in the queue, then they have observed the original |
506 | * semval value and couldn't proceed. The operation |
507 | * decremented to value - thus they won't proceed either. |
508 | */ |
509 | BUG_ON(q->sops[0].sem_op >= 0); |
510 | return 0; |
511 | } |
512 | /* |
513 | * semval is 0. Check if there are wait-for-zero semops. |
514 | * They must be the first entries in the per-semaphore simple queue |
515 | */ |
516 | h = list_first_entry(&curr->sem_pending, struct sem_queue, simple_list); |
517 | BUG_ON(h->nsops != 1); |
518 | BUG_ON(h->sops[0].sem_num != q->sops[0].sem_num); |
519 | |
520 | /* Yes, there is a wait-for-zero semop. Restart */ |
521 | if (h->sops[0].sem_op == 0) |
522 | return 1; |
523 | |
524 | /* Again - no-one is waiting for the new value. */ |
525 | return 0; |
526 | } |
527 | |
528 | |
529 | /** |
530 | * update_queue(sma, semnum): Look for tasks that can be completed. |
531 | * @sma: semaphore array. |
532 | * @semnum: semaphore that was modified. |
533 | * @pt: list head for the tasks that must be woken up. |
534 | * |
535 | * update_queue must be called after a semaphore in a semaphore array |
536 | * was modified. If multiple semaphore were modified, then @semnum |
537 | * must be set to -1. |
538 | * The tasks that must be woken up are added to @pt. The return code |
539 | * is stored in q->pid. |
540 | * The function return 1 if at least one semop was completed successfully. |
541 | */ |
542 | static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt) |
543 | { |
544 | struct sem_queue *q; |
545 | struct list_head *walk; |
546 | struct list_head *pending_list; |
547 | int offset; |
548 | int semop_completed = 0; |
549 | |
550 | /* if there are complex operations around, then knowing the semaphore |
551 | * that was modified doesn't help us. Assume that multiple semaphores |
552 | * were modified. |
553 | */ |
554 | if (sma->complex_count) |
555 | semnum = -1; |
556 | |
557 | if (semnum == -1) { |
558 | pending_list = &sma->sem_pending; |
559 | offset = offsetof(struct sem_queue, list); |
560 | } else { |
561 | pending_list = &sma->sem_base[semnum].sem_pending; |
562 | offset = offsetof(struct sem_queue, simple_list); |
563 | } |
564 | |
565 | again: |
566 | walk = pending_list->next; |
567 | while (walk != pending_list) { |
568 | int error, restart; |
569 | |
570 | q = (struct sem_queue *)((char *)walk - offset); |
571 | walk = walk->next; |
572 | |
573 | /* If we are scanning the single sop, per-semaphore list of |
574 | * one semaphore and that semaphore is 0, then it is not |
575 | * necessary to scan the "alter" entries: simple increments |
576 | * that affect only one entry succeed immediately and cannot |
577 | * be in the per semaphore pending queue, and decrements |
578 | * cannot be successful if the value is already 0. |
579 | */ |
580 | if (semnum != -1 && sma->sem_base[semnum].semval == 0 && |
581 | q->alter) |
582 | break; |
583 | |
584 | error = try_atomic_semop(sma, q->sops, q->nsops, |
585 | q->undo, q->pid); |
586 | |
587 | /* Does q->sleeper still need to sleep? */ |
588 | if (error > 0) |
589 | continue; |
590 | |
591 | unlink_queue(sma, q); |
592 | |
593 | if (error) { |
594 | restart = 0; |
595 | } else { |
596 | semop_completed = 1; |
597 | restart = check_restart(sma, q); |
598 | } |
599 | |
600 | wake_up_sem_queue_prepare(pt, q, error); |
601 | if (restart) |
602 | goto again; |
603 | } |
604 | return semop_completed; |
605 | } |
606 | |
607 | /** |
608 | * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue |
609 | * @sma: semaphore array |
610 | * @sops: operations that were performed |
611 | * @nsops: number of operations |
612 | * @otime: force setting otime |
613 | * @pt: list head of the tasks that must be woken up. |
614 | * |
615 | * do_smart_update() does the required called to update_queue, based on the |
616 | * actual changes that were performed on the semaphore array. |
617 | * Note that the function does not do the actual wake-up: the caller is |
618 | * responsible for calling wake_up_sem_queue_do(@pt). |
619 | * It is safe to perform this call after dropping all locks. |
620 | */ |
621 | static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, |
622 | int otime, struct list_head *pt) |
623 | { |
624 | int i; |
625 | |
626 | if (sma->complex_count || sops == NULL) { |
627 | if (update_queue(sma, -1, pt)) |
628 | otime = 1; |
629 | goto done; |
630 | } |
631 | |
632 | for (i = 0; i < nsops; i++) { |
633 | if (sops[i].sem_op > 0 || |
634 | (sops[i].sem_op < 0 && |
635 | sma->sem_base[sops[i].sem_num].semval == 0)) |
636 | if (update_queue(sma, sops[i].sem_num, pt)) |
637 | otime = 1; |
638 | } |
639 | done: |
640 | if (otime) |
641 | sma->sem_otime = get_seconds(); |
642 | } |
643 | |
644 | |
645 | /* The following counts are associated to each semaphore: |
646 | * semncnt number of tasks waiting on semval being nonzero |
647 | * semzcnt number of tasks waiting on semval being zero |
648 | * This model assumes that a task waits on exactly one semaphore. |
649 | * Since semaphore operations are to be performed atomically, tasks actually |
650 | * wait on a whole sequence of semaphores simultaneously. |
651 | * The counts we return here are a rough approximation, but still |
652 | * warrant that semncnt+semzcnt>0 if the task is on the pending queue. |
653 | */ |
654 | static int count_semncnt (struct sem_array * sma, ushort semnum) |
655 | { |
656 | int semncnt; |
657 | struct sem_queue * q; |
658 | |
659 | semncnt = 0; |
660 | list_for_each_entry(q, &sma->sem_pending, list) { |
661 | struct sembuf * sops = q->sops; |
662 | int nsops = q->nsops; |
663 | int i; |
664 | for (i = 0; i < nsops; i++) |
665 | if (sops[i].sem_num == semnum |
666 | && (sops[i].sem_op < 0) |
667 | && !(sops[i].sem_flg & IPC_NOWAIT)) |
668 | semncnt++; |
669 | } |
670 | return semncnt; |
671 | } |
672 | |
673 | static int count_semzcnt (struct sem_array * sma, ushort semnum) |
674 | { |
675 | int semzcnt; |
676 | struct sem_queue * q; |
677 | |
678 | semzcnt = 0; |
679 | list_for_each_entry(q, &sma->sem_pending, list) { |
680 | struct sembuf * sops = q->sops; |
681 | int nsops = q->nsops; |
682 | int i; |
683 | for (i = 0; i < nsops; i++) |
684 | if (sops[i].sem_num == semnum |
685 | && (sops[i].sem_op == 0) |
686 | && !(sops[i].sem_flg & IPC_NOWAIT)) |
687 | semzcnt++; |
688 | } |
689 | return semzcnt; |
690 | } |
691 | |
692 | static void free_un(struct rcu_head *head) |
693 | { |
694 | struct sem_undo *un = container_of(head, struct sem_undo, rcu); |
695 | kfree(un); |
696 | } |
697 | |
698 | /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked |
699 | * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex |
700 | * remains locked on exit. |
701 | */ |
702 | static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) |
703 | { |
704 | struct sem_undo *un, *tu; |
705 | struct sem_queue *q, *tq; |
706 | struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); |
707 | struct list_head tasks; |
708 | |
709 | /* Free the existing undo structures for this semaphore set. */ |
710 | assert_spin_locked(&sma->sem_perm.lock); |
711 | list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { |
712 | list_del(&un->list_id); |
713 | spin_lock(&un->ulp->lock); |
714 | un->semid = -1; |
715 | list_del_rcu(&un->list_proc); |
716 | spin_unlock(&un->ulp->lock); |
717 | call_rcu(&un->rcu, free_un); |
718 | } |
719 | |
720 | /* Wake up all pending processes and let them fail with EIDRM. */ |
721 | INIT_LIST_HEAD(&tasks); |
722 | list_for_each_entry_safe(q, tq, &sma->sem_pending, list) { |
723 | unlink_queue(sma, q); |
724 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); |
725 | } |
726 | |
727 | /* Remove the semaphore set from the IDR */ |
728 | sem_rmid(ns, sma); |
729 | sem_unlock(sma); |
730 | |
731 | wake_up_sem_queue_do(&tasks); |
732 | ns->used_sems -= sma->sem_nsems; |
733 | security_sem_free(sma); |
734 | ipc_rcu_putref(sma); |
735 | } |
736 | |
737 | static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) |
738 | { |
739 | switch(version) { |
740 | case IPC_64: |
741 | return copy_to_user(buf, in, sizeof(*in)); |
742 | case IPC_OLD: |
743 | { |
744 | struct semid_ds out; |
745 | |
746 | memset(&out, 0, sizeof(out)); |
747 | |
748 | ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); |
749 | |
750 | out.sem_otime = in->sem_otime; |
751 | out.sem_ctime = in->sem_ctime; |
752 | out.sem_nsems = in->sem_nsems; |
753 | |
754 | return copy_to_user(buf, &out, sizeof(out)); |
755 | } |
756 | default: |
757 | return -EINVAL; |
758 | } |
759 | } |
760 | |
761 | static int semctl_nolock(struct ipc_namespace *ns, int semid, |
762 | int cmd, int version, union semun arg) |
763 | { |
764 | int err; |
765 | struct sem_array *sma; |
766 | |
767 | switch(cmd) { |
768 | case IPC_INFO: |
769 | case SEM_INFO: |
770 | { |
771 | struct seminfo seminfo; |
772 | int max_id; |
773 | |
774 | err = security_sem_semctl(NULL, cmd); |
775 | if (err) |
776 | return err; |
777 | |
778 | memset(&seminfo,0,sizeof(seminfo)); |
779 | seminfo.semmni = ns->sc_semmni; |
780 | seminfo.semmns = ns->sc_semmns; |
781 | seminfo.semmsl = ns->sc_semmsl; |
782 | seminfo.semopm = ns->sc_semopm; |
783 | seminfo.semvmx = SEMVMX; |
784 | seminfo.semmnu = SEMMNU; |
785 | seminfo.semmap = SEMMAP; |
786 | seminfo.semume = SEMUME; |
787 | down_read(&sem_ids(ns).rw_mutex); |
788 | if (cmd == SEM_INFO) { |
789 | seminfo.semusz = sem_ids(ns).in_use; |
790 | seminfo.semaem = ns->used_sems; |
791 | } else { |
792 | seminfo.semusz = SEMUSZ; |
793 | seminfo.semaem = SEMAEM; |
794 | } |
795 | max_id = ipc_get_maxid(&sem_ids(ns)); |
796 | up_read(&sem_ids(ns).rw_mutex); |
797 | if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo))) |
798 | return -EFAULT; |
799 | return (max_id < 0) ? 0: max_id; |
800 | } |
801 | case IPC_STAT: |
802 | case SEM_STAT: |
803 | { |
804 | struct semid64_ds tbuf; |
805 | int id; |
806 | |
807 | if (cmd == SEM_STAT) { |
808 | sma = sem_lock(ns, semid); |
809 | if (IS_ERR(sma)) |
810 | return PTR_ERR(sma); |
811 | id = sma->sem_perm.id; |
812 | } else { |
813 | sma = sem_lock_check(ns, semid); |
814 | if (IS_ERR(sma)) |
815 | return PTR_ERR(sma); |
816 | id = 0; |
817 | } |
818 | |
819 | err = -EACCES; |
820 | if (ipcperms (&sma->sem_perm, S_IRUGO)) |
821 | goto out_unlock; |
822 | |
823 | err = security_sem_semctl(sma, cmd); |
824 | if (err) |
825 | goto out_unlock; |
826 | |
827 | memset(&tbuf, 0, sizeof(tbuf)); |
828 | |
829 | kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); |
830 | tbuf.sem_otime = sma->sem_otime; |
831 | tbuf.sem_ctime = sma->sem_ctime; |
832 | tbuf.sem_nsems = sma->sem_nsems; |
833 | sem_unlock(sma); |
834 | if (copy_semid_to_user (arg.buf, &tbuf, version)) |
835 | return -EFAULT; |
836 | return id; |
837 | } |
838 | default: |
839 | return -EINVAL; |
840 | } |
841 | out_unlock: |
842 | sem_unlock(sma); |
843 | return err; |
844 | } |
845 | |
846 | static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, |
847 | int cmd, int version, union semun arg) |
848 | { |
849 | struct sem_array *sma; |
850 | struct sem* curr; |
851 | int err; |
852 | ushort fast_sem_io[SEMMSL_FAST]; |
853 | ushort* sem_io = fast_sem_io; |
854 | int nsems; |
855 | struct list_head tasks; |
856 | |
857 | sma = sem_lock_check(ns, semid); |
858 | if (IS_ERR(sma)) |
859 | return PTR_ERR(sma); |
860 | |
861 | INIT_LIST_HEAD(&tasks); |
862 | nsems = sma->sem_nsems; |
863 | |
864 | err = -EACCES; |
865 | if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO)) |
866 | goto out_unlock; |
867 | |
868 | err = security_sem_semctl(sma, cmd); |
869 | if (err) |
870 | goto out_unlock; |
871 | |
872 | err = -EACCES; |
873 | switch (cmd) { |
874 | case GETALL: |
875 | { |
876 | ushort __user *array = arg.array; |
877 | int i; |
878 | |
879 | if(nsems > SEMMSL_FAST) { |
880 | sem_getref_and_unlock(sma); |
881 | |
882 | sem_io = ipc_alloc(sizeof(ushort)*nsems); |
883 | if(sem_io == NULL) { |
884 | sem_putref(sma); |
885 | return -ENOMEM; |
886 | } |
887 | |
888 | sem_lock_and_putref(sma); |
889 | if (sma->sem_perm.deleted) { |
890 | sem_unlock(sma); |
891 | err = -EIDRM; |
892 | goto out_free; |
893 | } |
894 | } |
895 | |
896 | for (i = 0; i < sma->sem_nsems; i++) |
897 | sem_io[i] = sma->sem_base[i].semval; |
898 | sem_unlock(sma); |
899 | err = 0; |
900 | if(copy_to_user(array, sem_io, nsems*sizeof(ushort))) |
901 | err = -EFAULT; |
902 | goto out_free; |
903 | } |
904 | case SETALL: |
905 | { |
906 | int i; |
907 | struct sem_undo *un; |
908 | |
909 | sem_getref_and_unlock(sma); |
910 | |
911 | if(nsems > SEMMSL_FAST) { |
912 | sem_io = ipc_alloc(sizeof(ushort)*nsems); |
913 | if(sem_io == NULL) { |
914 | sem_putref(sma); |
915 | return -ENOMEM; |
916 | } |
917 | } |
918 | |
919 | if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) { |
920 | sem_putref(sma); |
921 | err = -EFAULT; |
922 | goto out_free; |
923 | } |
924 | |
925 | for (i = 0; i < nsems; i++) { |
926 | if (sem_io[i] > SEMVMX) { |
927 | sem_putref(sma); |
928 | err = -ERANGE; |
929 | goto out_free; |
930 | } |
931 | } |
932 | sem_lock_and_putref(sma); |
933 | if (sma->sem_perm.deleted) { |
934 | sem_unlock(sma); |
935 | err = -EIDRM; |
936 | goto out_free; |
937 | } |
938 | |
939 | for (i = 0; i < nsems; i++) |
940 | sma->sem_base[i].semval = sem_io[i]; |
941 | |
942 | assert_spin_locked(&sma->sem_perm.lock); |
943 | list_for_each_entry(un, &sma->list_id, list_id) { |
944 | for (i = 0; i < nsems; i++) |
945 | un->semadj[i] = 0; |
946 | } |
947 | sma->sem_ctime = get_seconds(); |
948 | /* maybe some queued-up processes were waiting for this */ |
949 | do_smart_update(sma, NULL, 0, 0, &tasks); |
950 | err = 0; |
951 | goto out_unlock; |
952 | } |
953 | /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */ |
954 | } |
955 | err = -EINVAL; |
956 | if(semnum < 0 || semnum >= nsems) |
957 | goto out_unlock; |
958 | |
959 | curr = &sma->sem_base[semnum]; |
960 | |
961 | switch (cmd) { |
962 | case GETVAL: |
963 | err = curr->semval; |
964 | goto out_unlock; |
965 | case GETPID: |
966 | err = curr->sempid; |
967 | goto out_unlock; |
968 | case GETNCNT: |
969 | err = count_semncnt(sma,semnum); |
970 | goto out_unlock; |
971 | case GETZCNT: |
972 | err = count_semzcnt(sma,semnum); |
973 | goto out_unlock; |
974 | case SETVAL: |
975 | { |
976 | int val = arg.val; |
977 | struct sem_undo *un; |
978 | |
979 | err = -ERANGE; |
980 | if (val > SEMVMX || val < 0) |
981 | goto out_unlock; |
982 | |
983 | assert_spin_locked(&sma->sem_perm.lock); |
984 | list_for_each_entry(un, &sma->list_id, list_id) |
985 | un->semadj[semnum] = 0; |
986 | |
987 | curr->semval = val; |
988 | curr->sempid = task_tgid_vnr(current); |
989 | sma->sem_ctime = get_seconds(); |
990 | /* maybe some queued-up processes were waiting for this */ |
991 | do_smart_update(sma, NULL, 0, 0, &tasks); |
992 | err = 0; |
993 | goto out_unlock; |
994 | } |
995 | } |
996 | out_unlock: |
997 | sem_unlock(sma); |
998 | wake_up_sem_queue_do(&tasks); |
999 | |
1000 | out_free: |
1001 | if(sem_io != fast_sem_io) |
1002 | ipc_free(sem_io, sizeof(ushort)*nsems); |
1003 | return err; |
1004 | } |
1005 | |
1006 | static inline unsigned long |
1007 | copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) |
1008 | { |
1009 | switch(version) { |
1010 | case IPC_64: |
1011 | if (copy_from_user(out, buf, sizeof(*out))) |
1012 | return -EFAULT; |
1013 | return 0; |
1014 | case IPC_OLD: |
1015 | { |
1016 | struct semid_ds tbuf_old; |
1017 | |
1018 | if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) |
1019 | return -EFAULT; |
1020 | |
1021 | out->sem_perm.uid = tbuf_old.sem_perm.uid; |
1022 | out->sem_perm.gid = tbuf_old.sem_perm.gid; |
1023 | out->sem_perm.mode = tbuf_old.sem_perm.mode; |
1024 | |
1025 | return 0; |
1026 | } |
1027 | default: |
1028 | return -EINVAL; |
1029 | } |
1030 | } |
1031 | |
1032 | /* |
1033 | * This function handles some semctl commands which require the rw_mutex |
1034 | * to be held in write mode. |
1035 | * NOTE: no locks must be held, the rw_mutex is taken inside this function. |
1036 | */ |
1037 | static int semctl_down(struct ipc_namespace *ns, int semid, |
1038 | int cmd, int version, union semun arg) |
1039 | { |
1040 | struct sem_array *sma; |
1041 | int err; |
1042 | struct semid64_ds semid64; |
1043 | struct kern_ipc_perm *ipcp; |
1044 | |
1045 | if(cmd == IPC_SET) { |
1046 | if (copy_semid_from_user(&semid64, arg.buf, version)) |
1047 | return -EFAULT; |
1048 | } |
1049 | |
1050 | ipcp = ipcctl_pre_down(&sem_ids(ns), semid, cmd, &semid64.sem_perm, 0); |
1051 | if (IS_ERR(ipcp)) |
1052 | return PTR_ERR(ipcp); |
1053 | |
1054 | sma = container_of(ipcp, struct sem_array, sem_perm); |
1055 | |
1056 | err = security_sem_semctl(sma, cmd); |
1057 | if (err) |
1058 | goto out_unlock; |
1059 | |
1060 | switch(cmd){ |
1061 | case IPC_RMID: |
1062 | freeary(ns, ipcp); |
1063 | goto out_up; |
1064 | case IPC_SET: |
1065 | ipc_update_perm(&semid64.sem_perm, ipcp); |
1066 | sma->sem_ctime = get_seconds(); |
1067 | break; |
1068 | default: |
1069 | err = -EINVAL; |
1070 | } |
1071 | |
1072 | out_unlock: |
1073 | sem_unlock(sma); |
1074 | out_up: |
1075 | up_write(&sem_ids(ns).rw_mutex); |
1076 | return err; |
1077 | } |
1078 | |
1079 | SYSCALL_DEFINE(semctl)(int semid, int semnum, int cmd, union semun arg) |
1080 | { |
1081 | int err = -EINVAL; |
1082 | int version; |
1083 | struct ipc_namespace *ns; |
1084 | |
1085 | if (semid < 0) |
1086 | return -EINVAL; |
1087 | |
1088 | version = ipc_parse_version(&cmd); |
1089 | ns = current->nsproxy->ipc_ns; |
1090 | |
1091 | switch(cmd) { |
1092 | case IPC_INFO: |
1093 | case SEM_INFO: |
1094 | case IPC_STAT: |
1095 | case SEM_STAT: |
1096 | err = semctl_nolock(ns, semid, cmd, version, arg); |
1097 | return err; |
1098 | case GETALL: |
1099 | case GETVAL: |
1100 | case GETPID: |
1101 | case GETNCNT: |
1102 | case GETZCNT: |
1103 | case SETVAL: |
1104 | case SETALL: |
1105 | err = semctl_main(ns,semid,semnum,cmd,version,arg); |
1106 | return err; |
1107 | case IPC_RMID: |
1108 | case IPC_SET: |
1109 | err = semctl_down(ns, semid, cmd, version, arg); |
1110 | return err; |
1111 | default: |
1112 | return -EINVAL; |
1113 | } |
1114 | } |
1115 | #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS |
1116 | asmlinkage long SyS_semctl(int semid, int semnum, int cmd, union semun arg) |
1117 | { |
1118 | return SYSC_semctl((int) semid, (int) semnum, (int) cmd, arg); |
1119 | } |
1120 | SYSCALL_ALIAS(sys_semctl, SyS_semctl); |
1121 | #endif |
1122 | |
1123 | /* If the task doesn't already have a undo_list, then allocate one |
1124 | * here. We guarantee there is only one thread using this undo list, |
1125 | * and current is THE ONE |
1126 | * |
1127 | * If this allocation and assignment succeeds, but later |
1128 | * portions of this code fail, there is no need to free the sem_undo_list. |
1129 | * Just let it stay associated with the task, and it'll be freed later |
1130 | * at exit time. |
1131 | * |
1132 | * This can block, so callers must hold no locks. |
1133 | */ |
1134 | static inline int get_undo_list(struct sem_undo_list **undo_listp) |
1135 | { |
1136 | struct sem_undo_list *undo_list; |
1137 | |
1138 | undo_list = current->sysvsem.undo_list; |
1139 | if (!undo_list) { |
1140 | undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); |
1141 | if (undo_list == NULL) |
1142 | return -ENOMEM; |
1143 | spin_lock_init(&undo_list->lock); |
1144 | atomic_set(&undo_list->refcnt, 1); |
1145 | INIT_LIST_HEAD(&undo_list->list_proc); |
1146 | |
1147 | current->sysvsem.undo_list = undo_list; |
1148 | } |
1149 | *undo_listp = undo_list; |
1150 | return 0; |
1151 | } |
1152 | |
1153 | static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) |
1154 | { |
1155 | struct sem_undo *un; |
1156 | |
1157 | list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { |
1158 | if (un->semid == semid) |
1159 | return un; |
1160 | } |
1161 | return NULL; |
1162 | } |
1163 | |
1164 | static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) |
1165 | { |
1166 | struct sem_undo *un; |
1167 | |
1168 | assert_spin_locked(&ulp->lock); |
1169 | |
1170 | un = __lookup_undo(ulp, semid); |
1171 | if (un) { |
1172 | list_del_rcu(&un->list_proc); |
1173 | list_add_rcu(&un->list_proc, &ulp->list_proc); |
1174 | } |
1175 | return un; |
1176 | } |
1177 | |
1178 | /** |
1179 | * find_alloc_undo - Lookup (and if not present create) undo array |
1180 | * @ns: namespace |
1181 | * @semid: semaphore array id |
1182 | * |
1183 | * The function looks up (and if not present creates) the undo structure. |
1184 | * The size of the undo structure depends on the size of the semaphore |
1185 | * array, thus the alloc path is not that straightforward. |
1186 | * Lifetime-rules: sem_undo is rcu-protected, on success, the function |
1187 | * performs a rcu_read_lock(). |
1188 | */ |
1189 | static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) |
1190 | { |
1191 | struct sem_array *sma; |
1192 | struct sem_undo_list *ulp; |
1193 | struct sem_undo *un, *new; |
1194 | int nsems; |
1195 | int error; |
1196 | |
1197 | error = get_undo_list(&ulp); |
1198 | if (error) |
1199 | return ERR_PTR(error); |
1200 | |
1201 | rcu_read_lock(); |
1202 | spin_lock(&ulp->lock); |
1203 | un = lookup_undo(ulp, semid); |
1204 | spin_unlock(&ulp->lock); |
1205 | if (likely(un!=NULL)) |
1206 | goto out; |
1207 | rcu_read_unlock(); |
1208 | |
1209 | /* no undo structure around - allocate one. */ |
1210 | /* step 1: figure out the size of the semaphore array */ |
1211 | sma = sem_lock_check(ns, semid); |
1212 | if (IS_ERR(sma)) |
1213 | return ERR_CAST(sma); |
1214 | |
1215 | nsems = sma->sem_nsems; |
1216 | sem_getref_and_unlock(sma); |
1217 | |
1218 | /* step 2: allocate new undo structure */ |
1219 | new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); |
1220 | if (!new) { |
1221 | sem_putref(sma); |
1222 | return ERR_PTR(-ENOMEM); |
1223 | } |
1224 | |
1225 | /* step 3: Acquire the lock on semaphore array */ |
1226 | sem_lock_and_putref(sma); |
1227 | if (sma->sem_perm.deleted) { |
1228 | sem_unlock(sma); |
1229 | kfree(new); |
1230 | un = ERR_PTR(-EIDRM); |
1231 | goto out; |
1232 | } |
1233 | spin_lock(&ulp->lock); |
1234 | |
1235 | /* |
1236 | * step 4: check for races: did someone else allocate the undo struct? |
1237 | */ |
1238 | un = lookup_undo(ulp, semid); |
1239 | if (un) { |
1240 | kfree(new); |
1241 | goto success; |
1242 | } |
1243 | /* step 5: initialize & link new undo structure */ |
1244 | new->semadj = (short *) &new[1]; |
1245 | new->ulp = ulp; |
1246 | new->semid = semid; |
1247 | assert_spin_locked(&ulp->lock); |
1248 | list_add_rcu(&new->list_proc, &ulp->list_proc); |
1249 | assert_spin_locked(&sma->sem_perm.lock); |
1250 | list_add(&new->list_id, &sma->list_id); |
1251 | un = new; |
1252 | |
1253 | success: |
1254 | spin_unlock(&ulp->lock); |
1255 | rcu_read_lock(); |
1256 | sem_unlock(sma); |
1257 | out: |
1258 | return un; |
1259 | } |
1260 | |
1261 | |
1262 | /** |
1263 | * get_queue_result - Retrieve the result code from sem_queue |
1264 | * @q: Pointer to queue structure |
1265 | * |
1266 | * Retrieve the return code from the pending queue. If IN_WAKEUP is found in |
1267 | * q->status, then we must loop until the value is replaced with the final |
1268 | * value: This may happen if a task is woken up by an unrelated event (e.g. |
1269 | * signal) and in parallel the task is woken up by another task because it got |
1270 | * the requested semaphores. |
1271 | * |
1272 | * The function can be called with or without holding the semaphore spinlock. |
1273 | */ |
1274 | static int get_queue_result(struct sem_queue *q) |
1275 | { |
1276 | int error; |
1277 | |
1278 | error = q->status; |
1279 | while (unlikely(error == IN_WAKEUP)) { |
1280 | cpu_relax(); |
1281 | error = q->status; |
1282 | } |
1283 | |
1284 | return error; |
1285 | } |
1286 | |
1287 | |
1288 | SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, |
1289 | unsigned, nsops, const struct timespec __user *, timeout) |
1290 | { |
1291 | int error = -EINVAL; |
1292 | struct sem_array *sma; |
1293 | struct sembuf fast_sops[SEMOPM_FAST]; |
1294 | struct sembuf* sops = fast_sops, *sop; |
1295 | struct sem_undo *un; |
1296 | int undos = 0, alter = 0, max; |
1297 | struct sem_queue queue; |
1298 | unsigned long jiffies_left = 0; |
1299 | struct ipc_namespace *ns; |
1300 | struct list_head tasks; |
1301 | |
1302 | ns = current->nsproxy->ipc_ns; |
1303 | |
1304 | if (nsops < 1 || semid < 0) |
1305 | return -EINVAL; |
1306 | if (nsops > ns->sc_semopm) |
1307 | return -E2BIG; |
1308 | if(nsops > SEMOPM_FAST) { |
1309 | sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL); |
1310 | if(sops==NULL) |
1311 | return -ENOMEM; |
1312 | } |
1313 | if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) { |
1314 | error=-EFAULT; |
1315 | goto out_free; |
1316 | } |
1317 | if (timeout) { |
1318 | struct timespec _timeout; |
1319 | if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { |
1320 | error = -EFAULT; |
1321 | goto out_free; |
1322 | } |
1323 | if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || |
1324 | _timeout.tv_nsec >= 1000000000L) { |
1325 | error = -EINVAL; |
1326 | goto out_free; |
1327 | } |
1328 | jiffies_left = timespec_to_jiffies(&_timeout); |
1329 | } |
1330 | max = 0; |
1331 | for (sop = sops; sop < sops + nsops; sop++) { |
1332 | if (sop->sem_num >= max) |
1333 | max = sop->sem_num; |
1334 | if (sop->sem_flg & SEM_UNDO) |
1335 | undos = 1; |
1336 | if (sop->sem_op != 0) |
1337 | alter = 1; |
1338 | } |
1339 | |
1340 | if (undos) { |
1341 | un = find_alloc_undo(ns, semid); |
1342 | if (IS_ERR(un)) { |
1343 | error = PTR_ERR(un); |
1344 | goto out_free; |
1345 | } |
1346 | } else |
1347 | un = NULL; |
1348 | |
1349 | INIT_LIST_HEAD(&tasks); |
1350 | |
1351 | sma = sem_lock_check(ns, semid); |
1352 | if (IS_ERR(sma)) { |
1353 | if (un) |
1354 | rcu_read_unlock(); |
1355 | error = PTR_ERR(sma); |
1356 | goto out_free; |
1357 | } |
1358 | |
1359 | /* |
1360 | * semid identifiers are not unique - find_alloc_undo may have |
1361 | * allocated an undo structure, it was invalidated by an RMID |
1362 | * and now a new array with received the same id. Check and fail. |
1363 | * This case can be detected checking un->semid. The existance of |
1364 | * "un" itself is guaranteed by rcu. |
1365 | */ |
1366 | error = -EIDRM; |
1367 | if (un) { |
1368 | if (un->semid == -1) { |
1369 | rcu_read_unlock(); |
1370 | goto out_unlock_free; |
1371 | } else { |
1372 | /* |
1373 | * rcu lock can be released, "un" cannot disappear: |
1374 | * - sem_lock is acquired, thus IPC_RMID is |
1375 | * impossible. |
1376 | * - exit_sem is impossible, it always operates on |
1377 | * current (or a dead task). |
1378 | */ |
1379 | |
1380 | rcu_read_unlock(); |
1381 | } |
1382 | } |
1383 | |
1384 | error = -EFBIG; |
1385 | if (max >= sma->sem_nsems) |
1386 | goto out_unlock_free; |
1387 | |
1388 | error = -EACCES; |
1389 | if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) |
1390 | goto out_unlock_free; |
1391 | |
1392 | error = security_sem_semop(sma, sops, nsops, alter); |
1393 | if (error) |
1394 | goto out_unlock_free; |
1395 | |
1396 | error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current)); |
1397 | if (error <= 0) { |
1398 | if (alter && error == 0) |
1399 | do_smart_update(sma, sops, nsops, 1, &tasks); |
1400 | |
1401 | goto out_unlock_free; |
1402 | } |
1403 | |
1404 | /* We need to sleep on this operation, so we put the current |
1405 | * task into the pending queue and go to sleep. |
1406 | */ |
1407 | |
1408 | queue.sops = sops; |
1409 | queue.nsops = nsops; |
1410 | queue.undo = un; |
1411 | queue.pid = task_tgid_vnr(current); |
1412 | queue.alter = alter; |
1413 | if (alter) |
1414 | list_add_tail(&queue.list, &sma->sem_pending); |
1415 | else |
1416 | list_add(&queue.list, &sma->sem_pending); |
1417 | |
1418 | if (nsops == 1) { |
1419 | struct sem *curr; |
1420 | curr = &sma->sem_base[sops->sem_num]; |
1421 | |
1422 | if (alter) |
1423 | list_add_tail(&queue.simple_list, &curr->sem_pending); |
1424 | else |
1425 | list_add(&queue.simple_list, &curr->sem_pending); |
1426 | } else { |
1427 | INIT_LIST_HEAD(&queue.simple_list); |
1428 | sma->complex_count++; |
1429 | } |
1430 | |
1431 | queue.status = -EINTR; |
1432 | queue.sleeper = current; |
1433 | current->state = TASK_INTERRUPTIBLE; |
1434 | sem_unlock(sma); |
1435 | |
1436 | if (timeout) |
1437 | jiffies_left = schedule_timeout(jiffies_left); |
1438 | else |
1439 | schedule(); |
1440 | |
1441 | error = get_queue_result(&queue); |
1442 | |
1443 | if (error != -EINTR) { |
1444 | /* fast path: update_queue already obtained all requested |
1445 | * resources. |
1446 | * Perform a smp_mb(): User space could assume that semop() |
1447 | * is a memory barrier: Without the mb(), the cpu could |
1448 | * speculatively read in user space stale data that was |
1449 | * overwritten by the previous owner of the semaphore. |
1450 | */ |
1451 | smp_mb(); |
1452 | |
1453 | goto out_free; |
1454 | } |
1455 | |
1456 | sma = sem_lock(ns, semid); |
1457 | if (IS_ERR(sma)) { |
1458 | error = -EIDRM; |
1459 | goto out_free; |
1460 | } |
1461 | |
1462 | error = get_queue_result(&queue); |
1463 | |
1464 | /* |
1465 | * If queue.status != -EINTR we are woken up by another process |
1466 | */ |
1467 | |
1468 | if (error != -EINTR) { |
1469 | goto out_unlock_free; |
1470 | } |
1471 | |
1472 | /* |
1473 | * If an interrupt occurred we have to clean up the queue |
1474 | */ |
1475 | if (timeout && jiffies_left == 0) |
1476 | error = -EAGAIN; |
1477 | unlink_queue(sma, &queue); |
1478 | |
1479 | out_unlock_free: |
1480 | sem_unlock(sma); |
1481 | |
1482 | wake_up_sem_queue_do(&tasks); |
1483 | out_free: |
1484 | if(sops != fast_sops) |
1485 | kfree(sops); |
1486 | return error; |
1487 | } |
1488 | |
1489 | SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, |
1490 | unsigned, nsops) |
1491 | { |
1492 | return sys_semtimedop(semid, tsops, nsops, NULL); |
1493 | } |
1494 | |
1495 | /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between |
1496 | * parent and child tasks. |
1497 | */ |
1498 | |
1499 | int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) |
1500 | { |
1501 | struct sem_undo_list *undo_list; |
1502 | int error; |
1503 | |
1504 | if (clone_flags & CLONE_SYSVSEM) { |
1505 | error = get_undo_list(&undo_list); |
1506 | if (error) |
1507 | return error; |
1508 | atomic_inc(&undo_list->refcnt); |
1509 | tsk->sysvsem.undo_list = undo_list; |
1510 | } else |
1511 | tsk->sysvsem.undo_list = NULL; |
1512 | |
1513 | return 0; |
1514 | } |
1515 | |
1516 | /* |
1517 | * add semadj values to semaphores, free undo structures. |
1518 | * undo structures are not freed when semaphore arrays are destroyed |
1519 | * so some of them may be out of date. |
1520 | * IMPLEMENTATION NOTE: There is some confusion over whether the |
1521 | * set of adjustments that needs to be done should be done in an atomic |
1522 | * manner or not. That is, if we are attempting to decrement the semval |
1523 | * should we queue up and wait until we can do so legally? |
1524 | * The original implementation attempted to do this (queue and wait). |
1525 | * The current implementation does not do so. The POSIX standard |
1526 | * and SVID should be consulted to determine what behavior is mandated. |
1527 | */ |
1528 | void exit_sem(struct task_struct *tsk) |
1529 | { |
1530 | struct sem_undo_list *ulp; |
1531 | |
1532 | ulp = tsk->sysvsem.undo_list; |
1533 | if (!ulp) |
1534 | return; |
1535 | tsk->sysvsem.undo_list = NULL; |
1536 | |
1537 | if (!atomic_dec_and_test(&ulp->refcnt)) |
1538 | return; |
1539 | |
1540 | for (;;) { |
1541 | struct sem_array *sma; |
1542 | struct sem_undo *un; |
1543 | struct list_head tasks; |
1544 | int semid; |
1545 | int i; |
1546 | |
1547 | rcu_read_lock(); |
1548 | un = list_entry_rcu(ulp->list_proc.next, |
1549 | struct sem_undo, list_proc); |
1550 | if (&un->list_proc == &ulp->list_proc) |
1551 | semid = -1; |
1552 | else |
1553 | semid = un->semid; |
1554 | rcu_read_unlock(); |
1555 | |
1556 | if (semid == -1) |
1557 | break; |
1558 | |
1559 | sma = sem_lock_check(tsk->nsproxy->ipc_ns, un->semid); |
1560 | |
1561 | /* exit_sem raced with IPC_RMID, nothing to do */ |
1562 | if (IS_ERR(sma)) |
1563 | continue; |
1564 | |
1565 | un = __lookup_undo(ulp, semid); |
1566 | if (un == NULL) { |
1567 | /* exit_sem raced with IPC_RMID+semget() that created |
1568 | * exactly the same semid. Nothing to do. |
1569 | */ |
1570 | sem_unlock(sma); |
1571 | continue; |
1572 | } |
1573 | |
1574 | /* remove un from the linked lists */ |
1575 | assert_spin_locked(&sma->sem_perm.lock); |
1576 | list_del(&un->list_id); |
1577 | |
1578 | spin_lock(&ulp->lock); |
1579 | list_del_rcu(&un->list_proc); |
1580 | spin_unlock(&ulp->lock); |
1581 | |
1582 | /* perform adjustments registered in un */ |
1583 | for (i = 0; i < sma->sem_nsems; i++) { |
1584 | struct sem * semaphore = &sma->sem_base[i]; |
1585 | if (un->semadj[i]) { |
1586 | semaphore->semval += un->semadj[i]; |
1587 | /* |
1588 | * Range checks of the new semaphore value, |
1589 | * not defined by sus: |
1590 | * - Some unices ignore the undo entirely |
1591 | * (e.g. HP UX 11i 11.22, Tru64 V5.1) |
1592 | * - some cap the value (e.g. FreeBSD caps |
1593 | * at 0, but doesn't enforce SEMVMX) |
1594 | * |
1595 | * Linux caps the semaphore value, both at 0 |
1596 | * and at SEMVMX. |
1597 | * |
1598 | * Manfred <manfred@colorfullife.com> |
1599 | */ |
1600 | if (semaphore->semval < 0) |
1601 | semaphore->semval = 0; |
1602 | if (semaphore->semval > SEMVMX) |
1603 | semaphore->semval = SEMVMX; |
1604 | semaphore->sempid = task_tgid_vnr(current); |
1605 | } |
1606 | } |
1607 | /* maybe some queued-up processes were waiting for this */ |
1608 | INIT_LIST_HEAD(&tasks); |
1609 | do_smart_update(sma, NULL, 0, 1, &tasks); |
1610 | sem_unlock(sma); |
1611 | wake_up_sem_queue_do(&tasks); |
1612 | |
1613 | call_rcu(&un->rcu, free_un); |
1614 | } |
1615 | kfree(ulp); |
1616 | } |
1617 | |
1618 | #ifdef CONFIG_PROC_FS |
1619 | static int sysvipc_sem_proc_show(struct seq_file *s, void *it) |
1620 | { |
1621 | struct sem_array *sma = it; |
1622 | |
1623 | return seq_printf(s, |
1624 | "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n", |
1625 | sma->sem_perm.key, |
1626 | sma->sem_perm.id, |
1627 | sma->sem_perm.mode, |
1628 | sma->sem_nsems, |
1629 | sma->sem_perm.uid, |
1630 | sma->sem_perm.gid, |
1631 | sma->sem_perm.cuid, |
1632 | sma->sem_perm.cgid, |
1633 | sma->sem_otime, |
1634 | sma->sem_ctime); |
1635 | } |
1636 | #endif |
1637 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9