Root/
1 | /* audit.c -- Auditing support |
2 | * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. |
3 | * System-call specific features have moved to auditsc.c |
4 | * |
5 | * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. |
6 | * All Rights Reserved. |
7 | * |
8 | * This program is free software; you can redistribute it and/or modify |
9 | * it under the terms of the GNU General Public License as published by |
10 | * the Free Software Foundation; either version 2 of the License, or |
11 | * (at your option) any later version. |
12 | * |
13 | * This program is distributed in the hope that it will be useful, |
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
16 | * GNU General Public License for more details. |
17 | * |
18 | * You should have received a copy of the GNU General Public License |
19 | * along with this program; if not, write to the Free Software |
20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
21 | * |
22 | * Written by Rickard E. (Rik) Faith <faith@redhat.com> |
23 | * |
24 | * Goals: 1) Integrate fully with Security Modules. |
25 | * 2) Minimal run-time overhead: |
26 | * a) Minimal when syscall auditing is disabled (audit_enable=0). |
27 | * b) Small when syscall auditing is enabled and no audit record |
28 | * is generated (defer as much work as possible to record |
29 | * generation time): |
30 | * i) context is allocated, |
31 | * ii) names from getname are stored without a copy, and |
32 | * iii) inode information stored from path_lookup. |
33 | * 3) Ability to disable syscall auditing at boot time (audit=0). |
34 | * 4) Usable by other parts of the kernel (if audit_log* is called, |
35 | * then a syscall record will be generated automatically for the |
36 | * current syscall). |
37 | * 5) Netlink interface to user-space. |
38 | * 6) Support low-overhead kernel-based filtering to minimize the |
39 | * information that must be passed to user-space. |
40 | * |
41 | * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ |
42 | */ |
43 | |
44 | #include <linux/init.h> |
45 | #include <asm/types.h> |
46 | #include <asm/atomic.h> |
47 | #include <linux/mm.h> |
48 | #include <linux/module.h> |
49 | #include <linux/slab.h> |
50 | #include <linux/err.h> |
51 | #include <linux/kthread.h> |
52 | |
53 | #include <linux/audit.h> |
54 | |
55 | #include <net/sock.h> |
56 | #include <net/netlink.h> |
57 | #include <linux/skbuff.h> |
58 | #include <linux/netlink.h> |
59 | #include <linux/freezer.h> |
60 | #include <linux/tty.h> |
61 | |
62 | #include "audit.h" |
63 | |
64 | /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. |
65 | * (Initialization happens after skb_init is called.) */ |
66 | #define AUDIT_DISABLED -1 |
67 | #define AUDIT_UNINITIALIZED 0 |
68 | #define AUDIT_INITIALIZED 1 |
69 | static int audit_initialized; |
70 | |
71 | #define AUDIT_OFF 0 |
72 | #define AUDIT_ON 1 |
73 | #define AUDIT_LOCKED 2 |
74 | int audit_enabled; |
75 | int audit_ever_enabled; |
76 | |
77 | /* Default state when kernel boots without any parameters. */ |
78 | static int audit_default; |
79 | |
80 | /* If auditing cannot proceed, audit_failure selects what happens. */ |
81 | static int audit_failure = AUDIT_FAIL_PRINTK; |
82 | |
83 | /* |
84 | * If audit records are to be written to the netlink socket, audit_pid |
85 | * contains the pid of the auditd process and audit_nlk_pid contains |
86 | * the pid to use to send netlink messages to that process. |
87 | */ |
88 | int audit_pid; |
89 | static int audit_nlk_pid; |
90 | |
91 | /* If audit_rate_limit is non-zero, limit the rate of sending audit records |
92 | * to that number per second. This prevents DoS attacks, but results in |
93 | * audit records being dropped. */ |
94 | static int audit_rate_limit; |
95 | |
96 | /* Number of outstanding audit_buffers allowed. */ |
97 | static int audit_backlog_limit = 64; |
98 | static int audit_backlog_wait_time = 60 * HZ; |
99 | static int audit_backlog_wait_overflow = 0; |
100 | |
101 | /* The identity of the user shutting down the audit system. */ |
102 | uid_t audit_sig_uid = -1; |
103 | pid_t audit_sig_pid = -1; |
104 | u32 audit_sig_sid = 0; |
105 | |
106 | /* Records can be lost in several ways: |
107 | 0) [suppressed in audit_alloc] |
108 | 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] |
109 | 2) out of memory in audit_log_move [alloc_skb] |
110 | 3) suppressed due to audit_rate_limit |
111 | 4) suppressed due to audit_backlog_limit |
112 | */ |
113 | static atomic_t audit_lost = ATOMIC_INIT(0); |
114 | |
115 | /* The netlink socket. */ |
116 | static struct sock *audit_sock; |
117 | |
118 | /* Hash for inode-based rules */ |
119 | struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; |
120 | |
121 | /* The audit_freelist is a list of pre-allocated audit buffers (if more |
122 | * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of |
123 | * being placed on the freelist). */ |
124 | static DEFINE_SPINLOCK(audit_freelist_lock); |
125 | static int audit_freelist_count; |
126 | static LIST_HEAD(audit_freelist); |
127 | |
128 | static struct sk_buff_head audit_skb_queue; |
129 | /* queue of skbs to send to auditd when/if it comes back */ |
130 | static struct sk_buff_head audit_skb_hold_queue; |
131 | static struct task_struct *kauditd_task; |
132 | static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); |
133 | static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); |
134 | |
135 | /* Serialize requests from userspace. */ |
136 | DEFINE_MUTEX(audit_cmd_mutex); |
137 | |
138 | /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting |
139 | * audit records. Since printk uses a 1024 byte buffer, this buffer |
140 | * should be at least that large. */ |
141 | #define AUDIT_BUFSIZ 1024 |
142 | |
143 | /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the |
144 | * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ |
145 | #define AUDIT_MAXFREE (2*NR_CPUS) |
146 | |
147 | /* The audit_buffer is used when formatting an audit record. The caller |
148 | * locks briefly to get the record off the freelist or to allocate the |
149 | * buffer, and locks briefly to send the buffer to the netlink layer or |
150 | * to place it on a transmit queue. Multiple audit_buffers can be in |
151 | * use simultaneously. */ |
152 | struct audit_buffer { |
153 | struct list_head list; |
154 | struct sk_buff *skb; /* formatted skb ready to send */ |
155 | struct audit_context *ctx; /* NULL or associated context */ |
156 | gfp_t gfp_mask; |
157 | }; |
158 | |
159 | struct audit_reply { |
160 | int pid; |
161 | struct sk_buff *skb; |
162 | }; |
163 | |
164 | static void audit_set_pid(struct audit_buffer *ab, pid_t pid) |
165 | { |
166 | if (ab) { |
167 | struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); |
168 | nlh->nlmsg_pid = pid; |
169 | } |
170 | } |
171 | |
172 | void audit_panic(const char *message) |
173 | { |
174 | switch (audit_failure) |
175 | { |
176 | case AUDIT_FAIL_SILENT: |
177 | break; |
178 | case AUDIT_FAIL_PRINTK: |
179 | if (printk_ratelimit()) |
180 | printk(KERN_ERR "audit: %s\n", message); |
181 | break; |
182 | case AUDIT_FAIL_PANIC: |
183 | /* test audit_pid since printk is always losey, why bother? */ |
184 | if (audit_pid) |
185 | panic("audit: %s\n", message); |
186 | break; |
187 | } |
188 | } |
189 | |
190 | static inline int audit_rate_check(void) |
191 | { |
192 | static unsigned long last_check = 0; |
193 | static int messages = 0; |
194 | static DEFINE_SPINLOCK(lock); |
195 | unsigned long flags; |
196 | unsigned long now; |
197 | unsigned long elapsed; |
198 | int retval = 0; |
199 | |
200 | if (!audit_rate_limit) return 1; |
201 | |
202 | spin_lock_irqsave(&lock, flags); |
203 | if (++messages < audit_rate_limit) { |
204 | retval = 1; |
205 | } else { |
206 | now = jiffies; |
207 | elapsed = now - last_check; |
208 | if (elapsed > HZ) { |
209 | last_check = now; |
210 | messages = 0; |
211 | retval = 1; |
212 | } |
213 | } |
214 | spin_unlock_irqrestore(&lock, flags); |
215 | |
216 | return retval; |
217 | } |
218 | |
219 | /** |
220 | * audit_log_lost - conditionally log lost audit message event |
221 | * @message: the message stating reason for lost audit message |
222 | * |
223 | * Emit at least 1 message per second, even if audit_rate_check is |
224 | * throttling. |
225 | * Always increment the lost messages counter. |
226 | */ |
227 | void audit_log_lost(const char *message) |
228 | { |
229 | static unsigned long last_msg = 0; |
230 | static DEFINE_SPINLOCK(lock); |
231 | unsigned long flags; |
232 | unsigned long now; |
233 | int print; |
234 | |
235 | atomic_inc(&audit_lost); |
236 | |
237 | print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); |
238 | |
239 | if (!print) { |
240 | spin_lock_irqsave(&lock, flags); |
241 | now = jiffies; |
242 | if (now - last_msg > HZ) { |
243 | print = 1; |
244 | last_msg = now; |
245 | } |
246 | spin_unlock_irqrestore(&lock, flags); |
247 | } |
248 | |
249 | if (print) { |
250 | if (printk_ratelimit()) |
251 | printk(KERN_WARNING |
252 | "audit: audit_lost=%d audit_rate_limit=%d " |
253 | "audit_backlog_limit=%d\n", |
254 | atomic_read(&audit_lost), |
255 | audit_rate_limit, |
256 | audit_backlog_limit); |
257 | audit_panic(message); |
258 | } |
259 | } |
260 | |
261 | static int audit_log_config_change(char *function_name, int new, int old, |
262 | uid_t loginuid, u32 sessionid, u32 sid, |
263 | int allow_changes) |
264 | { |
265 | struct audit_buffer *ab; |
266 | int rc = 0; |
267 | |
268 | ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); |
269 | audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new, |
270 | old, loginuid, sessionid); |
271 | if (sid) { |
272 | char *ctx = NULL; |
273 | u32 len; |
274 | |
275 | rc = security_secid_to_secctx(sid, &ctx, &len); |
276 | if (rc) { |
277 | audit_log_format(ab, " sid=%u", sid); |
278 | allow_changes = 0; /* Something weird, deny request */ |
279 | } else { |
280 | audit_log_format(ab, " subj=%s", ctx); |
281 | security_release_secctx(ctx, len); |
282 | } |
283 | } |
284 | audit_log_format(ab, " res=%d", allow_changes); |
285 | audit_log_end(ab); |
286 | return rc; |
287 | } |
288 | |
289 | static int audit_do_config_change(char *function_name, int *to_change, |
290 | int new, uid_t loginuid, u32 sessionid, |
291 | u32 sid) |
292 | { |
293 | int allow_changes, rc = 0, old = *to_change; |
294 | |
295 | /* check if we are locked */ |
296 | if (audit_enabled == AUDIT_LOCKED) |
297 | allow_changes = 0; |
298 | else |
299 | allow_changes = 1; |
300 | |
301 | if (audit_enabled != AUDIT_OFF) { |
302 | rc = audit_log_config_change(function_name, new, old, loginuid, |
303 | sessionid, sid, allow_changes); |
304 | if (rc) |
305 | allow_changes = 0; |
306 | } |
307 | |
308 | /* If we are allowed, make the change */ |
309 | if (allow_changes == 1) |
310 | *to_change = new; |
311 | /* Not allowed, update reason */ |
312 | else if (rc == 0) |
313 | rc = -EPERM; |
314 | return rc; |
315 | } |
316 | |
317 | static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid, |
318 | u32 sid) |
319 | { |
320 | return audit_do_config_change("audit_rate_limit", &audit_rate_limit, |
321 | limit, loginuid, sessionid, sid); |
322 | } |
323 | |
324 | static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid, |
325 | u32 sid) |
326 | { |
327 | return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, |
328 | limit, loginuid, sessionid, sid); |
329 | } |
330 | |
331 | static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid) |
332 | { |
333 | int rc; |
334 | if (state < AUDIT_OFF || state > AUDIT_LOCKED) |
335 | return -EINVAL; |
336 | |
337 | rc = audit_do_config_change("audit_enabled", &audit_enabled, state, |
338 | loginuid, sessionid, sid); |
339 | |
340 | if (!rc) |
341 | audit_ever_enabled |= !!state; |
342 | |
343 | return rc; |
344 | } |
345 | |
346 | static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid) |
347 | { |
348 | if (state != AUDIT_FAIL_SILENT |
349 | && state != AUDIT_FAIL_PRINTK |
350 | && state != AUDIT_FAIL_PANIC) |
351 | return -EINVAL; |
352 | |
353 | return audit_do_config_change("audit_failure", &audit_failure, state, |
354 | loginuid, sessionid, sid); |
355 | } |
356 | |
357 | /* |
358 | * Queue skbs to be sent to auditd when/if it comes back. These skbs should |
359 | * already have been sent via prink/syslog and so if these messages are dropped |
360 | * it is not a huge concern since we already passed the audit_log_lost() |
361 | * notification and stuff. This is just nice to get audit messages during |
362 | * boot before auditd is running or messages generated while auditd is stopped. |
363 | * This only holds messages is audit_default is set, aka booting with audit=1 |
364 | * or building your kernel that way. |
365 | */ |
366 | static void audit_hold_skb(struct sk_buff *skb) |
367 | { |
368 | if (audit_default && |
369 | skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit) |
370 | skb_queue_tail(&audit_skb_hold_queue, skb); |
371 | else |
372 | kfree_skb(skb); |
373 | } |
374 | |
375 | /* |
376 | * For one reason or another this nlh isn't getting delivered to the userspace |
377 | * audit daemon, just send it to printk. |
378 | */ |
379 | static void audit_printk_skb(struct sk_buff *skb) |
380 | { |
381 | struct nlmsghdr *nlh = nlmsg_hdr(skb); |
382 | char *data = NLMSG_DATA(nlh); |
383 | |
384 | if (nlh->nlmsg_type != AUDIT_EOE) { |
385 | if (printk_ratelimit()) |
386 | printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data); |
387 | else |
388 | audit_log_lost("printk limit exceeded\n"); |
389 | } |
390 | |
391 | audit_hold_skb(skb); |
392 | } |
393 | |
394 | static void kauditd_send_skb(struct sk_buff *skb) |
395 | { |
396 | int err; |
397 | /* take a reference in case we can't send it and we want to hold it */ |
398 | skb_get(skb); |
399 | err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0); |
400 | if (err < 0) { |
401 | BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */ |
402 | printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); |
403 | audit_log_lost("auditd disappeared\n"); |
404 | audit_pid = 0; |
405 | /* we might get lucky and get this in the next auditd */ |
406 | audit_hold_skb(skb); |
407 | } else |
408 | /* drop the extra reference if sent ok */ |
409 | consume_skb(skb); |
410 | } |
411 | |
412 | static int kauditd_thread(void *dummy) |
413 | { |
414 | struct sk_buff *skb; |
415 | |
416 | set_freezable(); |
417 | while (!kthread_should_stop()) { |
418 | /* |
419 | * if auditd just started drain the queue of messages already |
420 | * sent to syslog/printk. remember loss here is ok. we already |
421 | * called audit_log_lost() if it didn't go out normally. so the |
422 | * race between the skb_dequeue and the next check for audit_pid |
423 | * doesn't matter. |
424 | * |
425 | * if you ever find kauditd to be too slow we can get a perf win |
426 | * by doing our own locking and keeping better track if there |
427 | * are messages in this queue. I don't see the need now, but |
428 | * in 5 years when I want to play with this again I'll see this |
429 | * note and still have no friggin idea what i'm thinking today. |
430 | */ |
431 | if (audit_default && audit_pid) { |
432 | skb = skb_dequeue(&audit_skb_hold_queue); |
433 | if (unlikely(skb)) { |
434 | while (skb && audit_pid) { |
435 | kauditd_send_skb(skb); |
436 | skb = skb_dequeue(&audit_skb_hold_queue); |
437 | } |
438 | } |
439 | } |
440 | |
441 | skb = skb_dequeue(&audit_skb_queue); |
442 | wake_up(&audit_backlog_wait); |
443 | if (skb) { |
444 | if (audit_pid) |
445 | kauditd_send_skb(skb); |
446 | else |
447 | audit_printk_skb(skb); |
448 | } else { |
449 | DECLARE_WAITQUEUE(wait, current); |
450 | set_current_state(TASK_INTERRUPTIBLE); |
451 | add_wait_queue(&kauditd_wait, &wait); |
452 | |
453 | if (!skb_queue_len(&audit_skb_queue)) { |
454 | try_to_freeze(); |
455 | schedule(); |
456 | } |
457 | |
458 | __set_current_state(TASK_RUNNING); |
459 | remove_wait_queue(&kauditd_wait, &wait); |
460 | } |
461 | } |
462 | return 0; |
463 | } |
464 | |
465 | static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid) |
466 | { |
467 | struct task_struct *tsk; |
468 | int err; |
469 | |
470 | rcu_read_lock(); |
471 | tsk = find_task_by_vpid(pid); |
472 | if (!tsk) { |
473 | rcu_read_unlock(); |
474 | return -ESRCH; |
475 | } |
476 | get_task_struct(tsk); |
477 | rcu_read_unlock(); |
478 | err = tty_audit_push_task(tsk, loginuid, sessionid); |
479 | put_task_struct(tsk); |
480 | return err; |
481 | } |
482 | |
483 | int audit_send_list(void *_dest) |
484 | { |
485 | struct audit_netlink_list *dest = _dest; |
486 | int pid = dest->pid; |
487 | struct sk_buff *skb; |
488 | |
489 | /* wait for parent to finish and send an ACK */ |
490 | mutex_lock(&audit_cmd_mutex); |
491 | mutex_unlock(&audit_cmd_mutex); |
492 | |
493 | while ((skb = __skb_dequeue(&dest->q)) != NULL) |
494 | netlink_unicast(audit_sock, skb, pid, 0); |
495 | |
496 | kfree(dest); |
497 | |
498 | return 0; |
499 | } |
500 | |
501 | struct sk_buff *audit_make_reply(int pid, int seq, int type, int done, |
502 | int multi, const void *payload, int size) |
503 | { |
504 | struct sk_buff *skb; |
505 | struct nlmsghdr *nlh; |
506 | void *data; |
507 | int flags = multi ? NLM_F_MULTI : 0; |
508 | int t = done ? NLMSG_DONE : type; |
509 | |
510 | skb = nlmsg_new(size, GFP_KERNEL); |
511 | if (!skb) |
512 | return NULL; |
513 | |
514 | nlh = NLMSG_NEW(skb, pid, seq, t, size, flags); |
515 | data = NLMSG_DATA(nlh); |
516 | memcpy(data, payload, size); |
517 | return skb; |
518 | |
519 | nlmsg_failure: /* Used by NLMSG_NEW */ |
520 | if (skb) |
521 | kfree_skb(skb); |
522 | return NULL; |
523 | } |
524 | |
525 | static int audit_send_reply_thread(void *arg) |
526 | { |
527 | struct audit_reply *reply = (struct audit_reply *)arg; |
528 | |
529 | mutex_lock(&audit_cmd_mutex); |
530 | mutex_unlock(&audit_cmd_mutex); |
531 | |
532 | /* Ignore failure. It'll only happen if the sender goes away, |
533 | because our timeout is set to infinite. */ |
534 | netlink_unicast(audit_sock, reply->skb, reply->pid, 0); |
535 | kfree(reply); |
536 | return 0; |
537 | } |
538 | /** |
539 | * audit_send_reply - send an audit reply message via netlink |
540 | * @pid: process id to send reply to |
541 | * @seq: sequence number |
542 | * @type: audit message type |
543 | * @done: done (last) flag |
544 | * @multi: multi-part message flag |
545 | * @payload: payload data |
546 | * @size: payload size |
547 | * |
548 | * Allocates an skb, builds the netlink message, and sends it to the pid. |
549 | * No failure notifications. |
550 | */ |
551 | static void audit_send_reply(int pid, int seq, int type, int done, int multi, |
552 | const void *payload, int size) |
553 | { |
554 | struct sk_buff *skb; |
555 | struct task_struct *tsk; |
556 | struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), |
557 | GFP_KERNEL); |
558 | |
559 | if (!reply) |
560 | return; |
561 | |
562 | skb = audit_make_reply(pid, seq, type, done, multi, payload, size); |
563 | if (!skb) |
564 | goto out; |
565 | |
566 | reply->pid = pid; |
567 | reply->skb = skb; |
568 | |
569 | tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); |
570 | if (!IS_ERR(tsk)) |
571 | return; |
572 | kfree_skb(skb); |
573 | out: |
574 | kfree(reply); |
575 | } |
576 | |
577 | /* |
578 | * Check for appropriate CAP_AUDIT_ capabilities on incoming audit |
579 | * control messages. |
580 | */ |
581 | static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) |
582 | { |
583 | int err = 0; |
584 | |
585 | switch (msg_type) { |
586 | case AUDIT_GET: |
587 | case AUDIT_LIST: |
588 | case AUDIT_LIST_RULES: |
589 | case AUDIT_SET: |
590 | case AUDIT_ADD: |
591 | case AUDIT_ADD_RULE: |
592 | case AUDIT_DEL: |
593 | case AUDIT_DEL_RULE: |
594 | case AUDIT_SIGNAL_INFO: |
595 | case AUDIT_TTY_GET: |
596 | case AUDIT_TTY_SET: |
597 | case AUDIT_TRIM: |
598 | case AUDIT_MAKE_EQUIV: |
599 | if (security_netlink_recv(skb, CAP_AUDIT_CONTROL)) |
600 | err = -EPERM; |
601 | break; |
602 | case AUDIT_USER: |
603 | case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: |
604 | case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: |
605 | if (security_netlink_recv(skb, CAP_AUDIT_WRITE)) |
606 | err = -EPERM; |
607 | break; |
608 | default: /* bad msg */ |
609 | err = -EINVAL; |
610 | } |
611 | |
612 | return err; |
613 | } |
614 | |
615 | static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type, |
616 | u32 pid, u32 uid, uid_t auid, u32 ses, |
617 | u32 sid) |
618 | { |
619 | int rc = 0; |
620 | char *ctx = NULL; |
621 | u32 len; |
622 | |
623 | if (!audit_enabled) { |
624 | *ab = NULL; |
625 | return rc; |
626 | } |
627 | |
628 | *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); |
629 | audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u", |
630 | pid, uid, auid, ses); |
631 | if (sid) { |
632 | rc = security_secid_to_secctx(sid, &ctx, &len); |
633 | if (rc) |
634 | audit_log_format(*ab, " ssid=%u", sid); |
635 | else { |
636 | audit_log_format(*ab, " subj=%s", ctx); |
637 | security_release_secctx(ctx, len); |
638 | } |
639 | } |
640 | |
641 | return rc; |
642 | } |
643 | |
644 | static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) |
645 | { |
646 | u32 uid, pid, seq, sid; |
647 | void *data; |
648 | struct audit_status *status_get, status_set; |
649 | int err; |
650 | struct audit_buffer *ab; |
651 | u16 msg_type = nlh->nlmsg_type; |
652 | uid_t loginuid; /* loginuid of sender */ |
653 | u32 sessionid; |
654 | struct audit_sig_info *sig_data; |
655 | char *ctx = NULL; |
656 | u32 len; |
657 | |
658 | err = audit_netlink_ok(skb, msg_type); |
659 | if (err) |
660 | return err; |
661 | |
662 | /* As soon as there's any sign of userspace auditd, |
663 | * start kauditd to talk to it */ |
664 | if (!kauditd_task) |
665 | kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); |
666 | if (IS_ERR(kauditd_task)) { |
667 | err = PTR_ERR(kauditd_task); |
668 | kauditd_task = NULL; |
669 | return err; |
670 | } |
671 | |
672 | pid = NETLINK_CREDS(skb)->pid; |
673 | uid = NETLINK_CREDS(skb)->uid; |
674 | loginuid = NETLINK_CB(skb).loginuid; |
675 | sessionid = NETLINK_CB(skb).sessionid; |
676 | sid = NETLINK_CB(skb).sid; |
677 | seq = nlh->nlmsg_seq; |
678 | data = NLMSG_DATA(nlh); |
679 | |
680 | switch (msg_type) { |
681 | case AUDIT_GET: |
682 | status_set.enabled = audit_enabled; |
683 | status_set.failure = audit_failure; |
684 | status_set.pid = audit_pid; |
685 | status_set.rate_limit = audit_rate_limit; |
686 | status_set.backlog_limit = audit_backlog_limit; |
687 | status_set.lost = atomic_read(&audit_lost); |
688 | status_set.backlog = skb_queue_len(&audit_skb_queue); |
689 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, |
690 | &status_set, sizeof(status_set)); |
691 | break; |
692 | case AUDIT_SET: |
693 | if (nlh->nlmsg_len < sizeof(struct audit_status)) |
694 | return -EINVAL; |
695 | status_get = (struct audit_status *)data; |
696 | if (status_get->mask & AUDIT_STATUS_ENABLED) { |
697 | err = audit_set_enabled(status_get->enabled, |
698 | loginuid, sessionid, sid); |
699 | if (err < 0) |
700 | return err; |
701 | } |
702 | if (status_get->mask & AUDIT_STATUS_FAILURE) { |
703 | err = audit_set_failure(status_get->failure, |
704 | loginuid, sessionid, sid); |
705 | if (err < 0) |
706 | return err; |
707 | } |
708 | if (status_get->mask & AUDIT_STATUS_PID) { |
709 | int new_pid = status_get->pid; |
710 | |
711 | if (audit_enabled != AUDIT_OFF) |
712 | audit_log_config_change("audit_pid", new_pid, |
713 | audit_pid, loginuid, |
714 | sessionid, sid, 1); |
715 | |
716 | audit_pid = new_pid; |
717 | audit_nlk_pid = NETLINK_CB(skb).pid; |
718 | } |
719 | if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) { |
720 | err = audit_set_rate_limit(status_get->rate_limit, |
721 | loginuid, sessionid, sid); |
722 | if (err < 0) |
723 | return err; |
724 | } |
725 | if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) |
726 | err = audit_set_backlog_limit(status_get->backlog_limit, |
727 | loginuid, sessionid, sid); |
728 | break; |
729 | case AUDIT_USER: |
730 | case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: |
731 | case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: |
732 | if (!audit_enabled && msg_type != AUDIT_USER_AVC) |
733 | return 0; |
734 | |
735 | err = audit_filter_user(&NETLINK_CB(skb)); |
736 | if (err == 1) { |
737 | err = 0; |
738 | if (msg_type == AUDIT_USER_TTY) { |
739 | err = audit_prepare_user_tty(pid, loginuid, |
740 | sessionid); |
741 | if (err) |
742 | break; |
743 | } |
744 | audit_log_common_recv_msg(&ab, msg_type, pid, uid, |
745 | loginuid, sessionid, sid); |
746 | |
747 | if (msg_type != AUDIT_USER_TTY) |
748 | audit_log_format(ab, " msg='%.1024s'", |
749 | (char *)data); |
750 | else { |
751 | int size; |
752 | |
753 | audit_log_format(ab, " msg="); |
754 | size = nlmsg_len(nlh); |
755 | if (size > 0 && |
756 | ((unsigned char *)data)[size - 1] == '\0') |
757 | size--; |
758 | audit_log_n_untrustedstring(ab, data, size); |
759 | } |
760 | audit_set_pid(ab, pid); |
761 | audit_log_end(ab); |
762 | } |
763 | break; |
764 | case AUDIT_ADD: |
765 | case AUDIT_DEL: |
766 | if (nlmsg_len(nlh) < sizeof(struct audit_rule)) |
767 | return -EINVAL; |
768 | if (audit_enabled == AUDIT_LOCKED) { |
769 | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, |
770 | uid, loginuid, sessionid, sid); |
771 | |
772 | audit_log_format(ab, " audit_enabled=%d res=0", |
773 | audit_enabled); |
774 | audit_log_end(ab); |
775 | return -EPERM; |
776 | } |
777 | /* fallthrough */ |
778 | case AUDIT_LIST: |
779 | err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, |
780 | uid, seq, data, nlmsg_len(nlh), |
781 | loginuid, sessionid, sid); |
782 | break; |
783 | case AUDIT_ADD_RULE: |
784 | case AUDIT_DEL_RULE: |
785 | if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) |
786 | return -EINVAL; |
787 | if (audit_enabled == AUDIT_LOCKED) { |
788 | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, |
789 | uid, loginuid, sessionid, sid); |
790 | |
791 | audit_log_format(ab, " audit_enabled=%d res=0", |
792 | audit_enabled); |
793 | audit_log_end(ab); |
794 | return -EPERM; |
795 | } |
796 | /* fallthrough */ |
797 | case AUDIT_LIST_RULES: |
798 | err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, |
799 | uid, seq, data, nlmsg_len(nlh), |
800 | loginuid, sessionid, sid); |
801 | break; |
802 | case AUDIT_TRIM: |
803 | audit_trim_trees(); |
804 | |
805 | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, |
806 | uid, loginuid, sessionid, sid); |
807 | |
808 | audit_log_format(ab, " op=trim res=1"); |
809 | audit_log_end(ab); |
810 | break; |
811 | case AUDIT_MAKE_EQUIV: { |
812 | void *bufp = data; |
813 | u32 sizes[2]; |
814 | size_t msglen = nlmsg_len(nlh); |
815 | char *old, *new; |
816 | |
817 | err = -EINVAL; |
818 | if (msglen < 2 * sizeof(u32)) |
819 | break; |
820 | memcpy(sizes, bufp, 2 * sizeof(u32)); |
821 | bufp += 2 * sizeof(u32); |
822 | msglen -= 2 * sizeof(u32); |
823 | old = audit_unpack_string(&bufp, &msglen, sizes[0]); |
824 | if (IS_ERR(old)) { |
825 | err = PTR_ERR(old); |
826 | break; |
827 | } |
828 | new = audit_unpack_string(&bufp, &msglen, sizes[1]); |
829 | if (IS_ERR(new)) { |
830 | err = PTR_ERR(new); |
831 | kfree(old); |
832 | break; |
833 | } |
834 | /* OK, here comes... */ |
835 | err = audit_tag_tree(old, new); |
836 | |
837 | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, |
838 | uid, loginuid, sessionid, sid); |
839 | |
840 | audit_log_format(ab, " op=make_equiv old="); |
841 | audit_log_untrustedstring(ab, old); |
842 | audit_log_format(ab, " new="); |
843 | audit_log_untrustedstring(ab, new); |
844 | audit_log_format(ab, " res=%d", !err); |
845 | audit_log_end(ab); |
846 | kfree(old); |
847 | kfree(new); |
848 | break; |
849 | } |
850 | case AUDIT_SIGNAL_INFO: |
851 | len = 0; |
852 | if (audit_sig_sid) { |
853 | err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); |
854 | if (err) |
855 | return err; |
856 | } |
857 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); |
858 | if (!sig_data) { |
859 | if (audit_sig_sid) |
860 | security_release_secctx(ctx, len); |
861 | return -ENOMEM; |
862 | } |
863 | sig_data->uid = audit_sig_uid; |
864 | sig_data->pid = audit_sig_pid; |
865 | if (audit_sig_sid) { |
866 | memcpy(sig_data->ctx, ctx, len); |
867 | security_release_secctx(ctx, len); |
868 | } |
869 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, |
870 | 0, 0, sig_data, sizeof(*sig_data) + len); |
871 | kfree(sig_data); |
872 | break; |
873 | case AUDIT_TTY_GET: { |
874 | struct audit_tty_status s; |
875 | struct task_struct *tsk; |
876 | unsigned long flags; |
877 | |
878 | rcu_read_lock(); |
879 | tsk = find_task_by_vpid(pid); |
880 | if (tsk && lock_task_sighand(tsk, &flags)) { |
881 | s.enabled = tsk->signal->audit_tty != 0; |
882 | unlock_task_sighand(tsk, &flags); |
883 | } else |
884 | err = -ESRCH; |
885 | rcu_read_unlock(); |
886 | |
887 | if (!err) |
888 | audit_send_reply(NETLINK_CB(skb).pid, seq, |
889 | AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); |
890 | break; |
891 | } |
892 | case AUDIT_TTY_SET: { |
893 | struct audit_tty_status *s; |
894 | struct task_struct *tsk; |
895 | unsigned long flags; |
896 | |
897 | if (nlh->nlmsg_len < sizeof(struct audit_tty_status)) |
898 | return -EINVAL; |
899 | s = data; |
900 | if (s->enabled != 0 && s->enabled != 1) |
901 | return -EINVAL; |
902 | rcu_read_lock(); |
903 | tsk = find_task_by_vpid(pid); |
904 | if (tsk && lock_task_sighand(tsk, &flags)) { |
905 | tsk->signal->audit_tty = s->enabled != 0; |
906 | unlock_task_sighand(tsk, &flags); |
907 | } else |
908 | err = -ESRCH; |
909 | rcu_read_unlock(); |
910 | break; |
911 | } |
912 | default: |
913 | err = -EINVAL; |
914 | break; |
915 | } |
916 | |
917 | return err < 0 ? err : 0; |
918 | } |
919 | |
920 | /* |
921 | * Get message from skb. Each message is processed by audit_receive_msg. |
922 | * Malformed skbs with wrong length are discarded silently. |
923 | */ |
924 | static void audit_receive_skb(struct sk_buff *skb) |
925 | { |
926 | struct nlmsghdr *nlh; |
927 | /* |
928 | * len MUST be signed for NLMSG_NEXT to be able to dec it below 0 |
929 | * if the nlmsg_len was not aligned |
930 | */ |
931 | int len; |
932 | int err; |
933 | |
934 | nlh = nlmsg_hdr(skb); |
935 | len = skb->len; |
936 | |
937 | while (NLMSG_OK(nlh, len)) { |
938 | err = audit_receive_msg(skb, nlh); |
939 | /* if err or if this message says it wants a response */ |
940 | if (err || (nlh->nlmsg_flags & NLM_F_ACK)) |
941 | netlink_ack(skb, nlh, err); |
942 | |
943 | nlh = NLMSG_NEXT(nlh, len); |
944 | } |
945 | } |
946 | |
947 | /* Receive messages from netlink socket. */ |
948 | static void audit_receive(struct sk_buff *skb) |
949 | { |
950 | mutex_lock(&audit_cmd_mutex); |
951 | audit_receive_skb(skb); |
952 | mutex_unlock(&audit_cmd_mutex); |
953 | } |
954 | |
955 | /* Initialize audit support at boot time. */ |
956 | static int __init audit_init(void) |
957 | { |
958 | int i; |
959 | |
960 | if (audit_initialized == AUDIT_DISABLED) |
961 | return 0; |
962 | |
963 | printk(KERN_INFO "audit: initializing netlink socket (%s)\n", |
964 | audit_default ? "enabled" : "disabled"); |
965 | audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0, |
966 | audit_receive, NULL, THIS_MODULE); |
967 | if (!audit_sock) |
968 | audit_panic("cannot initialize netlink socket"); |
969 | else |
970 | audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; |
971 | |
972 | skb_queue_head_init(&audit_skb_queue); |
973 | skb_queue_head_init(&audit_skb_hold_queue); |
974 | audit_initialized = AUDIT_INITIALIZED; |
975 | audit_enabled = audit_default; |
976 | audit_ever_enabled |= !!audit_default; |
977 | |
978 | audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); |
979 | |
980 | for (i = 0; i < AUDIT_INODE_BUCKETS; i++) |
981 | INIT_LIST_HEAD(&audit_inode_hash[i]); |
982 | |
983 | return 0; |
984 | } |
985 | __initcall(audit_init); |
986 | |
987 | /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ |
988 | static int __init audit_enable(char *str) |
989 | { |
990 | audit_default = !!simple_strtol(str, NULL, 0); |
991 | if (!audit_default) |
992 | audit_initialized = AUDIT_DISABLED; |
993 | |
994 | printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled"); |
995 | |
996 | if (audit_initialized == AUDIT_INITIALIZED) { |
997 | audit_enabled = audit_default; |
998 | audit_ever_enabled |= !!audit_default; |
999 | } else if (audit_initialized == AUDIT_UNINITIALIZED) { |
1000 | printk(" (after initialization)"); |
1001 | } else { |
1002 | printk(" (until reboot)"); |
1003 | } |
1004 | printk("\n"); |
1005 | |
1006 | return 1; |
1007 | } |
1008 | |
1009 | __setup("audit=", audit_enable); |
1010 | |
1011 | static void audit_buffer_free(struct audit_buffer *ab) |
1012 | { |
1013 | unsigned long flags; |
1014 | |
1015 | if (!ab) |
1016 | return; |
1017 | |
1018 | if (ab->skb) |
1019 | kfree_skb(ab->skb); |
1020 | |
1021 | spin_lock_irqsave(&audit_freelist_lock, flags); |
1022 | if (audit_freelist_count > AUDIT_MAXFREE) |
1023 | kfree(ab); |
1024 | else { |
1025 | audit_freelist_count++; |
1026 | list_add(&ab->list, &audit_freelist); |
1027 | } |
1028 | spin_unlock_irqrestore(&audit_freelist_lock, flags); |
1029 | } |
1030 | |
1031 | static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, |
1032 | gfp_t gfp_mask, int type) |
1033 | { |
1034 | unsigned long flags; |
1035 | struct audit_buffer *ab = NULL; |
1036 | struct nlmsghdr *nlh; |
1037 | |
1038 | spin_lock_irqsave(&audit_freelist_lock, flags); |
1039 | if (!list_empty(&audit_freelist)) { |
1040 | ab = list_entry(audit_freelist.next, |
1041 | struct audit_buffer, list); |
1042 | list_del(&ab->list); |
1043 | --audit_freelist_count; |
1044 | } |
1045 | spin_unlock_irqrestore(&audit_freelist_lock, flags); |
1046 | |
1047 | if (!ab) { |
1048 | ab = kmalloc(sizeof(*ab), gfp_mask); |
1049 | if (!ab) |
1050 | goto err; |
1051 | } |
1052 | |
1053 | ab->ctx = ctx; |
1054 | ab->gfp_mask = gfp_mask; |
1055 | |
1056 | ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); |
1057 | if (!ab->skb) |
1058 | goto nlmsg_failure; |
1059 | |
1060 | nlh = NLMSG_NEW(ab->skb, 0, 0, type, 0, 0); |
1061 | |
1062 | return ab; |
1063 | |
1064 | nlmsg_failure: /* Used by NLMSG_NEW */ |
1065 | kfree_skb(ab->skb); |
1066 | ab->skb = NULL; |
1067 | err: |
1068 | audit_buffer_free(ab); |
1069 | return NULL; |
1070 | } |
1071 | |
1072 | /** |
1073 | * audit_serial - compute a serial number for the audit record |
1074 | * |
1075 | * Compute a serial number for the audit record. Audit records are |
1076 | * written to user-space as soon as they are generated, so a complete |
1077 | * audit record may be written in several pieces. The timestamp of the |
1078 | * record and this serial number are used by the user-space tools to |
1079 | * determine which pieces belong to the same audit record. The |
1080 | * (timestamp,serial) tuple is unique for each syscall and is live from |
1081 | * syscall entry to syscall exit. |
1082 | * |
1083 | * NOTE: Another possibility is to store the formatted records off the |
1084 | * audit context (for those records that have a context), and emit them |
1085 | * all at syscall exit. However, this could delay the reporting of |
1086 | * significant errors until syscall exit (or never, if the system |
1087 | * halts). |
1088 | */ |
1089 | unsigned int audit_serial(void) |
1090 | { |
1091 | static DEFINE_SPINLOCK(serial_lock); |
1092 | static unsigned int serial = 0; |
1093 | |
1094 | unsigned long flags; |
1095 | unsigned int ret; |
1096 | |
1097 | spin_lock_irqsave(&serial_lock, flags); |
1098 | do { |
1099 | ret = ++serial; |
1100 | } while (unlikely(!ret)); |
1101 | spin_unlock_irqrestore(&serial_lock, flags); |
1102 | |
1103 | return ret; |
1104 | } |
1105 | |
1106 | static inline void audit_get_stamp(struct audit_context *ctx, |
1107 | struct timespec *t, unsigned int *serial) |
1108 | { |
1109 | if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { |
1110 | *t = CURRENT_TIME; |
1111 | *serial = audit_serial(); |
1112 | } |
1113 | } |
1114 | |
1115 | /* Obtain an audit buffer. This routine does locking to obtain the |
1116 | * audit buffer, but then no locking is required for calls to |
1117 | * audit_log_*format. If the tsk is a task that is currently in a |
1118 | * syscall, then the syscall is marked as auditable and an audit record |
1119 | * will be written at syscall exit. If there is no associated task, tsk |
1120 | * should be NULL. */ |
1121 | |
1122 | /** |
1123 | * audit_log_start - obtain an audit buffer |
1124 | * @ctx: audit_context (may be NULL) |
1125 | * @gfp_mask: type of allocation |
1126 | * @type: audit message type |
1127 | * |
1128 | * Returns audit_buffer pointer on success or NULL on error. |
1129 | * |
1130 | * Obtain an audit buffer. This routine does locking to obtain the |
1131 | * audit buffer, but then no locking is required for calls to |
1132 | * audit_log_*format. If the task (ctx) is a task that is currently in a |
1133 | * syscall, then the syscall is marked as auditable and an audit record |
1134 | * will be written at syscall exit. If there is no associated task, then |
1135 | * task context (ctx) should be NULL. |
1136 | */ |
1137 | struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, |
1138 | int type) |
1139 | { |
1140 | struct audit_buffer *ab = NULL; |
1141 | struct timespec t; |
1142 | unsigned int uninitialized_var(serial); |
1143 | int reserve; |
1144 | unsigned long timeout_start = jiffies; |
1145 | |
1146 | if (audit_initialized != AUDIT_INITIALIZED) |
1147 | return NULL; |
1148 | |
1149 | if (unlikely(audit_filter_type(type))) |
1150 | return NULL; |
1151 | |
1152 | if (gfp_mask & __GFP_WAIT) |
1153 | reserve = 0; |
1154 | else |
1155 | reserve = 5; /* Allow atomic callers to go up to five |
1156 | entries over the normal backlog limit */ |
1157 | |
1158 | while (audit_backlog_limit |
1159 | && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { |
1160 | if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time |
1161 | && time_before(jiffies, timeout_start + audit_backlog_wait_time)) { |
1162 | |
1163 | /* Wait for auditd to drain the queue a little */ |
1164 | DECLARE_WAITQUEUE(wait, current); |
1165 | set_current_state(TASK_INTERRUPTIBLE); |
1166 | add_wait_queue(&audit_backlog_wait, &wait); |
1167 | |
1168 | if (audit_backlog_limit && |
1169 | skb_queue_len(&audit_skb_queue) > audit_backlog_limit) |
1170 | schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies); |
1171 | |
1172 | __set_current_state(TASK_RUNNING); |
1173 | remove_wait_queue(&audit_backlog_wait, &wait); |
1174 | continue; |
1175 | } |
1176 | if (audit_rate_check() && printk_ratelimit()) |
1177 | printk(KERN_WARNING |
1178 | "audit: audit_backlog=%d > " |
1179 | "audit_backlog_limit=%d\n", |
1180 | skb_queue_len(&audit_skb_queue), |
1181 | audit_backlog_limit); |
1182 | audit_log_lost("backlog limit exceeded"); |
1183 | audit_backlog_wait_time = audit_backlog_wait_overflow; |
1184 | wake_up(&audit_backlog_wait); |
1185 | return NULL; |
1186 | } |
1187 | |
1188 | ab = audit_buffer_alloc(ctx, gfp_mask, type); |
1189 | if (!ab) { |
1190 | audit_log_lost("out of memory in audit_log_start"); |
1191 | return NULL; |
1192 | } |
1193 | |
1194 | audit_get_stamp(ab->ctx, &t, &serial); |
1195 | |
1196 | audit_log_format(ab, "audit(%lu.%03lu:%u): ", |
1197 | t.tv_sec, t.tv_nsec/1000000, serial); |
1198 | return ab; |
1199 | } |
1200 | |
1201 | /** |
1202 | * audit_expand - expand skb in the audit buffer |
1203 | * @ab: audit_buffer |
1204 | * @extra: space to add at tail of the skb |
1205 | * |
1206 | * Returns 0 (no space) on failed expansion, or available space if |
1207 | * successful. |
1208 | */ |
1209 | static inline int audit_expand(struct audit_buffer *ab, int extra) |
1210 | { |
1211 | struct sk_buff *skb = ab->skb; |
1212 | int oldtail = skb_tailroom(skb); |
1213 | int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); |
1214 | int newtail = skb_tailroom(skb); |
1215 | |
1216 | if (ret < 0) { |
1217 | audit_log_lost("out of memory in audit_expand"); |
1218 | return 0; |
1219 | } |
1220 | |
1221 | skb->truesize += newtail - oldtail; |
1222 | return newtail; |
1223 | } |
1224 | |
1225 | /* |
1226 | * Format an audit message into the audit buffer. If there isn't enough |
1227 | * room in the audit buffer, more room will be allocated and vsnprint |
1228 | * will be called a second time. Currently, we assume that a printk |
1229 | * can't format message larger than 1024 bytes, so we don't either. |
1230 | */ |
1231 | static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, |
1232 | va_list args) |
1233 | { |
1234 | int len, avail; |
1235 | struct sk_buff *skb; |
1236 | va_list args2; |
1237 | |
1238 | if (!ab) |
1239 | return; |
1240 | |
1241 | BUG_ON(!ab->skb); |
1242 | skb = ab->skb; |
1243 | avail = skb_tailroom(skb); |
1244 | if (avail == 0) { |
1245 | avail = audit_expand(ab, AUDIT_BUFSIZ); |
1246 | if (!avail) |
1247 | goto out; |
1248 | } |
1249 | va_copy(args2, args); |
1250 | len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); |
1251 | if (len >= avail) { |
1252 | /* The printk buffer is 1024 bytes long, so if we get |
1253 | * here and AUDIT_BUFSIZ is at least 1024, then we can |
1254 | * log everything that printk could have logged. */ |
1255 | avail = audit_expand(ab, |
1256 | max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); |
1257 | if (!avail) |
1258 | goto out; |
1259 | len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); |
1260 | } |
1261 | va_end(args2); |
1262 | if (len > 0) |
1263 | skb_put(skb, len); |
1264 | out: |
1265 | return; |
1266 | } |
1267 | |
1268 | /** |
1269 | * audit_log_format - format a message into the audit buffer. |
1270 | * @ab: audit_buffer |
1271 | * @fmt: format string |
1272 | * @...: optional parameters matching @fmt string |
1273 | * |
1274 | * All the work is done in audit_log_vformat. |
1275 | */ |
1276 | void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) |
1277 | { |
1278 | va_list args; |
1279 | |
1280 | if (!ab) |
1281 | return; |
1282 | va_start(args, fmt); |
1283 | audit_log_vformat(ab, fmt, args); |
1284 | va_end(args); |
1285 | } |
1286 | |
1287 | /** |
1288 | * audit_log_hex - convert a buffer to hex and append it to the audit skb |
1289 | * @ab: the audit_buffer |
1290 | * @buf: buffer to convert to hex |
1291 | * @len: length of @buf to be converted |
1292 | * |
1293 | * No return value; failure to expand is silently ignored. |
1294 | * |
1295 | * This function will take the passed buf and convert it into a string of |
1296 | * ascii hex digits. The new string is placed onto the skb. |
1297 | */ |
1298 | void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, |
1299 | size_t len) |
1300 | { |
1301 | int i, avail, new_len; |
1302 | unsigned char *ptr; |
1303 | struct sk_buff *skb; |
1304 | static const unsigned char *hex = "0123456789ABCDEF"; |
1305 | |
1306 | if (!ab) |
1307 | return; |
1308 | |
1309 | BUG_ON(!ab->skb); |
1310 | skb = ab->skb; |
1311 | avail = skb_tailroom(skb); |
1312 | new_len = len<<1; |
1313 | if (new_len >= avail) { |
1314 | /* Round the buffer request up to the next multiple */ |
1315 | new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); |
1316 | avail = audit_expand(ab, new_len); |
1317 | if (!avail) |
1318 | return; |
1319 | } |
1320 | |
1321 | ptr = skb_tail_pointer(skb); |
1322 | for (i=0; i<len; i++) { |
1323 | *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ |
1324 | *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */ |
1325 | } |
1326 | *ptr = 0; |
1327 | skb_put(skb, len << 1); /* new string is twice the old string */ |
1328 | } |
1329 | |
1330 | /* |
1331 | * Format a string of no more than slen characters into the audit buffer, |
1332 | * enclosed in quote marks. |
1333 | */ |
1334 | void audit_log_n_string(struct audit_buffer *ab, const char *string, |
1335 | size_t slen) |
1336 | { |
1337 | int avail, new_len; |
1338 | unsigned char *ptr; |
1339 | struct sk_buff *skb; |
1340 | |
1341 | if (!ab) |
1342 | return; |
1343 | |
1344 | BUG_ON(!ab->skb); |
1345 | skb = ab->skb; |
1346 | avail = skb_tailroom(skb); |
1347 | new_len = slen + 3; /* enclosing quotes + null terminator */ |
1348 | if (new_len > avail) { |
1349 | avail = audit_expand(ab, new_len); |
1350 | if (!avail) |
1351 | return; |
1352 | } |
1353 | ptr = skb_tail_pointer(skb); |
1354 | *ptr++ = '"'; |
1355 | memcpy(ptr, string, slen); |
1356 | ptr += slen; |
1357 | *ptr++ = '"'; |
1358 | *ptr = 0; |
1359 | skb_put(skb, slen + 2); /* don't include null terminator */ |
1360 | } |
1361 | |
1362 | /** |
1363 | * audit_string_contains_control - does a string need to be logged in hex |
1364 | * @string: string to be checked |
1365 | * @len: max length of the string to check |
1366 | */ |
1367 | int audit_string_contains_control(const char *string, size_t len) |
1368 | { |
1369 | const unsigned char *p; |
1370 | for (p = string; p < (const unsigned char *)string + len; p++) { |
1371 | if (*p == '"' || *p < 0x21 || *p > 0x7e) |
1372 | return 1; |
1373 | } |
1374 | return 0; |
1375 | } |
1376 | |
1377 | /** |
1378 | * audit_log_n_untrustedstring - log a string that may contain random characters |
1379 | * @ab: audit_buffer |
1380 | * @len: length of string (not including trailing null) |
1381 | * @string: string to be logged |
1382 | * |
1383 | * This code will escape a string that is passed to it if the string |
1384 | * contains a control character, unprintable character, double quote mark, |
1385 | * or a space. Unescaped strings will start and end with a double quote mark. |
1386 | * Strings that are escaped are printed in hex (2 digits per char). |
1387 | * |
1388 | * The caller specifies the number of characters in the string to log, which may |
1389 | * or may not be the entire string. |
1390 | */ |
1391 | void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, |
1392 | size_t len) |
1393 | { |
1394 | if (audit_string_contains_control(string, len)) |
1395 | audit_log_n_hex(ab, string, len); |
1396 | else |
1397 | audit_log_n_string(ab, string, len); |
1398 | } |
1399 | |
1400 | /** |
1401 | * audit_log_untrustedstring - log a string that may contain random characters |
1402 | * @ab: audit_buffer |
1403 | * @string: string to be logged |
1404 | * |
1405 | * Same as audit_log_n_untrustedstring(), except that strlen is used to |
1406 | * determine string length. |
1407 | */ |
1408 | void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) |
1409 | { |
1410 | audit_log_n_untrustedstring(ab, string, strlen(string)); |
1411 | } |
1412 | |
1413 | /* This is a helper-function to print the escaped d_path */ |
1414 | void audit_log_d_path(struct audit_buffer *ab, const char *prefix, |
1415 | struct path *path) |
1416 | { |
1417 | char *p, *pathname; |
1418 | |
1419 | if (prefix) |
1420 | audit_log_format(ab, " %s", prefix); |
1421 | |
1422 | /* We will allow 11 spaces for ' (deleted)' to be appended */ |
1423 | pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); |
1424 | if (!pathname) { |
1425 | audit_log_string(ab, "<no_memory>"); |
1426 | return; |
1427 | } |
1428 | p = d_path(path, pathname, PATH_MAX+11); |
1429 | if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ |
1430 | /* FIXME: can we save some information here? */ |
1431 | audit_log_string(ab, "<too_long>"); |
1432 | } else |
1433 | audit_log_untrustedstring(ab, p); |
1434 | kfree(pathname); |
1435 | } |
1436 | |
1437 | void audit_log_key(struct audit_buffer *ab, char *key) |
1438 | { |
1439 | audit_log_format(ab, " key="); |
1440 | if (key) |
1441 | audit_log_untrustedstring(ab, key); |
1442 | else |
1443 | audit_log_format(ab, "(null)"); |
1444 | } |
1445 | |
1446 | /** |
1447 | * audit_log_end - end one audit record |
1448 | * @ab: the audit_buffer |
1449 | * |
1450 | * The netlink_* functions cannot be called inside an irq context, so |
1451 | * the audit buffer is placed on a queue and a tasklet is scheduled to |
1452 | * remove them from the queue outside the irq context. May be called in |
1453 | * any context. |
1454 | */ |
1455 | void audit_log_end(struct audit_buffer *ab) |
1456 | { |
1457 | if (!ab) |
1458 | return; |
1459 | if (!audit_rate_check()) { |
1460 | audit_log_lost("rate limit exceeded"); |
1461 | } else { |
1462 | struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); |
1463 | nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0); |
1464 | |
1465 | if (audit_pid) { |
1466 | skb_queue_tail(&audit_skb_queue, ab->skb); |
1467 | wake_up_interruptible(&kauditd_wait); |
1468 | } else { |
1469 | audit_printk_skb(ab->skb); |
1470 | } |
1471 | ab->skb = NULL; |
1472 | } |
1473 | audit_buffer_free(ab); |
1474 | } |
1475 | |
1476 | /** |
1477 | * audit_log - Log an audit record |
1478 | * @ctx: audit context |
1479 | * @gfp_mask: type of allocation |
1480 | * @type: audit message type |
1481 | * @fmt: format string to use |
1482 | * @...: variable parameters matching the format string |
1483 | * |
1484 | * This is a convenience function that calls audit_log_start, |
1485 | * audit_log_vformat, and audit_log_end. It may be called |
1486 | * in any context. |
1487 | */ |
1488 | void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, |
1489 | const char *fmt, ...) |
1490 | { |
1491 | struct audit_buffer *ab; |
1492 | va_list args; |
1493 | |
1494 | ab = audit_log_start(ctx, gfp_mask, type); |
1495 | if (ab) { |
1496 | va_start(args, fmt); |
1497 | audit_log_vformat(ab, fmt, args); |
1498 | va_end(args); |
1499 | audit_log_end(ab); |
1500 | } |
1501 | } |
1502 | |
1503 | EXPORT_SYMBOL(audit_log_start); |
1504 | EXPORT_SYMBOL(audit_log_end); |
1505 | EXPORT_SYMBOL(audit_log_format); |
1506 | EXPORT_SYMBOL(audit_log); |
1507 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9